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Abstract 
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Professor Kirk R Smith, Chair 

 
 
Airborne particulate matter smaller than 2.5 µm in diameter (PM2.5) is among the biggest 
determinants of disease world-wide. In 2013, exposure to PM2.5 caused an estimated 7 
million deaths and 189 million Disability-Adjusted Life Years (DALYs).  About half of this 
calculated burden arises from the indoor residential use of solid fuels – like wood, coal, 
dung, and crop waste – for cooking, a practice common to about 2.8 billion people. The 
rest is attributable to ambient concentrations produced by combustion sources like power 
plants, heating utilities and appliances, and motor vehicles. Despite the ubiquity of the 
problem, many monitoring, research, and policy efforts employ proxies of total exposure 
like outdoor ambient concentrations. These proxies are inadequate for the quantification 
of actual exposures and can prove misleading when used to estimate health effects. More 
work is needed to progress the use of total exposure – which is often a complex function of 
a person’s interaction with numerous environments with varying PM2.5 concentrations – as 
a proper PM2.5 risk metric. 
 
The first research chapter of this dissertation, Chapter 2, estimates changes in total PM2.5 
exposure from indoor concentrations (including contributions from second hand smoke), 
outdoor concentrations, and time-activity in 2014 and in 2024 under alternative emissions 
policy pathways in one of the most polluted capital cities on Earth: Ulaanbaatar, Mongolia. 
Ulaanbaatar’s air pollution crisis is seasonal; heavy use of residential coal heating during 
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its harsh and lengthy winters produces some of the worst air pollution in the world, but 
many cities are more polluted on an annual basis. With this in mind, seasonal exposure 
patterns are considered separately to produce estimates of annual exposures. These values 
are combined with projected background disease and population levels and some of the 
latest available exposure-response functions to project PM2.5-related health impacts. Policy 
pathways are estimated for business as usual; moderate reductions in heating, power plant, 
and motor vehicle emissions; and major reductions in the same sectors. The analysis 
estimates a 2014 population-wide annual average exposure of 59 µg/m3, which increases to 
60 µg/m3 in 2024 under business as usual but falls to 32 µg/m3 and 12 µg/m3 under moderate 
and major emissions control policies, respectively. Annual PM2.5-related deaths and DALYs 
are estimated at about 1,400 and 40,000, respectively, in 2014. Under business as usual, 
about 18,000 deaths and 530,000 DALYs are accrued through 2024. Exposure reductions 
resulting from the moderate control policy pathway avert an estimated 110,000 DALYs and 
4,000 deaths from the business as usual pathway between 2014-2024.  An estimated 240,000 
DALYs and 8,000 deaths are averted under major reduction policies. In all, Chapter 2 
highlights the need for aggressive action, especially related to residential heating and 
tobacco smoking, to avert a growing pollution crisis in Ulaanbaatar. 
 
Chapter 3 presents some of the first personal PM2.5 exposure measurements conducted in 
rural Lao women cooking primarily with wood. Measurements were taken during a stove 
intervention program in which traditional open fire and bucket stoves were ostensibly 
replaced with an ACE-1 fan stove. Average 48-hour concentrations before and after the 
intervention are reported at 123 µg/m3 and 81 µg/m3, respectively. Measurements of kitchen 
concentrations, ambient concentrations, and other environmental data are combined with 
an extensive set of survey responses to reliably model mean 48-hour average PM2.5 
exposures before and after the intervention using machine learning, ensemble, and cross-
validation techniques (for the full model: r2 = 0.26, predicted mean before intervention = 
120 µmg/m3, predicted mean after intervention = 88 µg/m3). 
 
Chapter 4 proposes the use of a household appliance, the smart smoke detector, as a tool 
for cost-effectively monitoring indoor PM2.5 concentrations, which are often overlooked by 
regulatory monitoring networks and health effects research. A particularly popular smart 
smoke detector, the Nest Protect, is reverse engineered. Its onboard optical sensor is co-
opted and characterized for the real-time measurement of PM2.5 mass concentrations.  Very 
good agreement is observed between processed Nest Protect signal and output from a co-
located research grade monitor, the DustTrak II (r2 > 0.99). 
 
The final chapter, Chapter 5, reiterates the thread common among Chapters 3-5 – 
advancing PM2.5 risk science through better estimation of total exposures – and discusses 
key areas for future research.
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Preface 
 

This doctoral dissertation was completed under the primary advising of Professor Kirk R. 
Smith, and with a great deal of support from friends, family, and colleagues. 
 
Chapter 2 is a slightly modified version of a manuscript 1 which, at the time of this 
dissertation filing, had been submitted and was under consideration for peer-reviewed 
publication. While a truly collaborative project, I was the lead author responsible for 
primary composition of the manuscript, projecting demographics, applying the exposure 
model approach (which was developed collaboratively), modeling background disease 
rates and indoor pollution concentrations with input from co-authors and from data 
collected by co-authors and other colleagues, and calculating attributable disease burdens, 
among other contributions. The manuscript benefitted from the hard work of all co-
authors and adapted text from a precursor report 2 to the Ministry of Environment and 
Green Development – which funded the study through the Clean Air Foundation of 
Ulaanbaatar. Portions of the precursor report were drafted by co-authors. For a period of 
time overlapping the beginning of this study, several co-authors were consultants to Social 
Impact, Inc. (SI) in conducting a separate study to evaluate the impacts of a stove subsidy 
program in Ulaanbaatar. Some of the openly accessible data collected as part of that study 
were used as inputs to the current study, but SI did not pay salaries as part of this 
study, have any role in study design, data collection, analysis, decision to publish, or 
preparation of the manuscript. Editing and advice from anonymous peer reviewers was 
received during the manuscript submission process. Permission to include this work in my 
dissertation was received from all co-authors and a representative of the Ministry of 
Environment and Green Development of Mongolia. 
 
Chapter 3 evolved from a study funded in part by the World Bank, during which the data 
analyzed in the chapter were collected, and a subsequent collaborative report to the 
Ministry of Health and Inter-Ministerial Clean Stove Initiative of the Lao People’s 
Democratic Republic.3  I was responsible for drafting several sections of that report and led 
the analysis of gravimetric exposure and gravimetric kitchen air pollution concentration 

                                                
1 Submitted as: “Hill, LD, Edwards, R, Turner, JR, Damdinsuren, Y, Olkhanud, P, Odsuren, M, Guttikunda, S, 
Ochir, C, Smith, K. Health assessment of future PM2.5 exposures from indoor, outdoor, and environmental 
tobacco smoke concentrations under alternative policy pathways in Ulaanbaatar, Mongolia. In review. 2017.” 
The title was revised during review to (at the time of dissertation filing): “Health assessment of future PM2.5 
exposures from indoor, outdoor, and second hand tobacco smoke concentrations under alternative policy 
pathways in Ulaanbaatar, Mongolia.” 
2 Ochir, C, Smith, KR, Hill, LD, Olkhanud, P, Damdinsuren, Y, Odsuren, M, Edwards, R, Turner, JR. Air 
pollution and health in Ulaanbaatar. Final Project Report. Prepared for the Ministry of the Environment and 
Green Development, Ulaanbaatar, Mongolia. 2014. 
3 Hill LD, Pillarisetti A, Delapena S, Garland C, Jagoe K, Koetting P, Pelletreau A, Boatman MR, Pennise D, 
Smith KR. Air pollution and impact analysis of a pilot stove intervention: report to the Ministry of Health and 
Inter-Ministerial Clean Stove Initiative of the Lao People’s Democratic Republic. 2015. 
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data. I was also involved in the collaborative processes of developing data collection tools, 
training the field teams, and managing data collection, among other aspects of the project. 
The work presented in Chapter 3 adds a great deal of analysis to the original report, 
including the implementation of super learning and machine learning to model personal 
exposures. Permission to use elements of that report in my thesis was received from 
relevant parties, including all co-authors. None of the individuals or groups who submitted 
the ministry report were responsible for choosing or disseminating the particular stove 
evaluated therein. None had any financial or other interest in the stove or any other 
competing stove at the time of the report, nor do I at the time of filing this dissertation. 
 
Chapter 4 is not adapted from any previously “published” manuscripts, but did benefit from 
the assistance of colleagues as discussed in the Acknowledgments. Most notable are the 
contributions made by sensor expert Tracy Alan of EME Systems (Berkeley, CA) who 
guided all aspects of the reverse engineering work and mentored me through the signal co-
opting process and Ajay Pillarisetti of UC Berkeley who provided invaluable input and 
feedback throughout the project. Chapters 1 and 5 are introduction and conclusion texts 
intended to tie together chapters 2-4.
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Chapter 1 

Introduction 

1.1 Background 
 
Air pollution is a leading cause of disease around the world (Forouzanfar et al. 2015). Of 
special concern is particulate matter smaller than 2.5 µm in diameter (PM2.5), a common 
byproduct of combustion. Exposure to PM2.5 has been linked to the development of lung 
cancer (LC), ischemic heart disease (IHD), stroke, chronic obstructive pulmonary disorder 
(COPD), and acute lower respiratory infection (ALRI) in children (Smith et al. 2014). From 
these diseases alone, researchers estimate that exposure to PM2.5 is responsible for about 7 
million deaths and nearly 189 million disability-adjusted life years (DALYs 4) every year 
(Institute for Health Metrics & Evaluation 2017). The true impact may be higher. A growing 
body of evidence suggests that PM2.5 exposures may increase the risk of dementia, 
Alzheimer’s, and general cognitive impairment (Clifford et al. 2016; Oudin et al. 2015; Power 
et al. 2016); adverse birth outcomes (Brauer et al. 2008; Dadvand et al. 2013); and 
tuberculosis (Cohen and Mehta 2007; Pokhrel et al. 2010; Sumpter and Chandramohan 
2013), among other health effects. 
 
The health impacts of PM2.5 are of special concern in regions where household cooking and 
heating are commonly performed with solid fuels – like wood, dung, and coal – and 
inefficient appliances or open fires. Use of solid fuels for cooking results in daily average 
household PM2.5 concentrations (also called household air pollution, or HAP) that have 
been measured with consistency in kitchens at around 1,000 µg/m3 (Balakrishnan et al. 
2014), or 40 times the World Health Organization 24-hour health-based guideline (World 
Health Organization 2014), and personal PM2.5 exposures (in women) that have been 
measured in the realm of 250 µg/m3 (Balakrishnan et al. 2014). An estimated 2.8 billion 
people are thusly affected (Bonjour et al. 2013). Solid fuel cooking also impacts outdoor 
concentrations; cooking emissions produced an estimated 12.5% of ambient PM2.5 globally 

                                                
4 DALYs are a time-based measure of disease burden summing years lost to premature death and lost years 
of healthy life. 
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in 2010 (Chafe et al. 2014). In all, about 40% of the estimated 7 million premature deaths 
and about 45% of the 189 million DALYs from exposure to PM2.5 are attributed to cooking-
related HAP exposures.   
 
Solid fuel heating is less well studied, but is considered important to global PM2.5 exposures 
(Chafe et al. 2015; Smith and Pillarisetti 2012). Residential solid fuel heating has been 
attributed to 13 – 21% of ambient PM2.5 in Europe and about 10% in Canada and the US 
(Chafe et al. 2015), with higher values in winter and in certain regions (Balakrishnan et al. 
2014; Davy et al. 2011; Naeher et al. 2007; Ward and Lange 2010). Outdoor and direct indoor 
(fugitive) emissions can also lead to increased HAP concentrations. In some regions solid 
fuel heating-related HAP concentrations may be on par with those of households cooking 
with solid fuels. This applies especially in low-income areas with harsh winters and a high 
prevalence of inefficient stoves, like China and Mongolia. While PM2.5 exposures from 
heating-related HAP are not explicitly included in the previously mentioned PM2.5 disease 
burden values – due in part to the difficulty of distinguishing cooking-related emissions 
from heating-related emissions – the effects of solid fuel heating on morbidity and 
mortality are likely substantial. 
 
Health impacts from PM2.5 exposures are not limited to hyper-polluted areas or high-HAP 
environments. High risks have been observed at concentrations common in parts of the 
world where the air is considered quite clean. In High Income countries, for example, 
ambient air pollution was indicated as the eighth leading cause of death in 2015 (Institute 
for Health Metrics & Evaluation 2017). In the United States, approximately 100,000 people 
every year die prematurely due to PM2.5 exposures. 
 
In spite of the scale of the problem, exposure measurement methods – or methods that 
allow for a comprehensive assessment of the “contact between receptors (such as people or 
ecosystems) and physical, chemical, or biological stressors” (National Research Council 
2012) – are relatively underutilized or underdeveloped in the evaluation of PM2.5 health 
risks. In the context of HAP, the second most important environmental risk factor for 
mortality (Institute for Health Metrics & Evaluation 2017), PM2.5 exposures are commonly 
estimated from kitchen air pollution (KAP) concentrations or fuel-type indicators (e.g. 
wood, coal, natural gas). When assessing exposures from kitchen concentration 
measurements, an aggregate ratio of exposure concentration to KAP concentration is 
measured in a number of homes and then applied by simple multiplication to KAP 
concentrations either measured or estimated5 in the remainder of the population of 
interest, e.g. (Smith et al. 2014). This ratio, called the kitchen exposure factor or KEF, cannot 
account for the variations in human-environment interaction that underpin actual 
personal exposure concentrations. This is supported by the considerable variability 
observed in measured KEF (Armendáriz-Arnez et al. 2008; Clark et al. 2010; Northcross et 
al. 2010), and suggests that a universal KEF may be a misleading proxy of exposure.  

                                                
5 Often from sophisticated models. 



Chapter 1 – Introduction 3 

 
At the population level, PM2.5 exposures are typically approximated from outdoor ambient 
concentrations. However, people spend upwards of 90% of their time indoors (Jenkins et 
al. 1992), where air pollution concentrations can differ considerably from those experienced 
outdoors (Brunekreef et al. 2005; Naeher et al. 2000). In areas were activities commonly 
produce indoor PM2.5 emissions – like using cookstoves or smoking tobacco – outdoor 
measurements will tend to underestimate indoor concentrations. Where this is not the 
case, outdoor concentrations will overestimate indoor concentrations due to various 
particle-clearing processes that occur during infiltration. Adding to this error are 
monitoring gaps caused by governmental agency resource limitations and the high 
expenses associated with operating common research-grade monitors. The US EPA State 
and Local Ambient Monitoring Station (SLAMS) network, for example, has only about one 
population PM2.5 exposure monitoring site per 350,000 people (United States 
Environmental Protection Agency 2016). The SLAMS network is one of the most-dense in 
existence, yet it still leaves large, exposure-relevant geographic regions with little-to-no 
reliable air quality data. Methods exist to estimate concentrations in-between monitors 
(e.g. land use regression), but are plagued by an inability to account for sources between 
monitoring sites (Jerrett et al. 2005a) and can introduce severe bias when applied in the 
estimation of health effects (Alexeeff et al. 2015). Satellite imaging is gaining popularity as 
a tool for addressing the low densities in ambient monitoring networks (van Donkelaar et 
al. 2014), yet remains limited by spatial resolution on the order of kilometers and a focus 
on outdoor concentrations only. 
 
The potential for exposure misclassification in current monitoring frameworks may have 
consequences for those wishing to reduce the disease burden of PM2.5. The efficiency and 
effectiveness of air quality interventions depend upon accurate estimates of population 
risks. A misestimation of exposures can either lead to an overestimation of risk, rendering 
policies and projects inefficient, or an underestimation of risk, leaving vulnerable 
populations unprotected. Moreover, evidence is mounting to suggest that the relationship 
between PM2.5 exposure and risk is non-linear for several diseases (Burnett et al. 2014). This 
means that the change in risk per unit of PM2.5 exposure is different at different levels of 
exposure. At certain concentration ranges, exposure misclassification can result in 
disproportionate overestimation or underestimation of risk. The effect varies by disease, 
but is particularly pronounced in ALRI in young children across a range of concentrations 
relevant to exposures in developed and developing nations alike. In some other diseases, 
the risk-response relationship flattens out at moderate-to-high exposures. Policy makers in 
regions with populations afflicted by exposures in this range must thereby aim to bring 
exposures down to truly clean levels – rather than making modest marginal reductions – in 
order to see significant risk benefits.  
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1.2 Layout and primary contributions to the literature 
 
The work discussed in this dissertation was inspired by the extensive scale of the health 
impacts of PM2.5 and the current inadequacies of the environmental health research and 
policy fields in assessing related exposures. Chapter 2 estimates population-wide PM2.5 
exposures and related health impacts in a highly polluted city with heavy residential solid 
fuel use. Exposures were constructed from micro-environmental concentrations (indoor vs. 
outdoor) and the amount of time spent by the population in each and accounted for effects 
from second hand smoke. Chapter 3 moves beyond exposure constructions to explore how 
population-wide exposures in the context of solid fuel use can be predicted from survey 
and environmental data using advanced machine learning and ensemble modeling 
techniques. Chapter 4 is motivated in part by the sparsity of indoor PM2.5 concentration 
data available for analyses like those performed in Chapters 2 and 3, and demonstrates the 
potential for a popular and relatively inexpensive household product to reliably measure 
real-time PM2.5 concentrations. 
 
Chapter 2 provides one of the first calculations of city-wide PM2.5 exposures in Ulaanbaatar, 
Mongolia – one of the most polluted capital cities in the world (The World Bank 2011). 
Some work has been done to characterize PM2.5 concentrations in the city (Allen et al. 2013; 
Enkhbat et al. 2016; Greene et al. 2014a) and exposures of individuals (Nakao et al. 2016; 
Ulzii et al. 2015), but population-wide exposures integrated across seasons and 
environments have, to my knowledge, remained un-estimated. Chapter 2 provides 
Ulaanbaatar’s policy makers with actionable information by calculating population 
exposure and disease burden under current emissions policies and two more-stringent 
alternative pathways between 2014-2024. Annual average city-wide exposures are 
calculated from estimates of indoor concentrations, outdoor concentrations, secondhand 
smoke impacts, and time-activity as well as projections of background disease burden and 
population. The presentation of methods for doing so may prove useful for investigators 
interested in performing similar work elsewhere. The analysis is also one of the first to 
apply the PM2.5 exposure-response functions (Burnett et al. 2014) of the 2010 Comparative 
Risk Assessments of the Global Burden of Disease Study (Lim et al. 2012) in a forward 
projection of exposure-related disease burden.  
 
Chapter 3 presents PM2.5 exposure values measured in women cooking with solid fuel in 
Lao PDR, which are among the first to be published, and adds to the small pool of HAP 
data available for Southeast Asia (Huang et al. 2013; Morawska et al. 2011; Shimada and 
Matsuoka 2011). The application of cross-validated models using advanced machine 
learning and ensemble techniques in Chapter 3 shows that personal PM2.5 exposures in a 
population cooking with solid fuels can be reliably predicted from survey data, 
environmental information, and HAP measurements along with personal measurements in 
just a subset of the group. Statistical procedures also reveal which types of variables may 
provide the most utility in such a model. Together, these analyses help to lay the 
groundwork of an exposure modeling framework that will reduce the resources required to 
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reliably estimate PM2.5 exposures in homes were solid fuel cooking and heating are 
common. 
 
Chapter 4 discusses the use of the smart smoke detector – an increasingly popular 
household product – to expand PM2.5 monitoring networks and dramatically increase the 
quantity of indoor concentration data available for estimating exposures and informing 
health-related behavior. This concept is validated by reverse engineering a Nest Protect 
smart smoke detector, co-opting its onboard optical sensor, and characterizing that 
sensor’s response to PM2.5 alongside an industry standard PM2.5 monitor, the DustTrak II. 
Chapter 5 concludes with a brief summary of the common thread in chapters 2-4, and a 
discussion of future work that might expand upon the analyses therein.  



 6 

Chapter 2    6  

Health assessment of future PM2.5 exposures from indoor, outdoor, and 
second hand tobacco smoke concentrations under alternative policy 
pathways in Ulaanbaatar, Mongolia 

2.1 Introduction 
 
Air pollution is responsible for over 10% of global deaths annually (Forouzanfar et al. 2015). 
As discussed in Chapter 1, the greatest potential for air pollution related disease exists in 
regions in which households rely on solid fuels to meet various energy needs. Through this 
lens air pollution in Asia, where residential solid fuel use is common (Bonjour et al. 2013), 
has been heavily studied – e.g. (Balakrishnan et al. 2013; Baumgartner et al. 2011; Chafe et 
al. 2014; Smith 2000; Venkataraman et al. 2010; Zhang and Smith 2007) –  but those efforts 
have focused primarily on charismatic nations like China and India. Only recently have 
researchers begun to direct their attention to the remote country of Mongolia, where an 
air pollution crisis is brewing. 
 
Mongolia’s capital city, Ulaanbaatar (UB), is home to nearly half of the nation’s three 
million residents. Driven initially by political-economic changes incurred after the fall of 
the Soviet Union and hastened by periodic bouts of harsh weather and famine (Dore and 
Nagpal 2006), called dzud, UB is now experiencing rapid rural-to-urban migration and an 
increasing demand for coal. Between 1990 and 2014, the population of UB grew from 
570,000 people (~27% of the Mongolian population) to nearly 1.4 million (~46% of the 
population) (Mongolian Statistical Information Service 2016). These factors, together, lead 

                                                
6 This chapter is a slightly modified version of a manuscript submitted for peer-review as: “Hill, LD, Edwards, 
R, Turner, JR, Damdinsuren, Y, Olkhanud, P, Odsuren, M, Guttikunda, S, Ochir, C, Smith, K. Health 
assessment of future PM2.5 exposures from indoor, outdoor, and environmental tobacco smoke 
concentrations under alternative policy pathways in Ulaanbaatar, Mongolia. In review. 2017.” 
The title was revised during review to (at the time of dissertation filing) to: “Health assessment of future PM2.5 
exposures from indoor, outdoor, and second hand tobacco smoke concentrations under alternative policy 
pathways in Ulaanbaatar, Mongolia.” This also applies to all figures, tables, and pictures therein. At the time 
of dissertation filing, a final response had not been received from reviewers. 
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to winter outdoor air pollution concentrations in UB that are among the worst in the world. 
About half of UB residents currently live in houses or gers—traditional yurt-like 
dwellings— heated by simple, coal-fired stoves. Recent measurements of fine particulate 
matter (PM2.5) have shown citywide wintertime average concentrations as high as 250 
µg/m3 and annual average outdoor concentrations that are over seven times higher than 
the World Health Organization (WHO) health-based guidelines established to minimize 
morbidity and mortality risk and three times higher than Mongolian national standards 
(Allen et al. 2013; United Nations Children’s Fund Mongolia 2016). Daily averages are often 
even higher; between January-February 2016, the United States Embassy in UB reported 
20% of 24-hour average values greater than 400 µg/m3 (OpenAQ 2016). 
 
The high air pollution levels in UB arise from a combination of high anthropogenic 
emissions, geography, and meteorology (Allen et al. 2013; United Nations Children’s Fund 
Mongolia 2016). Geographically, the city lies in a valley surrounded on three sides by 
mountain slopes onto which the peri-urban areas of the city have spread. Although these 
districts are referred to as the “ger areas,” approximately 60% of the dwellings in these 
districts are one and two-story houses constructed by local residents. In winter months, UB 
is strongly affected by the mid-continental Siberian anticyclone, a semi-permanent high-
pressure system that is characterized by stagnant air masses centered over northern 
Mongolia. The anticyclone forms because of intense cooling of the surface layers of air over 
the continent during this season, leading to a well-developed temperature inversion in the 
lower atmosphere. These two factors by themselves would not lead to severe air pollution 
without high pollutant emissions largely caused by the burning of raw coal for winter 
heating. Recent analyses estimate that about two thirds of the annual average PM2.5 
concentration in UB is from combustion sources with nominally equal contributions from 
coal-fired power plants and residential heating (Davy et al. 2011).  However, this split seems 
unlikely given the power plants have tall stacks which release emissions above the very 
shallow wintertime inversion layers. In winter, up to 70% of PM2.5 emissions in the ger areas 
are attributable to residential heating (World Bank Asia Sustainable and Alternative Energy 
Program 2009). Although UB’s vehicle fleet is rapidly increasing (Allen et al. 2013), the 
contribution to ambient PM2.5 concentrations is estimated to be only in the range of 5-10% 
(Davy et al. 2011) due to the large impact of coal emissions. Ultimately, once fine particulate 
matter is emitted into the valley, its dispersion is constrained by a very low atmospheric 
mixing height (Guttikunda et al. 2013).  
 
The Mongolian government has undertaken efforts in this decade to reduce air pollution, 
including the subsidization of cleaner-burning coal stoves, elimination of many 
institutional heat only boilers (HOB), and the promotion of energy efficiency (Greene et al. 
2014a). However, expansion of the peri-urban areas combined with the use of high-
emission residential heating stoves continues to produce high PM2.5 concentrations in UB, 
especially in winter. Current residents are facing exposures never before experienced by 
Mongolians, and urgent measures are needed to reduce consequent health impacts. A 2013 
analysis (Allen et al. 2013) of outdoor concentrations in UB conservatively estimated that 
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PM2.5 was responsible for 29% of cardiopulmonary deaths, 40% of lung cancer deaths, and 
nearly 10% of all-cause mortality.  The World Bank (The World Bank 2011) places the 
greatest health insults in ger areas, where UB’s poorest and most vulnerable populations 
reside, and project steady increases in medical and economic impacts into the foreseeable 
future without significant policy changes. Leaders agree with the need to eventually reduce 
emissions across all energy sectors, but the benefits of doing so quickly rather than more 
slowly, a choice with substantial differences in costs and strategy, have remained unclear. 
To assist Mongolia’s policymakers at this critical juncture, we modeled future air pollution 
exposures and related health burdens in UB through 2024 under business as usual (BAU) 
and two alternative energy policy pathways: moderate emissions reductions across power, 
heating, and vehicle sectors (Pathway 1); and a major shift in these same sectors to clean 
fuels and technologies (Pathway 2).  These pathways were based on technologies that have 
been successfully adopted by other countries, and represent progressively more aggressive 
adoption of clean fuels in order to inform on what measures may result in reduced health 
impacts across the population. 
 
Our estimates improve on previous local and regional population-wide burden assessments 
(Allen et al. 2013; Forouzanfar et al. 2015; Lim et al. 2012; The World Bank 2011) by focusing 
on personal exposures and incorporating local measurements of indoor concentrations and 
stove emissions. Our analysis employs an ambient air quality model with high spatial and 
temporal resolution.  In contrast, hybrid satellite methods, which have been used in recent 
regional-scale evaluations (Forouzanfar et al. 2015; Lim et al. 2012), have coarser spatial 
resolution and have been found particularly unreliable in UB because of poor resolution 
for winter nighttime (Brauer et al. 2016; van Donkelaar et al. 2014). The use of 
spatiotemporally-resolved models of ambient air pollution based on local emissions allows 
current policies for urban development in UB to be evaluated in relation to the 
health impacts of alternative policy pathways. The methods developed for this analysis are 
among the first to incorporate the exposure-response functions of the 2010 Comparative 
Risk Assessments of the Global Burden of Disease Study (GBD) in a forward-looking 
analysis that focuses not only or separately on outdoor or indoor pollution, but on total 
exposure of the population.  

2.2      Methods 
 
Personal PM2.5 exposures and related disease burdens were modeled for UB residents 
through 2024 under BAU and two alternative policy pathways. Indoor and outdoor 
concentration estimates were combined with time-activity data, census information, 
demographics projections, and estimated smoking rates to provide population-weighted 
total exposure estimates. Figure 2.1 shows a summary flow chart of the exposure and disease 
burden calculation framework. Disease-specific estimates of health burden were produced 
using a modified version of the Household Air Pollution Intervention Tool (Pillarisetti et 
al. 2016) and projections of city-wide background disease. Data handling, mathematical 
modeling, and figure creation for indoor concentrations, demographic projections, 
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exposure modeling, and health burden estimation were performed in R (R Core Team 2016) 
and Microsoft Excel for Mac 2011 and 2016. 
 

 
Figure 2.1. High-level flow chart of the general exposure and disease analysis approach. Annual 
average exposures were estimated for population sub-groups in 2014 and in 2024 under BAU and two 
alternative policy pathways from outdoor and indoor concentration models and time activity estimates using 
the approach summarized above. These exposures were applied to disease-specific exposure response curves 
to produce estimates of population attributable fraction (PAF) which were applied to background disease 
rates to quantify attributable disease burden. Detailed data descriptions and methods – including how 
interim year (2015 – 2023) disease burdens were calculated – are included in the manuscript and Appendix B. 
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Baseline and the pathways 
 
Variations in the emissions trajectories of heating, power, and traffic sectors were 
considered in relation to policy pathways from baseline that followed business as usual or 
one of two alternative policy approaches: moderate restrictions in addition to those in place 
at baseline (Pathway 1) and additional aggressive restrictions (Pathway 2). The variations 
examined were most detailed for household heating, which has been identified as the single 
largest contributor to outdoor air pollution in UB (Guttikunda et al. 2013). Household 
heating types in Ulaanbaatar include stoves fired with raw coal; stoves fired with semi-coke 
fuels (semi-coke stoves), which are relevant only to houses and gers; coal-fired low pressure 
boilers (LPB) used to heat radiator systems in houses; and heating sources that produce no 
indoor emissions at the point-of-use (Clean Indoor Use, or CIU heat), such as HOB or 
centrally-distributed steam that is produced during combined electricity and heat 
generation, which can be deployed in all home types. Table 2.1   and Table 2.2 show a 
summary of baseline and 2024 under BAU and the two alternative energy policy pathways 
considered.  
 

Table 2.1  . Summary of the assumptions made for emissions sources, by category 1 

  Household Heating Power Plants Vehicles 
Baseline 

(2014) 
20,000 LPB-heated houses; 

semi-coke coal in gers & 
houses in Bayangol district; 
apartments heated with CIU 
heat including HOB units; 

MCA stoves in all other gers & 
houses 

Four CHP: CHP-2, 
CHP-3 (two units), and 

CHP-4 

Nearly 100% growth 
over values from 2010 

– the most recent 
inventory at the time 

of analysis 

BAU 
(2024) 

All homes, except LPB and 
clean-heat homes, transitioned 

to MCA stoves 

Addition of CHP-5, 
which meets U.S. New 
Source Performance 

Standards 

2.5%/year growth from 
2014 and addition of 
Euro III standards 

Pathway 
1 (2024) 

Transition of half of non-LPB 
houses to clean heat; 

replacement of remaining 
MCA stoves with “Future 

Tech” raw coal stove; 50% of 
HOB decommissioned, others 

retrofitted with controls 

Addition of CHP-5; 
high-efficiency retrofits 
of CHP-2, CHP-3, and 

CHP-4. 

2.5%/year growth from 
2014 and addition of 

Euro V standards 

Pathway 
2 (2024) 

Transition of all ger and 
houses to clean heat; all HOB 

decommissioned 

Addition of CHP-5; 
CHP-3,-4 retrofitted; 
CHP-2 replaced by 
renewables and/or 

imports 

Increased mass-transit 
ridership; improved 
traffic flow; Euro VI 
standards; among 

others 

1. LPB = low pressure boiler, CIU = heating method with clean indoor use, HOB = heat only boiler, 
MCA = improved coal stove distributed by the Mongolian government and the U.S. Millennium 
Challenge Account, CHP = combined heat and power plant. 
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Table 2.2. Assignment of heating type of all UB households in BAU and each 
alternative pathway. 

 Proportion of 
Gers 

Proportion 
of Houses 

Proportion of 
Apartments 

2014 – Baseline       
MCA Stove 1 92.9% 75.2% 0% 

Stove w/Semi-Coke Fuel 7.1% 6.0% 0% 
Low Pressure Boiler 0% 18.8% 0% 

Heat w/Clean Indoor Use 0% 0% 100% 
2024 – BAU       

MCA Stove 100% 82.9% 0% 
Low Pressure Boiler 0% 17.1% 0% 

Heat w/Clean Indoor Use  0% 0% 100% 
2024 – Pathway 1       

Future Tech Stove 100% 41.4% 0% 
Low Pressure Boiler 0% 17.1% 0% 

Heat w/Clean Indoor Use 0% 41.4% 100% 
2024 – Pathway 2       

Clean 100% 100% 100% 

1. Improved coal stove distributed by the Mongolian government and United States Millennium 
Challenge Account (MCA).  

 
 
Recent efforts by the Mongolian Government, the U.S. Millennium Challenge Corporation 
and Millennium Challenge Account (MCA) (Greene et al. 2014a), and the World Bank have 
aimed to replace the majority of traditional raw-coal stoves with coal stoves that 
substantially reduce outdoor emissions, hereafter “MCA stoves.” For this reason, complete 
penetration of MCA stoves was assumed in gers and houses not using LPB or semi-coke 
coal. At the time of the study, gers and houses in the Bayangol district were not targeted 
by MCA stove dissemination plans due to a concurrent semi-coke coal intervention 
underway in the district. Homes in this district were assumed to rely on traditional stove 
technology but with cleaner semi-coke coal. Based on 2012 census data 7% of all ger and 
6% of all houses in the city were assigned to the Bayangol district at baseline (Statistics 
Department of Ulaanbaatar 2013). We assumed 20,000 LPB households with one LPB per 
home, based on information provided to us by government officials at the Clean Air Fund. 
This was consistent with data showing 14,186 LPB households in 2010 (National Statistics 
Office of Mongolia 2012). All apartment households were assigned CIU heating at the 
household, provided either by steam heat or heat only boiler (The World Bank 2011). UB 
currently employs four combined heat and power (CHP) plants in the generation of heat 
and electricity— CHP-2, CHP-3 (two units), and CHP-4. Baseline assumed this setup. 
Motor vehicle data for UB were sparse, and so BAU and the alternative pathways were based 
on plausible assumptions about trends in total fleet emissions. Values were scaled from a 
2010 inventory (Japan International Cooperation Agency 2013) of vehicle exhaust emissions 
from travel on major and minor roads— this excluded emissions related to brake wear, tire 
wear, or re-suspended dust. Baseline PM2.5 emissions were estimated as 1.7 times the 2010 
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inventory which was the growth in the number of registered vehicles between 2010 and 
2013. This is likely an overestimate because of the partial offset from a vehicle travel day 
ban program which requires most vehicles not be used one day per week based on license 
plate number. 

Business as Usual assumed no major changes from trends underway at the time of 
the study (mid-2013) by 2024. This included a transition to MCA stoves of all homes not 
employing clean heat or LPB at baseline. Because HOB and LPB are outdated technologies, 
no net increases in the number of HOBs or LPB-heated homes were assumed. BAU retained 
the power plant emissions in 2024 and included a new 820 MW power plant (CHP-5) to be 
located 15km east of the UB Central Business District, as supported by recent government 
plans to develop a 450 MW plant and expand it to 820 MW shortly thereafter (HJI Group 
Corporation and MonEnergy Consult Co. Ltd. 2011; Kohn 2013). CHP-5 was assumed to meet 
the U.S. New Source Performance Standards for electric utility power plants. Vehicle 
emissions assumed a growth of 1.3 times the 2014 inventory based on an emissions growth 
rate of 2.5%/year over the 10-year period and Euro III emissions standards – a higher growth 
rate seemed unreasonable given the existing transportation network infrastructure. 

Pathway 1, or moderate emissions reductions, assumed all changes in BAU as well 
as some moderate improvements. All 20,000 LPB-heated homes from baseline remained as 
such under Pathway 1. Remaining non-LPB houses were assumed equally split between 
clean heating and an even cleaner hypothetical coal stove, called the ‘Future Tech’ stove, 
which improved the emissions performance of the MCA stoves by the same percentage as 
the MCA stoves improved upon the traditional stoves and improved indoor concentrations 
by 20% compared to those in MCA stove homes. Half of all HOB units from baseline were 
assumed decommissioned by 2024 under Pathway 1, and the other half were assumed 
retrofitted with cyclone control technologies. All other households were assumed to rely 
on clean heat from other sources. In addition to the power plant assumptions under BAU, 
Pathway 1 assumed high efficiency control devices, such as electrostatic precipitators, 
installed on units CHP-2, CHP-3, and CHP-4. This is a significant upgrade to the existing 
CHP infrastructure, which includes wet scrubbers or electrostatic precipitators, depending 
on the facility. For vehicles, the BAU rate of growth was assumed for Pathway 1, but with 
the implementation of Euro V emissions standards. 

Pathway 2, or transition to cleaner fuels and technologies, assumed feasible but 
ambitious rates of change in all sectors by 2024. Solid fuel combustion was assumed 
eliminated in households. CHP-3 and CHP-4 were assigned high efficiency control 
technologies. CHP-2 was decommissioned by 2024 and replaced with renewables and/or 
imports (i.e. sources with negligible impacts on UB air quality). A 50% reduction in traffic 
emissions over Pathway 1 was assumed, opportunities for which include but are not limited 
to higher adoption rates for mass transit use, transportation network enhancements to 
improve traffic flow, and adoption of Euro VI standards, which include an additional 50% 
reduction in PM emission rates from heavy duty diesel vehicles compared to Euro V 
standards.   

Throughout BAU and the alternative pathways smoking prevalence among 
households (not individuals) was maintained at 45% of households. This figure was based 
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on a series of surveys (Greene et al. 2014b, 2014c) of gers and houses in UB conducted by 
the Millennium Challenge Corporation during the 2012-2013 winter and corroborated by 
recent studies of national smoking rates (Demaio et al. 2014; World Health Organization 
2010). 

Population and household numbers 
 
Demographic conditions were estimated for 2006 through 2024. The methods and sources 
used are described in detail in Appendix B. Briefly, city-wide population data all residents 
and, specifically, those < 5 years old were estimated from historical data and National 
Statistics Office medium growth projections (National Statistics Office of Mongolia 2012). 
Detailed information on the spatial distribution of population and household number by 
household type was obtained from 2012 city census data (Statistics Department of 
Ulaanbaatar 2013). Estimates were made for the number, type, and general location of 
households in UB through 2024 using historical demographic data and official city 
projections. Household types most relevant to the UB context were identified as gers, 
single-family houses, and multi-family apartments. Gers in the peri-urban area of UB are 
circular traditional dwellings with multiple felt layers and a waterproof outer shell covering 
a wooden lattice frame (Figure 2.2). Houses in the peri-urban area are often locally 
constructed wood, cement, or brick structures and, while they vary considerably in layout 
and construction, are generally in the style of traditional western houses in which one 
extended family resides. Apartments are identified as buildings within which two or more 
families are living and, in most cases, are large complexes that house dozens of families. 
 
The 2014 population of UB was estimated at 1,355,176 residents distributed among 86,246 
gers, 106,353 houses, and 179,718 apartments. Projections indicated that by 2024 the 
population would grow nearly 40% and experience a substantial shift to apartment 
dwelling with over 65% of the population living in multi-family buildings (Table 2.3). It 
should be noted that while our stove-number projection technique employed an 
underlying assumption that each household typically relied on a single stove, some homes 
may employ more than one stove (e.g. a ‘home’ may consist of two ger, each heated by their 
own stove) (Greene et al. 2014a). In stove-heated homes, outdoor models accounted for this 
by inflating stove estimates and, thus, stove emissions upwards by 20% (Greene et al. 
2014a), while the exposure model was applied using a single primary stove type for each 
household. 
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Figure 2.2. Left, a traditional ger dwelling. Right, houses typical of the peri-urban regions of UB. 
(Credit: L. Drew Hill) 
 
 
 

Table 2.3. Estimates of age-specific city-wide population and household number by home type, 
and estimated household size 

Year Population 1 Number of Households 2 Pop. Per 

- Total Pop. Pop. 0-4 Years Ger House Apartment Household 
2 

2014 1,355,176 148,219 86,246 106,353 179,718 3.64 
2015 1,407,196 155,551 88,547 109,191 197,539 3.56 
2016 1,459,516 158,438 90,684 111,826 216,586 3.48 
2017 1,511,836 161,325 92,616 114,209 236,854 3.41 
2018 1,564,157 164,212 94,323 116,313 258,369 3.34 
2019 1,616,477 167,099 95,781 118,112 281,152 3.27 
2020 1,668,797 169,986 96,967 119,574 305,219 3.20 
2021 1,715,748 168,427 96,997 119,611 330,782 3.13 
2022 1,762,700 166,869 96,667 119,204 357,645 3.07 
2023 1,809,651 165,310 95,954 118,324 385,792 3.02 
2024 1,856,603 163,752 94,834 116,943 415,195 2.96 

1. Interpolated from five-year “medium growth” (version 1b) projections identified in the 2010 
Population and Housing Census of Mongolia Report (National Statistics Office of Mongolia 2012). 

2. Estimated using the techniques and sources described in Appendix B. 
 

Outdoor ambient air quality modeling 
 
Air quality modeling was conducted to estimate outdoor PM2.5 mass concentrations. The 
modeling methodology followed that used by Social Impact for an impact evaluation of the 
Energy-Efficient Stove Subsidy Program of the Millennium Challenge Mongolia Energy and 
Environment Project (MCA impact evaluation), detailed in the full report (Greene et al. 
2014a). Emission categories were expanded to include LPB, HOB, motor vehicles, and 
Combined Heat & Power plants in addition to residential heating stoves. Sources not 
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included in the model were heating stoves in kiosks, industrial emissions including kilns, 
re-suspended road dust, and windblown dust. 

Emissions data 
 
Table 2.4 summarizes total annual emissions from the major sources considered at baseline 
and in 2024 under BAU the two alternative development pathways. 
 
 

Table 2.4. Estimated annual PM2.5 emissions from major sources (tons/yr)  

Pathway Vehicles Power Plants Heat Only 
Boilers 

Household 
Stoves & LPB 

2014 Baseline 384 11,500 1,300 1,700 
2024 BAU 500 12,000 1,300 1,900 
2024 Pathway 1 96 1,900 390 640 
2024 Pathway 2 48 1,830 0 0 

 
 
Residential heating stove emissions were assumed zero during the summer period, April 
through September. An MCA stove emissions profile was taken from values reported in the 
MCA impact evaluation as weighted by the sales-based prevalence of three variations of the 
MCA stove (Ulzii, Khas, and Dul) detailed in the same publication (Greene et al. 2014a). 
Data on the emissions profiles of low-pressure boilers and semi-coke coal stoves in UB were 
unavailable, and so they were conservatively assigned the emissions profiles of MCA stoves. 
“Future Tech” stove outdoor emissions were assigned by applying to the MCA emissions 
profile the same ~ 60% reduction estimated for the transition from traditional coal stoves 
to MCA stoves during the Social Impact evaluation (Greene et al. 2014a). HOB emissions 
were informed by a PM10 HOB emissions inventory prepared by the Japanese International 
Cooperation Agency (JICA) (Japan International Cooperation Agency 2013). All HOB stack 
emissions were assumed to be in the PM2.5 size range. These inventories were used with no 
modifications for the baseline (2014) and BAU (2024) PM2.5 emission inventories. Pathway 
1 assumed that in 2024, an overall 70% reduction in HOB emissions would be reached, 
which was consistent with decommissioning 50% of HOB and adopting high efficiency 
cyclones as a control strategy on all others (Japan International Cooperation Agency 2013). 
Pathway 2 assumed all HOBs would be decommissioned by 2024.  
 
Baseline power plant emissions were taken from a recent JICA (Japan International 
Cooperation Agency 2013) PM10 emission inventory for CHP-2, CHP-3, and CHP-4. All stack 
emissions were assumed to be in the PM2.5 size range. CHP-5 was assumed to meet the U.S. 
New Source Performance Standards for electric utility power plants, which is 0.015 lb 
PM/MMBtu (United States Environmental Protection Agency 2006), and have an 
electricity generation rate of 1870 kWh/ton coal and a coal heat content of 19.53 
MMBtu/ton. Assuming the plant would operate continuously throughout the year, the 
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estimated PM emissions were 511 tons/year, all of which were assumed to be PM2.5. In 
Pathway 1, the PM capture rate for the high efficiency control devices installed on units 
CHP-2, CHP-3, and CHP-4 was conservatively assumed at 98%. The 98% capture rate was 
applied to an assumed uncontrolled emission factor of 16.6 kg PM/ton coal. The renewable 
and imported generation capacity in Pathway 2 assumed no emissions-related impacts on 
UB.  
 
A simple scaling approach as previously described was used for motor vehicle emissions 
pathways, and did not account for changes in the fleet composition over time as insufficient 
details for the JICA 2010 inventory were available to make more sophisticated projections. 
All exhaust emissions were assumed to be in the PM2.5 size range.  For diesel vehicles the 
Euro V PM emission standards are 80% -93% lower than the Euro III standards depending 
on vehicle class.  There were no Euro standards for PM emissions from gasoline-fueled 
vehicles and thus 90% overall reduction would not be realized between BAU and Pathway 
1.  However, gasoline vehicle Total Hydrocarbon standards are 50% lower for Euro V 
compared to Euro III. This could result in some PM reductions for the cold wintertime 
conditions, which favor semi-volatile gaseous compounds entering the particle phase.  
Overall, Pathway 1 employed a 75% reduction in vehicle emissions in 2024 compared to 
those at baseline. Pathway 2 assumed a simple 50% reduction in traffic emissions over 
Pathway 1, as previously discussed. 

Model techniques 
 
Existing power plants were modeled as point sources using available geographic location 
and stack properties data (Japan International Cooperation Agency 2013). Residential 
heating stoves, HOB, and motor vehicle emissions were modeled as area sources. The 
greater UB region was discretized into 6,298 grid cells, each with dimension 1 km × 1 km.  
Emissions were allocated to these grid cells and the center of each grid cell was used as a 
receptor site for which modeled PM2.5 concentrations were generated. Modeling was 
conducted at hourly resolution using the ISCST3 Gaussian dispersion model (United States 
Environmental Protection Agency 1995a, 1995b) with pre- and post-processing using GIS 
(Environmental Systems Resource Institute 2012).  Two satellite districts – Baganuur and 
Bagakhangai– were excluded from modeling. These districts are remote, low population 
zones that are not contiguous with UB’s other districts.  No HOB or LPB emission sources 
were assigned to these districts; all previously described HOB and LPB sources were 
included in the modeled districts only. Seasonal-average PM2.5 concentrations for these 
districts, which together account for less than 3% of all households, are assumed to be at 
the 10th percentile (decile) of population-weighted PM2.5 concentration distributions for the 
remaining districts that were modeled. 
 
Estimation of residential heating stove emissions and allocation of these emissions in space 
and time followed approaches developed for the Social Impact MCA impact evaluation 
(Greene et al. 2014a). The baseline pathway treated all stoves as MCA stoves, which were 
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increased proportionally to adjust for population growth to 2024. Stoves emissions were 
modeled as area sources corresponding to the 1 km × 1 km grids.  
 
Motor vehicle and HOB emissions were spatially allocated using emissions fields from 2010 
with a resolution of 0.01°× 0.01° (Guttikunda et al. 2013) that were re-projected in GIS by 
contouring the data and then calculating area weighted means for the 1 km × 1 km grids 
used for the modeling.  HOB emissions were temporally allocated using weights employed 
in a 2013 examination of particulate pollution in UB (Guttikunda et al. 2013).  Motor vehicle 
emissions were held constant for each season and were allocated to hour of day using a 
typical urban profile with morning and afternoon rush hour peaks.  
 
Year 2012 population by dwelling type (ger, house, and apartment) at the level of Khoroo, 
or Mongolian administrative sub-division similar to a sub-district, was also allocated to the 
1 km × 1 km grids using area weighted sums.  Projected changes in the peri-urban 
population between 2012 and the baseline and 2024 BAU and alternative pathway years 
were distributed across grid cells in proportion to the 2012 peri-urban population for both 
gers and houses. Projected changes in the population residing in apartments were allocated 
in proportion to the total population in each grid.    
 
Air quality modeling was conducted at hourly resolution using meteorology data from April 
2012 through March 2013 provided to us by the National Agency for Meteorology, 
Hydrology, and Environmental Monitoring of Mongolia – data available to other users 
upon written request to the Environmental Monitoring Department at what is now the 
National Agency for Meteorology and Environmental Monitoring of Mongolia. Un-
modeled emission sources were assumed to have a spatially and temporally constant 
contribution of 10 µg/m3 across the city and over the ten-year assessment period. The model 
underestimated outdoor PM2.5 measurements conducted during the 2012-2013 winter 
heating season and these measurement data (Greene et al. 2014b, 2014a, 2014c) were used 
to calibrate the model.  The hourly modeled concentration fields were used to construct 
daytime (8:00-18:00) and nighttime 18:00-8:00) average concentrations for summer (April 
through September) and winter (October through March).  These gridded concentration 
estimates were combined with the gridded population data to estimate citywide 
population-weighted outdoor PM2.5 concentrations by home type (ger, house, apartment).  
Further detail about the modeling and calibration are provided in Appendix B. 

Indoor air quality estimates 
 
The vast majority of gers and houses in peri-urban areas heat with raw coal lit by small 
amounts of wood in small chimney stoves, while apartment households almost exclusively 
employ CIU heat that creates no indoor emissions. These differences combined with 
variations in outdoor particle infiltration between building types likely result in 
substantially different indoor concentrations between gers, houses, and apartments. 
Indoor concentrations of PM2.5 were thus estimated by home type, household heating 
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source, presence of second hand smoke, and season. Estimates were made for 2014 
(baseline) and 2024 under BAU and the two alternative policy pathways. 
 
Indoor air concentrations in homes with heating stoves were estimated by applying linear 
modeling techniques to data collected during the 2012-2013 winter season discussed in 
(Greene et al. 2014a) and accessible freely online (Greene et al. 2014b, 2014c). This model 
was designed to account for the impacts of stove type, home type, and household smoking 
status on household PM2.5 concentrations while controlling for when the samples were 
taken. Methods and results are described in more detail in Appendix B. Wintertime indoor 
concentrations in homes with “Future Tech” stoves (Pathway 1) were assumed 20% lower 
than those found in MCA stove homes based on the assumption that such a stove would 
be designed to reduce indoor fugitive emissions. Wintertime indoor concentrations in 
homes with LPB and semi-coke stoves were assigned those of homes with MCA stoves, in 
accordance with the conservative emissions assignments for these stove types as discussed 
above. 
 
Indoor concentrations in homes that employ CIU heating sources like district heating, 
HOB, electric heat, or gas-based heat were estimated differently from those with heating 
stoves.  Such concentrations were assumed to be governed primarily by SHS and by the 
penetration of outdoor PM2.5 into the indoor environment. Infiltration efficiencies were 
estimated at 64% in the summer and 53% in the winter for houses and apartments, and 
100% in the summer and 70% in the winter for gers based on blower door tests and relevant 
literature detailed in Appendix B. Indoor concentrations in households with clean heating 
were estimated by linearly applying infiltration efficiencies to home-type specific 
population-weighted outdoor ambient concentrations.  
 
Smoking rates in Mongolia are among the highest in the world (Demaio et al. 2014; World 
Health Organization 2010). As previously discussed, SHS was assumed present in 45 
percent of households. Recent nation-wide bans on public indoor smoking (World Health 
Organization Western Pacific Region 2012) suggest indoor SHS may only make 
considerable contributions to exposure in personal, private indoor environments. Indoor 
concentration estimates thereby conservatively assume SHS occurred only indoors at home 
and thus contributions from SHS were applied only to nighttime indoor concentration 
estimates. 
 
For simplicity and due to limited information on Mongolian workplace environments, the 
concentration profiles of the indoor environments in which the population spends their 
time away from home were assumed the same as those of their home indoor environments.  

Time activity 
 
Time activity information was informed by a recent survey of UB households (Greene et al. 
2014b, 2014c) as well as an understanding of the local job market and commuting patterns 
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(Chilkhaasuren and Baasankhuu 2010). It is expected that small children spend more time 
indoors than the rest of the population, and so time activity was calculated separately for 
children (< 5 years old) and non-children (> 5 years old). Because the social pension fund 
provides a homecare allowance to mothers in UB with children less than 2 years old (United 
Nations Children’s Fund Mongolia 2016) and because day care and nursery are not 
financially accessible to many households, it is assumed that a subset of the non-child 
population is charged with taking care of the children, and so every child < 5 years old was 
assigned one non-child as a “caretaker”. Time spent by residents in each microenvironment 
likely differs by socio-demographics and season, but because no data on this breakdown 
were available, we conservatively assumed that the average day for “non-children” would 
be spent 75% indoors and 25% outdoors, the average day for children and caretakers would 
be spent approximately 100% indoors, and the average nighttime for all residents would be 
spent approximately 100% indoors.  

Exposure estimation 
 
The UB population was divided into sub-groups based on the major exposure-related 
features of the indoor model and time activity estimates: home type, heating type, presence 
of SHS at home, and age. More specifically, sub-groups were made for children (< 5 years 
old), caretakers (³ 5 years, assumed 1 per child), and all others (³ 5 years) in smoking and 
non-smoking households representing each of the following home-heating combinations: 
gers with MCA stoves or semi-coke coal stoves, future tech stoves, or clean heat; houses 
with MCA stoves or semi-coke coal stoves or low pressure boilers, future tech stoves, or 
clean heat; and apartments with clean heat. For exposure estimation, children, caretakers, 
and non-children were distributed evenly to each household, and exposures were not 
distinguished by gender. Baganuur and Bagakhangai—the two districts for which ambient 
air quality estimates were handled outside of the outdoor models—were assigned the same 
distribution of population sub-groups as the overall population, with the exception that 
none of the LPB homes were included in these excluded districts as previously discussed. 
Household proportions in Baganuur and Bagakhangai were identified in the 2012 city 
census (Statistics Department of Ulaanbaatar 2013) as comprising 3.0%, 2.1%, and 3.4% of 
UB’s total apartment, house, and ger households, respectively. These proportions were 
assumed constant through 2024. Population sub-groups totaled 18 at baseline and in 2024 
under BAU and Pathway 2. Pathway 1 included 30 sub-groups due to the presence of 
additional heating types. 
 
Average annual PM2.5 exposure concentrations for each population sub-group “i” were 
estimated at baseline and in 2024 under each pathway “j” (BAU, Pathway 1, or Pathway 2) 
by averaging seasonal exposure values (S ; winter as April – September, summer as October 
– March) calculated from indoor (in) and outdoor (out) concentrations I at night (N ; 18:00-
8:00) and during the day (D ; 8:00-18:00) as weighted by the fraction of time (t) during a 
typical 24-hour period spent in each environment during the specified time period 
(Equation 1.1 1).  
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Citywide population-weighted average exposures were calculated by aggregating the 
exposure concentrations of each sub-group from i = 1 to i = ”n”, where n is the total number 
of sub-groups in each pathway-year j, as weighted by their representative fraction (λ) of the 
total population (Equation 1.2 2). 
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Estimating health effects 
 
Burden attributable to PM2.5 exposures was calculated for lung cancer, ischemic heart 
disease (IHD), stroke, and chronic obstructive pulmonary disorder (COPD) in all UB 
residents as well as acute lower respiratory tract infection (ALRI) in children (ages 0-4 
years) for 2014 – 2024 using a version of the Household Air Pollution Intervention Tool 
(HAPIT) (Pillarisetti et al. 2016) that was modified to accommodate UB-specific 
background data and projections through 2024. Disease-specific background mortality for 
the capital city was projected through 2024 using historical data for 2006-2012 provided by 
the Health Development Center of the Ministry of Health and Sports in conjunction with 
the Mongolian National University of Medical Sciences. Deaths were obtained for 2006-
2012 that matched the ICD-10 codes used in the 2010 GBD (Lozano et al. 2012) to estimate 
illness from PM2.5. Mortality projections were adjusted to better agree with national 
estimates produced by the Institute for Health Metrics and Evaluation (Lim et al. 2012). 
The methods and results are described further in Appendix B. 
 
Average annual exposures were used to calculate disease-specific relative risks (RR) of 
mortality due to PM2.5 exposure in each population sub-group. Mean, lower bound, and 
upper bound RR were taken from the integrated exposure-response functions produced by 
Burnett et al (Burnett et al. 2014) and applied using a counterfactual exposure of 12.0 µg/m3 
(i.e. RR = 1 at 12.0 µg/m3). This counterfactual represents the US Environmental Protection 
Agency’s annual for PM2.5, which is the strictest national PM2.5 standard in the world. Mean, 
lower, and upper estimates of disease-specific RR for each sub-group “i” as well as the 
proportion of the population that each sub-group represents, “P”, were then applied to 
Equation 1.3 3 (Lim et al. 2012) to produce a population-wide estimate of the fraction of 
background mortality from each disease, “k”, attributable to air pollution exposure 
(population attributable fraction, or PAF).  

 

                                                 𝑃𝐴𝐹2,O = 	
PQ,R∙(TTQ,R,UV4)X

QYZ
PQ,R∙(TTQ,R,UV4)X

QYZ [4
                                                 (1.3) 
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Disease-specific PAF estimates for 2015-2023 were linearly interpolated from baseline and 
2024 PAF values under BAU and each alternative pathway. Finally, PAF values were applied 
to estimated background mortality estimates to produce disease-specific estimates of total 
attributable death in each year. Morbidity was calculated in the form of disability-adjusted 
life years (DALYs). DALYs are widely used to take into account both the age distribution of 
premature mortality and the severity of non-fatal diseases. Disease-specific DALY estimates 
were calculated using the national disease-specific Death: DALY ratio produced during the 
2010 GBD (Lim et al. 2012). The ratios were assumed constant throughout the projection 
period. The modified HAPIT used in this analysis did not include considerations for 
exposure cessation lag (Cameron and Ostro 2004; Doll et al. 2004); the estimated health 
impacts of exposure were assumed to be immediately incurred for simplicity of 
interpretation. Health burden was calculated not only for BAU and each alternative 
pathway (“accrued”) but also in terms of benefit of each alternative pathway over BAU 
exposure levels (“averted”). 
 

2.3     Results 

Outdoor ambient air quality models 
 
Figure 2.3 shows modeled wintertime (October-March) average outdoor PM2.5 
concentrations for BAU and the alternative pathways. Pathway 2 is excluded because the 
highest average concentration attributed to the modeled sources was ~2 µg/m3 (12 µg/m3 
when accounting for non-modeled sources).  For the panels shown in Figure 2.3, the model 
predicts large variations in PM2.5 mass concentrations across UB with highest 
concentrations in the ger areas where residential stoves and HOBs have the largest impact. 
Given these large spatial variations, outdoor concentration levels between baseline, 2024 
BAU, 2024 Pathway 1, and 2024 Pathway 2 are compared using population-weighted 
measures.  Table 2.4 presents the population-weighted mean outdoor PM2.5 for modeled 
districts. Pathway 1 reduces 2024 wintertime population mean concentration by 65% 
compared to the 2024 BAU pathway, but the wintertime mean concentration value of 55 
µg/m3 is still quite high.  Figure 2.4 shows box plots for the population-weighted 
distribution of wintertime outdoor concentrations.  For BAU and each of the alternative 
policy pathways, 10% of the population resides in areas with PM2.5 outdoor concentrations 
~50% higher than the mean pathway-specific outdoor concentration reported in Table 2.5. 
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Figure 2.3. Winter average outdoor PM2.5 concentrations for baseline and 2024 under BAU and 
Pathway 1. Figure created by Dr. Jay Turner, who performed the outdoor modeling. Khoroo (district) names 
modified by LAH. 
 
 

Table 2.5. Modeled population weighted mean PM2.5 outdoor concentrations (µg/m3) by season and 
year 

Pathway  Summer Winter 

Total Pop. Total Pop. Ger 
Pop. 

House 
Pop. 

Apt. 
Pop. 

2014 16 141 140 148 137 
2024 BAU 19 156 154 163 154 
2024 Pathway 1 11 55 55 58 55 
2024 Pathway 2 11 11 11 11 12 
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Figure 2.4. Population weighted wintertime outdoor PM2.5 concentrations. Whiskers represent 10th and 
90th percentile concentrations. Figure created by Dr. Jay Turner, who performed the outdoor modeling. 
 
 

Indoor air quality estimates 
 
Average wintertime indoor concentrations for non-smoking homes heating with MCA 
stoves, LPB (houses only), and stoves using semi-coke coal were modeled at 107.0 µg/m3 
for gers and 118.3 µg/m3 for houses. Wintertime indoor concentrations for homes with 
Future Tech heating stoves were assigned at 20% lower than homes with MCA stoves. 
Population-weighted indoor wintertime concentrations for non-smoking homes with clean 
heating at baseline and in 2024 are shown in Table 2.6. Estimates of population-weighted 
summertime indoor concentrations in non-smoking homes at baseline and in 2024 are 
shown in Table 2.7. Based on the results of the indoor concentration model, a contribution 
from SHS of 18.1 µg/m3 in gers and 20.0 µg/m3 in houses and apartments was applied to the 
nighttime indoor concentration estimates of smoking households. 
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Table 2.6. Estimated average wintertime indoor PM2.5 concentrations for 
non-smoking homes with CIU heat, by home type and year 

  2014 2024 BAU 2024 
Pathway 1 

2024 
Pathway 2 

Ger 98 108 39 8 

House 79 86 31 6 

Apartment 73 82 29 6 

 
 

Table 2.7. Estimated average summertime indoor PM2.5 concentrations 
for all non-smoking homes, by home type and year 

  2014 2024 BAU 2024 
Pathway 1 

2024 
Pathway 2 

Ger 15 17 11 11 

House 10 11 7 7 

Apartment 11 13 7 7 

 

Exposure 
 
Table 2.8 shows population-weighted average exposure estimates of 59 µg/m3 in 2014, and 
60 µg/m3, 32 µg/m3, and 12 µg/m3 in 2024 under BAU, Pathway 1, and Pathway 2, 
respectively, with the greatest exposures consistently affecting ger-dwelling residents. A 
continuation of current policy trends (BAU) slightly increased population exposures by 
2024. In contrast, the modest control measures of Pathway 1 reduced exposures by 45% 
compared to 2014 levels.  The shift to clean technologies in Pathway 2 reduced population 
exposures by 80%.  With the exception of Pathway 2, wintertime exposures in gers and 
houses dominated city-wide average exposures. Summertime concentrations varied only 
modestly across BAU and the alternative pathways. Figure 2.5 shows the relative 
contributions from exposures experienced indoors and outdoors. Exposures incurred 
indoors accounted for most of the annual averages with a large portion of this resulting 
from SHS, especially in Pathways 1 and 2. Substantial differences in average annual 
exposures were seen between home types, with those in houses and gers receiving the 
highest exposures, and those in apartments on average about 30% lower. 
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Table 2.8. Estimated population-weighted average exposures by home type, year, and season (µg/m3) 

  Annual Winter Summer 

  2014 2024  
BAU 

2024 
Path 

1 

2024 
Path 

2 
2014 2024 

BAU 

2024 
Path 

1 

2024 
Path 

2 
2014 2024 

BAU 

2024 
Path 

1 

2024 
Path 

2 

Ger 66 68 52 14 113 114 87 13 20 22 16 15 

House 70 71 44 12 125 126 76 12 15 17 13 12 
Apartment 50 56 25 12 83 93 36 12 17 19 13 13 

All 
Population 59 60 32 12 102 102 51 12 17 19 13 13 

 
 

 
Figure 2.5. Exposures in 2014 and 2024 under BAU and alternative policy pathways, by environment. 
Indoor exposures are stratified by SHS and non-SHS environments. The difference between indoor and 
outdoor contribution to total exposure is primarily from the disproportionately high fraction of time spent 
indoors. 
 

Health impacts 
 
We estimated that 33% (lower: 23%, upper: 42%) of all ALRI deaths in children, 19% (lower: 
9%, upper: 28%) of all COPD deaths, 27% (lower: 19%, upper: 42%) of all IHD deaths, 24% 
(lower: 8%, upper: 34%) of all lung cancer deaths, and 42% (lower: 14%, upper: 54%) of all 
stroke deaths could be attributed to PM2.5 exposure in UB in 2014 – a total of 1,400 
attributable deaths (lower: 710, upper: 1,900) and 40,000 attributable DALYs (lower: 22,000, 
upper: 55,000) (Table 2.9). Deaths and DALYs attributable to PM2.5 at baseline were 
dominated by cardiovascular disease (Figure 2.6). This pattern was consistent throughout 
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the analysis period. Child ALRI comprised about 25% of attributable morbidity when 
totaled over the entire 2014-2024 period under each pathway. Over the period 2014-2024, 
an estimated 18,000 attributable deaths (lower: 9,300, upper: 25,000) and 530,000 
attributable DALYs (lower: 290,000, upper: 720,000) were accrued under a BAU pathway. 
Figure 2.7 shows that these values were reduced by about 20% under Pathway 1, and about 
45% under Pathway 2. Nearly all of the deaths averted by Pathways 1 and 2 resulted from 
IHD and stroke (Figure 2.8). Averted DALY’s in both alternative pathways were dominated 
by child ALRI, IHD, and stroke.  
 
 

 
 
 

Table 2.9. Excess deaths and DALYs attributable to PM2.5, BAU, Pathway 1, & Pathway 2  
(per 1000 capita values rounded to two significant digits) 

  
Accrued, 2014-
2024 (per avg. 
1000 Capita) 

Lower, Upper 
Bounds 

Incurred in 
2014 (per 

1000 Capita) 

Lower, 
Upper 

Bounds 

Incurred in 
Final Year of 

BAU or 
Pathway, 2024 

(per 1000 
Capita) 

Lower, 
Upper 

Bounds 

Deaths       

BAU 18,000 (11) 9,300 -25,000   1,800 (0.99) 980 -
2,600 

Pathway 1 14,000 (9.0) 7,500 -20,000 1,400 (1.0) 710 -
1,900 1,200 (0.63) 630 -

1,700 
Pathway 2 9,800 (6.4) 5,200 -14,000   310 (0.16) 180 -450 

DALYs       

BAU 530,000 (330) 290,000 -720,000   55,000 (30) 31,000 -
77,000 

Pathway 1 420,000 (260) 230,000 -590,000 40,000 (30) 22,000 -
55,000 34,000 (18) 18,000 -

49,000 

Pathway 2 290,000 (190) 160,000 -400,000   8,100 (4.4) 4,400 -
12,000 



Chapter 2 – PM2.5 exposure & health assessment in Ulaanbaatar, Mongolia 27 

 
Figure 2.6. Distribution by disease of burden attributable to air pollution in UB at baseline. Note the 
higher importance for ALRI in the DALY distribution because it affects young children. 

 
 

 
Figure 2.7: Estimated disease burden of PM2.5 over the assessment period for BAU and each 
alternative pathway.  Burden of measure is annual DALYs, or DALYs/year. Baseline value (2014) is marked 
as a dashed line. Pathway 1 averts about 110,000 total DALYs from BAU policies. The stronger reduction 
measures of Pathway 2 avert about 240,000 total DALYs.  
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Figure 2.8. Estimated burden averted from BAU by measures taken in Pathways 1 and 2 (2014-2024). 
Pathway 2 would save more lives than Pathway 1 by more than a factor of 2. Lower and upper bounds on total 
values are shown as whiskers. Note the greater importance of child ALRI in averted DALYs as compared to 
averted deaths. 
 
 
The prolonged reduction period resulted in about 9,800 (lower: 5,200, upper: 14,000) 
unavoidable deaths and 290,000 (lower: 160,000, upper: 400,000) unavoidable DALYs 
under the most rigorous reduction pathway between 2014-2024 (Figure 2.8), but annual 
reductions were substantial. In 2024, an estimated 1,800 (lower: 980, upper: 2,600) deaths 
and 55,000 (lower: 31,000, upper: 77,000) DALYs were still incurred under BAU. This was 
reduced by about 35% under Pathway 1 and about 85% under Pathway 2 (Table 2.9). 
Ulaanbaatar’s rapidly increasing population was accounted for by an examination of annual 
per capita burden (Table 2.9 and Figure 2.9).  Changes in annual per-capita burden between 
baseline and 2024 under all pathways were similar to those estimated for total burden.  
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 Figure 2.9. Relative projected health impacts per capita for BAU and alternative pathways (2014-
2024). Relative projected urban population is also shown. Note that 2014 values are set at 100%.  Pathway 2 
would reduce impacts to near-counterfactual levels by 2024. 
 

2.4 Discussion 
 
Modeled average annual exposures in Ulaanbaatar (estimated at 59 µg/m3 in 2014) 
remained high, despite a wide range of pollution reduction measures recently enacted by 
the Mongolian government, including ambient air quality standards (United Nations 
Children’s Fund 2016), energy efficiency programs (Greene et al. 2014a), anti-smoking laws 
(World Health Organization Western Pacific Region 2012), and improved stove subsidies 
(Greene et al. 2014a). Our models indicated that this trend was driven primarily by high 
wintertime indoor concentrations influenced substantially by the infiltration of outdoor 
pollution. In gers and houses heating with LPB (houses only), MCA stoves, and stoves using 
semi-coke coal, modeled wintertime indoor concentrations were more than ten times 
higher than the WHO PM2.5 annual Air Quality Guideline (10 µg/m3) (World Health 
Organization 2014), a recommendation considered necessary to be fully health protective. 
For regions with very high concentrations, a more reasonable context for indoor 
concentration comparisons may be the WHO Air Quality Guideline interim targets, which 
are designed as achievable incremental policy goals. Even still, modeled indoor 
concentrations in gers and houses heating with LPB (houses only), MCA stoves, and stoves 
using semi-coke coal are more than three times higher than the highest interim target (35 
µg/m3).   
 
Our estimates indicated that 33% (lower: 23%, upper: 42%) of all deaths from ALRI in 
children and 19% (lower: 9%, upper: 28%), 27% (lower: 19%, upper: 42%), 24% (lower: 8%, 
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upper: 34%), and 42% (lower: 14%, upper: 54%) of all deaths from COPD, IHD, lung cancer, 
and stroke, respectively, could be attributed to PM2.5 exposures in 2014. PM2.5 related 
mortality at baseline and as accrued under all pathways was driven by cardiovascular 
disease, while attributable morbidity was more evenly distributed between IHD, Stroke, 
and ALRI in children (< 5 years). These estimates and trends were consistent with global 
and national estimates from the GBD (Forouzanfar et al. 2015), and identified children as a 
local population of particular vulnerability. They were also within the range of citywide 
findings from Allen et al. (Allen et al. 2013), which were based on earlier exposure-response 
functions, different disease groupings, a lower counterfactual of 7.5 µg/m3, and outdoor 
concentrations alone. 
 
A business as usual approach to energy policies in UB will have little impact on citywide 
PM2.5 exposures by 2024 yet may result in a substantial increase in total health burden 
because of large increases in projected urban population. A package of policies targeting 
reductions in both indoor and outdoor emissions from household coal stoves alongside 
aggressive improvements in power and traffic sectors could reduce annual average 
population-weighted PM2.5 exposures by nearly 80% and annual per-capita attributable 
health burden by about 85% by 2024. A package of more moderate emissions control 
policies, including cleaner-burning coal stoves and modest improvements to the city’s 
power plants and vehicle fleets, may reduce PM2.5 exposures by 45% but would have less 
effect on health burden due in part to the non-linearity of the relationship between PM2.5 
exposure and risk for many diseases (Burnett et al. 2014). When energy-related emissions 
are ultimately reduced, environmental tobacco will play an important role in local disease 
burden if not aggressively targeted by regulators.  
 
Our investigation builds upon a small but growing body of air quality research in Mongolia 
(Allen et al. 2013; Amarsaikhan et al. 2014; Davy et al. 2011; Enkhbat et al. 2016; Guttikunda 
et al. 2013; Nakao et al. 2016; The World Bank 2011; Ulzii et al. 2015; Warburton et al. 2013) 
and is the first to both examine and predict population-wide PM2.5 exposures in UB that 
are integrated across environments and account for contributions from SHS. We are aware 
of two studies that have directly measured personal PM2.5 exposures in individuals in UB, 
both of which are difficult to interpret within the context of our analysis and so were not 
explored in depth. One of these studies (Ulzii et al. 2015) reported primarily on peak 
concentrations and is thus difficult to compare with our estimates of longer term averages. 
The other study (Nakao et al. 2016) examined personal PM2.5 exposures between 9:00 and 
17:00 in hospital patients in March and July. However, that study reported only on “indoor” 
and “outdoor” personal exposure levels, the definitions of which are unclear, did not 
disclose a sample size, and did not distinguish exposure statistics by relevant demographics 
like heating type or smoking status. 
 
Most inferences about the population health impacts of PM2.5 in UB and greater Mongolia 
have relied on outdoor concentrations modeled from emissions, chemical transport 
estimates, and/or measurements taken from a small number of outdoor, fixed-site 
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monitors (Allen et al. 2013; Davy et al. 2011; Guttikunda et al. 2013) or outdoor 
concentrations measured using hybrid satellite techniques (Brauer et al. 2016). But satellite 
estimates have been found particularly unreliable in UB because of poor resolution in 
winter and at night, when concentrations are highest in the region (Jerrett et al. 2005b; 
Pinto et al. 2004), and evidence suggests that intra-urban outdoor air quality is highly 
heterogeneous and that city-wide outdoor estimates rooted in data from a small number 
of sites may lead to considerable error when applied to health impact evaluation (Alexeeff 
et al. 2015). Our approach included outdoor modeling techniques, but tempered issues of 
exposure misclassification by incorporating indoor concentrations weighted by locally 
relevant and age-specific time activity estimates.  
 
A 2011 study by the World Bank (The World Bank 2011) projected air-pollution related 
health effects in UB using only outdoor air pollution as an indicator of exposure. The 
current analysis improves upon the methods used in that study by implementing more-
advanced exposure estimation methods, a newer exposure-response technique, more-
nuanced population and background disease projections, local household stove emissions 
data, detailed indoor air pollution measurement data, a baseline scenario inclusive of 
recent MCA efforts to distribute improved coal heating stoves, and an analysis inclusive of 
all UB districts. Our analysis also benefits from the emissions and survey data collected 
during the 2012-2013 MCA stove implementation project (Greene et al. 2014b, 2014a, 2014c). 
Nevertheless, the general trends identified in the World Bank report are in agreement with 
ours: heavy reductions in PM2.5 emissions, particularly those from household stoves, are 
needed to make appreciable impacts on the current pollution-related health burden in UB. 
In contrast, the high attributable disease rates remaining in our baseline, which included 
100% replacement of traditional raw coal stoves with improved MCA stoves, and Pathway 
1, which assumed even greater stove improvements and a switch by a large fraction of 
homes to CIU heating, suggests World Bank estimates that improved stoves can produce 
exposure reductions commensurate with a full transition to electric heating are unrealistic. 
 
Although few measurements exist with which to compare our values, a study (Enkhbat et 
al. 2016) of indoor concentrations during the 2015 winter season in UB found geometric 
mean concentrations in apartments (52.8 µg/m3, 95% CI: 39-297 µg/m3) that were generally 
in agreement with our 2014 non-smoking clean apartment estimate (73 µg/m3). We expect 
our indoor estimates of homes heated with stoves to be more robust, as they were derived 
from the largest database of measured indoor concentrations of homes and gers in 
Ulaanbaatar, to date. Recently published measurements of indoor concentrations in gers 
using traditional stoves during the 2015 winter season (127.8 µg/m3, 95%CI: 86-190 µg/m3) 
are consistent with the value produced by our model for gers using traditional stoves (113.3 
µg/m3) (Enkhbat et al. 2016). We are unaware of published measurements in cleanly heated 
houses for comparison. 
 
There are several limitations to our study. Concerning the outdoor air quality modeling, 
Gaussian dispersion models are overly simplistic to capture all of the transport, dispersion, 
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and terrain characteristics for UB wintertime conditions.  Air quality modeling errors from 
the use of a Gaussian dispersion model are lumped together with emission inventory errors 
when calibrating the model to air quality observations.  It is not clear how these errors 
propagate through to 2024.  Un-modeled emission sources were assumed to have an impact 
of 10 µg/m3 and this simplification influences the exposure estimates, especially for 
Pathway 2 where modeled emission source contributions are low. 
 
Indoor concentrations in ‘clean’ heating homes, which were calculated by applying 
infiltration factors to outdoor concentrations, may have propagated any error incurred by 
the outdoor model. These methods, which employed climate-relevant but non-local 
infiltration rates, could further be improved by future work characterizing local building 
infiltration rates. In addition, the linear model used to estimate wintertime indoor 
concentrations in stove-heated homes, as described in Appendix B, proved a poor predictor 
of individual indoor concentrations with particular weakness predicting very high and low 
values (adj-r2 = 0.13). However, evidence suggests that stove type, SHS, and various 
structural characteristics associated with home type play important roles in shaping indoor 
concentration profiles in households using solid fuels (Balakrishnan et al. 2013; Chowdhury 
et al. 2013; Li et al. 2016). In order to place measurement-based constraints on these 
relationships at the population level, the full model was kept, despite the low r2. More 
complex cross-validated modeling was attempted with these covariates using the 
SuperLearner machine learning package in R (van der Laan et al. 2007), but did not improve 
the fit. Moreover, the assumption that residential indoor PM2.5 concentrations reflect 
indoor concentrations in general is overly simplistic. Future research should elucidate 
PM2.5 concentrations throughout workplace, recreational, and other indoor environments 
in order to inform a more-nuanced population-wide indoor exposure model. This is 
especially important if a portion of the population works in high-exposure settings like coal 
mines. 
 
The use of linear models to project background disease rates through 2024 may not reflect 
future trends in areas like rural to urban migration, economic development, regulatory 
shifts, and healthcare improvements which may have non-linear impacts on disease-
influencing factors (e.g. introduction of pneumococcal conjugate vaccines). This general 
limitation is highlighted by the weak fit of the linear background disease model to historical 
data for several diseases, as demonstrated in Appendix B. Background disease projections 
may also have been substantially underestimated because of latent disease at the time of 
estimation. Because air pollution is a relatively new problem in UB (only gaining traction 
in the 1990s) and because of the rapid, recent influx of people from cleaner rural parts of 
Mongolia, the full impact of diseases that require several decades after exposure to develop, 
like lung cancer, were likely not fully represented in the background disease data used in 
our projections, biasing our burden estimates downward (Cameron and Ostro 2004; 
National Institutes of Health 2007). On the other hand, our decision to not consider 
exposure cessation lag in calculation of averted deaths and DALYs may have accelerated 
the accrual of estimated health benefits and resulted in modestly inflated estimates for the 
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time periods given, except for ALRI which is an acute outcome. The effect of cessation lag 
on the final results may have been attenuated by the large fraction of burden caused by 
ALRI, especially DALYs. 
 
Our BAU and alternative policy pathways were limited by gaps in the literature, too. For 
example, while recent government anti-smoking campaigns (World Health Organization 
Western Pacific Region 2012) suggest that smoking rates are likely to change, it is unclear 
how this will impact household SHS prevalence and related indoor concentrations. 
Implementation of a steady rate allowed the importance of addressing this issue to be 
clearly identified in the models. Information on the number of building structures and, 
thus, heating sources per home was also inconsistent. City census data seem to be reported 
in terms of primary residence type (Statistics Department of Ulaanbaatar 2013), while 
satellite imagery and field experience indicated that, in peri-urban areas, a considerable 
number of residences include multiple ger or house structures. This may have contributed 
to uncertainty in our exposure estimates which were, in part, based on the assumption that 
the indoor environment of each resident was dictated by a single combination of structure, 
heat source, and SHS presence. 
 
Attributable burden estimates in UB may, in general, be underestimated. Evidence suggests 
that cold-air exposures may increase sensitivity to risk factors for cardiovascular diseases 
(Luo et al. 2014). Ulaanbaatar’s temperatures are typically much colder than the regions 
that inform Burnett et al.’s exposure-response models (Burnett et al. 2014), suggesting a 
risk misclassification biasing our burden estimates downward. Differential bias in the 
calculation of averted burden in our projections may have resulted from winter exposures 
dominating the annual average most in BAU, less in Pathway 1, and least in Pathway 2, thus 
leading to further underestimation of averted burden. It is also not clear at present whether 
pneumonia incidence is related to winter time exposures, or annual average exposures, 
although hospital records of pneumonia incidence indicate the majority of the burden is in 
winter months. The distinction becomes important for non-linear dose response curves 
where the wintertime exposures are on a much flatter section of the curve. 

2.5      Conclusion 
 
The analyses performed in this chapter demonstrate that PM2.5 exposures in Ulaanbaatar 
has reached a critical level, and immediate measures must be taken to reduce its health 
impacts on the city’s growing population. Current exposures are projected to produce 
unprecedented levels of respiratory illness, especially in children, and cardiovascular 
disease. Using some of the latest available exposure-response techniques and novel data on 
local emissions and indoor concentrations, this analysis is the most holistic view of 
population-wide air quality exposures in Ulaanbaatar to date. The results highlight the 
need for aggressive actions, including the elimination of residential coal burning and the 
reduction of current smoking rates, if the health burden of air pollution is to be reduced. 
Our conclusions support recent findings that PM2.5 emissions, especially from household 
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heating, contribute substantially to mortality and morbidity from cardiovascular and 
pulmonary disease in the city. In addition, without efforts to moderate indoor 
concentrations, the full benefits of pollution reductions in UB will not be realized.  
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Chapter 3 

Machine-learned modeling of PM2.5 exposures from household air pollution, 
ambient concentrations, and comprehensive surveys in homes cooking with 
solid fuels in rural Lao PDR 

3.1 Introduction 
 
Approximately 2.8 billion people meet most of their cooking needs with solid fuels like 
wood or coal (Bonjour et al. 2013). Chapter 1 points out that the resulting PM2.5 emissions, 
called household air pollution (HAP), produce an estimated four million deaths annually 
from cardiovascular and respiratory diseases (Lim et al. 2012). Burden assessments like this 
one are calculated similarly to those produced in Chapter 2: by applying estimates of 
population annual average exposures to air pollution risk-response relationships elucidated 
in epidemiological studies. Unfortunately, compared to the extent of the problem, 
relatively few exposure data exist for HAP globally. Endeavors to estimate HAP-related 
disease burden thereby commonly employ fuel-type indicators or modeled or measured 
estimates of 24-hour average indoor PM2.5 concentrations as proxies of total exposure 
(Balakrishnan et al. 2013; Smith et al. 2014).  
 
Personal exposures are, however, more than a function of fuel type, and even the most 
sophisticated indoor concentration modeling procedures are incapable of assessing the 
human-environment interactions that affect actual exposures (Steinle et al. 2013). In the 
specific context of HAP, exposures can be a factor of heterogeneity of pollution within the 
home, including vertical stratification (Johnson et al. 2011; Kandpal et al. 1995) and changes 
in dilution relative to distance from the stove or windows; the amount of time spent outside 
of the household; and PM2.5 sources unaccounted for in HAP measurements or indicators 
like traffic, pollution at a neighbor’s home during a visit, or high outdoor ambient values. 
Errors in exposure estimation caused by relying on such proxies may lead to significant bias 
in the estimation of related health burdens, especially at points along the exposure-
response relationship where risk may be highly non-linear, i.e. be changing rapidly with 
exposure (Smith et al. 2014). 
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The general paucity of HAP exposure data stems from the difficulty, invasiveness, and 
resource-intensive nature of current exposure measurement techniques. Gold standard 
methods for measuring exposure require outfitting individuals with delicate consumable 
media and expensive pumps that are bulky, heavy, and noisy. Recently developed 
equipment like the MicroPEM (RTI International, Research Triangle Park, North Carolina, 
USA) and AirChek pump series (SKC Inc., Eighty Four, Pennsylvania, USA) have, in part, 
addressed concerns of participant discomfort with lighter and quieter pumps, but such 
devices are often expensive and produce delicate samples not well-suited to the rugged 
environments that characterize solid fuel using regions and transport to and from those 
regions, which can be quite remote. 7 
 
The need for a better means of accurately assigning air pollution exposures in the solid fuel 
cooking context is now more important than ever. A market is coalescing around the sale 
of Disability-Adjusted Life Years (DALYs) averted (aDALYs) from HAP intervention 
projects much like the market that has in recent years formed around the offset of 
greenhouse gases (Anenberg et al. 2017; Smith et al. 2015). To be effective, such a market 
must have at its disposal a tool for estimating personal exposures that is both accurate and 
practical.  Evidence suggests that variability in both HAP concentrations and personal 
exposures may be explained in part by household and behavioral indicators like fuel type, 
stove type, kitchen structure, and cooking duration (Balakrishnan et al. 2002, 2013). It 
stands to reason that the relationship between indoor HAP concentrations and personal 
exposures may also be partially explained by such indicators. To date, this hypothesis has 
not been thoroughly explored.  
 
Chapter 2 improved upon the estimation of annual average PM2.5 exposures in a specific 
population through the applications of modeled HAP concentrations, outdoor ambient 
models, and time activity estimates. This chapter, Chapter 3, pivots to a broader 
investigation of the utility of a variety of indoor HAP data and easier-to-assess household 
and behavioral indicators to predict 24-hour average PM2.5 exposures – an oft used estimate 
of annual average exposures – in a more traditional rural HAP context. Machine learning – 
a type of artificial intelligence – and super learning – the production of a single “super” 
learner by combining a set of candidate learners, like random forests or neural networks, 
as weighted by their predictive utility (van der Laan et al. 2007) – are applied. Particular 
attention is paid to survey indicators similar to or drawn from the Demographic and Health 
Survey (DHS). The DHS is an internationally administered survey designed to collect 

                                                
7 Technologies in this field are rapidly advancing. A number of smaller, lighter, and quieter gold standard 
devices have been produced, but not yet thoroughly field tested. For example, the Enhanced Children’s 
Monitor (Chartier 2015) – which operates on the same principles as the MicroPEM but reduces the size by 
half and overall weight by nearly two thirds –  and the Ultrasonic Personal Aerosol Sampler (Volckens et al. 
2017) – which developers claim operates in virtual silence and can be produced from approximately $150 worth 
of components – are now being validated for use in a major multi-center randomized control trial. While 
making great improvements to participant comfort and, in some cases, total expense, such devices may still 
suffer from the issues of sample durability identified above. 
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accurate and representative data on demographics and health around the world (ICF 
International 2011). DHS questionnaires are structured, standardized, and frequently 
administered in over 90 countries. Insight into the power of various DHS indicators to 
predict personal exposures in this context may prove useful for future disease burden 
research, aDALY measurement schemes, and, in general, cookstove monitoring and 
evaluation programs.  
 
Data collection was carried out during a World Bank stove intervention program in the 
People’s Democratic Republic of Lao (Lao PDR), where about 95% of households cook with 
solid fuels on traditional appliances (Bonjour et al. 2013). This work also provides one of 
the first estimates of exposures among rural Lao women cooking with solid fuel, and adds 
to the small number of studies on HAP in the region (Huang et al. 2013; Mengersen et al. 
2011; Morawska et al. 2011), where HAP is considered the number three cause of ill-health 
(Institute for Health Metrics & Evaluation 2017) and the cause of an estimated 12% of all 
deaths and 7% of DALYs annually.  

3.2      Methods 
 
The data analyzed in this chapter were collected during a cookstove evaluation program in 
the rural Xonboury District of the Savannakhet Province of Lao People’s Democratic 
Republic (PDR). Briefly, the larger program sought to evaluate the displacement of 
traditional tripod and bucket type cookstoves with the African Clean Energy (ACE)-1 
battery-powered8 blower stove in three villages: Houaymouange, Vangkhonkham, and 
Aho. These villages will hereafter be identified as villages A, B, and C, in no particular order, 
to reduce the possibility of identifying participants. Twenty-four (24) households from each 
village were enrolled for a total of 72 households, a size chosen to detect a minimum 40% 
difference between pre- and post-intervention kitchen air pollution (KAP) concentrations 
– a more specific variant of HAP – assuming a paired coefficient of variation of 
approximately 0.80 (Edwards et al. 2007).  Selection criteria included wood as the primary 
household cooking fuel and that the main cook be 18 years of age or older and not pregnant. 
Recruitment heavily preferred that the main cook not smoke, but this was not a hard 
selection criterion due to limited availability of eligible households within the study area. 
While not a hard-and-fast selection criterion, homes without kerosene lighting were also 
given preference.9 Each household was encouraged to use their new stove during the post-
intervention study period, but no criticism or sanction was imposed if they did not comply.  
 
Main cooks from 12 of the 24 households in each village recruited into the larger 
intervention study were enrolled in personal exposure measurement activities (36 total) on 
a convenience basis. This number was chosen to optimize available resources. A more-
rigorous preference for non-smoking than the larger intervention program was afforded by 

                                                
8 The ACE-1 comes with a small solar panel to recharge the internal battery of the stove. 
9 At baseline, no study households reported kerosene lighting. 
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the smaller sample size; no smokers were enrolled in personal exposure measurement 
activities. This chapter reports on the 36 households and participants enrolled in personal 
exposure measurement activities, hereafter simply called “study households” or 
“participants,” and on the HAP and personal exposure activities conducted as part of the 
academic work of this thesis, hereafter identified as the “study,” “work,” etc. Concurrent 
environmental information like meteorology and ambient PM2.5 concentrations are also 
considered. 
 
The sampling scheme generally took the form of a before-and-after study, relative to the 
cookstove intervention. Each study household participated in a baseline survey, a round of 
air pollution monitoring and follow-up surveys prior to receiving the ACE-1 stove (hereafter 
referred to as the “Before” period), and a round of air pollution monitoring and follow-up 
surveys several weeks after receiving the ACE-1 stove (“After”). This time between stove 
dissemination and measurement allowed cooks to gain some familiarity with the new stove. 
Dissemination occurred over the course of a single week in January 2015. Distributors made 
follow-up visits to villages and households to address technical problems and usage queries 
through the following 2 weeks.  
 
Each round of air pollution sampling occurred in 3-week segments, with one week in each 
village. The first round spanned December 2014 to January 2015, and the second round, 
January to February 2015. Both sampling periods generally entailed 4 days of continuous 
KAP monitoring (not included in this analysis); a post-monitoring survey to provide 
energy-use and exposure related information during the 4-day round of KAP measurement 
(not included in this analysis); 2 days of simultaneous gravimetric measurement of KAP 
and personal PM2.5 exposure nested within that 4-day continuous KAP monitoring period; 
a separate post-monitoring survey to provide data specific to each 2-day set of nested 
gravimetric measurements; and ambient air pollution and meteorology measurements at a 
central cite in each village. This detailed sampling scheme is summarized in Figure 3.1. 
Stove use monitoring system (SUMS) data, accelerometer data from personal exposure 
setups, and continuous personal PM2.5 concentration measurements were also collected, 
but are not discussed in this chapter. Baseline questionnaire, post-monitoring 
questionnaire, stove use monitoring, and KAP and exposure sampling protocols used to 
collect the data analyzed in this chapter were approved by the University of California, 
Berkeley Committee for Protection of Human Subjects, protocol number 2014-06-6457. 
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Figure 3.1. Key aspects of the sampling scheme. 
 

Air pollution measurements 
  
Gravimetric air pollution measurements of KAP and personal PM2.5 exposures were taken 
both before and after stove dissemination. Sampling was performed using Triplex cyclones 
(Mesa Labs, Butler, NJ, USA) with 2.5µm size cut at 1.5 LPM, AirCheck XR5000 pumps (SKC, 
Inc., Eighty Four, PA, USA) set to approximately 1.5 LPM. Cyclones were fit with 37mm 
Teflon filters with support ring and 2µm pores (Pall Corporation, Port Washington, NY, 
USA).  Gravimetric KAP and personal PM2.5 exposure samples were collected for two 24-
hour periods (48 hours total). Completed sampling periods were consecutive in all but one 
household where the two 24-hour samples were separated by 2 days due to issues with the 
ACE-1 stove that were discovered after the first day of After sampling. 
 
KAP monitors were placed on the kitchen wall approximately 1.5m from the floor and 1m 
from the edge of the main cooking stove, a standardized location meant to represent the 
approximate breathing zone of a woman standing near the stove. Where possible, monitors 
were placed 1m away from major ventilation sources such as windows, eaves, and doors. 
Field teams installed push-pins during the Before sampling period to assist in the 
duplication of monitor placement in the After sampling period, though sometimes push 
pins fell out or were moved by the household. It should also be noted that the distances 
between monitoring equipment and the stove and between monitoring equipment and 
sources of ventilation were measured from the continuous KAP monitors previously 
mentioned (but not used in this analysis). Gravimetric sample inlets were placed directly 
adjacent to the continuous monitor, which may have produced a several centimeter 
difference in true distance from the primary stove and true minimum distance from 
ventilation features between households. It is also important to note that while monitor 
placement was intended at 1m from the edge of the primary cooking stove, both the 
traditional and improved stoves are relatively portable and may have been moved during 
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the sample period. A small number of duplicate KAP filter measurements were taken for 
quality assurance and quality control. A significant discrepancy was not observed between 
duplicate KAP filters. 
 
Measurements of personal exposure and gravimetric KAP concentrations were taken 
concurrently. A custom vest garment was designed to hold personal exposure monitoring 
equipment with the gravimetric sampling inlet approximately in the breathing zone while 
limiting discomfort (Figure 3.2). Participants were instructed to place the garment next to 
their bed at night and in a nearby location while bathing. 
 
 

 
Figure 3.2. An example of the sampling garments used.  
 
 
The default method of calculating sample runtime for gravimetric samples was to subtract 
sample start times from sample end times as marked by field technicians on sample forms. 
As a redundancy check, runtimes were calculated from the pumps’ internal timers. These 
timers tend to overestimate actual run time, because they can also include the several 
minutes that the field team operates the pump (without considerable filter contamination) 
while adjusting and measuring its flow rate. These measures were compared against each 
other and any major outliers (> 15 minutes of difference) were examined and runtimes 
manually discerned – field notes or other oddities sometimes also compelled manual 
analysis. Flow rates through gravimetric sampling trains were measured at the start and end 
of each gravimetric sample. Air flow through each filter during sampling was calculated by 
averaging pre- and post-sample pump flow rates and multiplying by sample runtime. 
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Standardized sampling forms were used throughout KAP and personal exposure field work 
to minimize errors during the process of linking data media (e.g. gravimetric filters) with 
corresponding household identifications (ID), sample periods, and notes. To reduce 
transcription errors, the original paper-based KAP and exposure sampling forms used in 
the field were entered into an electronic database two separate times. Discrepancies 
between duplicate entries were reconciled with further review of the sampling forms. 
 
Ambient 24-hour PM2.5 measurements were collected using a MiniVol PM2.5 Sampler (Air 
Metrics, Springfield, OR, USA).  Forty-seven (47) mm Teflon filters with built-in support 
ring and 2µm pores (Pall Corporation, Port Washington, NY, USA) were used for sampling 
with a flow rate of approximately 5 L/min. The MiniVol was placed in a central location in 
each village where it would be safe and would not be disturbed, such as on the roof of a 
home, in a tree, or on a pole. Placement rotated with KAP and exposure sampling. For 
example, while KAP sampling occurred in Village A, the MiniVol was placed at a central site 
in Village A.  
 
Measurements of outdoor temperature (°C), relative humidity (%), barometric pressure 
(mb), wind speed (km/hour), wind direction (45° increments), and precipitation (mm) were 
planned for Monday through Saturday of every sampling week using a Vantage Vue 6250 
wireless weather station with Integrated Sensor Suite 6357 and a 6351 console (Davis 
Instruments, Hayward, CA, USA) co-located with the MiniVol in each village. Meteorology 
readings were observed and manually entered into a field form once in the mid-morning 
(“morning”) and again in the later morning or early afternoon (“afternoon”). 
 
Mass deposition on gravimetric samples was determined using the weights of filters before 
and after sampling. Field blanks were used to correct for filter contamination or mass loss 
not specific to sampling-based loading processes. Both 37mm and 47mm field blanks were 
collected.  Notably, 37mm field blanks from the Before and After periods were treated 
slightly differently10, though a significant difference was not seen between the mean Before 
lab blank mass deposition and the mean After lab blank deposition. Weighing and mass 
calculations were performed by colleagues at Berkeley Air Monitoring Group (Berkeley, CA, 
USA). During the study, an equipment malfunction in the weighing facility was discovered 
that affected and invalidated many pre-sample filter weight measurements. Using over 250 
sample filters unaffected by the malfunction, Berkeley Air Monitoring Group was able to 
develop a method of recovering pre-sample filter weights (Garland et al. in preparation). 
Briefly, post-sample filters were sonicated in a solvent bath to remove PM mass loaded onto 
the filter during sampling. Filters were allowed to dry, and then reweighed. The filter’s pre-

                                                
10 In general, 37 mm field blanks were transported to the field, prepared in a KAP cyclone setup and placed on the 
wall as normal sample filters, allowed to sit inactive for some period of time, and then taken down, capped, transported, 
and stored as a normal sample filter. The majority of 37mm blanks from the Before period remained in the cyclone 
on the wall for a full ~ 24-hour sampling period before being taken down, while a small number of Before and all of 
the After  37mm blanks remained in the cyclone for only about 5 minutes before being removed, capped, placed in a 
secure location for the remainder of the ~ 24-hour sampling period, and then transported. 
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sample weight was taken as this post-sonication mass. Filter tearing during the sonication 
process did not significantly affect pre-sample weight estimates, and so filters torn during 
sonication were not excluded. Final mass deposition from sampling was calculated as the 
difference between the post-sample (pre-sonication) filter mass and post-sonication filter 
mass, as adjusted for the average post-sonication field blank mass from each sampling 
period. The method has been shown to recover pre-sample filter weights with high reliability 
(r2 > 0.99), and is currently in preparation for peer review. For consistency, all KAP and 
personal gravimetric samples were treated with this method. Filters from ambient PM 
measurement were not affected by this equipment malfunction, and thus not treated for 
sonication. Ambient measurement filters were corrected for three 47mm field blanks 
collected in the Before sampling period and two 47mm field blanks collected in the After 
sampling period. 

Questionnaires 
 
Three separate questionnaires were administered during the personal exposure study: a 
baseline questionnaire, a post-KAP monitoring questionnaire, and a post-personal 
exposure monitoring questionnaire. Questionnaires were drafted in English and translated 
into Lao with input from colleagues with experience in the field, rural Lao context, or both.11 
An English version of each questionnaire is available online (Hill LD et al. 2015). 
Questionnaires were administered in Lao by trained surveyors familiar with local customs 
using Microsoft Excel-based survey tools and portable computers. Administration was 
recorded (audio). Questionnaires were reviewed for missing and suspect answers and 
manually adjusted during two separate rounds of quality assurance (QA) —one shortly 
after sampling concluded in 2015, and another in late 2016 and early 2017 prior to 
publication of this chapter. Audio recordings were consulted when possible; recordings 
were available for the 2015 QA period but, by the 2016/2017 period, recordings of all post-
monitoring questionnaires and five of the baseline questionnaires had been destroyed. 
 
The baseline questionnaire was administered to households in December 2014, and was 
designed to gain information on home characteristics, demographics, cooking behavior, 
time activity, locally relevant exposure-related activities, and energy use at various times of 
the year and with a primary focus on the season during which the questionnaire was 
administered. The baseline questionnaire also included a series of questions as a double-
check for compliance with exclusion criteria. Most baseline questionnaires were 
administered in the first week of December, not long after administration of consent. 

                                                
11 Multiple questions— especially on the topics of demographics, fuel use, kitchen location, and smoking— 
were drafted from or inspired by the Lao Social Indicator Survey (Ministry of Health and Lao Statistics Bureau 
of the Ministry of Planning and Investment 2012), the general Demographic and Health Surveys (ICF 
International 2011), and the National Health and Nutrition Examination Survey (Centers for Disease Control 
and Prevention 2013). Content was also drawn from the pool of survey tools developed over the years by 
project collaborators and affiliates of the Household Energy, Climate, and Health research group at the 
University of California, Berkeley. 
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About 10% of baseline questionnaires were administered the fourth week of December, 
either during or just before the first household air pollution sample. 
 
Post-monitoring questionnaires were administered during equipment takedown in each 
sample period. Post-monitoring questionnaires included questions similar to those on the 
baseline questionnaire regarding cooking behavior, time activity, energy use, and locally 
relevant exposure-related behavior. The primary difference between the post-monitoring 
and baseline questionnaires was the time period of interest; while the baseline 
questionnaire asked about various times of the year, the post-KAP monitoring 
questionnaire asked specifically about the several days of continuous KAP measurement, 
and the post-personal exposure monitoring questionnaire asked only about the 2 days of 
simultaneous gravimetric exposure and KAP measurement. Questions posed in the post-
KAP and post-personal exposure monitoring questionnaires were nearly identical. 
 
Only a subset of response variables from the post-personal monitoring questionnaire and 
the baseline questionnaire was used in analysis. Variables from all post-monitoring 
questions were included, because they pertain directly to the air pollution measurement 
periods of interest. As the baseline and post-monitoring questionnaires overlap heavily, 
baseline questionnaire variables considered for analysis were limited to topics covered 
exclusively in the baseline questionnaire. Baseline questionnaire topics considered for 
analysis included household characteristics and demographics, architectural 
characteristics of each respondent’s primary house and kitchen, respondent age and 
smoking status, attitudes toward cooking smoke and its impacts on health, wood fuel 
preparation, electricity access, and electric appliance use. Baseline questionnaire variables 
were combined by household with both the Before and After post-monitoring datasets.  
 
A primary goal of the analysis was to understand the utility of DHS-type survey questions 
in the prediction of personal PM2.5 exposure concentrations in the wood-fuel cooking 
context. In Lao PDR, DHS questions are administered in the form of the Lao Social 
Indicator Survey (LSIS) (Ministry of Health and Lao Statistics Bureau of the Ministry of 
Planning and Investment 2012). LSIS questions for which reasonable overlap with the 
baseline or post-monitoring questionnaires existed or could be produced during data 
processing covered the topics of household size by age, education level of various 
household members, drinking water source, sanitation, ethnic identity, architectural 
characteristics of the main house, primary fuel type and cooking location, household asset 
and financial status, and land and livestock ownership.12 
 
Several existing variables were modified and new variables created by combining individual 
responses or questions. Of particular note is a cooking exposure activity score created from 
post-monitoring questionnaire responses about cooking behavior. This score was produced 

                                                
12 LSIS questions HL6, HH11, ED3, ED4, WS1, WS8, WS9, HC1C, HC3, HC4, HC5, HC6, HC7, HC8, HC9, HC10, 
HC12, HC14, and HC15. 
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separately for cooking performed at home in the morning, afternoon, and evening. A total 
score was created by combining the sum of home-specific scores with a score calculated for 
all cooking performed away from home. This score was calculated by multiplying the 
amount of self-reported time spent cooking, parsed in minutes; by the amount of that 
cooking time spent in the kitchen as reported on a scale of 1 (very little) to 5 (nearly all of 
it); by the amount of that time cooking in a kitchen spent within arm’s length of the stove, 
reported on the same 1 to 5 scale. A set of exposure scores was also created for grilling at 
home and total grilling (at home and away). 

Final dataset 
 
The final dataset was selected to optimize the external validity, or transportability, of this 
analysis to balance predictive power with a broader interpretation of model results. The 
analysis set included all responses from the post-personal monitoring questionnaires and 
the previously described responses selected from the baseline questionnaires, with some 
modifications from the aforementioned variable creation and grouping. The full set 
included both individual 24-hour KAP concentration and personal PM2.5 exposure 
measurements, 48-hour average KAP concentration and personal PM2.5 exposure estimates, 
and average ambient PM2.5 concentration estimates for each village by sampling period. 
Variables were also developed from sample form data to account for statistical effects from: 
sample period, distance of equipment from primary stove and floor, and whether a 
ventilation source was noted as < 1m from the equipment on which each 24-hour sample 
was begun. While not transportable, variables for household ID and village were retained 
as a means of improving statistical analyses, as described in more detail below. Meteorology 
data were also retained. It should be noted that many variables were found to have perfect 
correlation with at least one other variable, which is not unexpected for such a large 
database. The application of a common variable screening method did not substantially 
alter SuperLearner model 13 performance and computational burden was not high, so, for 
simplicity, variables were not actively culled for high correlation in any of the datasets. 
 
KAP and personal PM2.5 exposure samples with a start or end flow rate of less than 1.4 LPM 
or greater than 1.6 LPM were excluded. Filter samples with runtimes greater than 28 hours 
or less than 20 hours were discarded in order to avoid samples unrepresentative of a full 
day activity cycle. Sampling forms were manually examined to find and account for errors 
or issues affecting the samples; when non-conformity14 was discovered or considerable 
error expected, such samples were omitted from analysis. In two samples where the 
primary KAP filter was discarded for failing to meet the aforementioned standards, it was 
possible to reassign a duplicate KAP filter as the primary KAP sample. 
 

                                                
13 Variable screening was explored on the Full dataset predicting 48-hour average exposures. 
14 For example, one household had only a single day of gravimetric exposure measurement due to equipment 
problems. 
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Missing or invalid observations in independent questionnaire and KAP concentration 
variables were imputed using k-nearest neighbors (k = 20) on the full dataset,15 with the 
exception of outcome variables, household ID, variables considered personally identifying, 
and meteorology data. Prediction of exposure values as stratified by sampling period would 
later be used as a model performance metric, and so variables for sampling period and stove 
type, which was a near-perfect proxy for sampling period, were also excluded from the 
dataset during imputation. Missing meteorology data were imputed separately using k-
nearest neighbors (k = 5) on the entire meteorology data subset, which also included date, 
village, period, and whether the missing data were from a “morning” or “afternoon” weather 
observation. A binary variable to indicate imputation of an observation was created for each 
imputed variable. Rows with missing 24-hour exposure estimates were dropped after 
imputation. Variables of a categorical class were converted into indicator variables with j-1 
levels, where “j” is the number of unique responses recorded in each categorical variable. 
The least frequent response for each categorical variable was selected as the variable’s 
reference level. 

Statistical analysis 
 
Analyses were performed in the R statistical program, version 3.3.2 (R Core Team 2016). 
Data were analyzed using the SuperLearner (Polley et al. 2016) and randomForest (Liaw 
and Wiener 2002) packages. All SuperLearner processing was performed with the following 
learners: random forest, an ensemble of random forest and bagging that uses conditional 
inference trees for base learning (“cForest”), extreme gradient boosting, neural networks 
with a single hidden layer, support vector machines, and 10-fold cross-validated (CV) 
generalized linear modeling with regularization.16 Most households contributed two sets of 
data to the models (Before and After measurements); values from the same household were 
kept together (by fold) during cross-validation. Variable importance for the prediction of 
48-hour exposure was assessed using the randomForest package. Variables for household 
ID and village were not included in the variable importance analysis. Model performance 
was evaluated using the coefficient of determination (r2) of observed exposure values 
regressed on predicted exposure values, and by comparing the similarity of observed and 
predicted exposure values as stratified by sampling period (Before vs. After). The latter was 
chosen to reflect real-world use in the context of monitoring and evaluating an exposure 
intervention program. 
 
The kitchen exposure factor, or the ratio of a person’s exposure to their KAP concentration, 
is often used along with KAP concentration data to quantify personal PM2.5 exposure in the 
cookstove context. KEF can be estimated from the literature to produce exposure estimates 
from nothing more than measured KAP values, allowing investigators to skip costly and 

                                                
15 The full dataset after excluding rows with incomplete personal exposure data. 
16 Learners as identified by SuperLearner: SL.randomForest, SL.cforest, SL.xgboost, SL.nnet, SL.svm, 
SL.glmnet. All were used with default settings. 
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burdensome personal exposure measurement campaigns. KEF can also be estimated onsite 
from concurrent exposure and KAP measurements in a subset of the study population; this 
involves some exposure measurement, but researchers are spared the burden of outfitting 
the entire population with monitors. The predictive value of KEF was explored in this 
dataset using 10-fold CV: a mean 48-hour KEF was calculated on approximately 90% of 
sample data and multiplied across individual 48-hour KAP concentration measurements 
on the remaining ~ 10% of data to produce estimates of exposure for those participants. 
This was performed ten times with each iteration leaving out a unique ~ 10% of the data 
until cross validated exposure predictions were calculated for all participants. This 
procedure was performed on all KAP and exposure data and, again, on the dataset as 
stratified by sampling period (5 folds per stratum). Before and After samples from the same 
household were kept together during CV fold creation.  
 
The ability of the data to predict 48-hour average PM2.5 exposure was explored using 10-
fold CV SuperLearner methods on three primary variable sets. The first training set 
included all original and imputed independent variables with the exception of village, as it 
is largely non-transportable, and sampling period, as it is a direct aspect of the pre-
determined model performance metric (“Full” set). Stove type, as a near-perfect proxy for 
sampling period, was also excluded. For data quality assurance, an iteration of this model 
was also produced using the un-imputed dataset.17 The second training set excluded all 
KAP and meteorology variables from the Full set (“Full Without KAP” set). The third set 
included only KAP, meteorology, and ambient concentration data from the Full set (“KAP 
Without Surveys” set). Exposure outcomes were not transformed for modeling.  
 
The Full set was also explored with CV SuperLearner using each of the first day and second 
day 24-hour average exposure measurements as the outcomes of interest. When predicting 
individual 24-hour average outcomes, only gravimetric and meteorology data from the day 
of measurement were included. For example, when predicting the first 24-hour average 
exposure, the second day KAP concentration, related meta data, and meteorology data 
were excluded from analysis.  
 
A group of four training datasets that focused on LSIS-type questionnaire data was also 
explored with CV SuperLearner in order to better understand the predictive power of DHS 
indicators and the adjuvant power of other measurements. These included a set of only the 
LSIS-type questionnaire variables (“LSIS Only”); a set of LSIS-type, ambient PM2.5 
concentration, and all meteorology variables (“LSIS and Outdoor”); a set of LSIS-type 
variables and self-reported wood fuel use (kg) from the post-monitoring questionnaires 
(“LSIS and Wood Use”); a set of LSIS-type variables and self-reported heating variables from 

                                                
17 The un-imputed “Full” dataset consisted of only 37 samples (nBefore = 13, nAfter = 24) and 278 covariates, 
compared to the 60 samples (nBefore = 27, nAfter = 33) and 305 covariates included in the post-imputation dataset. 
Differences in covariates arose from the changes to data processing outputs caused by data missingness. In 
general, the types of covariates included in the un-imputed and post-imputation datasets were similar. 
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post-monitoring questionnaires (“LSIS and Heating”); and a set of LSIS-type variables and 
the previously described exposure score (“LSIS and Exposure Scores”). 
 
The distributions of observed and predicted exposure values did not always match, and so 
exposure values were left untransformed during t-testing. For example, the distribution of 
observed After exposures (48-hour average) was normal, while After exposures predicted 
using the Full Without KAP dataset were distributed log-normally. Paired student’s t-tests 
(nBefore = 54, nAfter = 66) were used to compare observed and predicted exposure 
distributions as stratified by sampling period. Both paired and unpaired student’s t-tests 
were used to assess the difference in observed exposures between the Before and After 
sample periods. The same was performed for KAP measurements. The non-parametric, 
unpaired Mann-Whitney Wilcoxon rank sum test was used to assess the difference in 
average outdoor PM2.5 concentration between the Before and After sampling periods. Un-
paired student’s t-tests were used to assess the difference in various continuous 
meteorological variables between the Before and After sample periods. When testing for 
significant differences in survey indicators between Before and After periods, an unpaired 
student’s t-test was used for continuous variables and a Fisher’s Exact test was used for 
categorical and binary variables. All significance tests were two-sided with an a of 0.05. 

3.3      Results 

Air pollution and meteorological conditions 
 
A total of 6 variables related to KAP measurement were available for use. Viable 24-hour 
KAP measurements from the first day of sampling (Day 1) were collected in 34 households 
in the Before period and 35 households in the After period. Viable 24-hour KAP 
measurements from the second day of sampling (Day 2) were collected in 32 households in 
the Before period and 35 households in the After period. Overall, combined 48-hour 
average KAP concentration estimates were calculated in 31 households in the Before period 
and 34 households in the After period. Values for the 15 missing or invalid KAP estimates 
were imputed. Indicator variables for imputation of Day 1, Day 2, and the 48-hour average 
concentrations were created, bringing the total number of KAP variables available for 
analysis to 9.  
 
Viable 24-hour personal PM2.5 exposure concentrations for Day 1 were collected for 34 
participants in the Before period and 34 participants in the After period. Viable 24-hour 
personal exposure concentrations for Day 2 were collected for 28 participants in the Before 
period and 34 participants in the After period. Overall, combined 48-hour personal 
exposure estimates were calculated for 27 participants in the Before period and 33 
participants in the After period. No personal concentration estimates were imputed, 
because it is the outcome of interest.  
 



Chapter 3 – Machine-learned modeling of PM2.5 exposures in rural Lao cooks 48 

Missing personal PM2.5 exposure concentration values determined the final sample size for 
analysis: 33 After samples and 27 Before samples from 34 unique participants (60 total 
samples; 19 in village A, 22 in village B, and 19 in village C). Summary pollution 
concentration statistics for the 60 complete samples are shown in Table 3.1. Concentration 
distributions are demonstrated in Figure 3.3. Unpaired t-tests on the untransformed data 
from all 60 samples showed that the 48-hour average personal PM2.5 exposure 
concentration in the Before period was significantly different from that of the After periods 
(p < 0.001). The same was true of 48-hour average KAP concentrations (p < 0.001). Day 1 
average concentrations were marginally different from paired Day 2 averages (p = 0.07), 
driven by a significant difference (p <0.01) in the Before period. Average KAP 
concentrations were not significantly different between Days 1 and 2. Paired t-tests of 
Before and After 48-hour samples in the subset of participants with both Before and After 
measurements (n = 52) proved significant for both exposure and KAP (p < 0.001). KEF varied 
significantly between the Before and After period when tested using the paired and 
unpaired methods described above (p < 0.01).  
 
 

Table 3.1. Kitchen Air Pollution and Personal PM2.5 Exposure Concentrations, by Period and Sample 
Day 

    
Kitchen Air Pollution 

Concentration 
Personal PM2.5 Exposure 

Concentration KEF  

  n mean 
(µg/m3) 

+/- 
95% 
CI b GM  GSD  

  mean 
(µg/m3) 

+/- 
95% 
CI b GM  GSD  Mean SD 

Before 27              
Day 1   499 a 182 376 2.1   139 a 28 124 1.6 0.45 a 0.43 
Day 2   470 a 163 350 2.1   107 a 19 98 1.5 0.39 a 0.36 

48 Hour 
Avg.   462 a 144 370 2.0   123 a 22 113 1.5 0.42 a 0.42 

After 33              
Day 1   131 a 30 113 1.7   78 12 71 1.6 0.70 0.32 
Day 2   116 15 109 1.5   83 14 69 2.2 0.80 a 0.50 

48 Hour 
Avg.   124 a 20 114 1.5   81 11 75 1.5 0.72 0.29 

Note: GM = Geometric Mean (calculated as exp(mean(log(X1 , X2 , … , Xn))) ), GSD = Geometric Standard 
Deviation (calculated as exp(sd(log(X1 , X2 , … , Xn)))), KEF = Kitchen Exposure Factor  
a. Values comprising this arithmetic mean are distributed log-normally (p < 0.05) 
b. For non-transformed data 
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Figure 3.3. A kernel density plot showing distributions of personal PM2.5 exposure (left) and Kitchen PM2.5 
Air Pollution (KAP; right), by sampling period (blue and red) and sampling time (from top to bottom). 
Concentrations along the x-axis are limited to 600 µg/m3 to allow easier interpretation of all graphs in the 
same figure – excluded were 6 points from the 48 Hour Combined KAP, 6 points from the Day 1 KAP, and 5 
points from the Day 2 KAP plots.  
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Budget constraints and initial difficulties with equipment resulted in too few viable samples 
to produce ambient PM2.5 concentration estimates for each day of measurement. Thus, 
individual 24-hour measurements were aggregated to produce a single estimate of average 
ambient PM2.5 concentration for each village during each sampling period (Table 3.2). Each 
sample was assigned an ambient concentration based on the village in which the participant 
lived and the sampling period. A significant difference in average ambient concentrations 
between sampling periods was not observed (p = 0.74). 
 
 

Table 3.2. Summary Statistics for Outdoor Ambient PM2.5 
Concentrations, by Sampling Period and Village 

  n Mean 
(µg/m3) 

Max 
(µg/m3) 

Min 
(µg/m3) 

SD 
(µg/m3) 

Before 7 52 73 26 16 
Village A 2 49 50 47 - 
Village B 3 57 66 43 12 
Village C 2 49 73 26 - 

After 14 53 147 15 34 
Village A 4 57 82 15 30 
Village B 5 70 147 38 44 
Village C 5 34 57 20 15 

The difference between Before and After concentrations was not 
statistically significant (p = 0.74) 

 
 
 
Six (6) meteorology variables were available for analysis. All meteorology observations were 
missing for 2 of the 36 intended morning weather measurements and 2 of the 36 intended 
afternoon weather measurements (about 6% of all meteorology data). Two (2) additional 
morning and 2 additional afternoon measurements of wind direction were also missing 
(about 1% of all meteorology data). The median observation times of un-imputed morning 
and afternoon measurements were 9:06 AM and 12:05 PM, respectively. This did not differ 
considerably by sample period. All missing observations were imputed using the full 
meteorology dataset, and variables for date, time of day (morning vs. afternoon), village, 
and sampling period. New variables were created to indicate imputation. Key meteorology 
data are summarized post-imputation in Table 3.3. Wind direction was then split into 
binary indicators for northeast (NE), east (E), southeast (SE), southwest (SW), west (W), 
and northwest (NW) with north (N) as a reference level. New meteorology variables were 
created to distinguish each reading by “morning” and “afternoon”. These variables were 
assigned to individual 24-hour gravimetric measurements by gravimetric measurement 
start date. After this merge, 21 variables were left without variation; uniform variables are 
of no use to modeling, and so they were dropped, leaving a total of 47 meteorology variables 
for consideration during analysis. 
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Table 3.3. Summary Statistics for Key Meteorology Data, by Sampling Period and Village 

  

Mean 
Barometric 

Pressure 
(mb) a 

Mean 
Temperature 

(°C) b 

Mean 
RH 
(%) 

Mean 
Wind 
Speed 

(km/h) 
b 

Most 
Observed 

Wind 
Direction c 

Mean 
Afternoon 

Precipitation 
(mm) 

Before 1017.1 24.3 56 6.1 SW 0.3 
Village A 1018.7 23.3 53 8.5 SE 0.0 
Village B 1017.3 23.3 54 6.5 NW 0.8 
Village C 1015.2 26.3 61 3.2 SW 0.0 

After 1015.9 25.9 54 3.9 NW 0.2 
Village A 1015.4 27.8 53 4.2 SE 0.0 
Village B 1015.0 24.5 57 3.2 NW 0.7 
Village C 1017.3 25.3 51 4.3 NW 0.0 

Note: with the exception of mean afternoon precipitation, “mean” values are taken as the average 
among all morning and afternoon measurements. 
a.     Difference between Before and After concentrations marginally significant using unpaired student’s 

t-test (p < 0.10) 
b.     Difference between Before and After concentrations statistically significant using un-paired 

student's t-test (p < 0.05) 
c.     Difference between Before and After values not tested for significance 

 

Questionnaires 
 
A total of 246 variables from the baseline and post-monitoring questionnaires were 
available for analysis (not including variables for household ID and village). Eight (8) 
observations across 8 post-monitoring questionnaire variables were missing from the full 
dataset (<< 1 % of all included observations). Missing values were imputed, and an indicator 
variable was created for each imputation. Cooking exposure scores were created, adding 6 
new variables to the set. Questionnaire data were truncated to match the 27 participants 
with complete exposure data from the Before period and the 33 participants with complete 
exposure data from the After period. In this data subset, 28 post-monitoring questionnaire 
variables and 44 baseline questionnaire variables had only 1 unique response, and so were 
dropped. Of the remaining questionnaire variables, 57 were categorical. These categorical 
variables were converted into a total of 120 indicator variables. After variables for sampling 
period and stove type were excluded, the total number of questionnaire variables for 
inclusion in the Full analysis set was 248. A summary of key questionnaire indicators is 
shown in Table 3.4. 
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Table 3.4. Summary of Selected Questionnaire Responses  
  All Study Data Dataset as Analyzed a 

 Mean (SD or %) Mean (SD or %) 

  Before After Before After 
p-

value  
n 36 36 27 33 - 

Age of Cook (years; reported 
during Baseline Questionnaire) 35 (11) 34 (11) 35 (11) 0.95 

Female Head of Household 4 (11%) 4 (15%) 4 (12%) 1.00 
Self Reported Spending 
(KIP/month) 

316,000 
(710,000) 

201,000 
(343,000) 

314,000 
(745,000) 0.44 

Electricity Access 36 (100%) 27 (100%) 33 (100%) - 
Primary Biomass Stove is ACE 1 0 36 (100%) b 0 33 (100%) b <0.01* 
Primary Biomass Stove is Open 
Fire 30 (83%) 0 b 24  (89%) 0 b <0.01* 

Reported Wood Use for Cooking 
(kg) 10.5 (5.1) 2.4 (1.2) 10.2 (4.5) 2.4 (1.3) <0.01* 

Kitchen Size (m3) 40 (33) 41 (32) 42 (34) 0.91 
Cooking Location at Home     
In House (Separate Room) 1 (3%) 0 1 (4%) 0 

0.44 In House (Elsewhere) 30 (83%) 33 (92%) 22 (81%) 30 (91%) 
In Separate Building 5 (14%) 3 (8%) 4 (15%) 3 (9%) 

Time Spent Cooking per Day at 
Home (minutes) 543 (211) 364 (146) 542 (223) 368 (147) <0.01* 

Total Cooking Exposure Score 6,896 (3,441) 4,356 (3,498) 7,423 
(3,643) 

4,353 
(3,516) <0.01* 

Time Spent Grilling per Day at 
Home (minutes) 86 (113) 29 (59) 87 (123) 31 (61) 0.04* 

Total Grilling Exposure Score 3,744 (6,537) 1,414 (5,375) 4,284 
(7,315) 

1,542 
(5,603) 0.12 

Smoking Occurred in House 28 (78%) 27 (75%) 23 (85%) 25 (76%) 0.52 
Smoking Occurred in Kitchen 5 (14%) 3 (8%) 4 (15%) 3 (9%) 0.69 
Ever Used a Heat Source During 
Sampling 23 (64%) 10 (28%) 20 (74%) 9 (27%) <0.01* 

Time Activity During 48 Hour 
Sampling (hours)      

Kitchen 8.9 (3.3) 7.4 (3.2) 9.3 (3.5) 7.5 (3.2) 0.04* 
Inside Home, but Not In Kitchen 21.6 (5.2) 27.7 (5.2) 22.4 (5.4) 27.8 (5.4) <0.01* 

Inside, at a Job 0.1 (0.5) 0 0.1 (0.6) 0 0.33 
Inside, Elsewhere 2.4 (3.1) 1.1 (2.0) 2.0 (3.1) 0.9 (1.4) 0.08 

Outdoors, at a Job Site 6.6 (5.2) 6.2 (6.8) 6.5 (5.2) 6.7 (6.8) 0.88 
Outdoors, Elsewhere 8.4 (4.3) 5.6 (5.7) 7.7 (4.1) 5.1 (5.3) 0.04* 

a. Twelve samples were dropped prior to analysis for a lack of outcome data. This is described in the text below. 
Some metrics in the full dataset may be reported as constant between Before and After sections in the full dataset, 
but not in the dataset as analyzed. This is due to the fact that in the dataset as analyzed, some household samples 
were retained in one sampling period but not the other. Tests for significant differences between Before and After 
responses were performed only for the dataset as analyzed. 
b. Field notes indicate that at least one participant’s ACE-1 stove was non-operational during one of the two days 
of After period sampling. 
* Significant difference. 
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Prediction models 
 
Summary statistics for models produced using all 48-hour exposure datasets are shown in 
Table 3.5. Paired t-tests compare observed values with those predicted by the models—this 
is a relevant statistic for the cross-validated context if we consider the prediction models 
constructed for each training sample as fixed (Dudoit and van der Laan 2005). Table 3.6 
summarizes relative predictive performance of the super learner components for the 48-
hour average exposure model run on the Full dataset. Figure 3.4 shows observed exposure 
values plotted against values predicted using CV SuperLearner with each of the three 
primary datasets and against values predicted using the KEF method with stratification. 
Among the three primary datasets, the model produced using the Full Without KAP dataset 
estimated Before and After exposures with the least reliability. Little difference was 
observed between the predictive power of the Full and Full Without Surveys datasets, 
which both produced models that accurately predicted Before and After concentrations. 
Both models demonstrated strength in predicting individual exposure values with r2 ~ 0.25. 
The model produced using the Full un-imputed dataset performed similarly well to the 
model produced on the true Full dataset.  
 
 

Table 3.5. 48-Hour Model Results - Observed vs. Predicted 
    Before Sampling Period After Sampling Period 

Model 

r2  
(Observed 

vs. 
Predicted) 

Mean SD 
p-value 
(against 

Observed) 
Mean SD 

p-value 
(against 

Observed) 

Observed  123.2 54.5  80.8 30.5  
Predicted         

Full 0.26 120.1 17.9 0.76 88.1 16.4 0.15 
Full – Un-imputed 

Dataset 0.49 117.6 10.8 0.46 86.8 15.3 0.19 

Full without KAP 0.01 105.5 11.6 0.12 91.7 6.9 0.07 
Full Without Surveys 0.27 119.0 23.4 0.68 87.1 22.7 0.21 

KEF Only 0.03 240.8 206.1 0.02 67.4 58.2 0.00 
KEF Only - Stratified 0.02 199.5 170.5 0.04 89.0 40.3 0.28 

LSIS Only 0.00 97.5 6.0 0.02 97.7 6.5 0.01 
LSIS and Outdoor 0.31 119.7 26.0 0.72 85.8 16.4 0.30 

LSIS and Wood Use 0.05 102.7 14.5 0.06 91.9 9.1 0.06 
LSIS and Heating 0.04 108.1 17.7 0.16 91.7 10.7 0.09 

LSIS and Exposure Scores 0.01 103.6 8.8 0.08 98.2 10.9 0.00 
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Table 3.6. Candidate and Super Learner 
Performance  

Algorithm Average RMSE (µg/m3) * 

Super Learner 40.1 
Discrete SL 40.0 
SL.randomForest_All 40.0 
SL.nnet_All 48.1 
SL.glmnet_All 44.6 
SL.xgboost_All 50.1 
SL.svm_All 47.7 
SL.cforest_All 43.2 
* Square root of the mean squared wrror output produced by 
the CV SuperLearner model run on Full Data with 48 Hour 
Exposures 

 
 
 

 
Figure 3.4. Observed 48-hour average exposures plotted against predicted values for the three primary 
models produced with CV SuperLearner and the better-performing of the two traditional KEF-based models 
– KEF with stratification. Individual concentrations are depicted by smaller points, and mean concentrations, 
by larger points. All data are stratified by sampling period. The coefficient of determination (r2) for the 
regression of observed values on predicted values is shown in the top left corner of each panel. X and Y axes 
were limited to 350 µg/m3 to improve interpretability of the figures; these bounds were exceeded by 4 
predicted values (max X = 861.3 µg/m3) in the KEF Only – Stratified panel. 
 
 
KEF proved a poor predictor of exposures when applied traditionally, especially in the 
Before sampling period. Stratification by sampling period improved results slightly, with 
most improvement seen in the After period predictions. 48-hour exposures were also 
modeled from 48-hour average KAP concentrations with SuperLearner 18 as a 
                                                
18 Excluding learners reliant on forests and regularization (i.e. SL.randomForest, SL.cforest, and SL.glmnet), 
which did not function with only than one predictor variable. 
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complementary analysis of what a KEF-type model would look like with the benefits of 
super learning and machine learning. This improved performance slightly (r2 = 0.09), 
producing mean Before and After exposures that were closer to measured values (Before: 
85.7 µg/m3, p = 0.19; After: 108.3 µg/m3, p = 0.36).  
 
The model produced on LSIS Only data did not successfully delineate mean Before and 
After concentrations. Addition of ambient PM2.5 and meteorology data dramatically 
improved the LSIS dataset’s predictive power, and produced the most-predictive model of 
all. The addition of heating variables, wood use variables, and exposure score variables all 
improved performance slightly. 
 
Variable importance analyses uncovered several useful data groupings. They are 
demonstrated in Table 3.7, which shows the 10 most important variables in the Full, Full 
Without KAP, and one of the LSIS datasets – LSIS and Heating. Relative importance is 
demonstrated in terms of percent increase in mean squared error (MSE) caused by 
removing each variable during Random Forest selection. Meteorology and KAP data made 
the greatest contributions to the Full data model. The sets of 10 most important variables 
were very similar between the Full and Full Without Surveys models. The model produced 
on the Full set without meteorology or KAP data was less robust, and produced relatively 
poor estimates of sample period mean exposures. Generally, LSIS-type variables related to 
household size, ethnicity, and cooking location made the greatest contributions to LSIS 
model performance. Among all models, a select few variables produced a considerably 
larger impact than the others. For example, relative importance in the Full dataset drops 
considerably after Day 1 24-hour KAP concentration, the fourth most important variable. 
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Table 3.7. 10 Most Importance Variables for Prediction for Select Datasets 
Full Dataset Full Without KAP LSIS and Heating 

Variable % MSE 
Increase Variable % MSE 

Increase Variable % MSE 
Increase 

Morning Wind Speed 
- Day 1 407 

Combined 
Cooking Exposure 
Score 

147 Indoor Heating - 
Yes 319 

Morning Wind Speed 
- Day 2 257 Wood Fuel Use 

(kg) 52 Ethnicity - Lao 87 

Morning %RH - Day 1 187 
Home Cooking 
Exposure Score - 
Morning 

48 Any Heating 31 

24-Hour KAP 
Concentration - Day 1 150 Indoor Heating 

Type - None (a) 45 Total Household 
Size 29 

48-Hour KAP 
Concentration 73 Ambient PM2.5 

Concentration 34 

Number of 
Household 
Members aged 5-
14 Years 

19 

Combined Cooking 
Exposure Score 41 Indoor Heating - 

Yes (a) 34 Ethnicity - Katang 14 

Afternoon Pressure - 
Day 1 32 Number of Pigs 

Owned 28 
Kitchen Type - 
Cooks In House 
(Elsewhere) 

13 

Afternoon Wind 
Speed - Day 1 31 

Home Cooking 
Exposure Score - 
Afternoon 

25 Number of Pigs 
Owned 8 

Morning Wind 
Direction, Blowing 
West - Day 2 

29 Combined Grilling 
Exposure Score  24 

Highest 
Education in 
Home - Lower 
Secondary 

8 

Afternoon 
Temperature - Day 2 29 Owns Radio 14 

Kitchen Type - 
Cooks In Separate 
Building 

6 

a. Perfectly correlated with each other 
 
 
Observed Day 1 and Day 2 24-hour average exposure values plotted against the values 
predicted using CV SuperLearner on the Full dataset are shown in Figure 3.5. Models 
created with either Day 1 or Day 2 measurements accurately predicted sample period means 
(p > 0.15). The model trained on Day 1 measurements produced a much stronger fit (r2 = 
0.32) than the model trained on Day 2 measurements (r2 = 0.02) or any of the models 
produced using 48-hour average exposures as the outcome of interest (highest 48-hour 
average r2 = 0.25). 
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Figure 3.5. Observed 24-hour average exposures plotted against predicted values produced with CV 
SuperLearner and the Full dataset. Individual concentrations are depicted by smaller points, and mean 
concentrations, by larger points. All data are stratified by sampling period. The coefficient of determination 
(r2) for the regression of observed values on predicted values, the p-value for a paired student’s t-test for 
significance between observed and predicted Before values (pB), and the same for After values (pA) are shown 
in the bottom right corner of each panel. 
 
 

3.4       Discussion 

KAP and exposure concentrations in the study group 
 
The personal PM2.5 exposure measurements taken in this study are, to my knowledge, the 
first in solid-fuel-using cooks in Lao PDR. Values were within the range of those 
experienced by cooks using solid fuels, globally. A recent review of the literature 
(Balakrishnan et al. 2014) estimated the mean of 24-hour average exposures for women 
cooking with solid fuels around the world at 267 µg/m3 (SD: 297 µg/m3). Another study 
modeled piecemeal estimates of exposure concentrations in Lao PDR in cooking & eating, 
heating, and illumination related indoor micro-environments (Shimada and Matsuoka 
2011). Together, the combination of the values estimated for those environments suggests 
a daily average exposure concentration of about 266.3 µg/m3 in cooking & eating micro-
environment, 151.9 µg/m3 in a heating micro-environment, and 0.9 µg/m3 in an illumination 
context. A distinction was not made between rural and urban residents. The annual average 
exposure value for women cooking with solid fuels assumed in the household air pollution 
comparative risk assessment of the Global Burden of Disease 2010 project (GBD 2010) 
(Smith et al. 2014) was 337 µg/m3 (95% CI: 238, 479). 19 These values are between 120 - 170% 
greater than the mean 48-hour exposure measurement in the present analysis of Lao 

                                                
19 The GB 2010 HAP exposure value was based on an exposure model developed for India. 



Chapter 3 – Machine-learned modeling of PM2.5 exposures in rural Lao cooks 58 

women using traditional wood cookstoves (123 µg/m3, 95% CI: 101, 145) and about 230 - 
320% greater than that of ACE-1 stove users (81 µg/m3, 95% CI: 70, 92).  
 
The lower nature of exposures experienced in Lao women may be attributed to the hybrid 
indoor-outdoor nature of cooking in the region. Dwellings and kitchens in Lao homes were 
observed to be highly ventilated relative to other areas in which the research team has 
worked. Rooms often have very large eaves, windows, and walls that do not reach the roof. 
A similar ACE-1 intervention in nearby Cambodia (Berkeley Air Monitoring Group 2015) 
conducted after the Lao study reported mean 48-hour average cook exposures that were 
even lower: 66 µg/m3 (95% CI: 52, 80) in while using traditional biomass stoves and 47 
µg/m3 (95% CI: 35, 59) while using the ACE-1 stove. 
 
The KAP measurements presented in this chapter are among the first in Southeast Asia. 
The Cambodia ACE-1 project reported mean 48-hour average KAP concentrations of 183 
µg/m3 (95% CI: 123, 243) in households cooking with traditional biomass stoves and 111 
µg/m3 (95% CI: 73, 149) after a switch to ACE-1 biomass stoves. A 2011 campaign observed 
12-hour average concentrations of particulate matter smaller than 10µm in diameter (PM10) 
in other Lao households (Viantiane and Bolikhamxay provinces) where traditional biomass 
cooking stoves were used (Morawska et al. 2011). Their measured PM10 concentrations 
averaged approximately 1200 µg/m3, or nearly three times the mean 48-hour average PM2.5 
concentrations observed during the Before period in Savannakhet (462 µg/m3, 95% CI: 318, 
606). Twenty-four (24) hour mean kitchen concentrations have been measured at 972 
µg/m3 (SD: 876 µg/m3) on average in the literature for homes cooking with solid fuels 
around the world (Balakrishnan et al. 2014). 
 
Kitchen PM2.5 concentrations measured in Lao were higher than those measured in 
Cambodia. This may be explained by seasonality. The Cambodia fieldwork was completed 
between July – August when precipitation is typically greater in the region than during the 
Lao study period (Central Intelligence Agency 2017). Increased rainfall may result in more 
atmospheric particle clearing. Meteorological conditions were not discussed in the 
Cambodia report (Berkeley Air Monitoring Group 2015). Differences in household 
characteristics between the two sites may also have played a role. It is possible that cultural 
and household characteristics, including food type and traditional stove type, are 
systematically different between the Cambodia study site and Savannakhet in a way that 
appreciably affects indoor PM2.5 concentrations. Such a theory is supported by the 2011 Lao 
study, which found significant differences in household PM10 concentrations by various 
household characteristics and by district.  
 
PM10 concentrations measured in the 2011 study (12-hour means in Bolikhamxay and 
Vientiane provinces of 1183 µg/m3 and 1275 µg/m3) were considerably higher than the PM2.5 
concentrations presented in this chapter. As discussed above, it is possible that systematic 
differences in household characteristics or cultural practices existed between the study 
locations in a way that affected concentrations. The 2011 PM10 study also only measured 12-
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hours at a time, incorporating all or most major cooking events and excluding nighttime 
concentrations, which likely produced an overestimation of the daily average. But the 
difference between PM10 and PM2.5 should not be ignored. By definition, the mass 
concentration of PM10 can never be lower than that of PM2.5 in the same parcel of air; PM2.5 
is, by definition, a subset of PM10. For example, a study of outdoor air quality in Bhaktapur, 
Nepal (Pokhrel et al. 2015) – a region where much cooking with biomass fuels occurs – 
measured the ratio of PM2.5/PM10 at 0.55. Application of this ratio to the PM10 
measurements would produce an expected PM2.5 concentration of roughly 660 µg/m3, 
which is closer to the 48-hour mean measured in Savannakhet kitchens.  

Lessons from the ACE-1 intervention data 
 
KAP concentrations and personal exposures fell significantly between the Before and After 
periods (p < 0.001). By itself and from a health risk standpoint, this would suggest the ACE-
1 stove intervention was a success. However, this analysis did not hypothesize the causal 
link between ACE-1 use and exposure reduction. Causal inference methods identify and 
explain the factors that directly alter an outcome (e.g. an X unit increase in variable A 
causes a Y unit increase in outcome B), but they do not necessarily produce models with 
high predictive power (Shmueli 2010). Alternatively, predictive methods are intended to 
estimate new or future values of an outcome from a set of covariates with the greatest 
possible accuracy and precision, but do not necessarily elucidate direct relationships 
between an outcome and covariates. A third method type, descriptive statistics, identifies 
associations observed between covariates and an outcome (e.g. patients diagnosed with 
concussion are on average Z% wealthier than the general population 20). Those 
relationships may be neither causal (e.g. wealth did not cause the concussion; taking hard 
hits as a well-paid professional football player did) nor helpful in predicting the outcome. 
The analysis presented in this chapter focuses on predictive and descriptive methods, and 
so the discussion will not explore causal links in depth. However, analyses performed on 
several questionnaire and environmental indicators during exploration of predictive 
models pose compelling questions for future work. 
 
Important weather indicators changed between the Before and After periods. Mean 
temperature was lower during the Before period (p <0.05) while mean wind speed was 
greater (p <0.05). Such changes may decrease physical comfort and encourage increased 
heating, thus increasing smoke exposures among participants. In fact, the use of heating 
during sampling was significantly higher (p < 0.01) during the Before period at 74% of 
participants, compared to 27% in the After period.21 The effect may be to amplify the 
observed Before vs. After decrease in exposures. Future work should explore study designs 
that allow for delineation of the exposure effects of seasonality. Both meteorological and 
cultural events should be considered – e.g. harvest periods, changes in ingredients and thus 

                                                
20 This example and allusions to it throughout the text are merely hypothetical, and may not be true. 
21 The most commonly reported source of heat was from a fire or cooking stove. 
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cooking types, religious holidays, and celebrations with pyrotechnic or major cooking 
components. 
 
The amount of self-reported fuel used and time spent in the kitchen dropped significantly 
between the Before and After periods (p < 0.0001 and p < 0.05, respectively). Time spent 
cooking at home and, specifically, grilling at home also fell significantly (p < 0.01 and p < 
0.05, respectively). These reductions may have been initiated by an improved cooking 
efficiency afforded by the new stove, and, thus, may be the link that proves ACE-1-based 
reductions in exposures. However, such relationships should be carefully examined in 
studies wishing to demonstrate causality. The exposure scores developed during this study 
may prove useful for understanding how new stoves impact exposure-related cooking 
behavior, but suffer from the same causal inference issues as fuel use, cooking time, and 
time spent in the kitchen, and so should be used with caution. 
 
Error in the data may have been incurred during questionnaire administration. While 
reviewing audio recordings, it became clear that some interviewers inferred specific 
information like time activity patterns or occupation from more general participant 
responses such as a broad description of daily life. Interviewers were trained in survey 
administration procedures prior to the study, and questionnaire phrasing was carefully 
considered for contextual relevance. However, not all queries could be made perfectly 
appropriate— like questions about time spent, when locals do not have much experience 
applying Western notions of minutes and hours— and subtle differences may have existed 
in how each interviewer perceived more complex or less-intuitive questions and responses. 
The translation process between English and Lao may have magnified the issue. Future 
studies should expend sufficient effort to ensure all questions are clear and understood to 
mean the same thing among all interviewers. In addition, such error could be reduced with 
more timely quality assurance measures such as audio review at the end of each study day 
and frequent check-ins with interviewers.  
 
The presence or absence of the household head during the interview may also have resulted 
in erroneous or biased responses. Absence of the household head is expected to affect 
responses related to issues of which the cook may not have a firm understanding – like 
finances – while their presence may influence the cook to provide answers with less candor 
or to agree with input from the household head on issues of which the head has less 
understanding. The household head was reported present during about two thirds of 
baseline questionnaires, which did not differ significantly by sample period. This was not 
tracked during post-monitoring questionnaires. One might avoid this issue by interviewing 
both the household head and cook separately when such bias is expected, though this may 
not always be culturally or ethically appropriate. In addition, recall bias may have affected 
various questionnaire responses, especially those about behavior during the multiple days 
of monitoring. More frequent survey administration or, preferably, implementation of non-
survey tools like diaries or a device like the Time Activity Monitoring System (Allen-Piccolo 
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et al. 2009) – an ultrasound-based device for measuring time spent in various micro-
environments –  may reduce recall bias in future work. 

Predicting PM2.5 exposures with traditional and new methods 
 
Models rooted in machine learning and super learning produced reliable estimates of mean 
exposures in both the Before and After sample periods. The best models calculated 
individual 48-hour PM2.5 exposures with reasonable accuracy (r2: 0.26 - 0.31), and predicted 
period-specific mean exposure values that were within 10% of and not significantly different 
from measured values. No other cross-validated prediction modeling could be found for 
HAP exposures, but at least one notable instance does appear in the HAP concentration 
literature (Balakrishnan et al. 2013): an application of 24-fold cross-validation to a model of 
24-hour KAP concentrations produced from measurements of a small number of 
household-level, DHS-type variables in 617 households from 24 villages in India. Measured 
24-hour KAP concentrations were predicted with a reliability considered modest for the 
estimation of individual exposures (r2 = 0.31) but acceptable for prediction at the population 
level. Their model or a variation thereof was ultimately employed in the GBD 2010 to 
estimate global HAP concentrations.22 
 
Under cross validation, the machine learning and super learning methods applied to larger 
covariate sets strongly outperformed the more conventional method of linear KEF-based 
exposure assessment. KEF-based predictions overestimated mean Before exposure by 60 - 
95%, and produced estimates of the After period mean that were only marginally similar to 
the measured value. This is supported by the wide variation observed in individual and 
period-aggregated KEF values. Application of super learning and machine learning did 
improve the predictive performance of KAP (a mathematical variant of KEF when used as 
the sole predictor), but did not produce results on par with the best larger datasets. 
Researchers and practitioners should approach the predictive use of KEF with caution. 
 
Poor generalizability of the bivariate relationship between indoor area concentration and 
exposure is supported by work performed elsewhere. A study of homes cooking with wood 
in Guatemala showed 48-hour average PM2.5 exposure estimates for mothers that were 
typically 70% lower than 48-hour average KAP measurements in homes cooking with open 
fires but only 35% lower in homes using chimney stoves (Northcross et al. 2010). Despite 
average exposure values that were lower than average kitchen concentrations, 33% of 
measured exposure concentrations were greater than corresponding KAP levels. Women 
cooking with solid fuels over traditional open fires in Mexico (Armendáriz-Arnez et al. 
2008) were shown to have mean 24-hour average PM2.5 exposures over 75% lower than 
mean 48-hour average KAP concentrations. This relationship changed after the 
introduction of a Patasari chimney stove. In women cooking solely with the Patasrai, this 

                                                
22 Predicted HAP concentrations were later converted to exposure estimates using a set of exposure factor 
ratios. 
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difference dropped to about 70%; in women cooking with a Patsari who also maintained 
an open fire outside, it dropped to about 55%; and in women cooking with a Patsari who 
also maintained an open fire in the kitchen it dropped to about 40%. A study of cookstove 
users in rural China (Baumgartner et al. 2011) demonstrated a significant relationship 
between individual 24-hour kitchen concentrations and exposures in adults, but found no 
such connection in children and did not test predictive performance from a cross-validated 
standpoint. 
 
The relative performance of the models examined in this analysis provides insight into 
which types of covariates may be of most predictive utility. Models trained on outdoor 
environmental data and KAP-related data were most accurate. Variable impact analysis 
identified morning wind speed, morning relative humidity, and KAP concentrations as 
producing the greatest impacts on model error. However, a direct causal link between these 
variables and exposures should not be automatically assumed.  
 
For example, it is unclear what direct impact wind speed might have on exposures. To 
better understand this relationship, a simple linear model of 48-hour average exposure was 
produced for each sampling period. Each model included only two covariates: Day 1 
morning wind speed and Day 2 morning wind speed. Holding Day 2 morning wind speed 
constant, a significant (p < 0.01) positive relationship between Day 1 morning wind speed 
and 48 hour average exposure was observed during the After sampling period. No other 
non-intercept covariates were significant within the two models. While not an 
overwhelming amount of evidence, the outcome of this process makes for a good thought 
exercise. The significant, positive relationship does not support the most intuitive potential 
cause: wind-related HAP dilution. Perhaps this particular relationship is mediated instead 
by physical comfort—as Day 1 morning wind speeds increase, comfort decreases, and Day 
1 heating-related activities become more prominent. This seems counter-intuitive, because 
survey queries about heating were included in several models and their impact ratings did 
not exceed that of Day 1 morning wind speed. However, wind speeds could, theoretically, 
be a better marker of heating-related increases in exposures than a direct survey query if 
the language of that query does not address more nuanced behaviors, such as standing 
closer to otherwise-normal cooking fires, or if the survey tool is prone to error. 
 
The relationship could be even more complex. For example, suppose that, all other factors 
constant, exposure-relevant heating behavior is considerably different when a person 
receives much of their heating from their cooking appliance and primarily cooks with the 
ostensibly more-efficient and more-contained ACE-1 stove than with an open fire. Because 
wind speeds were different (p < 0.05) between the Before period – when no homes cooked 
with an ACE-1 stove – and the After period – when all homes reportedly cooked with the 
ACE-1 stove – some of the influence of the wind speed variable may actually come from a 
stove-specific heating effect. Causal analyses could help to elucidate such complexities. 
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Questionnaire data demonstrated some predictive power, but were outperformed by other 
information. This suggests that accurate prediction of group mean exposures in the context 
of rural solid-fuel cooking might not require lengthy surveys. However, there is reason to 
believe that certain survey-related queries would be of use when predicting exposures in 
populations with household characteristics and behavior patterns that are more 
heterogeneous than those of the Lao study population. Previous studies have been able to 
explain a good deal of statistical variation in 24-hour and 8-hour average HAP exposures 
with data ascertained or ascertainable by questionnaire (Baumgartner et al. 2011; Clark et 
al. 2010), but few, if any, have investigated cross-validated prediction. Exploration of 
predictive modeling in larger, more variable populations is needed to better understand 
this phenomenon. 
 
LSIS data produced the least well-performing super learning models. Poor performance of 
the LSIS data model in this specific study population may stem from the fact that the LSIS 
dataset does not include variables with much differentiation between seasons or cooking 
appliance. This theory was explored by training models on LSIS data combined with wood 
fuel usage (kg), heating, exposure scores, and outdoor environmental information, which 
all varied to some extent by sample period and stove type. Each new variable or variable set 
improved LSIS model performance considerably. Globally administered DHS surveys like 
LSIS may be improved by adding a small number of questions about stove type, fuel usage, 
and heating behaviors. It is also likely that DHS indicators provide more predictive benefit 
in regions in which household characteristics, like kitchen and stove type, are more variable 
or seasonal effects, like heating, are less variable. In support of the usefulness of DHS 
indicators, the GBD 2010 model was able to reliably predict KAP concentrations entirely 
from DHS-like data (Balakrishnan et al. 2013). 
 
The single best candidate learner on the Full dataset was random forest, with an average 
root mean squared error (RMSE) of 40.0 µg/m3, followed by cForest at 43.2 µg/m3. 
Generalized linear modeling with regularization performed about as well as cForest with 
an RMSE of 44.6 µg/m3. Researchers interested in HAP exposure prediction should explore 
decision trees and regression with regularization, and may benefit from the use of a super 
learner, which, in this analysis, did not improve upon the best individual candidate learner 
(RMSE: 40.1 µg/m3). The neural network package did not outperform most other candidates 
(RMSE: 48.1 µg/m3). However, this package used only a single hidden layer. Future analyses 
should investigate the utility of more complex neural networks.  

3.5       Conclusion 
 
PM2.5 exposures and KAP concentrations in rural Lao PDR were within the range of those 
expected among women cooking with solid fuels worldwide. Both exposures and KAP were 
lower after transition from an open fire to the ACE-1 stove. Causal factors were not assessed, 
but descriptive and predictive analyses did highlight the importance of understanding the 
effects of multiple factors, like meteorology, in any such monitoring and evaluation project. 
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This analysis also demonstrated that exposures can be accurately predicted at the 
population level using a diverse set of indicators and advanced statistical techniques.  
 
Future investigators may wish to consider the following when designing studies to model 
exposure, especially within the context of a Before and After paradigm: 

• KAP and KEF alone should not be relied upon as unbiased predictors of exposure. 
• Care should be taken to reduce the impact of exposure-related non-intervention 

covariates. For example, seasonality. Measured outdoor temperature – a covariate 
with a potential impact on exposure due to its relation with heating behavior, 
among other things– was significantly different between the Before and After 
periods in this study. This confounds the observable relationship between the 
ACE-1 intervention and exposures. In some instances, confounders may be 
measured and adjusted for or employed as predictors. 

• Covariates with high “importance” in HAP exposure prediction models are not 
necessarily causal factors for the associated changes in exposure. Instead, they may 
be good proxies of one or more unmeasured causal factors. 

• Ample effort should be expended to ensure questionnaires are culturally 
appropriate and that participants are able to answer candidly. Structured, timely, 
and repeated quality control measures – like reviewing participant responses with 
interviewers and discussing unanticipated points of confusion at the end of each 
sample day or week – should be used during periods of questionnaire 
administration. 

 
The prediction methods explored in this chapter have several strengths relative to current 
models, like the GBD 2010:  

• Exposure, the metric of interest to health investigators, was directly predicted. 
• Machine learning allowed for the exploration of hidden, more complex, and 

certain non-linear relationships precluded by the common linear and log-linear 
regression approaches. 

• Super learning leveraged ensemble methods to improve predictive power. 
• The exploration of datasets with dozens to hundreds of covariates allowed for a 

broad investigation of best-case prediction power, and demonstrated the relatively 
poor performance of relying solely on traditional KEF or even more-advanced 
KAP-only proxies. 

• Despite the inclusion of more covariates than samples, cross-validation methods 
limited error from over fitting. 

 
The limitations of this work highlight areas where researchers might advance the field 
substantially: 

• A sample size of 60 exposure measurements from a single district in Lao PDR is 
unlikely to provide the heterogeneity required to produce inferences or models 
with wide external validity. 
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• Causal links were not actively explored, and so little insight was provided into 
factors that may be targeted to reduce exposures. This can be addressed by field 
work explicitly structured for explanatory modeling or the implementation of 
methods designed to extract causal inference from observational data (Shmueli 
2010). 

• Collection of the number of survey indicators and environmental measurements 
used in this chapter can be resource intensive. Approaches focused on more 
targeted variable sets employing, where appropriate, lessons learned in this 
chapter may produce models that are more manageable in the context of resource 
limitations and less onerous for researchers and participants alike. 

• The impact of compliance on prediction power was not analyzed. Future work 
should assess compliance, perhaps through the use of accelerometers on 
monitors. This will also help investigators better understand how their measured 
exposures relate to true exposures.  

• Comprehensive longitudinal measurements of both predictors and exposures 
were not collected in each sampling period. Expanded collection and more in-
depth analysis of repeated or long-term measurements would better capture 
between and within-individual variability. This has been shown to considerably 
improve the reliability of predictions of HAP-related exposures (McCracken et al. 
2009). 

 
The monitoring devices used can have a major impact on cost, comfort, and sample size. 

• Gravimetric monitors are increasingly becoming smaller, quieter, longer-lasting, 
and more integrated. This may have the effect of increasing compliance and 
reducing error from human handling. Academics and practitioners should stay 
informed as devices like the Enhanced Children’s MicroPEM (Chartier 2015) and 
Ultrasonic Personal Aerosol Sampler (Volckens et al. 2017) receive field validation.  

• In general, filter media are ill-suited for the rugged environments that typify high-
KAP settings. Filter media are also expensive—about $10 per sample after analysis. 
Use of data from media-free continuous monitors may reduce cost, complexity, 
and human-related error.23 Media aside, gravimetric monitors are also more 
expensive than many continuous monitors now on the market.24  

• Continuous monitors provide the added benefit of finer temporal resolution, 
which can increase data and allow more-acute exposure events to be modeled. 
They also require calibration, typically via co-location with a gold-standard 
monitor. However, a small number of gold standard samples can be used to 
calibrate many continuous monitors.  

• The use of continuous monitors stands to have two major and opposite impacts on 
precision: increased sample sizes allowed by lower costs, greater temporal 

                                                
23 If field teams are not trained properly, sample loss from human error may also be high. 
24 This may soon change. Developers claim to be able to produce the Ultrasonic Personal Aerosol Sampler for 
$150 in components. It is unclear how much it will ultimately cost. 
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resolution, and, possibly, decreased sample loss will help improve precision, while 
the indirect nature of continuous measurement principles (i.e. that which requires 
calibration) and signal noise present in many of the lower-cost devices will reduce 
it. These factors should be accounted for in sample size calculations. 
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Chapter 4 

Bridging a dumb gap: smart smoke detectors as a tool for consumer and 
regulatory PM2.5 monitoring 

4.1 Introduction 
 
Chapter 1 describes a vast health threat from PM2.5. Despite the magnitude and urgency of 
this threat, current resources available for monitoring actual human PM2.5 exposures are 
limited. As discussed in Chapter 3, reliable gold standard PM2.5 monitors are expensive – 
often priced in the thousands to tens of thousands of dollars (Lewis and Edwards 2016). 
High costs present a barrier for scientists and regulators wishing to assess exposures across 
any considerable spatial and temporal scale, and prevent access to the public.  Large 
monitoring networks and related data repositories exist, but the most common and 
accessible of these are regulatory networks comprised of expensive specialized devices that 
require frequent maintenance by skilled professionals and provide data at a rate of one 
measurement per day or hour (Sheppard et al. 2012). While reliable at the point of 
measurement, sites tend to be sparsely distributed, limiting spatial resolution. These 
limitations hinder efforts to assess human exposures, as PM2.5 concentrations are highly 
heterogeneous in both space and time (Bell et al. 2011; Chow et al. 2002; Kloog et al. 2011; 
Levy et al. 2014). This is especially true in developing nation settings where monitoring 
networks are often poorly developed or non-existent. 
 
As the name implies, regulatory networks are managed by government agencies rather than 
consumers or grass roots organizations, and so have been designed to respond to the needs 
of central government (Sheppard et al. 2012). They focus on outdoor environments despite 
estimates that people spend upwards of 90% of their time indoors (Jenkins et al. 1992), and 
employ criteria for monitor placement that can give preference based on proximity to 
sources rather than only the representativeness of population exposures. The US EPA State 
and Local Ambient Monitoring Station network is a good example. Among the world’s most 
comprehensive, the SLAMS network operates with approximately 2,100 outdoor sites across 
the country (United States Environmental Protection Agency 2016). About 1,000 of these 
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sites measure PM2.5 and just over 800 do so for the explicit purpose of population 
exposure— or about one site per every 350,000 Americans. Reliance 
upon networks like this engenders exposure classification error that hinders risk science 
and mitigation efforts (Jerrett et al. 2005b; Lioy and Smith 2013; Sheppard et al. 2012). 
 
Methods have been developed to geospatially resolve concentrations between central 
monitors, including land use regression and kriging. These methods can reduce error, but 
have considerable flaws. Kriging-based interpolation fails to account for sources in between 
monitors like commercial zones or highways. LUR is more accurate at assessing relative 
concentration differences between sites, but generally provides low temporal resolution 
(Kloog et al. 2011).  Overall, kriging and LUR methods have been shown to produce bias 
when used to estimate exposures for the calculation of health effects, most notably in acute 
outcomes (Alexeeff et al. 2015; Hoek et al. 2008). Estimates can be further honed using 
remote-sensing satellite techniques to resolve complex surface patterns in air pollution and 
provide insight in regions that lack monitoring networks (van Donkelaar et al. 2014). This 
is particularly useful in lower resource settings that lack robust monitoring networks. 
However, the spatial resolution of current satellite tools is functionally limited to 1km x 
1km, which can overlook exposure-relevant hyperlocal variations in outdoor 
concentrations like those near roadways, construction, and industry (Jerrett et al. 2005a).  
 
Perhaps most importantly, the aforementioned methods are limited to outdoor ambient 
assessments, which may be unrepresentative or differentially representative of indoor 
concentrations depending upon a number of local factors (e.g., building characteristics, 
heating and ventilation culture, PM2.5 size distribution, etc.) (Hänninen et al. 2011; Meier et 
al. 2015). This is particularly relevant in regions with significant indoor sources (Sagar et al. 
2016) and, conversely, in regions with high outdoor concentrations and low building 
infiltration rates (Zhou et al. 2016). For example, recent literature indicates that the 
government in Ulaanbaatar operates a network of four fixed-site tapered oscillating 
microbalance PM2.5 monitors (Allen et al. 2013).25 It does not appear that any routine 
population-wide indoor monitoring is performed. Yet, as shown in Chapter 2, the heavy 
use of coal heating in winter produces outdoor concentrations that may substantially differ 
from indoor concentrations. The 2014 average wintertime indoor concentration estimated 
(in Chapter 2) in non-smoking apartments with clean (at the point of use) indoor heating 
sources illustrates this point, calculated at about half the value of population-weighted 
average outdoor wintertime concentrations.26 
 
No routine PM2.5 monitoring appears to occur in Lao PDR (Asian Development Bank and 
Clean Air Initiative for Asian Cities Center 2006; Morawska et al. 2011)—which itself is 
                                                
25 Though the situation is changing rapidly. 
26 This is a function of the assumption that indoor air quality in apartments using heating sources that are 
clean at the point of use are moderated by infiltration of outdoor pollution at a ratio of 0.53 (outdoors to 
indoors) in winter. This value was informed by relevant literature, and is discussed in more detail in Chapter 
2 and Appendix B.  
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illustrative of the disproportionate measurement need in developing nations.  Were an 
outdoor-oriented network like those in the US or Ulaanbaatar to be constructed in the 
region in which the measurements in Chapter 3 were conducted, indoor concentrations 
would likely be underestimated by about an order of magnitude, and exposures, by about 
50 - 100% or more.27 
 
The inadequacies of current large scale PM2.5 monitoring can be tied to the expense and 
complexity of available air quality monitors. Proof of this can be found in Appendix D of 
Code of Federal Regulations 40 Part 58 (US National Archives and Records Administration 
2016), the federal code that governs regulatory air quality monitoring networks in the US—
which are among the most comprehensive in the world. This code specifically 
acknowledges that the “optimum size of a particular network involves trade-offs among 
data needs and available resources.” The high costs of reliable PM2.5 monitors also affect 
the ability of the public to individually control and act upon air quality data. Citizens 
wishing to understand air pollution information must rely on the transparency, publicity, 
and timeliness of monitoring agencies like the US EPA, which has no specific reporting 
timelines (US National Archives and Records Administration 2016) and suffers from the 
flaws discussed above.  
 
Low-cost sensors designed specifically to monitor and communicate both outdoor and 
indoor air quality are becoming increasingly popular. However, availability to consumers 
is limited to various crowd-funding campaigns, internet promotions, and regional grass-
roots monitoring campaigns, (e.g., Air Visual 2016; Purple Air 2016; Speck 2017). Major 
penetration into neighborhoods, homes, or work places has not yet been shown. Perhaps 
more importantly, low-cost sensors run a wide gamut of quality with limited laboratory or 
field validation (Lewis and Edwards 2016). Hobbyists and researchers have, increasingly, 
been assembling and testing their own (Austin et al. 2015; Holstius et al. 2014; Kelly et al. 
2017), but this requires a great deal of skill and knowledge not accessible to most.  

The case for smart smoke detector based PM2.5 monitoring 
 
Overall, current PM2.5 monitoring networks are inadequate for the provision of actionable, 
spatially and temporally resolved exposure assessments, especially in developing countries. 
An emerging category of home electronics, smart smoke detectors (SSD), may offer a 
partial solution to the inadequacies of current PM2.5 monitoring networks. “Smart” devices 
use processing and network capabilities to send and receive data between each other and 
the cloud. SSD simply perform the function of a standard smoke detector with added 
“smart” capabilities. Standard optical smoke detectors use an optical sensor to measure the 
amount of light scattered when a beam is sent through a chamber of air. When increased 
scattering levels indicate a high level of smoke, an alarm sounds. While smoke detectors 
employ this mechanism in a binary system, the scattering itself varies with the amount of 

                                                
27 Based on Chapter 3 ambient, KAP, and exposure measurements. 
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PM2.5 of a given suspended aerosol (Hinds 1999). Past researchers have capitalized on this 
relationship to modify commercially available smoke detectors to cheaply and reliably 
measure PM2.5 concentrations (Edwards et al. 2006; Litton et al. 2004). Modified smoke 
detectors have since been used in a wide range of published studies around the world 
(Balakrishnan et al. 2013; Chowdhury et al. 2013; Northcross et al. 2012). To date and to my 
knowledge little, if any, 28 work has been published characterizing the stock onboard 
sensors of smart smoke detectors to do the same. SSD stand to offer the same sensing 
functionality alongside processing and internet capabilities without the need to make 
costly, tedious hardware modifications to the commercially available unit. Onboard 
processors could facilitate data cleaning and calibration while internet access could allow 
data to be uploaded to offsite databases, remotely calibrated, and shared. Internet 
connectivity could potentially be used to upload PM monitoring abilities to any SSD 
already in place, as well. Importantly, SSD exist primarily indoors – where people spend 
most of their time. 
 
This paper discusses an innovative concept for bringing affordable, reliable PM2.5 
measurement to the public while filling gaps in government-operated monitoring 
networks: smart smoke detectors as smart PM2.5 sensors.  

A brief primer on smoke detector prevalence 
 
The primary purpose of smoke detectors – detecting fires – has already proved highly 
beneficial in the public health context. A study of fatal fires in the US found that smoke 
detectors produced a 61% reduction in related mortality risk (Marshall et al. 1998). Indeed, 
because of this and their now-low costs, smoke detectors are nearly ubiquitous in many 
nations. For example, in a recent survey of US homes (Ballesteros and Kresnow 2007) about 
95% reported having at least one smoke detector – about 93% of those reported at least one 
operational smoke detector per floor. The prevalence of SSD is much lower, but still 
considerable in the context of the size and density of typical PM2.5 monitoring networks. 
According to a recent analysis, about 6% of Americans (20 million people) own a smart 
smoke/carbon monoxide detector (The Harris Poll 2015a) and 27% of US internet users are 
interested in purchasing one (The Harris Poll 2015b). If SSD can be remotely programmed 
to reliably measure PM2.5, a large number of potential monitors exist in-situ. It should be 
noted that the distribution of smart smoke detectors may be clustered around areas where 
wealthier, early technology adopters reside. While not necessarily representative of an 
entire population, SSD coverage on the order of millions of people is a great advantage. 
 

                                                
28 Some smart smoke detector companies, like Birdi (Birdi 2016), reportedly have or are experimenting with 
particle monitoring, but it is unclear whether any employ the original smoke detector sensor itself. At least 
one Nest Labs, Inc. patent (Mittleman et al. 2014) even suggests the potential use of an additional light source 
as a particle counter or indicator of general air quality. PM2.5 characterization literature of these devices is 
difficult to come by.  
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Smoke detector prevalence is lower in developing nations, particularly where major indoor 
sources like cookstoves, which could cause daily false alarms, are common. Smart smoke 
detectors, which are a relatively new technology and substantially more expensive than 
standard smoke detectors, are likely to be even less common. Still, the low price point of 
smart smoke detectors may justify construction of a network of SSD in these regions, 
depending on electricity and internet access. The combination of fire risk reduction and air 
pollution monitoring may even allow such a network to pay for itself in countries with high 
annual fire and pollution related losses. A study conducted in the US in the 1990’s (Haddix 
et al. 2001) found that every $1 USD spent on a smoke detector giveaway program provided 
over $28 USD in health-based savings. The smoke detectors used in that study cost (~ $50) 
approximately half of the off-the-shelf price of popular smart smoke detectors today, and 
so the ratio of cost to fire-risk-benefits of a similar smart smoke detector intervention may 
be higher. However, added air PM2.5 monitoring capabilities may provide financial value in 
the form of reductions in other risks. 

Laboratory characterization and proof of concept 
 
As previously discussed, common smoke detectors modified to log real-time data from 
their internal sensors have been shown to track strongly with research-grade continuous 
particulate monitors in laboratory and field tests (r2 > 0.99) (Chowdhury et al. 2007; 
Edwards et al. 2006; Litton et al. 2004). The addition of “smart” abilities to air quality 
monitors has been shown advantageous in the processing and transmission of real-time 
data (Al-Ali et al. 2010; Ding and Song 2016; Postolache et al. 2009; Ray 2016; Soldo et al. 
2012). This Chapter explores the intersection of these concepts through the laboratory 
examination of a well-known smart smoke detector: the Nest Protect 2nd Gen Smoke + 
Carbon Monoxide Alarm (Part No. S3000BWES, Nest Labs, Palo Alto, CA, USA). This device 
can be purchased for about $100. Proof of concept for an SSD-based PM2.5 monitor is sought 
by reverse engineering and characterizing the device’s key hardware. The ability of the 
onboard smoke detection sensor to provide reliable measurements of PM2.5 across a range 
of concentrations relevant to both developed and developing nation contexts is explored 
through laboratory analysis of the sensor’s response to dynamic fluctuations in PM2.5 
concentrations alongside an industry standard monitor.  

4.2 Methods 

Reverse engineering the smart smoke detector 
 
This section describes selected aspects and results of the Nest Protect reverse engineering 
process. No guidance in this process was received from the manufacturer, and units were 
purchased off the shelf. Speakers were disconnected to avoid alarm sounds. Plastic housing 
was removed to reveal the optical light scatter chamber, circuitry, and various electronic 
components (Figure 4.1). Components were indexed and researched via manufacturer 
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specification sheets where possible. The two light emitting diodes (LED) of the optical 
chamber (infrared [IR] and blue; Figure 4.1) were connected to a LeCroy DDA-125 
oscilloscope (Teledyne LeCroy, Inc., Chestnut Ridge, NY, USA), and LED firing rates and 
voltages were characterized. Component leads were explored with the oscilloscope until 
those adequate for receiving output from the single photodiode sensor of the optical 
chamber, which intercepts light from both the IR and blue LEDs, were identified. 
 
 

 
Figure 4.1.  (Left) Nest protect without back-plate. Protective shields have been removed from the lower part 
of the device, revealing several onboard components. (Bottom Right) Light scattering chamber (right) with 
lid (left) removed. Scattering angles of both LEDs were measured at 45 degrees forward. 
 
 
Thresholds of 1.3V and 3.1V were measured for the IR and blue LED, respectively. Each LED 
was positioned to allow forward scattering at about 45 degrees into the photodiode. Exact 
wavelengths of the LEDs were not measured. LED are controlled by unique pins on the a 
Freescale MKL16Z128VLH4 microcontroller (Freescale Semiconductor, Inc., Austin, TX, 
USA), which is a 48 MHz ARM Cortex-M0+ core microcontroller with 128 KB flash memory 
and 16 KB static random-access memory (SRAM) (Freescale Semiconductor 2014).  
 
Raw output from the optical sensor is passed through an operational amplifier 
(STMicroelectronics, Geneva, Switzerland, part no. TSV634A) which amplifies the signal 
and adjusts it for a sloping baseline before passing it on to another component. The ADC 
for converting optical sensor output into digital signal for processing and use was not 
identified. However, at least two onboard chips, the MKL16Z128VLH4 and 
MK24FN1M0VLL12 (Freescale), have at least one 16-bit successive approximation register 
ADC (Freescale Semiconductor 2014; NXP Semiconductors 2016), and so one of these chips 
may serve this purpose. 
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LEDs fire at a rate of 0.1 Hz for the IR LED and approximately 0.005 Hz for the blue LED. 
When in an alarm state (i.e. high smoke concentrations), firing rate increases to 0.5 Hz for 
both LEDs. The IR LED fires at 250 mA for approximately 300 µs (Figure 4.2). The blue LED 
fires at 68 mA between 5ms to 6ms after the beginning of the IR LED pulse, and lasts 
approximately 300 µs. Firing rate was the only observed difference in LED function between 
alarm and non-alarm states. 
 

 
Figure 4.2. Oscilloscope trace. The yellow line (bottom) represents the signal of the IR LED firing 
lead. Magenta (middle) represents optical sensor output as received from Pin 7 (baseline-slope 
corrected) of the operational amplifier. Periwinkle (top) represents unadjusted optical sensor 
output. X-axis ticks = 1 ms. Y-axis ticks = 200 mV. 
 
 
Multiple microprocessors and memory chips were identified. Of particular note is the 
Freescale MK24FN1M0VLL12, a 32-bit 120 MHz ARM cortex M4 microcontroller with 1 MB 
program flash memory and 256 KB of embedded SRAM (NXP Semiconductors 2016). In 
addition, a Micron N25Q 25Q128A 11E40 memory chip (Micron Technology, Inc., Boise, ID, 
USA) that appeared to be connected with the MK24FN1M0Vll12 microcontroller provides 
128 Mb of 108 MHz serial NOR flash memory (Micron Technologies 2014, 2015). Nest 
product literatures confirms temperature and humidity sensing capabilities (Nest Labs 
2015b, 2015a). 
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Multiple communication microchips and antennae were confirmed. A Dialog DA14580 
(Dialog Semiconductor PLC, Reading, UK) and adjacent antenna provides low-power 
Bluetooth V4.2 (Dialog Semiconductor 2016) for mid-range communication. An Ember 
EM3581 ZigBee system on a chip (Silicon Laboratories, Inc., Sunnyvale, CA, USA) provides 
a 2.4 GHz IEEE 802.15.4-2003 transceiver & lower MAC for low-speed area communication 
and mesh networking capability. Standard Wi-Fi capabilities are confirmed in product 
literature (Nest Labs 2015b). 

Co-opting the smart smoke detector optical light scatter chamber  
 
This analysis explored the PM2.5 concentration response of the Nest Protect. Factory set 
LED pulses were not modified. No application program interface (API) exists for accessing 
raw optical sensor data. Instead, sensor data were retrieved by connecting relevant leads 
from the IR LED, blue LED, and the photo-receptor operational amplifier to a custom 
circuit board interfaced with a Raspberry Pi (Raspberry Pi 3 model B, Raspberry Pi 
Foundation, Cambridge, UK running Ubuntu 16.04.1) through its general-purpose 
input/output (GPIO) pins. Three such “Nest Devices” were developed for testing. 
Specifically, the LED leads were connected in such a way that a brief digital “high” signal 
would be passed to one Raspberry Pi GPIO pin whenever the IR LED fired, and another 
GPIO pin when the blue LED fired. The photodiode sensor output lead was buffered with 
a 1x gain and connected by shielded wiring to a 13-bit differential analog-to-digital 
converter (Microchip MCP3304, Microchip Technology Inc., Chandler, Arizona, USA) to 
convert the raw sensor output voltage into a digital signal readable by the Raspberry Pi. A 
13-bit ADC was chosen to imitate the minimum expected resolution of the Nest Protect’s 
onboard components as inferred during teardown. The ADC differential input was 
connected via the wire shielding and post-signal amplifier to a metal ground on the Nest 
Protect. This allowed for removal of electrical interference experienced within this system 
(from sensor, through amplifier, to ADC). Rather than expending the time and effort to 
connect to the onboard temperature and humidity sensor, an SHT15 temperature and 
relative humidity (RH) sensor (version 3, Sensirion AG, Staefa, Switzerland) was affixed to 
each Nest Device and interfaced with the Raspberry Pi. 
 
A custom program was written in C (Bell Labs, Murray Hill, NJ, USA) to read and log optical 
sensor data. Specifically, five rapid, successive, differential readings at 12-bit resolution 
were taken by the ADC from the optical sensor output when either of the LEDs fired. 
Readings were averaged, labeled according to LED type and datetime, and logged. Timing 
of the programmatic samples in relation to the signal was confirmed by oscilloscope trace 
using a Tektronix THS730A (Tektronix, Inc., Wilsonville, OR, USA). Five-point averages of 
the digital ADC output were translated back into voltage using Equation 4.1.  
 
    𝑉𝑜𝑙𝑡𝑎𝑔𝑒 = ]^DE_`D	]9a	b_c=D

d_e	]9a	b_c=D
∙ 𝑉EDf        (4.1) 
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Vref is the reference voltage of 3.3V, and the Max ADC Value is calculated as 2(ADC resolution in 

bits) – 1, which in this case is 212 -1 or 4095 bits. Under normal conditions, the C program 
checked for an IR and blue LED fire every 9 and 180 seconds, respectively. If an LED fire 
was registered, the ADC would take a reading and the sample would be logged.  As 
discovered during teardown, LED firing rates differ between alarm and non-alarm states. 
The transition between the non-alarm and alarm states appeared to be controlled by the 
photodiode signal level, with higher signals eliciting an alarm state. The thresholds at 
which this transition occurred were roughly approximated experimentally for the three 
devices using wood-stick match smoke – about 0.48 V for IR signals and about 0.40 V for 
blue signals. Changes in LED firing rates were accounted for programmatically by 
mimicking the Nest Protect’s internal threshold system: if an ADC sample taken under 
standard program conditions exceeded the approximated thresholds, the C program would 
begin checking for fires from each LED at 1 Hz until values again dropped below the 
threshold. To ensure minimal interference from Linux operating system processes – which 
can supersede and thus lag the timing of user programs– the C program was run with 
maximum system priority. 
 
A program was written in Python (version 2.7.12, Python Software Foundation, Delaware, 
USA) to read and log datetime, temperature and RH readings from the SHT15 sensor, and 
temperature readings from the Raspberry Pi onboard system temperature sensor at a rate 
of 0.1 Hz. Upon program startup, this 0.1 Hz cycle was set to be triggered by the first 
subsequent IR LED firing in order to approximately sync environmental condition readings 
with optical sensor readings. To ensure minimal timing interference from Linux operating 
system processes but also avoid interfering with the more time sensitive optical sensor 
program, the Python program was run with the second highest system priority. 

Laboratory validation 
 
The response characteristics of optical sensor systems can vary with changes in 
temperature (Edwards et al. 2006). Nest Devices were tested for the influence of 
temperature on LED and optical sensor operation. A temperature test was performed by 
placing devices inside a sealed 38 L (liter) bin at effectively zero-levels of PM2.5, placing that 
bin inside of an incubator, and varying incubator temperatures between 0 and 48 °C 
(measured with the aforementioned SHT15 sensors) over the course of about 330 minutes. 
29 PM2.5 was removed from the bin by pump and HEPA filter at 5 L/minute for about 35 
minutes. Negligibly low PM2.5 concentrations were confirmed by connecting the bin outlet 
to a DustTrak for 10 minutes after the initial zeroing process (non-gravimetrically adjusted 
mean: 0.000 µg/m3).  

                                                
29 Characterization of a sensor’s temperature-response by placing it in a near-particle-free environment under 
varying temperatures is a method commonly applied in the Household Energy, Climate, and Health (HECH) 
research group at the University of California, Berkeley—e.g. Edwards et al. 2006 – and Berkeley Air 
Monitoring Group. 
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Nest Device sensitivities to variations in PM2.5 concentration were tested in comparison to 
two DustTraks (DustTrak II, model 8530, TSI, Inc., Shoreview, MN, USA). A 55-gallon 
stainless steel barrel was used as a concentration chamber. 30 The chamber was outfitted 
with a sealable lid with mixing fan. Nest Devices were placed inside of the chamber, while 
DustTraks were connected by tubing to individual sampling outlets (Figure 4.3). Particulate 
matter was produced in a fume hood using small wood pieces and a combustion source, 
and pulled into the chamber. Generally, testing involved bringing the PM2.5 concentration 
of the chamber from 0 µg/m3 to a predetermined level, sealing the chamber, allowing the 
concentration to settle for between 30-45 minutes, venting the chamber for approximately 
30 minutes with HEPA filtered inlet air, and then repeating with a new PM2.5 concentration. 
Testing target concentrations included approximately 10 mg/m3, 1.5 mg/m3, 0.75 mg/m3, 
0.075 mg/3, and 0.015 mg/m3. Particulate production primarily consisted of wooden doll-
house shingles 31 combusted with an electric soldering iron, but did briefly incorporate a 
kerosene lighter and small wooden sticks during the highest concentration test. An hour 
of < 0.001 µg/m3 readings was taken after the last test concentration.  
 
 
 

 
 
Figure 4.3. Calibration chamber used for PM2.5 testing (left), and placement of Nest Devices as tested (right). 
Books are used as ballast to ensure a tight seal on the lid. 
 

                                                
30 Variations of the chamber test method are commonly applied in the HECH research group – e.g.  
Chowdhury et al. 2007 – and Berkeley Air Monitoring Group. 
31 Chosen for their uniformity. 
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For testing Nest Device PM2.5 sensitivities, DustTraks were set at a Log Interval of 1 second. 
Each DustTrak was loaded with an inline 37 mm Teflon filter with support ring (Pall 
Corporation, Port Washington NY, USA), zero-calibrated according to manufacturer 
recommendations, flow calibrated to 3.0 LPM (liters per minute; 0.050 liters per second 
[LPS]) using a Bios Defender 510 volumetric flow meter (Mesa Labs, Bulter, NJ, USA), and 
then fitted with a DustTrak 2.5 µm-cut impactor. Filters were weighed on a Mettler Toledo 
XP2U balance (Mettler Toledo, Columbus, OH, USA) with 0.0001 mg precision. Filters were 
conditioned for at least 48 hours in a temperature and RH controlled room prior to 
weighing, and stored at -20 °C between sampling and post-sample weighing. Notably, the 
chamber mixing fan was not turned until about 2 minutes into testing, and DustTraks were 
not fitted with impactors for approximately the first four minutes of testing, or about 1% of 
total test time. These first minutes of sampling were at near-zero PM concentrations, and 
so are not expected to affect overall device response metrics or the size distribution of 
sampled aerosols. Due to the late addition of impactors, pre-sample zero and flow 
calibrations were performed without them. Post-sample flow testing with impactors 
attached produced a flow of 3.0 LPM on each device and so no major impact on flow rate 
is suspected. 

Signal calibration 
 
The relationship between the PM2.5 mass concentrations in the air and the amount of light 
scattered in the optical chamber is linear for a given aerosol (Hinds 1999). However, this 
relationship depends upon characteristics of the aerosol of interest – like distributions of 
size, shape, and refractive index. For this reason, sensing methods require calibration 
against a gold standard (Wallace et al. 2011). Individual calibration factors for each 
DustTrak were produced by comparison with in-line gravimetric measurements using 
Equation 4.2. 
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Where ki is the gravimetric calibration factor for DustTrak “i”, t0,i is the beginning of the 
sampling period for the sample taken with DustTrak “i", tend, i is the end of the sampling 
period for DustTrak “i”, PMt,i is the continuous DustTrak reading (mg/m3) at time “t” for 
DustTrak “i”, “Mi” is the mass (mg) accrued on the inline filter of DustTrak “i”, and “Fi” is 
the flow rate (LPS) for DustTrak “i” which is assumed constant over the measurement 
period at 0.050 LPS. 
 
Nest Device voltage readings were cleaned, temperature-adjusted, and calibrated to the 
mass-adjusted DustTrak values. A small number of low-value outliers were discovered in 
raw Nest Device output. They may have been due to slight lags in the highly time-sensitive 
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ADC-read program caused by other top-priority operating system processes occurring 
simultaneously. This could have caused the ADC to read partially or wholly from a signal 
period unrelated to LED firings. A conservative decision rule for excluding outliers was set 
at a difference between a reading and its previous reading of > 5 times the preceding 6-
point rolling standard deviation, calculated as the standard deviation of the 6 previous 
readings.  
 
Outlier-adjusted voltages from Nest Devices during temperature tests were linearly 
regressed against temperature readings to produce device and LED specific temperature 
calibrations. Where significant, these calibrations were applied to outlier-adjusted PM2.5 
test output prior to analysis. Zero-degree LOESS was used to smooth temperature-adjusted 
LED signals as a function of time. Spans of 0.0025 and 0.01 were used for IR LED LOESS 
and blue LED LOESS, respectively. PM2.5 concentration responses for Nest Devices were 
obtained from a linear model produced by regressing average gravimetrically adjusted 
DustTrak readings against modeling smoothed voltage output. 
 
Noise in optical scattering measurements (voltage) can be introduced by Rayleigh 
scattering by gas molecules and instrument electronics (Friedlander 2000). In the case of 
the Nest Devices, noise is likely governed primarily by electronics. For a given aerosol, 
voltage noise can be converted to mass concentration-equivalent noise by applying the 
aforementioned calibration techniques to the signal prior to calculating noise. Signal noise 
was calculated during the post-PM2.5 testing zero period and defined as one standard 
deviation (SD) in the LOESS-smoothed voltage. This definition (1 SD) was chosen for its 
use in previous low-cost sensor analyses (Litton et al. 2004).  Mass concentration-
equivalent noise was calculated as one standard deviation in the LOESS-smoothed, 
gravimetrically corrected signal during the same period. The lower limit of detection (LOD) 
was calculated as 3 times the noise during the same zero period, a method used in other 
low-cost sensor analyses (Austin et al. 2015; Wang et al. 2015) and similar to generally 
popular methods (Specker 1968; Wallace et al. 2011). 

4.3      Results 

Laboratory validation: temperature test  
 
Strong and significant temperature responses were observed for the IR LED response in all 
Nest Devices (Table 4.1, Figure 4.4). Only one Nest Device, “Epsilon”, exhibited a significant 
blue LED response (p < 0.05). 
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Table 4.1. Regression of Outlier-Adjusted Raw Nest Device Response against Temperature 
During the Temperature Calibration Procedure 

Device LED Type Adj-R2 Intercept (V) Slope (V / °C) 1 Model p-value 

Alpha IR 0.932 0.467 -5.7 E-04 < 2.2E-16 

Beta IR 0.947 0.483 -7.1 E-04 < 2.2E-16 

Epsilon IR 0.932 0.444 -4.3 E-04 < 2.2E-16 

Alpha Blue 0.001 0.367 7.8 E-06 0.3057 

Beta Blue -0.003 0.373 6.2 E-06 0.4093 

Epsilon Blue 0.457 0.370 5.9 E-05 3.50 E-14 

1. Reported to 2 figures, but applied during temperature calibration with 4 figures. 
 
 

 
Figure 4.4. Measured temperature responses for each Nest Device, by LED type. 

Laboratory validation: PM2.5 testing  
 
Comparison of gravimetric measurements against integrated DustTrak output produced 
calibration coefficients of 4.90 and 4.30 for each of the two monitors (i.e. the two DustTraks 
estimated concentrations at about 490% and 430% of actual levels). Regression of averaged, 
gravimetrically adjusted DustTrak output against LOESS-smoothed Nest Device output 
demonstrated correlations > 0.99 for all devices and both LED types (Table 4.2). Real-time 
gravimetrically adjusted DustTrak and LOESS-smoothed, temperature & PM2.5-adjusted 
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Nest Device output are shown for the PM2.5 testing in Figures 4.5 and 4.6. Noise and LOD 
values are provided in Table 4.3. Chamber temperatures ranged from 20 – 23 °C. RH was 
maintained between 53 - 60%. 
 

Table 4.2. Regression of DustTrak II Measurements (Two-Device Average) against LOESS-
Smoothed Nest Device Output  

Device LED Type Adj-R2 Intercept (V) Slope (V per mg/m3) Model p-value 
Alpha IR 0.997 -0.467 0.021 < 2.2E-16 
Beta IR 0.997 -0.482 0.016 < 2.2E-16 
Epsilon IR 0.998 0.442 0.024 < 2.2E-16 
Alpha Blue 0.991 0.372 0.013 < 2.2E-16 
Beta Blue 0.997 0.378 0.020 < 2.2E-16 
Epsilon Blue 0.992 0.372 0.016 < 2.2E-16 
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Figure 4.5. Overlaid Nest Protect IR (LOESS-smoothed, PM2.5-adjusted) and DustTrak Output, by 
concentration range, during PM2.5 testing. High corresponds to a concentration test range between about 15 
– 5 mg/m3. Med-High corresponds to a test range of about 2.5 – 1.5 mg/m3. Med corresponds to a test range 
of about 1.5 – 0.5 mg/m3. Low corresponds to a test range of about 0.4 – 0 mg/m3 
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Figure 4.6. Pairwise correlations between gravimetrically adjusted DustTrak and LOESS-smoothed, 
gravimetrically adjusted Nest Device output during PM2.5 testing. Output is averaged by minute to allow 
comparison between Nest Devices, because individual samples did not exactly overlap at a 1-second temporal 
resolution. 
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Table 4.3. Noise and Limit of Detection Values, by Device and LED 
Type, Determined During Zero Period 

Device LED 
Noise 
(+/- V) 

Noise  
( +/- mg/m3) 

LOD  
(mg/m3) 

alpha IR 4.8 E-04 0.024 0.071 

alpha Blue 1.7 E-04 0.013 0.040 

beta IR 4.9 E-04 0.030 0.091 

beta Blue 1.4 E-04 0.007 0.022 

epsilon IR 5.2 E-04 0.021 0.064 

epsilon Blue 3.9 E-04 0.024 0.071 
 
 

4.4 Discussion 
 
PM2.5 exposure is an important determinant of disease. Recent estimates indicate that 87 
% of the global population experiences annual average PM2.5 concentrations above the 
World Health Organization’s guideline (0.010 mg/m3) (Brauer et al. 2016).  In 2015, an 
estimated 7.2 million people died from exposures to ambient and solid-fuel related PM2.5 

(Institute for Health Metrics & Evaluation 2017), representing over 10% of all annual deaths. 
Yet PM2.5 monitoring networks are inadequate for the provision of actionable, spatially and 
temporally resolved assessments, especially in developing countries. An increasingly 
popular and affordable household product, the smart smoke detector, may provide a means 
of buttressing such networks. This chapter explores key principles required for such a 
network to function with a laboratory analysis of a specific smart smoke detector: the Nest 
Protect  
 
Others have examined the benefits of smart air quality monitoring networks. The use of 
wireless networks – like cellular and mesh networks— to manage outdoor air quality 
sensors and collect and broadcast real-time data to a wide variety of communities through 
web interfaces like Google Maps has been explored in several projects, e.g. Al-Ali et al. 2010 
and Murty et al. 2008. Methods have been presented for remotely collecting and 
transmitting outdoor and indoor pollutant data over Wi-Fi in a way that allows for 
resource-intensive calibration procedures to be performed at a central processing hub 
(Postolache et al. 2009). More recent efforts have successfully demonstrated that the 
Internet of Things (IoT) can be used to manage, transmit, store, analyze, and visualize air 
quality data remotely and in real-time via the cloud (Ray 2016). These studies have all 
focused on professional or custom-designed low-cost air pollution sensors, but it is 
probable that the same functions could be achieved with the stock sensors aboard SSD, 
which hold the unique advantage of an established and growing presence in residential and 
commercial buildings.  
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This chapter provides tangible evidence of the plausibility of this concept. Teardown 
confirmed the presence of hardware capable of reading, calibrating, storing, and 
communicating PM2.5 concentrations. Each Nest Protect comes equipped with at least two 
microchips capable of converting raw analog sensor data into digital signal interpretable 
by digital microprocessors. Multiple onboard microchips meet specifications required to 
process raw signal and apply corrective algorithms. Onboard flash storage may allow data 
logging, and wireless radios indicate the potential for real-time communication of 
concentrations or raw voltages and remote software modification.  
 
Among the most interesting components of the Nest Protect is the dual-LED optical 
chamber, with light sources in both the IR and blue wavelength ranges. The optical 
chambers of typical smoke detectors and low-cost PM sensors are limited to a single LED, 
often in the IR spectrum around 0.900 µm (Litton 2002). IR scatters efficiently for moderate 
to high concentrations and relatively large aerosols, but becomes decreasingly efficient as 
aerosol diameters drop below the wavelength of the emitted IR light (Friedlander 2000). 
For particles << 1 µm, blue light is scattered preferentially to red—in fact, this is why the 
sky is blue! As a result, low-cost IR-based PM sensors are relatively insensitive to low 
concentrations of particles smaller than about 0.5 µm (Litton et al. 2004). This is of 
particular relevance to PM2.5 sensing. Vehicle exhaust aerosols have been measured with 
mass median diameter of 0.15 µm and volumetric distributions between 0.01 and 0.1 µm 
(Flagan and Seinfeld 2012); emissions from household combustion of cooking fuels like 
firewood, coal, LPG, dung cake, and kerosene have been measured with geometric mean 
diameters between 0.048 and 0.152 µm (Tiwari et al. 2014); and a study of urban aerosols in 
a major German city found that the majority of ambient PM2.5 fell between 0.03 – 0.3 µm 
(Birmili et al. 2010) with similar trends observed in other Western cities (Van Dingenen et 
al. 2004). The inclusion of an additional, blue LED (about 0.475 µm in wavelength) in the 
Nest Protect optical chamber may provide an increased sensitivity at low concentrations, 
especially of smaller particles, compared to other low-cost sensors. This should be 
examined further. 
 
In addition to better mass concentration measurements, the dual-LED architecture of the 
Nest Protect optical chamber could allow for the determination of particle size and surface 
area characteristics — capabilities currently unattainable in low-cost sensors. An 
examination of low-cost sensors demonstrated that simultaneous output from two sensing 
mechanisms with different characteristic relationships between output and aerosol size 
distribution can be evaluated against each other to calculate average particle size, total 
particle surface area, and specific surface area (Litton et al. 2004). This analysis looked 
specifically at a device with both an IR optical scattering chamber and an ionization 
chamber (note: recent regulations and restrictions on radioactive materials, among other 
issues, have made ionization chambers prohibitively difficult to work with for the purposes 
of low-cost sensing). While that analysis looked at two signals produced using distinctly 
different mechanisms (light scattering vs. ion absorption), it is possible that the same 
theory could apply to a dual-LED method like the one employed by the Nest Protect, 
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provided the relationship between particle size and mass concentration response differs 
between the two wavelengths. Moreover, their study suggests that concurrently measured 
output from two optical scatter signals of different calibration characteristics might allow 
(when used in comparison to each other) improved resolution of the optical scattering 
sensitivities of both signals. Further research should examine the potential for such 
improved mass concentration estimation and the calculation of average particle size and 
surface area properties in dual-LED devices. 
 
Laboratory testing confirmed that Nest Protect optical sensors can be calibrated and used 
to produce highly reliable estimates of PM2.5 mass concentration in relation to each other 
and to a more-expensive industry standard device (r2 > 0.99) at up to 15 mg/m3. This 
relationship is in or above the range of laboratory analyses of low-cost PM sensors. A recent 
comparison of the Shinyei PPD42NS (PPD), Samyoung DSM501A (DSM), and Sharp 
GP2Y1010AU0F (GPY) with a TSI SidePak AM510 produced linear correlations between r2 = 
0.88 and r2 = 0.99 when tested in the presence of 0 to 1 mg/m3 of sub-micron combustion 
aerosols (Wang et al. 2015). An examination of the PPD alongside a TSI Aerosol Particle 
Sizer produced correlations around r2 = 0.99 at 0.001 to 0.050 mg/m3 of polystyrene 
particles between 1 -  3 µm in diameter (Austin et al. 2015). Analyses of the UC Berkeley 
Particle and Temperature Sensor (UCB PATS) –  a modified standard smoke detector that 
employed both optical and ionization sensing chambers— showed correlations with 
DustTrak and gravimetric measurements typically of r2 > 0.99 when tested in the presence 
of oleic acid and wood smoke aerosols at concentration ranges similar to that of the present 
examination (Chowdhury et al. 2007; Edwards et al. 2006).   
 
The Nest Device setup as tested incurred considerable noise, more so for the IR LED type 
than the blue LED type. The importance of this noise cannot be overstated, and the entirety 
of the Discussion should be considered with it in mind. As a result, LOD for wood smoke 
ranged from 0.022 to 0.091 mg/m3. This is within the range of similar smoke-detector based 
devices tested on similar aerosols and designed to operate across a wide concentration 
range. In particular, the UCB-PATS has demonstrated a limit of detection between 0.030 
to 0.050 mg/m3 for wood smoke (Chowdhury et al. 2007). This range is reasonable for the 
measurement of high-concentration settings like kitchens of biomass users in developing 
countries or highly polluted cities like Ulaanbaatar, but is not adequate for the 
measurement of ambient concentrations in rural regions or US cities where concentrations 
are often around the US EPA annual average primary standard of 0.012 mg/m3 (12 µg/m3). 
The LOD of recently developed low-cost sensors specifically tailored to ambient air quality 
monitoring are lower. The PPD has demonstrated an LOD as low as 0.001 mg/m3 (Austin 
et al. 2015; Holstius et al. 2014). In another test (Wang et al. 2015), the LOD of the PPD, 
DSM, and GP2Y were estimated at 0.006, 0.011, and 0.026 mg/m3, respectively. A custom 
low-cost sensor, the Plantower PMS 3003, currently deployed in communities throughout 
the US has shown LOD between 0.001 and 0.011 mg/m3 (Kelly et al. 2017).  
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One reason for the decreased LOD of other low-cost sensors is that many have been 
modified to provide higher sensitivity at lower concentrations, often by modifying the 
brightness of the chamber light source (e.g. LED), focusing or collecting optics, or adding 
air flow. However, this process increases scattering at both low and high concentrations, 
and thus comes at the cost of a lower maximum detection limit. Austin et al. (2015), for 
example, saw this limit in the PPD at around 0.9 mg/m3, 1.2 mg/m3, and 2.7 mg/m3 for 1 
µm, 2 µm, and 3 µm polystyrene particles, respectively. The upper detection limit of the 
UCB-PATS optical chamber, which is more similar to the Nest Device setup, has been 
reported at about 25 mg/m3 (Berkeley Air Monitoring Group 2011). The present experiments 
did not approach sensor saturation for the Nest Devices even as concentrations reached 15 
mg/m3. In addition, the measured LED pulse voltages (0.4 V) were approximately 10 times 
lower than the Nest Protect power supply (4.5V). It is possible that simple software 
modifications (e.g. increased LED pulse voltages) could reduce noise and improve LOD. 
Future studies should experiment with such modifications and explore the true peak 
capacities of the chamber LEDs and photo sensor. 
 

4.5      Conclusions  
 
This analysis demonstrates the efficacy of using a popular SSD to produce reliable estimates 
of PM2.5 mass concentration, and finds that current SSD might be made to do so with minor 
hardware modifications or software updates alone. However, there is considerable work to 
be done before this can be achieved. This study required co-opting and processing raw 
analog data with an off-board component system (the Raspberry Pi setup), because public 
access to raw sensor data via API was not supported. More work is needed to understand 
how the component systems as they exist in commercially available SSD can be used 
together or modified to effectively measure PM2.5 without non-OEM (original equipment 
manufacturer) hardware add-ons and without voiding the smoke detection functionality 
that current owners rely on. In order to facilitate this, manufacturers should make raw 
sensor data accessible to the public,32 collaborate with the research community, and 
perform (or publish any past) in-house analyses (if existing).  
 
Deriving reliable and actionable PM2.5 data from any light scattering sensor currently 
requires calibration against aerosol characteristics like morphology and refractive index. 
Without such corrective action, SSD output is virtually useless for the purposes of pollution 
inference. This study calibrated Nest Device output for laboratory testing by co-location 
with professional monitors, an option infeasible for large networks or individual 
consumers. More work is needed to develop frameworks for calibrating SSD against 
common and locally relevant aerosol mixtures, and, especially, to produce methods that 
remove human interaction from the calibration process. Moreover, producers of 

                                                
32 Public availability of all data (not just a user’s own data) will, of course, produce privacy concerns which 
should be explored. 
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professional and low-cost optical PM2.5 sensors typically distribute units as calibrated to 
one aerosol type. For example, the DustTrak II is shipped with calibration against Arizona 
road dust (TSI Inc 2013), and only cigarette smoke particle count calibration data are 
provided by the PPD manufacturer’s datasheet (Gao et al. 2015). This system is inadequate 
for real world situations in which aerosol compositions are heterogeneous and frequently 
changing; measurements taken from monitors calibrated in such a way are prone to error 
and bias. SSD-based monitors and the optical sensor field, in general, would benefit from 
the development of calibration frameworks that update continuously based on patterns in 
local aerosol sources like traffic, construction, and industry and, when sensors are utilized 
indoors, building characteristics and resident behavior (e.g. smoking and cooking). 
Particularly technology-savvy manufacturers like Nest – an Alphabet, Inc. subsidiary – 
could apply their expertise and corporate connections in cloud communication, big data 
manipulation, and mathematics to develop and provide such a service in tandem with their 
SSD. 
 
In this manner, applications could be developed to intercept, calibrate, and store SSD data 
as well as communicate them to consumers and related data repositories. Data repositories 
could provide critical evidence for epidemiology, exposure assessment, and related 
regulation. Government bodies, like the EPA and National Institute of Environmental 
Health Sciences, whose missions support enhanced environmental and health research 
should encourage manufacturers to support such efforts, providing funding and research 
support as necessary. Investigators should also explore the effects of traditional smoke 
detector placement – often on or near the ceiling (National Fire Protection Association 
2016; Nest Labs 2017) and throughout multiple rooms with varying sources– on the 
relationship between calibrated SSD readings and the exposures actually experienced by a 
building’s inhabitants.  This is discussed in more detail in Chapter 5. 
 
Grassroots and community monitoring groups interested in understanding hyper-local 
exposures or nearby sources should implore SSD companies to explore these possibilities 
and support such efforts by offering test locations, focus groups, and other resources. 
Manufacturers may, themselves, find the prospect lucrative for use in pollution-conscious 
regions or as a medical adjuvant for vulnerable populations. Future work should explore 
the market potential for SSD-based PM2.5 monitors.   
 
SSD are poised to revolutionize the way we measure and respond to PM2.5. This efficacy 
study is among the first steps of many toward an innovative means of increasing the public 
accessibility and utility of PM2.5 data, improving monitor coverage, and re-orienting the 
focus of large-scale networks from the outdoors to more exposure-relevant environments. 
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Chapter 5 

Conclusions 

5.1 Toward health-oriented pollution metrics 
 
The previous chapters cover a range of topics in PM2.5. Each is connected by the common 
theme of advancing the use of personal exposure as a metric of PM2.5-related risk. 
Historically, regulators and advocacy groups have tended to look at air pollution through 
an environmental lens (Sagar et al. 2016). Monitoring networks, regulations, 
epidemiological analyses, and interventions have focused on environmental 
concentrations (e.g. outdoor ambient concentrations at US EPA SLAMS or indoor HAP 
concentrations) rather than actual exposures. Exposure, however, is considerably more 
closely related to biological dose than environmental indicators or other simplistic proxies 
and, as such, is considerably more relevant to health outcomes. While non-exposure 
methods have proved important first steps in understanding general trends and exposure-
related determinants of disease, more comprehensive techniques are both needed and 
increasingly being made more feasible through advances in data availability, computing 
power, computer science, statistics, and low-cost sensors. 
 
The work presented in Chapter 2 employs a combination of methods to estimate changes 
in population-wide PM2.5 exposures and calculate related disease burden under several real-
world policy scenarios in one of the world’s most polluted capital cities. A more 
comprehensive understanding of the local population-wide health impacts of PM2.5 
pollution is achieved by combining micro-environmental concentrations with estimates of 
time activity and information on second hand tobacco smoke. Preliminary results of this 
analysis have already received attention from Mongolian media and high-ranking 
politicians. 
 
Chapter 3 analyses leverage advanced statistical techniques and some of the first personal 
PM2.5 exposure measurements in rural Lao to demonstrate that population exposures 
within the context of solid fuel use can be reliably predicted from environmental and survey 
indicators. Such indicators are often collected but used as simplistic or roughly adjusted 
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measures of PM2.5-related risk. Chapter 3 demonstrates that, given the proper inputs, cross-
validated machine learned ensemble models may be able to account for the complex 
interactions between various easier-to-collect (than actual exposure measurements) 
indicators that more directly govern population-wide PM2.5 exposures. This may facilitate 
a shift in the focus of relevant policies, interventions, and project evaluations away from 
simplistic applications of such indicators toward explicit exposure estimates without much 
added effort or resource outlay.  
 
Chapter 4 proposes the use of a popular internet-connected consumer device, the smart 
smoke detector, for measuring PM2.5 concentrations indoors in real-time. A network of 
PM2.5-measurement-enabled smart smoke detectors could be leveraged to help fill the gaps 
in existing environmental monitoring networks, provide consumers with actionable hyper-
local pollution information, and cost-effectively aid in solving both current and unexpected 
PM2.5 issues (e.g. unknown hotspots or sources or unanticipated events like wildfires and 
certain industrial releases (Kumar et al. 2015)) – a priority for the field of exposure science 
(Lioy and Smith 2013). In general, widespread implementation of PM2.5 measurement 
features in smart smoke detectors would improve the availability of measurements in a 
micro-environment in which people spend a majority of their time (and is, thereby, 
imperative to the reconstruction of personal exposures) but that is poorly covered by 
monitoring networks and scientific studies. 

5.2  Research needs and future work 
 
This section identifies key areas for improvement of the work presented and opportunities 
for future research. 

Improve Ulaanbaatar PM2.5 exposure models with more data, less-simplistic assumptions 
 
The exposure assessment produced in Chapter 2 provides Ulaanbaatar’s policy makers with 
a more holistic understanding of local PM2.5-related risk by combining time-weighted 
estimates of outdoor and indoor concentrations over a set of alternative emissions policy 
pathways. However, very little actual PM2.5 exposure data have been collected in the city; 
more primary personal measurements are needed across a wide range of locally relevant 
environments. A campaign measuring winter and summer time exposures in children, 
adults, and elderly residents living in gers, houses, and apartments using solid fuels, gas, 
and centralized steam would go a long way toward validating the Chapter 2 results and 
informing future population-wide risk analyses.  
 
Chapter 2 also includes relatively simplistic assumptions about PM2.5 concentrations in 
non-residential environments. Researchers should explore the detailed impacts of non-
residential conditions on exposures in the UB population, especially those of occupational 
environments which may include construction sites, tanneries, factories, mines, and heavy 
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traffic. State and local governmental organizations should facilitate exposure assessment 
efforts in the region by funding extensive occupational monitoring campaigns (for PM2.5 
and other more-toxic compounds expected in such work environments) and expanding 
outdoor air quality monitoring networks. Such efforts must be accompanied by data 
transparency and availability schemes that allow researchers to download or otherwise 
receive current and historical data in a form suitable for analysis (e.g. spreadsheet or 
comma-separated value file).33 Investigators interested in improving on the UB population 
exposure estimates presented in Chapter 2 may wish to explore the impacts of updated and 
non-static tobacco smoking rates (if projecting future impacts); include more sophisticated 
modeling of background disease rates (if projecting future impacts); and gather infiltration 
rate information on a wide variety of local building types. 

Bring prediction modeling to the public: an online resource for PM2.5 exposure prediction 
 
Chapter 3 demonstrates that total exposure estimates can be modeled from other, often 
easier-to-collect, sources of data. The models produced in Chapter 3 are not highly 
transportable to other settings, but the underlying framework may be. If used properly, the 
machine learning ensemble prediction framework has the potential to alleviate the 
financial, administrative, and participation-related burdens of PM2.5 exposure research. 
Yet, the applied use of machine learning and ensemble packages like those used in Chapter 
3 typically requires some understanding of software coding and data science. This remains 
a major hurdle to the widespread tailoring of the proposed prediction framework to 
individual projects, but cloud computing may allow a practical workaround. 
 
Shiny (Chang et al. 2017) is a software package for R (R Core Team 2016) used to develop 
interactive online applications. Shiny could, in theory, be employed to design and host a 
user-friendly web application that automatically trains a machine-learned ensemble model 
from an inputted training dataset (a dataset with all variables of interest collected on a 
subset of the study population with exposure measurements). The application would 
output training statistics – like root mean squared error and the r2 of observed vs. predicted 
values – and produce estimates of population-wide exposures from a larger prediction 
dataset (a dataset of predictor variables from either the entire study population or a subset 
representative thereof, but without exposure measurement data). To maximize the range 
of possible users, the framework should also handle various data pre-processing 

                                                
33 Recent developments in UB air quality data availability include the National Agency of Meteorology and 
Environmental Monitoring “Air Quality” webpage (National Agency of Meteorology and Environmental 
Monitoring 2017) that presents air quality information from monitors located throughout the city, a related 
mobile application (iOS or Android), and a data aggregation website called OpenAQ (OpenAQ 2017). The 
first two resources appear to be targeted towards the general public, while the latter is designed to provide 
downloadable datasets to more-data-savvy individuals. OpenAQ indexes data from the National Agency of 
Meteorology and Environmental Monitoring website (National Agency of Meteorology and Environmental 
Monitoring 2017) and from a website maintained by the US Diplomatic Post (AirNow Department of State 
2017). 
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procedures. For example, missing values for independent variables should be automatically 
imputed and factor variables should be converted to indicator variables (perhaps with user 
input). 
 
Although certain parameters would be required – like participant ID and, in the training 
set, time-standardized exposure measurements – the web-based exposure prediction 
framework would allow the user to collect and input as few or as many variables as they 
wish to collect. Based in part on the random forest analysis in Chapter 3, several parameters 
would be recommended, including HAP measurements, meteorological indicators, fuel 
and stove types, and survey responses regarding locally relevant cooking behaviors. These 
recommendations would evolve over time as the web application received and processed 
more data from a wider range of contexts. 
 
Processing times are not expected to be unreasonably long. For example, the training 
process for the Full model from Chapter 3 (60 observations across about 300 total variables) 
performed on a laptop 34 lasted on the order of dozens of seconds; shiny currently allows 
application hosting on servers like Amazon Web Services that can be configured with 
substantially more computing resources. Application of this framework to particularly 
large datasets may increase processing time, but, because the bulk of the work is performed 
in the cloud, the user does not need to be engaged throughout the entire procedure and so 
user fatigue should still be minimal. This (processing performed in the cloud) also relaxes 
the user burden of maintaining high-powered computers for otherwise resource-intensive 
modeling— the user need only have enough computing and web power to access the web 
application, upload their datasets, and download the outputs. 
 
The proposed framework draws inspiration in part from two existing shiny-based web 
tools: the highly successful Household Air Pollution Intervention Tool (HAPIT) (Pillarisetti 
et al. 2016; Pillarisetti and Smith 2017) and a drag-drop-and-click implementation of 
SuperLearner (Polley et al. 2016) produced by Professor Alan Hubbard at the University of 
California, Berkeley (Hubbard 2016). HAPIT is supported by the Global Alliance for Clean 
Cookstoves and is designed for comparing the relative health benefits of residential-fuel-
based PM2.5 exposure-reduction projects. The Berkeley SuperLearner web application 
allows users to upload a dataset in comma-separated value format, enter (text) or select 
(drop-down menu) independent and dependent variables, define the number of cross-
validation splits, and, at the click of a button, conduct an automated cross-validated 
SuperLearner procedure. Missing values (non-outcome) are imputed and variables with 
non-numeric types are handled according to SuperLearner and general statistics 
conventions with only minor input required from the user. Summary statistics and a graph 
are produced. 

                                                
34 Apple MacBook Pro, 15-inch, late 2016, quad-core 2.6 GHz Intel Core i7, 16 GB 2133 MHz LPDDR3 
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Expand data inputs to improve the transferability of predictive PM2.5 exposure models  
 
With expanded data inputs, it may be possible to develop a set of models – not just a 
framework – that is generalizable across all manner of settings. The use of machine learning 
to predict large-scale outdoor PM2.5 concentrations has been demonstrated with success 
(Beckerman et al. 2013; Gupta and Christopher 2009; Hu et al. 2017; Lary et al. 2014; Li et al. 
2017; Liu et al. 2016; Niu et al. 2017; Reid et al. 2015, 2016; Zou et al. 2015), however a search 
of PubMed, 35 which only returned manuscripts focusing on environmental concentrations, 
suggests that not much work has been done using machine learning to predict large-scale 
total PM2.5 exposures. More research is needed on this topic. 
 
Future exploration of a generalizable machine learning model for predicting total PM2.5 
exposure should start at the level of population-wide exposures— the results of the Chapter 
3 analyses indicate that low-bias models may be easier to achieve than high-precision 
models. To adequately demonstrate the external validity of this approach, such work 
should attempt to include as much data from as heterogeneous of a study population as 
possible. Regions with high diversity in meteorological conditions, cultural characteristics, 
and emissions sources like China and India are ideal for a proof-of-concept approach.  
 
Exposure prediction models would benefit from including the types of data used in effective 
machine-learned environmental PM2.5 concentration prediction, which include 
meteorological variables, satellite imagery (aerosol optical depth), and land use 
characteristics. Investigators should explore the utility of more individual-level parameters, 
like time activity and location – perhaps derived from mobile devices (de Nazelle et al. 2013) 
– or mobile phone imagery and thermometer data, which have been shown useful for 
predicting outdoor concentrations (Liu et al. 2016). DHS-type survey indicators did not 
prove to be highly useful predictors of PM2.5 exposure in the Chapter 3 analyses, but it is 
likely that this is a context-specific phenomenon. Researchers should examine the 
predictive utility of indicators from common questionnaires like censuses or the DHS. In 
more technologically advanced regions, smart appliance information like electricity usage 
(e.g. as an indicator of air conditioning use or time spent in a specific indoor location) may 
add power to prediction models. As suggested in Chapter 4, smart home devices may 
eventually allow measurement of indoor pollution data, which surely would provide 
considerable utility to an exposure prediction model. 

Validate and calibrate smart smoke detectors to monitor exposure-relevant PM2.5 in-field 
 
The reverse engineering and laboratory characterization of the Nest Protect in Chapter 4 
demonstrate that at least one popular smart smoke detector can be used to produce high-
quality real-time estimates of PM2.5. In theory, a network of smart smoke detectors could 
be used to sense indoor PM2.5 concentrations at scale, improving current systems for 

                                                
35 Search terms: “machine learning PM2.5” and “machine learning PM2.5 exposure”. 
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estimating human exposures at both the population and individual levels. Field trials are 
needed to validate this theory. 
 
Of particular concern is sensor calibration at scale. Optical sensors like the one in the Nest 
Protect output a voltage signal that must be translated into PM2.5 mass concentration. As 
discussed in Chapter 4, the relationship between voltage and mass concentration depends 
on many factors, including the distributions of the shape, size, and refractive index of the 
aerosols being measured. Calibration factors or algorithms estimated in a laboratory can 
be used to translate voltage to mass concentrations in the field, but because environmental 
aerosol compositions are heterogeneous across time and space static laboratory-derived 
adjustments are unreliable.  
 
An ideal calibration procedure for use at scale would respond to hyperlocal changes in 
aerosol composition in real-time. Such a framework should be explored, leveraging recent 
advancements in cloud computing – like publicly available traffic counts and readings from 
nearby regulatory monitors – and the intercommunication of smart smoke detectors within 
and between buildings. Researchers may also find ways to employ emerging mobile source 
technologies–  like the recent addition of nitric oxide (NO), nitrogen dioxide (NO2), and 
black carbon monitors to a small number of Google Street View cars (Apte et al. 2017) – or 
publicly available data therefrom in reducing error and bias in this framework. 
  
A major issue related to the in-situ conversion of a smoke detector to (or its dual use as) an 
air quality monitor is placement and how it might affect observed concentrations 
compared to concentrations actually experienced by people within that environment. 
Smoke detector placement is relatively standardized, which could allow for good 
comparability of readings between devices in separate buildings. However, convention and, 
in some cases, regulation dictate that smoke detectors be placed on or close to the ceiling 
– e.g. (National Fire Protection Association 2016; Nest Labs 2017) – which is likely to put 
the sensor outside the typical breathing zone – commonly estimated at a height of around 
1.5 m – e.g. (Balakrishnan et al. 2013; Parlar and Greim 2009). This is important because 
indoor air pollution concentrations have been shown to stratify vertically, especially when 
a major indoor combustion source is present (Johnson et al. 2011; Kandpal et al. 1995). 
Stratification may thereby result in misestimation of exposure-relevant concentrations by 
converted smoke detector readings. Such impacts should be examined across a wide range 
of building types and indoor emissions profiles. Pollution mixing within a building is also 
affected by its ventilation characteristics (Sherman and Walker 2010). Effects on the 
relationship between smoke detector readings and exposure-relevant concentrations from 
ventilation features like windows and HVAC in the context of various weather and climate 
patterns across building types and PM2.5 source profiles should also be explored. 
 
The US Fire Administration recommends that in residential settings smoke detectors be 
placed in every bedroom, outside sleeping areas, and on each level of the home (US Fire 
Adminsitration 2017). Investigators should examine the representativeness of 



Chapter 5 – Conclusions 94 

concentrations at monitor placement sites in each of these areas in relation to room-
specific point sources (e.g. stove in a kitchen) and behaviors (e.g. lying down in a bedroom) 
as they pertain to concentrations experienced by dwellers. 
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Appendix A 

List of acronyms from Chapters 1-5 and Appendix B 

 
Acronym Description 
ACE-1 Africa clean energy stove 
aDALY Averted disability-adjusted life year 
ADC Analog to digital converter 

ALRI Acute lower respiratory infection, typically referring to disease in those < 
5 years of age 

API Application program interface 
BAU Business as usual 
CHP Combined heat power plant 

CIU Clean indoor use (describing a heating source that is clean at the point of 
use) 

COPD Chronic obstructive pulmonary disease 
CV Cross-validated or cross-validation 
DALY Disability-adjusted life year 
DHS Demographic and health survey 
E East 
EPA Enivornmental Protection Agency 
GBD 2010 Study of the 2010 global burden of disease  
GHz Gigahertz 
GIS Geographic information system 
GM Geometric mean 
GPIO General purpose input/output 
GSD Geometric standard deviation 
HAP Hosuehold air pollution 
HAPIT Household air pollution intervention tool 
HECH Household energy, climate, and health research group 
HEPA High efficiency particulate air  
HOB Heat only boiler(s)  
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HVAC Heating, ventilation, and cooling 
Hz Hertz, or once per second 
ID Identification(s) 
IHD Ischemic heart disease 
IR Infrared 
JICA Japanese International Cooperation Agency 
KAP Kitchen air pollution (a form of HAP) 
KEF Kitchen exposure factor 
km Kilometer 
L Liter 
Lao PDR Lao People's Democratic Republic 
LC Lung cancer 
LED Light-emitting diode 
LOD Lower limit of detection 
LPB Low pressure boiler(s) 
LPM Liters per minute 
LPS Liters per second 
LSIS Lao social indicator survey 
LUR Land use regression 
m Meter 
mA Milliamps 
MCA Millennium Challenge Account 
MHz Megahertz 
MicroPEM Micro personal PM exposure monitor 
mm Millimeter 
MMBtu Million British thermal units 
MSE Mean squared error 
mV millivolt(s) 
N North 
NE Northeast 
NO Nitric oxide 
NO2 Nitrogen dioxide 
NW Northwest 
OEM Original equipment manufacturer 
PAF Population attributable fraction 
PATS Particle and temperature sensor 
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PM Particulate matter 
PM10 Particulate matter smaller than 10 µm in diameter 
PM2.5 Particulate matter smaller than 2.5 µm in diameter 
QA Quality assurance 
RH Relative humidity 
RMSE Root mean squared error 
SD Standard deviation 
SE Southeast 
SHS Second hand smoke 
SLAMS State and local air monitoring station(s) 
SUMS Stove use monitoring system 
SW Southwest 
UB Ulaanbaatar, the capital city of Mongolia 
UC University of California 
UCB University of California, Berkeley 
US United States 
USD United States dollar 
V Voltes 
W West 
WHO World Health Organization 
µg Microgram(s) 
µs Microsecond(s) 
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Appendix B    36 

Supplemental information for Chapter 2 

B.1 Demographic conditions 

Projecting population and household numbers 
 
Citywide estimates of population and household size were used to calculate household 
numbers and disease burdens. Population projections (total population and population < 
5 years old) for Ulaanbaatar (UB) for 2010, 2015, 2020, 2025, and 2030 were taken as the 
“medium growth” (version 1b) projections identified in the 2010 Population and Housing 
Census of Mongolia Report (National Statistics Office of Mongolia 2012). Annual 
population estimates for relevant interim years (2014-2024) were estimated by linearly 
interpolating the 5-year projections in Microsoft Excel for Mac 2011 and 2016. Detailed 
information on the spatial distribution of population and household number by household 
type was obtained from 2012 city census data (Statistics Department of Ulaanbaatar 2013).  
 
Projections were made for the number of homes by type throughout Ulaanbaatar. 
Household types most relevant to the Ulaanbaatar context were identified as gers, single 
family houses, and multi-family apartments, as described in Chapter 2. Projections for the 
number of total households in each year were unavailable, and so were estimated from 
family size and total population, assuming an average of one family per household. Family 
size was extrapolated by fitting a curve to historical trends (2000-2010) obtained from 
Mongolia’s Annual Statistical Yearbook series (Figure 1) (National Statistics Office of 

                                                
36 This appendix is a version of a supplemental text submitted for peer review as part of: “Hill, LD, Edwards, 
R, Turner, JR, Damdinsuren, Y, Olkhanud, P, Odsuren, M, Guttikunda, S, Ochir, C, Smith, K. Health 
assessment of future PM2.5 exposures from indoor, outdoor, and environmental tobacco smoke 
concentrations under alternative policy pathways in Ulaanbaatar, Mongolia. In review. 2017.” 
The title was revised during review to (at the time of dissertation filing) to: “Health assessment of future PM2.5 
exposures from indoor, outdoor, and second hand tobacco smoke concentrations under alternative policy 
pathways in Ulaanbaatar, Mongolia.” This also applies to all figures and tables therein. At the time of 
dissertation filing, a final response had not been received from reviewers. 
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Mongolia 2003, 2007, 2011). Because of Ulaanbaatar’s recent rapid rate of decrease in family 
size, a linear extrapolation resulted in unrealistically low family sizes in future years. Thus, 
total fertility rates (TFR) were used to infer a reasonable lower limit.  
 
TFR is defined by the United Nations (UN) as the average number of children a 
hypothetical cohort of women would have at the end of their reproductive period if they 
were subject during their whole lives to the fertility rates of a given period and if they were 
not subject to mortality. While modeling the UN’s 5-year TFR estimates for Mongolia 
against the 10 available years of household size data yielded no discernable relationship, we 
assumed that trends in family size would follow the national TFR. Mongolia’s TFR has 
experienced a dramatic decrease in recent decades, but is expected to level off. The UN 
suggests that Mongolia’s TFR will become stable at near-Western levels by 2030 (United 
Nations Department of Economic and Social Affairs: Population Division 2013). This 
suggests that while the estimated rate of decline in household size observed between 2000 
and 2010 was steep and linear, it is likely to level off in the near future. For this reason, a 
trigonometric curve was fit to past data that would approximate a near-term asymptotic 
approach of 2.6 persons/home, the average 2010 US household size (United States Bureau 
of the Census. 2012). Eureqa Formulize (Schmidt and Lipson 2013) was used to fit this curve. 
Household sizes for individual years during 2010-2030 were then taken from this curve with 
the assumption of one family per household (Figure 1). Citywide household number was 
estimated by dividing the expected size of Ulaanbaatar’s population in each year by the 
average household size. 

 

 
Figure 1. Trends in family size (persons per household).  
Identified by the National Statistics Office of Mongolia for 2000 – 2010, and estimated using extrapolation 
and assumptions of the Total Fertility Rate for 2011 - 2030. 
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Gers and single-family houses are typically located in regions identified by the Statistics 
Department of Ulaanbaatar as “ger areas,” while apartment households are typically in 
“apartment areas.” Projections of the proportion of Ulaanbaatar residents living in the ger 
areas were provided by the Ulaanbaatar 2020 Master Plan and Development Approaches 
for 2030 report (Tcakhiur S et al. 2013). Annual trends were linearly interpolated in 
Microsoft Excel for Mac 2011 and 2016. The proportion of all households located in ger areas 
was taken directly from the population interpolations. All other households were assumed 
in the apartment areas. Approximately 99% of households in the apartment areas in 2012 
were multi-unit apartments (Statistics Department of Ulaanbaatar 2013).  The remaining 
1% of households was classified as “luxury house” or “homeless”; their household heating 
emissions and exposures were not explicitly calculated, and were thus assigned the 
population-weighted averages of all other households. Statistics Department figures show 
that in the ger areas, families were about evenly split between gers and houses. In 2012, 
families living in gers accounted for 44.4% of ger area households, while families living in 
houses accounted for 54.4% of ger area households (Statistics Department of Ulaanbaatar 
2013).  The remaining ger area household types (~ 1%) were assigned the population-
weighted average heating emissions and exposures of all other household types. Projections 
for the proportion of ger area households as gers vs. houses were unavailable, and so the 
2012 proportion was assumed constant over time. The final projections of household 
number by type and location are shown in Figure 2. 

 

 
Figure 2. Projections of Ulaanbaatar household numbers stratified by area and home type. 
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Projecting background disease rates 
 
During analysis, a considerable discrepancy was discovered between locally identified 
death rates and nationally identified death rates. Recent estimates of Mongolia-wide 
disease-specific mortality rates (Lim et al. 2012) show values that are between 50% and 
400% higher than those identified in the data for Ulaanbaatar received from the Ministry 
of Health and Sports. Although national disease rates should not exactly mirror those of 
the capital city, they are expected to be similar. It is suspected these discrepancies arise 
from the inclusion of “garbage codes”, or improperly coded deaths, in the raw Ministry of 
Health and Sports dataset. Garbage codes are a well-known phenomenon and occur 
frequently all over the world (Lozano et al. 2012). International teams like the Institute for 
Health Metrics and Evaluation (IHME) employ rigorous statistical and diagnostic methods 
to redistribute such deaths to their probable underlying causes. This results in disease-
specific mortality estimates that more accurately represent true rates. Disease-specific data 
employed in this analysis were thus adjusted using IHME values (Lim et al. 2012), as 
discussed in greater detail below.  
 
Mortality data for the capital city were modeled through 2024 using historical data for 
2006-2012 provided by the Health Development Center of the Ministry of Health and Sports 
in conjunction with the Mongolian National University of Medical Sciences. Deaths for 
2006-2012 matching the ICD-10 codes used to calculate PM2.5-related illness in the IHME 
2010 Global Burden of Disease Study were obtained (Lozano et al. 2012)— Ischemic Heart 
Disease was defined as mortality from ICD-10 codes I20-I25; Stroke, from I63, I65 - I67 
(excluding I67.4), I69.3, I60-I62, I69.0 - I69.2, and I67.4; Lung Cancer, from C33- C34, D02.1-
D02.2, and D38.1; Chronic Obstructive Pulmonary Disease, from J40 – J44, and J47; and 
Acute Lower Respiratory Infections in children < 5 years old, from J09 – J11 , J13, J14, J12.1, J12 
(excluding J12.1), J15 – J22, J85, and P23. Linear models were chosen to produce consistent, 
parsimonious projections of total mortality in UB from each disease in each year of the 
study. Disease-specific mortality models were created in R (R Core Team 2016) and took 
the form of Equation B.1 S1, where b0,k is the y-intercept for disease “k” and b1,k is the 
regression coefficient for the effect of year ”j" on the number of deaths from disease “k”. 
The model was adjusted for the discrepancy between local and national mortality data 
using “f”, the ratio of IHME-reported national death rate to UB-specific death rate (Table 
B.1.1  ). The results of the model are shown in Table B.2. Ratios (f) were created for 2010, 
which was the only year for which both IHME and Ministry of Health and Sports estimates 
were available. Values for the 2010 UB total population and child (0-4 year) population were 
taken as the “medium growth” estimates (version 1b) from the 2010 Population and Housing 
Census of Mongolia Report (National Statistics Office of Mongolia 2012) for consistency 
with previously discussed demographic estimation methods. Adjusted estimates of 
background disease values in each year are provided in Table B.3, and adjusted disease-
specific mortality models are shown in Figure 3. This figure shows that not all mortality 
models had a significant fit, but the resulting estimates were reasonable given the low 
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sample sizes. Population was explored as a covariate, but overall did not produce a better 
set of models.  
 
                        𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑	𝑇𝑜𝑡𝑎𝑙	𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦	2,O = 𝛽v,O 	+ 	𝛽4,O ∙ 𝑌𝑒𝑎𝑟	𝑗 ∙ 𝜙O                    (B.1) 

 
Table B.1  . Rate adjustment factor (f) and background mortality rates for 2010 as tabulated for UB from 
Ministry of Health and Sports data for UB and as taken from IHME (Lim et al. 2012) national rates 

Disease UB 2010 Deaths per 
100,000  

Mongolia 2010 Deaths per 
100,000 

Ratio of National Rate 
to UB rate (f)  

Lung Cancer 12.12 18.14 1.50 
ALRI 78.22 276.82 3.54 
COPD 4.45 21.66 4.87 
Ischemic Heart 
Disease 

86.13 164.19 1.91 

Stroke 76.89 124.22 1.62 

 
Table 2. Unadjusted background disease rate projection models, by disease 

  β0 SE β1  SE p-value f 
Lung Cancer -7767 7267 3.93 3.62 0.33 1.50 
ALRI -10541 7341 5.29 3.65 0.21 3.54 
COPD -11509 3451 5.75 1.72 0.02 4.87 
Ischemic 
Heart Disease -89524 35962 45.0 17.9 0.05 1.91 

Stroke -22871 20113 11.80 10.01 0.29 1.62 

 
Table B.3. Adjusted estimates of background disease in Ulaanbaatar, 2014-2024 

  Lung Cancer ALRI (0-4 years) COPD 
Ischemic Heart 

Disease Stroke 

Year Deaths DALYs Deaths DALYs Deaths DALYs Deaths DALYs Deaths DALYs 
2014  218   5,463   371   31,760   350   13,700   1,974   43,977   1,402   32,220  
2015  224   5,610   389   33,364   378   14,796   2,060   45,890   1,421  32,659  
2016  230   5,758   408   34,967   406   15,892   2,146   47,803   1,440  33,097  
2017  236   5,905   427   36,570   434   16,987   2,232   49,716   1,459   33,536  
2018  242   6,052   446   38,173   462   18,083   2,318   51,628   1,478   33,975  
2019  248   6,200   464   39,776   490   19,179   2,404   53,541   1,497   34,414  
2020  254   6,347   483   41,379   518   20,275   2,490   55,454   1,516   34,853  
2021  260   6,494   502   42,983   546   21,370   2,575   57,367   1,536   35,291  
2022  266   6,642   520   44,586   574   22,466   2,661   59,280   1,555   35,730  
2023  272   6,789   539   46,189   602   23,562   2,747   61,193   1,574   36,169  
2024  277   6,936   558   47,792   630   24,658   2,833   63,106   1,593  36,608  
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Figure 3. Adjusted disease-specific annual background mortality data (2006-2012) and projections 
(2014-2024).  
Projection models, model fits (a = 0.05), and model 95% Confidence Intervals are shown.  

 

B.2 Indoor air quality estimates 

Indoor air quality for MCA stove users 
 
Linear models were used to estimate indoor concentrations in stove-heated homes from 
data collected as part of the impact evaluation of the Millennium Challenge Account (MCA) 
Mongolia Energy and Environment Project Energy Efficient Stove Subsidy Program 
conducted by Social Impact (SI) for the Millennium Challenge Corporation (MCC) (Greene 
et al. 2014b, 2014a, 2014c). Details of the larger study can be found in that report (Greene et 
al. 2014a). Briefly, overnight indoor PM2.5 concentrations were measured using filter-based 
techniques in gers and houses throughout UB during the winter of 2012-2013. 
Measurements were spread over three distinct winter phases representing early, mid, and 
late winter. The linear model was created in R (R Core Team 2016) and took the form of 
Equation B.2 S2, where Indoor PM2.5 is the overnight average indoor concentration of PM2.5 
(mg/m3), β0 is the intercept representing a non-smoking house with an MCA project stove 
during the first measurement phase of the emissions study, β1 is the impact of using a 
traditional stove rather than an MCA stove, β2 is the impact of the presence of a smoker in 
the home, β3 is the impact of a ger environment rather than a house, and β4 and β5 are the 
additional impacts of the measurement being taken during the second and third 
measurement phases, respectively. 
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                          Log 𝐼𝑛𝑑𝑜𝑜𝑟	𝑃𝑀5.} = 	𝛽v +	𝛽4 ∗ 𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 +	𝛽5 ∗ 

																					𝐸𝑇𝑆 +	𝛽� ∗ 	𝐺𝑒𝑟 +	𝛽� ∗ 𝑃ℎ𝑎𝑠𝑒2 +	𝛽} ∗ 𝑃ℎ𝑎𝑠𝑒3 

 
 

                                    
(B.2)

 
These variables were chosen as evidence suggests they should have a considerable impact 
on indoor concentrations at the population level (Balakrishnan et al. 2013; Chowdhury et 
al. 2013; Li et al. 2016). A log-transformation was made to indoor concentration, as required 
by the log-normal distribution of the data (Shapiro-Wilk p < 0.0001). Four data points from 
the original MCC dataset were excluded because of inconsistency between various 
household type indicators, and sixteen observations were excluded because at least one of 
the variables of interest was missing, leaving a total model sample size of 196 for the 
modeling. The results of Equation B.2 S2 are detailed in Table B.4. Average indoor 
wintertime concentrations by home, stove, and second hand tobacco smoke (SHS) as 
applied in the exposure model discussed in Chapter 2 were calculated by averaging model 
results across the three wintertime study phases. 

  
Table B.4. Household indoor log-PM2.5 concentration model 

  Estimate Std. Error p-value 
β0 -2.21 0.16 < 0.0001 
β1 (Traditional Stove) 0.057 0.090 0.53 
β2 (SHS) 0.16 0.082 0.059 
β3 (Ger Dwelling) -0.10 0.082 0.22 
β4 (Study Phase 2) 0.33 0.15 0.031 
β5 (Study Phase 3) -0.15	 0.16 0.34 
Model Adjusted R2: 0.132 Model p-value: < 0.0001 

 

Indoor air quality in homes using low pressure boilers, heat only boilers, and other stoves 
 
Low pressure boilers and semi-coke coal stoves are widely heralded by the public for their 
improvements in efficiency and functionality over traditional coal stoves, but little data on 
their contributions to indoor PM2.5 exist. It is unreasonable to suggest completely clean 
function. For the sake of simplicity and a lack of data, we assigned the same indoor PM2.5 
concentrations to homes with low pressure boilers and semi-coke coal stoves as were 
assigned to those with MCA stoves, by home type. As discussed elsewhere, Future Tech 
stoves were assumed to produce a 20% reduction in indoor PM2.5 concentrations over MCA 
stoves, by home type. For BAU and both alternative policy pathways, the contribution of 
SHS to indoor concentrations in gers was assumed the same as the contribution modeled 
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from SHS in gers using MCA stoves (18.1 µg/m3). The contribution of SHS to indoor 
concentrations in apartments and houses was assumed the same as that modeled in MCA 
stove houses (20.0 µg/m3), as our model did not provide data on SHS in apartments and 
because apartments are structurally more similar to houses than gers. 

Infiltration efficiency 
 
Data on the infiltration efficiencies of houses and apartments in the context of Ulaanbaatar 
were lacking, so local infiltration efficiencies were estimated from geographically similar 
regions. Seasonal average infiltration efficiencies for PM2.5 in apartment buildings and 
houses were taken from EXPOLIS, a study that included the calculation of infiltration 
efficiency in several major cities (Hänninen et al. 2004; Jantunen et al. 1998). We used the 
average seasonal infiltration efficiencies specifically reported for buildings in urban 
Helsinki, because it is the EXPOLIS city with a climate most similar to that of UB. From 
these data, the average of the infiltration efficiencies reported for the spring (March-May) 
and summer (June-August) seasons (64%) was used in our summertime (April - September) 
calculations, and the average of the infiltration efficiencies reported for the autumn 
(September - November) and winter (December - February) seasons (53%) was used in our 
wintertime (October-March) calculations. These values are consistent with infiltration 
efficiencies found in similar home types, climates and seasons (Long et al. 2001).  
 
Unlike houses and apartments, the ventilation characteristics of which are more limited, 
gers have ceiling flaps and large doorways that are left open for much of the summer 
months. This is likely to result in high ventilation rates and a virtual elimination of filtration 
related to airflow through building casings. Thus, a summer infiltration efficiency of 100% 
was applied to gers. A wintertime infiltration efficiency of 70% was estimated from blower 
door tests performed as part of the United Nations Development Programme – Global 
Environment Facility Commercialization of Super-Insulated Buildings in Mongolia project 
(MON/99/G35), the results of which were communicated to us by a collaborator on the 
project, Munkhbayar B. at the Mongolian University of Science and Technology. The tests 
provided the number of winter time air changes per hour at 50 Pascals of pressure 
difference (n50) for gers with modest insulation and fly cover: 45 air changes per hour. The 
n50 air change rate was converted to a natural air change rate of 2.25 air changes per hour 
using the methods described in (Sherman 1987). This natural air change rate was translated 
into an estimate of wintertime PM2.5 infiltration efficiency of 70% using a curve presented 
in (Williams et al. 2003) for the translation of general air exchange rates into PM2.5 
infiltration rates. 

B.3 Residential heating stoves emissions field 
Figure 4 shows the 2014 Base scenario wintertime (September through March) average 
emission rate from coal-fired residential heating stoves as projected onto 1 km × 1 km grids.   
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Figure 4. Wintertime (September through March) average emissions from residential heating 
stoves.  Figure created by Dr. Jay Turner, who performed the outdoor modeling. 

B.4 Scaling outdoor ambient PM2.5 concentration models 
 
Ambient air quality model performance was evaluated using model-to-monitor 
comparisons. Limited outdoor PM2.5 data were available for this comparison.  For example, 
during the 2012-2013 heating season PM2.5 mass concentration data were collected with high 
data completeness by the National Agency for Meteorology, Hydrology, and Environment 
Monitoring at one location – air quality monitoring station #2 (UB02).  This site was next 
to a major roadway and likely suffered high impacts from local traffic that could not be 
resolved by the model.  Thus, outdoor PM2.5 data collected by Ecography and Ecoworld 
under contract from MCA-Mongolia were used for the comparison. The sampling locations, 
methodology (Greene et al. 2014b, 2014c), and key results are detailed in the full SI project 
report (Greene et al. 2014a). Their data from January 22 to March 2, 2013 were used for the 
model-to-monitor comparison with 19 samples per site.  The 2014 projected inventory was 
used except that residential stove emissions were calculated under the assumption of full-
penetration of MCA stoves as defined in Chapter 2.  
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The measured average PM2.5 concentrations at each site, shown by the single-crossed bars 
in Figure 5, demonstrate high spatial variability with up to a 50% difference between sites.  
The sample time period from the full MCA project was also modeled; average 
concentrations including all days between January 22 and March 2 are shown by the solid 
black bars in Figure 5 (Greene et al. 2014a).  Modeled concentrations were much lower than 
the measured values and were less variable between sites. There were several possible 
reasons for these differences including, but not limited to, the emissions for these sources 
being underestimated and the model not being able to account for the trapping and 
accumulation of emissions from one hour to the next. The model was reconciled to the 
measurement data by increasing the residential stove, HOB, and motor vehicle emissions 
by a factor of 2.85, which was the value of the four measured-to-modeled concentration 
ratios. The cross-hatched bars in Figure 5 show the modeled PM2.5 concentrations after this 
scaling.  Assuming the only error was in the emissions inventory, the nearly threefold 
increase of the projected JICA 2010 inventory was still lower than the inventory projected 
by Guttikunda et al. for 2010 for each of these source categories (Guttikunda et al. 2013; 
Japan International Cooperation Agency 2013).  While the scaling increases the emission 
inventory for these sources by about a factor of three, this places the effective emissions 
between those projected from the year 2010 inventories prepared by JICA and Guttikunda 
et al. Thus, the scaled emissions were deemed reasonable because they were bounded by 
the best available inventories.  Power plant emissions were not scaled because the JICA and 
Guttikunda et al. inventories are relatively similar and emissions from tall stacks are less 
likely to be trapped and accumulate at ground level.  This residential stove, HOB, and 
motor vehicle emissions scaling was applied during modeling to BAU and the two 
alternative pathways. 
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Figure 5. Measured and modeled PM2.5 concentrations at four sites, January 22 – March 2, 2013.   
10 µg/m3 was subtracted from each of the observed concentration values to adjust for sources not included 
in the modeling. Figure created by Dr. Jay Turner, who performed the outdoor modeling. 




