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AbstratWe present three new families of fast algorithms for lassial potentialtheory, based on Ewald summation and fast transforms of Gaussians andFourier series. Ewald summation separates the Green funtion for a ubeinto a high-frequeny loalized part and a rapidly-onverging Fourier series.Eah part an then be evaluated eÆiently with appropriate fast transformalgorithms. Our algorithms are naturally suited to the use of Green funtionswith boundary onditions imposed on the boundary of a ube, rather thanfree-spae Green funtions.Our �rst algorithm evaluates lassial layer potentials on the boundary ofa d-dimensional domain, with d equal to two or three. The quadrature erroris O(hm)+ � where h is the mesh size on the boundary and m is the order ofquadrature used. The algorithm evaluates the disretized potential using Nelements at O(N) points in O(N logN) arithmeti operations. The onstantin O(N logN) depends logarithmially on the desired error tolerane.Our seond sheme evaluates a layer potential on the domain itself, withthe same auray. It produes Md values using N boundary elements inO((N +Md) logM) arithmeti operations.Our third method evaluates a disrete sum of values of the Green funtion,of the type whih our in partile methods. It attains error � at a ostO(N� logN) where � = 2=(1 + D=d) and D is the Hausdor� dimensionof the set where the soures onentrate in the limit N ! 1. Thus it isO(N logN) when the soures don't luster too muh and lose to O(N logN)in the important pratial ase when the points are uniformly distributed overa hypersurfae. We also sketh an O(N logN) algorithm based on speialfuntions.Two-dimensional numerial results are presented for all three algorithms.Layer potentials are evaluated to seond-order auray, in times whih ex-hibit onsiderable speedups even over a reasonably sophistiated diret al-ulation. Disrete sum alulations are speeded up astronomially; our al-gorithm redues the CPU time required for a alulation with 40,000 pointsfrom six months to one hour.
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1 IntrodutionA stable and aurate approah to the numerial solution of the Laplaeequation ��u = f in 
 � Rd(1) �u+ � �u�n = g on � = �
(2)is provided by the integral equations of lassial potential theory. In thisapproah, we use a known Green funtion K(x; x0) for a simple region on-taining 
 to form layer potentialsS�(x) = Z�K(x; x0)�(x0)dx0D�(x) = Z� �K�n (x; x0)�(x0)dx0and the volume potentialV f(x) = Z
K(x; x0)f(x0)dx0:Classially, the free-spae Green funtion has been the most popular[21℄,but when 
 is bounded, we will see that there are signi�ant omputationaladvantages to using the Green funtion for a ube B ontaining 
, withboundary onditions imposed on �B. With any Green funtion, we anseek a solution u as an appropriate linear ombination of volume and layerpotentials; suh an ansatz has the right Laplaian in 
, and the boundaryonditions will be satis�ed if we hoose the density � on � properly. Usuallythis requires the solution of a seond-kind integral equation on �, with anoperator ombining the nonsingular parts of the double layer potential andthe normal derivative of the single layer potential. Numerial solution of theseboundary integral equations and the resulting boundary element methodshave been extensively studied; see [7, 22, 29℄, for example.There are also interfae problems ourring in rystal growth [27, 28℄, inwhih (2) is replaed by a jump ondition�u+ � "�u�n# = g on �and the problem is augmented by a boundary ondition on a ube B on-taining 
, say u = uB on B:3



The Laplae equation is to hold everywhere in B n�. These problems redueto an integral equation ��+ �S� = g on �;with an integral operator whih is the single layer potential restrited to �.The advantages to integral equation formulations of these problems areeÆieny, stability and auray. The integral equation approah is sta-ble and aurate beause integral operators are bounded and even smooth-ing on appropriate funtion spaes; thus disrete approximations an havebounded ondition numbers as the mesh is re�ned [19℄. (This ontrastswith usual �nite di�erene and �nite element approximations, whih ap-proximate unbounded operators and therefore may have very large onditionnumbers when the mesh is very �ne.) It is eÆient beause one redues ad-dimensional problem (to be solved on the d-dimensional domain 
) to a(d�1)-dimensional problem to be solved on �. The prie one pays for this re-dution in dimensionality is the loss of sparsity in the linear systems one hasto solve. This an be overome, however, by introduing \fast algorithms"whih apply or invert the disretized operators of lassial potential theoryin essentially optimal amounts of CPU time. This has been done for variousspeial ases in [24, 23℄ and with some generality in [3, 4℄.In this paper, we present new fast algorithms for the approximate evalua-tion of lassial layer potentials formed with the Green funtion for a square(if d = 2) or ube (if d = 3). Our methods use Ewald summation [1, 11℄ tosplit the potential into a high-frequeny loalized part and a low-frequenypart with separated variables. The loalized part an be evaluated eÆiently,beause it deays very fast away from the soure. The low-frequeny part is arapidly onvergent Fourier series, whih an be evaluated by non-equidistantfast Fourier transform tehniques. Balaning the work and error involved byadjusting the splitting parameter leads to a fast O(N logN) algorithm.Our algorithms are based on di�erent priniples from earlier fast potentialtheories suh as the fast multipole method [5℄ or the method of loal orre-tions [2℄. These shemes were intended to evaluate disrete onvolution sumsof the form Si =Xj 6=iWjK(xi � xj)(3)whih appear in vortex methods [6℄. Here xj 2 Rd, d = 2 or 3, and K isthe free-spae Green funtion for �� or its derivative. The fast multipolemethod, for example, is based on multipole expansions (separation of vari-ables), reursion and data strutures. It evaluates (3) in O(N logN) work if4



there are N of the points xj and N values of Si are desired, within an errortolerane � spei�ed by the user. The onstant in O(N logN) depends on �and is quite reasonable in two dimensions, where the method takes advantageof omplex analysis.We also present fast algorithms for evaluating (3) with K the Greenfuntion for a box B; these are muh simpler than our method for evaluatinglayer potentials, beause they need not address the issue of quadrature error.Our �rst method for evaluating (3) is very fast, but its ost is not alwaysO(N logN); however, the deviation from O(N logN) is small if the pointsxj are not too lustered. We sketh a seond method whih is O(N logN),but we have not implemented it.The outline of the paper is as follows. In x2, we derive the Ewald sum-mation formulas for evaluation of the Green funtion for �� with Dirih-let boundary onditions imposed on the boundary of a d-dimensional ube.The only analytial tool neessary is the Poisson summation formula. Inx3, we disuss quadrature errors in disretizing layer potentials in d = 2 or3 dimensions, using Ewald summation, Gaussian quadrature and produtintegration. In x4, we present some bakground material on subsidiary fastalgorithms whih we use in this paper. We give brief desriptions of Rokhlin'snon-equidistant fast Fourier transform, a sheme for evaluating Fourier se-ries, and the fast Gauss transform. x5 presents fast evaluation shemes forevaluating layer potentials both on and o� �. These shemes evaluate the dis-retizations developed in x3, to arbitrary auray and in O(N logN) time.They also allow us in priniple to make the quadrature error arbitrarily highorder if � and � are smooth enough. x6 disusses how to use Ewald summa-tion methods to evaluate disrete sums like (3). The algorithm we presentis optimal only when soures are roughly uniformly distributed, but is usu-ally very fast. We also sketh an optimal algorithm for solving this problem.x7 disusses some generalizations of our method | other potentials, otherGreen funtions, other equations | x8 presents numerial results for two-dimensional versions of three of the algorithms, and x9 our onlusions.2 The Green funtion for a ubeThis setion presents derivations of the Ewald summation formula for theGreen funtion K(x; x0) of the Laplae equation��u = f in B = [0; 1℄d(4) 5



u = 0 on �Bin a d-dimensional ube B, with Dirihlet boundary onditions spei�ed onthe boundary �B of B. The hoie of Dirihlet boundary onditions is arbi-trary; we ould just as well use Neumann, periodi or mixed (but separable)boundary onditions on �B. Our strategy is to relate (4) to the heat equationand use a well-known transformation of the heat kernel for B.The heat kernel G(x; x0; t) for the orresponding paraboli problem�tv = �v in B(5) v = 0 on �Bv = f at t = 0(6)an be found by a d-dimensional Fourier sine expansion: the result isG(x; x0; t) = 2d Xk2Nd e��2jkj2t sin �k1x1 � � � sin �kdxd sin �k1x01 � � � sin �kdx0d;(7)where k = (k1; : : : ; kd) runs over the set Nd of vetors with d stritly positiveinteger omponents and jkj2 = k21 + � � � + k2d. This series onverges expo-nentially fast when t is large. The Poisson summation formula [9℄ (or themethod of images [20℄) gives the omplementary formulaG(x; x0; t) = (4�t)�d=2 Xk2Zd X�i=�1�1 � � ��de�jx��x0�2kj2=4t;(8)whih onverges exponentially fast when t is small. (Here �x0 = (�1x01; : : : ; �dx0d)and k runs over the set Zd of vetors with d arbitrary integer omponents.)We an integrate (5) from t = 0 to t =1 and use (6) to get���Z 10 v(x; t)dt� = f(x):Thus u(x) = R10 v(x; t)dt is the solution to the Laplae equation (4). Itfollows that the Green funtion K(x; x0) for (4) is given byK(x; x0) = Z 10 G(x; x0; t)dt:(9)This translates|into the language of kernels|the operator identity(��)�1 = Z 10 et�dt:6



This onnetion between the heat and Laplae equations was used in[20℄, and doubtless in many other plaes. The next step in our derivation isessentially equivalent to what is known as \Ewald summation" in the physialliterature[1, 11℄. Split the time integral (9) at a uto� time Æ, substitute theFourier series (7) for G(x; x0; t) when t � Æ, and replae G(x; x0; t) by (8)when 0 � t � Æ. Thus we use eah of our two formulas for G(x; x0; t) inan interval of the time axis where it onverges exponentially fast. The timeintegrals an be evaluated exatly, and the result is the following formula forK(x; x0): K(x; x0) = KF (x; x0) +KL(x; x0)(10)whereKF (x; x0) = 2d Xk2Nd e��2jkj2Æ�2jkj2 sin �k1x1 � � � sin �kdxd sin �k1x01 � � � sin �kdx0d(11)and KL(x; x0) = 14�d=2 Xk2Zd X�i=�1�1 � � ��djx� �x0 � 2kj2�d(12) � �d=2� 1; jx� �x0 � 2kj2=4Æ� :Here �(a; z) = Z 1z e�ssa�1ds(13)is the inomplete gamma funtion. Its properties are disussed in [10℄; weonly need smoothness away from zero and exponential deay: j�(a; z)j �2za�1e�z for a � 1 and z > 0.The Fourier series for KF onverges exponentially fast: If we drop allterms in whih some ki is greater than a trunation parameter p, we inuran error EF bounded byjEF j � 2dd 1Xk1=1 � � � 1Xkd�1=1 1Xkd=p+1 e��2jkj2Æ�2jkj2� 2dd�2p2 �Z 10 e��2k2Ædk�d�1 �Z 1p e��2k2Ædk�� 2dd�2p2 (4�Æ)�(d�1)=2 e��2p2Æ�2pÆif �2p2Æ � 1. This an be summarized for d = 2; 3 as a Fourier seriestrunation error bound: jEF j � e��2p2Æ50p3Æ(d+1)=2 :(14) 7



The usefulness of KL, on the other hand, is not so muh that the series(12) onverges exponentially fast | though it does | but that the sum KLis exponentially loalized in spae. Indeed, if x and x0 are inside B = [0; 1℄d,then one ommits an error whih is O(e�1=Æ) in keeping only 3d terms of thesum (12), orresponding to the nearest images of B. If either x or x0 staysa distane D from �B, then KL is approximated by one term with an errorwhih is O(e�D2=4Æ) as Æ ! 0. This term is then bounded byj 14�d=2 jx� x0j2�d�(d=2� 1; jx� x0j2=4Æ)j � 23�d�d=2 Æ2�d=2jx� x0j2 e�jx�x0j2=4Æ:This is exponentially small as soon as jx � x0j � O(pÆ) in two dimensionsand jx� x0j � O(pÆj log Æj) in three dimensions.Finally, we explain why Ewald summation is useful. If we had omputedK(x; x0) by a diret Fourier expansion, we would have foundK(x; x0) = 2d 1Xk2Nd 1�2jkj2 sin �k1x1 � � � sin �kdxd sin �k1x01 � � � sin �kdx0d:(15)This series either diverges (if d � 3) or onverges slowly (if d � 2), so it isalmost useless for evaluating the kernel. This is beause we are expressinghigh-frequeny information and low-frequeny information alike as a Fourierseries, so we have to inlude many terms. If we had omputed K(x; x0) by themethod of images, we would also have gotten a useless expansion, beause wewould be trying to onvey global information by point evaluation. Instead,we have onstruted formulas whih give K(x; x0) as a sum of two series,KF and KL. The loal information is arried by the rapidly deaying loalpart KL and the global low-frequeny information is expressed in the Fourierseries for KF . The uto� Æ indexes a one-parameter family of formulas forK(x; x0), the Fourier series appears when Æ = 0, and the method of imagessum ours in the limit Æ !1.Our fast algorithms are based on this splitting of K(x; x0). Global in-formation is enoded in the rapidly onverging Fourier series for KF , whihan be evaluated rapidly beause the variables are separated. Loal high-frequeny information is arried inKL, andKL deays very rapidly away fromits singularity { it deays like a Gaussian with small variane. Hene onvo-lution with KL is an almost loal operator, whih an be applied rapidly.
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3 Disretization of layer potentialsWe now have the basi Ewald summation formulas we need to evaluate layerand volume potentials. For simpliity, we deal in detail only with the singlelayer potential, in dimensions d = 2 and 3. We desribe how to evaluateS� on and o� � to auray O(hm) in the size h of the mesh on �. We aremostly interested in the ases m = 2 and m = 4.Our basi approah is as follows. We allow two types of error. The �rst,quadrature error, ours with all approximate evaluations of integrals. It isO(hm) as the size h of the mesh on � dereases, with a onstant in O(hm)whih is allowed to depend on derivatives of the density � up to some orderM ,possibly larger than m. This error has to do with the disretization error inevaluating S� with Ewald summation, independent of the speed with whihS� is evaluated. It does, however, depend on the splitting parameter Æ andtherefore on the number of terms p kept in the Fourier series representationof SF�. The seond type of error is the prie we pay for the fast evaluationsheme; it is O(�) where � is a user-spei�ed tolerane and the onstant inO(�) is not allowed to depend on higher derivatives of � or �.It is unrealisti in many appliations to assume that � is known exatly,say as a smooth parametrized surfae. In moving boundary problems, forexample, we have to approximate � by an objet with �nitely many degreesof freedom. Thus our ode has been written to operate on � and � given asa union of elements �j, with maximum side length bounded by h. In twodimensions, � is a union of line segments if m = 2 and a union of ubiurves if m = 4, say ubi Hermite interpolants to points on � and thederivatives of � at those points for example. In three dimensions, we take� to be a union of quadrilaterals if m = 2 and if m = 4 we use images ofretangles under biubis, say Hermite interpolants or splines. See [14℄ forbakground on surfae representation and [29℄ for the e�et on �nite elementmethods. On eah element, � will be given as a polynomial of degree m� 1,to auray O(hm) if � and � are of lass Cm. (We use quadrilateral elementsin three dimensions, rather than the more popular and versatile triangularelements, mainly for onveniene of exposition. We need to take advantage ofGaussian integration rules with their superalgebrai onvergene. Suh rulesdo exist for triangles, for example onial Gaussian rules, so our analysis anpresumably be extended to triangular elements.) We an treat many moregeneral situations using the tehniques reported here, but have preferredsimpliity of exposition over generality for the time being. We aim to keep thedisussion on a onrete and pratial level, with a minimum of abstration.9



If � and � are smooth, we have thenS�(x) = NXj=1 Z�j K(x; x0)�(x0)dx0 +O(hm)(16)where O(hm) depends on derivatives of � and � of order up to m; see [22, 29℄for error analysis. We now introdue the Ewald splittingS�(x) = SF�(x) + SL�(x)= Z�KF (x; x0)�(x0)dx0 + Z�KL(x; x0)�(x0)dx0where SF is a rapidly onverging Fourier series and SL is highly loalized.We onsider disretization of SF� and SL� separately, and also separate theevaluation of SL� on � from its evaluation at an arbitrary point x 2 B, whihis not known to lie on �. These two situations require ompletely di�erentstrategies.3.1 The Fourier partFirst we onsider the evaluation of SF�. From (10), we haveSF�(x) = Z� 2d Xk2Nd e��2jkj2Æ�2jkj2 sin �k1x1 � � �� � � sin �kdxd sin �k1x01 � � � sin �kdx0d�(x0)dx0= 2d Xk2Nd e��2jkj2Æ�2jkj2 �̂(k) sin �k1x1 � � � sin �kdxdwhere the Fourier oeÆients �̂(k) of the measure on B with density � on �are given by �̂(k) = Z� sin �k1x01 � � � sin �kdx0d�(x0)dx0:The error in trunating the Fourier series for SF� after terms with ki = p isbounded by (x2) jEF j � e��2p2Æ50p3Æ(d+1)=2 j�j1where j�j1 = R� j�(x0)jdx0 and �2p2Æ � 1. If this error is to be bounded, it islearly neessary to have p2Æ bounded away from zero as Æ ! 0 and p!1.If d = 2 this ondition is suÆient; in d = 3 dimensions, p2Æ has to inrease10



logarithmially as Æ ! 0 and p!1, in order to balane an additional powerof Æ in the denominator. In two dimensions, for example, this bound is lessthan 10�6j�j1 when p2Æ � 1 and less than 10�11j�j1 when p2Æ � 2.Next, onsider the error in evaluating �̂(k) by produt q-point Gauss-Legendre quadrature over eah element �j. Generally, the error in evaluatingthe integral R 10 f(s)ds by suh a rule is bounded by (see page 98 of [8℄)jEj = ������Z 10 f(s)ds� qXj=1 f(sj)wj������ � q!4(2q + 1)2q!3 jf (2q)j1= O e8q!2q jD2qf j1;where sj are the points and wj are the weights of the Gauss-Legendre formula,D denotes di�erentiation, and jf j1 = max jf(s)j. The seond equality followsfrom Stirling's formula.Our task now is to split this estimate, with f equal to a produt of sinestimes �, into O(hm) and O(�) parts, as desribed above. By Leibniz' rule,we have D2qf(x0) = 2qXj=00� j2q1AD2q�j(sin �k1x01 � � � sin�kdx0d)Dj�(x0)where D denotes di�erentiation. The two dominant terms in this estimate arethe endpoints, where all the derivatives go onto one fator or the other. (Theintermediate terms an be bounded in terms of the endpoints by interpolationestimates for intermediate derivatives and Holder's inequality.) Thus the 2qthderivative of f an be estimated byO(�dph)2qj�j1 +O(h2q)where the �rst omes from di�erentiating the sines and the seond termdepends on derivatives of � up to order 2q but is independent of p. We willhoose p and q depending on h to make the �rst term less than � and theseond term O(hm), in x5.We then will have eah Fourier oeÆient �̂(k) for 1 � ki � p, with errorEk. Thus evaluating SF� gives an error bounded byjEj � max jEkj Xk2Nd e�2jkj2Æ�2jkj211



� max jEkjCd Z 10 e��2r2Ærd�3dr� max jEkjCdÆ1�d=2:3.2 The loal part evaluated on �We turn now to the evaluation of the loal partSL�(x) = Z�KL(x; x0)�(x0)dx0for x 2 �. More are is required in this ase, beause KL is in�nite whenx = x0. But we an use the known form of the singular kernel to transformthe integral in a manner onvenient for evaluation. WriteKL(x; x0) = Z Æ0 K(x; x0; t)dt= Z Æ0 e�jx�x0j2=4t(4�t)d=2 dt+O(e�D2=4Æ):Here we assume, for simpliity, that dist(�; �B) � D > 0 and we an thusdrop images when Æ is small. The images are nonsingular, and thereforerepresent only a notational ompliation. Thus we haveSL�(x) = Z Æ0 Z� e�jx�x0j2=4t(4�t)d=2 �(x0)dx0dt+O(e�D2=4Æ):This is a single layer heat potential with density � independent of time. Write,for onveniene, g(x; t) = Z� e�jx�x0j2=4t(4�t)(d�1)=2�(x0)dx0SL�(x) = Z Æ0 1p4�tg(x; t)dt+O(e�D2=4Æ):Then it an easily be shown [28℄ thatg(x; t)! �(x) as t! 0 for x 2 �and g is a smooth funtion of t. Hene the only remaining singularity is thesquare-root singularity in the time integral, and this is independent of x.Thus we an make a produt integration formula [18℄Z Æ0 1p4�tg(x; t)dt = qÆ=� nXj=0wjg(x; �j) +O(Æn+3=2);12



with �j = jÆ=n, with weights wj determined by requiring the formula to beexat whenever g is a polynomial in t of degree � n. Thus we have, from thede�nition of g,SL�(x) = qÆ=�w0�(x) +qÆ=� nXj=1 wj(4��j)(d�1)=2G4�j�(x) +O(e�D2=4Æ)where the Gauss transform G��(x) is de�ned byG��(x) = Z� e�jx�x0j2=��(x0)dx0:Thus we need to evaluate n�1 Gauss transforms with � = O(Æ). Given G��with error bounded by E, we get SL� on � with error bounded byjELj � C1Æ1�d=2E +O(Æn+3=2) +O(e�D2=4Æ)where C1 is a onstant of order unity.Now onsider the evaluation of the Gauss transform. We have, as in (16),G��(x) = NXj=1 Z�j e�jx�x0j2=��(x0)dx0 +O(hm)formth order elements and interpolation. We approximate eah integral over�j by produt Gauss-Legendre quadrature using q points per dimension. Toestimate the quadrature error, we need the 2qth derivative of the integrand.A alulation with Hermite funtions shows that roughly, we an estimatesuh derivatives by jf (2q)j1 � C0  hp� !2qq2q!:With Stirling's formula, we �nd that the quadrature error satis�esjEj �  e32q h2� !q j�j1:Note that this estimate is essentially the same as (14) sine � � Æ=n andp2Æ �onstant. Finally, the quadrature error involved in evaluating SL� on� is thus bounded roughly byjELj � CÆ1�d=2  e32q nh2Æ !q j�j1 +O(Æn+3=2):As in the alulation of the Fourier oeÆients, we haven't yet enough in-formation to use this estimate, so we will return to the evaluation of SL� on� after introduing the fast Gauss transform in x4 and balaning the workestimates in x5. 13



3.3 The loal part evaluated o� �When x is not known to lie on �, the integrand in the integralSL�(x) = Z�KL(x; x0)�(x0)dx0may not be singular. It is smooth when x is not on �, but blows up whenx approahes �. Paradoxially, this possible lak of a singularity is quitetroublesome when evaluating SL�. This is beause we annot use a produtintegration formula in time whih is independent of x, and therefore annotexpress SL� as a sum of Gauss transforms.We use instead a spatial produt integration method to evaluate SL� o��. This is partiularly onvenient in the seond-order ase in two dimensionswhere the integrals involved are fairly straightforward, so we give the detailsonly in this ase. When higher order auray is desired, produt integrationbeomes diÆult; however, the approah suggested in [19℄ is an attrativealternative. A loal expansion as in [26, 13℄ ould also be used e�etivelyhere, beause KL deays rapidly away from its singularity; there is no far�eld.In two dimensions,KL(x; x0) = 14�� 0; jx� x0j24Æ !+O(e�D2=4Æ)and �j is the line segment onneting xj and xj+1 if m = 2. ThusZ�j KL(x; x0)�(x0)dx0 = 14� Z 10 � 0; jx� txj+1 � (1� t)xjj24Æ !(t�j+1 + (1� t)�j)jxj+1 � xjjdt:We have �(0; z) = � log(z) + F1(z)where F1(z) is entire. Thus we integrate the logarithmi part of the kernelexatly over eah line segment and apply Gauss-Legendre quadrature to theremaining integral involving F1(jx � x0j2=4Æ)�(x0). The integrand of the F1integral is an analyti funtion saled by 1=pÆ, so the 2qth derivative growsno worse than 2q!Æ�q. Hene the error estimate for integrating the F1 termlooks no worse than jE1j � C q!42q!3 2q!h2qÆq = O h4pÆ!2q14



by Stirling's formula. This is therefore the omplete error involved in evalu-ating SL� in this ase. Further analysis will have to be postponed until weknow how h is related to Æ.In three dimensions, a similar analysis applies. Only the details of evalu-ating the singular term exatly are di�erent.4 Bakground materialIn this setion, we desribe three fast algorithms whih we will use in the mainbody of this paper. First, we desribe an unpublished algorithm suggestedby Rokhlin [25℄, whih evaluates disrete Fourier oeÆients given funtionvalues at arbitrary points. Then we desribe a simple method for evaluatinga Fourier series at an arbitrary olletion of points. Finally, we desribe thefast Gauss transform [12℄ whih evaluates a onvolution sum of d-dimensionalGaussians. All three shemes are muh faster than diret evaluation of theorresponding sums, as soon as problems of any reasonable size need to besolved.4.1 The non-equidistant fast Fourier transformRokhlin's algorithm evaluates the sumf̂(k) = NXj=1 eiajkfj(17)for k = 0; 1; 2; � � � ; p, given N points aj 2 [��; �℄ and N omplex numbers fj.Diret evaluation osts O(Np) work , and the usual fast Fourier transforman be used only when aj are equispaed. Rokhlin's algorithm evaluates thissum with auray �F in O((N + p) log p) work, with a onstant dependingon the user-spei�ed preision � and F = PNj=1 jfjj.The evaluation of (17) amounts to �nding the Fourier oeÆients of theperiodi distribution f de�ned byf(x) = 2� NXj=1 Æ(x� aj)fj(18)on [��; �℄. A natural approah, if f were a smooth funtion, would beto evaluate f on an equidistant mesh and apply a standard fast Fourier15



transform. This is impossible, of ourse, beause we an't evaluate Æ(x� aj)at a point. Thus we smooth eah point mass into a Gaussian, apply the FFT,and undo the smoothing.We de�ne the smoothed funtion g approximating f by requiring itsFourier oeÆients ĝ(k) to be given byĝ(k) = e�Æk2 f̂(k)= 12� Z ��� eikxg(x)dx:Thus g(x) = 1X�1 e�Æk2 f̂(k)e�ikx:(19)Sine f̂(k) = 12� Z ��� eikxf(x)dx;we have g(x) = 12� Z ���K(x� x0)f(x0)dx0where K(x) = 1X�1 e�Æk2eikx= r�Æ 1X�1 e�(x�2k�)2=4Æ:The seond equality is a well-known onsequene of the Poisson summationformula [9℄. From the de�nition of f , we haveg(x) = r�Æ NXj=1 fj 1X�1 e�(x�aj�2k�)2=4Æ:(20)Sine Æ will be small, we need only a few terms of the in�nite sum over kin (20): the error in keeping only three terms is bounded by q�=Æe��2=Æ aslong as jxj � �.Next we evaluate g on the equidistant grid x = jh with �q � j � q,h = �=q. If we evaluate three Gaussians for eah j at eah grid point, wedo O(Nq) work, and we expet q � p so this osts too muh. The rapidspatial deay of the Gaussian, however, means that we need evaluate theGaussian entered at aj only for jx�aj j � R, where the range R depends on16



Æ. The error in this trunation is bounded by 3Fq�=Æe�R2=4Æ. If R = Lh,this evaluation will ost O(LN) work. We now have the values g(jh) on anequidistant grid, so we an use the standard FFT to evaluate the disreteFourier oeÆients ~g(k) = qX�q e2�ikj=2qg(jh)(21)in O(q log q) work. However, we really wanted the ontinuous Fourier oeÆ-ients ĝ(k) = 12� Z ��� eikxg(x)dx;not the trapezoidal sums (21). Fortunately, the expliit formula (19) allowsus to bound the quadrature error in replaing ontinuous by disrete FourieroeÆients. A Fourier series alulation desribed in [8℄ givesjĝ(k)� ~g(k)j � 2F (e�Æ(2q�p)2 +O(e�Æ(4q�p)2))if jkj � p.Finally, we an evaluate f̂(k) by unsmoothing;f̂(k) = eÆk2 ĝ(k) 0 � k � p:This will multiply any errors (inluding roundo� errors) in the omputationof g by a fator eÆk2 � eÆp2 . The whole algorithm will therefore be unstableunless Æp2 � , where  is a onstant depending only on the preision desired.Thus we tentatively set Æ = =p2.Now we must determine the parameters  and q to ahieve the desiredauray and eÆieny. The error in f̂(k) for 0 � k � p will be bounded by�F if the following three onditions are satis�ed:q�=Æe��2=ÆF � �e�2q Fq�=Æe�R2=4Æ3F � �e�2q F2Fe�Æ(2q�p)2 � �e�F:The �rst inequality omes from trunating the in�nite sum of Gaussians afterthree terms, the seond from allowing aj to inuene only points x within arange R, and the third inequality requires the quadrature error in evaluating17



ĝ(k) by the trapezoidal rule to be small. The total work required by thealgorithm is O(LN) +O(q log q) +O(p):The �rst term omes from evaluating Gaussians, the seond from applyingthe FFT to g and the third from evaluating f̂ .First, we require  � 2 log 10; thus the �nal proessing of f̂ an loseno more than two deimal digits. This is a ompromise between speed androundo� error. The quadrature error bound will hold ife(1�(2q=p�1)2) = �or  = log �=(1 � (2q=p � 1)2). The requirement  � 2 log 10 gives a lowerbound for q=p; q=p � max0�2; 12 + 12s1� 12 log �= log 101A :For � � 10�16, this redues to q=p � 2. Thus  is determined given q=p. Nowlet �0 = �e�=10q (given q). We hoose R = Lh = L�=q so that1pÆ e�R2=4Æ � �0:Thus R = q�4Æ log(pÆ�0)= O(h log p):We hoose q so that R � �; thus only three images need be kept, and the�rst requirement is satis�ed as well. The total work estimate now looks likeW = O(N log p+ p log p+ p) = O((N + p) log p):This ompletes our desription of Rokhlin's non-equidistant fast Fouriertransform.In pratie, the algorithm performs extremely well. We wrote a Fortranode implementing the algorithm and tested it with a set of N points ajhosen from a uniform distribution on [��; �℄ and fj hosen from a uniformdistribution on [0; 1℄. Table 1 shows the parameters, errors and times(Tf )obtained with � = 10�7 and N = p = 16; 32; 64; 128; 256; 512; 1024; 2048.18



The times Td given for diret evaluation are extrapolated from the time re-quired for diret evaluation at 80 points for the larger runs, and the olumnheaded TFFT shows the time required to exeute one standard FFT of size2p. Thus we see that it osts only �ve or six times as muh to evaluateFourier oeÆients with arbitrary points as it does to evaluate them withequidistant points. The fast algorithm is muh faster than diret evaluation,breaking even at only about 16 points and oeÆients, and the error in thefast evaluation sheme is always onsiderably smaller than the error bound.4.2 Evaluation of Fourier seriesNow let's onsider the inverse problem: Given f̂(k) for k = �p;�p+1; : : : ; p�1; p and N arbitrary points aj 2 [��; �℄, evaluate the trigonometri polyno-mial f(x) = pX�p eikxf̂(k)at the points aj in O((N + p) log p) work, with error bounded by �F̂ whereF̂ = P jf̂(k)j.Our approah is straightforward; we zero-pad the oeÆients fj to length2q and perform a standard FFT of length 2q to obtain 2q valuesf(jh) = pX�p eijkhf̂(k)on a �ne grid on [��; �℄ with step size h = �=q. Then we interpolate be-tween grid points to obtain the desired values f(aj) for 1 � j � N , withinterpolation error � �F̂ . It turns out that we an guarantee suh auray,for ompletely arbitrary Fourier oeÆients f̂(k), by taking q fairly largeompared to p and using fairly high-order interpolation. Thus the algorithmturns out to be onsiderably more expensive than a standard FFT when f̂are randomly hosen and high auray is desired. Of ourse, in most prati-al situations, f̂ are approximations to the Fourier oeÆients of a funtionand in that ase muh less work is required; an example will our in x5.1.Let q = np; we will hoose n and the order of interpolation 2k�1 to makethe interpolation error � �F̂ . In general, the error in equidistant polynomialinterpolation of a funtion f at a point x 2 [0; 1℄, by polynomials of degree19



2k � 1, is bounded by jE2k�1j � jf (2k)j1(2k)! !2k�1(x)where jgj1 denotes the max-norm of g and!n(x) = (x� 0 � h)(x� 1 � h) � � � (x� n � h):We use interpolation only on the enter interval kh � x � (k + 1)h; thenj!2k�1(x)j � 12h2k(k!)2:By Stirling's formula, (k!)2(2k)! � p�k22k ;and in general the best we an say about the 2kth derivative of f isjf (2k)j1 � p2kF̂ ;so jE2k�1j � pkF̂  hp2 !2k = pkF̂ � �2n�2ksine h = �=q = �=np. Table 2 shows this error bound (with the fatorF̂ omitted) as a funtion of k and n. Single preision auray (� = 10�7)requires 19th degree interpolation with n = 4, 11th with n = 8 and 7thwith n = 16. Double preision auray (� = 10�13) requires 19th degreeinterpolation with n = 8 and 13th degree with n = 16. In pratie, we foundinterpolation of degree higher than about 20 to lead to substantial roundingerrors. We evaluated the interpolating polynomial by Aitken's algorithm.Given n, one an �nd k by requiring (�=2n)2k � � or 2k � � log �= log(2n=�).Table 3 shows numerial results obtained from testing the algorithm on ran-domly generated Fourier series oeÆients and points of evaluation as in x4.1,with error tolerane � = 10�5, n = 8 and 7th degree interpolation. The er-ror bound is quite sharp, and even in this fairly diÆult ase, the algorithmbreaks even at only about 32 points and oeÆients. These hoies of n and kare not optimal, of ourse; in pratie the hoie of n and k will be a tradeo�between speed and memory, espeially for multidimensional problems.Finally, we observe that both the sheme presented in this setion andRokhlin's algorithm generalize immediately to higher-dimensional problems.20



N = p q Æ L Tf Td TFFT Error/F16 32 7.0-3 8 0.03 0.03 0.004 3.0-832 64 1.8-3 8 0.05 0.11 0.008 6.2-864 128 4.4-4 8 0.11 0.38 0.018 6.2-11128 256 1.1-4 8 0.24 1.54 0.035 8.8-12256 512 2.7-5 8 0.45 6.22 0.077 7.3-12512 1024 6.8-6 9 0.95 25.0 0.16 5.9-141024 2048 1.7-6 9 1.93 100.3 0.34 2.9-142048 4096 4.3-7 9 4.01 401.4 0.67 3.0-14Table 1: Results for the non-equidistant FFT, with CPU times on a Sun-4workstation.
2k � 1 n = 3 n = 4 n = 6 n = 8 n = 12 n = 161 0.27E+00 0.15E+00 0.69E-01 0.39E-01 0.17E-01 0.96E-023 0.10E+00 0.32E-01 0.63E-02 0.20E-02 0.39E-03 0.12E-035 0.33E-01 0.59E-02 0.52E-03 0.92E-04 0.80E-05 0.14E-057 0.10E-01 0.10E-02 0.40E-04 0.40E-05 0.16E-06 0.16E-079 0.31E-02 0.18E-03 0.31E-05 0.17E-06 0.30E-08 0.17E-0911 0.94E-03 0.30E-04 0.23E-06 0.73E-08 0.56E-10 0.18E-1113 0.28E-03 0.50E-05 0.17E-07 0.30E-09 0.10E-11 0.18E-1315 0.81E-04 0.81E-06 0.12E-08 0.12E-10 0.19E-13 0.19E-1517 0.24E-04 0.13E-06 0.90E-10 0.51E-12 0.34E-15 0.19E-1719 0.68E-05 0.22E-07 0.65E-11 0.21E-13 0.62E-17 0.20E-19Table 2: Error bounds for Fourier series evaluation, using a mesh ratio n andpolynomial interpolation of degree 2k � 1.
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They are not tensor produts as are standard FFT's, but the generalizationis straightforward nonetheless. In the numerial alulations of this paper,we use shemes whih evaluate two-dimensional Fourier sine oeÆients andFourier sine series with non-equidistant points; these are also straightforwardgeneralizations of the shemes presented in this setion.4.3 The fast Gauss transformIn this setion, we very briey summarize the fast Gauss transform presentedin [12℄. Consider the evaluation of the d-dimensional Gaussian sumf(x) = NXj=1 fje�jx�sj j2=Æ(22)at M points x = ti 2 B = [0; 1℄d. Here sj are N given points in B, fjare N given real or omplex numbers, and jxj2 = x21 + : : : + x2d. Clearlydiret evaluation takes O(NM) work. The fast Gauss transform requiresO(N+M + Æ�d=2) work to evaluate (22) to preision �F with F = P jfjj; theonstant in O(N +M + Æ�d=2) depends only on �. In pratie, the algorithmahieves a tremendous speedup over diret evaluation when M and N arelarge and Æ is not too small. When Æ is very small, the fast Gauss transformredues to a strutured and trunated diret evaluation sheme whih takesadvantage of the short range of inuene of eah soure sj.The basi approah ombines separation of variables with a divide andonquer approah, as in the fast multipole method [5℄. We divide the boxB into O(Æ�d=2) boxes of side O(pÆ) and sort the soures sj and targetsti into boxes by spatial loation. The inuene of all soures in a givenbox an be ombined into a single Hermite expansion about the enter ofthe box. Eah Hermite expansion inuenes a �xed number of boxes withinrange O(pÆ), by adding to the Taylor expansion of f about the enter ofeah target box. Finally, the Taylor expansion is evaluated at eah targetin the box. A deision analysis ensures that Hermite expansions are formedand Taylor expansions evaluated only when it is eÆient to do so; otherwise,box-box interations take plae diretly or semi-diretly.The analytial apparatus required for the algorithm an be summed upin the rapidly onverging series expansione�jx+y+zj2 = X��0X��0 x��! y��!h�+�(z):22



Here x; y; z lie in Rd, while � = (�1; : : : ; �d) and � = (�1; : : : ; �d) are mul-tiindies with positive integer elements, x� = x�11 � � �x�dd , and h is the d-dimensional Hermite funtion, whih deays like a Gaussian as jzj inreases.Thus the inuene of soures sj in a box B with enter sB on targets ti in abox C with enter tC is given byfBC(t) = X��0 (t� tC)��! X��0 h�+�(tC � sB) Xsj2B (sj � sB)��! :This is a Taylor series about tC . Its oeÆients are formed by taking mo-ments of the sj's about sB, summing over j, and transforming with a matrixmultiply. One aumulates the Taylor oeÆients due to all boxes B inu-ening C before evaluating. Auray is obtained by adjusting the numberof terms retained in the sums over � and �. These sums onverge extremelyfast, so not very many terms are neessary in order to ahieve quite highpreision.Table 4 presents numerial results for a two-dimensional fast Gauss trans-form, with � = 10�6 and 72 terms kept in the Hermite series. These resultsshow that the fast transform is never muh slower than diret evaluation (forN � 100) and ahieves tremendous speedups when N is large. The timerequired for evaluating the sum of 100,000 Gaussians at 100,000 points isredued from a week to a minute by the fast Gauss transform.5 Rapid evaluation of layer potentialsIn this setion, we present our new algorithms for evaluating the disretizedsingle layer potential S�(x) = Z�K(x; x0)�(x0)dx0with optimal eÆieny. From x3, we know that it is natural to onsiderseparately the ase when the evaluation point x is restrited to lie on � andthe ase when x lies anywhere in B, either on or o� �. The appliationsmake it natural also to onsider two even more spei� ases: First, in x5.1,we desribe how to evaluate S�(x) at the N points xj on � where the valuesof � were originally given. This is the essential part of solving for � on � byan iterative method. We arry this out by using produt integration in timeand the fast Gauss transform to evaluate the loal part, and non-equidistant23



N = p Fast Diret Error/F̂16 0.07 0.03 1.5-632 0.11 0.12 8.6-764 0.25 0.49 9.7-7128 0.48 2.0 9.6-7256 1.0 7.9 1.1-6512 2.1 31.2 1.7-71024 4.2 126 2.5-72048 8.4 502 1.2-7Table 3: Times and errors for evaluating randomly generated Fourier serieswith � = 10�5, n = 8 and 7th degree interpolation.
Case N =M Fast Diret Error/F1 100 0.500 0.460 .479E-092 200 1.540 1.840 .447E-063 400 2.060 7.400 .499E-064 800 2.370 29.600 .737E-065 1600 3.180 117.920 .749E-066 3200 4.320 486.080 .755E-067 6400 6.930 1953.280 .199E-068 12800 11.080 7686.400 .199E-069 25600 19.690 30397.440 .199E-0610 51200 36.700 123141.120 .200E-0611 102400 72.130 485406.720 .200E-06Table 4: Table of ost and errors for the two-dimensional fast Gauss transformwith Æ = 0:01 and � = 10�6, with targets and soures spaed uniformly on airle.
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FFT methods to evaluate the Fourier part. Optimal eÆieny then ditatesa ertain balane between Æ, p and the mesh size h.Seond, in x5.2, we suppose � given on eah element and evaluate S�(x)on an equispaed grid in B, in other words at the points x = (i1H; : : : ; idH)with 0 � i1; : : : ; id � M and H = 1=M . We assume the grid is oarser thanthe mesh on �, that is H � h, as this eliminates a tiresome onsideration ofases and is the ase in almost all appliations. In this ase, we evaluate theFourier oeÆients using the non-equidistant FFT and evaluate the Fourierpart on the grid with a standard FFT. (If the grid were irregular, we ouldstill onstrut an optimal algorithm by using the Fourier series evaluationsheme of x4.2). The loal part is done by produt integration with a uto�,whih takes advantage of its rapid spatial deay, as in x3.3. Optimal eÆienynow ditates a di�erent relationship between p, Æ, h and H.5.1 Evaluation of S� on �First split S� = SF�+SL� with Æ to be determined, and trunate SF� afterterms with ki = p. Then we need to evaluate pd oeÆients�̂(k) = Z� sin �k1x01 � � � sin �kdx0d�(x0)dx0;in O(N logN) work, with auray O(hm) + �. If we use produt q-pointGauss-Legendre quadrature on eah element �j, we get an expression of theform �̂(k) = NXj=1Xi sin �k1xij1 � � � sin �kdxijd�jiwijThis an be evaluated with the non-equidistant FFT (extended to do thed-dimensional sine transform) in O((qdN +pd) log p) work and with auray�F where F = NXj=1Xi j�ji jwij � j�j1:This suggests that we take p = O(N1=d) and the Fourier series trunationerror requirement (that p2Æ be bounded away from zero) suggests then thatÆ = O(N�2=d). In d dimensions, having N elements on � with maximumsize h means roughly that h = O(N1=(1�d)), beause � is (d�1)-dimensional.Hene Æ and h are related by Æ = O(h2�2=d), and p = O(h1=d�1). The errorestimate for Gauss-Legendre quadrature presented in x3.1 is then dominated25



by jEj � CÆ1�d=2  d�e8q h1=d!2q j�j1 = O(h3�d�2=d+2q=d):Thus we get order m auray uniformly in 1 � ki � p if we take q �d(m� 3 + d+ 2=d)=2. For d = 2, we need q = m, while in three dimensionswe need q = 1+ 3m=2. The onstant in the error estimate is quite small; forexample, dropping fators of Cj�j1, it is 1.30 when m = d = 2, 6:6 � 10�3when d = 2 and m = 4, and generally speakingjEj � Cj�j1 � �e4m�md hm:We an now evaluate the trunated Fourier series at the N points xj, toget SF�(xj) = 2d pXki=1 e��2jkj2Æ�2jkj2 �̂(k) sin �k1x1 � � � sin �kdxd + Ewhere the error E is of orderE = O(hm) +O(�) +O( e��2p2Æp3Æ(d+1)=2 ):We do this by the Fourier series evaluation sheme of x4.2, extended to d-dimensional sine series, in other words by evaluating SF� on a �ne meshwith mesh size H = 1=np and interpolating to eah xj with tensor produtpolynomial interpolation of degree 2K � 1. The error in this proedure isbounded by jEj � C(H=2)2Kjf (2K)j1where f(x) = pXki=1 e��2jkj2Æ�2jkj2 �̂(k) sin �k1x1 � � � sin �kdxdis a smooth funtion. Comparison of the derivative of the sum with anintegral shows that jf (2K)j1 � Cdj�j1Æ�d=2�K+1where Cd is a onstant of order unity, depending only on the dimension d.Thus jEj � Cj�j1Æ1�d=2  14n2p2Æ!K :In two dimensions, this bound an easily be made less than � with hoies ofn and K whih are independent of N ; in three dimensions, n and K may have26



to inrease logarithmially with N . Typially n2 � 10 and p2Æ � 1, so thiserror bound is � 10�6 when K = 4 (7th degree interpolation) if Cj�j1 � 1.Thus if we hoose p and Æ withe��2p2Æ50p3Æ(d+1)=2 � �;p = O(N1=d), and Æ = O(N�2=d), we an evaluate SF� on � in O(N logN)work with auray O(hm)+ �j�j1; the onstant in O(N logN) depends onlyon log �.Next we turn to the evaluation of the loal partSL�(x) = Z Æ0 Z�K(x; x0; t)�(x0)dx0:We use the produt integration in time approah developed in x3.2 to reduethe problem to n Gauss transforms:SL�(x) = qÆ=�w0�(x) +qÆ=� nXj=1 wj(4��j)(d�1)=2G4�j�(x) +O(Æn+3=2):Sine Æ = O(h2�2=d), the error term looks like O(h(2�2=d)(n+3=2)) = O(hm) ifn � (m� 3 + 3=d)=(2� 2=d). When d = 2, we need to have n � 1 or n � 3for seond or fourth-order auray respetively, while in three dimensions,we need only n � 0 or n � 2 respetively. Thus in three dimensions, thesimple approximation SL�(x) � qÆ=��(x)is already orret to seond order auray | and ertainly very inexpensiveto evaluate. In the other ases, we need to evaluate Gauss transforms toauray �0 = Æ1�d=2� plus O(hm). The quadrature error in produt q-pointGauss-Legendre quadrature for eah Gauss transform is, from x3.2,E = CÆ1�d=2  e32q nh2Æ !q j�j1:We now know that Æ = O(h2�2=d), so this estimate is equivalent toE = O(h2q=d+3�d�2=d):This is O(hm) if q � (md� 3d+ d2 + 2)=2. If d = 2 we need q � m while ifd = 3 we need q � 3m=2 + 1.The fast Gauss transform now evaluates SL� on � in O(N logN+Æ�d=2) =O(N logN) work, to auray �0. Thus we an evaluate S� = SF� + SL�eÆiently and aurately. 27



5.2 Evaluation of S� o� �We now onsider the evaluation of S�, disretized with N elements of size� h, on a mesh in the box B ontaining 
. For onreteness, we onsider anequally spaed mesh x = (i=M; j=M; : : :) on B; the more general ase is aneasy extension using the Fourier series evaluation sheme disussed in x4.2.We assume for simpliity that the boundary disretization is no oarser thanthe mesh, so that h � H = 1=M . The other ase rarely ours in pratieand is easy to deal with when it does our.We allow ourselves O((N +Md) logM) work to evaluate S� on the grid;learly this is optimal, up to a logarithm.First we trunate SF� after terms with ki = p. The resulting series willost O(Md logM) to evaluate on the mesh, so we might as well take p = Mand Æ = O(M�2), with p and Æ hosen to make the Fourier series trunatiuonerror � �j�j1. Now we need to evaluate Md Fourier oeÆients �̂(k) with1 � ki �M . The fast algorithm error is bounded by (x3.1)jEj � CÆ1�d=2  d�e8q Mh!2q j�j1for 1 � ki �M . Sine Mh � 1 by assumption, we havejEj � CÆ1�d=2  d�e8q !2q j�j1whih an easily be made � � by hoie of q. For example, � = 10�7 andd = 2 requires q � 7 while � = 10�12 and d = 3 still requires only q � 11 ifCj�j1 is of order unity. In pratie, even a muh smaller value of q suÆes,beause the Fourier series is dominated by lower terms for whih jkjh � 1and often we even have Mh� 1. One we have the Fourier oeÆients �̂(k),we multiply them by the appropriate Gaussian fators and evaluate SF� onthe grid with a standard FFT. If the grid were non-equispaed, we wouldapply the Fourier series evaluation sheme of x4.2. We have now evaluatedSF� on the grid at a ost of O((N +Md) logM) work and with an aurayof O(hm) + �.Now we turn to the evaluation of the loal part SL�(x) on the grid.This an atually be done in O(N logM) work, as it turns out. The keyobservation is that Æ = O(M�2) and SL deays to less than � outside atubular neighborhood of � having radius O(pÆ) = O(1=M). Thus eah of28



the N elements of � a�ets a number of grid points whih depends only onlog(�=M), leading to O(N logM) work as N and M inrease.To be preise, suppose that we an ignore images so that KL(x � x0) =(1=4�d=2)jx � x0j2�d�(d=2 � 1; jx � x0j2=4Æ). Then a point x at distaneD = dist(x;�) from � has SL�(x) bounded bySL�(x) � 14�d=2 Z� jx� x0j2�d�(d=2� 1; jx� x0j2=4Æ)�(x0)dx0� 14�d=2 j�j1�(d=2� 1; D2=4Æ)D2�d� C  D24Æ !d=2�2 e�D2=4ÆD2�dfrom x2. Suppose for onreteness that Æ = M�2, so the Fourier seriestrunation error is about � = 10�5. Then this error bound is below �j�j1when D � K=M where K � 6 in two dimensions. Thus, to single preisionauray, SL� is zero when x lies more than 6 grid spaings from �. Heneeah point on � an a�et at most 13d grid points. The general ase is similar.Inluding images presents no additional di�ulty, beause they are subjetto the same estimate. Only 3d images need be inluded, and even these matteronly if � omes very lose to �B.Thus we need evaluate SL�(x) only at O(N logM) grid points near �.When we do evaluate it, we use the sheme desribed in x3.3; evaluate thesingular part of jx� x0j2�d�(d=2� 1; jx� x0j2=4Æ)exatly over eah element, and apply Gaussian quadrature to the remainder.The singular part is a logarithm if d = 2 and jx � x0j�1 if d = 3; it an beintegrated exatly over a linear element to get seond order auray andquite likely over a ubi element for fourth order auray. See [7℄ for somedisussion of the diÆulties involved. (Atually, if Æ = O(H2) as is often thease, then one need only use quadrati elements in the evaluation of the loalpart to get fourth order auray and zero order elements to get seond orderauray, beause SL� is itself of size O(h).)The smooth part an be integrated by Gaussian quadrature with an errorbound that looks like (x3.3)E � C  h4pÆ!2q j�j1:29



At the very worst, we will have h � 1=M and pÆ = 1=M , whereuponE � C16�qj�j1:Thus q � 6 gives single preision and q � 10 gives double preision aurayassuming Cj�j1 is of order unity.We have now evaluated SL� o� � to auray O(hm)+�; hene we an addtogether SF� and SL� to get the full single layer potential S� o� �, evaluatedin O((N +Md) logM) operations, with the same order of auray.6 Disrete SumsIn many alulations [1, 6℄, one needs to evaluate a disrete sum of pointsoures S(i) = NXj=1 0�jK(xi; xj) 1 � i � N;(23)where the prime on the sum indiates that the j = i term is to be omitted.Here xi are distint points given in B = [0; 1℄d and K is a Green funtion for�� with boundary onditions imposed on �B. Diret evaluation of this sumosts O(N2) operations sine one must sum up N � 1 soures for eah targeti. We present an algorithm whih evaluates (23) muh more eÆiently.First, we desribe a method whih is optimal only when the points xiare distributed over B in a fairly uniform way. When the xi's are uniformlydistributed on a lower-dimensional set as N !1, the algorithm is no longeroptimal, but is still very fast; in numerial examples, it ahieves tremendousspeedups over diret alulation. The work estimate of the algorithm dependson the Hausdor� dimension D of the set where the xi's onentrate as N !1.We also sketh an O(N logN) algorithm, whih we have not implemented.It requires more ompliated analysis and some new speial funtion theory,whih will be disussed elsewhere.Method 1.Suppose for onreteness that K is the Dirihlet Green funtion for B, asdesribed in (2). Then we have the Ewald splittingS(i) = SF (i)� �iKF (xi; xi) + SL(i):30



Here SF (i) = 2d pXki=1 e��2jkj2Æ�2jkj2 �̂(k) sin �k1xi1 � � � sin �kdxid + EFwhere �̂(k) = NXj=1�j sin �k1xj1 � � � sin �kdxjdand EF satis�es the Fourier series trunation error boundjEF j � e��2p2Æ50p3Æ(d+1)=2MwhereM = P j�jj. The seond term must be subtrated beause our originalsum exluded the term with j = i. The loal part is given bySL(i) = 14�d=2 NXj=1 0 Ximages�jxi � ~xjj2�d�(d=2� 1; jxi � ~xjj2=4Æ) + ELwhere we keep only 3d images ~xj of eah point xj, those lying in the imageboxes adjaent to B, and the error EL in disarding the rest of the images isbounded by jELj � CdÆ2�d=2e�1=4ÆM;with a onstant Cd of order unity. We onsider eah of the three termsforming S(i) in turn.First, it is lear that we an evaluate the Fourier part SF (i) with themethods of x4.1 and x4.2. This will require O((pd+N) log p) work to produeauray �M=3, say, if p and Æ are hosen to make the Fourier series trunatedafter pd terms aurate to �M=3. This requires that p2Æ be bounded awayfrom zero.Next onsider the subtrated term�iKF (xi; xi) = �i2d pXki=1 e��2jkj2Æ�2jkj2 sin2 �k1xi1 � � � sin2 �kdxid + ESwhere ES satis�es the same estimate as EF . At �rst glane, this termseems trivial, beause eah point xi interats only with itself. Unfortunately,KF (xi; xi) depends on Æ and we have to sum up pd values to evaluateKF (x; x)at eah value of x. Thus it looks as though this term would ost O(pdN)whih would be far too muh. 31



Fortunately, it turns out that KF (x; x) an be evaluated by a fast methodvery similar to the Fourier series evaluation method of x4.2: We evaluateKF (x; x) on a �ne mesh in B and interpolate to eah desired value of x. The�ne mesh evaluation must be done eÆiently (though it ould of ourse bedone one and for all for eah Æ and stored permanently) and for this we needto observe that4 sin2 x sin2 y = 1� os 2x� os 2y + os 2x os 2yor the analogue in higher dimensions. Thus KF (x; x) an be evaluated on aregular grid by zero-padding and fast osine transforms.Finally, onsider the loal part. Here, the essential feature is rapid deay.Choose R = R(Æ) so that Cd Æ2�d=2R2 e�R2=4Æ � �=3;then R = O(pÆ) up to a logarithm. Then the loal term is less than �M=3whenever jx � x0j � R. Hene eah point xj only inuenes points xi withjxi � xjj � R. The assumption that the xj's are uniformly distributed ona set of Hausdor� dimension D as N ! 1 means then that eah ~xj aninuene only O(RDN) points as N !1, so we an limit the sum to suhpoints.In pratie, this needs a little further work, beause we want to exludethe inuene of distant points xj without omputing the distane to eahpoint. (The latter would ost O(N2) work whih would be too muh.) Thisan be done by the standard tehnique of organizing the points into boxes ofsize � R and allowing points in one box to interat only with points in thenearest neighbor boxes. This tehnique also allows easy inlusion of images,by using an extra layer of �titious boxes outside B.Hene the total work required to evaluate SL(i) for 1 � i � N isO(RDN2) = O(ÆD=2N2):Now we an minimize the total workW = O(pd logN +N logN + ÆD=2N2)subjet to the onstraint that p2Æ is bounded away from zero. The result isW = O(N� logN)32



where � = 2=(1 + D=d). Clearly � = 2 when D = 0 (points onvergeto a �nite set of points as N ! 1), while � = 1 when D = d. Thusthe algorithm is optimal if the points xi over B in a reasonably uniformway when N ! 1. An interesting intermediate ase is when the xi's areuniformly distributed over a hypersurfae, so D = d � 1. Then we �nd� = 2=(2�1=d). In two dimensions this gives us an O(N4=3 logN) algorithmwhile in three dimensions we get an O(N6=5 logN) algorithm. Thus thealgorithm di�ers little from an O(N logN) algorithm in this ase; the ratioN1=3 is less than 100 for N � 106, while N1=5 is bounded by 10 for N � 105.In pratie, these methods ahieve large speedups over diret evaluation.Note that we were able to do better than this when the soures were dis-tributed on a hypersurfae, in the ontinuous ase when the disrete problemorresponded to quadrature of a layer potential. This is beause in the on-tinuous ase, we were able to lassify ertain parts of the error as quadratureerror; we don't have this option when evaluating disrete sums.Method 2.As we have seen, the diÆulty in making an O(N logN) algorithm isdue to the loal part SL(i). One needs a multipole-type expansion whihseparates the variables yet|unlike multipoles|preserves loalization. Suhan expansion an be onstruted by integrating the Hermite expansion whihwas used to onstrut the fast Gauss transform. Begin with the expansion[12℄ ejx�yj2=Æ = X��0 1�!  x�pÆ!h�  ypÆ! :(24)Ignoring images temporarily, we haveKL(x� y) = Z Æ0 e�jx�yj2=4t(4�t)d=2 dt:Combining these two expressions gives an expansionKL(x� y) = X��0 x��! Z Æ0 (4�t)�d=2(4t)�j�j=2h�  yp4t! dt= X��0 x��! g�(y)This expansion an be used in the same way as (24) was used in the deriva-tion of the fast Gauss transform, if allowanes are made for the singularity33



of the funtions g�. The tehnique required to make these allowanes is pre-isely the same as in the fast multipole method [5℄, but with the substantialsimpli�ation of loalization; KL(x � y) deays rapidly as jx � yj inreases.Images are inluded (if neessary) in the obvious way.This sheme is theoretially elegant|and pratial ompared to diretevaluation|but it seems unlikely to be ompetitive with Method 1 exeptin situations unlikely to our. Thus we did not implement or test it inthis paper. It will be disussed in a future publiation if it turns out to bepratial.7 GeneralizationsWe have presented fast algorithms whih evaluate a disretized version of thesingle layer potential with an arbitrary order of auray, in an essentiallyoptimal amount of omputational e�ort. Di�erent approahes are used toevaluate S� on and o� �, orresponding to the ommon situation where onesolves an integral equation on � by iteration, then evaluates the potential ofthe resulting density � on a grid in the domain 
.Our algorithm an immediately be generalized to solve many other prob-lems whih arise in pratie. We list some examples.1. The modi�ations needed to evaluate double rather than single layerpotentials are straightforward. This is important in pratie beause oneusually solves a standard Dirihlet or Neumann problem on 
 by onverting itto an integral equation on �, in whih the integral operator is the nonsingularpart of either the double layer or the normal derivative of the sigle layer. Thusone often needs to apply suh an operator eÆiently on �.2. One an easily modify the analysis to handle potentials formed withother Green funtions for �� on a ube; for example, the periodi Greenfuntion is dealt with by replaing sine series by exponential Fourier series.This is useful in periodi omputations with interfaes.3. Volume potentials V f an be evaluated, say on a regular M �M gridin B, using the values of f on the grid points lying inside 
. The workestimate is O(Md logM) on a Md-point grid. The only new piee of workthat must be done is to do produt integration over d-dimensional elementson 
 rather than (d � 1)-dimensional ones on �. Muh bene�t is derived34



from the fat that the loal part VLf is O(h2) to begin with; thus quadratiapproximation of f gives fourth order auray, and seond order aurayan be ahieved by dropping the loal part altogether.4. The same approah an be used to produe fast solvers for boundaryvalue problems for any ellipti equation or system whih admits a potentialtheory. An important example in appliations is the stationary Stokes equa-tions, for whih the fundamental solution is known and Ewald summationhas been desribed in [15℄. (Boundary element methods for this problemhave been onstruted e.g. in [16℄.) The analysis goes through in the sameway, and the result is a fast solver for the Stokes equations in a boundeddomain or for Stokes ow with interfaes.5. Preisely the same generalizations an be made for the disrete sumalgorithm of x6.8 Numerial ResultsWe programmed two-dimensional versions of three of the algorithms pre-sented in this paper and tested them on examples. The omputations weredone in double-preision arithmeti in optimized Fortran on a SPARCstation1 or a Sun-4 workstation.The results are quite satisfatory; all three algorithms are muh fasterthan diret evaluation shemes for large-sale omputations, while the over-head is small enough that it is feasible to use them for very small alulationsas well. They break even at a very small number of points and ahieve dra-mati speedups for large jobs. The O(N logN) and O((M2+N) logN) timeestimates for the evaluation of the single layer potential on and o� � are veri-�ed by the numerial results. The disrete sum algorithm exhibits linear timerequirements when the points are uniformly distributed and O(N4=3 logN)when the points lie on a urve, as predited. In both ases, a onsiderablespeedup is obtained, even when N is as small as 160.The auray of all three alulations is exellent. The layer potentialalulations were learly seond-order aurate or better, while the disretesum evaluation sheme ahieved the error tolerane desired, and was sub-stantially more aurate than diret evaluation when the number of pointswas large. 35



8.1 Layer potentials evaluated on �We tested the algorithm of x5.1 on two examples, the �rst for auray andspeed, the seond only for speed, and ompared it with a diret evalautionsheme. In the diret method, the same disretized single layer potential isevaluated on � by diret summation. Thus the diret alulation already usesseparation of variables, produt integration in time, and Gaussian integrationover eah element. We programmed it also to evaluate Gaussians only whenthey were above the uto� �.In this type of experiment, a standard time-saving proedure is to usethe diret alulation to evaluate the potential only at 100 of the N pointson �. The resulting CPU time is then multiplied by N=100 to obtain anestimate of the time Td the diret alulation would require to arry out theentire alulation. In our present situation, the diret alulation still has toevaluate all the Fourier oeÆients even though only 100 values of S� aredesired. Thus the standard proedure would punish the diret alulationunfairly. Hene we ompared our results with the full diret alulation, aslong as the time required did not try our patiene, and estimated the timerequired for larger diret alulations by extrapolation. In other words, wemultiplied Td by 4 whenever we doubled N . This proedure tends to produeonservative estimates.In our �rst numerial example, we took � to be an o�-enter irle, withradius 0.13 and enter at (0:4; 0:7), parametrized by 0 � � � 2�, and we tookthe density �(�) = 10k os(k�), with k = 3. We tested the algorithm withvarious values of k between 1 and 10; the results we report were obtainedwith k = 3, but they would be little di�erent in form for other ases. Themain di�erene is that the asymptoti seond order auray takes longerand longer to be reahed as k is inreased, beause it takes more and morepoints to resolve the rapid variations in �. The potential S� is of orderunity, and is plotted in Figure 1. It an be evaluated essentially exatly bynumerial integration, and the auray of both fast and diret evaluationshemes ompared to an exat solution.The numerial parameters N , p and Æ are reported in Table 5. We set thetolerane � to 10�4 initially, and redued it by a fator of 4 at eah step. Thisis beause it would have been pointless to demand an auray of evaluationmuh less than quadrature error ould reasonably be expeted to be. Theparameters Æ and p were hosen so that e��2p2Æ=50p3Æ3=2 � � initially (whenN = 20), and then re�ned by fators of 1.5 and 0.5 respetively as N was36



Figure 1: Single layer potential of 30 os 3� on an o�-enter irle.
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doubled. We used n = 1 level of produt integration in time, q = 2 points forGaussian quadrature on eah element to evaluate the Fourier oeÆients, andq = 2 points per element to evaluate the Gauss transform. The Fourier seriesevaluation sheme used a �ne mesh of size 3p and �fth order interpolation.The fast transform parameters were tested by re�ning them to see that theymade no signi�ant di�erene in the error in the numerial solution.The numerial results are shown in Table 5. The timing runs were madeon a SPARCstation 1 with the FORTRAN optimizer; this is about a one-megaop mahine. The olumns headed Tf and Td give respetively thetime required for the fast algorithm to evaluate S� and the time requiredto evaluate S� diretly at all N points. It is lear that the fast algorithmis muh faster than diret evaluation for large jobs, and breaks even for asurprisingly small number (between 20 and 40) of points on the urve. With10,000 points on the irle, the fast algorithm is over 300 times faster thanthe diret alulation, taking three minutes rather than 17 hours.The olumns headed Ef and Ed report the maximum error measured in200 randomly hosen values of S� on �, for the fast and diret omputationsrespetively. Asterisks indiate ases for whih we did not obtain the error inthe diret alulation beause we did not run it. One the osillations in thesolution are well-resolved, the error in the method is learly at least seondorder. There is no appreiable di�erene between the errors of the fast anddiret alulations, beause the quadrature error dominates the error due tothe fast evaluation shemes. One feature of the error whih is not apparentfrom the tables is that the relative error is small, as well as the absolute error.In plaes where the potential is small, the error is also small; the potentialhas roughly the same number of orret signi�ant digits in all plaes.Next, we ran a omputation with a more ompliated boundary just tosee how muh faster the fast algorithm would be in a more realisti situation.In this ase, we took � to be the union of four irles, modelled on a typialproblem in rystal growth [27, 28℄, and � to be 20 os 2� on eah irle. Moreappliations to rystal growth will be reported in future publiations. Thesingle layer potential is shown in Figure 2. The timings given in Table 6 wereobtained with the same parameters that were used for the previous example,but this time we did not measure the error. Study of the results at seletedpoints suggests, however, that the error is quite similar to the previous ase,so that we ahieve 1% auray with N = 640 points distributed over the fourirles. The fast algorithm is then about nine times faster than the diretevaluation; it is never slower, and soon beomes muh faster as the mesh is38



re�ned. With 20,000 points, it is 240 times faster than diret evaluation.8.2 Layer potentials o� �In the next pair of examples, we tested the evaluation of S� on a regulargrid of size M �M , for the potential of a irle or four irles. We did notinlude images for the loal alulation, so Æ was hosen so that images werenegligible. This put a lower bound on p =M via the Fourier series trunationerror estimate. The diret alulation now onsists of the same loal partas the fast algorithm, ut o� at the same distane, together with diretevaluation of the Fourier oeÆients of the loal part. The Fourier series isthen evaluated on the grid with an FFT, as diret evaluation would be unfair.Thus the only di�erene between the fast and diret alulations is that thefast algorithm evaluates the Fourier oeÆients muh more eÆiently. Thefast algorithm is O(M2 + N) work whereas the diret alulation requiresO(M2N) work. The growth of the time required by the fast algorithm isatually loser to linear than to quadrati; this is beause most of the e�ortis spent on evaluating the loal part, whih is an O(N) alulation. Again,the error was relatively small as well as absolutely small; the potential hasroughly the same number of signi�ant digits in di�erent plaes, despite thefairly rapid spatial variation evident in Figure 1. In this alulation, we usedq = 5 points for Gaussian quadrature of both the loal part and the FourieroeÆients. The same sequene of toleranes � was used as in the previousexample.Table 8 shows results for evaluating the four-irle potential on the grid.Again, the fast algorithm is muh faster than the diret alulation. Aspeedup of seventy is obtained with 2560 points distributed over the fourirles. Asterisks denote diret timings estimated by extrapolation from pre-vious values.8.3 Disrete sumsFinally, we present two numerial examples for the disrete sum algorithm.In the �rst, we generated N random points uniformly on B, and observethe predited linear growth of work with N ; in the seond, we distributedpoints uniformly on a irle, and observe the expeted O(N4=3 logN) workrequirement. Both ases exhibit a onsiderable speedup, ompared to a diret39



Case N p Æ Ef Ed Tf Td1 20 9 0.01024 0.478 0.478 0.29 0.212 40 13 0.00512 0.202 0.202 0.57 0.803 80 19 0.00256 0.572E-1 0.573E-1 1.09 3.354 160 28 0.00128 0.119E-1 0.119E-1 2.40 14.115 320 42 0.00064 0.218E-2 0.218E-2 4.51 61.616 640 63 0.00032 0.379E-3 0.379E-3 10.15 249.387 1280 94 0.00016 0.645E-4 ** 20.42 985.768 2560 141 0.00008 0.105E-4 ** 41.56 3943.049 5120 211 0.00004 0.166E-5 ** 93.02 15772.1610 10240 316 0.00002 0.264E-6 ** 192.75 63088.64Table 5: Results of evaluating (on the irle) the single layer potential of30 os 3� on a irle.
Case N p Æ Tf Td1 80 9 0.010240 0.790 1.0502 160 13 0.005120 1.430 4.1803 320 19 0.002560 3.780 16.1504 640 28 0.001280 7.430 64.6005 1280 42 0.000640 15.880 258.4006 2560 63 0.000320 29.320 1033.6007 5120 94 0.000160 65.630 4134.4008 10240 141 0.000080 127.290 16537.6009 20480 211 0.000040 277.850 66150.400Table 6: Time required to evaluate (on the irles) the single layer potentialof 20 os 2� on four irles.
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Figure 2: Single layer potential of 20 os 2� on the union of four irles.
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Case N M Æ Ef Ed Tf Td1 20 7 0.020480 0.111E-01 0.111E-01 3.890 3.6702 40 13 0.005120 0.785E-02 0.785E-02 10.290 10.5803 80 25 0.001280 0.898E-03 0.898E-03 21.650 28.7104 160 49 0.000320 0.285E-03 0.285E-03 45.150 113.2205 320 97 0.000080 0.658E-04 0.658E-04 97.710 688.9206 640 193 0.000020 0.144E-04 0.144E-04 229.830 5173.210Table 7: Results of evaluating (on a M �M grid) the single layer potentialof 30 os 3� on a irle.

Case N M Æ Tf Td1 80 7 0.020480 8.540 7.8402 160 13 0.005120 19.120 20.6903 320 25 0.001280 40.080 69.2904 640 49 0.000320 87.070 554.3205 1280 97 0.000080 205.240 4434.560*6 2560 193 0.000020 509.300 35476.480*Table 8: Time required to evaluate (on the grid) the single layer potential of20 os 2� on the union of four irles.
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alulation with the same auray. The breakeven point is quite low as well,indiating that the fast algorithm has very little overhead.We ompared our sheme with a diret evaluation sheme whih omputesS(i) = NXj=1 0K(xi; xj)�jto auray �M withM = P j�jj. To arry out the diret evaluation, we splitK = KF +KL by Ewald summation and evaluate eah piee to auray �=2.The splitting parameter Æ0 for the diret evaluation is hosen as large aspossible subjet to the restrition that only nine images be kept; thus werequired 2Æ0� e�1=4Æ0 � �=2:The number of terms p2 kept in KF was then set by the Fourier series trun-ation error estimate e��2p2Æ050p3(Æ0)3=2 � �=2:Typially we took � = 10�6, Æ0 = 0:02 and p = 7. We used the diretsummation method to evaluate the potential at 10 points and extrapolatedthe time estimates.First we used random xi uniformly distributed over B. We took � = 10�6,and used a mesh of size 4p with seventh order interpolation in the Fourierseries evaluation sheme. We took N = 10; 20; 40; : : :. The results are shownin Table 9, where Td is the CPU time required for the diret alulation, Tf isthe time required by the fast algorithm, and Ed and Ef are the orrespondingerrors. The error Ef is asymptotially smaller than the error Ed in diretevaluation, and the speedup Td=Tf is astronomial. With 40,960 points, thediret alulation would take almost six months to do what the fast algorithmdoes in a little over one hour. The fast algorithm inurs so little overheadthat it is faster than diret evaluation even with only 10 points.Our seond test ase used xi uniformly distributed on a irle of radius0.39 and enter (0.4,0.4), so it almost touhes the edge of the box and im-ages must be inluded. Now our re�nement strategy was to inrease p by22=3 and redue Æ by 24=3 when N was doubled. The work is supposed to beO(N4=3 logN) in this ase, and the numerial results bear out this expeta-tion. A speedup of 360 is ahieved when N = 10; 000.43



Case N p Æ Tf Td Ef Ed1 10 5 0.020480 0.730 0.820 0.602E-06 0.470E-072 20 8 0.010240 1.440 3.500 0.263E-06 0.696E-073 40 12 0.005120 2.870 14.320 0.125E-06 0.440E-074 80 17 0.002560 11.120 56.880 0.606E-07 0.468E-075 160 25 0.001280 21.060 228.160 0.233E-07 0.419E-076 320 36 0.000640 35.390 908.160 0.688E-08 0.189E-077 640 51 0.000320 74.880 3701.120 0.568E-08 0.279E-078 1280 73 0.000160 142.810 14896.640 0.133E-08 0.229E-079 2560 104 0.000080 285.960 59898.880 0.119E-08 0.236E-0710 5120 148 0.000040 545.120 236687.360 0.435E-09 0.233E-0711 10240 210 0.000020 1123.720 944834.560 0.107E-09 0.236E-0712 20480 297 0.000010 2113.840 3753779.200 0.763E-10 0.226E-0713 40960 421 0.000005 4111.720 15002624.000 0.396E-10 0.227E-07Table 9: Results for the O(N logN) disrete sum algorithm with uniformlydistributed points.
Case N p Æ Tf Td Ef Ed1 20 6 0.020480 1.630 2.700 0.635E-07 0.511E-072 40 10 0.008127 2.930 10.840 0.469E-07 0.156E-073 80 16 0.003225 9.280 44.080 0.192E-07 0.153E-074 160 26 0.001280 19.150 177.760 0.378E-08 0.111E-075 320 42 0.000508 34.650 718.400 0.523E-08 0.555E-086 640 67 0.000202 78.270 2947.200 0.411E-08 0.720E-087 1280 107 0.000080 183.000 11773.440 0.259E-08 0.760E-088 2560 170 0.000032 523.160 46376.960 0.138E-08 0.999E-089 5120 270 0.000013 972.040 176517.120 0.925E-09 0.816E-0810 10240 429 0.000005 1951.720 708864.000 0.271E-08 0.846E-08Table 10: Results for the disrete sum algorithm with points distributed ona irle; the algorithm is then O(N4=3 logN).
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9 ConlusionsWe have presented three new families of fast algorithms for lassial potentialtheory and demonstrated their pratiality with numerial results. Our algo-rithms are based on a new approah whih ombines Ewald summation withfast transforms for simple speial funtions. The key is Ewald summation,whih separates the Green funtion into low-frequeny global information andhigh-frequeny loal information. The low-frequeny information is arriedby a rapidly onverging Fourier series and the high-frequeny information isloalized near the singularity. Adjusting the splitting parameter adjusts thedeay in Fourier spae versus the deay in real spae, and leads to new fastalgorithms for various problems.Numerial results show that our new approah is aurate and eÆient.The breakeven point is amazingly low, and the new algorithms ahieve on-siderable speedups for large problems. When one wants to evaluate a layerpotential to one perent auray on a reasonably ompliated domain, thefast algorithm is nine times faster than even a sophistiated diret alula-tion. When higher auray is desired or the boundary is more ompliated,requiring a �ner disretization, the fast algorithm an be several hundredtimes faster. Ewald summation is responsible for the auray of the algo-rithm whih evaluates the potential on �, beause it splits the potential intopiees, eah strutured so that simple Gauss-Legendre quadrature an beused for eah element. The eÆieny is then due to the use of the fast Gausstransform and fast manipulation methods for Fourier series. When evaluat-ing the potential o� �, auray suggests the use of produt integration forthe loal part. EÆieny an still be ahieved beause the loal part deaysrapidly when one moves away from �.Disrete sums an be evaluated rapidly as well, suggesting that this al-gorithm will be very useful in large-sale omputations with periodi vortexmethods or other partile methods. Numerial results for disrete sums showthat speedups of 4,000 an be ahieved in alulations with 40,000 randomuniformly distributed partiles, and the algorithm breaks even at 10 partiles.10 AknowledgementsI would like to thank V. Rokhlin for suggesting the idea of his unpublishednon-equidistant FFT algorithm to me, and one of the referees for his on-45



strutive ritiism.
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