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Abstract 
 

Relational Reasoning and Visuospatial Tools:  
Unlocking STEM Learning and Reasoning 

 
by 

 
Elena R. Leib 

 
Doctor of Philosophy in Psychology 

 
University of California, Berkeley 

 
Professor Silvia A. Bunge, Chair 

 

Humans excel at detecting patterns in information, abstracting rules, and making inferences. 
Underlying these skills is relational reasoning: the cognitive ability to identify and map abstract, 
generalizable relations between pieces of information. Though this powerful ability supports 
higher-order cognition, it can also be a processing bottleneck when the complexity of information 
is too high for our limited cognitive resources. My dissertation explores this dynamic—relational 
reasoning as both a cognitive tool and bottleneck for learning and reasoning—and how we 
overcome cognitive limitations by offloading relations to external spatial representations, such as 
visuospatial tools (e.g., graphs and diagrams). I focus much of my work on STEM outcomes in 
children because many important concepts and skills in these disciplines are relational in nature 
and difficult for students to learn, making them an ideal testbed for these empirical questions. 

In Chapter 1, I take a high-level view of the relationship between reasoning and education and 
review evidence that education hones reasoning ability. I find significant evidence that the 
protracted, immersive experience of formal schooling taxes, and therefore improves, general 
reasoning skills, such as relational reasoning. 

In Chapter 2, I establish that there is a unique role for relational reasoning in learning that is 
distinct from other cognitive skills. In two empirical studies, I use the case of fraction learning to 
investigate the main executive functions involved in fraction processing, and then show that 
relational reasoning predicts fraction performance over and above these other strong domain-
general predictors.  

In Chapter 3, I investigate how we learn to offload relations to physical space. In an empirical 
study with the Tsimane’, an indigenous farmer-forager people from the Amazon basin, I find that 
individuals spontaneously offload to-be-remembered relations to space, including individuals 
who report no formal schooling and are not literate. This study demonstrates that offloading 
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relations to external representations is part of a foundational cognitive toolkit and is separate 
from the regular use of visuospatial tools.  

Finally, in Chapter 4, I show that scaffolding relational reasoning during learning can improve 
understanding, focusing on the case of graph comprehension. I first propose a relational 
reasoning perspective on the difficulties that children and adults have with graph comprehension. 
Then, I empirically test aspects of this approach in a preliminary intervention study that 
manipulates the extent to which relational reasoning is engaged during a lesson on interpreting 
graphs of linear functions. I find that having students focus on patterns—both visual and 
conceptual—and make comparisons supports learning.  

Taken together, this body of work simultaneously contributes to our understanding of the role of 
relational reasoning in higher-order cognition and to applications of relational reasoning for 
improving STEM education. In particular, my research provides a generative framework for 
identifying the STEM content that students may find especially difficult, as well as for informing 
the design of pedagogical approaches for helping students overcome these obstacles. 

 



i 

 

 

Dedication 
 

To all of my family and friends 
who love me, support me, and  

help me grow every day. 

  



ii 

 

 

Acknowledgments 
 
This journey has been as much about the people as it has been about the research, if not more, 
and I have many people to thank. 

Silvia, thank you for taking a chance on me and for your mentorship and support over these 6 
years! I feel incredibly grateful to have had the opportunity to grow as a researcher with you and 
be part of your lab. I am also deeply grateful that working with you brought me to Berkeley, both 
the city and the university. Thank you for the opportunity to develop and follow my ideas, and for 
connecting me with colleagues who complement your mentorship. Thank you for sticking by me, 
believing in me, helping me learn how to protect my time, and always helping me move forward 
in the program. It has been a joy and honor to work with you.  

Steve, thank you for also taking a chance on me and sending me an email in early May 2022 asking 
if I would be interested in going to Bolivia. That email truly changed the course of my grad school 
career in a most exciting and meaningful way, more than I could have ever imagined! Having the 
opportunity to work with you, your lab, and visit San Borja was a deeply formative experience for 
me both as a researcher and more broadly as an individual. Thank you! 

Thank you to my amazing committee for their feedback, insights, and support over the years. Jan, 
your love of research is contagious! I enjoy discussing research ideas with you, and our semesterly 
coffee chats always left me feeling inspired, motivated, and more confident in myself. Thank you 
for your enthusiasm for my ideas and general excitement for me at every stage of grad school. 
Michelle, thank you for expanding my thinking in so many ways and for guiding me into new 
literatures. You opened my eyes to thinking about epistemic tools, which fundamentally shifted 
the way I approach my research. Further, thank you for welcoming me into your writing group 
during lockdown and creating such a supportive community of researchers. Priti, thank you for 
your excitement about my research and encouraging me at every step of the way. This was 
especially meaningful when I was feeling uncertain and down on my research ideas. After 
meetings with you I always felt a boost of motivation, confidence, and enthusiasm, in addition to 
having many new ideas for my projects.   

In addition to my advisors and committee, I was lucky to work with two more wonderful mentors. 
Ariel, I really can’t imagine where I’d be in grad school without you! I am grateful that I started 
working on that first project with you my first year and that I’ve gotten to continue working with 
you ever since. I have learned so much from you—from how you wrote data cleaning and analysis 
scripts, to your clear thinking, excellent writing, and efficient use of time, just to name a few. 
Thank you for all of your support, many hours of Zoom calls, and care. You have been there for 
me through all the ups and downs. Miriam, I am grateful that I had the opportunity to work with 
you and learn from you! I especially appreciate the time you spent with me editing and re-writing 



iii 

 

 

parts of our manuscript over Zoom. I learned a great deal from watching your process and hearing 
you think aloud. Thank you for your time and mentorship. 

When I started grad school, I could never have imagined all the amazing, deep friendships that I 
would build!   

Monica, I knew from the day I met you when you hosted me at interviews that I wanted to be 
your labmate and your friend. And lucky for me, I have gotten to be both! You are always there 
for me, no questions ask, and you get me like few others do. I’m endlessly grateful to have you as 
my well buddy and my heart person, and to journey together on the same emotional wavelength.  

Willa, developing QuACK with you and teaching it together every year has been one of the biggest 
sources of growth, pride, and joy for me throughout grad school. I love brainstorming with you, 
thinking big, and fleshing out new ideas—there’s nothing like that shared excitement when we 
know we are on to something. Thank you for helping me to grow as a teacher and for believing 
in me. And for being the best climbing buddy! I’m glad we have a new project together. 

Roya, your love, joy, care, and curiosity are infectious, and you have an incredible way of making 
even difficult times bright. Thank you for being a spark of joy and fun from the day I met you at 
interviews, for your incredible memory of details about people as well as about every paper 
you’ve ever read, and for always having the perfect snacks and sharing them with me.  

Thank you to the Bunge Lab and the Colala Lab for lab lunches, interesting discussions, and good 
laughs. Thank you Holly for always being there for a chat or a hug. I love our lunches and stopping 
by your desk, and I’m grateful we’ve had each other from the beginning. Thank you to the 
Developmental Area for being a warm, supportive, and fun home base and to the Psychology 
Department as a whole, I could not have asked for a better community of students, staff, and 
faculty. I am also grateful for our Social Dev Prosem class from Fall 2019 and to Ari and Jan who 
were teaching it for their first time. That was a special learning community, thank you for 
expanding my thinking around the role of society and cultural context in development. Thank you 
to my 2018 cohort, I’m lucky to have gone through grad school with such a brilliant, motivated, 
accomplished, and kind group of people.   

A meaningful part of my time as a grad student has been as a teacher and mentor, and I am 
grateful to all of my students for coming to class with open minds, getting excited about the 
material, believing in themselves, and supporting me as I grew as a teacher. Special thanks to my 
former QuACK students for your interest and dedication and for co-creating an inclusive and 
welcoming space with Willa and me. Thank you for giving us the opportunity and freedom to 
explore what we love and do what we care about. We could not have done it without you! 

Thank you to all my teachers and mentors over the years, starting from childhood. I especially 
want to thank my math and science teachers, who created welcoming and engaging 



iv 

 

 

environments for me to learn, and my psychology professors and research mentors and advisors. 
Thank you to all the children and adults who participated in my studies and to my research 
assistants over the years, including Hana Massab, Roshni Sarathy, Royalle Hurney, and Emily 
Kleinfelder. Thank you to my funding sources, including the Berkeley Fellowship, Jacobs 
Foundation, and NSF. And a very special thanks to all of the dedicated folks who have developed 
R, RStudio, and the Tidyverse packages, and to the whole R community for creating all the tools, 
packages, and help pages that I have used to wrangle, analyze, and visualize my data. I cannot 
thank you enough—without you and these tools this research and these beautiful plots would 
not be possible! And more than just code, you have created an amazing and supportive 
community of learners. Thank you!  

And of course I wouldn’t be anywhere without my incredible family. 

Mom and Dad, thank you for supporting me and encouraging me in everything I do. Mom, thank 
you for sharing with me your interest in and compassion for people, your love of teaching and 
connecting, and your joy and appreciation for the beauty of the world around us. I’m so glad I 
bring you joy and nachas. Dad, thank you for sharing with me your computational and analytical 
thinking skills, your attention to detail, your love of patterns and numbers, and baking. I am 
grateful you suggested I take a computer science class in college! You both are wonderful role 
models and have taught me how to build community wherever I go. 

Josh, I feel so lucky that in you I have a wonderful brother and a best friend. I admire your 
curiosity, insightfulness, and intentionality, and am grateful that I can go to you for anything, from 
advice to a hearty laugh. I love spending time with you! 

Grandma and Grandpa, thank you for everything you have done for our family and for teaching 
me the meaning of hard work, dedication, resilience, and perseverance. Grandma, I cherish our 
time together. Thank you for always asking what is new and then following up about it. I feel so 
lucky that I can confide in you. I also appreciate when you remind me that sometimes you just 
need to tell yourself that you are fine and get things done. Grandpa, I think about you and miss 
you all the time. Thank you for always encouraging my interests in math, science, and computers. 
I know you would be so proud of me! 

Mom Mom, thank you for your warmth, love, and care. I treasure our time together, whether it 
is in Philadelphia, Florida, Pittsburgh, or on the phone. I can always count on you to tell me a good 
story or new fact I didn’t know, make me laugh, and help me finish a crossword, to name just a 
few. I love that we make each other feel seen and special. Pop Pop, I wasn’t old enough to know 
you well, but luckily I’ve gotten to hear many stories. I know I share with you a love of connecting 
with people, teaching, and the beach. I often think about you when I’m in the classroom and how 
proud you’d be to see me teaching, too.  



v 

 

 

Omead, thank you for being you. I feel incredibly lucky and grateful that I met you when I did. You 
add so much to my life every day and are one of the most supportive and caring people I know. 
Thank you for being a calming energy and my adventure buddy, for helping me take fun breaks 
so I don’t get burned out, making me delicious food, giving me huge hugs, and making me laugh. 
I am so lucky to have you by my side. 

To all my family and friends, I’m certain I could write a whole other dissertation just on how 
incredible you all are! Thank you for your endless love, care, support, and laughs. For introducing 
me to new activities and ideas, pushing me to grow, and providing the warm environment to 
sustain that growth. For being with me through thick and thin, laughs, cries, rants, and everything 
in between. For keeping me grounded and for helping remind me of who I am and who I want to 
become. I wish I could fully communicate even a fraction of how much I love you and how special 
you are to me. Thank you! 

 

 

 

 

 

 

 

 

 

 

 

 

A little reflection for my past self, my future self, and anyone reading this: 

The path is always winding. You don’t always know where you’re going or how you’ll get there, 
but you are stronger and more resilient than you can ever know. Keep following what excites 
you and you’ll always be doing something that you love.  



vi 

 

 

Table of Contents 

Abstract  1 

Acknowledgments ii 

Table of Contents vi 

Introduction 1 

Relational reasoning and relational complexity 1 

A mechanism for learning and a cognitive bottleneck 3 

Reasoning and relational offloading with visuospatial tools 4 

Relational reasoning and STEM education 6 

The present work 7 

Chapter 1. Education hones reasoning ability 8 

1.1 Abstract 8 

1.2 Introduction 8 

1.3 Effects of formal education on reasoning 9 

1.4 Reasoning programs designed by researchers 9 

1.5 Courses that tax reasoning skills 10 
Preparing for a law school entrance exam 10 
Emerging findings 12 

1.6 Broader considerations 13 

1.7 Conclusion 13 

Chapter 2. Relational reasoning is distinct from other domain-general cognitive 
processes 15 

2.1 General Introduction 15 

2.2 Testing the whole number interference hypothesis: contributions of inhibitory control and 
whole number knowledge to fraction understanding 15 

Abstract 15 
Introduction 16 
Methods 21 
Results 28 
Discussion 36 

2.3 Relational thinking: An overlooked component of executive functioning 44 
Abstract 44 



vii 

 

 

Introduction 44 
Method 48 
Results 53 
Discussion 61 

Chapter 3. Spontaneous and strategic relational offloading to physical space 64 

3.1 General Introduction 64 

3.2 Indigenous Amazonians spontaneously use space to offload cognitive demands 65 
Abstract 65 
Introduction 65 
Experimental paradigm 66 
Participants spatially organized cards to strategically represent relevant information 68 
Shape of card layouts varied within and between conditions 70 
Use of spatial strategies increased after the first trial 71 
Case studies show change in strategy 72 
Discussion 73 
Materials and Methods 74 

Chapter 4. Scaffolding relational reasoning: A promising approach for promoting 
graph comprehension 79 

4.1 Abstract 79 

4.2 Introduction 79 
Relational reasoning and relational complexity 81 

4.3 A relational reasoning perspective on graph comprehension 81 
Relational reasoning in the cognitive processing of graphs 82 
Relational reasoning and the levels of graph comprehension difficulty 83 
Relational complexity in graphical displays 85 
Implications for graph pedagogy 86 

4.4 Preliminary study 87 
Methods 89 
Results 99 

4.5 Discussion 102 
Limitations and future directions 105 
Conclusion 107 

General Discussion 108 

Summary and theoretical implications 108 

Pedagogical implications 109 



viii 

 

 

Conclusion 110 

References  111 

Appendices  134 

Appendix A: Supplemental Materials for Chapter 2 134 

Appendix B: Supplemental Materials for Chapter 3 135 

Appendix C: Supplemental Materials for Chapter 4 157 
 

  



ix 

 

 

Portions of this dissertation appear in the following articles: 
 
Chapter 1 
Bunge, S. A., & Leib, E. R. (2020). How Does Education Hone Reasoning Ability? Current 

Directions in Psychological Science, 29(2), 167–173. 
https://doi.org/10.1177/0963721419898818 

 
Chapter 2 
Section 2.2 
Leib, E. R., Starr, A., Younger, J. W., Project iLead Consortium, Bunge, S. A., Uncapher, M. R., & 

Rosenberg-Lee, M. (2023). Testing the whole number interference hypothesis: 
Contributions of inhibitory control and whole number knowledge to fraction 
understanding. Developmental Psychology, 59(8), 1407–1425. 
https://doi.org/10.1037/dev0001557 

 

Section 2.3 
Starr, A., Leib, E. R., Younger, J. W., Project iLead Consortium, Uncapher, M. R., & Bunge, S. A. 

(2023). Relational thinking: An overlooked component of executive functioning. 
Developmental Science, 26(3), e13320. https://doi.org/10.1111/desc.13320 

 

Chapter 3 
Leib, E. R., Bunge, S. A., & Piantadosi, S. T. (under review). Indigenous Amazonians 

spontaneously use space to offload cognitive demands. 
 

Chapter 4 
Leib, E. R., Wilkerson, M. H., Shah, P., & Bunge, S. A. (in prep). Scaffolding relational reasoning: 

A promising approach for promoting graph comprehension   

https://doi.org/10.1177/0963721419898818
https://doi.org/10.1037/dev0001557
https://doi.org/10.1111/desc.13320


1 

Introduction 

In our day-to-day lives, we often need to reason about complex information across various 
domains. For example, we choose what foods we should eat, make plans for how to spend our 
days, and think about pressing issues in society, such as whether we can change the trajectory of 
climate change. One feature that these diverse examples have in common is that they require the 
reasoner to think about and coordinate many different relations between multiple pieces of 
information. In the case of planning a day, a reasoner must consider various dimensions of each 
activity on her to-do list, such as how long each will take to complete and how urgent and 
important it is, and integrate those dimensions with additional factors, such as how much energy 
she has, enjoyment, the weather outside, and so on. Underlying these thinking skills is relational 
reasoning: the domain-general cognitive ability to map abstract relations between pieces of 
information. This capacity is considered core to human cognition and has been shown to support 
abstraction, inference, generalization, analogical reasoning, and fluid reasoning (Gentner, 2003; 
Halford et al., 2010; Hofstadter, 2001). However, it can also be a processing bottleneck when the 
complexity of information is too high for our finite cognitive resources.  

My dissertation explores this dynamic—relational reasoning as both a cognitive tool and 
bottleneck for learning and reasoning—and how we overcome cognitive capacity limits by 
offloading relations to external spatial representations, such as graphs and diagrams. A second 
aim is to further bridge the relational reasoning literature with education and pedagogy, exploring 
ways that a relational reasoning lens can improve instruction in complex domains. In the following 
four chapters, I investigate 1) whether education hones reasoning, 2) whether there is a unique 
role for relational reasoning in learning, over and above other cognitive skills, 3) the cognitive 
origins of relational offloading, and 4) whether scaffolding relational reasoning during learning 
can improve understanding. In much of this work, I use STEM content and outcomes as a testbed 
for these questions. Before getting into the details of these chapters, I first start by introducing 
the concepts of relational reasoning and relational complexity. Next, I overview how relational 
reasoning is a powerful mechanism for learning and how it is constrained by prior knowledge and 
finite cognitive resources. I then apply the lens of relational reasoning to visuospatial tools (e.g., 
graphs and diagrams) to explain how they could be used to offload some of the relational demand 
during reasoning. After, I contextualize relational reasoning and visuospatial tools in STEM fields 
and make a case for why these areas are a generative testbed for theories about relational 
reasoning. Finally, I overview each chapter of the dissertation and the research questions they 
address. 

Relational reasoning and relational complexity 

Relational reasoning is the ability to identify and map abstract, generalizable relations between 
two or more objects, pieces of information, or representations. A relation is a predicate that takes 
two arguments (Gentner, 1983). For example, larger(elephant, dog), which can be read as “The 
elephant is larger than the dog” and cause(kick, injury) as “The kick caused the injury.” Thus, 
relational reasoning can be thought of as a function that takes the arguments as input, operates 
on them (i.e., maps relations between them), and outputs a new piece of information, such as a 
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generalization, which is more abstract than the inputs. This process has been investigated 
empirically and modeled extensively (e.g., Bunge et al., 2005; Falkenhainer et al., 1989; Halford 
et al., 2012; Hummel & Holyoak, 2005; Johnson-Laird, 2010). Relational representations are 
constructed in working memory, where arguments (e.g., elephant and dog) dynamically bind into 
roles in the relation, which means that the same arguments can later bind to other relations (e.g., 
older(elephant, dog)) or fill different slots in the same relation (e.g., larger(dog, mouse)), 
depending on the context (Halford et al., 2010; Hummel & Holyoak, 2005). Converging evidence 
from cognitive, education, and neuroscientific studies show that relational reasoning develops 
slowly over childhood and into early adolescence, reaching adult-like levels around 11 to 12 years 
old (Andrews & Halford, 2002; Crone et al., 2009; Jablansky et al., 2016; Wendelken et al., 2017). 
Various features affect the relational reasoning process, two of which are the focus here: the 
nature and number of arguments entering into the relation.  

The nature of the arguments—whether they are objects or other relations—affects the order of 
the relation. A first-order relation takes objects as arguments, such as the larger(elephant, dog) 
example above (Gentner, 1983). It has been demonstrated that even infants are sensitive to first-
order relations of cause and effect, simple spatial relations (e.g., above, below), and quantitative 
relations (e.g., more than, less than) (Goswami, 2001; Penn et al., 2008). Another common first-
order relation is object similarity, a same relation that takes two objects and compares their 
identity by mapping the relationship between their features. For example, infants are able to 
abstract an ABA pattern from hearing sets of phonemes, such as ‘la-di-la’ and ‘bo-ta-bo’ (R. L. 
Gómez & Gerken, 2000; Marcus et al., 1999). These abstractions are perceptually bound because 
the arguments are percepts (e.g., same(sound_pos1, sound_pos3)). Alexander (2016) suggests 
that perceptually bound first-order relational reasoning is what helps humans recognize patterns 
in the continuous flow of information that floods our senses, allowing for percepts to be coupled 
with concepts to help make sense of the world around us. 

However, relational reasoning is not limited to operating just on objects: we can also reason about 
relations between relations. Termed higher-order relational reasoning, these relations take at 
least one other relation as an argument (Gentner, 1983). Gentner (1983) gives the example of 
cause[strike(x,y), collide(y,z)], which can be read as “X strikes y, causing y to collide with z.” 
Another example of higher-order relations is relational similarity, which includes analogy. Like 
object similarity it uses the same relation, but instead of objects or percepts as arguments now 
the arguments are relations, allowing for comparisons between the relational structures of two 
different representations (Gentner, 2003). For example, in saying that the hydrogen atom is like 
the solar system a reasoner maps similarity between the relational structure of the solar system 
(e.g., revolve_around(planets, sun)) to that of a hydrogen atom (e.g., revolve_around(electrons, 
nucleus)). In this way, higher-order relational reasoning is role-based: it is not the attributes nor 
surface-level features of the objects themselves that are being compared, but rather the roles of 
the objects and relationships among them (Gentner, 1983; Halford et al., 2010; Hummel & 
Holyoak, 2005).  

In addition to the nature of arguments that enter into a relation, the number of arguments, or 
arity, is also important. For example, larger(elephant, dog) is a binary relation because it has slots 
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for two arguments. Addition, on the other hand, represents a ternary relation that takes three 
arguments (e.g., 2 + 3 = 5 can be written as addition(2, 3, 5)). Relational complexity is the 
processing and working memory load imposed by the number of variables that are being related. 
The greater the number of variables, the greater the relational complexity and cognitive load. 
Thus, relational reasoning is a cognitively demanding process that quickly becomes more taxing 
as the number of items to be related increases. 

A mechanism for learning and a cognitive bottleneck 

Relational reasoning serves as a general learning mechanism that drives the acquisition of 
increasingly complex, abstract, and relational knowledge throughout childhood and adulthood. 
Gentner (2003) and Goswami (2001) both posit that the relational processes present in human 
infants are the same as those that support higher-order relational reasoning in children and adults 
and that these processes underlie humans’ incredible learning abilities (see also Cattell, 1943; 
Hebb, 1942). Relational reasoning scaffolds learning by taking input from prior knowledge or 
current representations in the environment and outputting information that is more abstract—
e.g., a pattern, category, generalization, or induction—and may be novel to the reasoner. In turn, 
this newly learned knowledge can either become the input for another round of relational 
processing, continuing to build more abstract knowledge, or stored in memory for later use. Thus, 
relational reasoning serves as an iterative process that supports learning.  

However, these powerful relational processes are constrained by limitations in prior knowledge 
and cognitive resources, which I argue can result in bottlenecks in learning and reasoning. 
Regarding prior knowledge, if an individual does not yet know a relation, they cannot use that 
concept in their reasoning. For example, if a math student does not yet know the part-whole 
relation, they will have difficulty reasoning about fractions. Further, prior knowledge has been 
shown to affect how individuals represent problems and process relations (e.g., Chi et al., 1981; 
Gentner, 2003; Gick & Holyoak, 1980). For example, younger children tend to make more feature-
based comparisons whereas older children make more relational comparisons (Gentner, 1988; 
Rattermann & Gentner, 1998), and novices are more likely to attend to surface-level features in 
problems whereas experts extract the relational structure (Chi et al., 1981).  

In addition to prior knowledge, cognitive load can also constrain relational reasoning, as it scales 
with the number of variables to be related. For example, consider a situation where you are trying 
to decide what food to make for a party. If cost is your only consideration, the decision may be 
relatively straightforward. However, as you consider more variables—the time it will take to cook 
a dish, people’s dietary restrictions, what vegetables are in season, what you enjoy cooking, etc.—
you can feel the difficulty of the problem increasing. In fact, it has been estimated that four 
variables is the maximum number that can be integrated in a single processing step without 
invoking other strategies, and that as processing limits are reached, speed and accuracy of 
reasoning declines (Andrews & Halford, 2002; Halford et al., 1998).  

Luckily, when relational overload occurs, it typically does not terminate processing, but rather 
prompts the reasoner to adopt a strategy for reducing relational demand. Halford et al. (1998) 
discuss two such strategies. The first is to reduce a relation into a simpler concept. For example, 
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the density of a substance is the amount of mass per each unit of volume. Instead of reasoning 
about density as a proportion, which is often difficult, this relation can be simplified by using the 
single number for density, making it one variable, or unary as Halford et al. (1998) call it. In fact, 
this strategy is quite common; we regularly simplify all kinds of proportions to one variable, such 
as speed (miles per hour) and standard deviation (distance from the mean per data point). 
Though this reduction can be beneficial for processing, it also has its downsides because the 
reasoner temporarily loses access to the component relations and variables that make up the 
concept.  A second strategy is to segment the complex relation into less complex steps and 
process them serially rather than in parallel. However, a third strategy, which is not discussed 
frequently enough in the relational reasoning literature, is what I term relational offloading: the 
option to offload relations to external visuospatial representations. 

Reasoning and relational offloading with visuospatial tools 

Humans have invented a variety of spatial tools for reducing the cognitive demands of day-to-day 
tasks, including writing systems, calendars, graphs, and diagrams. Here, I focus on the latter two—
graphs and diagrams—which were invented to aid in reasoning by externally representing the 
relations in information in physical space (Hegarty, 2011; Tversky, 2011). Using these tools can 
assist the reasoner either as part of the process of uncovering patterns in information or to help 
communicate them to others. Individuals use these tools to offload demands onto physical space, 
extending cognition and freeing up cognitive resources to think more abstractly, reason and 
remember more effectively, and even make discoveries (Bauer & Johnson-Laird, 1993; Clark & 
Chalmers, 1998; Hegarty, 2010; Kirsh, 2010; Risko & Gilbert, 2016; Tversky, 2015). Learning how 
to use and create them is critical for children and adults alike. Graphs and diagrams are used 
across many different disciplines in the humanities, social sciences, and hard sciences. Further, 
literacy with these tools is increasingly more important to be an engaged citizen as well as to 
understand, protect, and have agency over one’s own data.  

Despite a non-trivial literature on the cognitive science of these visuospatial tools and 
implications for design and instruction (e.g., Bauer & Johnson-Laird, 1993; Franconeri et al., 2021; 
Hegarty, 2011; Shah et al., 2005; Shah & Hoeffner, 2002; Tversky, 2011), few researchers have 
investigated the role of relational reasoning in processing these external representations, or how 
their use affects the complexity of problem solving. I propose that relational reasoning is involved 
in three ways. First, these tools are designed to communicate relations, so relational reasoning is 
likely needed to uncover the pattern of relations between the variables and interpret the message 
being communicated. Second, the way that these tools represent the relations likely also 
demands relational reasoning. Diagrams and graphs are abstract simplifications of the world. 
They depict information about variables and the relations between them via spatial and visual 
features, such as points, lines, arrows, proximity, and color (Hegarty, 2011; Tversky, 2011). Thus, 
to make sense of these representations, the reasoner must map the marks on the page to the 
real-world information and relations that they represented. I propose that this mapping process 
involves relational reasoning. Third, the information gleaned from these external representations 
is typically integrated into larger reasoning problems. Graphs and diagrams are rarely used in 
isolation; more often, they are used to provide evidence in support of an argument or conclusion.  
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Task analyses with two examples, one of a diagram and one of a graph, will further elucidate these 
three roles for relational reasoning.  

Consider the diagram of an ecosystem’s food web (Figure 0.1A). Arrows and position on the page 
(higher or lower) are used to communicate who eats who. The arrows represent the relation eats 
(e.g., eats(fox, squirrel)) and the three position levels on the page (top, middle, or bottom) are 
mapped to three different trophic levels. To make sense of this diagram, a reasoner must make 
these mappings between the spatial relations and conceptual relations. Now imagine you are 
using this diagram to help you reason about what will happen to the gray wolf and red fox 
populations if a disease has killed most of the balsam fir trees in the area. Instead of having to 
keep in mind and integrate the relations between 12 animal and plant species, these relations are 
offloaded to the diagram, and you can use your eyes to look from each species of interest down 
the food chain. Using transitive inference, a form of relational reasoning (Halford et al., 2010; 
Wendelken & Bunge, 2010), you may conclude that since the gray wolf population would be more 
negatively affected by the Balsam fir disease than the red fox because gray wolves eat moose, 
which eats balsam fir, but none of the fox’s prey eat balsam fir. 

Next, consider the graph showing the relation between year and global temperature anomaly 
relative to a long-term average of temperatures from 1951-1980 (Figure 0.1B). Each point 
represents a year, and the height of the point represents the temperature anomaly that year. 
Though there is no trend line on the graph—the black line simply connects the points in 
sequential order—you likely see an “upward” trend, which you map to meaning that temperature 
anomaly is increasing over the years. Now imagine you are using this graph to predict how warm 
2025 will be. Integrating across all these points and considering the upward trend in addition to 
apparent variability year-to-year, you estimate that the temperature anomaly will be 
approximately +1.1 degrees Celsius. 

Ironically, perhaps, these very tools that are intended to help facilitate identifying and 
communicating relations are often difficult for novices to learn (e.g., Diezmann, 2000; Friel et al., 

Figure 0.1. Examples of a (A) diagram and (B) graph. (A) Image retrieved from 
https://prior.allenai.org/projects/diagram-understanding. (B) Data retrieved from NASA’s Goddard Institute for 
Space Studies, https://climate.nasa.gov/vital-signs/global-temperature/.  

https://prior.allenai.org/projects/diagram-understanding
https://climate.nasa.gov/vital-signs/global-temperature/
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2001; Glazer, 2011; Shah & Carpenter, 1995; Shah & Hoeffner, 2002). In particular, their deep 
relational structure—both in what they aim to communicate and how the information is 
represented—is difficult to extract if you have not explicitly learned the mapping conventions or 
practiced extracting information from these representations. As illustrated in the examples in 
Figure 0.1, a reasoner needs to learn that “up” in the food web is mapped to being “higher” in 
the food chain, but that “up” in the graph is mapped to a greater value of the y variable. Relatedly, 
little is known about how we come to use space in these systematic ways to offload relations, a 
question I investigate in Chapter 3. Perhaps we learn these strategies in school; alternatively, 
systematically using space to offload relations may be a fundamental part of our cognitive toolkit, 
which is then enhanced by schooling and learning these formal tools. In addition to investigating 
this basic research question, I also focus on the use of these formal visuospatial tools in STEM 
domains in Chapter 4.  

Relational reasoning and STEM education 

In many of the studies in this dissertation, I focused on STEM learning and reasoning. Researchers 
have stressed an important role for relational reasoning in scientific reasoning and inquiry 
(Dumas, 2017; Klahr et al., 2013; Resnick et al., 2017), education and academic achievement 
(Dumas et al., 2013; Richland & Simms, 2015; Vendetti et al., 2015), and STEM education 
specifically (Alexander, 2017; DeWolf et al., 2015; Kalra et al., 2020; Miller Singley & Bunge, 2018; 
Murphy et al., 2017). In Chapter 2, I extend this research to show that the role of relational 
reasoning is separable from other domain-general cognitive processes. Researchers have also 
stressed an important role for spatial thinking and reasoning in these fields (e.g., Atit, Power, et 
al., 2020; Atit, Uttal, et al., 2020; Ishikawa & Newcombe, 2021; Taylor et al., 2023). In Chapter 4, 
I investigate the relations between relational reasoning, spatial thinking, and STEM education, 
focusing on relational offloading and scaffolding relational reasoning during learning. 

STEM fields provide a rich testbed for the dynamics of relational reasoning and relational 
offloading for two main reasons. First, the content of STEM fields is highly relational (Chi et al., 
1981; DeWolf et al., 2015; Goldwater & Schalk, 2016; Kalra et al., 2020; Richland et al., 2012). 
From learning about food webs to density, fractions, algebra, and chemical interactions, these 
fields focus on understanding the relations between variables. Second, higher-order relational 
reasoning underlies many of the skills needed to carry out the core epistemic practices of these 
disciplines. For example, analogy has been cited as one of the most important and widely used 
cognitive tools for scientific innovation (Klahr et al., 2013). Analogies can be used for generating 
new theories, hypotheses, and scientific explanations. More broadly, scientific reasoning, which 
makes up an important part of everyday reasoning (Klahr et al., 2013; Kuhn, 2010), involves 
uncovering hidden causal relationships between variables and an outcome, coordinating theory 
and evidence, finding abstract patterns, making comparisons, and building mental models—all of 
which require higher-order relational reasoning to map relations and extract the relational 
structure (Johnson-Laird, 2010; Kuhn et al., 1992). Visuospatial tools are also central to epistemic 
practices of these fields, including food web diagrams, molecular structures, free-body diagrams, 
the periodic table, and graphs of functions in math, and graphs of data in science and statistics 
(Collins & Ferguson, 1993; Hegarty, 2011; Taylor et al., 2023; Tversky, 2015). As described above, 
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many of these tools are inherently relational, both in the type of information that is represented 
and how it is represented. 

An additional reason for my research interest in STEM fields is that they are notoriously difficult 
for students to learn, and there are many knowledge-based, sociocultural, and systemic barriers 
to entry. Relatedly, many students often simply do not enjoy these fields, likely in part due to how 
they are taught. I propose that a relational reasoning approach to learning in STEM domains has 
the potential to improve pedagogy. Therefore, focusing on STEM content to investigate relational 
reasoning questions is mutually beneficial and contributes to the relational reasoning literature, 
expands what we know about learning in these STEM fields, and ultimately could make these 
domains more engaging and broadly accessible. The ways in which relational reasoning capacity 
can be scaffolded or leveraged to support STEM education is a nascent, yet active, area of 
research, and there are still many open questions.  

The present work 

The overarching goals of my dissertation work are to investigate the dynamics of relational 
reasoning as both a cognitive tool and bottleneck, and to explore how offloading relations to 
external representations can help overcome cognitive limitations. In many studies, I use STEM 
domains as a testbed for these questions, which in turn can inform STEM pedagogy from a 
relational reasoning perspective. 

In Chapter 1, I take a high-level view of the relationship between reasoning and education and 
review evidence that, in addition to the fact that reasoning supports academic achievement, the 
experience of education also hones reasoning. In Chapter 2, I establish that relational reasoning 
is separable from other cognitive processes that are involved in learning math. In two empirical 
studies, I investigate the main executive functions that are involved in fraction learning and 
understanding, and then show that relational reasoning predicts performance on fraction 
problems over and above these other strong domain-general predictors. In Chapter 3, I 
investigate how we learn to offload relations. For this empirical study, I worked with the Tsimane’, 
an indigenous farmer-forager people from the Amazon basin of Bolivia who live in a non-
industrialized society and often have minimal levels of formal education and literacy. I tested two 
leading hypotheses about relational offloading to physical space: either it is a specific strategy 
that is culturally transmitted, or it is broadly available as part of our cognitive toolkit, allowing 
individuals to innovate ad hoc relational offloading strategies even in novel contexts.  Finally, in 
Chapter 4, I investigate whether scaffolding relational reasoning during learning can help students 
overcome cognitive bottlenecks. To do so, I first offer a relational reasoning perspective on graph 
processing, comprehension difficulties, and pedagogy. I then conduct an intervention study that 
begins to test this approach by manipulating the extent to which relational reasoning is engaged 
during a lesson on graph comprehension. Taken together, this program of research provides a 
generative framework for identifying the STEM content that students may find especially difficult, 
as well as for informing the design of pedagogical approaches for helping students overcome 
these obstacles.
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Chapter 1. Education hones reasoning ability 

1.1 Abstract 

A belief about education that dates back several millennia is that, in addition to imparting specific 
facts, it hones general cognitive abilities that can be leveraged for future learning. However, this 
idea has been a source of heated debate over the past century. Here, we focus on the question 
of whether and when schooling hones reasoning skills. We point to research demonstrating 
cognitive benefits of both broad and specific educational experiences. We then highlight studies 
that have begun to elucidate underlying mechanisms of learning. Given our society’s substantial 
investment in education, it behooves us to understand how best to prepare individuals to 
participate in the modern workforce and tackle the challenges of daily living. 

This chapter contains previously published material from the following work: 
Bunge, S. A., & Leib, E. R. (2020). How Does Education Hone Reasoning Ability? Current Directions in Psychological 

Science, 29(2), 167–173. https://doi.org/10.1177/0963721419898818 

1.2 Introduction 

A common assumption is that education prepares students for the challenges that lie ahead: that 
beyond imparting specific facts, it hones general cognitive skills like reasoning, which can be 
deployed in new contexts to solve novel problems. This assumption dates back at least as far as 
Plato, who theorized around 380 B.C.E. that training on math could transfer to reasoning about 
politics and ethics (Burnyeat, 2000). He espoused what came to be known in the late 18th century 
as the doctrine of formal discipline, which holds that studying rigorous subjects disciplines the 
general faculties of the mind. This doctrine is at the core of many of our educational institutions 
to this day. But is this assumption correct? There has been a heated debate for over a century, on 
and off, regarding the extent to which learning transfers across contexts and tasks (e.g., Judd, 
1908; Redick, 2019; Singley & Anderson, 1989; Thorndike & Woodworth, 1901).  

Here, we make the case that the immersive, multifaceted, protracted experience of formal 
schooling taxes, and therefore hones, general cognitive skills that can support learning across 
multiple domains (Ceci, 1991). We argue that it is necessary to probe the cognitive and neural 
mechanisms of learning more deeply (Gabrieli, 2016; Lindenberger et al., 2017) in order to 
address the question of what transfers, how, and for whom (Barnett & Ceci, 2002; Judd, 1908; 
Katz et al., 2018). We propose that probing how the subtle learning effects that are evident on 
the order of weeks to months can provide mechanistic insights regarding the types of learning 
that take place across multiple years of schooling.  

We focus below on the question of whether and how schooling can sharpen the capacity for 
reasoning.  Common measures of reasoning, including those used in IQ tests, require relational 
reasoning, or the ability to compare or integrate the relations among disparate pieces of 
information. Relational reasoning is conceptualized as an all-purpose cognitive ability that 
enables us to compare the magnitudes of two fractions, derive logical conclusions from a set of 
premises, understand the analogies used to teach scientific concepts, and more (Alexander, 2016; 
Holyoak, 2012). Indeed, there is a large body of evidence that relational reasoning is an important 

https://doi.org/10.1177/0963721419898818
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predictor of scholastic achievement and other important life outcomes (Dumas & Dong, 2022; 
Goldwater & Schalk, 2016). Although the abstract tasks used to probe relational reasoning predict 
learning across multiple domains, there is a fair degree of pessimism regarding whether students 
hone this purportedly domain-general ability through instruction, or whether they instead learn 
only to reason about specific content matter (see Nisbett et al., 1987).  

Below we briefly review the evidence that schooling can indeed hone relational reasoning (for in-
depth reviews, see Ceci, 1991; Ritchie & Tucker-Drob, 2018). We then turn our attention to recent 
investigations probing how it does so. The three classes of studies discussed below have 
investigated the effects of 1) formal education writ large, or of pursuing a specific academic 
discipline, 2) curricula designed by researchers to explicitly teach reasoning skills, and 3) existing 
courses that were not developed by researchers, but whose effects on reasoning have been 
studied.  

1.3 Effects of formal education on reasoning 

How can we study whether schooling hones reasoning, short of randomly assigning children 
either to attend school or not to? One of several clever ways to get at this question leverages the 
fact that children of the same age can be in different grades, as a result of which it is possible to 
tease apart schooling-related and age-related improvements in cognitive performance (Morrison 
et al., 2019). A large study adopting this approach in over 12,000 Israeli children revealed a large 
effect of schooling on tests of reasoning across three grade levels (Cahan & Cohen, 1989). A more 
recent study showed better reasoning among first-graders than kindergarteners of roughly the 
same age (Q. Zhang et al., 2019). 

Integrating the results of numerous and diverse studies, Ritchie and Tucker-Drob (2018) 
concluded that IQ scores (which are heavily based on reasoning test performance) rise 1-5 points 
for every additional year of education. Other studies have distinguished between the types of 
reasoning emphasized in different disciplines. For example, one study showed that students in 
the social sciences improved more at statistical and methodological reasoning over the course of 
their undergraduate training than did those in the natural sciences or humanities (Lehman & 
Nisbett, 1990). This line of work suggests that students specializing in different fields learn to 
reason in different ways (Nisbett et al., 1987). 

1.4 Reasoning programs designed by researchers 

In a second class of studies, researchers have developed and evaluated courses targeting various 
types of reasoning skills through explicit instruction. One example is a 10-lesson curriculum built 
on the observation that diverse reasoning tasks have a common element of comparing objects or 
relations among objects (Klauer et al., 2002)—what we refer to as relational reasoning. A review 
based on 74 studies involving nearly 3600 children and adolescents suggests that this curriculum 
works as intended: after roughly 5 weeks of reasoning instruction, children showed 
improvements on other tests of reasoning that lasted for months (Klauer & Phye, 2008). Another 
example is a gist reasoning program designed to teach strategies for “glean[ing] deep meaning 
from texts through analysis and synthesis of information, inference of abstract concepts, 
prediction of outcomes, and relating what is presented in text to one’s own background 
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knowledge” (Gamino et al., 2014). This program consists of 8-12 sessions administered over 1-2 
months. It has been shown to improve gist reasoning across multiple populations (Chapman & 
Mudar, 2014), including adolescents from a wide range of socioeconomic backgrounds (Gamino 
et al., 2014). The results of these curricula are promising, although it remains to be seen whether 
the effects on reasoning are evident across a broad range of tasks.  

1.5 Courses that tax reasoning skills 

In a third class of studies, researchers have examined the effects of completing a specific course 
that exists ‘in the wild’ rather than having been developed in the lab. This scientific approach falls 
somewhere between the broad, real-world ‘intervention’ of schooling as a whole and focused, 
well-controlled interventions: it has real-world relevance and is experimentally tractable. In the 
1980s, this approach was adopted to test for effects of computer programming instruction on 
reasoning; findings were mostly negative or inconclusive (Salomon & Perkins, 1987). There are 
many plausible explanations, including the possibility that such far transfer is not possible (Singley 
& Anderson, 1989). However, newer studies have the advantage of several additional decades of 
refinement of cognitive theory and methodology and are well-positioned to revisit this question. 
For example, we can ask: does completing a specific course promote the application of newly 
learned rules and strategies (Halpern, 2001), change the way we represent a problem (Cetron et 
al., 2019), and/or improve the efficiency of domain-general cognitive processes that undergird 
reasoning (Guerra-Carrillo & Bunge, 2018)? 

Preparing for a law school entrance exam 

In our lab, we have leveraged several methods to evaluate whether and how preparation for the 
Law School Admission Test (LSAT) hones relational reasoning. The LSAT was our curriculum of 
choice because a full two-thirds of the test focuses explicitly on teaching strategies for different 
types of reasoning; the remaining third focuses on reading comprehension. In our first study, we 
compared pre-law students who had just enrolled in a 3-month LSAT test preparation course with 
a passive control group of well-matched pre-law students. The course included 70 hours of explicit 
reasoning instruction and practice. 

Using functional magnetic resonance imaging (fMRI), we found that taking the LSAT course was 
associated with changes in brain regions associated with reasoning (Figure 1.5.1A; Mackey et al., 
2012, 2013). Specifically, we found changes in measures of brain anatomy and brain function that 
are thought to reflect the strength of communication between regions in a network. Thus, the 
course had an impact on the neural machinery that has been implicated in a wide range of 
reasoning tasks. These findings lend credence to the idea that learning to solve LSAT problems 
could lead to improvements on other reasoning tasks.  

We also found changes in behavioral performance and brain activation measured with fMRI while 
participants performed a relational reasoning task (Figure 1.5.1B). These abstract problems bear 
no resemblance the text-based LSAT problems (see Figure 1.5.2A and C), but they both require 
reasoning about relations between different pieces of information. Compared with the controls, 
the LSAT students showed a larger improvement in both accuracy and response times. Moreover, 
fMRI analyses indicated that they relied less on the dorsolateral prefrontal cortex, a brain region 
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that is consistently engaged during performance of challenging tasks, suggesting that they found 
the task easier (Figure 1.5.1C; Mackey et al., 2015). This study provides evidence of moderate 
transfer of learning from a real-world reasoning curriculum to a laboratory-based test of 
reasoning. 

By contrast, we did not find transfer to any of four standardized cognitive measures, including 
two other tests of relational reasoning. This discrepancy may highlight the need for a better 
taxonomy of reasoning tasks, detailing the cognitive processes that underlie each of them, and 
how much overlap there is in terms of the cognitive demands of the curriculum and the outcome 
measures (Klauer & Phye, 2008). We have adopted eyetracking with a view to pinpointing 
cognitive processes that are impacted by an intervention, and ultimately understanding why 
transfer to other tasks succeeds or fails. Eye movements, which are among the fastest movements 
that the human body makes, reflect shifts in attention that are associated with thought processes. 
The location and sequence of eye gaze fixations provide us with a rich source of data that goes 
beyond what we can get with accuracy or response times and that complements brain imaging 
data. In conjunction with behavioral data, eyetracking has the potential to provide novel insights 
regarding learning (Eckstein et al., 2017). 

In a follow-up to the LSAT study, we used eyetracking to probe transfer effects more deeply. We 
randomly assigned pre-law students to take a 6-week online course focused on either the 
Analytical Reasoning section of the LSAT (text-based reasoning problems; Figure 1.5.2A) or the 

Figure 1.5.1. A) Two slices of the brain, one showing the left hemisphere from the side (with the front of the brain 
on the left of the image) and the other showing the brain from above (front of the brain at the top of the image). 
The green and blue clusters show white matter changes associated with LSAT course completion, as measured with 
diffusion tensor imaging. Effects were observed in regions that have been implicated in reasoning, including left 
prefrontal cortex and the bundle of fibers that connects the left and right prefrontal cortex (the anterior corpus 
callosum), as well as parietal cortex (not shown). These results support the hypothesis that reasoning instruction led 
to increased white matter connectivity. (Adapted from Mackey et al., 2012). B) Sample problem from a transitive 
inference task that measures relational reasoning ability. In this problem, participants have to encode that the purple 
ball is heavier than the green one and that the green ball is heavier than the yellow one in order to determine that 
the purple ball is heavier than the yellow ball. After LSAT training, participants completed this task more accurately 
and more quickly—even though this task looks nothing like the LSAT problems. C) Slice of the brain from above, 
showing changes in brain activation associated with reasoning instruction, as measured with fMRI. The gray areas 
outlined in black are the regions engaged during performance of the transitive inference task shown in panel B. 
Shown in blue is a region in dorsolateral prefrontal cortex that exhibited a decrease in activation after taking the 
LSAT course. A decrease in activation suggested that participants in the LSAT group were able to perform the 
transitive inference task more efficiently. (Adapted from Mackey et al., 2015). 
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Reading Comprehension section of the LSAT (Guerra-Carrillo & Bunge, 2018). We observed an 
effect of reasoning instruction on a composite score of four relational reasoning tests that were 
visually distinct from the LSAT problems (e.g., Figure 1.5.2B), but not on other cognitive measures. 
These results support moderate transfer of learning. 

Reasoning instruction also led participants to perform the transitive inference problems more 
quickly, while maintaining high accuracy. We analyzed changes in how participants’ eyes moved 
around the computer screen as they examined these problems. The eye gaze data allowed us to 
adjudicate between several possible mechanisms of learning by providing evidence that 
increased efficiency of relational thinking was the most important change (for details, see Figure 
1.5.2C). The eye gaze data revealed that the individuals who showed the biggest improvements 
on the transfer task showed the biggest change in our eyetracking measure of relational thinking. 
Thus, we gained insights that could be used to evaluate whether a particular program taxes the 
target cognitive processes, whether it might be necessary to extend or modify the program to 
maximize behavioral benefits, and what works best for whom.  

Emerging findings 

Other exciting findings are beginning to emerge. For example, Adam Green and colleagues have 
as-yet unpublished data showing that a year-long high school geoscience course that taxes spatial 
reasoning is associated with improvements on both spatial and non-spatial reasoning tests, 
alongside changes in brain activation in regions implicated in relational reasoning. Another study 
shows that the brains of undergraduates who have developed expertise in mechanical 
engineering register correspondences between objects that, despite being visually dissimilar, 

Figure 1.5.2. A) Sample LSAT Analytical Reasoning question from the Law School Admission Council website 
(www.lsac.org). The correct answer is C. B) One of the four reasoning tests that were completed by participants 
before and after the online LSAT course (either Analytical Reasoning or Reading Comprehension) to test for transfer 
from the online course to reasoning skills. In this task, the participant must first induce the rule from the cards, and 
then apply it to a novel problem. (Adapted from Guerra-Carrillo & Bunge, 2018). C) A participant’s eye gaze pattern 
during completion of a transitive inference problem just before the response was made. On average, participants 
made 23 eye movements in the 7 seconds it took to solve these problems. Participants in the Analytical Reasoning 
group improved in speed on this task. Examining the reasoning group’s gaze patterns revealed that this improvement 
was not due to becoming faster at initially identifying the relevant relations, but rather, participants spent less time 
looking at the relevant relations after identifying them, suggesting they improved in the efficiency of their relational 
thinking. Further, the degree to which an individual participant improved on the task was most strongly related to 
the magnitude of change on this ocular measure (Guerra-Carrillo & Bunge, 2018). 

http://www.lsac.org/
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share deeper physical properties (Cetron et al., 2019). These new approaches help to demystify 
when and how transfer of learning occurs. In the United States, current educational standards 
emphasize scientific reasoning; this presents an opportunity to investigate whether or to what 
extent standards-aligned curricula hone reasoning across scientific disciplines, and beyond. 

1.6 Broader considerations  

One critical question is whether there is a particular window in development when schooling is 
most likely to hone general cognitive skills. Improvements in reasoning and in the underlying 
anatomical connections are most pronounced during the elementary school years (Wendelken et 
al., 2017); thus, this may be a time when this neurocognitive system is particularly malleable. 
There is a great need for further research examining schooling effects on child brain development 
(see Brod et al., 2018).  

Another critical question is how long one could reasonably expect schooling effects to last. We 
anticipate long-lasting benefits only if students continue to leverage the skills they have honed, 
or if there has been a fundamental change in the way they represent information (Lövdén et al., 
2010). Earlier studies suggested that children’s IQ scores drop over long summer holidays, and 
that this ‘summer slide’ is particularly large for students from socioeconomically disadvantaged 
backgrounds (Ceci, 1991). These results warrant replication, as they have important implications 
for reducing the achievement gap.  

We have posited that the time in life when many individuals are at their peak level of cognitive 
functioning is while they are still in school, practicing thinking skills and acquiring knowledge at 
break-neck speed. In a large online study, we found differences not only in the level of cognitive 
performance across educational brackets, but also—more compellingly—in the age at which peak 
cognitive performance was observed within each educational bracket (Guerra-Carrillo et al., 
2017). While we did not have the opportunity to follow the participants over time, it is intriguing 
that peak functioning within each group was observed around the typical time of completion of 
that degree. We posit that schooling effects could explain why cognitive performance tends to 
rise quickly during childhood and adolescence, peak in the early twenties, and then decline slowly 
throughout adulthood (McArdle et al., 2002). 

1.7 Conclusion 

In closing, there is evidence that the process of educating ourselves can equip us to reason about 
novel problems. This piece is by no means a comprehensive review; there are certainly many 
counter-examples of approaches that have been ineffective (e.g., see Singley & Anderson, 1989). 
The most promising curricula are likely those that aim to teach for transfer by encouraging deep 
understanding, explicitly teaching thinking skills using a variety of examples, and drawing 
attention to the structural features of a problem (Chi & VanLehn, 2012; Halpern, 2001; 
Willingham, 2008). Here, we call for deeper exploration of such curricula, both via replication 
studies and individual differences analyses. Ultimately, we need to understand why transfer of 
learning may be broader under some circumstances, and for some students, than for others.  
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Given our significant investment in education as individuals and families, and as a society, we 
must continue to assess the claim that Plato made 2400 years ago, asking ourselves: how can we 
best prepare students for future learning (Bransford & Schwartz, 1999)? Good reasoning skills are 
needed to master new job requirements as needed to keep pace with rapid technological 
advances (World Economic Forum, 2018), and to make sound decisions in all aspects of our lives. 
Finding ways to more effectively cultivate reasoning could therefore have profound and far-
reaching consequences for society at large. 
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Chapter 2. Relational reasoning is distinct from other domain-general 
cognitive processes  

2.1 General Introduction 

Despite a consensus in the relational reasoning literature that this cognitive process is important 
for learning and academic achievement (e.g., Alexander, 2017; Dumas et al., 2013; Richland & 
Simms, 2015; Vendetti et al., 2015), the role of relational reasoning has not often been studied 
in the context of other mid-level, domain-general cognitive processes that support goal-directed 
behavior. These executive functions (EFs) are also important for learning, reasoning, and 
academic achievement (Best et al., 2011; Diamond, 2013; Lawson & Farah, 2015; Richland & 
Burchinal, 2013; Rose et al., 2011), and some have argued that relational reasoning and these 
EFs are one in the same (e.g., Martínez et al., 2011). In this chapter, I use the case of fraction 
understanding to test whether there is a unique role for relational reasoning. In section 2.2, I 
establish that two EFs, working memory and inhibitory control, are important for fraction 
understanding over and above whole number knowledge. In section 2.3, I examine the pattern of 
relations among these EFs and relational reasoning and then test whether relational reasoning 
explains additional variance in fraction understanding over and above the EFs. Indeed, I find that 
relational reasoning explains unique variance in fraction understanding, suggesting that it is 
separable and distinct from other EFs. 

This chapter contains previously published material from the following work: 
Leib, E. R., Starr, A., Younger, J. W., Project iLead Consortium, Bunge, S. A., Uncapher, M. R., & Rosenberg-Lee, M. 

(2023). Testing the whole number interference hypothesis: Contributions of inhibitory control and whole 
number knowledge to fraction understanding. Developmental Psychology, 59(8), 1407–1425. 
https://doi.org/10.1037/dev0001557 

Starr, A., Leib, E. R., Younger, J. W., Project iLead Consortium, Uncapher, M. R., & Bunge, S. A. (2023). Relational 
thinking: An overlooked component of executive functioning. Developmental Science, 26(3), e13320. 
https://doi.org/10.1111/desc.13320 

2.2 Testing the whole number interference hypothesis: contributions of 
inhibitory control and whole number knowledge to fraction understanding 

Abstract 

The present study tests two predictions stemming from the hypothesis that a source of difficulty 
with rational numbers is interference from whole number magnitude knowledge. First, inhibitory 
control should be an independent predictor of fraction understanding, even after controlling for 
working memory. Second, if the source of interference is whole number knowledge, then it 
should hinder fraction understanding. These predictions were tested in a racially and 
socioeconomically diverse sample of US children (N=765; 337 female) in grades 3 (ages 8-9), 5 
(ages 10-11), and 7 (ages 12-13) who completed a battery of computerized tests. The fraction 
comparison task included problems with both shared components (e.g., 3/5 > 2/5) and distinct 
components (e.g., 2/3 > 5/9), and problems that were congruent (e.g., 5/6 > 3/4) and incongruent 
(e.g., 3/4 > 5/7) with whole number knowledge. Inhibitory control predicted fraction comparison 
performance over and above working memory across component and congruency types. Whole 

https://doi.org/10.1037/dev0001557
https://doi.org/10.1111/desc.13320
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number knowledge did not hinder performance and instead positively predicted performance for 
fractions with shared components. These results highlight a role for inhibitory control in rational 
number understanding and suggest that its contribution may be distinct from inhibiting whole 
number magnitude knowledge. 

Introduction 

Rational numbers, especially fractions, are a persistent stumbling block in the elementary and 
middle school mathematics curriculum. Identifying the root causes of fraction difficulties is a vital 
step in developing instructional programs to strengthen rational number knowledge. One 
proposed source of challenge in understanding fractions is that many properties of whole 
numbers do not hold for rational numbers, and the tendency to inappropriately apply properties 
of whole numbers when working with rational numbers has been termed whole number bias (Ni 
& Zhou, 2005). Among whole numbers, for example, larger numerals always denote larger 
quantities (e.g., 9 > 3), but this is not true for fractions (e.g., 1/9 < 1/3), and lower performance 
on fraction comparisons where whole number knowledge contradicts the appropriate rational 
number response is well-documented (Braithwaite & Siegler, 2018; DeWolf & Vosniadou, 2015; 
Fazio et al., 2016; D. M. Gómez & Dartnell, 2018; Meert et al., 2010; Miller Singley & Bunge, 2018; 
Obersteiner et al., 2013). Implicit in this literature is what we term the whole number interference 
hypothesis, that whole number knowledge interferes with rational number processing, leading to 
the observed performance decrements. In the present study, we use an individual differences 
design to test two predictions that stem from this hypothesis: 1) inhibitory control supports 
fraction performance, and 2) whole number magnitude knowledge hinders performance.  

With respect to the first prediction, if interference resolution is crucial for fraction understanding, 
we would expect inhibitory control—the capacity to withhold prepotent responses and resolve 
interference—to be a strong and independent predictor of fraction performance. Prior work has 
shown that executive functions, including inhibitory control and working memory—the capacity 
to maintain and manipulate information—support academic outcomes (Best et al., 2011; Lawson 
& Farah, 2017; Rose et al., 2011). In fact, working memory is the most robust predictor of 
mathematical outcomes in children (Bull & Lee, 2014; Peng et al., 2016). Although prior rational 
number studies have examined the contributions of these executive functions separately (Bailey 
et al., 2014; D. M. Gómez et al., 2015; Jordan et al., 2013; Matthews et al., 2016; Siegler et al., 
2012), there is little evidence of whether inhibitory control contributes to fraction outcomes 
when controlling for working memory. Establishing that inhibitory control uniquely contributes 
to fraction outcomes over and above working memory would bolster the claim that rational 
number difficulties stem, at least partly, from interference effects.  

With respect to the second prediction, if the source of interference is more specifically whole 
number magnitude knowledge, we would expect individuals with better understanding of whole 
numbers to, perhaps paradoxically, perform worse on fraction tasks. This prediction therefore is 
a strong test of the whole number interference hypothesis, as it runs counter to the large body 
of research demonstrating whole number magnitude knowledge supports general math 
achievement (Schneider et al., 2017; Smedt et al., 2013), assessments of which often include 
rational number items. While whole number knowledge can refer to magnitudes, arithmetic 
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operations, or place values, in the current study, we use the term whole number knowledge to 
mean knowledge about the magnitudes of whole numbers.  

Eliciting whole number interference in fraction comparison 

The standard approach to eliciting whole number interference in fraction comparison is to 
manipulate fraction pairs’ congruency with whole number knowledge. This manipulation takes a 
different form for fraction pairs that share components (i.e., either same denominator or same 
numerator) versus pairs that have distinct components (i.e., neither the numerator nor 
denominator is the same). Among the simpler problems with shared components, same 
denominator pairs are congruent with whole number knowledge because the fraction with the 
larger numerator has the larger magnitude (e.g., 4/5 > 3/5). Thus, it is possible to arrive at the 
correct response by using whole number comparison to select the fraction with the larger 
numerator. In contrast, same numerator pairs are incongruent with whole number knowledge 
because the fraction with the smaller denominator has the larger magnitude (e.g., 3/5 > 3/8). In 
these cases, using whole number comparison to select the fraction with the larger denominator 
would lead to the incorrect response. Consistent with the whole number interference hypothesis, 
accuracy is typically higher for congruent compared to incongruent shared component problems 
(Braithwaite & Siegler, 2018; DeWolf & Vosniadou, 2015; Fazio et al., 2016; D. M. Gómez & 
Dartnell, 2018; Meert et al., 2010; Miller Singley & Bunge, 2018). 

Among the more challenging problems with distinct components, congruent pairs are typically 
defined as pairs in which the fraction with the largest components also has the larger magnitude 
(e.g., 5/6 > 3/4); whereas in incongruent pairs, the fraction with the largest components has the 
smaller magnitude (e.g., 2/3 > 5/9; but see Ischebeck, Schocke, and Delazer (2009)  for an 
exception). The assumption underlying this manipulation for distinct components is that 
congruent pairs should be easier than incongruent pairs because comparing either the 
numerators or the denominators will lead to the same correct (or incorrect) response, an effect 
generally born out in the literature (D. M. Gómez et al., 2015; D. M. Gómez & Dartnell, 2018). In 
this study, we seek to use individual differences in inhibitory control and whole number 
knowledge to examine how whole number interference contributes to fraction comparison 
performance. 

Executive functions and fraction understanding 

Domain-general cognitive capacities, such as executive functions (EFs), have a well-established 
contribution to academic outcomes. Among the canonical EF constructs of working memory, 
inhibitory control, and cognitive flexibility (Diamond, 2013), working memory is one of the most 
robust predictors of mathematical outcomes (Friso-van Den Bos et al., 2013; Peng et al., 2016). 
The contributions of inhibitory control and cognitive flexibility are less clear, as many studies do 
not find relations with these constructs and general measures of math achievement (K. Lee & 
Bull, 2016; K. Lee & Lee, 2019; Van Dooren & Inglis, 2015). One possible explanation for the lack 
of consistent effects for inhibitory control is that it may be involved primarily in mathematical 
domains that require resolving interference from prior knowledge.  
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A similar phenomenon has been found in science education, where inhibitory control predicts 
learning when students must undergo conceptual change but not learning of factual information 
(Bascandziev et al., 2018). In fact, rational numbers have been cited as a paradigmatic example 
of conceptual change because learners must expand their understanding of number from discrete 
and countable whole numbers to continuous and dense rational numbers (Carey, 2011; 
Vamvakoussi & Vosniadou, 2004). These dueling conceptions of number make rational numbers 
an ideal testbed for clarifying the role of inhibitory control in math outcomes.  

A growing list of studies have examined correlations between inhibitory control and rational 
number comparison, for both fractions and decimals (Abreu-Mendoza et al., 2020; Avgerinou & 
Tolmie, 2019; D. M. Gómez et al., 2015; Ren & Gunderson, 2021). Yet, these studies did not 
explicitly measure working memory. Further, although a handful of studies have looked at the 
role of working memory in fraction learning, it is more frequently considered a control variable 
rather than a variable of interest (Bailey et al., 2014; Jordan et al., 2013; Siegler et al., 2012; Starr 
et al., 2023). One recent study involving adolescents did consider how inhibition and visual 
working memory relate to three factors derived from performance on a standardized math task: 
basic arithmetic, rational number transformations, and fraction arithmetic and basic algebra 
(Abreu-Mendoza et al., 2018). Both inhibition and working memory correlated with the factors, 
but no regression analysis directly contrasted the contributions of these skills (Abreu-Mendoza et 
al., 2018). Thus, while both EF components contributed to rational number outcomes, this study 
did not establish whether the contribution of inhibitory control is distinct from that of working 
memory. 

One study to date has considered contributions of all three canonical EF dimensions in a rational 
number comparison task. Coulanges et al. (2021)  found that in college students, both working 
memory and inhibitory control independently predicted decimal comparison performance in 
counterintuitive pairs in which the decimal with the larger numerical value contained fewer digits 
(e.g., 0.8 > 0.27). Interestingly, inhibitory control only predicted performance on these whole 
number knowledge conflicting problems, whereas working memory was also related to 
performance on problems that did not involve conflict (e.g., 0.80 > 0.27), and cognitive flexibility 
did not contribute to either form of decimal comparison. These results highlight the centrality of 
working memory and inhibitory control for rational number understanding, but also point to 
distinctions between them. Working memory may support performance across a range of 
problem types, whereas inhibitory control may be especially important when intuitions based on 
prior knowledge, such as whole number knowledge, interfere with the correct response. In 
addition, the contributions of these cognitive factors may vary in younger participants who have 
less experience with rational numbers.  

In the current study, we considered whether inhibitory control has a specific influence on 
incongruent fraction comparisons, which contradict prior whole number knowledge, or 
contributes comparably to both congruent and incongruent comparisons. If inhibitory control is 
needed exclusively for overcoming whole number magnitude knowledge, then we would expect 
to find an influence of inhibitory control only on incongruent pairs. On the other hand, if inhibitory 
control is also needed to switch between strategies on different congruency types or to inhibit 
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whole number knowledge beyond magnitude information, then we would expect inhibitory 
control to contribute to both congruent and incongruent pairs. In line with this second possibility, 
some children may learn that fractions operate “differently” than whole numbers (Miller Singley 
et al., 2020; Rinne et al., 2017) so they may monitor responses more carefully, therefore engaging 
inhibitory control on both congruency types.  

Additionally, it is possible that the task used to measure inhibitory control may affect the relations 
to rational numbers that are found. Although the majority of studies examining inhibitory control 
have found positive associations with rational number outcomes (Abreu-Mendoza et al., 2020; 
Avgerinou & Tolmie, 2019; Coulanges et al., 2021; D. M. Gómez et al., 2015; Ren & Gunderson, 
2021), some studies have not found significant relations between the measures (Matthews et al., 
2016; Park & Matthews, 2021; Stricker et al., 2021). Notably, Matthews and colleagues found 
that inhibitory control was not related to performance on a non-symbolic fraction comparison 
task or to conceptual understanding of rational numbers, nor was it related to symbolic fraction 
comparison (Matthews et al., 2016; Park & Matthews, 2021). These conflicting results may stem 
from the type of inhibition task employed. While these studies (Matthews et al., 2016; Park & 
Matthews, 2021) used an arrow Flanker task, studies that demonstrated relations with rational 
outcomes used variations of the Stroop task  (Avgerinou & Tolmie, 2019; Coulanges et al., 2021; 
D. M. Gómez et al., 2015) or the Hearts and Flowers task (Abreu-Mendoza et al., 2020; Ren & 
Gunderson, 2021). One possible explanation for these varying results is that inhibitory control 
may be a diverse construct of which common inhibitory control tasks capture different 
subcomponents of this capacity. A prominent division of inhibitory constructs actually considers 
both Stroop and Flanker as measures of the same subcomponent, variously called “response-
distractor inhibition” (distinct from resistance to proactive interference) (Friedman & Miyake, 
2004) or “interference resolution” (Younger et al., 2023). Based on this grouping, the disparate 
findings for Stroop and Flanker as they relate to rational number understanding are difficult to 
parse. However, within the rational number field a competing framework contrasts semantic 
inhibition, (i.e., overcoming learned knowledge) from response inhibition (i.e., overcoming 
prepotent responses) (Avgerinou & Tolmie, 2019). In this view, Stroop is a measure of semantic 
interference, whereas Flanker can been seen as a response inhibition measure, specifically one 
that involves overcoming visual distractors (K. Lee & Lee, 2019). Based on this division, stronger 
prior findings for Stroop compared to Flanker suggest that semantic interference may be the key 
capacity tapped by rational numbers. These conflicting organizing schemes suggest that 
additional work is needed to better understand how inhibitory control contributes to the 
development of fraction understanding. 

In the current study, we selected two domain-general inhibitory control tasks, color-word Stroop 
task and letter Flanker. Given the diversity of measures that have been examined in relation to 
rational number comparison skills and the lack of clarity on which measures should have the 
largest contributions, we created a composite measure of these two tasks to capture individual 
differences in inhibitory control that are not specific to any one task. In a follow-up, 
supplementary analysis, we examined which measure had the stronger contribution to fraction 
comparison performance. 
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Whole number knowledge: help or hindrance? 

A large body of evidence relates better symbolic whole number knowledge to higher 
mathematical achievement (Schneider et al., 2017; Smedt et al., 2013). However, the whole 
number interference hypothesis suggests that in the case of fractions, better symbolic whole 
number knowledge may actually impede success with fraction comparison. Fractions have a 
bipartite structure (a/b), in which the numerator and denominator enter into a multiplicative 
relation. This structure affords at least two different types of processing during fraction 
comparison: 1) holistic processing, comparing the magnitudes of the two fractions, and 2) 
componential processing, comparing the whole number components of the two fractions 
(Ischebeck et al., 2009; Meert et al., 2009; Miller Singley & Bunge, 2018; L. Zhang et al., 2014). 
Componential processing could create a context in which whole number knowledge bolsters 
performance on congruent comparisons but interferes with performance on incongruent 
comparisons.  

Whole number knowledge is typically measured using two different types of tasks: number line 
estimation, in which participants estimate where a number goes on a number line, and number 
comparison, in which participants make a speeded judgment as to which of two numbers has the 
larger magnitude. Although performance on these two measures is typically correlated (Laski & 
Siegler, 2007; Ramani & Siegler, 2008), they may tap into separable aspects of whole number 
magnitude knowledge. Potentially, whole number line estimation may index a learner’s capacity 
to linearly organize numerical magnitudes (Siegler et al., 2011). By contrast, whole number 
comparison may index the automaticity of accessing magnitude from numerical symbols. Because 
properties that apply to whole numbers do not always apply to fractions, fractions may represent 
a counterintuitive type of math knowledge for which this whole number automaticity, which is 
typically beneficial, may in fact be a hindrance (Bonato et al., 2007; Ischebeck et al., 2009; 
Rosenberg-Lee, 2021; Vamvakoussi & Vosniadou, 2004; L. Zhang et al., 2014). Specifically, whole 
number magnitude comparison may contribute to componential processing during fraction 
comparison and thus represent a step where interference from whole numbers may come into 
play. For this reason, in the current study we are particularly interested in single-digit whole 
number comparison. We examined whether this measure predicts fraction comparison 
performance for congruent and incongruent problems with both shared and distinct component 
pairs. If whole number comparison taps the automaticity of whole number magnitude 
understanding, we might expect it to have a positive contribution to congruent problems but a 
weaker or negative contribution for incongruent problems because a focus on the magnitude of 
fraction components in these problems will lead to the incorrect answer. In contrast, if whole 
number comparison measures a deep understanding of numerical magnitude, regardless of 
number system (i.e., whole or rational), we would expect a positive contribution across 
congruency types.  

Further, we examined whether these contributions differ by fraction pair component type (shared 
vs. distinct). On the one hand, opportunity for whole number interference is greater for distinct 
component problems (which require comparing multiple components). On the other hand, the 
presence of incongruent information may be more salient for the shared component problems. 
We explicitly considered whether whole number knowledge influences fraction performance 
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over and above the contributions of working memory and inhibitory control. This approach allows 
us to begin separating out the need for inhibition from the automatic activation of the 
information to be inhibited. 

Tracking the development of fraction understanding 

In the United States, fractions are typically introduced in 3rd grade, and students should have 
developed considerable proficiency by the end of middle school in 8th grade (Common Core State 
Standards Initiative, 2010). Although several studies have considered the development of 
fraction knowledge over this time period (Kainulainen et al., 2017; Van Hoof et al., 2018), none 
to our knowledge have considered the changing role of cognitive building blocks like EFs or whole 
number knowledge, which continue to develop and improve over this age range (Constantinidis 
& Luna, 2019; Opfer & Siegler, 2007). As EFs improve, they may play a bigger role in supporting 
fraction performance. For example, stronger EFs may be needed more in later grades when 
students are implementing more sophisticated strategies. Alternatively, EFs may be more 
important in earlier grades when students are first learning fraction concepts. The interplay 
between these EFs and whole number knowledge may cause the interference effects on fraction 
comparison to grow as well. To investigate these relations, we analyzed cross-sectional data from 
3rd, 5th, and 7th graders that were collected as part of a larger, longitudinal study (Younger et al., 
2022, 2023). This cross-sectional sample affords a view across the first five years of fraction 
instruction in the US and allows us to investigate how EFs and whole number knowledge relate 
to fraction comparison at three different stages in the development of these skills.   

The current study 

The primary aim of this study was to test two a priori predictions of the whole number 
interference hypothesis. First, if inhibition is vital for rational number understanding, we would 
expect inhibitory control to be an independent predictor of fraction comparison performance 
after accounting for working memory. Second, if difficulties with rational numbers stem from 
whole number magnitude interference, then we would expect whole number comparison to be 
negatively associated with fraction comparison performance. For both predictions, we explored 
how fraction pair congruency type (congruent or incongruent with whole number knowledge) 
influenced the relations between the cognitive factors. We also examined whether inhibitory 
control and whole number knowledge interacted to determine whether participants with poorer 
whole number knowledge require less inhibition. Finally, we explored whether the relations 
between inhibitory control, whole number knowledge, and fraction comparison were stable 
across grades or changed over development. Together, these analyses paint a comprehensive 
picture of the role of inhibitory control and whole number knowledge during the crucial early 
years of the development of fraction understanding. 

Methods 

Project iLead Study 

A total of 1,280 3rd through 8th grade children participated in the Project iLead study, which was 
a longitudinal study over two school years (2016-2017 and 2017-2018) that investigated EF 
development in elementary and middle school (Younger et al., 2022, 2023). Participants were 
recruited from nine schools in northern California—seven public schools in one district (5 
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elementary K-5; 2 middle 6-8), one parochial K-8 school, and one private K-8 school. Of the seven 
public schools, two of the elementary schools and one of the middle schools were Title 1 schools, 
a designation under US law indicating that these schools had high percentages of students from 
low-income families and received federal funds to support these students.  

Participants were assessed in the fall and spring of each school year, for a total of four assessment 
periods. Each assessment period consisted of two sessions, one for the EF assessments and a 
second for an academic performance assessment. This current study focuses only on year 1 of 
the study, when students from grades 3, 5, and 7 were recruited (see Younger et al., 2022 for 
more details about study enrollment).  

Participants 

The data described here are from 765 students who provided sufficient data for our tasks of 
interest in the first year of the project. The sample was ethnically and socioeconomically diverse 
(Table 2.2.1). The study was performed in accordance with the Institutional Review Board at the 

Table 2.2.1. Demographic characteristics of the sample. See Supplementary Methods for details on the sample size 
difference between grades. See Table 2.2.S1 for age at testing separated by timepoint. 

Variable 
Grade 3  

n=180 

Grade 5 

n=163 

Grade 7 

n=422 

Age at testing (years) 8.80 (7.99, 10.34) 10.61 (9.83, 11.72) 12.63 (11.30, 14.59) 

Not reported 4.4% 3.7% 0.5% 

Gender    

F 47.8% 35.0% 46.0% 

M 38.9% 44.8% 47.4% 

Not reported 13.3% 20.2% 6.6% 

Ethnicity    

American Indian or Alaskan Native 0.0% 0.0% 1.2% 

Asian 38.3% 26.4% 31.0% 

Black or African American 2.8% 3.7% 1.2% 

Blank on Purpose 0.0% 0.0% 0.2% 

Filipino 3.3% 6.1% 7.8% 

Hispanic or Latino 18.3% 23.9% 31.0% 

Pacific Islander 1.7% 0.0% 0.7% 

Two or More Races 5.6% 4.3% 4.3% 

White 16.7% 15.3% 15.9% 

Not reported 13.3% 20.2% 6.6% 

Free/Reduced Lunch 27.2% 33.7% 33.9% 

Not reported 13.3% 20.2% 6.6% 

Mean (Range); % 
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University of California, San Francisco. Written parental or guardian consent was obtained from 
all participants at the beginning of the study, and verbal assent from all participants was obtained 
before all in class data collection sessions. At the end of the study, all students in participating 
classrooms received snacks and stickers, regardless of their individual participation and 
performance. 

Procedure 

Two groups of assessments were administered to participants at two timepoints during each 
school year, once in the fall and again in the spring. The first group of assessments was the 
Adaptive Cognitive Evaluation (ACE) battery (Younger et al., 2021), which consisted of nine EF 
tasks and was administered at each timepoint. The second group were scholastic assessments 
and were divided into two subsets (seven to eight tasks each), one of which included the 
numerical comparison tasks. Each subset was administered to participants once per year in 
alternating semesters. Classrooms were randomly assigned to complete each task set in either 
the fall or spring of each year, with the other subset of assessments administered at the other 
timepoint. At each of the timepoints, ACE was administered first, and the scholastic assessments 
were administered approximately six weeks later (M=5.7 weeks, min.=1.9, max.=10). All tasks 
were administered on iPads in a group setting (M=30 students, min.=7, max.=83) at schools during 
approximately 50-minute sessions. Tasks were designed to be as short as possible given the 
number of assessments that needed to fit into each of the sessions. The number of facilitating 
researchers ranged from four to 12, depending on group size, and administration took place in 
various school contexts, including classrooms, libraries, cafeterias, and gymnasiums. Instructions 
were given verbally to the whole group by the lead facilitator, with complementary visual 
instructions on a 24” x 36” color flipbook in front of the class. All participants in a group began 
each task at the same time. When every participant had completed the task, the lead facilitator 
provided instructions for the next task. Before completing each task, participants completed a 
few practice trials and could ask the researchers questions. Researchers monitored the session 
throughout. 

Executive function tasks 

Working memory tasks. The forward spatial span task was adapted from the Corsi Block 
Task (Corsi, 1972) for use on touch-screen tablets. Participants had to reproduce a spatial 
sequence of illuminated locations. The backward spatial span task had the same design as forward 
spatial span, but participants were prompted to recall the sequence in the reverse order. For both 
tasks, participants started at a span of 3, which is a common starting point for Corsi Block Tasks 
for children in grades 3 and above (Farrell Pagulayan et al., 2006). The longest attempted span 
was used as the outcome measure. For more details on these tasks, see Supplementary Methods 
and Figure 2.2.S1. 

Inhibitory control tasks. The color-word Stroop task was a modified computerized version 
of the Stroop paradigm (Stroop, 1935) for manual responses (Mead et al., 2002). It consisted of 
50 experimental trials, 70% congruent (font color matches color word) and 30% incongruent (font 
color differs from color word). The letter Flanker task, which used the letters “A” through “D”, was 
a computerized adaption of the original Eriksen and Eriksen (1974) task that also used these 
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letters. The task consisted of 50 experimental trials, of which 50% were incongruent and 50% 
were congruent. Response windows for both tasks were adaptive to keep them challenging for all 
ages of participants (see Younger et al., 2022 for more on adaptivity). In part due to this adaptivity, 
the outcome measure used was rate correct score (RCS; Vandierendonck, 2017; Woltz & Was, 
2006) across the full task: the number of correct responses per unit time, calculated by dividing 
the total number of correct responses by the total response time in seconds summed across all 
trials of the task, both congruent and incongruent. This measure accounts for speed-accuracy 
tradeoffs and has been used in prior work on inhibitory control (Coulanges et al., 2021). For 
additional details on the tasks and choice of metric, see Supplementary Methods and Figure 
2.2.S2. 

Numerical comparison tasks 

For the whole number and fraction comparison tasks, participants always saw two numbers, one 
on the left side of the screen and one on the right, and were instructed to tap the larger of the 
two numbers. Within each task and level, the position of the larger number (i.e., on the left or 
right) was counterbalanced and trials were presented in a random order. Trials that were not 
answered within the response window were marked as incorrect. Whole number comparison was 
administered first, followed by fraction comparison. 

Whole number comparison. In this task, the stimuli were two single-digit whole numbers, 
and all pairs had a magnitude difference of 1 (see Figure 2.2.S3). Thus, the task had eight different 
comparison problems—1 versus 2, 2 versus 3, and so on, up to 8 versus 9. Each problem was 
presented four times, twice with the larger number on the left and twice with the larger number 
on the right, yielding 32 trials. However, due to a programming error, participants only saw 30 
trials. At the fall timepoint, participants were missing the two presentations of 7 versus 8 with the 
larger digit on the right. At the spring timepoint, participants were missing two trials with the 
larger digit on the right, one presentation of 6 versus 7 and one of 7 versus 8. The response 
window was three seconds.  

Fraction comparison. We designed this task to have two levels of difficulty (Figure 2.2.1) 
because this study included a broad range of grades and therefore a broad range of expected 
fraction knowledge. Level 1 consisted of 16 unique shared component trials: eight congruent, 
same denominator problems (e.g., 4/9 vs 7/9) and eight incongruent, same numerator problems 
(e.g., 3/4 vs 3/7). In half of the trials for each congruency type, the larger number was presented 
on the left. In selecting fraction pairs for the congruency types, we controlled for the average 
magnitude distance between the two fractions and the partial distance (either 1 or 3) between 
the digits in the non shared component. Further, fractions were limited to those that could not 
be reduced to lower terms (see Table 2.2.S2 for a full list of stimuli and additional properties).  

To prevent students from feeling discouraged by seeing problems beyond their ability level (e.g., 
material they were not yet expected to know based on the national math standards), only 
participants who achieved at least 75% accuracy (i.e., ≥ 12 problems correct) moved on to Level 
2. Participants who did not meet this mark completed Level 1 again, though we only analyzed 
data from their first time through the task. 75% accuracy on Level 1 was chosen as the criterion 
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in order to ensure that participants who advanced had some mastery of Level 1 (i.e., reliably more 
accurate than chance at 50%) without excluding too many participants (i.e., including only those 
at ceiling) in order to ensure sufficient variability on Level 2. 

Level 2 consisted of 10 unique problems with distinct components (e.g., 3/4 vs 5/6). Each problem 
was presented twice to counterbalance which fraction in the pair was presented on the left, 
yielding 20 trials. Half of the trials were congruent with whole number knowledge, such that the 
fraction with the larger numerator and denominator had the larger magnitude (e.g., 3/7 vs 4/8). 
The other half were incongruent with whole number knowledge, such that the fraction with the 
larger numerator and denominator had the smaller magnitude (e.g., 2/3 vs 5/9). In selecting 
fraction pairs for the congruency types, we again controlled for the magnitude distance between 
the two fractions. We were also able to control for the partial distance for the numerators (which 
ranged from 1-3 for both congruent and incongruent), but mathematically (Rosenberg-Lee, 2021) 
this means we could not control for denominator distance (which ranged from 1-3 for congruent 
and 3-6 for incongruent pairs) and other features (see Table 2.2.S3 for a full list of stimuli and 
their properties). 

For both levels, we chose a response window of four seconds to encourage automatic processing 
rather than strategies that involve calculation, such as computing the cross products. Examination 
of the fraction comparison data suggest that the 4 second response window was sufficient 
because the average time until a correct response was made was 1.88 seconds for Level 1 and 
1.99 seconds for Level 2. Further, only 15% of incorrect trials on either level were due to no 
responses (i.e., timing out). 

Data analysis 

Preparation for analysis. First, trial- and task-level data were cleaned based on the 
procedures outlined in the Supplementary Methods. After following these procedures, we 
created composite measures for working memory (WM) from performance on the forward and 

Figure 2.2.1. Two sample trials from the fraction comparison task. In Level 1 (left), the fraction pair had shared 
components, either the same denominator or the same numerator. In Level 2 (right), the fraction pair had distinct 
components. If participants reached 75% accuracy on Level 1, they advanced to Level 2. The response window for 
both levels was 4 seconds. The hands and yellow boxes are for illustrative purposes only and indicate the correct 
response option for each trial. 
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backward span tasks and for inhibitory control (IC) from performance on the Stroop and Flanker 
tasks. To compute the composite measures, participants’ scores on the EF tasks were first z-scored 
within grade and timepoint to account for the possibility of scores increasing over the school year. 
If participants had data for both tasks for each construct (WM: 99.35% of participants; IC: 95.56% 
of participants), their composite score consisted of the average of the two standardized scores. If 
participants had data for only one task, their composite score corresponded to the standardized 
score for that task (WM: 0.52% forward span only and 0.13% backward span only; IC: 1.57% 
Flanker only and 2.88% Stroop only). Participants with no data for either task were excluded from 
analysis. The composite measures were then z-scored within each grade and timepoint. For the 
follow-up analyses of the independent contributions of Stroop and Flanker, only participants with 
data for both tasks were included in the analysis (see Supplementary Methods). 

Only participants who scored above chance (50%) on whole number comparison were included 
in analyses (24 participants excluded), as we reasoned that participants who scored below chance 
likely either did not understand the instructions or chose not to follow them. Whole number 
comparison accuracy was z-scored within grade and timepoint, to account for differences in the 
stimuli and so that all predictors were standardized, for subsequent modelling. 

Next, because we used fraction comparison congruency type (congruent or incongruent) as a 
fixed effect in the mixed effects models, we needed to ensure that participants had enough trials 
of each type to analyze. Therefore, we included in our analyses only participants who had data 
for at least 75% of the trials for each congruency type after trial-level data cleaning (Fraction 
Comparison Level 1: ≥ 6 trials of each type, excluded 13 participants; Fraction Comparison Level 
2: ≥ 8 trials of each type, excluded 18 participants). 

Finally, participants who had data for all of our primary tasks of interest (Fraction Comparison 
Level 1, WM, IC, and Whole Number Comparison) were included in the final sample of 765 
participants (Table 2.2.2). Given that at least 75% accuracy on Fractions Level 1 was required to 
advance to Level 2, a subset of this final sample had data for Level 21. The sample with Level 2 
data consisted of 473 participants (Table 2.2.2). 

Analysis methods. We applied mixed effect models to examine the relationship between the 
predictor variables and grade with fraction comparison performance. In all models, we 
implemented grade as an ordered factor (Grade 3, Grade 5, Grade 7), which allowed us to 
maintain the rank order of increasing grade levels while also acknowledging that grade cannot be 
treated as a continuous variable. Therefore, the regression models used a polynomial contrast,  

 
1 Due to the need for participants to have enough trials of each congruency type to be included in the analyses for 
each level, a small number of participants (N=6) scored above 75% on Level 1 and completed Level 2 but were 
excluded from the Level 1 analyses for insufficient trials of each congruency type. These participants were still 
included in the Level 2 analyses because they did have the sufficient number of trials for each congruency type at 
that level. The results did not change if the 6 participants were excluded from the Level 2 analyses. See the 
Supplementary Methods for additional details about how many trials for each congruency type were considered 
sufficient. 
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Table 2.2.2. Sample sizes by grade level and fraction comparison component type. In order to complete fraction 
comparison with distinct components (Level 2), participants needed to achieve 75% accuracy on fraction comparison 
with shared components (Level 1). The percentage of participants within each grade that advanced to Level 2 is 
shown in parentheses. 

Fraction Comparison Grade 3 Grade 5 Grade 7 Total 

Shared components 
(Level 1) 

180 163 422 765 

Distinct components 
(Level 2) 

55 (31%) 98 (60%) 320 (76%) 473 (62%) 

 

which outputs linear and quadratic effects for grade and interactions with grade. Implementing 
grade as an ordered factor allowed us to capture differences in performance across grades that 
may be better characterized by a quadratic compared to a linear function, for example in the case 
of floor effects in lower grades or ceiling effects in higher graders. 

For our main analyses, we employed logistic mixed effects models predicting fraction comparison 
trial-level accuracy. All mixed effects models had the same fixed and random effects structure: 
fixed effects of grade level (Grade 3, Grade 5, Grade 7), congruency type (congruent or 
incongruent), and their interaction, plus a random intercept for participant and a random slope 
for congruency type. We will refer to this model as the base model.  

To this base model, we first added the WM composite score and then added the IC composite 
score. Model comparison between the WM model and the WM + IC model addressed the 
question of whether IC is an independent predictor of fraction comparison accuracy, explaining 
additional variance over and above WM. We then added whole number comparison and 
compared this model to the WM + IC model to understand the relation between whole number 
comparison and fraction comparison after accounting for WM and IC. Successive models were 
compared with likelihood ratio tests using the anova function (lmerTest). To explore possible 
interactions between the predictors of interest, we also constructed a model of fraction 
comparison accuracy with interactions between grade, congruency type, IC, and whole number 
comparison. In cases where this model indicated significant interactions, we computed follow-up 
analyses to better understand the sources of interactions. Finally, we ran follow-up analyses to 
examine Stroop and Flanker as independent predictors of fraction accuracy (see Supplementary 
Methods). 

Because we used logistic mixed effects regressions predicting accuracy, the resulting linear 
models specified the log odds of getting a trial correct. However, it is more interpretable to 

describe the results in terms of the odds by exponentiating the beta coefficients (𝑒𝛽𝑥), rather than 

keeping it in terms of the log odds. For slope coefficients, 𝑒𝛽𝑥 gives the odds ratio, relative to 1. 

When 𝑒𝛽𝑥 > 1, (𝑒𝛽𝑥 − 1) × 100 gives the percent increase in the odds of getting a trial correct 
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for every 1-unit increase in the predictor. When 0 < 𝑒𝛽𝑥 < 1, (1 − 𝑒𝛽𝑥 ) × 100 represents the 

percent decrease in the odds for every 1-unit increase in the predictor. 

Transparency and openness 

This study’s design and its analysis were not pre-registered. The data analyzed in this study 
represent a subset of the data collected, and data from the other measures will be reported 
elsewhere (Younger et al., 2022, 2023). We report all data exclusions and all manipulations for 
the tasks of interest. The tasks and data are available from Project iLead by request 
(https://sites.google.com/view/projectileadnsf), and the data will be made publicly available by 
Project iLead two years after publication. Data cleaning and analysis scripts are available on OSF 
(https://osf.io/z7hxa/). All analyses were conducted in R Version 4.2.1 (R Core Team, 2021). We 
used the lmerTest package to conduct the mixed effects models (Kuznetsova et al., 2017) and 
emmeans Version 1.8.2 to conduct post hoc Tukey comparisons (Lenth, 2022). We used ggplot 
Version 3.3.6 (Wickham, 2016), ggbeeswarm Version 0.6.0 (E. Clarke & Sherrill-Mix, 2017), see 
Version 0.7.3 (Lüdecke et al., 2021), and source code from raincloudplots (Allen et al., 2021) to 
visualize the data. 

Results 

Effect of grade on predictor and outcome measures 

Executive functions and whole number comparison. Performance on each of the EF 
predictor measures improved with grade (Figure 2.2.2A-D; see Supplementary Results for details 
of the linear regression analyses). Preliminary analyses of accuracy and response time on Stroop 

Central tendency 
measure 

Mean 

Median 

Figure 2.2.2. Distribution of performance by grade for the two working memory tasks, (A) forward and (B) backward 
spatial span, the two inhibitory control tasks (C) color-word Stroop and (D) letter Flanker, and (E) whole number 
comparison. Diamonds indicate mean and black horizontal lines indicate medians. If the mean and median values are 
very close together, the diamond occludes the horizontal line. 



29 

and Flanker showed the expected congruency effects (Table 2.2.S4; Figure 2.2.S4), and RCS was 
used as the outcome measure for these tasks for the rest of the analyses. For whole number 
comparison, accuracy ranged from an average of 92% in 3rd grade to 95% in 7th grade. Despite this 
limited range, a linear model predicting accuracy on this task revealed a significant linear effect 
of grade (𝐵=0.02, SE=0.003, 𝑝<.001), which indicates that accuracy on whole number comparison 
increased linearly with grade, with no quadratic effect (𝐵=-0.005, SE=0.004, 𝑝=.242), see Figure 
2.2.2E. 

Fraction comparison with shared components (Level 1). For fraction comparison with 
shared components (Level 1), congruent problems have the same denominator and incongruent 
problems have the same numerator. On average, participants in all three grades performed above 
chance (50%) on both congruency types (𝑡s>3.90, 𝑝s<.001; see Figure 2.2.3). To test the effects 
of grade on accuracy, we employed the logistic mixed effects base model described previously: 
fixed effects of grade level (Grade 3, Grade 5, Grade 7), congruency type (congruent or 
incongruent), and their interaction, with a random intercept for participant and a random slope 
for congruency type. This model revealed a conditional effect of grade (𝐵=1.11, SE=0.11, 𝑝<.001), 
which reflects the expected increase in accuracy with grade, and a conditional effect of 
congruency type (𝐵=-0.74, SE=0.08, 𝑝<.001), which reflects the expected lower accuracy for same 
numerator problems compared to same denominator problems. There was also a significant 
quadratic effect of grade (𝐵=-0.35, SE=0.13, 𝑝=.007), which significantly interacted with 
congruency type (𝐵=0.41, SE=0.14, 𝑝=.003), reflecting plateauing accuracy for same denominator 
problems in grade 5 versus a linear increase in accuracy for same numerator problems across 
grades 3, 5, and 7 (see Figure 2.2.S5 for an illustration of the grade effects). 

  

Figure 2.2.3. (A) Accuracy and (B) response time distributions for fraction comparison with shared components (Level 
1). Congruent problems have shared denominators and incongruent problems have shared numerators. Each colored 
line connects a participant’s averages on congruent and incongruent problems. The black points represent the overall 
mean, and the black lines connect these means. Error bars indicate the bootstrapped 95% confidence intervals around 
the means. 



30 

To examine the effect of grade on RTs, we employed a linear mixed effects model with the same 
fixed and random effects structure predicting RTs on correct trials. This model revealed a 
conditional effect of grade (𝐵=-220.18, SE=24.88, 𝑝<.001), which reflects the expected linear 
decrease in RTs with increasing grade. Overall, participants were slower on same numerator 
problems than on same denominator problems (𝐵=75.23, SE=14.22, 𝑝<.001, Figure 2.2.3), and 
there was a significant interaction between the linear grade effect and congruency type (𝐵=68.41, 
SE=23.17, 𝑝=.003, see Figure 2.2.S5). Post-hoc grade-wise Tukey comparisons showed that this 
effect was driven by slower RTs for same numerator relative to same denominator trials in grades 
5 (Estimated Marginal Mean (EMM)=-97.91, SE=27.32, 𝑝=.005) and 7 (EMM=-112.27, SE=16.19, 
𝑝<.001), but no difference in grade 3 (EMM=-15.52, SE=28.49, 𝑝=.994).  

Fraction comparison with distinct components (Level 2). Contrary to our expectation, 
participants performed better on incongruent compared to congruent fraction comparison 
problems with distinct components (Level 2). A logistic mixed effects model predicting accuracy 
from the previously described base model showed a conditional effect of congruency type 
(𝐵=1.18, SE=0.11, 𝑝<.001; see Figure 2.2.4), confirming that performance on incongruent 
problems was more accurate than on congruent problems, and there were no conditional effects 
of grade (𝐵s=0.11 and 0.09 for linear and quadratic effects, respectively, 𝑝s>0.366). Further, there 
was a significant interaction between congruency type and linear effect of grade (𝐵=0.54, 
SE=0.18, 𝑝=.003). Given that congruent was the reference category, the lack of conditional effect 
of grade but presence of an interaction indicates no improvement across grade for congruent 
problems and a linear improvement across grade for incongruent problems (see Figure 2.2.S6 for 
clearer illustration of grade effects). 

 

 

Figure 2.2.4. (A) Accuracy and (B) response time distributions for fraction comparison with distinct components 
(Level 2). Each colored line connects a participant’s averages on congruent and incongruent problems. The black 
points represent the overall mean, and the black lines connect these means. Error bars indicate the bootstrapped 
95% confidence intervals around the means. 
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Table 2.2.3. Beta coefficients for logistic mixed effects models predicting accuracy on fraction comparison with 
shared components (Level 1) from our predictors of interest. The base model includes fixed effects of grade level (3, 
5, 7), congruency type (congruent or incongruent), and their interaction, plus a random intercept for participant and 
a random slope for congruency type. WM=Working Memory Composite Score, IC=Inhibitory Control Composite 
Score, and WNC=Whole Number Comparison. Congruent problems had the same denominator and incongruent 
problems had the same numerator. (See Table 2.2.S5 for 95% confidence intervals) 

Predictor Base Base + WM Base + WM + IC Base + WM + IC + WNC 

Grade (linear) 1.11*** 1.10*** 1.10*** 1.12*** 

Grade (quadratic) -0.35** -0.35** -0.35** -0.36** 

Congruency type -0.74*** -0.74*** -0.74*** -0.75*** 

Grade (linear) x Congruency type -0.21 -0.20 -0.20 -0.21 

Grade (quadratic) x Congruency type 0.41** 0.41** 0.41** 0.41** 

Working memory  0.29*** 0.16*** 0.13** 

Inhibitory control   0.34*** 0.30*** 

Whole number comparison    0.27*** 

AIC 11778.50 11735.67 11683.07 11644.62 

BIC 11844.91 11809.45 11764.23 11733.16 

 ***p<0.001; **p<0.01; *p<0.05.  

A linear mixed effects model predicting RTs on correct Level 2 trials revealed that participants 
were also faster on incongruent problems than on congruent problems (𝐵=-111.21, SE=26.02, 
𝑝<.001, Figure 2.2.4). There was also a significant quadratic effect of grade (𝐵=-136.16, SE=53.27, 
𝑝=.011), capturing the inverted-U shaped pattern of increasing RTs from grades 3 to 5 and 
decreasing RTs from grades 5 to 7 (Figure 2.2.S6).  

Predicting performance on fraction comparison with shared components (Level 1) 

In the next series of analyses, we investigated how the three predictors of interest—WM, IC, and 
whole number comparison—related to accuracy on fraction comparison with shared components 
(Level 1). Given the significant correlations between most of our variables of interest (Figure 
2.2.5A), we employed a series of logistic mixed effects models to directly address our primary 
research questions: namely, the independent contributions of IC and whole number knowledge 
on fraction comparison ability. Building on the base model, we successively added the WM 
composite score, the IC composite score, and standardized whole number comparison accuracy. 

The model including WM explained the data better than the base model (𝜒2(1)=44.83, 𝑝<.001). 
Every increase in WM score of one standard deviation was associated with a 34% increase in the 
odds of getting a trial correct (Table 2.2.3). The model adding IC better explained the data than 
the model with only WM as a covariate (𝜒2(1)=54.60, 𝑝<.001), indicating that IC was an 
independent predictor of fraction comparison accuracy, over and above WM. Every increase in IC 
score of one standard deviation was associated with a 41% increase in the odds of getting a trial 
correct (Table 2.2.3, Figure 2.2.5B). With the inclusion of IC, WM remained a significant predictor, 
indicating that the two types of EF measures make independent contributions to fraction 
performance. The model that additionally included whole number comparison explained the data  
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Figure 2.2.5. (A) Zero-order Pearson correlation coefficients between fraction comparison with shared components 
(Level 1) accuracy on each congruency type and the predictors of interest: working memory composite score (WM), 
inhibitory control composite score (IC), and whole number comparison accuracy. Uncorrected p-values: ***p<0.001; 
**p<0.01; *p<0.05 (B) Relation between inhibitory control composite score and accuracy for congruent and 
incongruent trials. (C) Relation between whole number comparison and accuracy for congruent and incongruent 
trials. For (B) and (C), points and lines are shaded by congruency type, with the lighter color points and lines 
representing congruent (same denominator) problems and the darker color points and lines representing 
incongruent (same numerator) problems. 
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better than the model with only WM and IC as covariates (𝜒2(1)=40.45, 𝑝<.001), showing that 
whole number knowledge predicts fraction accuracy after taking WM and IC into account. Every 
increase in whole number comparison accuracy of one standard deviation was associated with a 
31% increase in the odds of getting a trial correct (Table 2.2.3, Figure 2.2.5C). This series of 
analyses suggested that working memory, inhibitory control, and whole number comparison are 
all unique predictors of fraction comparison accuracy. 

To determine if there were any interactions between grade, congruency type, IC, and whole 
number comparison, we constructed a model with the four-way interaction and the 
corresponding three- and two-way interactions (see Table 2.2.S6). WM was included as a single 
covariate with no interaction terms. This model revealed a significant three-way interaction 
between the linear effect of grade, congruency type, and whole number comparison (𝐵=-0.34, 
SE=0.12, 𝑝=.006), as well as three two-way interactions (congruency type x whole number 
comparison: 𝐵=0.18, SE=0.08, 𝑝=.018; linear effect of grade x whole number comparison: 𝐵=0.29, 
SE=0.11, 𝑝=.009; and quadratic effect of grade x congruency type: 𝐵=0.36, SE=0.14, 𝑝=.011). 
Notably, none of these interactions included IC. 

To examine these interactions with whole number comparison more closely, we implemented 
separate logistic mixed effects models for each grade. These grade-wise models included 
congruency type, whole number comparison, and their interaction, as well as WM and IC as 
covariates, and the same random effects structure described previously (Table 2.2.4). 
Performance on same numerator problems was significantly worse than on same denominator 
trials for all grades. For 3rd graders, there was a significant interaction between congruency type 
and whole number comparison but no conditional effect of whole number comparison; 
specifically, whole number comparison did not predict accuracy on same denominator problems, 
but positively predicted accuracy on same numerator problems (Figure 2.2.5A and 2.2.C). For 5th 
graders, although Figure 2.2.5A shows a positive correlation between whole number comparison 
and accuracy for both congruency types, it seems that WM and IC accounted for that relation, as 
there was no conditional effect of whole number comparison nor an interaction with congruency  

Table 2.2.4. Beta coefficients for grade-wise logistic mixed effects models predicting accuracy on fraction 
comparison with shared components (Level 1) from our predictors of interest. (See Table 2.2.S7 for 95% confidence 
intervals) 

Predictor Grade 3 Grade 5 Grade 7 

Congruency type -0.42*** -1.07*** -0.78*** 

Working memory 0.07 0.18* 0.13 

Inhibitory control 0.24*** 0.26** 0.35*** 

Whole number comparison -0.11 0.21 0.36*** 

Congruency type x Whole number comparison 0.39** 0.21 -0.10 

AIC 3555.24 2577.36 5498.35 

BIC 3608.60 2629.86 5559.41 

 ***p<0.001; **p<0.01; *p<0.05 
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type. Finally, for 7th graders, better whole number comparison predicted better accuracy on both 
congruency types (Table 2.2.4). These follow up analyses suggest that whole number knowledge 
may play a different role in fraction comparison across different grades and levels of fraction 
experience. 

Because IC was a robust predictor of fraction performance on Level 1, we conducted a series of 
follow-up analyses to more closely examine the two measures of IC: Stroop and Flanker (see 
Supplementary Methods, Figure 2.2.S7A, and Table 2.2.S8). Both Stroop and Flanker individually 
explained variance in fraction comparison after accounting for WM (𝜒2=26.61, 𝑝<.001 and 
𝜒2=37.34, 𝑝<.001, respectively). Further, Stroop and Flanker both explained variance in fraction 
comparison after additionally accounting for the other inhibitory control measure (𝜒2=10.96, 
𝑝<.001 and 𝜒2=21.69, 𝑝<.001, respectively). These analyses suggest that both measures are 
independent predictors of fraction comparison accuracy for shared component problems. 

Predicting performance on fraction comparison with distinct components (Level 2) 

Next, we examined the predictors of performance on fraction comparison with distinct 
components (Level 2) with a parallel set of analyses to those carried out for Level 1. Only 
participants who achieved at least 75% accuracy on Level 1 moved onto Level 2. By this criterion, 
31% of 3rd graders (55/180), 60% of 5th graders (98/163), and 76% of 7th graders (320/422) 
advanced to Level 2 (Table 2.2.2). A chi-squared test for trend in proportions indicated that the 
proportion of participants advancing to Level 2 increased with grade (𝜒2(1)=107.34, 𝑝<.001). 

After considering the correlations between our predictor variables and performance on pairs with 
distinct components (Figure 2.2.6A), we more formally tested for independent contributions of 
IC and whole number comparison to fraction comparison. Again, we started with the base model 
and then conducted a series of logistic mix effects models adding additional predictors (Table 
2.2.5). The model including WM did not explain the data better than the base model (𝜒2(1)=2.61, 
𝑝=.106), indicating that WM was not a significant predictor of fraction accuracy with distinct 
components. Next, IC was added to the model, and this model explained the data better than the 
model with only WM as a covariate (𝜒2(1)=12.83, 𝑝<.001), indicating that participants with higher 
IC scores also performed better on this level. Every increase in IC of one standard deviation was 
associated with a 15% increase in the odds of getting a trial correct (Table 2.2.5, Figure 2.2.6B). 
However, adding whole number comparison to the model did not explain the data better than 
the model with only WM and IC as covariates (𝜒2(1)=0.08, 𝑝=.772), as whole number comparison 
was not a significant predictor of fraction accuracy at this level (Table 2.2.5, Figure 2.2.6C). This 
series of analyses suggests that for the more difficult fraction comparison problems with distinct 
components (Level 2), only individual differences in IC predicted accuracy. 

To determine whether there were any interactions between grade, congruency type, IC, and 
whole number comparison, we again constructed a model with the four-way interaction and the 
corresponding three- and two-way interactions (see Table 2.2.S10). WM was included as a single 
covariate with no interaction terms. This model confirmed a significant interaction between linear 
effect of grade and congruency type (𝐵=0.61, SE=0.23, 𝑝=.007), which was already captured in 
the base model. While visual inspection of Figure 2.2.6B suggests that IC had a larger influence  
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Figure 2.2.6. (A) Zero-order Pearson correlation coefficients between fraction comparison with distinct components 
(Level 2) accuracy on each congruency type and the predictors of interest: working memory composite score (WM), 
inhibitory control composite score (IC), and whole number comparison accuracy. Uncorrected p-values: ***p<0.001; 
**p<0.01; * p<0.05 (B) Relation between inhibitory control composite score and accuracy for congruent and 
incongruent trials. (C) Relation between whole number comparison and accuracy for congruent and incongruent 
trials. For (B) and (C), points and lines are shaded by congruency type, with the lighter color points and lines 
representing congruent problems and the darker color points and lines representing incongruent problems. 
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Table 2.2.5. Beta coefficients for logistic mixed effects models predicting accuracy on fraction comparison with 
distinct components (Level 2) from our predictors of interest. The base model includes fixed effects of grade level 
(3, 5, 7), congruency type (congruent or incongruent), and their interaction, plus a random intercept for participant 
and a random slope for congruency type. WM = Working Memory Composite Score, IC = Inhibitory Control 
Composite Score, and WNC = Whole Number Comparison. (See Table 2.2.S9 for 95% confidence intervals) 

Predictor Base Base + WM Base + WM + IC Base + WM + IC + WNC 

Grade (linear) 0.11      0.11      0.14      0.14      

Grade (quadratic) 0.09      0.10      0.09      0.09      

Congruency type 1.18***  1.18***  1.18***  1.18***  

Grade (linear) x Congruency type 0.54**   0.53**   0.54**   0.54**   

Grade (quadratic) x Congruency type -0.25      -0.25      -0.25      -0.25      

Working memory           0.06      0.01      0.01      

Inhibitory control                     0.14***  0.14***  

Whole number comparison                               0.01      

AIC 11033.33      11032.72      11021.89      11023.81      

BIC 11097.45      11103.96      11100.26      11109.30      

 *** p<0.001; ** p<0.01;  * p<0.05. 

on fraction comparison in grades 5 and 7 than 3, the two-way interaction between quadratic 
effect of grade and IC did not reach significance (𝐵=0.13, SE=0.14, 𝑝=.360). Thus, the results of 
this interaction model did not warrant grade-wise follow-up analyses. 

Because IC was a robust predictor of fraction performance on Level 2, we conducted a series of 
follow-up analyses to more closely examine the two component measures of IC: Stroop and 
Flanker (see Supplementary Methods, Figure 2.2.S7B, and Table 2.2.S11). These analyses revealed 
that both Stroop and Flanker explained variance in fraction comparison after accounting for WM 
(𝜒2=10.27, 𝑝=.001 and 𝜒2=7.40, 𝑝=.007, respectively). Further, Stroop explained variance in 
fraction comparison with distinct components over and above Flanker (𝜒2=6.02, 𝑝=.014). 
However, Flanker did not explain variance in fraction performance after accounting for Stroop 
(𝜒2=3.14, 𝑝=.076). Thus, including Stroop and Flanker as separate predictors revealed an 
independent contribution to explaining distinct component fraction comparison accuracy for 
Stroop, but not for Flanker. 

Discussion 

In this study, we tested two predictions of the whole number interference hypothesis as it relates 
to fraction comparison in a large, diverse sample of elementary and middle school students. 
Consistent with the prediction that if part of students’ difficulty with mastering fractions comes 
from the need to inhibit knowledge about whole numbers that does not apply to fractions, we 
found that individual differences in inhibitory control related to fraction comparison 
performance. However, we did not find support for the prediction that students with stronger 
whole number knowledge would experience more interference, and thus, counterintuitively, 
perform worse on fraction comparison than students with weaker whole number knowledge. 
These results held for fraction comparisons with both shared and distinct components. Together, 
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our findings point to a pivotal role for inhibitory control in rational number understanding that 
may be distinct from inhibiting whole number magnitude knowledge. 

Development of fraction comparison performance for 3rd to 7th grade 

The youngest participants in our study were in 3rd grade, the grade in which fractions are 
commonly introduced into the mathematics curriculum in the United States (Common Core State 
Standards Initiative, 2010). As would be expected based on increasing mastery of fractions with 
age and accumulating instructional experience, we found that participants became more accurate 
and responded more quickly on fraction comparison with shared components (Level 1) across 
grades. As expected, performance on congruent (same denominator) problems exceeded 
performance on incongruent (same numerator) problems. Further, performance on congruent 
problems leveled off after 5th grade, whereas performance on incongruent problems increased 
linearly across grades. However, for the more difficult, distinct component problems (Level 2), 
contrary to expectation, performance was worse for the congruent than incongruent problems. 
Further, performance did not improve for congruent problems but did increase linearly across the 
grades for incongruent problems. Therefore, though there was general improvement across 
grades, consideration of congruency type revealed subtle performance differences that will be 
discussed in the following sections. 

Inhibitory control supports fraction comparison across grades and problem difficulty 

The first aim of this study was to assess the role of inhibitory control in supporting fraction 
understanding. Although previous studies have documented the contribution of working memory 
(Jordan et al., 2013) or inhibitory control (Avgerinou & Tolmie, 2019; D. M. Gómez et al., 2015) 
to fraction comparison performance, none, to our knowledge, have explored the simultaneous 
contribution of these abilities. We found that when fractions had shared components (Level 1), 
both working memory and inhibitory control each explained unique variance, and that when 
fractions had distinct components (Level 2), only inhibitory control explained unique variance. 
Statistically, this relationship did not interact with grade, although visual inspection suggests it 
was stronger in grades 5 and 7 than grade 3. A larger sample of 3rd graders may be needed to 
detect the development of reliance on inhibitory control for distinct component fraction 
comparison. Nevertheless, these results are in line with a general prediction of the whole number 
interference hypothesis, namely that inhibitory control should be a vital capacity for rational 
number understanding.  

The strong view of the whole number interference hypothesis, however, would predict that 
inhibitory control would be especially important for solving fraction comparisons incongruent 
with whole number knowledge. This prediction was not born out in the present study, as there 
was an equal contribution of inhibitory control to performance on both congruency types. Prior 
studies of rational number comparison have found significant contributions of inhibitory control 
for incongruent but not congruent problems in proportional reasoning (Abreu-Mendoza et al., 
2020; Coulanges et al., 2021) and decimal comparison (Coulanges et al., 2021). However, these 
studies did not explicitly test for the difference in contribution between congruency types, making 
it unclear whether the contribution of inhibitory control is greater for incongruent than congruent 
problems. Negative priming studies of fraction comparison also suggest a specific role of 
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inhibition for incongruent comparisons (Fu et al., 2020; Rossi et al., 2019). These studies show 
that solving an incongruent, same numerator problem decreases performance on a subsequent 
congruent, same denominator problem relative to a control prime trial. Notably, these studies 
involved only shared component problems, making it unclear whether this priming effect extends 
to distinct component problems where participants might not even know to inhibit their whole 
number knowledge. Further, they do not consider the effects of congruent priming on 
incongruent performance, which might be expected if inhibitory control is needed for both 
problem types. Interestingly, one recent study looked at this question using a block switching 
design (Van Hoof et al., 2021) and found that switching from congruent to incongruent fractions 
incurred the same switch cost as the reverse switch, relative to solving the same problem type 
twice (stay trials). This pattern of results is consistent with our finding that inhibitory control is 
needed when working with fractions, regardless of congruency type. An interesting area for 
future work would be to add an inhibitory control assessment to a negative priming study to 
examine the relation between differences in switch costs and individual variation in this crucial 
capacity. Another area for future work would be to examine whether the pattern of relations 
between inhibitory control, congruency type, and performance holds across different types of 
rational numbers or whether there are fundamental differences between types. 

In contrast to the consistent contributions of inhibitory control for both shared and distinct 
component problems, the role of working memory differed by component type. Working memory 
had a significant contribution to shared component (Level 1) performance but was not a 
significant predictor of distinct component performance (Level 2), regardless of whether 
inhibitory control was present in the model. One explanation is that working memory may 
support the transition to more automatic processing for easier fraction comparisons (as with 
shared components), whereas for more challenging tasks (as with distinct components), the 
ability to inhibit prior knowledge and resolve interference is what matters most. An alternative 
possibility is that this null effect may stem from the fact that only the strongest performing 
participants (who included participants with higher working memory) and mostly the oldest 
participants (5th and 7th grade students who have been learning about fractions for the longest 
and also have the highest working memory) moved on to Level 2, resulting in a smaller sample 
size and a possible selection bias. Future studies should use a more fine-grained measure of 
working memory, such as the half step span measure employed in Coulanges et al., (2021), or a 
more sensitive task to test working memory’s involvement in fraction comparison. Nevertheless, 
the finding that inhibitory control is a significant predictor of distinct component fraction 
comparison performance when controlling for working memory further highlights the 
importance of inhibitory control for fraction understanding. We also found that the contribution 
of inhibitory control was stable across grades, counter to the possibility that it only becomes 
important when participants understand that they should be inhibiting their whole number 
knowledge. This result suggests that even at the earliest stages of fraction understanding, 
inhibitory control plays a role.  

A final question related to inhibitory control afforded by this data set was assessing the 
contribution of different experimental measures. Prior work has found associations between 
various Stroop tasks (i.e., numerical and color-word) and rational number outcomes (Avgerinou 
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& Tolmie, 2019; Coulanges et al., 2021; D. M. Gómez et al., 2015), and also the Hearts and Flowers 
task (Abreu-Mendoza et al., 2020; Ren & Gunderson, 2021). In fact, the arrow Flanker task is the 
only measure of inhibitory control studied so far that has not been found to be associated with 
rational number performance (Matthews et al., 2016; Park & Matthews, 2021). In the current 
study, both color-word Stroop and letter Flanker were collected. Based on the prior studies and 
the classification of Stroop as a semantic inhibition task (Avgerinou & Tolmie, 2019), we might 
have expected that Stroop would have stronger predictive power than Flanker. Consistent with 
this prediction, for distinct component pairs (Level 2) only Stroop was significant when both were 
included in the regression analyses, despite both measures predicting performance when entered 
alone. For shared component pairs (Level 1), both measures predicted performance when 
entered alone. However, when entered together, the Flanker task had the stronger predictive 
power, although Stroop remained significant.  

Although both color-word (Coulanges et al., 2021) and numerical Stroop (D. M. Gómez et al., 
2015) tasks have been previously employed in the literature, here we used the color-word 
version, which is a domain-independent measure of EF (e.g., it does not involve processing 
numerical magnitudes), to avoid circularity in interpretations. However, numerical Stroop tasks, 
which explicitly involve inhibiting whole number magnitude knowledge, may index the 
automaticity with which numerical magnitude information is accessed (Bugden & Ansari, 2011), 
making it a potentially useful diagnostic tool to identify students at risk for fraction difficulties. In 
sum, these results suggest that a wide range of inhibitory control measures can predict rational 
number outcomes, and more research is warranted to establish if a specific task is more predictive 
of certain aspects of rational number knowledge and performance, especially in the classroom 
context.  

Whole number knowledge supports some forms of fraction comparison 

The second aim of this study was to examine the counterintuitive prediction that better 
knowledge of whole number magnitudes could be detrimental to fraction understanding. 
Because properties of whole numbers do not always apply to fractions — for example, the 
presence of a larger numeral does not always imply the larger fraction magnitude — students 
who are more able to automatically access whole number magnitudes may experience greater 
interference when resolving fraction magnitudes, resulting in poor fraction comparison 
performance.  However, this prediction runs contrary to the large body of evidence showing that 
whole number knowledge is positively related to a variety of math learning outcomes, both when 
measured concurrently and as a predictor of future learning (Schneider et al., 2017; Smedt et al., 
2013).  

Consistent with the view that whole number knowledge is beneficial for math achievement, we 
found that whole number comparison performance was positively related to shared component 
fraction comparison performance (Level 1). This effect remained significant even after controlling 
for working memory and inhibitory control, indicating that whole number knowledge contributed 
over and above domain-general capacities. Interestingly, the effect of whole number knowledge 
increased with grade level, which may indicate a shift in strategy use. As students gain proficiency 
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with shared component fractions, they may focus more on comparing the non-shared numbers, 
such that differences in whole number knowledge become more relevant.  

This shift in strategy may help explain the three-way interaction between grade, congruency type, 
and whole number knowledge that we found for performance on shared component problems 
(Level 1). Specifically, for 3rd grade, whole number comparison performance predicted fraction 
comparison on the same numerator problems but not the same denominator problems. There 
was also a trend in this direction for 5th graders, but by 7th grade, whole number knowledge 
predicted both congruency types comparably. This result is somewhat unexpected because whole 
number comparison is most similar to congruent, same denominator comparison, as only 
numerators must be compared. In contrast, for the incongruent, same numerator problems, the 
denominators must be compared, and the fraction with the smaller denominator is the larger 
fraction. Studies that include eye tracking could help elucidate this result by examining whether 
children with varying whole number knowledge focus differentially on the denominators versus 
numerators on these types of problems (Miller Singley et al., 2020).  

For the more challenging distinct component fraction comparisons (Level 2), we found that whole 
number knowledge had no significant impact on performance. This lack of relation might reflect 
the fact that only higher performing students made it to Level 2, and thus there is less variance 
in the whole number comparison performance in these students (as well as a smaller sample size 
in which to detect an effect). However, we were still able to detect effects for inhibitory control 
at this level, suggesting that sampling bias does not preclude finding effects of these factors. 
Additional work is needed to assess how whole number knowledge relates to various types of 
fraction knowledge across the ability spectrum. Nevertheless, the lack of a positive contribution 
of whole number knowledge for fraction comparisons with distinct components suggests that 
whole number knowledge, as indexed by comparison tasks, may not be equally beneficial for all 
domains of mathematics. 

Most prior work that has demonstrated the utility of whole number knowledge for fractions has 
employed number line estimation tasks rather than whole number comparison tasks. Indeed, 
several longitudinal studies employing number line estimation have shown that whole number 
knowledge is positively related to future performance on a variety of broad measures of rational 
number understanding, such as conceptual and procedural knowledge of fraction arithmetic 
(Bailey et al., 2014; Jordan et al., 2013; Van Hoof et al., 2017). The only study to our knowledge 
to collect both number line and whole number comparison found that number line estimation 
was a stronger predictor of rational number understanding than whole number comparison (Van 
Hoof et al., 2017). Number line tasks may better capture learners’ understanding of numbers as 
quantities that represent magnitudes, whereas comparison tasks may index automatic access to 
numbers’ ordinal information (Lyons & Beilock, 2013). This view of number comparison may 
explain its contribution to same numerator problems, where instead of interfering with these 
supposedly contradictory problems, it indexes automatic access to ordinal information that can 
be used to quickly identify the smaller quantity. Although performance on whole number 
comparison and number line estimation tasks tend to be positively correlated (Laski & Siegler, 
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2007), further research should include both measures in order to disentangle which aspects of 
whole number knowledge support rational number outcomes. 

The role of inhibitory control beyond whole number interference 

In the current study, we sought to test to predictions of the whole number interference 
hypothesis, namely that one source of difficulty with rational numbers is interference caused by 
whole number magnitude knowledge. One prediction from this hypothesis is that whole number 
knowledge should hinder fraction comparison performance because many properties of whole 
numbers do not apply to rational numbers. However, we did not observe a negative relation 
between whole number knowledge and fraction comparison performance, and furthermore, we 
did not find evidence for an interaction between whole number knowledge and inhibitory control. 
In other words, the participants with better whole number knowledge did not need more 
inhibitory control to overcome that knowledge. This pattern of results suggests that although 
inhibitory control contributes to fraction comparison performance, it is serving a function other 
than inhibiting whole number knowledge.  

The performance patterns for the congruent versus incongruent problems with distinct 
components (Level 2) provides some insight into alternative contributions of inhibitory control. 
We hypothesized that congruency with whole number knowledge would be a salient factor that 
influences fraction comparison performance for problems with distinct components. By this logic, 
incongruent comparisons should be more difficult than congruent ones because they involve two 
sub-comparisons that contradict whole number knowledge (e.g., in the comparison of 2/3 vs. 5/9, 
the larger magnitude fraction contains both the smaller numerator and denominator 
components). Contrary to our expectations, participants were more accurate on the incongruent 
distinct component problems than on the congruent problems. However, a number of previous 
studies have documented stronger performance for incongruent relative to congruent problems 
with distinct components (D. M. Gómez & Dartnell, 2018; González-Forte et al., 2018, 2020; 
Obersteiner et al., 2013; Rinne et al., 2017; Toledo et al., 2022), which may reflect the strategy 
that participants engaged in when solving these problems. In these cases, participants (or at least 
a subset of participants), may have used a “select the smaller number strategy,” which would lead 
to the correct answer for incongruent but not congruent problems. In fact, recent studies have 
identified this exact strategy among a subset of children (D. M. Gómez & Dartnell, 2018; Miller 
Singley & Bunge, 2018; Rinne et al., 2017). This strategy may reflect a transition from a more 
naïve “select the larger strategy” to a more sophisticated understanding of fractions, whereby 
students note that something is “different” about fractions and acknowledge that the presence 
of larger numbers is not necessarily an indicator of a larger magnitude (Rinne et al., 2017). In turn, 
students who have this understanding may be monitoring their responses more carefully, thus 
invoking inhibitory control for both congruency problem types. An important direction for future 
studies will be to move beyond simple accuracy measures and instead use participants’ individual 
patterns of success and failure across problem types to identify different underlying strategies or 
learning profiles (Braithwaite et al., 2019).  

Another possible source of performance differences between congruent and incongruent 
comparisons is in the properties of the fraction pairs. Constructing well-matched sets of 
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congruent and incongruent fraction comparison pairs is difficult because controlling for one 
feature sometimes makes it mathematically difficulty to control for another feature (Rosenberg-
Lee, 2021). In the present study, we chose to control for magnitude difference between the 
fraction pairs and partial distance. Although, we were not able to exactly match between the 
conditions on factors like gap distance, half benchmarking, simplified forms, and familiarity, which 
have been shown to impact performance (D. M. Clarke & Roche, 2009; González-Forte et al., 
2018, 2020), there does not seem to be a definitive impact of these factors on students’ 
performance in the current sample (Table 2.2.S3). For example, applying the gap strategy 
(selecting the fraction with the smallest distance between numerator and denominator) would 
only lead to an error on one congruent pair (2/7 vs 3/9), yet performance was no worse on this 
pair (see Table 2.2.S3). Future studies should systematically manipulate these factors to explicitly 
test how inhibitory control relates to these stimulus features.  It is also important to note that the 
fraction task used in this study was timed, whereas children and adults do not often have 
stringent time constraints in most real-world situations with fractions. Even though participants 
were not using the full RT window available, students may use different strategies when under 
time pressure compared to when they can pace themselves. Thus, another future direction is to 
compare the role of inhibitory control in timed and untimed fraction tasks.  

Beyond the specifics of the fraction stimuli, the pattern of inhibitory control engagement found 
here is in line with prior work that suggests that learning about rational numbers requires 
conceptual change (McMullen et al., 2015; McNeil & Alibali, 2005; Vamvakoussi & Vosniadou, 
2004), and that conceptual change invokes inhibitory control (Bascandziev et al., 2018; 
Brookman-Byrne et al., 2018). Specifically, in cases in which learners acquire new counter-
intuitive knowledge that contradicts previous knowledge, learners maintain both conceptual 
frameworks and inhibitory control is required to activate the correct knowledge and inhibit the 
initial, inappropriate knowledge (Shtulman & Valcarcel, 2012; Vosniadou, 2014). In the case of 
fractions, what therefore needs to be inhibited may not be specifically knowledge of whole 
number magnitudes, but rather the entire conceptual framework of number properties that apply 
to whole numbers but not to rational numbers.  

Conclusions 

Consistent with a more general proposal that overcoming interference is a key building block for 
mastering rational numbers (Rosenberg-Lee, 2021), we found that individual differences in 
inhibitory control predicted children’s fraction comparison performance. Further, this effect was 
independent of the contribution of working memory. However, contrary to the counterintuitive 
prediction about the role of whole number knowledge, we did not find that superior whole 
number knowledge hindered fraction understanding. Instead, whole number knowledge 
positively predicted performance for the easier, shared component problems and was not related 
to performance on distinct component problems. Further, we found no differences in these 
patterns between congruent and incongruent problems, and developmentally, the contributions 
of these factors were generally stable from 3rd to 7th grade. Together, these results converge with 
the growing body of evidence pointing to a role for inhibitory control in rational number 
understanding (Abreu-Mendoza et al., 2020; Avgerinou & Tolmie, 2019; Coulanges et al., 2021; D. 
M. Gómez et al., 2015; Ren & Gunderson, 2021), and further suggest that its contribution may be 
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more general than overcoming whole number magnitude knowledge. Given that individual 
differences in inhibitory control are evident far before children are exposed to formal fraction 
instruction, assessing this capacity early on could be useful to identify students who are likely to 
benefit from additional support while learning fractions. 
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2.3 Relational thinking: An overlooked component of executive functioning  

Abstract 

Relational thinking, the ability to represent abstract, generalizable relations, is a core component 
of reasoning and human cognition. Relational thinking contributes to fluid reasoning and 
academic achievement, particularly in the domain of math. However, due to the complex nature 
of many fluid reasoning tasks, it has been difficult to determine the degree to which relational 
thinking has a separable role from cognitive processes collectively known as executive functions 
(EFs). Here, we used a simplified reasoning task to better understand how relational thinking 
contributes to math achievement in a large, diverse sample of elementary and middle school 
students (N = 942). Students also performed a set of ten adaptive EF assessments, as well as tests 
of math fluency and fraction magnitude comparison. We found that relational thinking was 
significantly correlated with each of the three EF composite scores previously derived from this 
dataset, albeit no more strongly than they were with each other. Further, relational thinking 
predicted unique variance in students’ math fluency and fraction magnitude comparison scores 
over and above the three EF composites. Thus, we propose that relational thinking be considered 
an EF in its own right as one of the core mid-level cognitive abilities that supports cognition and 
goal-directed behavior. 

Introduction 

Relational thinking, or the process of identifying and integrating relations, is regularly invoked 
during reasoning (Doumas et al., 2008). Among other things, it enables us to draw higher-order 
abstractions and generalize across situations and contexts (Gentner, 2003). Relational thinking is 
central to measures of fluid reasoning, and the terms reasoning and non-verbal intelligence are 
sometimes used interchangeably to describe aspects of intelligence that are separable from 
crystallized intelligence (P. A. Carpenter et al., 1990; Cattell, 1987a). Although some other animals 
can represent abstract relations between items, such as same and different, humans are 
unparalleled with respect to the ability to consider and integrate relations (Gentner et al., 2021; 
Penn et al., 2008; R. K. R. Thompson & Oden, 2000). For example, we can use analogical reasoning 
to intuit that the relation between a hand and a glove and is the same as that between a foot and 
a sock. Likewise, we can use transitive inference to deduce that if a cat is bigger than a squirrel 
and a squirrel is bigger than a mouse, then a cat is bigger than a mouse. Here, we argue that 
relational thinking is a core cognitive ability that should be considered an executive function (EF). 

EFs are construed as a constellation of domain-general, effortful cognitive processes that are 
critical for goal-directed behavior (Diamond, 2013), flexible thinking and problem solving (Cragg 
& Gilmore, 2014; Lehto et al., 2003), reasoning (Richland et al., 2006; Richland & Burchinal, 2013), 
and, as a result, academic performance (Best et al., 2011; Lawson & Farah, 2015; Rose et al., 
2011). As such, they can be thought of as mid-level cognitive processes situated between basic 
perceptual, attentional, and motor processes, on the one hand, and high-level cognitive abilities 
(e.g., language, reading, math) on the other. Developmental psychology research on EFs 
commonly focuses on three putative core abilities: inhibition (the ability to selectively control 
attention and resist interference), working memory (the ability to hold, update, and manipulate 
information in mind), and cognitive flexibility (the ability to switch between perspectives, rules, 
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and schemas as needed on a moment-to-moment basis; also referred to as shifting) (Diamond, 
2013; Lehto et al., 2003; Miyake et al., 2000; Rose et al., 2011). These three EFs are theorized to 
be distinct abilities that frequently interact to support high-level cognition and behavior. Many 
previous studies on the development and structure of EFs have focused on this hypothesized 
structure and chosen tasks that map onto these components (Hughes et al., 2009; Huizinga et al., 
2006; K. Lee et al., 2013; Lehto et al., 2003).  

Even within these three canonical components of EF, however, there is variability in how each is 
conceptualized. For example, the inhibition construct combines inhibition of attention and 
inhibition of action, though these two types of inhibition may be cognitively and neurally distinct 
(Bunge et al., 2002; Diamond, 2013). Furthermore, there is no single gold-standard definition of 
what makes a cognitive ability an EF, and the EF components found in any particular study are 
directly related to the selected tasks. More broadly, there is no agreed upon taxonomy of EFs 
across psychology and neuroscience.   

Like the canonical EFs, relational thinking has long been viewed as a domain-general, effortful, 
mid-level cognitive process that is central to higher-level human cognition—in particular, various 
forms of reasoning (Alexander, 2016; Cattell, 1987a; Halford et al., 2010). Despite this parallel 
conceptualization, relational thinking tasks have not been included in studies assessing the 
structure of EFs. As a result, these standard models do not involve a relational component. 
However, this historical precedent in and of itself does not mean that relational thinking should 
not be considered an EF.   

To tackle the question of whether relational thinking should be conceptualized as an EF, it is 
important to test whether it is distinct from the canonical EFs. Many previous studies have noted 
a relation between reasoning abilities and EFs (e.g., Conway et al., 2003; Duncan et al., 2012; 
Engle et al., 1999; Friedman et al., 2006; Van Aken et al., 2016; see Diamond, 2013 for a review). 
Broadly, these studies demonstrate that individuals who score higher on standard measures of 
EFs also tend to score higher on standard measures of reasoning. In particular, working memory 
and inhibitory control are frequently found to correlate positively with reasoning in both adults 
(Grossnickle et al., 2016; Krawczyk et al., 2008) and children (Fry & Hale, 2000; Richland et al., 
2006; Richland & Burchinal, 2013; Starr et al., 2018; Thibaut et al., 2010; Thibaut & French, 2016).  

The tight relation between reasoning and EFs has led some researchers to conclude that 
reasoning is not actually a separable ability from EFs (Martínez et al., 2011), whereas others have 
suggested that EFs explain only about half of the variance in reasoning ability (Friedman et al., 
2006). These arguments have been clouded by the fact that most measures of reasoning are 
complex and engage canonical EFs as well as relational thinking, which makes it difficult to 
determine whether this overlap stems from confounds in tasks themselves versus a true 
association between the underlying abilities.  

Breaking down the steps required to solve classic matrix reasoning tasks (Cattell, 1940; Raven, 
1941, 2000) highlights how both relational thinking and canonical EF abilities are required for 
success. Matrix reasoning tasks are frequently used as a stand-alone fluid reasoning task but are 
also a typical component of nonverbal intelligence tests (e.g., the Wechsler Adult Intelligence 
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Scale; Wechsler, 1958). In this type of task, participants are shown a grid of visuospatial designs 
with one item missing, and participants must choose the correct item to complete the pattern 
from an array of choice items. For example, the grid may be organized such that rows of items 
vary along one relation (e.g., size) and the columns vary along another relation (e.g., shape). 
Selecting the correct item that completes the grid requires integrating the two separate relations 
in order to identify the item that completes the pattern in both dimensions. Therefore, in addition 
to identifying and integrating relations, the task also engages working memory to maintain and 
manipulate the different critical relations in the focus of attention and inhibitory control to resist 
selecting salient distractor items (Chen et al., 2016; Sternberg, 1977; Stevenson & Hickendorff, 
2018; Vodegel Matzen et al., 1994). Other complex reasoning tasks similarly tap both relational 
thinking and canonical EFs (Richland et al., 2006; Richland & Morrison, 2010; Starr et al., 2018; 
Thibaut et al., 2010). Therefore, an important first step for understanding how relational thinking 
relates to canonical EFs is to design a task that engages relational thinking while minimizing 
demands on other EFs.  

EFs are often described as processes that support academic achievement; thus, exploring the 
unique contribution of relational thinking to math performance is germane to the question of 
whether it should be considered an EF. EFs are strong predictors of academic achievement 
throughout childhood and adolescence (Best et al., 2011; Cowan, 2014; Ferrer et al., 2007; Ferrer 
& McArdle, 2004; Richland et al., 2007; St Clair-Thompson & Gathercole, 2006). This relation has 
been particularly well-documented in the domain of mathematics: children who score higher on 
EF assessments also typically score higher on lab-based and school-based math assessments (Bull 
& Scerif, 2001; Fuchs et al., 2012; Geary, 2011; Green et al., 2017; Purpura & Ganley, 2014; 
Richland et al., 2007; St Clair-Thompson & Gathercole, 2006; Taub et al., 2008). Some of the ways 
EFs support math achievement include helping learners maintain relevant knowledge in mind 
(working memory), inhibit inappropriate strategies (inhibitory control), and switching between 
different strategies (cognitive flexibility) (Bull & Lee, 2014; Cragg & Gilmore, 2014).  

In parallel to the research linking canonical EFs to math achievement, a number of studies have 
demonstrated that reasoning ability predicts both current and future math abilities (Fuchs et al., 
2006; Green et al., 2017; Taub et al., 2008). Mathematical thinking is inherently relational 
(DeWolf et al., 2015; Miller Singley & Bunge, 2018; Richland et al., 2007). Students who 
conceptualize math as a relational system are more successful in tackling novel problem types 
and formats than students who conceptualize math as a set of explicit rules and procedures 
(Richland et al., 2012). The importance of relational thinking for math is particularly evident for 
concepts like equivalence, algebra, and fractions. With respect to fractions, for example, the 
magnitude of a fraction is equivalent to the relation between the numerator and the 
denominator, and comparing fractions therefore requires integrating the relation between one 
numerator and denominator with the relation between the other numerator and denominator 
(Bonato et al., 2007; Miller Singley & Bunge, 2014). Previous studies have found associations 
between children’s performance on fraction comparison tasks and both reasoning and EF 
measures (DeWolf et al., 2015; Hecht et al., 2003; Kalra et al., 2020; Miller Singley & Bunge, 2018; 
Siegler & Pyke, 2013).  
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However, as previously described, the complex nature of many reasoning tasks muddles the 
interpretation of these relations between EFs, reasoning, and math achievement. Based on the 
current research, it is unclear whether relational thinking and canonical EFs are explaining unique 
or overlapping variance in children’s math achievement. Clarifying the relation between relational 
thinking, EFs, and math is necessary to better understand the foundational skills required for 
students to succeed with mathematical concepts. 

The goals of the present study were threefold. First, we aimed to assess age-related differences 
and individual variability on a simplified relational thinking task in a large developmental sample. 
Second, we sought to examine the degree to which relational thinking can be considered a 
separable construct from EFs that are thought to contribute to reasoning, namely working 
memory and inhibitory control. Finally, we further explored the hypothesis that relational 
thinking should be considered a distinct EF by testing whether it independently contributes to 
math performance, over and above common measures of EF.  

The relational thinking task used here is a form of relational match-to-sample task (Christie & 
Gentner, 2014; Christoff et al., 2003; Premack, 1983; L. B. Smith, 1984; R. K. R. Thompson & Oden, 
2000). It takes the form of proportional analogies (A:B::C:D), but has no semantic component and 
therefore requires little or no prior knowledge (Figure 2.3.1). Briefly, this task requires participants 
to jointly consider the relations between two pairs of simple visual stimuli that vary along either 
two or three dimensions in order to determine whether the two pairs share the same relation 
(e.g., both match in shape). We created two levels of relational complexity (Halford et al., 1998) 
within this task. The first level requires consideration of two features, as in prior work (Christoff 
et al., 2003; Dumontheil et al., 2010; Wendelken et al., 2011); the second is a novel, more 
challenging level that requires consideration of three features. We designed this measure such 
that it can be administered efficiently in a group setting for use with large-scale data collection 
(Uncapher, 2018). 

This task explicitly taps relational thinking skills, and there are critical differences in its design that 
reduce demand on EFs in comparison to standard reasoning tasks. First, the task contains only 
four elements and a two-alternative forced-choice answer structure to reduce demands on 
working memory and inhibitory control. On each trial, participants must decide only whether the 
items do or do not match, rather than choosing between up to eight answer choices. Second, 
participants are told the rules in advance and must only follow those two or three rules 
(depending on the level of relational complexity), rather than needing to induce multiple novel 
rules on their own (P. A. Carpenter et al., 1990). Finally, the task involves only a small set of 
geometric shapes, rather than familiar real-world objects, to minimize the involvement of 
semantic knowledge. By reducing the number of elements—both sample and choice items—
involved in the task, specifying a limited set of rules in advance, and using basic shapes, this 
relational thinking task is designed to isolate relational thinking while minimizing the involvement 
of other EFs. However, we do not consider it possible to fully eliminate demands on canonical EFs 
in any task that requires rule-guided behavior (Bunge & Zelazo, 2006)—any more than we 
consider it possible to devise a "pure" EF task, as even the canonical EFs are theorized to interact 
with one another (Blackwell et al., 2014; Diamond, 2013). 
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We addressed our aims in the context of a large, longitudinal investigation of the development of 
EF components across Grades 3-8. Participants in this study completed a battery of nine EF tasks 
from the Adaptive Cognitive Evaluation (ACE) battery (Younger et al., 2022). A primary analysis of 
the ACE data, which used factor analysis methods to uncover how the different tasks grouped 
together, were published separately (Younger et al., 2023). Based on these analyses, we used 
composite scores to index three putative EFs: working memory, interference resolution and 
response inhibition (different forms of inhibitory control, involving suppression of visual 
distractors and motoric responses, respectively), as well as a single measure of cognitive 
flexibility. In addition, participants completed the relational thinking task and a battery of 
scholastic achievement tasks that included of tests of math fluency and fraction comparison. The 
present series of analyses relate children’s relational thinking task performance to individual 
differences in the three EF composite scores, cognitive flexibility, math fluency, and fraction 
comparison scores. We focus on children in 4th, 6th, and 8th grades in order to investigate how 
the relations between these different abilities change between elementary and middle school. 

Method 

Participants 

Participants in the present study were part of Project iLead, a two-year, multi-site study 
investigating EF development throughout elementary and middle school (Younger et al., 2022). 
Data collection took place at nine schools in northern California. In total, 1,280 students 
participated over the course of two years. The data described here come from year two of the 
study, which included 288 fourth graders, 336 sixth graders, and 482 eighth graders. Of those 
participants, 243 fourth graders, 270 sixth graders, and 429 eight graders had valid data for the 
relational thinking task and were included in our analyses. The demographic characteristics of our 
sample are detailed in Table 2.3.1.  

The study was performed in accordance with protocols approved by the Institutional Review 
Board (IRB) of the University of California, San Francisco. Written parental or guardian consent 
was obtained from all participants at the beginning of the study, and verbal assent from all 
participants was obtained before all in-class data collection sessions. At the end of the study, all 
students in participating classrooms received snacks and stickers, regardless of their individual 
participation. 

Procedure 

Participants were tested during school hours at the beginning and end of each academic year (fall 
and spring) over two academic school years. EF and math fluency assessments occurred at all four 
time points. The reasoning and fraction tasks were part of one of two scholastic assessments that 
were administered to participants once per year in alternating semesters. Students were 
randomly assigned to complete each task set in either the fall or spring of each year. At each of 
the four timepoints, the EF assessments were administered first, and the scholastic assessments 
were administered approximately six weeks later (M = 5.7 weeks, SD = 2.4, min. = 1.9, max. = 10). 

All tasks were administered in a group setting on iPads. Each group administration was conducted 
by 4-12 researchers, in proportion to the student group size. A lead facilitator gave verbal  
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Table 2.3.1. Demographic characteristics of sample. Because some parents opted not to share demographic data for 
their children, not all columns sum to 100%. 

Variable Grade 4 Grade 6 Grade 8 

Age (years) 9.81 [8.94, 11.90] 11.75 [10.60, 13.26] 13.76 [12.87, 15.35] 

Gender    

Female 53% 49% 50% 

Male 47% 51% 50% 

Ethnicity    

American Indian or Alaskan Native 0% 0% 1.2% 

Asian 50% 40% 35% 

Black or African American 0.9% 2.5% 1.2% 

Blank on Purpose 0.5% 0% 0.2% 

Filipino 3.3% 6.2% 7.9% 

Hispanic or Latino 19% 28% 32% 

Pacific Islander 0.5% 0.4% 0.2% 

Two or More Races 7.0% 3.7% 4.7% 

White or Caucasian 19% 19% 18% 

Eligible for Free or Reduced Lunch 28% 35% 35% 

 
instructions to the group for each task, aided by visual instructions from a 24” x 36” flipbook. 
Participants began each task at the same time, and instructions for the next task were not given 
until all participants completed the current task. Each task began with practice trials during which 
researchers monitored participants to ensure participants understood the task and were correctly 
following task instructions. Researchers monitored the sessions throughout administration to 
provide technical assistance, answer student questions, and monitor performance. 
Administration sessions lasted approximately 50 minutes.  

Relational thinking task 

The relational thinking task (Figure 2.3.1) was adapted from a task that has been used previously 
to study the neural correlates of relational reasoning and its development (Christoff et al., 2003; 
Dumontheil et al., 2010; Wendelken et al., 2011). The experimenter introduced the game by 
telling participants that in this game, “We want to see if the top row matches the bottom row 
using the same rule.” On each trial, participants saw two pairs of items. In Level 1, the items varied 
in both color and shape. Participants decided whether the pairs matched along the same 
dimension (i.e., in both pairs, the items within each pair both matched or shape or color). If the 
items did match along the same direction, the participant was to press a button marked “YES” on  
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the screen. If the items did not match along the same dimension, the participant was to press a 
button marked “NO” on the screen. Level 2 added the dimension of pattern: participants needed 
to decide whether the top and bottom pairs both followed the same two matching rules (i.e., 
they matched in shape and color, shape and pattern, or color and pattern). For this level, explicit 
instructions and practice trials made it clear that the pairs needed to match in two dimensions, 
and that pairs that matched in only one dimension were not matches. Participants again 
responded by pressing the “YES” or “NO” buttons on the screen.  

In each level, half of the trials represented matches and half of the trials were non-matches. The 
order of the trials was randomized. The response window was 3.5 seconds in Level 1, and 4.5 
seconds in Level 2. Participants completed three practice trials of Level 1 as a group and four 
practice trials individually with feedback before completing 20 Level 1 test trials without 
feedback. Next participants completed five Level 2 practice trials as a group and four practice 
trials individually, with feedback. However, only participants who achieved at least 75% accuracy 
on Level 1 moved onto the Level 2 test trials. Participants who scored below 75% completed Level 
1 again, but only scores from the first round of gameplay were analyzed. 

Math fluency task 

Math fluency was measured using an assessment that tested participants’ ability to quickly and 
accurately answer math problems, similar to the Math Fluency task of the Woodcock-Johnson III 
Tests of Achievement (Schrank et al., 2014). The assessment required participants to solve single-
digit math equations (addition, subtraction, and multiplication) by typing the correct answer. 
Math equations were presented one at a time, and the task would not advance until a response 
was made for each trial. Participants were asked to solve as many equations as they were able in 

M atch One

Match in
Color

Match in
Color

M atch One

Match in
Color

Match in
Shape

Match OneMatch TWOMatch TWOShape 
AND 
Color

Shape 
AND 
Color

Match OneMatch TWO

Pattern 
only

Pattern 
only

Figure 2.3.1. Four sample trials from the relational thinking task. In Level 1 (top), both pairs of images must match 
in the same dimension to be classified as a match. In Level 2 (bottom), both pairs of images must match in two 
dimensions to be classified as a match. Participants must identify the dimensions along which items match; labels 
are shown in the figure for illustrative purposes only. The hands, also for illustrative purposes only, indicate the 
correct response option for each trial. 
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three minutes. Two practice trials were administered to ensure understanding. Scores were 
determined by the total number of correct responses. 

Fraction comparison task 

Proficiency with fractions was measured using an assessment that tested participants’ ability to 
compare numerical magnitudes quickly and accurately. The task had three levels. Level 1 required 
participants to compare symbolic digits, and Levels 2 and 3 required them to compare symbolic 
fractions. In Levels 2 and 3, each trial presented two single-digit fractions, side-by-side, and 
participants were instructed to indicate which fraction magnitude was larger. In Level 2, both 
fractions within a trial shared the same numerator or denominator (e.g., 2/3 vs. 1/3). In Level 3, 
the numerators and denominators always differed (e.g., 5/6 vs. 3/7). Participants responded by 
touching the larger fraction. Participants completed 16 trials each in Levels 2 and 3, with a 
response window of 4.5 s. Participants needed to answer at least 75% of the trials accurately in a 
given level to advance to the next level. Only data from Level 2 were included in the present 
analyses, because Level 1 did not involve fractions and few 4th grade students progressed to 
Level 3.  

Executive function tasks 

EFs were assessed with the Adaptive Cognitive Evaluation (ACE), an iPad-based battery that 
assesses EF skills and is composed of ten tasks developed from commonly used EF assessments: 
basic response time, forward spatial span, backward spatial span, impulsive attention, sustained 
attention, tap and trace, color-word Stroop, letter flanker, boxed, and task switch (Table 2.3.2; 
Younger et al., 2022). A full description of the ACE tasks and its adaptive algorithm can be found 
in Younger et al. (2022).  

Data from all four timepoints were previously analyzed using explanatory and confirmatory 
analysis methods to determine the underlying organization (Younger et al., 2023). These analyses 
revealed that a three-factor model of EFs fit the data for all cohorts at all four timepoints. The 
three components were labeled response inhibition (sustained attention, impulsive attention, 
and tap and trace), interference resolution (Stroop, flanker, boxed), and working memory 
(forward and backward spatial span). Because the factor loadings varied slightly between cohorts 
and timepoints, we calculated composite scores for each factor by z-scoring the individual task 
scores for each cohort and timepoint and then averaging the z-scores for the tasks that comprised 
each factor. We used the three composite scores to index three EFs2. In addition, as a measure of 
cognitive flexibility we used stand-alone, z-scored scores from the task switching task because a 
technical error at the first timepoint prevented scores from this task from being used in the factor 
analyses. 

 
2 Because the composite EF scores do not preserve subtle difference in factor loadings across the cohorts and time 
points, we also ran all of the analyses with factor scores instead of composite scores. The main pattern of results 
remained unchanged. Because the analyses using the true factor scores and the simplified composite scores lead to 
the same conclusions about the role of relational thinking and its association to the other EFs, we report the 
composite scores for coherence with other manuscripts based on this dataset. 
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Table 2.3.2. Overview of EF tasks in the ACE battery and labels provided for the EF composites derived from these 
tasks in the parent study (Younger et al., 2022, 2023). 

Task Name Description Theorized Construct EF Composite 

Basic Reaction 
Time 

Tap in response to visual targets Processing speed 

N/A (regressed from 
performance metrics of all 
other tasks to control for 

general differences in 
processing speed) 

Forward Spatial 
Span 

Tap to recreate cued spatial 
sequence of targets 

Working memory Working memory 

Backward Spatial 
Span 

Tap to recreate cued spatial 
sequence of targets in reverse 

order 
Working memory Working memory 

Impulsive 
Attention 

Respond to frequent targets and 
withhold response to non-targets 

Inhibitory control Response inhibition 

Sustained 
Attention 

Respond to infrequent targets and 
withhold response to frequent 

non-targets 
Sustained attention Response inhibition 

Tap and Trace 
Tap with dominant hand and trace 

shapes with the non-dominant 
hand 

Dual-task performance Response inhibition 

Stroop 
Respond to text colors that are 
congruent or incongruent with 

semantic meaning 
Inhibitory control Interference resolution 

Flanker 
Respond to middle letters that are 

congruent or incongruent with 
flanking letters 

Selective attention; 
Inhibitory control 

Interference resolution 

Boxed 
Identify target stimuli within arrays 

of distractor stimuli 
Visual search Interference resolution 

Task Switch 
Switch between responding to 

color or shape of target stimuli in 
response to pre-trial cues 

Cognitive flexibility 
N/A (technical error 

prevented inclusion in 
factor analyses) 

 

Data analysis 

Data from the relational thinking and fraction comparison tasks were first cleaned by removing 
trials with response times that fell more than three median absolute deviations (MAD) above or 
below each participant’s median response time (Leys et al., 2013). This removed approximately 
3% of trials from relational thinking Levels 1 and 2 and approximately 4% of fraction comparison 
trials. For each task and level, participants needed to have valid response data (i.e., a response 
was recorded within 3 MAD of their median response time) on at least 2/3 of trials in order to be 
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included in further analysis. Eleven participants in the relational thinking Level 1 task, 3 
participants in the relational thinking Level 2 task, and 5 participants in the fraction comparison 
task did not have enough valid trials and were excluded. All data were analyzed in R. We used the 
lmerTest package (Kuznetsova et al., 2017) to conduct mixed-effects models and compared 
successive models using the anova function from the base stats package (R Core Team, 2013). We 
used the Raincloud package (Allen et al., 2021) to visualize group performance.  

Results 

Relational thinking task performance 

The first series of analyses examined performance on each level of the relational thinking task. 
Overall, all grade levels performed above chance on Level 1 (see Table 2.3.3 for a summary of 
performance on the relational thinking and math tasks). A logistic mixed-effects model predicting 
trial accuracy with grade, semester in which testing occurred, and number of previous testing 
sessions as fixed effects and school and participant as random effects revealed that accuracy 
increased with grade level (𝛽 = 0.15, SE = 0.07, p < 0.001; Figure 2.3.2A). A similar linear model 
predicting response times (RTs) also showed RTs became faster as function of grade level (𝛽 
= -32.77, SE = 26.16, p < 0.001; Figure 2.3.2A). These results suggest that relational thinking 
continues to improve throughout elementary and middle school. 

Next, we examined the data from Level 2. Only participants who achieved at least 75% accuracy 
on Level 1 moved onto Level 2. By this criterion, 75/243 4th graders (31%), 145/270 6th graders 
(54%), and 266/431 8th graders (62%) moved onto Level 2. A chi-squared test for trend in 
proportions indicated that the proportion of participants advancing to Level 2 increased with 
grade (𝜒2 =55.82, p < .001). Similar grade-wise developmental trends were found for Level 2 
performance. A logistic mixed-effects model predicting trial accuracy with grade, semester in 
which testing occurred, and number of gameplays as fixed effects and school, and participant as 
random effects revealed that accuracy increased with grade level (𝛽 = 0.07, SE = 0.02, p < 0.001; 
Figure 2.3.2B). A similar linear model predicting RTs, however, found that participants did not 
become significantly faster with grade (𝛽 = -47.61, SE = 58.8, p = 0.42; Figure 2.3.2B). These 
analyses demonstrate that, overall, both the simpler and more complex forms of relational 
thinking assessed by our task continue to show developmental improvements through the end of 
middle school. 

Relations between relational thinking and EFs 

In the next series of analyses, we investigated how the EF measures relate to accuracy on Level 1 
of the relational thinking task in each grade. We used data from only Level 1 in these—and all 
subsequent—analyses because it enabled us to include a larger proportion of our sample, 
particularly for the 4th grade students. Another good reason for limiting subsequent analyses to 
Level 1 is that we assume it places fewer demands on other EFs than Level 2.  

As shown in Figure 2.3.3, accuracy on the relational thinking task is significantly correlated with 
all three of the EF composites and task switching in 4th grade, correlated with working memory 
and task switching in 6th grade, and correlated with working memory, interference resolution, and 
task switching in 8th grade. Notably, the correlations between relational thinking and each of the 
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Table 2.3.3. Average performance by grade on the relational thinking task Levels 1 and 2, math fluency, and fraction 
comparison tasks (mean score and range for each assessment). 

Measure Grade 4 Grade 6 Grade 8 

Relational Thinking Level 1 
Accuracy (% correct) 

68 [5, 100] 76 [23, 100] 79 [30, 100] 

Relational Thinking Level 1 
RT (ms) on correct trials 

1,719 [420, 2,796] 1,651 [356, 2,536] 1,453 [488, 2,515] 

Relational Thinking Level 2 
Accuracy (% correct) 

67 [39, 87] 69 [32, 95] 73 [35, 100] 

Relational Thinking Level 2 
RT (ms) on correct trials 

1,869 [461, 3,109] 1,880 [466, 3,488] 1,770 [434, 3,016] 

Math Fluency 
Raw score 

45 [17, 77] 53 [31, 76] 56 [0, 88] 

Fraction Comparison 
Accuracy (% correct) 

71 [18, 100] 83 [21, 100] 83 [27, 100] 

 

Figure 2.3.2. Accuracy and response time distributions by grade for (A) Level 1 and (B) Level 2 of the relational 
thinking task. 
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canonical EF measures were relatively weak at all grades (r-values ranging from .05 to .27; median 
r-value: .16); in fact, they were generally lower than the correlations among the canonical EF 
measures themselves (r-values from .17 to .31; median: .25).  

Next, for each grade, we tested whether relational thinking can be predicted based on the EF 
composite and task switch scores. We compared linear mixed effects models that predicted 
relational thinking based on the semester in which participants were tested and the number of 
times they had completed the relational thinking task, as well as a random effect of school (Model 
1), to a model that additionally included the EF composite and task switch scores (Model 2). If the 
model including EFs was the superior model, as indicated by an ANOVA test, we then examined 
the coefficients of each EF score. 

In each cohort, the model containing the EF scores (Model 2) was superior to the model without 
these scores (4th grade: 𝜒2 = 12.97, 𝑝 < .001; 6th grade: 𝜒2 = 12.06, 𝑝 < .001; 8th grade: 𝜒2 = 
29.87, 𝑝 < .001; Tables 2.3.4–6). However, different EF measures were predictive of relational 
thinking at each grade level. In 4th grade, no EF measure individually predicted unique variance. 
In 6th grade, working memory was the only significant predictor; in 8th grade, task switching was 
the only significant predictor. Thus, although relational thinking is correlated with other EF 
measures in this dataset, the relation between these different metrics of cognitive functioning is 
not stable over time and is relatively weak—certainly no higher than the relations among the 
canonical EF measures. 

Relations between cognitive variables and math performance 

Math fluency. Next, we investigated the relative contributions of relational thinking and 
canonical EFs to students’ math fluency scores. In each cohort, we first predicted math fluency 
scores from a base model consisting of testing semester, the number of times the participant had 
previously seen the task, and a random effect of school (Model 1). Then we compared the base 
model to one that additionally included the EF scores as predictors (Model 2) and one that 
included both the EF scores and relational thinking (Model 3). The model with relational thinking  
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Figure 2.3.3. Pearson correlation coefficients for pairwise comparisons between all variables of interest for each 
grade. *** p < 0.001; ** p < 0.01; * p < 0.05; p-values are not corrected for multiple comparisons. 
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Table 2.3.4. Model coefficients for models predicting 4th grade relational thinking scores from EF scores 

Predictor Model 1 Model 2 

2 Previous Sessions 0.56 ** [0.21, 0.91] 0.38 * [0.02, 0.73] 

3 Previous Sessions -0.01 [-0.86, 0.84] -0.23 [-1.07, 0.61] 

Semester -0.15 [-0.49, 0.18] -0.13 [-0.45, 0.19] 

Response Inhibition  0.12 [-0.12, 0.37] 

Interference Resolution  0.06 [-0.17, 0.29] 

Working Memory  0.17 [-0.01, 0.36] 

Task Switching  0.13 [-0.03, 0.29] 

N 188 188 

N (school) 7 7 

AIC 536.72 543.36 

BIC 556.14 575.73 

R2  0.10 0.14 

Note. All continuous predictors are mean-centered and scaled by 1 standard deviation. Beta coefficients are 
standardized, and bracketed values indicate 95% confidence intervals. *** p < 0.001; ** p < 0.01; * p < 0.05. Previous 
sessions: the number of times the tests had previously been administered to a participant; Semester: fall or spring; 
N: number of participants; N (school): number of schools.  
 
 
 
Table 2.3.5. Model coefficients for models predicting 6th grade relational thinking scores from EF scores 

Predictor Model 1 Model 2 

2 Previous Sessions 0.09 [-0.22, 0.39] 0.10 [-0.22, 0.41] 

Semester -0.13 [-0.40, 0.15] -0.05 [-0.33, 0.22] 

Response Inhibition  -0.03 [-0.28, 0.21] 

Interference Resolution  0.15 [-0.15, 0.46] 

Working Memory  0.18 * [0.01, 0.36] 

Task Switching  0.14 [0.00, 0.28] 

N 213 213 

N (school) 3 3 

AIC 619.92 626.26 

BIC 636.73 656.52 

R2  0.02 0.09 

Note. All continuous predictors are mean-centered and scaled by 1 standard deviation. Beta coefficients are 
standardized, and bracketed values indicate 95% confidence intervals. *** p < 0.001; ** p < 0.01; * p < 0.05. Previous 
sessions: the number of times the tests had previously been administered to a participant. Semester: fall or spring. 
N: number of participants. N (school): number of schools.  
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Table 2.3.6. Model coefficients for models predicting 8th grade relational thinking scores from EF scores 

Predictor Model 1 Model 2 

2 Previous Sessions 0.14 [-0.22, 0.50] 0.23 [-0.13, 0.58] 

3 Previous Sessions 0.90 [-0.26, 2.06] 1.04 [-0.09, 2.16] 

Semester 0.32 ** [0.11, 0.52] 0.22 * [0.02, 0.42] 

Response Inhibition  -0.06 [-0.23, 0.10] 

Interference Resolution  0.12 [-0.07, 0.32] 

Working Memory  0.11 [-0.02, 0.23] 

Task Switching  0.22 *** [0.11, 0.33] 

N 368 368 

N (school) 3 3 

AIC 1043.54 1035.63 

BIC 1066.99 1074.71 

R2  0.08 0.14 

Note. All continuous predictors are mean-centered and scaled by 1 standard deviation. Beta coefficients are 
standardized, and bracketed values indicate 95% confidence intervals. *** p < 0.001; ** p < 0.01; * p < 0.05. Previous 
sessions: the number of times the tests had previously been administered to a participant. Semester: fall or spring. 
N: number of participants. N (school): number of schools.  

 
predicted the most variance in each cohort (4th grade: 𝜒2 = 27.6, 𝑝 < .001; 6th grade: 𝜒2 = 12.26, 
𝑝 < .001; 8th grade: 𝜒2 = 9.75, 𝑝 = 0.002; Tables 2.3.7–9), and relational thinking was the only 
predictor that was significant across all three grades in the full model. Therefore, we found that 
performance on the relational thinking test is a unique predictor of student’s math fluency scores 
after controlling for the variance explained by four metrics of canonical EFs derived from ten EF 
tasks. 

Fraction comparison. In the final series of analyses, we investigated the role of relational 
thinking on students’ fraction comparison task performance. In particular, we asked whether 
relational thinking would predict additional variance in fraction performance after accounting for 
math fluency and canonical EFs. Note that in these models we did not include the random effect 
of school because the models failed to converge. Including school as a fixed effect did not improve 
the model fits, so this variable was excluded altogether. We began with a base model that 
predicted fraction performance from math fluency scores, testing semester, and the number of 
previous testing sessions (Model 1). We then compared the base model to one that additionally 
included the EF scores (Model 2), and then one that included both EF scores and relational 
thinking (Model 3). For all grades, the model with relational thinking predicted the most variance 
in fraction scores (4th grade: 𝐹 = 7.446, 𝑝 = .007; 6th grade: 𝐹 = 13.4, 𝑝 < .001; 8th grade: 𝐹 = 
34.89, 𝑝 < .001; Tables 2.3.10–12), and relational thinking was the only significant domain-general 
cognitive predictor in the full model for all three grades. These results demonstrate that relational 
thinking predicts additional unique variance in student’s fraction scores, above and beyond the 
contributions of EFs and math fluency. 
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Table 2.3.7. Model coefficients for models predicting 4th grade math fluency scores from EF scores and relational 
thinking 

Predictor Model 1 Model 2 Model 3 

2 Previous Sessions 0.29 [-0.05, 0.64] 0.09 [-0.26, 0.44] -0.04 [-0.37, 0.29] 

3 Previous Sessions 0.57 [-0.26, 1.40] 0.33 [-0.49, 1.14] 0.44 [-0.32, 1.21] 

Semester 0.22 [-0.16, 0.60] 0.27 [-0.11, 0.64] 0.30 [-0.05, 0.64] 

Response Inhibition  0.04 [-0.20, 0.28] 0.00 [-0.22, 0.22] 

Interference Resolution  -0.03 [-0.25, 0.20] -0.04 [-0.25, 0.16] 

Working Memory  0.13 [-0.05, 0.30] 0.07 [-0.10, 0.23] 

Task Switching  0.21 ** [0.06, 0.37] 0.16 * [0.02, 0.31] 

Relational Thinking   0.36 *** [0.22, 0.49] 

N 187 187 187 

N (school) 7 7 7 

AIC 523.63 530.15 509.40 

BIC 543.02 562.46 544.94 

R2  0.22 0.30 0.36 

Note. All continuous predictors are mean-centered and scaled by 1 standard deviation. Beta coefficients are 
standardized, and bracketed values indicate 95% confidence intervals. *** p < 0.001; ** p < 0.01; * p < 0.05. Previous 
sessions: the number of times the tests had previously been administered to a participant. Semester: fall or spring. 
N: number of participants. N (school): number of schools.  

 
 
Table 2.3.8. Model coefficients for models predicting 6th grade math fluency scores from EF scores and relational 
thinking 

Predictor Model 1 Model 2 Model 3 

2 Previous Sessions -0.16 [-0.46, 0.14] -0.09 [-0.39, 0.21] -0.13 [-0.42, 0.16] 

Semester 0.22 [-0.06, 0.49] 0.31 * [0.06, 0.57] 0.32 * [0.07, 0.57] 

Response Inhibition  0.19 [-0.04, 0.42] 0.19 [-0.03, 0.42] 

Interference Resolution  0.37 * [0.09, 0.65] 0.33 * [0.05, 0.60] 

Working Memory  0.29 *** [0.12, 0.45] 0.25 ** [0.08, 0.41] 

Task Switching  0.10 [-0.03, 0.23] 0.08 [-0.05, 0.20] 

Relational Thinking   0.22 *** [0.09, 0.34] 

N 212 212 212 

N (school) 3 3 3 

AIC 612.50 595.61 589.90 

BIC 629.28 625.82 623.47 

R2  0.03 0.22 0.24 

Note. All continuous predictors are mean-centered and scaled by 1 standard deviation. Beta coefficients are 
standardized, and bracketed values indicate 95% confidence intervals. *** p < 0.001; ** p < 0.01; * p < 0.05. Previous 
sessions: the number of times the tests had previously been administered to a participant. Semester: fall or spring. 
N: number of participants. N (school): number of schools.  
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Table 2.3.9. Model coefficients for models predicting 8th grade math fluency scores from EF scores and relational 
thinking 

Predictor Model 1 Model 2 Model 3 

2 Previous Sessions -0.02 [-0.38, 0.33] 0.05 [-0.29, 0.40] 0.02 [-0.32, 0.36] 

3 Previous Sessions -0.01 [-1.14, 1.13] 0.15 [-0.93, 1.24] -0.00 [-1.08, 1.08] 

Semester 0.54 *** [0.34, 0.73] 0.42 *** [0.23, 0.61] 0.39 *** [0.20, 0.58] 

Response Inhibition  -0.03 [-0.19, 0.14] -0.02 [-0.18, 0.14] 

Interference Resolution  0.19 * [0.00, 0.38] 0.17 [-0.01, 0.36] 

Working Memory  0.20 ** [0.07, 0.32] 0.18 ** [0.06, 0.30] 

Task Switching  0.18 ** [0.07, 0.28] 0.14 ** [0.04, 0.25] 

Relational Thinking   0.15 ** [0.06, 0.25] 

N 368 368 368 

N (school) 3 3 3 

AIC 1028.47 1010.67 1007.49 

BIC 1051.92 1049.75 1050.48 

R2  0.12 0.21 0.22 

Note. All continuous predictors are mean-centered and scaled by 1 standard deviation. Beta coefficients are 
standardized, and bracketed values indicate 95% confidence intervals. *** p < 0.001; ** p < 0.01; * p < 0.05. Previous 
sessions: the number of times the tests had previously been administered to a participant. Semester: fall or spring. 
N: number of participants. N (school): number of schools.  

 
 
Table 2.3.10. Model coefficients for models predicting 4th grade fraction scores from math fluency, EF scores, and 
relational thinking 

Predictor Model 1 Model 2 Model 3 

2 Previous Sessions 0.21 [-0.12, 0.54] 0.09 [-0.25, 0.43] 0.03 [-0.31, 0.36] 

3 Previous Sessions 0.38 [-0.42, 1.17] 0.20 [-0.60, 1.00] 0.27 [-0.52, 1.05] 

Semester 0.13 [-0.14, 0.40] 0.16 [-0.11, 0.43] 0.18 [-0.08, 0.45] 

Math Fluency 0.41 *** [0.27, 0.54] 0.36 *** [0.22, 0.50] 0.28 *** [0.13, 0.43] 

Response Inhibition  0.03 [-0.20, 0.26] 0.01 [-0.22, 0.24] 

Interference Resolution  -0.04 [-0.26, 0.19] -0.05 [-0.26, 0.17] 

Working Memory  0.16 [-0.03, 0.34] 0.13 [-0.05, 0.31] 

Task Switching  0.15 [-0.00, 0.30] 0.13 [-0.02, 0.28] 

Relational Thinking   0.21 ** [0.06, 0.36] 

N 185 185 185 

R2 0.19 0.23 0.26 

Note. All continuous predictors are mean-centered and scaled by 1 standard deviation. Beta coefficients are 
standardized, and bracketed values indicate 95% confidence intervals. *** p < 0.001; ** p < 0.01; * p < 0.05. Previous 
sessions: the number of times the tests had previously been administered to a participant. Semester: fall or spring. 
N: number of participants.  
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Table 2.3.11. Model coefficients for models predicting 6th grade fraction scores from math fluency, EF scores, and 
relational thinking 

Predictor Model 1 Model 2 Model 3 

2 Previous Sessions -0.02 [-0.28, 0.25] 0.01 [-0.25, 0.28] -0.00 [-0.26, 0.25] 

Semester -0.12 [-0.38, 0.14] -0.11 [-0.37, 0.15] -0.08 [-0.33, 0.17] 

Math Fluency 0.43 *** [0.31, 0.56] 0.40 *** [0.26, 0.53] 0.34 *** [0.20, 0.47] 

Response Inhibition  0.28 * [0.05, 0.52] 0.30 ** [0.08, 0.53] 

Interference Resolution  0.02 [-0.27, 0.30] 0.01 [-0.27, 0.28] 

Working Memory  0.03 [-0.14, 0.20] 0.00 [-0.16, 0.17] 

Task Switching  -0.04 [-0.18, 0.09] -0.07 [-0.20, 0.06] 

Relational Thinking   0.23 *** [0.11, 0.36] 

N 211 211 211 

R2 0.18 0.21 0.26 

Note. All continuous predictors are mean-centered and scaled by 1 standard deviation. Beta coefficients are 
standardized, and bracketed values indicate 95% confidence intervals. *** p < 0.001; ** p < 0.01; * p < 0.05. Previous 
sessions: the number of times the tests had previously been administered to a participant. Semester: fall or spring. 
N: number of participants.  
 
 
Table 2.3.12. Model coefficients for models predicting 8th grade fraction scores from math fluency, EF scores, and 
relational thinking 

Predictor Model 1 Model 2 Model 3 

2 Previous Sessions 0.47 ** [0.13, 0.81] 0.51 ** [0.17, 0.85] 0.44 ** [0.12, 0.77] 

3 Previous Sessions 0.71 [-0.36, 1.78] 0.78 [-0.29, 1.86] 0.47 [-0.56, 1.50] 

Semester 0.11 [-0.08, 0.30] 0.08 [-0.11, 0.27] 0.06 [-0.13, 0.24] 

Math Fluency 0.41 *** [0.31, 0.50] 0.37 *** [0.26, 0.47] 0.31 *** [0.21, 0.41] 

Response Inhibition  -0.02 [-0.18, 0.14] -0.01 [-0.16, 0.15] 

Interference Resolution  0.06 [-0.13, 0.25] 0.04 [-0.14, 0.21] 

Working Memory  0.07 [-0.06, 0.19] 0.05 [-0.07, 0.17] 

Task Switch  0.10 [-0.00, 0.21] 0.05 [-0.06, 0.15] 

Relational Thinking   0.28 *** [0.19, 0.38] 

N 366 366 366 

R2 0.20 0.21 0.28 

Note. All continuous predictors are mean-centered and scaled by 1 standard deviation. Beta coefficients are 
standardized, and bracketed values indicate 95% confidence intervals. *** p < 0.001; ** p < 0.01; * p < 0.05. Previous 
sessions: the number of times the tests had previously been administered to a participant. Semester: fall or spring. 
N: number of participants.  
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Discussion 

The primary aims of the present study were to delineate the development of relational thinking 
skills and to investigate whether relational thinking is a separable cognitive skill from the 
canonical EFs that contribute unique variance to students’ math achievement. We assessed a 
large sample of elementary and middle school students on a newly developed tablet-based 
assessment battery that included ten standard tests of EF, a relational thinking task, a math 
fluency task, and a fraction comparison task.  

Our relational thinking task contained two levels: children needed to determine whether the two 
pairs of shapes matched along a single dimension (Level 1) or two dimensions (Level 2). 
Performance on both task levels captured developmental improvements in relational thinking 
skills throughout elementary and middle school. We also found that performance on Level 1 of 
the task was significantly correlated with EFs, particularly working memory and task switching. 
However, relational thinking was a significant predictor of math achievement after accounting for 
the variance explained by EFs. This was true both for math fluency—which tests student’s 
speeded ability to solve arithmetic, multiplication, and division problems—and fraction 
comparison. Furthermore, relational thinking was a significant predictor of fraction comparison 
performance even when math fluency, a domain-specific measure, was taken into account. These 
findings suggest that relational thinking is a distinct cognitive process that supports math 
performance in school-aged children over and above canonical EFs.  

In prior work, it has been difficult to disentangle the influence of EFs and relational thinking 
because many standard assessments of reasoning are relatively complex and tax multiple abilities 
at once. However, the relational thinking task used here—particularly Level 1—was designed to 
minimize demands on EFs and other cognitive skills. By explicitly stating the different rule types 
prior to starting the game and by providing only two answer choices for each trial, Level 1 of the 
task focuses on children’s ability to abstract a common relation between exemplars. Level 2, in 
which participants needed to identify matches in two dimensions rather than one, required 
participants to resolve increased relational complexity (Halford et al., 1998) and represent 
hierarchical rule structures (Bunge & Zelazo, 2006). However, it also presumably increased 
demands on canonical EFs, as participants had to override the previously learned rules of Level 1 
(which was always explained and performed first). Critically, only data from the cleaner measure 
of relational thinking, Level 1, were included in the analyses examining relations with EFs and with 
math achievement. 

To address the question of whether relational thinking is a distinct ability from the canonical EFs, 
we assessed which EF scores predicted performance on Level 1 of the relational thinking task, as 
well as how these scores related to children’s math fluency and fraction comprehension 
performance. Consistent with previous studies that have documented relations between 
reasoning tasks that tap relational thinking and EFs (e.g., Fry & Hale, 2000; Richland et al., 2006; 
Richland & Burchinal, 2013; Starr et al., 2018; Thibaut et al., 2010; Thibaut & French, 2016), 
relational thinking scores were significantly correlated with EF scores—however, which EF 
components it correlated with varied as a function of age. Notably, the correlation coefficients 
for the associations between relational thinking and the canonical EFs tended to be even lower 



62 

than the correlations among the canonical EFs themselves. This result, together with the fact that 
no single EF factor was a consistent predictor of relational thinking across all age groups, suggests 
that relational thinking is separable from each of these other EFs.  

Because EFs are conceptualized as domain-general cognitive processes that support academic 
performance, examining whether relational thinking predicts mathematical achievement is a 
criterion by which to assess whether it should be considered an EF. Indeed, we found that 
relational thinking and EFs each predicted unique variance in students’ math achievement. The 
connection between EFs and math achievement is well-documented (see Bull & Lee, 2014 and 
Cragg & Gilmore, 2014 for reviews). However, individual differences in EFs do not explain all, or 
even a majority, of the variance in math scores. Here, we found that relational thinking predicted 
additional variance in math fluency and fraction comparison scores that was not accounted for 
by canonical EFs. Furthermore, in the case of fraction comparison, relational thinking predicted 
additional unique variance after accounting for both EFs and math fluency, meaning that the 
model already contained both domain-general and domain-specific predictors before we added 
in relational thinking. In fact, relational thinking was consistently the strongest domain-general 
predictor of math performance, judging from the pairwise correlations and linear regression 
model coefficients. Therefore, individual differences in students’ relational thinking ability are 
predictive of achievement across multiple types of mathematical thinking.  

Given the inherently relational nature of many mathematical concepts, it is not surprising that 
relational thinking contributes to math performance throughout grade school. Our findings are 
consistent with previous work demonstrating that reasoning relates to math achievement (Fuchs 
et al., 2006; Green et al., 2017; Taub et al., 2008), and suggest, specifically, that the relational 
thinking component of reasoning supports mathematical thinking. In addition, our findings add 
to the growing body of literature that suggests that relational thinking is particularly important 
for mathematical concepts like fractions and decimals (DeWolf et al., 2015; Kalra et al., 2020). For 
example, Kalra and colleagues (2020) found that relational thinking, as assessed by the Test of 
Relational Reasoning Jr. (TORR Jr; Jablansky et al., 2017) predicted fraction knowledge scores in 
2nd and 5th graders even when controlling for a variety of domain-general (e.g., working 
memory) and domain-specific (e.g., math fluency) predictors.  

Fractions are typically students’ first exposure to number concepts beyond the natural numbers, 
and frequently they represent a stumbling block in math curricula (Siegler et al., 2013). In 
comparison to the natural numbers, fractions’ bipartite structure (a/b) increases their relational 
complexity because students must process the value of each individual component as well as the 
overall value of the fraction. Instructional techniques that make the relational nature of fractions 
explicit (i.e., that fractions represent a relation between two numbers) may therefore help 
students make the conceptual jump from understanding natural numbers to understanding 
rational numbers (DeWolf et al., 2015). Indeed, several studies have demonstrated that 
pedagogical methods that explicitly encourage the use of relational thinking can improve 
students’ ability to learn mathematical concepts (T. P. Carpenter et al., 1996; Kidd et al., 2008; 
McNeil & Alibali, 2005; Richland et al., 2004, 2012). An important future direction will be to 
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explore how increasing emphasis on relational thinking skills in math classrooms may improve 
student outcomes (Vendetti et al., 2015).  

There is no single criterion of what makes a cognitive ability an EF. Most standard definitions 
reflect the idea that EFs are mid-level, domain-general, effortful cognitive processes that 
contribute to goal-directed behavior and support academic achievement. Much of the 
developmental psychology literature has focused on the three core abilities of inhibition, working 
memory, and cognitive flexibility (Diamond, 2013; Lehto et al., 2003; Miyake et al., 2000), but 
these three components are not necessarily exclusive. Furthermore, total independence has 
never been used as a criterion for considering two putative processes as distinct EFs; in fact, these 
three canonical EFs have been theorized to support one another (Diamond, 2013). The present 
data provide evidence that relational thinking is only weakly correlated with the canonical EFs 
and that it is independently related to academic achievement, as measured by two math tests. 
Therefore, consistent with previous views that relational thinking is central to human cognition 
(Alexander, 2016; Cattell, 1987a; Halford et al., 2010), we argue that relational thinking should 
be considered among the pantheon of EFs.   

Our claim is based on analyses of data collected from a large, diverse sample of children in middle 
childhood who performed the ACE battery of cognitive tasks (Younger et al., 2022). However, this 
study is not without limitations. The ACE battery contains ten different cognitive tasks, nine of 
which were grouped through exploratory factor analysis into three EF composites. Relational 
thinking, on the other hand, was—along with task switching—measured using a single task. 
Because completion of the full ACE battery and scholastic assessments was already a multi-day 
endeavor, inclusion of additional tasks was not feasible. Importantly, however, the relational 
thinking task proved sensitive to capturing both developmental improvements and individual 
differences. An important future direction will be to assess relational thinking with multiple 
measures (e.g., the Test of Relational Reasoning-Junior, Jablansky et al., 2017). In addition, future 
work exploring the relation between EFs and academic achievement should also assess relational 
thinking to provide a more comprehensive view of the contributions of domain-general cognitive 
abilities.  

In conclusion, the present work introduces a task that can be used to effectively measure 
individual differences in relational thinking ability throughout middle childhood. This task 
specifically focuses on the ability to identify and integrate abstract relations, while minimizing the 
demands on EFs. Individual differences in relational thinking predicted significant variance in 
students’ math fluency and fraction comparison scores throughout middle childhood, even when 
variance from other EFs was accounted for. These results support our claim that relational 
thinking should be considered alongside the canonical EFs as a distinct core cognitive ability that 
uniquely contributes to academic achievement. 
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Chapter 3. Spontaneous and strategic relational offloading to physical 
space 

3.1 General Introduction 

One strategy for overcoming cognitive capacity limits during reasoning is to offload relational 
demand to external spatial representations. Despite a non-trivial literature on the cognitive 
science of visuospatial tools, research has focused mostly on implications for design and 
instruction (e.g., Bauer & Johnson-Laird, 1993; Franconeri et al., 2021; Hegarty, 2011; Shah et al., 
2005; Shah & Hoeffner, 2002; Tversky, 2011), and few researchers have investigated these tools 
from the perspective of relational reasoning, complexity, and relational offloading. In particular, 
there are open questions about how and when individuals decide to strategically use visuospatial 
tools for offloading, how relational complexity changes when using an external tool, whether and 
how frequently individuals invent ad hoc tools to solve novel problems, and what cognitive 
processes led to the creation and adoption of the most widely used tools. Addressing these 
questions is critical because some researchers have theorized that there is a strong relationship 
between space and relational reasoning, which is best summarized by Dedre Gentner (2014) who 
called space “the universal donor of relational thinking,” but more work is needed to understand 
the mechanisms through which space supports relational reasoning.  

The following section begins addressing these gaps in the literature by investigating the 
spontaneous and strategic recruitment of physical space to support problem solving. The study 
tests two hypotheses about relational offloading: either it is a specific strategy that is culturally 
transmitted—such as via learning and experience with writing systems, calendars, and other 
formal tools—or it is broadly available as part of our cognitive toolkit, separate from experience 
with these formal tools, and individuals can innovate ad hoc offloading strategies even in novel 
contexts.  We worked with the Tsimane’, an indigenous farmer-forager people from the Amazon 
basin of Bolivia who live in a non-industrialized society and often have minimal levels of formal 
education and literacy. In one experimental condition participants needed to remember a 
sequential relation to answer the memory test questions and in the other condition participants 
needed to remember a categorical relation (i.e., preference between two options) to answer the 
questions. The findings provide insights about the origins of many visuospatial tools, such as 
graphs and diagrams, and suggest that innovating ad hoc spatial tools to offload relational 
demand is commonplace in everyday problem-solving.  
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3.2 Indigenous Amazonians spontaneously use space to offload cognitive 
demands 

Abstract 

Across many cultures, people use visuospatial tools to reduce the cognitive demands of thinking, 
reasoning, and remembering. However, little is known about the cognitive origins of these tools 
and the general strategy of recruiting space to solve novel problems. Here, we tested whether 
individuals from a non-industrialized society spontaneously and strategically used physical space 
to offload cognitive demands on a novel paradigm. We worked with the Tsimane', an indigenous 
farmer-forager group in Bolivia. Members of this group do not typically read, write, or draw, and 
often have little formal education. We found that children and adults (N = 107) spontaneously 
used spatial strategies to support their performance on the task, and, critically, that these 
strategies differed as a function of task goals. Further, participants increasingly used spatial 
strategies over the course of the experiment, even without feedback on performance. These 
results provide evidence that diverse human groups innovate ad hoc spatial tools to support 
cognition, complementing and extending prior studies that document such abilities in children 
and adults who live in societies where these skills are explicitly taught in formal educational 
settings. 

Introduction 

Humans have invented many spatial tools for reducing the cognitive demands of day-to-day tasks. 
For example, in high-literacy industrialized societies we regularly write to-do lists, draw diagrams, 
use calendars, and graph data (Gilbert et al., 2023; Hegarty, 2011; Tversky, 2015). These tools 
allow the user to offload demands onto physical space (Clark & Chalmers, 1998; Hegarty, 2010; 
Ishikawa & Newcombe, 2021; Risko & Gilbert, 2016), freeing up cognitive resources to think more 
abstractly (Atit, Uttal, et al., 2020; Gattis & Holyoak, 1996; Kirsh, 2010; Tversky, 2011), reason and 
remember more effectively (Brich et al., 2019; Gilbert et al., 2023; Kirsh, 2010; L. M. Padilla et al., 
2018; Tversky, 2005), and even make discoveries (Tufte, 1983, 1997; Valleriani et al., 2023). 
However, despite their prevalence, little is known about the cognitive origins of these spatial tools 
and the general strategy of recruiting physical space to support solving novel problems. One 
hypothesis is that spatial strategies are rarely invented and are primarily learned through cultural 
transmission (B. Thompson et al., 2022). In this case, we would expect that spatial strategies for 
cognitive offloading would not be widely available to individuals unless they had been learned 
through sociocultural practices, such as formal schooling in which children learn specific spatial 
tools like drawing and writing with pen and paper. Alternatively, offloading to space may be a 
fundamental cognitive skill that is found across cultures, regardless of sociocultural practices. In 
this second case, we would expect individuals to innovate ad hoc spatial strategies for offloading 
even in novel contexts (Kirsh, 1995). Here, we test for the spontaneous use of space for cognitive 
offloading in a cultural context with little formal schooling and minimal engagement with reading, 
writing, and drawing. 

Prior work on cognitive offloading has shown that between ages 6 and 10, children in WEIRD 
societies (Western, Educated, Industrialized, Rich, and Democratic; Henrich et al., 2010) begin to 
reliably and spontaneously offload demands onto external tools to facilitate problem solving, 
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such as physically rotating an object to reduce mental rotation demand (Armitage et al., 2020, 
2022) or marking the hidden location of items with a pen to aid in retrieval (Bulley et al., 2020). 
However, research in industrialized societies alone cannot disentangle whether these strategies 
were learned through cultural transmission or discovered independently because there is 
widespread cultural support for formal spatial tools and strategies from a young age, such as in 
baby toys, books, and media (Armitage & Redshaw, 2022; Verdine et al., 2014). Though there has 
been prior work on spatial representations in non-industrialized societies, it has largely focused 
on the structure of internal representations of time and number (Boroditsky & Gaby, 2010; 
Dehaene et al., 2008; Fedden & Boroditsky, 2012; Floyd, 2016; Le Guen & Balam, 2012; R. Núñez, 
Cooperrider, Doan, et al., 2012; R. Núñez, Cooperrider, & Wassmann, 2012; R. E. Núñez & 
Sweetser, 2006; Pitt et al., 2021). Some relevant work has investigated the origins of linear order, 
a specific spatial organization practice (Cooperrider et al., 2017). Unschooled Yupno adults 
spontaneously arranged objects in linear orders based on size and numerosity, but with less 
consistency than US adults (Cooperrider et al., 2017). By contrast, the present study investigates 
the spontaneous and strategic recruitment of physical space for supporting problem solving and 
examines whether individuals use different spatial strategies as a function of task goals. 

We worked with the Tsimane’, an indigenous farmer-forager people from the Amazon basin of 
Bolivia. The Tsimane’ live in a non-industrialized society with often minimal levels of formal 
education and literacy (for details on the Tsimane’ cultural context, see Huanca, 2008 and 
O’Shaughnessy et al., 2023). We recruited both children and adult participants to capture 
potential developmental differences as well as differences in daily experiences due to age. In their 
day-to-day activities, the individuals we worked with do not typically read, write, draw or use 
paper, linear measurement tools, watches, calendars, maps, phones, or other formal spatial tools, 
which influence spatial conventions and offloading strategies (Bergen & Lau, 2012; Cooperrider 
et al., 2017; Fuhrman & Boroditsky, 2010; Gilbert et al., 2023; Grinschgl & Neubauer, 2022; Pitt 
et al., 2021; Risko & Dunn, 2015; Starr & Srinivasan, 2021; Uttal, 2000). Thus, testing the 
spontaneous use of space in this group shows whether the general strategy of spatial offloading 
is shared broadly among human groups with markedly distinct cultural experiences. 

Experimental paradigm 

We designed a novel paradigm that taxed participants' working memory using sets of laminated 
cards with faces on them. Participants were handed eight cards, one at a time, and told a piece 
of information about each individual that they were asked to remember for a subsequent 
memory test. In the Order condition, participants were told the order in which the individuals 
arrived at a market (Figure 3.2.1A). In the Preference condition, participants were told the 
individuals’ preferences (e.g., plantains vs. coconuts) (Figure 3.2.1A). At the end of each trial 
(Figure 3.2.1B), participants were asked two questions, either about the sequence in the Order 
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condition or about the preferences in the Preference condition (Figure 3.2.1C; Materials and 
Methods). Participants completed four of these trials and condition was manipulated between 
participants. 

One strategy to facilitate memory retrieval afforded by this paradigm was to place the cards on 
the table in a spatial arrangement that represented the to-be-remembered information, for 
example, by sequentially ordering the cards in the Order condition or grouping the cards by 
preference in the Preference condition. Critically, participants were never instructed on how to 
place cards or to use these strategies. Additionally, because card games are not prevalent in 
Tsimane' culture, it is unlikely that participants had prior experience with spatially arranging cards 
(e.g., ordering, sorting, etc.). We were particularly interested in the first trial (T1), which captured 
participants’ spontaneous use of space during their first experience with this task, even before 
they had heard any memory questions. If the use of space for offloading is universal, we would 
expect participants to spatially arrange the cards in a manner that supports memory retrieval 
beginning on T1. Additionally, this design allowed us to detect spontaneous changes in strategy 
across the four trials because participants did not receive feedback on their response accuracy. 
We also included a Control condition in which participants were instructed to place cards on the 
table in any way they wanted to examine card placement without a memory demand. 

Figure 3.2.1. Sample stimuli and condition-specific prompts for the memory task. (A) Face card stimuli for the first 
trial. Numbers indicate the order in which cards were handed to participants in all three conditions, which was also 
the order they “arrived to market” in the Order condition. Participants were told either the order or preference 
information when each card was handed to them, depending on the condition. For example, for the first card 
participants heard either “First this boy arrived” (Order condition) or “This boy prefers to eat plantain” (Preference 
condition). In the Control condition, no information was shared about the cards as they were handed to participants. 
Face images were adapted from Generated.Photos. (B) An adult in the Preference condition participating in the 
study on the first trial. The inlaid image shows a closeup of her final card layout. The number annotations show the 
order that the cards were distributed, and the colors represent the preferences (yellow for plantains and purple for 
coconuts). This participant organized the cards by preference (grouped organization), creating a line shape. (C) The 
memory questions asked on the first trial for the Order and Preference conditions with the correct answers. 

https://generated.photos/
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We coded two features of the resulting card layouts: shape and organization (Materials and 
Methods). Shape refers to the overall form of the card layout, such as a line (Figure 3.2.2A, D, G), 
rectangle (Figure 3.2.2F), or two clusters (Figure 3.2.2H, I). Organization refers to what 
information, if any, is represented in how the cards were placed in relation to one another: either 
sequentially ordered (Figure 3.2.2D-F), grouped by preference (Figure 3.2.2G-I), or neither (Figure 
3.2.2A-C). If participants spontaneously use space for offloading, we predicted that the 
organization of cards should differ by condition on T1. Specifically, the cards should represent 
sequential order in the Order condition and preferences in the Preference condition. We were 
also interested in the shape of card arrangements when they were organized in these strategic 
ways. Because there are few practices in Tsimane’ culture that would establish visuospatial 
conventions, we predicted variability in shapes between individuals within a condition. We also 
report performance across all four trials and highlight two participants as case studies to examine 
changes in spatial strategy use. 

Participants spatially organized cards to strategically represent relevant information 

For both children and adults, Fisher’s Exact Test revealed a significant effect of condition (Order, 
Preference, and Control) on organization (sequential, grouped, or neither) on T1 (ps < .001; Figure 
3.2.3A). Children and adults in the Order condition organized their cards in sequential order 
significantly more often than in the Control and Preference conditions (Figure 3.2.3A, Table 
3.2.S4). This result suggests that even though the cards were given in the same order in all three  

Figure 3.2.2. Annotated images of card layouts. Resulting card layouts from nine different participants on the first 
trial by condition. Number annotations show the order that the cards were distributed, and colors represent 
preferences (yellow for plantains and purple for coconuts). Images were coded for shape (visual form of the layout) 
and organization (information represented by the card placement: sequential order, grouped by preference, or 
neither). An organization was coded as “sequentially ordered” if the layout preserved the sequence that the cards 
were distributed. An organization was coded as “grouped” if a straight line could be drawn through the layout that 
separated the cards belonging to each preference. Order and Preference condition images show the most common 
shapes created when representing the condition-relevant information (sequential order and preference groups, 
respectively). Control condition images show the three most common shapes. These layouts demonstrate the 
variability in shapes within and between conditions. See Figure 3.2.S6 for original uncropped and unannotated 
images and Movie S1 for all images from the first trial. 
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conditions, it was not generally the default for participants to organize cards sequentially—
neither when there was no task demand (Control) nor when the task did not require memory of 
the sequence (Preference). Rather, it suggests that participants in the Order condition 
strategically organized cards to alleviate the need to remember the sequential order.  

While the Order condition instruction to “remember the order” explicitly hinted at what 
organization would be helpful, the Preference condition instruction to “remember the 
preferences” gave no such hints, making no mention of “groups” or that organizing by preference 
type would be useful. Thus, it is notable that on T1 of the Preference condition 9/15 adults 
organized their cards into groups by preference, and even two children used this spatial strategy 
(Figure 3.2.3A), whereas no participants in the other conditions happened to organize cards this 
way without preference information (see Supplementary Materials for full results and discussion 
of age effects). These results are consistent with the prediction that participants would 
strategically position cards with the same preference close to each other to reduce the number 
of individual preferences to remember. 

Further evidence comes from examining the relation between card organization and accuracy on 
the two memory questions. To answer these questions correctly, participants needed to integrate 
the to-be-remembered information from the entire set of eight cards (Figure 3.2.1C). If offloading 
to space is a beneficial strategy, then the participants who spatially represented this information 

Figure 3.2.3. Organization and shape by memory condition. (A) Proportion of participants on the first trial who 
represented preference groups, sequential order, or neither in their card organization. Error bars show the 
multinomial 95% confidence interval. (B) Proportion of participants in each condition who used a line shape (black 
box) versus other shapes (light gray) on the first trial. The participants who created lines are further subdivided into 
the organization represented by the line: grouped, sequential, or neither. Note that organization for the other shapes 
is not shown. 
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should be more accurate on the test questions. This was clear on T1 of the Preference condition, 
in which participants who grouped by preference were more accurate on the test questions (M = 
1.09 out of 2) than those who did not group (M = 0.06; t(11.11) = 4.01, p = .002). Notably, across 
all trials the odds of answering a question correctly were 31.54 times greater when the cards were 
grouped versus not grouped (p < .001; Table 3.2.S5). Testing this prediction within the Order 
condition was more difficult because of the near-ceiling effect of participants sequentially 
ordering their cards on T1 (24/29) (see Supplementary Materials). 

Given that many participants did report some schooling (Materials and Methods), it is central to 
the interpretation of the results to confirm that strategically organizing the cards on T1 was not 
simply due to schooling or literacy. Indeed, neither years of school (b = 0.07, p = .727) nor literacy 
(b = 0.21, p = .112) predicted organizing by preference on T1 of the Preference condition. Of the 
11 participants who grouped, four were not literate (3 adults and 1 child): one adult who reported 
no schooling (Participant MP in Brief Case Studies, Figure 3.2.5) and the rest reported four or 
fewer years. In the Order condition, there was not enough variation in organization to test for 
these effects, but among the 24 participants who sequentially ordered on T1, nine were not 
literate (2 adults and 7 children). The two non-literate adults reported no schooling (Figure 
3.2.S5), and the seven children reported six or fewer years. For additional details on these 
analyses, see Supplementary Materials. Together, these results show that this strategy is available 
even in the absence of schooling and literacy. 

Shape of card layouts varied within and between conditions 

The resulting shapes of strategically organized card arrangements varied both within and 
between conditions (Figure 3.2.2, Figure 3.2.S3). In the Order condition, six different shapes were 
created when representing sequential order; line (58.3%; Figure 3.2.2D), line + extra (16.7%; 
Figure 3.2.2E), and rectangle (12.5%; Figure 3.2.2F) were the most common, and the other three 
shapes each appeared just once. In the Preference condition, five different shapes were created 
when organizing by preference; line (36.4%; Figure 3.2.2G) and two clusters (36.4%; Figure 3.2.2H, 
I) were the most common, and the other three shapes each appeared just once. In the Control 
condition, when there was no memory prompt and therefore no motivating organization, nine 
different shapes were created; line (30.0%; Figure 3.2.2A), random/unknown (18.0%; Figure 
3.2.2B), square (16.0%; Figure 3.2.2C), and rectangle (16.0%) were the four most common 
configurations. If participants had been influenced by culturally predetermined spatial 
conventions and strategies, we would have observed more convergent use of space (Cooperrider 
et al., 2017; Pitt et al., 2021; Starr & Srinivasan, 2021). However, we observed substantial within-
condition variability in shape (Figures 3.2.S2, 3.2.S3), providing evidence that offloading to space 
was an ad hoc strategy innovated by individual participants in the context of this task. 

We also found significant differences in the distribution of shapes between conditions (p = .006; 
see Supplementary Materials), though lines were the most common shape across conditions. 
Perhaps surprisingly, the creation of a line did not always indicate that the participant was 
representing sequential information. Indeed, some participants created lines when representing 
grouped information (e.g., Figure 3.2.2G), and still others created lines that represented neither 
sequential nor grouped information (e.g., Figure 3.2.2A and Figure 3.2.5, middle row, trial 1). 
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Critically, lines were used more frequently and strategically in the Order condition, with some age 
group differences (Figure 3.2.3B). Specifically, the odds of an adult creating a line were 14.63 
times greater in the Order condition versus the Control condition (p < .001), suggesting that adults 
in the Order condition were specifically selecting lines to represent sequential order and not 
simply placing cards in a line as they received them (Figure 3.2.3B). Adults also created more 
sequentially ordered lines in the Order condition than in the Preference condition (OR = 14.00, p 
= .036). Children, on the other hand, created lines equally often across the three conditions (p = 
.599), but notably all the lines created in the Order condition were sequentially ordered, whereas 
only a third were sequentially ordered in the Control condition (Figure 3.2.3B; see Supplementary 
Materials for additional analysis details). Thus, although lines were the most common shape, both 
children and adults predominantly created sequentially ordered lines in the Order condition. 

Use of spatial strategies increased after the first trial 

Although T1 was of greatest interest, we also included three additional trials in the Order and 
Preference conditions to assess whether participants would use a spatial strategy at any point 
during the task. In the Preference condition, the odds of children using a spatial grouping strategy 
increased after T1 (b = 1.71, p = .027; Figure 3.2.4). For adults, more than half grouped by 
preference on T1, and though the effect of trial did not reach significance (b = 0.83, p = .058), 
including trial as a predictor explained significantly more variance than the model without it 
(𝜒2(1) = 4.56, p = .033). See Supplementary Materials for full analysis details as well as Order 
condition results (Figure 3.2.S4). 

The increased incidence of grouping on subsequent trials was accompanied by qualitative 
changes in the shapes created. When the cards were grouped by preference, sometimes a gap 
was visible between the groups of cards (e.g., Figure 3.2.2H, I). Notably, the proportion of 
participants who included a gap increased between T1 (4/11) and T4 (12/20). We even observed 

Figure 3.2.4. Spatial organization across all trials in Preference condition. Proportion of participants on each trial 
of the Preference condition who used each organization: grouped, attempted group, sequentially ordered, or 
neither. The last bar represents the proportion of participants who correctly grouped on at least one of the four 
trials. “Attempted group” refers to the case where participants were using the spatial grouping strategy but the 
resulting layout was incorrectly grouped due to an error when placing one or two cards (e.g., Figure 3.2.5, top row, 
trial 3; Materials and Methods). 
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a new two-cluster shape after T1—a line with a gap in the middle separating the two halves (e.g., 
Figure 3.2.5, middle row, trial 4)—which was made by three participants who had each started 
the task creating unbroken lines. Compellingly, this new shape did not appear on any trial in the 
other conditions. Additionally, accuracy on the memory questions increased over the trials (Table 
3.2.S5). The increase in the use of space—both in the organization and shape of layouts—provides 
evidence of strategy change towards more memory-efficient external representations. 
Importantly, because performance feedback was not given, strategy changes were likely due to 
metacognition about how best to solve the problem (Dunn & Risko, 2016). 

Case studies show change in strategy 

Although participants reported little formal schooling (children: M = 4.54y, SD = 1.96, range = [1, 
9]; adults: M = 4.36y, SD = 3.58, range = [0, 13]), the responses of those with no schooling are 
especially informative about people’s spontaneous use of space. In this section, we focus on two 
of the three adult participants in the Preference condition who reported no schooling—MP and 
AS (see Supplementary Materials for full descriptions, including for third adult CM, videos, and 
Order condition cases, Figure 3.2.S5). These participants were not literate in Tsimane' or in 
Spanish. Interestingly, all three participants grouped the cards by preference on at least one trial. 
However, each participant engaged with the task in notably different ways.  

MP was approximately 40 y of age. On T1, she grouped the cards by preference and answered 
both memory questions correctly. She continued this accurate performance, except on T3, where 
she attempted to group but made an error placing the cards. From a visual scan of her annotated 
trial images (Figure 3.2.5, top row), it is apparent that as the trials progressed, the gap between 
the two groups increased. This suggests that she was leveraging the affordance of space to 
facilitate her accurate performance, both to offload group membership (grouped organization) 
and the boundary between the groups (shape: increased spatial separation). A second interesting 
feature of MP’s trials was the way she placed the cards, starting from the middle of the table, and 
moving outward to the left and right. This direction differs from many WEIRD populations—which 
tend to prefer the direction of their written language, such as left-to-right (Bergen & Lau, 2012; 
Cooperrider et al., 2017; Fuhrman & Boroditsky, 2010). Moreover, even participants with some 
formal schooling used this “center-out” strategy (e.g., Figure 3.2.2G), suggesting that this 
behavior reflects a strategy to solve this novel task rather than, for example, spatial biases created 
by writing systems. 

AS was 58 y of age. Unlike MP, AS did not spontaneously group cards by preference on T1 (Figure 
3.2.5, middle row), and she did not answer any of the memory questions correctly on the first 
two trials. On T3, she again created a line but began attempting to organize the cards by 
preference. Although neither the resulting grouping nor the answers to the memory questions 
were correct, her intention to represent the two preference groups in her spatial organization 
was clear from her response behavior: she pointed to the five cards on the right to answer one 
preference and to the three cards on the left to answer the other preference (Movie S3). On the 
very next trial, not only did she correctly group the cards by preference (Figure 3.2.5, middle row, 
trial 4), but strikingly, she placed the cards with a gap between the two groups, visually separating  
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them. Further, she got one memory question correct and the other one partially correct (i.e., 
indicating all participants with a given preference, rather than only the females with that 
preference). We interpret this progression as evidence that AS was discovering and fine-tuning 
an ad hoc spatial strategy—even without feedback. Together, these case studies demonstrate 
how spatial strategies are deployed, and possibly invented, on a novel task by individuals who 
have no experience with formal visuospatial tools or schooling.  

Discussion 

Our findings show that many Tsimane’ children and adults spontaneously represent relevant 
information in space to reduce cognitive load, in turn facilitating memory performance. They use 
this strategy even in the absence of any instruction on how space could be useful and with 
minimal or no formal schooling and literacy. Participants used space in a variety of ways: some 
created the same shapes with the card stimuli (e.g., lines) but to represent different information 
(e.g., orders or groups), whereas others represented the same information but with different 
shapes. Such variability suggests that strategies are created ad hoc by individuals during the task 
rather than determined by prior spatial conventions. This conclusion was further supported by 
changes in strategies across trials (Figure 3.2.4), which happened without feedback on 
performance and were particularly clear in the case studies of participants in the Preference 
condition who reported no formal schooling (Figure 3.2.5). These changes involved spatially 
organizing the cards by preference to offload group membership and increasing the spatial 
separation between the groups to offload the boundary between them. 

These findings complement prior studies on cognitive offloading (Armitage et al., 2020, 2022; 
Armitage & Redshaw, 2022; Bulley et al., 2020; Dunn & Risko, 2016; Gilbert et al., 2023; Risko & 
Gilbert, 2016; Verdine et al., 2014) by adding results from a non-WEIRD population, a known gap 

Figure 3.2.5. Annotated trial images of case study participants from the Preference condition. Trial images for the 
three participants in the Preference condition who reported zero years of schooling. The number annotations show 
the order that the cards were distributed, and the colors represent the preferences. See Figure 3.2.S1 for list of 
preferences and 3.2.S7 for original uncropped and unannotated images. 
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in this line of research (Armitage & Redshaw, 2022). Working with the Tsimane’ allowed us to 
disentangle the presence of offloading strategies from routinized exposure to external thinking 
tools transmitted via formal schooling, which may ingrain this style of thinking from a young age. 
Though it is possible that simple exposure to any amount of schooling could be sufficient to 
promote the strategic use of space on this task, the results from participants who were not literate 
and reported no schooling provide evidence that schooling is not required to use space in this 
way. Further, the Tsimane’ cultural context, specifically the representational practices and visual 
culture, are vastly different from the cultural contexts in WEIRD societies. For example, most 
participants are not seeing or engaging with written text on a daily basis, even those who are 
literate. Therefore, the findings of this study provide insight into the recruitment of space as a 
tool in a different cultural context and support the hypothesis that cognitive offloading to space 
is a fundamental human capacity. By extension, these results suggest that innovating ad hoc 
offloading strategies is available in our day-to-day lives as part of our problem-solving cognitive 
toolkit, regardless of our experience with formal visuospatial tools.  

Our findings also support theories that visual representations of sequential order and spatial 
grouping are fundamental spatial organization principles (Cooperrider et al., 2017; Ingold, 2007; 
Kirsh, 1995; Tversky, 2011), even when they are less present in an individual’s surrounding visual 
culture. Extending these theories, we found that participants strategically selected a spatial 
organization as a function of task goals. Dovetailing with prior work (Cooperrider et al., 2017; Pitt 
et al., 2021; Starr & Srinivasan, 2021; Tversky et al., 1991), we also found that without the 
conventionalized spatial practices transmitted via formal schooling, how space is recruited to 
support thinking remains flexible and can vary between individuals.  

We conclude that diverse human groups share space as a medium for offloading cognitive 
demands, but that the specifics of how space is recruited to support thinking can vary between 
individuals. This human capacity paired with between-individual and cultural variability may in 
turn explain why visuospatial representations are used across many cultures—writing systems, 
calendars, number systems, graphical representations, etc.—but the precise forms of these 
representations are diverse and varied.  

Materials and Methods 

Participants 

A total of 46 children (< 16y, nfemale = 21) and 63 adults (≥ 16y, nfemale = 30) participated in the 
study from eight Tsimane' communities near San Borja, Bolivia. Participants provided informed 
consent and were compensated with goods for their participation. Two adult participants were 
removed from the data set before analysis: one because she was originally from a Bolivian city, 
and one because he had already participated in a different study that could have influenced his 
behavior in this study. Table 3.2.S1 shows age, schooling, and literacy for the 107 children and 
adults included in analysis. The study was performed in accordance with the Institutional Review 
Board at the University of California, Berkeley and with permission from the Gran Consejo 
Tsimane’ (Tsimane’ Grand Council). We received consent from all adult participants, and assent 
from all children participants with consent from their legal guardians. Informed consent and 
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assent were obtained in Tsimane’ in an ethical way via existing, culturally appropriate 
explanations and forms. 

The age cutoff of 16 years old between children and adults was used because it is around this age 
that individuals typically start having children in Tsimane’ society. Further, individuals may attend 
school in some capacity until they are married or have children. Thus, this age cut off is not strictly 
developmental in nature, but also describes differences in experiences between individuals in 
different stages of life.  

Note that there is a great deal of variability in the self-reported measure years of school because 
what constitutes a completed year of school can vary drastically between participants and is 
different than one year of school in an industrialized society context. For example, some 
participants may have attended school only once per week for 2 hours and reported that as one 
year of school. Further, what schooling entails differs depending on the individual’s age and what 
community they are from, and not all participants who have attended school are literate. In our 
sample, 10 adults reported no schooling (16.95%), and 81.36% had no education beyond sixth 
grade, a benchmark that has been considered "unschooled" in previous research with non-
industrialized groups (e.g., Cooperrider et al., 2017). 32.79% of adults were not literate, and 
57.38% of adults scored the maximum points on the literacy test. Though all children reported at 
least one year of school, 86.96% had six years or less, and 58.70% were not literate. Only 8.70% 
of children scored the maximum points on the literacy test. 

Procedure 

Experienced translators who were fluent in Spanish and Tsimane' were provided by the Centro 
Boliviano de Investigación y de Desarrollo Socio Integral (CBIDSI). All participants first consented 
to participation then answered demographic questions (e.g., age and years of school). They also 
completed brief tasks to measure numeracy, Spanish fluency, and Spanish and Tsimane' literacy. 
Consent and the demographic survey were administered by one or both CBIDSI coordinators, one 
of whom speaks some Tsimane', and they were typically joined by one translator. After completing 
these intake tasks, the participant completed the memory task. Participants were randomly 
assigned to one of the two experimental conditions (Order or Preference). Random assignment 
was done within age group (children or adults) to ensure balanced sample sizes (Table 3.2.S2). 
The Control condition was run after data collection for the experimental conditions had been 
completed.  

The two experimental conditions (Order and Preference) were administered by the experimenter 
(first author) in Spanish and translated into Tsimane' by an experienced translator. The 
experimenter always sat to the left of the participant, with the translator across the table or to 
the right. The Control condition was administered by the same research coordinator who 
administered the demographic intake survey with a translator, except for the first eight Control 
participants, who were run by the experimenter and a translator. The research coordinator did 
not consistently sit in the same position relative to the participant, but typically sat either across 
from or to the left of the participant. 
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Memory Task 

The stimuli consisted of four sets of eight mixed age and gender faces printed on card stock, cut 
into 2.5 x 2.5 inch squares, and laminated (Figure 3.2.S1). There were two between-subject 
experimental conditions—Order and Preference—and a Control (no-task) condition. The general 
procedure for the two experimental conditions was identical. Participants first heard condition-
specific instructions, including what information to remember (i.e., Order: ``I'm going to tell you 
the order in which they arrive at the market, and I want you to remember this order."; Preference: 
``I'm going to tell you about their preferences, and I want you to remember these preferences."), 
then were handed the cards one by one and told the relevant information for each card (e.g., 
Order: ``This boy arrived first."; Preference: ``This boy prefers plantains."; Figure 3.2.1A). After 
the last card, the translator took a picture of the card layout on the table. Finally, participants 
were asked two questions to test their memory of the relevant information (e.g., Order: ``Who 
was the first child to arrive?"; Preference: ``Who were all the adults who preferred plantains?"; 
Figure 3.2.1C and Table 3.2.S3); they received no feedback on their answers. This procedure was 
repeated for a total of four trials. The cards were handed out in the same order across all three 
conditions. 

The instructions for the Order and Preference conditions mentioned that participants could put 
cards on the table if they wanted to. This option was mentioned explicitly because the card layout 
was essential to our study, and piloting revealed that participants were unfamiliar with using or 
holding cards and were unsure whether they could use the table instead of holding and organizing 
them in their hands. If a participant did not put the cards on the table on the first trial, the 
translator prompted the participant to do so (e.g., participants were holding the cards in their 
hands and/or cards were falling on the ground). Critically, however, neither the translator nor 
experimenter stated how to use the table or how to place the cards. Some participants continued 
holding the cards, and the picture is of the cards in their hands.  

The procedure for the Control condition was the same as for the experimental conditions except 
that participants were not instructed to remember any information, nor given any information as 
the cards were handed out. Instead, participants were instructed to put the cards on the table in 
any way that they wanted. Also, the Control condition had two trials instead of four.  

This task was designed with extensive feedback on the procedure and instructions from the 
CBIDSI coordinators and translators to ensure that it was culturally appropriate and made sense 
to participants. See Supplementary Methods for additional details about this task and condition-
specific instructions. 

Data Coding. Card layouts were coded for three features—shape, organization, and 
directionality—from the photos of the table that were taken at the end of each trial. Video 
recordings were consulted where necessary to confirm coding. 

The shape of each card layout was coded by two independent coders using a shape coding guide 
(https://osf.io/75vrj/). Interrater reliability was high (Cohen's kappa = .91), and any 
disagreements were resolved by the first author. The two coders and the author did not know the 

https://osf.io/75vrj/
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condition the participant had been assigned to or the organization of the layout when making 
shape judgments. Images were coded in a random order, shuffled across all trials and conditions. 

After shape was coded, the organization of each card layout was coded by the first author as 
either “sequentially ordered,” “grouped,” or “neither.” A layout was coded as sequentially ordered 
if it preserved the sequence that the cards were handed out in, regardless of condition. A layout 
was coded as grouped if a straight line could be drawn (horizontal, vertical, or diagonal) that 
perfectly separated the cards belonging to each preference. This was coded independent of 
whether there was a visible gap between the two groups in the shape. For the Preference 
condition trials, we also coded for “attempted grouping,” which was when it was clear from the 
card placement and the participant’s responses to the memory test questions that they had been 
attempting to use a spatial grouping strategy, but made a small execution error (i.e., misplaced 
one card, or swapped two cards with each other), resulting in the final layout not being correctly 
grouped (e.g., Figure 3.2.5, top row, trial 3). Even with this additional code, the organization 
coding was conservative and likely underestimates the prevalence of the spatial grouping strategy 
because of the strict requirement for the grouping to be correct in order to be coded as grouped 
or one card away from correct to be coded as attempted. A layout was coded as neither if it did 
not meet the requirements for sequentially ordered or grouped. See Supplementary Methods for 
additional details about coding organization.  

The directionality of the cards was also coded by the first author. This feature captured the 
direction that the cards were placed on the table relative to the participant. For example, cards 
could be placed left-to-right, right-to-left, top-to-bottom, bottom-to-top, or some combination if 
there were multiple rows or columns. Some layouts used what we called a "center out" pattern, 
in which participants started by placing cards in the relative center and building subsequent cards 
out from there, typically to the left and right. When the shape of the cards was ``random" or 
``unknown", the direction was coded as ``none." 

Literacy Measure 

To measure literacy, participants were asked to read four short, simple sentences, two in Spanish 
and two in Tsimane’ (e.g., “El gato tiene miedo.” [The cat is scared.]). The research coordinator 
rated their reading on a 3-point scale: 0 = “none”, 1 = “some”, and 2 = “perfect.” Note that the 
coordinator was assessing reading skill only, not comprehension. Literacy score is the sum score 
of the four questions (min = 0, max = 8). 

Data Analysis 

All analyses were run in R version 4.2.1 (R Core Team, 2022). See Supplementary Methods for the 
list of R packages used for analysis and visualization. For all primary analyses, children and adults 
were analyzed separately because of the possible difference in current exposure to formal 
schooling in day-to-day activities. Even though schooling is variable and relatively minimal, 
children (<16y) are likely to be attending school in some capacity based on their age and not 
having children of their own. This means that children may have more recent and immediate 
exposure to spatial tools (e.g., schoolbooks, numbers), whereas adults are likely to no longer 
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attend school, and therefore are not typically exposed to or using these tools on a day-to-day 
basis. For this reason, we kept the age groups separate for analysis unless otherwise noted. 

To test for associations between condition (Order, Preference, Control) and the outcome 
measures of interest (organization and shape), we used Fisher’s Exact Test. Though a 𝜒2 Test of 
Independence is the most common statistical test used, there were some cases in our data in 
which at least one of the expected value cells was less than 5, violating the assumptions of this 
test. Therefore, for consistency we use Fisher’s Exact Test for all cases testing the association 
between two categorical variables, including follow-up pairwise comparisons between 
conditions. Fisher's Exact Test outputs only a p-value. When it is run on a 2x2 contingency table, 
an effect size—an odds ratio (OR)—and its 95% confidence interval can also be calculated from 
the contingency table and are reported. The OR gives the odds of an outcome occurring in one 
condition (e.g., sequentially ordering in the Order condition) relative to the odds of that outcome 
occurring in another condition (e.g., sequentially ordering in the Control condition). In follow-up 
pairwise comparisons, we used Bonferroni correction to correct for multiple comparisons, 
multiplying the p-value by 3 since we did three pair-wise tests (Order vs Control, Order vs 
Preference, and Preference vs Control). See Supplementary Methods for additional details about 
Fisher's Exact Test and its interpretation. 

Models to test for effects of organization on memory test accuracy, effects of schooling and 
literacy on organization, and changes in spatial strategy use over trials were run separately for the 
two experimental conditions because of the near-ceiling effect of participants sequentially 
ordering their cards on T1 in the Order condition. We used two-tailed t-tests to test for differences 
in accuracy on the T1 memory test questions between participants who sequentially ordered 
versus not in the Order condition and between those who grouped versus not in the Preference 
condition. We also used logistic mixed effects models with a random intercept for participant to 
test that the effects of spatial organization on accuracy held across trials. These models also 
allowed us to test for increases in accuracy over the trials. All analyses with accuracy as the 
outcome variable collapsed across age groups. To test for effects of schooling, literacy, and age 
on T1 organization, we collapsed across age groups and used a logistic regression predicting 
grouping versus not on T1 of the Preference condition. We did not run this model for the Order 
condition because the high proportion of participants who sequentially ordered left little 
between-participant variation to be explained. However, we did look qualitatively at the schooling 
and literacy of participants who did and did not sequentially order on T1. Finally, to test for 
changes in spatial strategy use we used logistic mixed effects models predicting organization from 
a fixed effect of trial and a random intercept of participant. These models were run separately for 
each age group. 

Data and Materials Availability 

All data needed to evaluate the conclusions in the paper are present in the paper or the 
Supplementary Materials. Materials, data, and analysis files are available through Open Science 
Framework at https://osf.io/75vrj/. Additional data related to this paper may be requested from 
the authors.  

https://osf.io/75vrj/
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Chapter 4. Scaffolding relational reasoning: A promising approach for 
promoting graph comprehension 

4.1 Abstract 

Knowing how to interpret graphs and make decisions based on the information presented are 
skills that are increasingly important in the workplace and in daily life. Acknowledging their 
importance, U.S. math and science standards include graph comprehension in late elementary 
and middle school. However, children—and even adults—struggle with these skills. One source 
of difficulty is with mapping the perceived visuospatial patterns to the real-world meaning of 
these relations. This mapping can be construed as a form of relational reasoning, which is the 
capacity to map multiple relations between representations. Here, I first propose that research 
on graph comprehension—from cognitive models to pedagogy—would be strengthened by 
considering relational reasoning as a foundational cognitive skill. Then, I report the results of a 
preliminary study that I designed and conducted based on this perspective. The study evaluates 
the benefit of emphasizing relational reasoning as part of a graph comprehension intervention 
for middle schoolers. I developed two well-matched lessons on y-intercept and slope, focusing 
students’ attention either on the higher-order relations represented by graphs or on graphs’ 
visual features. 289 U.S. public school students in grades 5-7 (ages 10-13) participated in this two-
day study conducted remotely in their math class. The results suggest that both lessons were 
effective in improving students’ knowledge of y-intercept and slope as well as reasoning with 
graphs in the transfer task. I conclude by discussing the potential benefits of promoting relational 
reasoning and visual pattern recognition in graph comprehension and point to many future 
research directions. 

4.2 Introduction 

In 1854, London doctor John Snow made a groundbreaking discovery. By showing that cholera 
was linked to contaminated drinking water, he proved that this deadly disease was waterborne 
as opposed to airborne, which was the prominent theory at the time. Dr. Snow’s contribution to 
science was not only this discovery, but also the tool he created to uncover this elusive 
relationship. Searching for patterns in deaths due to cholera, Dr. Snow marked their locations on 
a map and noticed a concentration of deaths around a single water pump, which was later found 
to be polluted by sewage. This now-famous early example of data visualization allowed Dr. Snow 
to see abstract patterns in data and make inferences about the relation between water and 
cholera that were not otherwise apparent.  

Data visualizations, such as Snow’s cholera map, are designed to leverage our visual system’s 
fluency perceiving visual patterns, using visual features such as spatial position, color, and area to 
represent information that may not typically have these properties (Bertin, 1983; Hegarty, 2011; 
Tversky, 2011). As the presence of data in our daily lives continues to increase, so too does the 
need to understand and visualize it (Börner et al., 2019; Franconeri et al., 2021; V. Lee & 
Wilkerson, 2018). Data-related jobs are an increasing sector of the job market (Bonesso et al., 
2020; Gardiner et al., 2018), data skills are in high demand (Tableau & Forrester, 2022), and data 
visualization literacy is important for being an engaged citizen (Börner et al., 2019; Glazer, 2011). 
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As early as 1966, and more widely since the 1980s, it has been argued that data visualization 
literacy—sometimes called graphicacy—is as important as both textual literacy and math literacy 
(Balchin & Coleman, 1966; Börner et al., 2019; Friel et al., 2001; Glazer, 2011; M. J. Padilla et al., 
1986). Indeed, math and science education standards in the US include objectives pertaining to 
data visualization literacy (Common Core State Standards Initiative, 2010; NGSS Lead States, 
2013), and recent legislation introduced in the US House of Representatives is aimed at increasing 
funding for data science education more broadly (Data Science and Literacy Act of 2023, 2023). 

However, interpreting data visualizations is not easy. In the present chapter I focus on graphs, a 
type of visualization that represents relationships between variables using visuospatial features 
and the coordinate system (A. R. Fox, 2023). In a recent review of the graph comprehension 
literature, Fox (2023) astutely pointed out a conceptual paradox at the heart of this research. 
Graphs seem to communicate information effortlessly, relying on our visual system to rapidly 
extract patterns and easily see important relationships, rather than having to read words or look 
at numbers (Ciccione et al., 2023; Larkin & Simon, 1987; Szafir et al., 2016). To the contrary, 
however, research from the past 40 years has shown that the process of graph comprehension is 
laborious and error-prone, and has documented the many difficulties that children and adults 
face when mastering these skills (Börner et al., 2016; Dimara et al., 2020; A. R. Fox, 2023; Friel et 
al., 2001; Glazer, 2011; Leinhardt et al., 1990; Shah & Carpenter, 1995; Shah & Hoeffner, 2002). 
To make matters worse, despite efforts to increase data literacy via formal education, the most 
recent National Assessment of Educational Progress in the US revealed declines in data literacy 
skill between 2019 and 2022, a trend that had started before the pandemic (Drozda, 2023; U.S. 
Department of Education, 2022). 

One feature of graphs that contributes to this difficulty is that they are abstract simplifications of 
the world; to use them effectively, a cognizer must map the marks on the page—the lines, colors, 
and spatial positions—onto the real-world information that these visuospatial features are 
intended to represent (Hegarty, 2011; Tversky, 2011). This deep relational structure, both in what 
graphs aim to communicate and how that information is represented, can be difficult to extract, 
particularly for novices. Despite evidence that this mapping process is a stumbling block during 
graph comprehension, the domain-general cognitive capacity termed relational reasoning, which 
supports making abstract mappings, has yet to be fully explored in the context of graphs.  

The present work consists of two complementary parts. In the first part, I propose that research 
on graph comprehension, including difficulties, cognitive models, and pedagogy, would be 
strengthened by considering relational reasoning as a foundational cognitive skill. To do this, I 
review literature from cognitive psychology and education and highlight various components of 
graph comprehension that are likely supported by relational reasoning. Further, I discuss how the 
lens of relational reasoning could be used to improve graph comprehension. In the second part, 
I begin to test these claims by conducting an empirical intervention study to investigate the 
potential benefits of explicitly engaging relational reasoning during graph learning. The study 
aimed to improve middle school students’ understanding of graph concepts and problem-solving 
through a 2-day lesson and focused on graphs depicting linear functions, one of the simplest types 
of graphs since the relation between x and y is represented explicitly with a line. Before delving 
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into the first section, I begin by introducing relational reasoning and the related concept of 
relational complexity. 

Relational reasoning and relational complexity 

Relational reasoning is the capacity to map abstract, generalizable relations between two or more 
objects or representations, and identify meaningful patterns in information (Alexander, 2016; 
Holyoak, 2012). For example, a cognizer can map simple relations between surface-level features, 
such as noticing that two circles are similar because they are both red (first-order relations), as 
well as map higher-order relations between relations, such as mapping the relational structure of 
an atom’s nucleus and its electrons to the relational structure of a sun and its planets (Gentner, 
1983). This capacity has been shown to underlie abstraction, generalization, analogical reasoning, 
and fluid reasoning, and is considered core to human cognition (Gentner, 2003; Halford et al., 
2010; Hofstadter, 2001; Starr et al., 2023).  

Though relational reasoning is considered a powerful mechanism for learning (Cattell, 1987b; 
Gentner, 2003; Goswami, 2001; Hummel & Holyoak, 2005), it can also serve as a processing 
bottleneck. Specifically, cognitive load is influenced by relational complexity: the number of 
variables that need to be related and integrated to make sense of information (Andrews & 
Halford, 2002; Halford et al., 1998). As the number of variables increases, so too does the load, 
and therefore the processing time and instance of errors. It has been estimated that four variables 
is the maximum number that can be integrated in a single processing step without invoking other 
strategies, such as breaking down the step into smaller parts (Halford et al., 1998). Converging 
evidence from cognitive, education, and neuroscientific studies show that relational reasoning 
develops slowly over childhood and into early adolescence, reaching adult-like levels around 11 
to 12 years old (Andrews & Halford, 2002; Crone et al., 2009; Jablansky et al., 2016; Wendelken 
et al., 2017).  

Research on relational reasoning has stressed its importance for and applications to scientific 
reasoning and inquiry (Dumas, 2017; Klahr et al., 2013; Murphy et al., 2017; Resnick et al., 2017), 
education broadly (Dumas et al., 2013; Richland & Simms, 2015; Vendetti et al., 2015), and STEM 
education specifically (Alexander, 2017; Murphy et al., 2017). As discussed below, the ways in 
which relational reasoning capacity can be scaffolded or leveraged to support STEM education is 
a nascent, yet active, area of research, and it has yet to be fully explored in the context of graph 
comprehension.  

4.3 A relational reasoning perspective on graph comprehension 

I propose that applying the lens of relational reasoning to graph comprehension would strengthen 
research and pedagogy. The abstract nature of graphs means that a mapping process relating the 
visuospatial external representation to an internal representation is necessary to make meaning 
of the graph. Indeed, some graph comprehension researchers have gone as far as to say that 
these visuospatial properties are metaphors or analogies for the real-world properties and 
relations they represent (Hegarty, 2011; Shah et al., 2005). Just as words and concepts bind to 
roles in metaphor and analogy, real-world information must be bound to the visuospatial 
properties, patterns, and axes of the graph. 
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Moreover, these bindings are dynamic, in that they differ between graphs. For example, two 
graphs that show the exact same visual pattern can take on different meanings and be used to 
represent different relations depending on the axis labels and legend. Though some researchers 
have posited that abstract reasoning ability, another term for relational reasoning, plays a role in 
graph construction and interpretation, and that it may account for the difficulty that students 
have when using graphs (M. J. Padilla et al., 1986), few studies, if any, have explicitly tested this 
link. Below, I point to various ways in which relational reasoning may support graph 
comprehension, and then discuss how these insights could be applied to improve graph 
pedagogy. 

Relational reasoning in the cognitive processing of graphs 

Most task analyses and cognitive models of graph comprehension feature three main steps that 
have been referred to as (1) pattern recognition, (2) interpretation, and (3) integration (P. A. 
Carpenter & Shah, 1998; Freedman & Shah, 2002; Hegarty, 2011; L. M. Padilla et al., 2018; Pinker, 
1990; see A. R. Fox, 2023 for a review). As a result, there are three main steps at which the design 
of the graph and the processing of the cognizer can cause bottlenecks for understanding. In the 
first step, the cognizer must identify and encode the visual patterns displayed in the graph. For 
example, an individual may notice that a set of points are clustered together or notice the 
steepness and direction of the trend of the points or of a line on the graph. Research suggests 
this first step happens quickly and with relative ease (Ciccione et al., 2023; Franconeri et al., 2021; 
Szafir et al., 2016). Steps two and three are where higher-order relational reasoning comes into 
play, when the cognizer begins making comparisons and mapping these visual features to 
meaning.  

In the second step, the cognizer translates the visual patterns perceived in the graph into the 
quantitative and qualitative conceptual relations they represent. In relational reasoning 
terminology, the cognizer is mapping relations between the external representation and internal 
concepts. For example, she may map that the different colors of points represent different groups 
and that a line rising from left to right indicates a positive relation between the two variables of 
interest. Note that these quantitative or qualitative interpretations must be either already 
learned, and therefore retrieved from prior knowledge, or otherwise inferred from the graph (P. 
A. Carpenter & Shah, 1998), a process that relational reasoning would also support.  

Finally, in the third step, the cognizer integrates these visual and conceptual patterns with their 
real-world referents by interpreting the patterns in the context of the information provided in the 
axis labels, legend, and title. In other words, she must map higher-order relations between the 
observed patterns of visuospatial relations and the patterns of relations between the real-world 
referents. This stage is critical because it is what makes a graph meaningful and useful for 
communicating information rather than simply looking at lines, colors, and patterns on a page. In 
an eyetracking study, Carpenter & Shah (1998) found that participants spent more time looking 
back and forth between the visual pattern and the axis labels and looking at the labels, legend, 
and title than looking at the visual pattern alone. They interpreted this gaze pattern, or visual 
routine, as suggesting that it is difficult to keep in mind information about the referents. However, 
this gaze pattern could have another, complementary interpretation. Past eyetracking studies of 
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relational reasoning have interpreted saccades between visual stimuli as evidence of integrating 
the relations displayed in each of the stimuli—i.e., relational integration (e.g., Chen et al., 2016; 
Guerra-Carrillo & Bunge, 2018). Through this lens, results from the eyetracking study of graph 
comprehension (P. A. Carpenter & Shah, 1998) can be interpreted as suggesting that a bulk of 
processing time is spent integrating the visual features with their real-world referents, and that 
this step of graph comprehension is the most cognitively demanding. Dovetailing with this 
interpretation, Michal and Franconeri (2017) found that gaze patterns both reflect and affect the 
relations that are extracted from a graph and can lead to different graph interpretations.  

Examining these three processing steps through the lens of relational reasoning reveals various 
places where this domain-general cognitive capacity could support graph comprehension. 
Despite the importance and cognitive difficulty of the last two steps, most of the research from 
psychology has focused on the pattern recognition and encoding step, investigating how visual 
features are perceived and how to design graphs more effectively to facilitate identifying the 
relevant visual patterns (for a review, see Fox, 2023 and Franconeri et al., 2021). Comparatively 
less research has focused on the difficult process of mapping the higher-order relations and how 
to improve performance on these later steps of graph comprehension, though some researchers 
have offered design suggestions aimed at minimizing these difficulties (e.g., Kosslyn, 1989; Matlen 
et al., 2020). Additional research is needed to better understand the relational structures that 
individuals use to represent and reason about the information contained in graphs, and to 
measure the relational complexity and cognitive load of these processing steps. The next section 
discusses the levels of questions that cognizers may be asked about graphs and their associated 
difficulties. 

Relational reasoning and the levels of graph comprehension difficulty 

Researchers in education and related fields approach graph comprehension from a different angle 
and have focused on the types of questions that can be asked about graphs and their associated 
difficulties. They have coalesced around three levels of graph comprehension questions, which 
increase in difficulty and build on each other (for a review, see Friel et al., 2001). These levels can 
be considered either the types of information that can be extracted from the graph or the level 
of understanding that a cognizer has about graphs. Here I propose that each of the three 
comprehension levels requires increasingly relationally complex computations, contributing to 
the increasing difficulty.  

The first and easiest level of questions is termed “elementary”, or “reading the data”, asking the 
cognizer to extract a specific value from the graph (e.g., What was the temperature anomaly in 
2000?; Figure 4.3.1). At this level, the cognizer is using the graph like a lookup table, and, notably, 
the information needed to answer this question can be found at one location (e.g., the height of 
a point on a line). Though answering this question requires all three steps of cognitive processing 
described above, the mapping problem is relatively simple because the value of the answer is 
displayed directly in the graph (Figure 4.3.1). Accordingly, students experience relatively few 
difficulties with questions at this level (Friel et al., 2001). 
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Figure 4.3.1. Graph with examples of three levels of questions that can be asked about it (Friel et al., 2001) and a 
task analysis of the steps required to answer each question. This task analysis is based on cognitive models of graph 
comprehension (for a review, see Fox, 2023) and the relational reasoning perspective described here. Bolded words 
in the task analysis indicate processing steps that likely require relational reasoning. The proposed relational demand 
and relational complexity is also graded for each question level. The data plotted in the graph were retrieved from 
NASA. 
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The second level of questions—“intermediate” or “read between the data”—requires the 
cognizer to find relationships in the data, such as reasoning over a range of data (e.g., How does 
the temperature anomaly change between 1980 and 2000?; Figure 4.3.1) or comparing two 
points (e.g., Was the temperature anomaly greater in 1940 or 1950?). To answer these questions, 
the cognizer must integrate information from several locations on the graph (Bertin, 2001) and 
make at least one inference to get from the question to the answer (Curcio, 1987), resulting in 
more general statements about the graph. This level is more relationally complex than the first 
because information from more than one location on the graph must be integrated to generate 
an answer. Further, questions at this level have been shown to be more difficult than those at the 
first level (Friel et al., 2001). For example, students sometimes confuse an interval and a point, 
reporting information from a single point instead of integrating over a range of values (Leinhardt 
et al., 1990).  

The third level of questions—“advanced” or “reading beyond the data”—requires the cognizer to 
extrapolate from the data and analyze the relationships presented in the graph to make 
generalizations, inferences, and predictions (e.g., Describe the general trend in temperature 
anomalies. Based on this trend, what temperature anomaly do you predict for 2025?; Figure 
4.3.1). To answer these questions effectively, the cognizer must integrate over most or all of the 
data presented and understand the deep relational structure of the data (Wainer, 1992). Thus, 
these questions are the most relationally complex and require mapping higher-order relations 
between relations, as the cognizer makes a series of inferences and then integrates their output 
to generate an answer. Questions at this level are even more challenging and error-prone than at 
the intermediate level (Friel et al., 2001), and students often struggle with synthesis and 
coordination of evidence (Wilkerson & Laina, 2017). Considering these three levels together, I 
argue that the association between relational complexity and increasing question difficulty 
suggests that relational processing is a bottleneck for graph comprehension.  

Relational complexity in graphical displays 

Relational reasoning is also taxed by the complexity of the information being represented by the 
graph. One dimension of data complexity, sometimes referred to as graph complexity, is the 
number of variables being displayed on the graph. For example, in their eyetracking studies, 
Carpenter & Shah (1998) used 3-variable line graphs as stimuli and manipulated graph complexity 
in two ways, first by varying the number of lines on the graph (e.g., 2 vs 4 lines), and second by 
varying whether the lines had the same x-y relation (e.g., both positive slopes) or not.  
They argued that increasing complexity increased the number of inferences that needed to be 
made as well as the difficulty of the inferences. Note that the line on a line graph represents the 
relation between x and y, and the direction and steepness of the line’s slope represent the nature 
of that relationship. Slope is a binary relation because it relates two variables in one processing 
step. Specifically, it represents the change in y for every 1 unit change in x. When a second line 
with a significantly different slope from the first is added to the graph, showing an interaction, 
three variables must be integrated to interpret the graph: the relation between x and y now 
depends on a third variable, z (e.g., Figure 4.4.1, bottom panel). Therefore, increasing graph 
complexity increases the relational complexity.  
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Another source of complexity comes from representations of uncertainty, including variability, 
noise, and error (Franconeri et al., 2021). Whereas the line graphs in Carpenter & Shah (1998) 
depict linear functions, explicitly represent the x-y relation with a solid line, and do not show 
individual data points, a cognizer viewing the graph in Figure 4.3.1 would need to infer over all 
the data points to interpret the relation between x and y. Thus, graphs that depict uncertainty—
such as by showing individual data points or by including confidence intervals or error bars—also 
require more inferences, increasing relational complexity.  

Results from empirical studies provide evidence that increased graph complexity causes 
bottlenecks in graph processing. Carpenter and Shah (1998) found that as graph complexity 
increased across both of the dimensions that they manipulated, so too did the amount of time 
needed to process those graphs. Perhaps surprisingly, even seemingly simple graphs can require 
many comparisons. As Franconeri et al. (2021) point out, a simple bar graph with two bars each 
for two groups (e.g., 2x2 factorial design) for a total of four bars results in six possible pairwise 
comparisons that could be made in addition to two main effects and a possible interaction! 
Recent work has shown that the more comparisons that need to be made, the slower and more 
error-prone the processing (Franconeri et al., 2021; Nothelfer & Franconeri, 2020). Together, 
these studies suggest that although relational reasoning supports graph comprehension, 
relational complexity imposes processing constraints, resulting in higher cognitive load, longer 
processing times, and sometimes errors during graph interpretation.  

Implications for graph pedagogy 

Despite the critical role of mapping and inference at various points in the graph comprehension 
process, the direct link between relational reasoning and graph learning has yet to be explicitly 
tested. Further, most graph comprehension studies in psychology investigate adult processing, 
and relatively few have focused on children during learning. Those that have studied children 
have mostly focused on perceptual components (Ciccione et al., 2023; Kaminski & Sloutsky, 2013; 
Michal et al., 2018). In one relevant study that discusses relational structure and mapping, Gattis 
(2002) investigated whether non-spatial concepts are intuitively mapped onto space in systematic 
ways (e.g., cognitively constrained) or based on arbitrary conventions (like the arbitrary shapes 
of letters). She found that 6- and 7-year-old children in Germany with no graphing experience 
systematically mapped quantity to height and rate to slope, dovetailing with results from adults 
(Gattis & Holyoak, 1996). However, none of the graphs used in this study had axis labels, and it 
did not test how students were interpreting the visual patterns in the context of real-world 
referents. Another shortcoming of the graph learning literature is that most studies are cross-
sectional, and do not aim to capture change over time or as a result of an intervention (Glazer, 
2011).  

I propose that relational reasoning can be scaffolded to support learning about graphs. Even 
though graphs are inherently relational, it is not clear that students and novices are aware of this 
structure or explicitly taught to understand graphs in this way. As diSessa et al. (1991) explain in 
the discussion of their study on 6th grade students learning to graph, “one of the difficulties with 
conventional [graph] instruction… is that students' meta-knowledge is often not engaged, and so 
they may come to know "how to graph" without understanding what graphs are for or why the 
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conventions make sense.” For example, graphing has traditionally been taught prescriptively, 
telling students to create certain graphs in some situations and other graphs in different situations 
without attention to how to decide which graph to create or even why one should use a graph in 
the first place (Friel et al., 2001), though this may be changing as the focus on data literacy 
becomes more prevalent in classrooms. Additionally, Glazer (2011) argues that graph 
comprehension cannot be learned “by osmosis,” but rather needs to be explicitly taught. I 
interpret this statement as having two meanings. First, merely being exposed to graphs does not 
mean that students understand how or why they are used; rather, their deep relational structure 
must be explicitly taught. Second, just because a student can see or identify a visual pattern does 
not mean that they understand what it means.  

The lens of relational reasoning suggests three main ways to enhance graph comprehension. First, 
relational reasoning can be explicitly engaged to draw students’ attention to the relational nature 
of graphs, which could help elucidate why and how graphs are used. For example, students could 
compare instances of when it is useful (or not) to create a graph to better understand the contexts 
that would benefit from this tool. As another example, students could look at a series of different 
types of graphs and be prompted to simply state what the goal of each graph is—that is, what 
relations the graph aims to communicate. A second way that relational reasoning could be 
scaffolded is by having students explicitly practice mapping relations between the visual patterns 
and their conceptual and real-world referents. Third, prior research suggests that comparison is 
a powerful tool for engaging relational reasoning processes (see Vendetti et al., 2015 for a review), 
and this may extend to the context of graph comprehension. Typically, comparisons are 
encouraged between two visual representations presented side by side (e.g., two graphs, two 
diagrams, or two images). However, relational processes could also be elicited by asking cognizers 
to make comparisons between various features of the graph at various levels of abstraction, from 
comparing two points to comparing the structure of two lines to comparing the meaning of two 
relations. Although comparison questions are commonly used to test graph understanding, they 
have not to our knowledge been studied for the purposes of learning how to interpret and make 
meaning from graphs. Taken together, this section suggests that graph comprehension pedagogy 
would be strengthened by scaffolding relational reasoning.  

4.4 Preliminary study 

In this section, I begin empirically testing the direct link between relational reasoning and graph 
learning. To do so, I designed an intervention study that manipulated the extent to which two 
well-matched lessons on line graph concepts emphasized relational reasoning. In a pretest-
posttest design, students were randomly assigned either to a lesson emphasizing encoding the 
visual features of the graph and point reading (VF lesson) or to a lesson emphasizing higher-order 
relational reasoning via mapping the visual features to their real-world referents and generalizing 
over ranges (RR lesson). The present study focuses on interpreting graphs that depict linear 
functions, which can be considered a building block for interpreting graphs visualizing real-world 
data. Whereas data graphs have complexities like variability and error that require more 
inferences to interpret, linear function graphs explicitly represent the relation between x and y 
with a line. That said, there are still many relations that must be encoded, integrated, and mapped 
in order to interpret linear function graphs, as will be described. Thus, designing a lesson on linear 
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function graphs is a straightforward starting point for investigating the link between relational 
reasoning and graph learning, and the present study serves as a proof-of-concept that graph 
lessons can be designed to scaffold relational reasoning.  

I worked with US children in grades 5 to 7 (ages 10-13) to capture early graph learning and be 
able to impact understanding as it is developing. During these grades there is a shift in the math 
and science standards from working with more simple graphs that represent discrete variables 
only to working with graphs that represent continuous variables (Common Core State Standards 
Initiative, 2010; NGSS Lead States, 2013), a shift that has been shown to be difficult for students 
(Boote & Boote, 2017). I chose the concepts of y-intercept and slope because they are 
developmentally appropriate and generalizable across math, science, and statistics. Slope first 
appears in the Common Core Math 7th grade standard about ratios and proportional 
relationships, and y-intercept is first mentioned in an 8th grade standard about the linear formula, 
y = mx + b that also mentions slope (Common Core State Standards Initiative, 2010). Further, 
students struggle with understanding the meaning of slope (Glazer, 2011). Critically, both 
concepts are relational and have visual definitions as well as contextual meanings. Y-intercept, 
the value of y when x is 0, relates x to y at a single point, whereas slope, the change in y for each 
unit of x, is a rate and describes the nature of the relation between x and y integrating over all 
the points, making slope a higher-order relation than y-intercept (Gattis, 2002).  

In the VF lesson, participants’ attention was drawn to individual points on the graph and were 
prompted to focus on the visual patterns (e.g., how steep the line looks) rather than being 
prompted to map these visual patterns to the context of the variables. On the other hand, in the 
RR lesson, participants’ attention was drawn to ranges and trends on the graph and they were 
prompted to map the patterns that they saw to the real-world referents that they represented. 
For example, the VF lesson explains positive slope by saying, “A positive slope means that the line 
is going up from left to right,” focusing students on the visual aspect of the slope, whereas the RR 
lesson explains, “A positive slope means that as x increases, the value of y also increases,” focusing 
students’ attention on relating x to y and the relational nature of the slope.  

After the content part of the lesson, students saw four additional practice graphs with 
corresponding practice questions that maintained the focus of the assigned lesson condition. The 
practice stimuli featured graphs with two lines on them and practice questions encouraged 
students to make comparisons between the lines, a domain-general process that has been shown 
to engage relational reasoning during learning (see Vendetti et al., 2015 for a review). 

The pretest and posttest had two parts. In the first part, students were tested on their 
understanding of the concepts of y-intercept and slope by being asked to explain them. The 
second part was a problem-solving task adapted from Moon et al. (2018). Students were 
presented with a graph and a series of questions that required integrating information from the 
graph with their reasoning to answer effectively. The graph for these questions featured three 
lines (i.e., the z variable had three levels), a level of complexity that the students had seen before, 
therefore increasing the novelty and difficulty of the task. We also assessed students’ domain-
general relational reasoning using a matrix reasoning task.   



89 

I predicted that matrix reasoning score would positively predict initial understanding of the 
concepts of y-intercept and slope as well as problem-solving performance with graphs. Next, I 
predicted that students who participated in the RR lesson would develop a deeper understanding 
of y-intercept and slope, as measured in the posttest, than students who participated in the VF 
lesson. Further, after the lesson, I predicted that students in the RR lesson would more effectively 
solve the problem-solving transfer task because the lesson scaffolding higher-order relational 
reasoning would better equip them to work with the complex graph, even though participants in 
neither condition had explicitly been taught how to solve this type of problem during the lesson. 
Finally, I tested whether matrix reasoning score predicted the magnitude of change in graph 
scores from pretest to posttest, and whether this effect depended on lesson condition. This test 
was exploratory in that I did not have predictions about the direction of the effects because 
multiple outcomes were plausible. For example, it is possible that students with lower relational 
reasoning may benefit more from a lesson that draws their attention to the visual features (VF 
lesson) or they may benefit more from a lesson that scaffolds their relational reasoning (RR 
lesson), which may otherwise be difficult to do without external support. In addition to testing 
these concrete predictions, this preliminary study also served as a proof-of-concept to determine 
whether and how the lens of relational reasoning could be applied concretely to design 
instructional materials for graph learning. 

Methods 

Participants 

A total of 287 US students in grades 6, 7, and 8 (n5= 39, n6= 42, n7= 206) participated in May 2021. 
The study did not collect information on participants’ age, gender, race, ethnicity, or 
socioeconomic status. The 6th grade participants were recruited from two class periods taught by 
the same math teacher at a public school in the San Francisco Bay Area. The 5th and 7th grade 
samples were recruited from the lower middle school (5th/6th) and upper middle school (7th/8th) 
of a public school district in the Greater Pittsburgh Area. The 5th grade participants were from two 
class periods taught by the same math teacher. The 7th grade participants were recruited from 10 
class periods taught by two different teachers, four periods from one teacher and 6 periods from 
the other. There were two different levels of math for the 7th graders in our sample—“7th grade 
math” and pre-algebra—and each teacher taught half of their periods at one level and half at the 
other level.  

The study was performed in accordance with the Internal Review Board at the University of 
California, Berkeley. Before the study, teachers sent a letter to students’ parents/guardians from 
the researchers with information about the study and how to opt their child out if they did not 
want their child to participate. Students whose parents opted them out or who did not want to 
participate were given other classwork to complete during the class period. All participants 
verbally assented to participating. 

The 6th grade sample, which was collected first, was used qualitatively as a discovery sample to 
develop the rubrics for scoring the open-ended questions. The 5th and 7th grade samples were the 
experimental samples. All reported analyses are with data from the 5th and 7th grade participants. 
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Procedure 

The study took place over two consecutive days in students’ math classes during a full class 
period. The 6th grade sample participated remotely over Zoom (50-minute periods) and the 
experimenter joined their Zoom classroom. The 5th and 7th grade students were in-person in 
their math classrooms, and the experimenter joined the class via Cisco WebEx to administer the 
study (5th grade: 88-minute periods; 7th grade: 40-minute periods). All tasks were administered 
on Qualtrics and students participated on their own computers with headphones. Each day of the 
study, students were emailed a unique URL to access the study materials at the beginning of their 
class period. While working through the tasks, once students clicked the “next” arrow to advance 
to the next page, they were not able to return to the previous page or question. 

There were five parts of the study: basic graph knowledge assessment, pretest, graph lesson, 
posttest, and a matrix reasoning task. Participants were randomly assigned to one of two well-
matched lessons on y-intercept on slope: (1) a relational reasoning lesson or (2) a visual features 
lesson. Random assignment was done within classrooms. The basic graph knowledge assessment, 
pretest and the first half of the lesson (instructional block + first two graphs of practice block) 
were administered on the first day, and the second half of the lesson (last two graphs of practice 
block), the posttest, and the matrix reasoning task were administered on the second day. 
Participants were given until the end of their class period to complete the tasks assigned for each 
day. At the end of the class period, participants were asked to exit out of the Qualtrics survey, 
regardless of whether they had finished. What part students started with on the second day 
depended on where they left off on the first day. If after the first day students had not finished 
the first part of the lesson, they started the second day with where they had left off the prior day 
before continuing to the second part of the lesson. Otherwise, students started with the second 
half of the lesson at the beginning of the second day. 

Tasks 

Basic graph knowledge assessment. In this task, students were first shown a line graph 
and then were asked a series of six multiple-choice questions about the graph that were designed 
to assess whether students had the pre-requisite graph reading knowledge and skills to engage 
with the pretest and lesson (see the Supplementary Materials for the graph and full set of 
questions). The line graph’s x- and y-axes were labeled “Hours studied” and “Test score (out of 
100)”, respectively, and the one line on the graph was labeled with a name (“Brianna”). The first 
two questions asked participants to identify the variable on the x- and y-axis, respectively, and 
gave each of the three variables as options as well as an “I don’t know” option. The next four 
questions asked students to read points on the graph, and students responded by selecting their 
answer from a dropdown menu of numbers, which included all the numbers on both axes and “I 
don’t know”. Two questions gave the x-value and asked for the y-value, and two gave the y-value 
and asked for the x-value. Within each question type, one question was asked in the context of 
the axes (e.g., “If Brianna wants to score a 100 on the test, how many hours does she need to 
study?”) and one was asked in terms of x and y (e.g., “What is the value of x when y = 85?”), 
yielding two with-context questions and two context-free questions.  
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Qualtrics automatically scored these responses, and if students answered five or six out of six 
correctly, they continued to the pretest. If students answered fewer than five of the six questions 
correctly (i.e., scored a four or lower), they were directed to extra graph reading practice. This 
extra practice included a video reviewing the axis labels and how to read points on a line graph. 
Then participants answered four additional point-reading questions in the same format as for the 
first graph with a new graph. This new graph had different axis labels, line, and line label (see 
Supplement). After completing the extra practice, students continued to the pretest, regardless 
of score on these extra questions. However, as I pre-registered, only students who answered all 
four of the extra questions correctly were included in analysis. 

Pretest and posttest. The pretest aimed to capture what students already knew about the 
target concepts before completing the lesson and the posttest aimed to measure how their 
understanding and reasoning changed. The first part of the pretest and posttest measured 
knowledge of y-intercept and slope. The second part measured how students apply these 
concepts and higher-order relational reasoning in a problem-solving scenario. The posttest also 
included an exploratory third part that examined students’ transfer of graph concepts to a science 
context, which is not analyzed in the present study. 

For the study with 6th graders, the questions were not timed, and responses were required for 
all questions to advance to the next page. If a student did not want to answer a question, they 
could enter any characters into the text box (e.g., spaces) or choose to write “I don’t know.” 
Because many 6th graders spent too long on these questions at pretest and ran out of time for 
the lesson, the open-ended questions auto-advanced for the 5th and 7th graders to help them 
pace themselves and make sure they finished the pretest with enough time to complete the 
lesson. The length of time for each question was calculated from the 6th grade sample to make 
sure that participants were not rushed but also did not spend too much time. When the page 
auto-advanced on an open-ended question, whatever response was written in the text box was 
what was submitted as the response. Further, responses were no longer required for students to 
advance to the next page. If a question was still blank when a student clicked the “next” arrow, a 
window popped up notifying the student, “There is 1 unanswered question on this page. Would 
you like to continue?” with two options “Continue without answering” or “Answer the question.” 
Students were encouraged to answer all the questions. 

Part 1: y-intercept and slope. In part 1 of the pretest, students were presented with the 
same graph from the basic graph knowledge assessment and asked a series of three questions. 
Students started by seeing a video introducing the task. Then, all three questions were presented 
on the next page. For the 5th and 7th graders, the program auto-advanced from this page after 5 
minutes. In the first question (“click-on-graph”), participants were asked to click on the graph 
where they thought the y-intercept was. The Heat Map question type was used in Qualtrics, and 
a small region of interest around the y-intercept was pre-specified on the graph as part of the 
question setup. If students clicked within that region, received a score of 1. If students clicked 
outside of the region, they received a score of 0. If students did not respond to the question, it 
was marked as no response. The second two questions were open-ended and asked students to 
explain what the y-intercept and slope on the graph “tells you” (see Supplementary Materials for 
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the full question text). For the slope question, they were also asked to describe the slope of the 
line. The y-intercept question had a max score of 3 and the slope question had a max score of 4.  

The outcome measure for this first part of the pre/posttest was the sum of the points for the 
“click-on-graph” question (max: 1 point) and the two open-ended questions (max: 3 and 4 points, 
respectively). As described in the pre-registration and scoring guide, children did not always 
understand the expected response type on the novel “click-on-graph” question, and sometimes 
left it blank. However, a no response did not always mean they did not know the answer to the 
question. Instead of marking a no-response as incorrect, the score was calculated differently for 
these participants: the sum score was first divided by 7, the max score excluding the “click-on-
graph” question, and then multiplied by 8 (max score with this question), to put the score on the 
same 0-8 scale as the participants who did answer that question.  

Part 2: Problem solving transfer task. In part 2 of the pre/posttest, students watched a 
brief video that shared a cover story and a novel graph with three lines on it, and then asked a 
series of open-ended and multiple-choice questions that involved reasoning with information 
from the graph. This task and the pretest cover story and graph were adapted from Moon et al. 
(2018). At pretest, the student was told that a middle school’s student council was buying t-shirts 
for the 8th graders and that the student’s goal was to help student council decide which of the 
three t-shirt companies would be the cheapest option. They were shown a graph to help them 
make their decision, which had “Number of Shirts” on the x-axis, “Total Cost” on the y-axis, and 
three lines with varying slopes labeled as Company A, Company B, and Company C in the legend. 
The posttest cover story was analogous but with a different context: the student was told they 
were hosting a birthday party for their best friend and needed to decide what food to serve. They 
were shown a graph with “Party Attendance” on the x-axis, “Total Cost” on the y-axis, and the 
foods “Burgers,” “Pizza,” and “Spaghetti” labeled in the legend.  

Students were then asked a series of four open-ended and two multiple-choice questions based 
on the graph. Critically, these questions asked students to reason about and integrate information 
presented in the graph in order to make a decision and give a recommendation about a course of 
action. The goal of these questions was to measure how sophisticated their reasoning was, which 
included capturing what kind of information students were attending to in the graph (e.g., point-
based versus ranges versus slopes) and how they integrated this graph evidence into their 
reasoning. The questions were designed to start off more open-ended and open to interpretation 
to capture what students spontaneously generated (e.g., open-ended question 1: “Student 
council does not know yet how many students will buy a t-shirt. Make a recommendation to 
student council about which company they should use to make the t-shirts.”), and then get 
narrower and more specific to examine whether, when prompted, students would engage in more 
sophisticated reasoning, such as attending to ranges instead points if they did not already do so 
in the earlier open-ended questions (e.g., open-ended question 4: “When, if ever, would buying 
from Company B be the cheapest option?”). The two multiple-choice questions asked students 
to compare the companies and select the cheapest based on their y-intercept and slope, 
respectively, in the context of the cover story (y-intercept: “Which company has the lowest 
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starting cost?; slope: “Which company has the lowest cost for each additional t-shirt 
purchased?”). 

Questions were presented one at a time, with one question per page. Each page showed the 
graph and the question below it, and, as in the rest of the study, students could not return to a 
question once they advanced to the next. For 5th and 7th graders, the open-ended questions 
auto-advanced as described above. The two multiple-choice questions were not timed, and 
responses were required to advance to the next page. 

The outcome measure for this second part of the pre/posttest was the sum of points from the 
four open-ended questions and two multiple-choice questions. The open-ended questions were 
each worth a different number (5, 4, 3, 3, respectively) based on their difficulty, and the multiple-
choice questions were each worth 1.5 points. Thus, the maximum possible score on part 2 was 
18 points. See the scoring rubric for additional scoring details. 

 Open-ended question scoring rubrics. The open-ended question scoring rubrics aim to 
capture the sophistication of students’ reasoning in their responses. Sophisticated responses 
demonstrate conceptual understanding, complexity in graph interpretation skill, and higher-order 
relational reasoning, such as making higher-order comparisons, mapping between the visual 
properties of the graphs and the context of the axes, relating the x variable to the y variable, and 
considering and comparing ranges of values instead of individual points. The rubrics were 
developed through an iterative process. First, version of the scoring rubric was based on the 
literature (e.g., Boote & Boote, 2017; Friel et al., 2001; Moon et al., 2018), learning goals, and 
pilot participant responses, and posted to OSF. Then, this rubric was used to score the 6th graders 
open-ended responses, who were the discovery sample. Since the 6th grade data were being used 
for the open-ended responses and not for analysis, no data cleaning procedures were applied and 
all given responses scored, even if students had not finished all the tasks. This scoring was 
completed by two independent coders. After this stage, the rubric was revised to account for the 
variation in responses and edge cases that were not captured in the original version. The scoring 
guide also outlined how the questions would be weighted (i.e., the max score for each question). 
After this updated version was posted to OSF, two independent coders scored the open-ended 
responses from the 5th and 7th grade students, and overall agreement was high (r = .94; see 
Supplementary Materials for agreement by question). Scoring disagreements were decided by 
the first author. All scoring was completed blind to lesson condition, and scorers alternated 
whether they scored the pretest or posttest first.  

Lessons on y-intercept and slope. The two lessons on y-intercept and slope both covered 
the same content and had the same basic structure. Before describing the relational reasoning 
manipulation, I first describe the components that are the same between the lessons. The lessons 
were divided into two parts, the instructional block, which taught the concepts of y-intercept and 
slope, and the practice block, which consisted of a series of four graphs with associated practice 
questions. To begin the instructional block, students first saw a short video (28s) with general 
instructions about what they would be doing in that section. Next, participants were introduced 
to the main concepts of the lesson: 1) y-intercept, 2) slope direction, and 3) slope steepness. For 
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each concept, the participant first watched a brief video explaining the concept (min = 15s, max 
= 83s). How the concept was explained was manipulated by lesson condition, as described below. 
Then, participants answered multiple-choice questions to practice the concept and received 
feedback before moving onto the next concept. The wording of these practice questions and the 
feedback given also depended on the lesson condition, but the graphs and answers were the 
same in both lessons. Given how brief the instructional block was—the longest video was only 1 
minute and 23 seconds—the same two contexts were used for all the videos and questions, either 
the relation between hours studied and test score or between hours of tv and hours of sleep. 
Some of the graphs showed one line and others showed two for two different people. In the 
instructional block, the graphs with two lines always had either the same slope but different y-
intercepts or the same y-intercept but different slopes, to highlight the concept that was being 
featured in that part of the lesson.  

After completing the instructional block, participants began the practice block. They saw a series 
of four graphs, each with five to six associated questions. The graphs were the same between 
lesson condition, but the wording of the questions depended on condition. Unlike in the 
instructional block where all questions had the same correct answers between conditions 
regardless of how they were worded, in the practice block the questions were well matched, but 
sometimes the correct answers were different between conditions. These practice graphs all 
showed two lines, and the lines now always had different y-intercepts and slopes. Three visually 
different interactions were represented among the graphs: crossing positive lines, crossing 
positive and negative lines, and non-crossing positive and negative lines. Since showing two lines 
with different y-intercepts and slopes was not introduced in the instructional block, the first graph 
of the practice block used the same hours studied-test score context as in the instructional block 
to scaffold the students to these more difficult graphs and questions. After the first graph, the 
other three contexts were all novel. Additionally, the first and second practice graphs showed a 
similar looking interaction—crossing positive lines—to help scaffold students to working with this 
type of graph in a novel context. The next two graphs showed different types of interactions and 
different contexts.  

Relational reasoning engagement was manipulated between lesson condition by the way that 
concepts were explained and how practice questions and feedback were worded. The visual 
features (VF) lesson was designed to focus students’ attention on the visual patterns present in 
each graph. On the other hand, the relational reasoning (RR) lesson was designed to help students 
practice mapping the visual patterns to their real-world referents. In the VF lesson, the concepts 
of slope and intercept were introduced by how they could be visually identified, whereas in the 
RR lesson they were identified by their meaning in the context of the x- and y-axis variables. For 
example, the VF lesson described the steepness of the slope as one line going up faster than the 
other line (Figure 4.4.1), drawing the students’ attention to how the line looks on the page, but 
not to what that pattern means in the context of the axis variables. On the other hand, the RR 
lesson described steepness in terms of the relative change in the y variable for each one unit 
increase in the x variable for one level of the z variable compared to the other (Figure 4.4.1), 
drawing students’ attention to the relation between x, y, and z and mapping the visual pattern to 
that relation. The graphs in the lesson videos were also animated differently to help focus  
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Figure 4.4.1. Pretest and lesson design with sample questions. The top panel shows the graphs used in the two parts 
of the pretest. Pretest part 1 measured students’ understanding of y-intercept and slope with the three questions 
listed. Pretest part 2 measured students’ problem solving with graphs by asking four open-ended questions, two of 
which are listed here, and two multiple-choice questions; this graph and cover story were adapted from Moon et al. 
(2018). The bottom panel shows sample instructional materials and practice questions from the two well-matched 
lesson conditions: Visual Features (left) and Relational Reasoning (right). The instructional block example shows how 
slope steepness was described differently in each lesson. The lines on the graphs were also animated differently 
between lessons. The lines on the VF graph slowly started appearing from left to right. On the RR graph, a black 
arrow appeared, then its corresponding green and blue arrows appeared, and the cycle repeated, to show the 
difference in the change in y for each one unit increase in x. The practice block shows the second practice graph with 
the first three questions that were asked about it in each condition. 
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students’ attention to way the lesson was describing each concept (see Figure 4.4.1 for a snapshot 
of an instructional graph after animation, and videos on OSF to view animations in action). 

In addition to differences in how the concepts were taught, the lessons also manipulated how 
students practiced them by using differently worded questions and giving feedback on their 
responses that reinforced how the concepts had been taught in that lesson. The VF condition had 
students practice reading points on the graph, and sometimes comparing point values when there 
were two lines on the graph. For example, for a graph in the practice block with two lines (Figure 
4.4.1), students in the VF lesson were asked which line had the lower y-intercept and which plant 
had the higher y-value when x equaled 10. On the other hand, the RR lesson had students practice 
interpreting the concepts in the context of the graph. For example, for that same graph in the 
practice block, students in the RR lesson were asked “which plant would be shorter” if no water 
were given to either plant, making the students integrate the meaning of the y-intercept with the 
context of the graph (Figure 4.4.1). The RR lesson also engaged students in range-based reasoning 
by comparing lines over ranges to focus their attention on the overall structure of those lines, not 
just points. For example, students were asked to compare the two lines over the range of when x 
is less than 15 (Figure 4.4.1). Prior work has shown that students often struggle to interpret ranges 
on graphs (e.g., when asked “when is jade taller than bamboo?”)  and will often respond with a 
single point instead of a range (Moon et al., 2018; Swan & Phillips, 1998), likely because reasoning 
about a range is more relationally demanding since it requires integrating over more than one 
location. Thus, the RR lesson scaffolded this more complex graph skill by directing students’ 
attention to ranges.  

Finally, the RR lesson also drew students’ attention to the structure of the lines through more 
general comparison questions. The first question for each new graph in the practice block of the 
RR lesson asked students to list the similarities and differences in the relation between the x and 
y variables for each level of the categorical variable (e.g., similarities and differences the 
relationship between amount of water a plant height for bamboo and jade). The goal was for 
students to practice seeing patterns and mapping them to meaning on their own before being 
prompted with questions for that graph. After answering the question, students saw a feedback 
page that listed some of the things they could have said to think about the graph in context, such 
as which plant has a greater starting point for height if the plants aren’t watered all. The 
corresponding question in the VF lesson simply asked students to “explain to a friend what you 
see in this graph.” In this question, students were not drawn to make any explicit comparisons 
and could give any level of explanation they wanted. The feedback said they could describe the 
y-intercept, the direction of the lines, and the steepness of the lines. 

The responses from the questions in the instructional and practice blocks of the lessons were not 
scored or analyzed in the present study. See the Supplementary Materials for all graphs and 
questions; the instructional videos are posted on OSF. Though relational reasoning is being taxed 
in both conditions, higher-order relational reasoning should be more heavily taxed in the RR 
condition due to the focus on mapping visuospatial features to conceptual meaning. 
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Matrix reasoning task. This task was adapted from the Wechsler Intelligence Scale for 
Children IV matrix reasoning task (WISC-IV; Wechsler, 2003). The WISC-IV matrix reasoning task 
has 3 practice trials and 35 items. In the administration protocol, all participants start with all 
three practice trials, then children ages 9-11 start with item 7 and children ages 12-16 start with 
item 11. Since the study spanned these age ranges, I started all children on item 7 in order to 
compare scores between participants. Therefore, there was a total of 29 possible items (items 7 
through 35). The items were scanned from the WISC-IV administration booklet and touched up 
for clarity using Photoshop. 

The task was administered on Qualtrics. Participants saw a visual puzzle with one piece missing 
and five numbered images. They were instructed to “identify the missing piece” by selecting the 
corresponding image number. Participants were given feedback on the three practice trials. 
During the main task, participants were no longer given feedback and an additional answer 
choice, “I don’t know”, was added. Participants had a maximum time allotment of 90 seconds per 
item. If that maximum time was reached, the program marked the item as incorrect and auto-
advanced to the next item. Items for which the participant selected the wrong choice, selected “I 
don’t know,” intentionally left blank, or ran out of time were marked as incorrect. If a participant 
responded incorrectly to four consecutive items (including timed-out items), then the task 
automatically ended, as per the WISC-IV matrix reasoning stoppage criteria. The outcome 
measure for this task was the total number of correct responses. 

Data analysis 

Data cleaning. A total of 39 5th graders and 206 7th graders participated in the study. One 
5th grade participant, who participated remotely over Cisco WebEx, was removed because a 
parent was aiding him in answering the questions. Data were cleaned according to the pre-
registration posted on AsPredicted (https://aspredicted.org/blind.php?x=8xw5m7). First, two 7th 
graders who did not start the lesson were removed from the data set (i.e., either did not finish 
the basic graph knowledge questions or did not finish the pretest). Next, participants who did not 
successfully meet the basic graph knowledge pre-requisite were removed. Participants who got 
more than 1 of the 6 questions incorrect on the basic graph knowledge questions at the beginning 
of the study watched a video reviewing how to read graphs3, then answered an additional four 
questions practicing reading points on a graph. Participants who did not answer all 4 additional 
graph practice questions correctly were removed from analysis (n5 = 9; n7 = 31). Participants were 
also excluded from analyses if they either did not complete the lesson (n5 = 1; n7 = 23) OR they 
did not engage with the lesson. Because students participated at their own speed on their 
personal laptop, it was difficult to monitor student engagement. Therefore, the time a student 
spent on the lesson was used as a proxy for engagement. I defined not engaging with the lesson 
as the conjunction of (1) spending less than 2.5 median absolute deviations (MADs) from the 
median time on the lesson AND either (2a) chance performance (50%) or worse on the multiple-
choice questions or (2b) spending less time on the open-ended lesson questions than 2.5 MADs  

 
3 The preregistration incorrectly stated that participants could get up to two incorrect on the basic graph knowledge 
assessment without seeing the review video. However, the task was programmed so that any participant who scored 
less than 5 correct was shown the video and given the extra assessment questions. 
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Table 4.4.1. Sample size by grade and analysis 

Analysis Grade 5 Grade 7 

All analyses with matrix reasoning as a predictor 23 92 

part 1 scores ~ timepoint (pre or post) *  
lesson condition (VF or RR) +  
1|participant 

28 147 

part 2 scores ~ timepoint (pre or post) *  
lesson condition (VF or RR) +  
1|participant 

28 134 

 

from the median time. All medians and MADs were calculated within grade. No participants were 
removed for not engaging with the lesson. Next, three 7th grade participants were removed for 
not starting the posttest. Additionally, participants would have been excluded if their time on any 
of the pretest or posttest sections was less than 2.5 MADs from the median time on that section, 
suggesting that they had rushed through the materials and had not engaged fully with them, but 
no participants met these criteria.  

To retain as many participants as possible for the analyses, participants needed to have completed 
just the first part of the pretest to be included in any analysis and were included in the analyses 
that they had full data for. For example, if a participant completed part 2 of the posttest but not 
the matrix reasoning task, then that participant would be included in the analyses of change in 
part 1 scores and change in part 2 scores, but not in the analyses involving matrix reasoning as a 
predictor. This was important because due to the limited class time, 13 7th graders were not able 
to finish part 2 of the posttest (5 in VF condition), and an additional 42 7th graders did not finish 
the matrix reasoning task (21 in VF condition). There were also five 5th graders who did not finish 
the matrix reasoning task (3 in VF condition). The final sample sizes for each analysis are shown 
in Table 4.4.1.  

Analysis methods. Due to the large difference in sample size between 5th and 7th grade, I 
analyzed the data for each grade separately. I also analyzed the two parts of the pretest separately 
because they address different research questions. To test my first research question about 
whether there was a relation between matrix reasoning and performance on each part of the 
pretest, I fitted linear regression models predicting pretest scores from matrix reasoning score. 
Next, linear mixed effect models were fit to test the effect of lesson on graph score. Part 1 scores 
were predicted by fixed effects of time point (pre or post), lesson condition (VF or RR), and the 
interaction between them as well as a random intercept for participant. A model with the same 
fixed and random effects structure was also used to predict part 2 scores. Finally, to test whether 
matrix reasoning was related to the magnitude of change in scores from pretest to posttest, and 
possibly whether that relation depended on lesson condition, I fit a linear model predicting 
change in the score of each part of the pre/posttest from matrix reasoning, lesson condition, and 
their interaction. 
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Transparency and openness. The hypotheses and data cleaning and analysis plan for this 
study were pre-registered on AsPredicted (https://aspredicted.org/blind.php?x=8xw5m7). We 
report all data exclusions and manipulations. All graph stimuli and questions are presented in the 
Supplementary Materials and the instructional videos are on OSF. All data cleaning and analysis 
scripts are available on OSF. Analyses were conducted in R Version 4.2.1 (R Core Team, 2022). 
tidyverse Version 2.0.0 (Wickham, 2023) packages, including dplyr Version 1.1.3 (Wickham et al., 
2023) and ggplot2 Version 3.4.4 (Wickham, 2016), were used for data wrangling and visualization, 
respectively. In addition to ggplot2, see Version 0.9.1 (Lüdecke et al., 2021), and gridExtra Version 
2.3 (Auguie, 2017) were used to create the visualizations. lme4 Version 1.1.33 (Bates et al., 2015) 
and lmerTest Version 3.1.3 (Kuznetsova et al., 2017) were used to fit the mixed-effects models. 
papaja Version 0.1.2 (Aust & Barth, 2022) and english Version 1.2.6 (J. Fox et al., 2021) were used 
to format and output the results from R. 

Results 

Graph scores and matrix reasoning scores varied within grade 

There was a great deal of variability in students’ performance on the three assessment measures, 
as shown in Table 4.4.2. T-tests within grade confirmed that there were no differences in these 
measures between lesson conditions at pretest (|𝑡|s ≤ 1.49, 𝑝s > .154). Due to the difference in 
sample size, performance between grades is not directly compared, but visual inspection reveals 
that there are not large differences between grades. Additionally, even though according to the 
US Math standards 7th graders have had more experience with graphs than 5th graders, there 
were not ceiling effects for either grade, suggesting that on average 7th graders were still graph 
novices and could benefit from the graph lesson.  

Matrix reasoning predicted higher graph scores at pretest 

First, I tested the relation between matrix reasoning and initial understanding of the concepts of 
y-intercept and slope by fitting linear regression models for grades 5 and 7 (Figure 4.4.2, left 
panel). The model for grade 5 revealed that each additional correctly answered matrix reasoning 
question predicted a 0.20 point increase in the score on part one of the pretest (𝑏 = 0.20, 95% 
CI [0.05,0.35], 𝑡(21) = 2.81, 𝑝 = .011) and matrix reasoning score explained 27.28% of the 
variance in graph score on part 1 (𝑅2 = .27, 𝐹(1,21) = 7.88, 𝑝 = .011). However, for grade 7  

Table 4.4.2. Descriptive statistics for each part of the pre/posttest and matrix reasoning. 

Measure Part 1: y-intercept and slope Part 2: problem solving task Matrix 
Reasoning  Timepoint Pretest Posttest Change Pretest Posttest Change 

Grade 5 
2.84 [0, 8] 
SD = 1.75 

4.33 [1, 8] 
SD = 2.26 

1.49 [-1.7, 7]  
SD = 2.09 

6.16 [0, 15.5] 
SD = 4.33 

9.05 [2, 17] 
SD = 5.05 

2.89 [-1, 10.5] 
SD = 3.20 

18.9 [7, 25] 
SD = 3.69 

Grade 7 
2.31 [0, 8] 
SD = 1.94 

4.18 [0, 8] 
SD = 2.12 

1.87 [-4, 8] SD 
= 2.37 

6.85 [0, 18] SD 
= 3.95 

8.74 [0, 18] 
SD = 4.64 

1.86 [-10.5, 10] 
SD = 3.61 

16.1 [0, 24] 
SD = 4.42 

Note: Mean, range, and standard deviation; the maximum possible score for each measure is 8, 18, and 29, 
respectively; Change is the difference in score from pretest to posttest and was first calculated within individual then 
summarized 
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matrix reasoning did not predict performance on part 1 of the pretest (𝑏 = 0.08, 95% CI 
[−0.01,0.17], 𝑡(90) = 1.84, 𝑝 = .069).  

Next, I tested the relation between matrix reasoning and initial performance on the problem-
solving task by fitting linear regression models for grades 5 and 7 (Figure 4.4.2, right panel). The 
model for grade 5 did not reveal a significant relation between matrix reasoning score and 
performance on part 2 of the pretest (𝑏 = 0.26, 95% CI [−0.15,0.68], 𝑡(21) = 1.31, 𝑝 = .204). 
However, matrix reasoning was a significant predictor of 7th graders performance on the 
problem-solving task at pretest: each additional correctly answered matrix question predicted a 
0.29 point increase in the part two score (𝑏 = 0.29, 95% CI [0.12,0.47], 𝑡(90) = 3.29, 𝑝 = .001) 
and matrix reasoning explained 10.73% of the variance in part 2 score (𝑅2 = .11, 𝐹(1,90) =
10.82, 𝑝 = .001). It is worth noting that despite not finding a significant effect in grade 5, the 
effect sizes are comparable between the two grades (Grade 5: 𝑟=0.27; Grade 7: 𝑟=0.33), with 
overlapping 95% confidence intervals (Grade 5: 95% CI [-0.15, 0.62]; Grade 7: 95% CI [0.13, 0.50]), 
perhaps suggesting that our sample is underpowered to detect an effect of matrix reasoning in 
grade 5. 

Lesson improved graph scores for both conditions 

To test the research question about whether participating in a graph lesson that emphasized 
relational reasoning would affect students’ understanding of concepts of y-intercept and slope, I 
fit a linear mixed effects model predicting score on part 1 score from fixed effects of timepoint, 
condition, and their interaction, and a random intercept for participant. The grade 5 model 

revealed a significant effect of timepoint (�̂� = 2.15, 95% CI [0.99,3.31], 𝑡(26) = 3.63, 𝑝 = .001), 
indicating that the scores generally improved from pretest to posttest, and this improvement did 

not depend on condition (�̂� = −1.15, 95% CI [−2.68,0.39], 𝑡(26) = −1.47, 𝑝 = .155). On 

Figure 4.4.2. Relation between matrix reasoning score and graph score by grade for both parts of the pretest. In the 
left panel, the outcome measure is score on part 1 of the pretest, which assessed students’ initial understanding of 
the concepts of y-intercept and slope. In the right panel, the outcome measure is part 2 of the pretest, which 
assessed students’ problem-solving using graphs as evidence in reasoning. The gray portion shows the 95% 
confidence interval around the linear model. 
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average, 5th graders improved 2.15 points out of 8 on the part 1 score from pretest to posttest 
after participating in either lesson (Figure 4.4.3). 

The grade 7 model also revealed that the scores for students across both conditions improved on 

average from pretest to posttest (�̂� = 2.28, 95% CI [1.76,2.81], 𝑡(145) = 8.52, 𝑝 < .001). 
However, for 7th grade, participants in the VF condition improved more than participants in the 

RR condition (�̂� = −0.85, 95% CI [−1.60, −0.09], 𝑡(145) = −2.19, 𝑝 = .030). On average, 7th 
graders in the in the VF condition improved their scores by 2.28 points out of 8, whereas 7th 
graders in the RR condition improved by an average of 1.44 points out of 8 (Figure 4.4.3).  

For the next research question about whether participating in the lesson that emphasized 
relational reasoning would improve students’ problem solving with graphs I again fitted a linear 
mixed effects model, now predicting part 2 score from the same fixed and random effects. The 
models for grades 5 and 7 both revealed that the scores for students across both conditions 

generally improved from pretest to posttest (Grade 5: �̂� = 2.25, 95% CI [0.44,4.06], 𝑡(26) =

2.43, 𝑝 = .022; Grade 7: �̂� = 1.94, 95% CI [1.09,2.78], 𝑡(132) = 4.50, 𝑝 < .001) and that this 

improvement did not depend on condition (Grade 5: �̂� = 1.13, 95% CI [−1.28,3.53], 𝑡(26) =

0.92, 𝑝 = .367; Grade 7: �̂� = −0.17, 95% CI [−1.40,1.06], 𝑡(132) = −0.27, 𝑝 = .791). 
Interpreting these results, 5th graders improved 2.25 points out of 18 on average and 7th graders 
improved 1.94 points on average (Figure 4.4.3). 

Figure 4.4.3. Change in graph score from pretest to posttest by lesson condition and grade. The left panel shows the 
results for part 1 of the pre/posttest, which assessed students’ understanding of the concepts of y-intercept and 
slope. The right panel shows the results from part 2 of the pre/posttest, which assessed students’ problem-solving 
using graphs as evidence in reasoning. Each light gray line represents a student, connecting their pretest score to 
their posttest score. The black squares represent the group means, and the error bars are bootstrapped 95% 
confidence intervals. The black line connects the group averages. 
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Matrix reasoning did not predict change in graph scores 

Finally, I fit linear models to test for the effects of matrix reasoning on graph score, as well as for 
an interaction effect between matrix score and condition. Models predicting the change in part 1 
score from matrix reasoning score, condition, and their interaction, revealed no effect of matrix 
reasoning for either grade (Grade 5: 𝑏 = −0.10, 95% CI [−0.39,0.19], 𝑡(19) = −0.72, 𝑝 = .478; 
Grade 7: 𝑏 = 0.12, 95% CI [−0.03,0.28], 𝑡(88) = 1.60, 𝑝 = .113), nor an interaction effect 
(Grade 5: 𝑏 = 0.34, 95% CI [−0.11,0.79], 𝑡(19) = 1.57, 𝑝 = .134; Grade 7: 𝑏 = −0.08, 95% CI 
[−0.30,0.13], 𝑡(88) = −0.77, 𝑝 = .444) (Figure 4.4.4, left panel). Similarly, models predicting 
change in part 2 score from the same predictors revealed the same result, no effect of matrix 
reasoning (Grade 5: 𝑏 = 0.02, 95% CI [−0.51,0.55], 𝑡(19) = 0.08, 𝑝 = .940; Grade 7: 𝑏 = 0.10, 
95% CI [−0.12,0.33], 𝑡(88) = 0.90, 𝑝 = .372) nor an interaction between condition and matrix 
reasoning (Grade 5: 𝑏 = 0.04, 95% CI [−0.77,0.85], 𝑡(19) = 0.11, 𝑝 = .914; Grade 7: 𝑏 =
−0.12, 95% CI [−0.45,0.20], 𝑡(88) = −0.74, 𝑝 = .460) (Figure 4.4.4, right panel). These results 
suggest that across conditions participants from both grades improved their understanding of 
y-intercept and slope and improved their problem solving with graphs regardless of their matrix 
reasoning score. 

4.5 Discussion 

The primary aims of the present chapter were to put forth the claim that relational reasoning is 
a foundational skill for graph comprehension, and to begin exploring this claim empirically. I 
proposed that relational reasoning—the domain-general cognitive capacity to map abstract 
relations between representations—allows individuals to map the visual features and patterns 
presented in graphs to their real-world referents and meaning. Specifically, I highlighted roles for 

Figure 4.4.4. Relation between matrix reasoning and change in graph score by grade and lesson condition. In the left 
panel, the outcome measure is the difference between the part 1 score on the posttest minus pretest. In the right 
panel, the outcome measure is the difference between part 2 score on the posttest minus pretest. Points and lines 
are colored by lesson condition. The gray portion shows the 95% confidence interval around the linear model. 
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relational reasoning and the related concept of relational complexity in three main aspects of 
graph comprehension: in cognitively processing graphs, in the levels of difficulty with graph 
prompts, and in the complexity of the represented data. Throughout this discussion, I emphasized 
how relational reasoning could support graph comprehension and, on the flipside, how relational 
complexity could serve as a processing bottleneck, potentially limiting understanding. Next, I 
proposed various ways that relational reasoning could be scaffolded during graph learning to 
enhance comprehension.  

In the second part of the chapter, I conducted a preliminary study to begin testing these 
recommendations empirically. This study also served as a proof-of-concept that graph lessons can 
be designed to scaffold relational reasoning. I used a pretest-posttest intervention design to 
investigate the benefits of emphasizing higher-order relational reasoning during a lesson on 
graphs. The study focused on graphs of linear functions, and I worked with 5th and 7th grade 
students because in these grades students start working more with graphs of continuous 
variables, making it an ideal time to examine line graph learning. There were two well-match 
lesson conditions that taught the concepts of y-intercept and slope: the visual features (VF) lesson 
focused on the visual features and patterns of these concepts and the higher-order relational 
reasoning (RR) lesson focused on mapping these concepts to their meaning in the context of the 
axis variables. The 5th grade math teacher shared that this lesson was likely her students’ first 
formal exposure to the concepts of y-intercept and slope. Slope first appears in the Common Core 
Math standards in 7th grade, and y-intercept first appears in 8th grade in a standard that also 
mentions slope for just the second time. (Common Core State Standards Initiative, 2010). Though 
these concepts were likely review or elaboration for many of the 7th graders—the study was at 
the end of the school year and half of the 7th graders were taking the equivalent of 8th grade 
math—we did not observe evidence of ceiling effects at pretest and the 7th grade pretest scores 
were not different than the 5th grader scores, suggesting that the 7th graders were still gaining 
expertise with graphs. Further, one of the 7th grade teachers shared that her students had likely 
never seen a graph with three lines on it in the classroom (e.g., the pre/postteset graphs), and 
possibly not a graph with two lines either. Thus, parts of the lesson were novel for 5th graders and 
7th graders alike. This preliminary study yielded three main findings.  

First, I found that matrix reasoning, a common measure of relational reasoning, was related to 
initial graph comprehension, though the pattern of results was different between grades 5 and 7. 
Matrix reasoning score predicted the quality of student’s explanations of the concepts y-intercept 
and slope at pretest for 5th graders but not 7th graders. On the other hand, this score predicted 
problem-solving with graphs at pretest for 7th graders but not 5th graders. These results support 
a link between relational reasoning and graph comprehension. To our knowledge, this is the first 
study test this relation. This pattern of results also suggests that there may be some 
developmental or content knowledge differences in the role that relational reasoning plays. 
Perhaps relational reasoning is a stronger predictor of graph concept knowledge when students 
are early on in their learning, which could explain why we found matrix reasoning was a predictor 
of concept understanding for 5th graders but not 7th graders. This pattern of results would be 
consistent with the idea that relational reasoning supports the initial learning phase, predicting 
mastery of new mathematical skills. Then, once students are more familiar with a concept, 
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relational reasoning comes online for problem solving and transferring concepts to new contexts, 
which could explain why we found matrix reasoning was a predictor of graph problem-solving for 
7th graders but not 5th graders. However, it is possible that our 5th grade sample (which was 
roughly 1/5 of the size of our 7th grade sample) was underpowered to detect a relationship 
between matrix reasoning and graph problem solving given that the effect sizes were comparable 
between the two grades. That said, the 5th-grade sample was sufficiently large to detect a 
significant relationship between matrix reasoning and understanding of basic concepts, an effect 
size that was almost twice as large.  

The second finding was that students from both grades across both conditions showed improved 
understanding of graph concepts as well as improved problem-solving from pretest to posttest. 
This result is particularly noteworthy considering the brevity of the lesson (about 40 minutes of 
class time total) and that many of the graphs were more complex than what students had been 
exposed to previously. Specifically, all the graphs in the practice block showed an interaction 
effect with two lines, meaning a third variable was necessary for reasoning about the relation 
between x and y. Though this type of graph was used facilitate comparison and engage higher-
order relational reasoning, a secondary effect of using these graphs was that late elementary and 
middle school students were effectively practicing interpreting interactions, a skill that is not even 
included in the high school standards! Interestingly, 7th graders in the VF condition improved their 
explanations of the concepts of y-intercept and slope more than their counterparts in the RR 
condition. This finding runs counter to the initial prediction. However, it is possible that both 
lesson conditions could benefit students, albeit in different ways; this possibility provides a 
direction for future research.  

Despite the emphasis of the VF lesson on the visual features and patterns in the graphs, there 
were three aspects of the lesson design that may have made it equally, or more, beneficial than 
the RR lesson. First, because identifying and encoding visual patterns is the first step of graph 
processing, directing students’ attention to the relevant visual information on the graph could 
generally scaffold their understanding. On the other hand, focusing on mapping higher-order 
relations may be relatively useless if the student has not first identified the visual pattern to 
interpret. Second, the questions in the VF lesson included the new terminology more often than 
those in the RR lesson, which emphasized to a greater extent the context of the graph. For 
example, one question in the VF lesson asked, “which student has the greater y-intercept?” 
whereas the version of that question in the RR lesson requested that value in the context of the 
axis labels: “If Isaiah and Rosa decided not to study for the test at all, which student would score 
higher on the test?” Therefore, students in the VF condition may have gained more experience 
with the terminology, whereas students in the RR lesson may have gained more experience with 
the concepts in context, but may not have attached the term to the concept. Third, to match the 
content of the two lessons as closely as possible, both presented students with graphs displaying 
two lines, a graph type that is not typically introduced in these grades. These graphs were 
intentionally included in the lesson to elicit higher-order relational reasoning in the RR condition 
by encouraging comparison. For example, looking at two lines on a graph, students in the RR 
condition were asked to make a range-based comparison in the context of the axis labels, such as 
“Which plant would be taller if they were both watered less than 15mL a day?” In the VF 
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condition, the corresponding question encouraged point-based reasoning by asking students to 
compare two points on the graph, such as “Which plant has the higher y-value when x = 10?” 
Though the types of comparisons that students were asked to make differed by condition, making 
any comparisons at all on a graph would theoretically tax higher-order relational reasoning. 
Further, just because students in the VF condition were only asked to compare points does not 
mean that they did not also compare the structure of the lines and notice other similarities and 
differences.  

Together, these three aspects of the lesson design suggest that the VF lesson may have engaged 
more higher-order relational reasoning than had initially been intended. Additionally, the RR 
lesson questions could have been too difficult for more novice learners, since additional lines and 
range-based reasoning increases the relational complexity. This question type could be a useful 
scaffold for some learners but overload others. Future work should investigate this potential 
tradeoff and whether and for whom showing two lines supports learning. Relatedly, a future study 
could also compare learning materials with two lines on one graph, versus comparing graphs side-
by-side, versus no comparison. As described in more detail below, future studies should also 
include a contrast lesson that is more differentiated from the relational reasoning lesson and is 
more similar to typical classroom instruction, in order to better understand which features of 
these lessons are benefiting students.  

The third result is that matrix reasoning did not predict the magnitude of change from pretest to 
posttest in students’ understanding or problem-solving for either condition. In other words, 
students with higher and lower relational reasoning scores benefited equally from the lessons. 
However, this study may have been underpowered to detect individual differences in students’ 
improvements, particularly because there could be an interaction between reasoning 
performance and lesson type. If such a finding were obtained in a larger sample, it would have 
important applications to pedagogy by shedding light on how to match a learner’s prior 
knowledge and skill set with a lesson that would benefit them the most. This question is 
particularly interesting because the direction of this interaction is not straightforward. For 
example, students with less graph proficiency or lower relational reasoning may benefit more 
from a lesson that focuses on visual features to help them attend to relevant visual relations, 
whereas more proficient graph users or students with higher relational reasoning may benefit 
more from a lesson that engages higher-order relational reasoning to deepen their 
understanding. Alternatively, students with lower relational reasoning may in fact benefit more 
from a relational reasoning-focused lesson to help them scaffold these skills that would be more 
difficult for them to engage without external support.   

Limitations and future directions 

The empirical preliminary study had three main limitations. First, the data were collected 
remotely in spring 2021, which was still during the Covid-19 pandemic. Though the 5th and 7th 
grade participants were in person at school with their teacher, their school year had been 
disrupted, and they were likely to have been behind in math, including graph knowledge. Thus, 
the study should be replicated to make sure the results hold under more typical learning 
conditions. Further, the pandemic made it difficult to recruit teachers to participate, and teachers 
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were less willing to give as much class time to the study because instructional time was often 
limited and unpredictably disrupted. This led to the large differences in sample size between 5th, 
6th, and 7th grade, and may have resulted in our sample being underpowered to detect certain 
effects. It also led to the need for the study to be compressed into two days instead of the 
originally planned three days, thereby shortening the lessons and pre/posttest, and resulted in 
many 7th grade students not having enough time to finish the matrix reasoning task, which was 
the last task on the second day.  

A second limitation was in the sensitivity of our measures of graph competency. For a preliminary 
study, it was beneficial to use open-ended questions to get a richer qualitative view into how 
students were answering questions and reasoning with graphs. Due to the timing constraints 
described above and the amount of time it takes students to answer open-ended questions, the 
pretest and posttest could not include many questions. Further, although we invested significant 
effort into developing and validating a rubric for coding the responses, in some cases it was still 
difficult to gauge students' comprehension, especially when their justifications were brief. Future 
studies could address these limitations by using rich multiple-choice questions constructed from 
the open-ended responses from this preliminary study. This would make it possible to include a 
larger number of pre- and post-test questions, and to identify both correct answers as well as 
patterns of misconceptions observed in the preliminary study, in a way that is easier to score and 
analyze. Measures could also be adapted from assessments of graph comprehension published 
after this preliminary study was run (e.g., Ciccione et al., 2023; Lloyd et al., 2023) or from 
assessment tools created for adults to make them more appropriate for children (e.g., Maltese et 
al., 2015). With additional class time, future studies would also be able to include a more 
comprehensive  general measures of students’ graph comprehension fluency, such as the Test of 
Graphing in Science (TOGS; McKenzie & Padilla, 1986), and could even examine change in scores 
as a result of the lesson.  

A third limitation was that the study did not have an active or passive control lesson that did not 
involve graph comprehension. Both lessons had features that could be expected to help students 
improve, and indeed this is what we found. However, we cannot be sure that these improvements 
were not due to practice effects. Therefore, future studies should include an additional control 
group. Further, though the well-matched lesson design was beneficial for a preliminary study, 
future work should better differentiate the two experimental lesson conditions. For example, only 
the higher-order relational reasoning lesson should have graphs with two lines on them. Further, 
this lesson could more explicitly teach the deep relational structure of graphs, including 
highlighting the reasons one would choose to construct a graph in the first place.  

Given that this was a preliminary study, there are many directions for future work. First, future 
research should extend beyond graphs of linear functions to investigate the effect of scaffolding 
relational reasoning during learning to interpret graphs of real-world data, which have additional 
complexities like variability and error that require more inferences to interpret. Future work 
should also focus on the role of relational reasoning in graph creation, not just interpreting graphs 
that have been created by someone else. Graph creation could be integrated as part of a full 
series of graph lessons that are designed to scaffold relational reasoning at each stage of learning 



107 

and practice. Though the present work focuses on graphs, this relational reasoning perspective 
can be extended to all types of data visualizations and diagrams, all of which represent non-spatial 
relations with spatial relations. Thus, a relational reasoning perspective has broad applications, 
and more research is needed to fully understand its benefits for effectively learning how to use 
and interpret these external representations.  

Conclusion 

Be it in the context of a K-12 math or science class, a graduate statistics course, or the homepage 
of the New York Times, graphs are a useful tool for discovering and communicating relations in 
data. However, their deep relational structure—both in terms of what and how information is 
represented—is not always apparent. The present work makes a strong theoretical case for the 
role of relational reasoning in graph comprehension and provides a productive framework for 
adding to our understanding of what makes this set of skills difficult as well as for designing new 
pedagogical approaches to address these obstacles. The preliminary empirical findings reported 
here support this view, and there are many future research directions. Given the importance of 
graph comprehension and the promise of this relational reasoning approach, I advocate for more 
psychology research on graph learning in children. This line of work has broad implications and 
the potential to help both children and adults make more sense of the sea of data around them.  
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General Discussion 

Summary and theoretical implications 

The present dissertation investigated the dynamics of relational reasoning as both a cognitive tool 
and bottleneck, and explored how offloading relations to external representations can help 
overcome cognitive limitations. In Chapter 1, I reviewed evidence that the protracted, immersive 
experience of formal schooling taxes, and therefore improves, general reasoning skills, such as 
relational reasoning. This review showed that in addition to reasoning supporting academic 
achievement and reasoning skills changing across developing, the experience of education itself 
affects reasoning and its development.  

In Chapter 2, I showed that relational reasoning is a separable cognitive process from other 
domain-general processes that are related to and often co-occur with it, such as working memory. 
I found that although the executive functions of working memory and inhibitory control are 
robust predictors of fraction understanding, relational reasoning explained additional variance 
over and above these predictors. By connecting the executive function, relational reasoning, and 
math cognition literatures, this chapter established that relational reasoning should be 
considered a distinct core cognitive ability that uniquely contributes to academic achievement 
and laid the groundwork for the research presented in Chapter 4 on how this ability should be 
engaged to scaffold learning.   

In Chapter 3, I demonstrated that offloading relations to external representations is part of a 
foundational cognitive toolkit and is separate from the regular use of visuospatial tools. I found 
that individuals spontaneously offloaded to-be-remembered relations to physical space on the 
table in front of them, including individuals who reported no formal schooling and were not 
literate. These results suggest that relational offloading is available as a cognitive resource for 
reducing relational demand even without the influences of formal schooling and using other 
formal visuospatial tools, such as writing. Dedre Gentner (2014) once said, “Space is the universal 
donor of relational thinking”, and though this sentiment is generally agreed upon, it has rarely 
been directly tested because relational reasoning and spatial cognition are often siloed areas of 
research. The results from this study provide direct evidence in support of Gentner’s claim. More 
broadly, this chapter establishes the importance of relational offloading for thinking, 
remembering, and reasoning and reveals the cognitive basis for the invention and use of 
visuospatial tools, laying the empirically groundwork for future studies examining when and how 
individuals offload relational demand to space. 

Finally, in Chapter 4, I showed how relational reasoning can be scaffolded during instruction to 
support learning, using the case of graph comprehension. First, I proposed a relational reasoning 
perspective on graph comprehension, identifying various ways that this cognitive skill may 
support graph interpretation and how many of the comprehension difficulties can be reframed 
as cognitive bottlenecks due to relational complexity. Then, I implemented this approach and 
designed instructional materials that scaffolded relational reasoning to help students improve 
their understanding of important graph concepts. This preliminary study shows that helping 
students engage their relational reasoning by focus on patterns—both visual and conceptual—
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and making comparisons can improve learning. It also served as a proof-of-concept that it is 
feasible to design lessons that directly scaffold relational reasoning, and points to many future 
directions for research and pedagogy.  

Pedagogical implications 

Based on the findings in this dissertation, I propose that applying the lens of relational reasoning 
can help improve STEM education in three significant ways. First, it can help identify what STEM 
content students may find particularly difficult, and therefore what topics may require more 
attention during instruction. Given that relational complexity is a rate-limiting factor, STEM 
content can be analyzed for areas that may be particularly complex, as was done in Chapter 4 for 
graph comprehension. For example, density, which is often considered one of the most difficult 
science concepts taught in middle school (e.g., C. L. Smith et al., 1997), is also relationally complex 
since it is the relation between mass and volume. Indeed, one common misconception is that 
students confuse density for weight, a unary variable, and do not consider density’s inherent 
relational nature (C. L. Smith et al., 1997). Statistics is another ripe area for this type of relational 
analysis since the bulk of statistics relies on proportions and focuses on inferences, and it is often 
perceived as being extremely difficult by students (Son et al., 2021).  

Second, the lens of relational reasoning can inform the design of pedagogical approaches for 
helping students overcome such learning obstacles, as was exemplified in Chapter 4. This lens can 
inform how to teach those particularly relationally demanding concepts and skills and scaffold 
relational reasoning, such as what external representations or visuospatial tools may be useful, 
how to break concepts down into more manageable smaller parts, what relational features and 
patterns to draw students’ attention to, and how comparison can be utilized to engage relational 
reasoning. These pedagogical approaches can help make relations that may be opaque to novices 
more explicit and overt during the learning process. The graph lessons in Chapter 4 provide 
concrete examples of this approach. Future work should apply this lens more broadly, such as to 
density and concepts in statistics. 

Finally, a relational reasoning approach can also inform the design of the tools themselves, such 
as better data visualizations or diagrams. Though there is already literature on cognitive science 
approaches to the design of these visuospatial tools (e.g., Franconeri et al., 2021; Hegarty, 2011), 
these studies and recommendations have yet to incorporate a relational reasoning perspective. 
Work that has begun to apply this approach, such as by structurally aligning components of a 
display to facilitate visual comparison (Matlen et al., 2020), has been successful in improving 
understanding, but more work is needed.  

The research in this dissertation along with these three areas that stand to benefit from applying 
the lens of relational reasoning have practical implications for teaching at all levels, from 
elementary to graduate education. Instructors should highlight that visuospatial tools, such as 
graphs and diagrams, are human-invented tools and should explain what they were invented for, 
how they achieve this purpose, and when and why they are used. This includes making their 
relational structures explicit, concrete, visible, and meaningful. Though this meta-knowledge may 
be obvious to individuals with a great deal of experience and expertise, it is often not obvious to 
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novices, nor is it typically communicated to them, and it could be foundational for their robust, 
flexible, and transferrable understanding of the tools themselves as well as the concepts they 
learn using the tools. Further, students need practice mapping relations and successfully 
completing the most complex steps. Students do not learn how to do these steps simply by seeing 
an external representation or seeing someone else reason with it, they must practice themselves, 
including creating diagrams and graphs. 

Conclusion 

This dissertation work draws on and contributes to many literatures due its interdisciplinary 
nature. Specifically, I bridge the psychology literatures of relational reasoning, graph 
comprehension, visual reasoning, scientific reasoning, cognitive offloading, spatial cognition, 
math cognition, and executive functions. In addition, I have drawn inspiration from education 
research in the subfields of math, science, data science, and statistics education, as well as the 
visualization literature from computer science. Taken together, this work simultaneously 
contributes to our understanding of the role of relational reasoning in higher-order cognition, 
relational offloading to external representations, and to applications of relational reasoning for 
improving STEM education. In particular, my research provides a generative framework for 
identifying the STEM content that students may find especially difficult, as well as for informing 
the design of pedagogical approaches for helping students overcome these obstacles. 
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Appendices 

Appendix A: Supplemental Materials for Chapter 2 

Additional materials for Section 2.2 can be found online: 

Leib, E. R., Starr, A., Younger, J. W., Project iLead Consortium, Bunge, S. A., Uncapher, M. R., & 
Rosenberg-Lee, M. (2023). Testing the whole number interference hypothesis: 
Contributions of inhibitory control and whole number knowledge to fraction 
understanding. Developmental Psychology, 59(8), 1407–1425. 
https://doi.org/10.1037/dev0001557 

Supplementary materials: https://doi.org/10.1037/dev0001557.supp 

Data cleaning and analysis scripts are available on Open Science Framework: 
https://osf.io/z7hxa/ 
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Appendix B: Supplemental Materials for Chapter 3 

Additional details about memory task 
Stimuli. The stimuli consisted of four sets of eight AI-generated adapted faces from Generated.Photos, 
one set for each of the four trials. Faces were chosen such that it was plausible that the individuals could 
have lived in a nearby Bolivian town. Each set of eight faces had two male children, two female children, 
two female adults, and two male adults. We selected older- and younger-looking faces within each 
age+gender subgroup (e.g., older and middle-aged adult woman and older and middle-aged adult man, 
etc.) to make sure that  the two faces within each subgroup did not look too much alike.  

Using Adobe Photoshop, the backgrounds of the images were removed to make them more uniform. 
Additionally, the shirt colors were changed to match one other individual in the set, such that there were 
only four shirt colors in each set. In addition to making the images simpler, changing the shirt color also 
added a nonrelevant visual feature that participants could have grouped by that was not inherent to the 
individuals’ faces like age and gender are. Therefore, in addition to sequential order and grouping by 
preference, participants could have also organized cards in age order or grouped by age, gender, or some 
combination, or grouped by shirt color, though no participants organized the cards in these alternative 
ways. Faces were pseudo-randomly assigned to one of the four shirt colors with the constraint that exactly 
two individuals had each color and those two individuals could not be from the same age+gender 
subgroup (i.e., both adult men could not have the same color shirt). Shirt colors were different in each set.  

The faces were scaled to 2.5 x 2.5 inches, printed on card stock, and laminated. The order of the faces in 
each trial was randomized before the experiment, and all participants saw the same card order, regardless 
of condition. Fig. 1A shows the face stimuli for the first trial and Fig. S1 shows all trials. 

Condition-Specific Details. 
Order Condition. At the beginning of the task, the experimenter explained (in Spanish, subsequently 
translated into Tsimane'), “We are going to play a memory game with these face cards. These people are 
going to the market today. I’m going to give you each person, one by one, and tell you the order in which 
they arrive at the market. I want you to remember this order, because afterwards I’m going to ask you 
about this order. To help you remember the order, you can put the cards on the table if you want.” After 
the translator restated the instructions in Tsimane', the experimenter started handing the participant cards 
one by one, saying the order. For example, on the first trial the experimenter said, "This boy arrived first. 
Next, this man arrived. Next, this girl arrived. After this woman arrived…" and so on (see Fig. 1A and S1 for 
order). 

For the memory questions we wanted to ensure that it was not possible to answer the questions without 
considering the full set of cards, so we asked conjunctive questions about order and either age group or 
gender. On the first trial, participants were asked to point to the first child to arrive (Fig. 1A and S1, card 
1) and the last adult to arrive (Fig. 1A and S1, card 7). See Table S3 for counterbalancing across trials and 
the full list of questions and correct answers. 

Preference Condition. At the beginning of the Preference condition, the experimenter explained (in 
Spanish, subsequently translated into Tsimane'), “We are going to play a memory game with these face 
cards. I’m going to give you each person, one by one, and tell you about their preferences. I want you to 
remember these preferences, because afterwards I’m going to ask you about them. To help you remember 
the preferences, you can put the cards on the table if you want to.” Then the experimenter said what the 
two preferences were and started handing the participant cards one by one, saying each card’s preference. 

https://generated.photos/faces
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For example, on the first trial the experimenter said, "To begin, I'm going to tell you about these people's 
preferences between eating plantain and eating coconut. This boy prefers plantain. This man prefers 
coconut. This girl prefers coconut. This woman prefers plantain…" and so on (see Fig. 1A and S1 for 
preferences). Each trial gave preferences between two options, which were developed in collaboration 
with the translators to be gender-neutral and age-neutral, such that participants could not use gender or 
age as deterministic cues. See Fig. S1 for all the preferences. Note that the instructions only said to 
remember the preferences, never using the term "groups."  

For the memory questions, we asked conjunctive questions about preference and either age group or 
gender. For example, on the first trial participants were asked to point to all the adults who preferred 
plantains (Fig. 1A and S1, cards 4 and 5) and then all the children who preferred coconut (Fig. 1A and S1, 
cards 3 and 8). See Table S3 for counterbalancing across trials and the full list of questions and correct 
answers. 

Preference group assignment was pseudo randomized, with two males and two females in each group. In 
terms of the sequence in which cards were handed out, all four cards in a preference group were never 
presented in a row, and three cards of the same preference were not presented in a row across two 
consecutive trials.  

Control Condition. At the beginning of the no-task Control condition, the experimenter explained (in 
Spanish, subsequently translated into Tsimane'), “We are going to do something very simple with these 
face cards. I am going to give you the cards and you are going to put them on the table in any way that you 
want.” Then the experimenter started handing the participant cards one by one, without saying anything. 
Note that participants were handed the cards in the same order as in the other two conditions but were 
not prompted to remember anything about the cards.  

For the questions, the participant was simply asked to point to a card of one demographic dimension (age 
group or gender). For example, on the first trial the participant was asked to point to an adult and then to 
a child. The demographic dimension was the same as what was asked about in the Order and Preference 
condition questions for each trial (Table S3). 

This condition included only two trials instead of four. Participants with odd participant IDs received trials 
1 and 3, and participants with even IDs received trials 2 and 44.  

Coding Organization of the Layouts. After shape was coded, the organization of each card layout was 
coded by the first author as either “sequentially ordered,” “grouped,” or “neither.” For a layout to be coded 
as sequentially ordered, it needed to preserve the sequence that the cards were handed out in, regardless 
of condition. For example, if the layout was a 2x4 grid and the first four cards were placed in order from 
right to left, then the second row needed to have the next four cards in order, too, either again from right 
to left (e.g., Fig. S2E), or alternatively from left to right (e.g., Fig. S2F). In the second case, the sequential 
order “snakes through” the shape, meaning that one could place their finger on the first card and move 
along the cards in order through the 8th card without needing to lift their finger. In either case, the path 
through the cards preserved the sequential order (Cooperrider et al., 2017). See Fig. S2 for examples of 
various layouts that were coded as sequentially ordered. 

 
4 Some early Control participants were given all four trials or only trials 1 and 2 or 3 and 4. However, only the first 
two trials that they completed were included in analysis. 
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A layout was coded as grouped if a straight line could be drawn (horizontal, vertical, or diagonal) that 
perfectly separated the cards belonging to each preference5. This was coded independent of whether 
there was a visible gap between the two groups in the shape. For the Preference condition trials, we also 
coded for “attempted grouping,” which was when it was clear from the card placement and the 
participant’s responses to the memory test questions that they had been attempting to use a spatial 
grouping strategy, but made a small execution error (i.e., misplaced one card, or swapped two cards with 
each other), resulting in the final layout not being correctly grouped. Even with this additional code, the 
organization coding was conservative and likely underestimates the prevalence of the spatial grouping 
strategy because of the strict requirement for the grouping to be correct in order to be coded as grouped 
or one card away from correct to be coded as attempted. 

A few participants placed cards face down on the table, so the backs of the cards were visible in the trial 
images (3 participants on the first trial, 4 total, accounting for 5 trials across the whole task). Organization 
was able to be coded for these trials because the numbering system the experimenter used to order the 
cards between trials was written on the back (though it was not a system recognizable to participants). For 
six participants (accounting for 13 total trials) who made piles of cards (either 1, 2, or 3 piles) it was not 
possible to code organization from the images alone. For two of these participants (accounting for 8 trials), 
we were able to code the organization from video. However, the other four participants, all in the Control 
condition, did not have videos (3 made piles on their first trial, and 1 on their second trial). These 
participants were removed from all analyses of organization, since we were not able to code the 
organization of the card layouts. 

Accuracy Scoring. For the response to a memory test question to be scored as correct, the given response 
had to satisfy both parts of the question. For example, in the first trial of the Order condition, the second 
question was “Who was the last adult to arrive?” so the correct answer (Fig. 1A, card 7) had to satisfy both 
“adult” and “last”. In the Preference condition, the first question on the first trial was “Who are all the 
adults who prefer plantain?” and the correct answer (Fig. 1A, cards 4 and 5) had to satisfy both “adult” 
and “prefer plantain.” See Table S3 for the memory test questions and correct answers. The accuracy score 
for each trial was the sum score of the two memory questions, and therefore could be either 0 (both 
wrong), 1 (one correct), or 2 (both correct). 

Note that for each Preference condition question, both cards needed to be given for the responses to be 
scored as correct, and only those two cards. Sometimes, participants responded with all four cards of the 
asked-for preference. In the case studies, we refer to these kinds of responses as “partially correct,” but 
we were conservative in scoring accuracy and still scored these partially correct responses as incorrect (0) 
because they did not satisfy both parts of the question. Therefore, our accuracy measure likely 
underestimates memory performance for preferences. 

Responses to the Control condition questions were not scored for accuracy since they were not memory 
questions.  

 
5 There was one exception to this rule. On one trial a participant was grouping by preference but was placing the 
cards on the edge of the table and they started falling on the ground. The translator prompted the participant to 
move the cards onto the table more. The participant continued grouping but with the rest of the cards for that group 
in a different location on the table. In the resulting card layout, a straight line cannot be drawn to separate the 
groups, but the video evidence is clear that the participant was correctly using a spatial grouping strategy during the 
whole trial and correctly grouped by preference, so the organization for this trial was coded as grouped. 
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Missing Data, Data Cleaning, and Handling Experimenter Errors. For two participants—one child and one 
adult, both in the Order condition—there was no photo of their card layouts on the fourth trial. The child 
participant’s session was video recorded, so we used a screenshot of the video to code the organization 
and shape for that trial. However, the adult participant did not have a recorded session. Therefore, the 
organization and shape could not be coded. This missing photo did not affect any of the analyses that 
included only the first trial, but for the analyses that included all trials, this participant was removed from 
analysis. One adult woman in the Order condition was distracted (nursing her baby) during the second 
trial of the task, so the experimenter decided to terminate the task after the second trial. Data for her first 
trial was included in analyses, but data from the second trial was removed, and she has no data for trials 
three and four. Therefore, there were two adult participants in the Order condition who were included in 
analyses of T1, but excluded for analyses of all trials, resulting in a sample size of 12 children and 15 adults 
(27 total) for these analyses. 

Two adults in the Control condition were not asked the questions following one or both of their trials. 
However, responses to the Control condition questions were not analyzed so these missing data had no 
impact on analysis. Finally, as described above, three Control condition participants were removed from 
analyses of organization on T1 (2 children and 1 adult) because the organization of the layouts could not 
be coded from the trial images, resulting in a Control condition sample size of 19 children and 28 adults 
(47 total) for these analyses. 

There were a few trials on which the experimenter made an error in ordering the face stimuli while setting 
up the task, and therefore handed the cards to the participant in the incorrect order (3 participants, 
accounting for 5 trials total, all Order condition participants). Specifically, the cards were distributed in the 
order 12745638, with cards 3 and 7 switched. If a participant placed the cards down in that order, then 
the organization was coded as sequential since it was the sequence given to the participant. There was 
also one trial in the Preference condition during which the experimenter accidentally switched the 
preferences of the first two cards, though the participant did not group by preference. 

Additional details about demographic intake survey 
Age. Participants were asked their age and birthdate. When both pieces of information were given, age at 
the time of testing was calculated from the birthdate and used in analyses. If a participant reported their 
age but did not know their date or year of birth (22 participants), their reported age was used in analyses. 
Three of these participants said they did not know their age or birthdate; for these participants, the 
research coordinator estimated their age. 

Schooling. Participants were asked to report the number of years of schooling they had completed. There 
were two participants who said they did not know (one in the Preference condition and one in the Order 
condition), so we recorded NA for their years of school. These participants were removed from the 
supplemental analyses involving schooling as a predictor. Note that there is a great deal of variability 
within this self-reported measure because what constitutes a “completed year of school” may vary widely 
across participants. For example, some participants may have attended school only once per week for 2 
hours and reported that as one year of school. Further, what schooling entails differs depending on the 
individual’s age and what community they are from. This measure also relies on the individual knowing 
how to count, which is not the case for all our participants. However, there are no written records of 
attendance, so self-report is our best approximation of years of schooling. 

Data Analysis 
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Fisher’s Exact Test was used for all cases testing the association between two categorical variables, 
including follow-up pairwise comparisons between conditions. Unlike 𝜒2 Test and other traditional 
hypothesis tests, Fisher’s Exact Test does not calculate a test statistic or use a sampling distribution. Rather, 
Fisher’s Exact Test calculates all possible contingency tables that have the same marginal distribution as 
the observed table, and then calculates an exact p-value by taking the proportion of possible tables that 
are as extreme or more extreme than the observed table. Therefore, the only output from the test is a p-
value. When Fisher’s Exact Test is run on a 2 x 2 contingency table, an effect size—an odds ratio (OR)—and 
its 95% confidence interval can also be calculated from the contingency table. The OR gives the odds of an 
outcome occurring in one condition (e.g., sequentially ordering in the Order condition) relative to the odds 
of that outcome occurring in another condition (e.g., sequentially ordering in the Control condition). When 
the odds are similar, the OR will be close to 1, but when the odds are different, the OR will be much larger 
than 1 or much smaller than 1, though cannot be smaller than 0. Note that when one of the cells of 
observed data contains a 0, the OR will either be 0 if that cell is in the numerator of the ratio or infinity if 
it is in the denominator. 

All analyses were run in R version 4.2.1 (R Core Team, 2022). We ran Fisher’s Exact Test using fisher.test 
from stats 4.2.1 (R Core Team, 2022) and report the p-value. When Fisher’s Exact Test was used on a 2x2 
contingency table, we also report the OR and report the 95% confidence interval in the supplement. When 
the contingency table was too large for this exact calculation, the p-value was calculating by Monte Carlo 
simulation using 10000 replicates, which we specified as arguments in the fisher.test function. In follow-
up pairwise comparisons, we used Bonferroni correction to correct for multiple comparisons, multiplying 
the p-value by 3 since we did three pair-wise tests (Order vs Control, Order vs Preference, and Preference 
vs Control). For cases in which a 𝜒2 Test of Independence was appropriate (i.e., when all cells had expected 
values greater than 5), we also report the results of the 𝜒2 test in the Supplementary Text. All 𝜒2 tests 
showed the same pattern of results as the Fisher’s Exact Tests. 

T-tests were run using the t.test function from stats 4.2.1 (R Core Team, 2022). Logistic mixed effects 
models were run using the glmer function from lme4 1.1.33 (Bates et al., 2023) and lmerTest 3.1.3 
(Kuznetsova et al., 2020). Logistic regressions were run using the glm function from stats 4.2.1 (R Core 
Team, 2022). Tidyverse 2.0.0 (Wickham, 2023) packages were used to wrangle and clean the data. ggplot2 
3.4.2 (Wickham, 2016), cowplot 1.1.1 (Wilke, 2020), and ggh4x 0.2.6 (Brand, 2023) were used to visualize 
the data. DescTools 0.99.50 (Signorell, 2023) was used to calculate the multinomial confidence intervals 
for Fig. 3A. gt 0.10.0 (Iannone et al., 2023) and gtsummary 1.7.2 (Sjoberg et al., 2023) were used to make 
the supplementary tables. papaja 0.1.2 (Aust & Barth, 2022) and english 1.2.6 (J. Fox et al., 2021) were 
used to format and output the results from R. Data and analysis files are available on Open Science 
Framework at https://osf.io/75vrj/. 

Additional details about results 
Participants spatially organized cards to represent relevant information on the first trial. 
Post hoc tests reveal pairwise differences in organization between conditions. For both children and 
adults, we observed a significant effect of condition on organization (Fisher’s Exact Test: ps < .001). This 
significant result warranted post hoc follow-up tests to examine how the distribution of organizations 
differed between conditions. First, we tested whether participants sequentially ordered more in the Order 
condition than in each of the other two conditions (two pairwise comparisons per age group). Second, we 
tested whether participants grouped by preference more in the Preference condition than by chance in 
the Control condition: that is, whether they placed cards 1-4-5-6 together and 2-3-7-8 together without 
any preference information (one pairwise comparison per age group). In these analyses, we collapsed 
organization into a binary variable--either sequential and not-sequential or grouped and not-grouped--

https://osf.io/75vrj/
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depending on the question. This made the analyses 2 (conditions) x 2 (organizations), and allowed the 
odds ratios (i.e., the effect size) to be calculated and reported. Given that we used three pairwise 
comparisons, we used the Bonferroni method to correct for multiple comparisons, multiplying the 
outputted p-value from the analysis by 3, the number of comparisons. These corrected p-values are 
reported in this section (BC-p). 

In the Order condition, 11/12 children and 13/17 adults represented the sequential order in their layouts, 
significantly more than children and adults in the Control condition (children: 5/19; adults: 9/28; Table S4) 
and in the Preference condition (children: 4/13; adults: 4/15; Table S4). 

In the Preference condition, 9/15 adults spatially grouped the cards by preference—significantly more 
than in the Control condition, in which none of the 28 adults organized cards in this way (OR = ∞, 95% CI 
[6.48, ∞], BC-p < .001). Only 2/13 children grouped in the Preference condition, and none of the 19 
children grouped in the Control condition. Although these proportions are low and are not statistically 
different (OR = ∞, 95% CI [0.28, ∞], BC-p = .472), based on various sources of evidence we believe that 
the two Preference condition children who grouped did so intentionally and therefore were behaving 
differently than the children in the Control condition. First, the shape that one child used to represent the 
grouped organization was two spatially separated clusters of cards. We interpret adding space between 
the preference groups as demonstrating intentional grouping. The other child used a line shape, so 
grouping was not apparent from visual inspection alone, but was evident in the way he used his card layout 
to answer the memory questions. He responded to the test question “all the adults who prefer plantains” 
by pointing to the four cards on the left, which corresponded to all four individuals who preferred 
plantains, and answered “all the children that prefer coconut” with the four cards on the right, which 
corresponded to all four individuals who preferred coconut. Therefore, even though he did not answer the 
questions fully correctly, he correctly identified which faces had each preference. This partially correct and 
spatialized response behavior suggests that he had intentionally represented the preference groups. 
Finally, it is statistically unlikely that cards randomly placed would result in the correctly grouped 
organization. For example, in the Control condition, in which participants had no knowledge of 
preferences, cards with the same preferences were grouped together in only 2 out of the 95 layouts6 
(2.11%) over the two trials. Together, it seems most likely that these two children were behaving differently 
than children in the Control condition, even though we do not have the statistical power to detect this 
difference with the small sample size. Although a logistic regression showed that adults grouped more 
than children (b = 0.45, 95% CI [0.11, 0.78], t = 2.61, p = .015; Fig. 3A), we did not find an effect of age on 
grouping when age was treated as a continuous variable (see section on testing for effects of age, 
schooling, and literacy). 

Relating organization to memory accuracy. We examined whether participants who sequentially ordered 
in the Order condition or grouped in the Preference condition were more accurate on the memory 
questions than participants in those conditions who did not use these organizational strategies. We first 
analyzed only T1 because on this trial participants had not yet heard any questions, meaning that when 
they placed the cards they did not know what they would be asked for or the structure of the questions. 
Then, we analyzed all trials together to confirm that the pattern found for T1 held for all trials. For each 
condition, we used a logistic mixed effects model predicting accuracy (correct or incorrect) on each 
memory question (two per trial) from the question number, trial number, and organization, with a random 
effect for participant. Only participants with data for all trials were included in these analyses (see SI 

 
6 There were 50 total participants in the Control condition, yielding 100 layouts over the two trials. Of those 100 
layouts, 5 could not be coded for organization and we do not have video to verify the organization. See Methods. 
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Methods section on missing data handling). We chose to analyze the two conditions separately because 
of near-ceiling effects in the Order condition, in which most participants sequentially ordering the cards. 

On T1 of the Preference condition, participants who grouped by preference were more accurate on the 
test questions than those who did not group (ΔM = 1.03, 95% CI [0.47, 1.60], t(11.11) = 4.01, p = .002). 
Across all trials, this pattern held: the odds of answering a memory question correctly were 31.54 times 
greater when the card organization was grouped versus not grouped (b = 3.45, 95% CI [2.21, 4.69], z = 
5.47, p < .001; Table S5). We interpret these results as additional evidence that participants were using 
space strategically, since grouping predicted better accuracy. It is worth noting that because we were 
conservative in our accuracy scoring, we are likely underestimating the effect of organization. For example, 
if a participant responded with all cards of a given preference, the response was marked as incorrect. 
Therefore, the accuracy score underestimates participants who answered in this way. It also 
underestimates participants who attempted to group, but made an error, because when they answered 
based on their layout the response was incorrect. Thus, finding that organization predicts accuracy even 
using a strict definition of correct, suggests that the effect may be even stronger. Future studies should 
examine this relation with a larger sample size and more sensitive measures of accuracy. 

The Order condition analyses are more difficult to interpret because of the near-ceiling effect of 
participants sequentially ordering cards (24/29). While we ran the analyses for completeness, we use 
caution in interpreting the results. There was no difference in accuracy between participants who 
sequentially ordered and those who did not, neither on T1 (ΔM = 0.01, 95% CI [-0.53, 0.55], t(5.53) = 0.04, 
p = .971) nor across trials (b = -0.13, 95% CI [-1.18, 0.92], z = -0.24, p = .810; Table S6). The mixed effects 
model shows that participants were more accurate on questions about “first” than questions about “last” 
(Table S6). 

Testing for effects of age, schooling, and literacy on card organization. Given that many participants did 
have some schooling, it is central to the interpretation of the results to confirm that strategically organizing 
the cards on T1 (i.e., sequentially ordering in the Order condition and grouping in the Preference condition) 
was not simply due to experience in school or being literate. We used logistic regression to predict 
organization from schooling and literacy. We also controlled for age, adding it as a continuous predictor, 
and therefore collapsed across age groups for these analyses. We chose to analyze the two conditions 
separately because of the large proportion of participants in the Order condition who sequentially ordered 
the cards, and because there may be different effects of schooling and literacy on performance on each 
condition. 

In the Preference condition, neither years of schooling (b = 0.07, 95% CI [-0.29, 0.53], z = 0.35, p = .727) 
nor literacy (b = 0.21, 95% CI [-0.04, 0.49], z = 1.59, p = .112) predicted grouping the cards by preference. 
Further, although in Fig. 3A it may look like there is a difference in grouping between children and adults, 
we did not find an effect of age when using age as a continuous variable. The two children who grouped 
were two of the oldest children (ages 13 and 14); however, the other three children in this older age range 
(13-14) did not group. Future work should test for possible maturational or cohort effects with a larger 
sample. Given this potential difference between children and adults, we look more qualitatively at the 
relation between schooling, literacy, and organization in this condition. On average, the children in this 
condition had slightly more schooling than the adults (ΔM = 2.07, 95% CI [0.06, 4.07], t(22.70) = 2.13, p = 
.044), even though they were younger. Further, children were presently attending school, whereas adults 
were no longer attending school. Therefore, if schooling were a determining factor for strategically using 
space, we should have observed more children grouping than adults, but this is not what we found. 
Instead, among the participants who grouped on T1 we observed a range of schooling, including an adult 
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who reported 0 years of school, and three adults who reported just 3 years of school. For literacy, there 
was no difference between children and adults in this condition (ΔM = -1.12, 95% CI [-3.86, 1.62], t(25.97) 
= -0.84, p = .409). The set of participants who grouped on T1 (11 total) was made up of four individuals 
who were not literate and seven individuals who were.  

Due to the near-ceiling effect of sequentially ordering the cards in the Order condition (24/29), there was 
not enough variation in organization to test for the effects of age, schooling, and literacy. It is worth noting 
that all five participants who did not sequentially order were also not literate. However, literacy was not 
fully determinant because there were nine additional non-literate participants in this condition who did 
make sequential orders on T1. For example, there were four participants in this condition who reported 0 
schooling and were not literate (see Fig. S5 and Section 2.5). Of these four, two sequentially organized the 
cards on T1 and the other two did not. Dovetailing with the results of the Preference condition analysis, 
the set of participants who sequentially ordered on T1 was made up of a set of individuals with varied 
characteristics: some that were literate, others that were not, some that had more schooling, and some 
that had none. Together, these results suggest that although it is possible, even likely, that schooling and 
literacy have some influence on task performance, these variables do not fully determine whether 
participants spontaneously offloaded task-relevant information to space.  

Shape of card layouts varied within and between conditions. A Fisher’s Exact Test on a 3 (condition) x 9 
(number of shapes) contingency table confirmed that the distribution of shapes differed between 
conditions (p = .006). Some shapes were found in some conditions but not others. For example, square 
(Fig. 2C) was used by eight participants in the Control condition (16.0%), but not by any participants in the 
Order or Preference conditions (Fig. S3). Another example is two clusters (two sets that were separated 
by a gap in space; Fig. 2H, I): 4 of the 11 participants (36.4%) who grouped in the Preference condition 
placed cards in this shape, but no participants in the Order condition and only one in the control condition 
placed cards in this way. Note that shape was coded blind to condition and organization—coders were 
simply judging whether there was enough space between two sets or lines to visually look like two 
separate clusters. By contrast, lines and rectangles were used reliably across all three conditions.  

Specifically, lines were the most common shape created in each condition. We had not expected to find 
that lines would be used to organize by preference. It is interesting to note that although using this shape 
offloads part of the memory demand—cards with like-preferences are closer to each other than those 
with different preferences—participants still had to remember the group boundary because it was not 
visually apparent (i.e., there was no visible gap between the groups). 

Given the prevalence of this shape, we compared the proportion of participants on T1 who created lines 
versus all other shapes between conditions. For adults, the distribution of lines versus all other shapes 
differed between conditions (Fisher’s Exact Test on a 3 (conditions) x 2 (line vs not line) contingency table: 
p < .001). Post hoc Fisher’s Exact Tests on 2 (pairwise conditions) x 2 (line vs not line) contingency tables 
revealed that this effect was driven by the difference between the Order and Control conditions. The odds 
of an adult in the Order condition creating a line were 14.63 times higher than the odds of creating a line 
in the Control condition (95% CI [2.79, 108.35], BC-p < .001). The proportion of lines used in the Preference 
condition was between the Order and Control condition proportions and did not significantly differ from 
either (OR = 3.51, 95% CI [0.69, 20.43], BC-p = .467 and OR = 4.17, 95% CI [0.67, 32.07], BC-p = .296, 
respectively). Therefore, we cannot conclude whether participants used lines more in the general context 
of a memory demand or specifically in response to an ordering prompt. That said, the odds of a line being 
sequentially ordered were 14.00 times higher in the Order condition than in the Preference condition (95% 
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CI [0.85, 972.43], p = .036). Together, these results suggest that adults did not default to using lines, and 
specifically used sequentially ordered lines in the Order condition. 

In contrast with adults, children created lines equally often across all three conditions (Fisher’s Exact Test 
on a 3 (conditions) x 2 (line vs not line) contingency table: p = .599). About half of all shapes created in 
each condition were lines, suggesting that many children may default to creating lines regardless of the 
prompt. One possible explanation for this observation is that it may be due to their current ongoing 
exposure to schooling. However, as noted above, the creation of a line did not mean that it was 
sequentially ordered. This was the case in the Control condition, where only one third of lines were 
sequentially ordered, whereas all lines created in the Order condition were sequentially ordered (OR = ∞, 
95% CI [1.09, ∞], p = .029). We interpret these results across age groups as indicating that children and 
adults were sensitive to the memory prompt when creating lines, selectively using sequentially ordered 
lines in the Order condition. 

Variability in card direction among sequentially ordered layouts. In addition to coding the organization 
and shape, we also coded the directionality that the cards were placed in, relative to the participant. 
Directionality is most interesting when participants preserved the sequential ordered of the cards, 
regardless of the condition. For example, if a participant placed cards in a line, starting from her left side 
and moving towards her right, the direction was coded as “left-to-right” (e.g., Fig. S2A). Out of the 46 
participants across conditions who captured sequential order on T1, 23 created lines, and 20 of the lines 
were left-to-right (Fig. S3A), compared to three right-to-left lines (Fig. S2B). This bias towards left-to-right 
lines was surprising given prior work with the Tsimane’ that found no preference between right-to-left and 
left-to-right linear orderings (Pitt et al., 2021). Further, no participants made vertical lines (e.g., top-to-
bottom) for sequential order. 

Aside from lines, 19 other participants captured sequential order with two or more rows and columns (i.e., 
line + extra, rectangle, square, and snake shapes; Fig. S2C-J, L). Here, there was greater variability in card 
directionality. For example, two participants first placed a row of cards left-to-right, then below that, 
placed a second row left-to-right (e.g., Fig. S2D). Three participants placed the first row left-to-right, and 
then placed the second row above the first left-to-right (e.g., Fig. S2I). One participant placed cards right-
to-left, with the second row above the first (Fig. S2E), and still another participant placed a column of cards 
top-to-bottom, then to the left of it placed another top-to-bottom column (Fig. S2H). Other participants 
had their sequential order “snake through” the shape, such that one could place their finger on the first 
card and not pick it up until reaching the last card (Fig. S2C, F, G, and J). This variability demonstrates the 
spatial flexibility that participants had while working with the cards and further supports the conclusion 
that participants were innovating ad hoc strategies on this task. 

Use of spatial strategies increased after the first trial. In addition to testing for the spontaneous use of 
space on T1, we also examined strategy change across the four trials. In the Order condition, most 
participants sequentially ordered on T1, leaving little room for strategy change over the subsequent trials 
(Fig. S4). Across children and adults, only one participant in this condition, an adult, did not sequentially 
order on any trial. This means that all children in this condition sequentially ordered the cards on at least 
one trial. Although there was one child on each trial that did not sequentially order, it was not the same 
child each time. A mixed effects logistic regression predicting sequential organization (1: sequentially 
ordered, 0: not sequentially ordered) from a fixed effect of trial and random effect of participant confirmed 
that there was no change in sequential ordering over the trials for children (b = 0.00, 95% CI [-1.29, 1.29], 
z = 0.00, p > .999). For adults, the results revealed a small effect of trial on the odds of sequentially ordering 
(b = 16.87, 95% CI [0.62, 33.12], z = 2.04, p = .042). 
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In the Preference condition, in addition to correctly grouping, some participants attempted to group; that 
is, it was clear from their card placing behavior that they were intending to organize the cards by 
preference but ultimately made an error when placing one or two cards, resulting in the final layout being 
incorrectly grouped (e.g., Fig 5, top row, trial 3). Critically, all participants who had a layout that was coded 
“attempted group” had either already correctly grouped on a previous trial, or correctly grouped on the 
subsequent trial, further suggesting that this was intentional use of a spatial grouping strategy. Therefore, 
for this analysis we combined grouped and attempted group because the same spatial strategy was being 
used even when it was not executed perfectly. To test for strategy change, we used a mixed effects logistic 
regression predicting grouped organization (1: correctly grouped or attempted group; 0: not grouped) 
from a fixed effect of trial and random effect of participant. For children, this analysis confirmed that the 
odds of using a grouped organization increased after T1 (b = 1.71, 95% CI [0.19, 3.23], z = 2.21, p = .027; 
Fig. 4). For adults, the effect of trial did not reach significance (b = 0.83, 95% CI [-0.03, 1.68], z = 1.90, p = 
.058), however, this model explained significantly more variance than the null model (𝜒2(1) = 4.56, p = 
.033). This in part may be because more than half of the adults already grouped on T1, leaving less room 
for improvement than children had. In addition to the increased use of the grouping spatial strategy, 
accuracy on the memory questions also increased over trials (Table S5). The results from the Preference 
condition provide evidence of strategy change. 

Detailed descriptions of Preference condition case studies. MP was approximately 40 years of age. On 
the first trial, she grouped the cards by preference and answered both memory questions correctly. The 
shape created by the cards was coded as rectangle by both coders, indicating that they perceived the cards 
as one cluster (i.e., no spatial separation between the two groups). On the second trial, she again grouped 
the cards by preference and answered both memory questions correctly. However, on this trial, the shape 
the cards made was coded as two clusters by both coders, indicating they perceived two separate clusters 
of cards with a gap in space between them (Fig. 5, top row, trial 2). It is important to note, as described in 
the Methods, that the two coders were blind to condition and coded layouts in a random order; therefore, 
they were not influenced by expectations of what information the participant may have been trying to 
represent nor by that participant’s other trials. On the third trial, MP made an error while placing the cards 
by preference, so the final grouping was not correct, but it was clear that she was attempting to group 
based on the pattern of her card placing and the resulting two-cluster shape (Movie S2). On the fourth 
trial, she correctly grouped and again answered the questions correctly, again creating two clusters of 
cards to represent the preference types. Further, in this last trial, the groups are further apart than in the 
previous trials. We interpret this trajectory of performance, specifically the increase in spatial separation 
between groups, as suggesting that MP was improving or fine-tuning her strategy—even though she was 
already performing accurately—possibly to complete the task more efficiently by offloading even more of 
the memory demand. 

AS was 58 years of age. Unlike MP, AS did not spontaneously group cards by preference on the first trial. 
She started with a common layout (Fig. 5, middle row, trial 1: 87123456), which was neither sequentially 
ordered nor grouped. On the second trial, she sequentially ordered the cards. She did not answer any of 
the memory questions correctly on the first or second trial. On the third trial, she attempted to group by 
preference, but made an error when placing the cards, resulting in an organization that was not correctly 
grouped. For this trial, the prompt was to remember people’s preferences between traveling in a canoe 
versus callapo (another type of boat). After placing the first two cards in the center from left to right 
(canoe, then callapo), AS placed the third card (callapo) on the left, next to the canoe-preferring first card. 
However, after this third card, the rest of the cards were sorted correctly, with all remaining callapo-
preferring cards on the left and canoe-preferring cards to the right (Fig. 5, middle row, trial 3). For the 
memory questions, AS spatialized her responses, selecting the five cards on the right to answer “all the 
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children that preferred canoe” and the remaining three cards on the left to answer “all the adults that 
preferred callapo.” Even though these responses were incorrect (both because the cards were not 
correctly grouped and because she did not limit her responses to only children or adults), it was clear from 
this response pattern that she was now intending to group by preference on this trial. Interestingly, AS 
seemed to struggle with the boundary between the groups: when answering the first question, she started 
from the right, moving left, and slowed down her responses as she neared the middle, seeming to be 
unsure of the last callapo preferer (see Movie S3). This uncertainty could have been because she had made 
a grouping error or because she had not spatially separated the two groups. On the very next trial, AS 
correctly grouped the cards by preference and, strikingly, spatially separated the two groups into two 
distinct lines with a gap in between (Fig. 5, middle row, trial 4). Interestingly, this shape, “two adjacent 
lines,” did not appear on the first trial for any participant in the Preference condition nor on any trial in 
the other conditions. After the first trial, it was used by AS and two other participants, all of whom were 
in the Preference condition and had first grouped (or attempted to group) using a line, then on the 
subsequent trial added space between the groups, resulting in this “two adjacent lines” shape. Further, 
on this trial AS answered the first memory question partially correct, pointing to all the cards that had that 
preference (i.e., all the cards that preferred going to San Borja), and answered the second question fully 
correctly (i.e., the two males who preferred going to Yucumo). We interpret this trajectory of performance 
as suggesting that AS may have been discovering and fine-tuning this spatial strategy over the trials—even 
without feedback.  

JM was approximately 50 years of age. His performance on the task was more difficult to interpret. On the 
first trial, he placed the cards in sequential order in a circular shape (Fig. 5, bottom row). He was the only 
participant in the experiment to create this shape, though others did in piloting. In the second trial, he 
seemed to start grouping cards by preference for the first four cards, but then it was unclear to the 
experimenter what he was doing after. After the last card was handed out, he moved the cards to be in 
more of a circle before the photo was taken (Movie S4). Before moving them, they had been in more of a 
line. He did not answer any of the memory questions accurately on the first two trials. On the third trial, 
he correctly grouped the cards by preference, still making a circular shape. Further, JM answered the 
memory questions partially correctly, accurately responding to the preference part of each question by 
pointing to the four cards on the left to answer “all the children that preferred canoe” and the four cards 
on the right to answer, “all the adults that preferred callapo.” This response pattern suggests that the 
grouping was intentional and useful to him. However, on the fourth trial, JM did not use this strategy again. 
Here, he began by placing cards sequentially in a rounded shape, but did not place the last three 
sequentially, and his question responses were not accurate. We interpret this trajectory of performance 
to suggest that JM may have also been discovering this spatial strategy while engaging with the task, and 
that, like many new strategies, it may not have been stable yet.  

Note that participants’ initials have been changed to maintain their anonymity. 

Order condition participants who reported no schooling. There were four participants in the Order 
condition who reported no schooling. These participants were not literate in either Tsimane’ or Spanish. 
NV was 53 years old, AC was around 65 (Movie S5), FC was approximately 30 (Movie S6), and CT was 29 
(NV and CT asked to not be video recorded). The participants approached the task in different ways. NV 
and CT did not sequentially order their cards on the first trial, whereas AC and FC did (Fig. S5). NV started 
sequentially ordering on T2 and CT started on T3 (Fig. S5). All four created different shapes to represent 
sequential order and placed cards in different directions. For example, NV made two rows and the 
sequence snaked through the shape. AC made two columns, starting at the top for both columns on T1 
and 2, and switching to the sequence snaking through the shape on T3 and 4. FC placed the cards left to 
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right and put the last one or two on a row above the first row. She put the cards face-down in T1 and 2, 
and then switched to placing them face up on T3. CT created lines and started by placing cards with a 
leftward bias on T1, switching to a more rightward bias on T2, and on T3 and 4 ordered the cards, placing 
them right to left. Note that participants’ initials have been changed to maintain their anonymity. 

𝝌𝟐 Test of Independence results showed same results as Fisher’s Exact Test 

As explained in the Data Analysis section, in many cases a 𝜒2 Test of Independence could not be used 
because at least one of the expected value cells was less than 5. Therefore, for consistency, Fisher’s Exact 

Test was used throughout. However, in some cases, a 𝜒2 test could be used. Here, we report the results of 
the 𝜒2 tests to show that the results show the same pattern as Fisher’s Exact Test. 

• Significantly more children and adults sequentially organized their card layouts in the Order 
condition than in the Control condition (children: 𝜒2(1, N = 31) = 10.10, BC-p = .004; adults: 𝜒2(1, 
N = 45) = 6.64, BC-p = .030). Fisher’s Exact Test results (see Table S4): children: OR = 26.82, 95% CI 
[2.76, 1403.11], BC-p = .002; adults: OR = 6.54, 95% CI [1.48, 35.80], BC-p=.017 

• Significantly more adults sequentially organized their cards in the Order condition than in the 
Preference condition (𝜒2 (1, N = 32) = 6.06, BC-p = .041). Fisher’s Exact Test results: OR = 8.22, 95% 
CI [1.45, 60.27], BC-p = .035 

• Adults in the Order condition created lines significantly more often than adults in the Control 
condition (𝜒2 (1, N = 46) = 12.50, BC-p = .001), but there was no difference between Order and 
Preference conditions (𝜒2(1, N = 32) = 2.01, BC-p = .469). Fisher’s Exact Test results: Order versus 
Control: OR = 14.63, 95% CI [2.79, 108.35], BC-p < .001; Order versus Preference: OR = 3.51, 95% 
CI [0.69, 20.43], BC-p  = .467 

• Children created lines equally often across all three conditions (𝜒2(2, N = 46) = 1.37, p = .504). 
Fisher’s Exact Test results: p = .599 
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Supplemental Figures 

 

 

Fig. S1. Face stimuli for each trial. The “Sequential order” columns show the order the cards were handed out, which 
was the same across all three conditions and was the relevant to-be-remembered in the Order condition. The 
“Preferences” column lists the two possible preferences, and the “Preference groups” column shows how the cards 
were organized by preference. The preferences on each trial were from different categories. Trial 1: food preference, 
Trial 2: work activity preference, Trial 3: boat preference, Trial 4: destination preference (the two closest cities to 
the Tsimane’ communities). Face images were adapted from Generated.Photos. 

https://generated.photos/
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Fig. S2. Annotated images of sequentially ordered arrangements. Resulting card layouts from 14 different 
participants across conditions who sequentially ordered the cards on the first trial. The number annotations show 
the order that the cards were distributed. These examples reflect the variability in the shapes used to capture 
sequential order, as well as the variability in the directionality of card placement, even when the resulting shape 
created was the same (e.g., E-G). It is also worth noting that while four participants made sequentially ordered 
square grids (J) in the Control condition, this shape was never used to represent sequential order in the Order 
condition. In (K), the organization cannot be coded from the image, but was coded from the video. See Fig. S8 for 
original uncropped and unannotated images. 
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Fig. S3. Distribution of shapes used across conditions. For Order and Preference conditions, the shapes shown are 
those created when organizing the cards to represent the relevant information (i.e., sequential for Order and 
grouped for Preference). “Count of users on T1” is the number of participants who created a given shape on T1 to 
represent the condition-relevant information. “Count of unique users across all trials” is the total number of 
participants who used a given shape on any trial to represent the condition-relevant information. Note that 
participants could have used one shape on one trial, and a different shape on a subsequent trial, so this row does 
not add up to the total number of participants. The Control condition shows the total number of participants who 
created each given shape on the first trial since there was no specified information to represent. 

‡ There was a third participant who created this shape. She used a line to group on T2, and then on the next two 
trials she created this shape but made a grouping error both times. However, because the organization was coded 
as “attempted group” and this table only counts trials in which the organization was coded as grouped, this instance 
is not counted in the table. 
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Fig. S4. Spatial organization across all trials in Order condition. Proportion of participants on each trial of the Order 
condition who used each organization: grouped, sequentially ordered, or neither. The last bar represents the 
proportion of participants who correctly sequentially ordered on at least one of the four trials. 

 

 

Fig. S5. Annotated trial images of the four Order condition participants who reported no schooling. The number 
annotations show the order that the cards were distributed. Note that for participant NV, the experimenter made 
an error ordering the cards before the trial, swapping 3 and 7 in T1-3, so the images for T1-3 are annotated with the 
numbers indicating the order that the cards were handed to this particular participant. See Fig. S9 for original 
uncropped and unannotated images. 
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Fig. S6. Original images from Fig. 2, not cropped or annotated. 

 

 

Fig. S7. Original images from Fig. 5, not cropped or annotated. 
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Fig. S8. Original images from Fig. Fig. S2, not cropped or annotated. 

 

 

Fig. S9. Original images from Fig. Fig. S5, not cropped or annotated.  
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Supplemental Tables 

Table S1. Sample size and demographic information of participants included in analysis 

Variable Children (n = 46) Adults (n = 61) 

Age 11.39 [7.50, 14.80], SD = 1.84 36.19 [16.10, 90.00], SD = 17.49 

Schooling 4.54 [1, 9], SD = 1.96 4.36 [0, 13], SD = 3.58 

Literacy 1.87, SD = 2.74 5.05, SD = 3.70 

Note: For age and schooling: Mean [Range], SD in years; Literacy: Mean, SD, range is 0 to 8 by definition. 

Table S2. Number of participants in each condition by age group 

Age Group Control Order Preference n 

Children 21 12 13 46 
Adults 29 17 15 61 

Total 50 29 28 107 

Table S3. Memory test questions for each experimental condition and trial. The numbers in the “Answer” columns 
refer to the position of the card in the sequence for that trial. See Fig. S1 for the card position numbers and 
preference groups. 

  Order Preference 

Trial 
Conjunctive 
dimension 

Question Answer Question Answer 

1 Age group 

Who was the first child 
to arrive? 

1 
Who are all the adults who 

prefer plantain? 
4 and 5 

Who was the last adult 
to arrive? 

7 
Who are all the children 

who prefer coconut? 
3 and 8 

2 Gender 

Who was the first 
male to arrive? 

3 
Who are all the males who 

prefer fishing? 
4 and 8 

Who was the last 
female to arrive? 

6 
Who are all the females who 

prefer harvesting rice? 
1 and 6 

3 Age group 

Who was the first 
adult to arrive? 

3 
Who are all the children 

who prefer going in canoe? 
1 and 6 

Who was the last child 
to arrive? 

8 
Who are all the adults who 
prefer going in “callapo”? 

3 and 5 

4 Gender 

Who was the first 
female to arrive? 

1 
Who are all the females who 

prefer going to San Borja? 
2 and 3 

Who was the last male 
to arrive? 

7 
Who are all the males who 
prefer going to Yucumo? 

4 and 7 
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Table S4. Results of four Fisher’s Exact Tests, comparing sequential ordering in the Order condition to (1) sequential 
ordering in the Control and (2) sequential ordering in the Preference condition. Tests were run separately for children 
and adults. In the Order condition, 11/12 children and 13/17 adults sequentially ordered. 

Condition 
Age 

Group 
Proportion 
Sequential 

Odds Ratio 95% CI Bonferroni-Corrected p-value 

Control 
Children 5/19 26.82 [2.76, 1,403.11] .002 

Adults 9/28 6.54 [1.48, 35.80] .017 

Preference 
Children 4/13 21.07 [1.95, 1,169.85] .011 

Adults 4/15 8.22 [1.45, 60.27] .035 

Table S5. Beta coefficients for a logistic mixed effects model predicting memory question accuracy in the Preference 
condition from question number, trial number, and organization (grouped or not grouped). 

Term 𝑏 95% CI 𝑧 𝑝 

Intercept -4.05 [-5.65, -2.44] -4.94 < .001 
Question 0.15 [-0.61, 0.90] 0.38 .701 

Trial 0.52 [0.15, 0.89] 2.77 .006 
Grouped 3.45 [2.21, 4.69] 5.47 < .001 

Table S6. Beta coefficients for a logistic mixed effects model predicting memory question accuracy in the Order 
condition from question number, trial number, and organization (sequential or not sequential).  

Term 𝑏 95% CI 𝑧 𝑝 

Intercept 1.00 [-0.17, 2.18] 1.67 .095 
Question -1.50 [-2.12, -0.88] -4.74 < .001 

Trial 0.15 [-0.12, 0.42] 1.09 .274 
Sequential -0.13 [-1.18, 0.92] -0.24 .810 

Table S7. Number of children and adults that used each organization on the first trial by condition. These counts are 
visualized as within-condition proportions in Fig. 3A. 

  Organization  

Age group Condition Grouped Sequential Neither n 

Children 

Control 0 5 14 19 

Order 0 11 1 12 

Preference 2 4 7 13 

Adults 

Control 0 9 19 28 

Order 0 13 4 17 

Preference 9 4 2 15 

Note: In the Control condition the layouts from 2 children and 1 adult could not be coded for organization from the 
picture due to the shape (see sections on coding organization and data cleaning), resulting in the n in this table for 
the Control condition as opposed to the full sample reported in Table S2. 
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Table S8. Number of children and adults that used lines versus all other shapes on the first trial by condition. The 
proportion that used lines is the height of the black bars in Fig. 3B. 

  Shape  

Age Group Condition Line Other Shape n 

Children 
Control 12 9 21 
Order 5 7 12 

Preference 5 8 13 

Adults 
Control 3 26 29 
Order 11 6 17 

Preference 5 10 15 

Table S9. Organization of the lines that children and adults created on the first trial by condition. The heights of the 
colored stacked bars in Fig. 3B come from these counts divided by the total number of participants in the condition 
(n). 

  Organization   

Age Group Condition Grouped Sequential Neither Total Lines n 

Children 
Control 0 4 8 12 21 
Order 0 5 0 5 12 

Preference 1 2 2 5 13 

Adults 
Control 0 2 1 3 29 
Order 0 9 2 11 17 

Preference 3 1 1 5 15 

Table S10. Organizations created by children and adults in the Preference condition over the four trials. The row 
“any trial” shows the number of participants who grouped correctly on at least one trial. The counts in this table are 
visualized as proportions out of the total number of participants in this condition (13 children and 15 adults) in Fig. 
4. 

  Organization 

Age Group Trial Grouped Attempted Sequential Neither 

Children 

1 2 0 4 7 
2 7 0 4 2 
3 5 1 5 2 
4 7 1 4 1 

any trial 8 --- --- --- 

Adults 

1 9 0 4 2 

2 5 3 3 4 
3 7 4 2 2 
4 8 4 2 1 

any trial 13 --- --- --- 
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Table S11. Organizations created by children and adults in the Order condition over the four trials. The row “any 
trial” shows the number of participants who sequentially ordered on at least one trial. The counts in this table are 
visualized as proportions out of the total number of participants in this condition (12 children and 17 adults) in Fig. 
S4. 

  Organization 

Age Group Trial Sequential Neither 

Children 

1 11 1 

2 11 1 

3 11 1 

4 11 1 

any trial 12 --- 

Adults 

1 12 3 

2 13 2 

3 14 1 

4 14 1 

any trial 14 --- 

Note: Because no participants grouped in this condition, this column was not included in the table. 

 

Supplementary Movies 
Movie S1. All images from the first trial, organized by condition. Hosted on OSF: https://osf.io/rgje7 

Movie S2. Video of Preference condition participant MP (age ~40) completing the four trials of the task. She reported 
no schooling and was not literate. MP grouped the cards by preference on the first trial. The video has English 
subtitles, and the trials are annotated to show which cards belong to each preference. Hosted on OSF: 
https://osf.io/8hzuv 

Movie S3. Video of Preference condition participant AS (age 58) completing the four trials of the task. She reported 
no schooling and was not literate. AS did not group by preference on the first trial and answered both memory 
questions incorrectly. She changes her strategy and on T4 she correctly grouped with space separating the groups. 
The video has English subtitles, and the trials are annotated to show which cards belong to each preference. Hosted 
on OSF: https://osf.io/fx52b 

Movie S4. Video of Preference condition participant JM (age ~50) completing the four trials of the task. He reported 
no schooling and was not literate. JM did not group by preference on the first trial but does so on T3. The video has 
English subtitles, and the trials are annotated to show which cards belong to each preference. Hosted on OSF: 
https://osf.io/4ugc6 

Movie S5. Video of a participant AC (age ~65), who was in the Order condition, completing the four trials of the task. 
She reported no schooling and was not literate. AC sequentially ordered the cards on the first trial. The video has 
English subtitles. Hosted on OSF: https://osf.io/fxw84 

Movie S6. Video of a participant FC (age ~30), who was in the Order condition, completing the four trials of the task. 
She reported no schooling and was not literate. FC sequentially ordered the cards on the first trial. The video has 
English subtitles. Hosted on OSF: https://osf.io/y6tp7  

https://osf.io/rgje7
https://osf.io/8hzuv
https://osf.io/fx52b
https://osf.io/4ugc6
https://osf.io/fxw84
https://osf.io/y6tp7


157 

Appendix C: Supplemental Materials for Chapter 4 

The following sections show the graphs and questions used for each task. The question type, 
either multiple choice (MC) or open-ended (OE), is also included in parentheses next to the 
question number. 

Basic graph knowledge assessment questions 

Graph Question (Type) Question 

 

Q1 (MC) What variable is on the x-axis? 

Q2 (MC) What variable is on the y-axis? 

Q3 (MC) 
If Brianna studied for 2 hours, what would 
her score on the test be? 

Q4 (MC) What is the value of y when x = 4? 

Q5 (MC) 
If Brianna wants to score a 100 on the test, 
how many hours does she need to study? 

Q6 (MC) What is the value of x when y = 85? 

 

Extra graph practice 
For students who got less than 5 of the questions correct on the basic graph knowledge 
assessment. 

Graph Question (Type) Question 

 

Q1 (MC) 
If Cameron watched 8 hours of TV, how many 
hours will he sleep? 

Q2 (MC) When x = 0, what is the value of y? 

Q3 (MC) 
When Cameron sleeps for 5 hours, how many 
hours of TV did he watch according to this 
graph? 

Q4 (MC) What is the value of x when y = 6? 
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Pre- and post-test 
Part 1: y-intercept and slope 

Question 
(Type) 

Pre-test Post-test 

Graph 

 

 

Cover 
Story 

NA Kennedy loves to cook chili. Each time she makes it, 
she adds different amounts of red pepper powder 
and records how spicy it tastes on a scale of 0 to 10, 
where 10 is extremely spicy. 

Here’s a graph showing the amount of red pepper 
added on the x-axis and the reported spiciness on 
the y-axis. 

Q1  
(click) 

Click on the y-intercept using 
your mouse.  

Click on the y-intercept using your mouse. 

Q2  
(OE) 

What does the y-intercept on 
this graph tell you? 

What does the y-intercept on this graph tell you? 

Q3  
(OE) 

Describe the slope on this 
graph. What does it tell you? 

Describe the slope on this graph. What does it tell 
you? 
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Part 2: problem solving transfer task 

Question 
(Type) 

Pre-test Post-test 

Graph 

 

 

Cover 
Story 

The student council at Sunnyside 
Middle school is planning to sell school 
t-shirts to the 8th graders. 

They are deciding between three 
different companies, and they need to 
figure out which is the cheapest option. 

Your mission is to help the student 
council decide which t-shirt company is 
the cheapest option. 

Here’s a graph showing relationship 
between the number of t-shirts 
purchased and the total cost in dollars 
for the three different t-shirt 
companies. 

You are hosting a birthday party for your 
best friend! You're trying to decide what 
food to serve. You have three ideas in 
mind for what you could serve: burgers, 
pizza, or spaghetti. 

You want to pick the food that will cost 
you the least amount of money. 

In order to make your decision, you look 
at a graph that shows you the 
relationship between the number of 
friends coming to the party and the total 
cost for the three different food options. 

Describe 
prompt* 
(OE) 

Describe to student council what is 
going on in the graph. 

Describe to your friend what is going on 
in the graph. 

Q1 
(OE) 

There are 300 students in the 8th grade 
class, but the student council does not 
know yet how many students will buy a 
t-shirt. 
 

You invited 60 friends to the party, but 
you do not know yet how many will 
actually end up coming. 
 
 
Make a recommendation about which 
food option you should use for the party.  
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Make a recommendation to student 
council about which company they 
should use to make the t-shirts.  
 
In your response, explain how you 
made your choice. 

 
 
In your response, explain how you made 
your choice. 

Q2 
(OE) 

Under which circumstances, if ever, 
would you pick each of the three 
companies?  
 
Explain your reasoning, and be sure to 
include what about the graph made you 
give this answer. 

Under which circumstances, if ever, 
would you pick each of the three food 
options?  
 
 
Explain your reasoning, and be sure to 
include what about the graph made you 
give this answer. 

Q3 
(OE) 

When, if ever, would buying from 
Company A be the cheapest option? 

When, if ever, would ordering burgers be 
the cheapest option? 

Q4 
(OE) 

When, if ever, would buying from 
Company B be the cheapest option? 

When, if ever, would ordering pizza be 
the cheapest option? 

Q5 
(MC) 

Which company has the lowest starting 
cost?  
 
Options: A, B, C, You can’t tell from this 
graph, I don’t know 

Which food option has the lowest 
starting cost?  
 
 
Options: Burgers, Pizza, Spaghetti, You 
can’t tell from this graph, I don’t know 

Q6  
(MC) 

Which company has the lowest cost for 
each additional t-shirt purchased?  
 
Options: A, B, C, You can’t tell from this 
graph, I don’t know 

Which food option has the lowest cost 
for each additional friend who comes to 
the party?  
 
Options: Burgers, Pizza, Spaghetti, You 
can’t tell from this graph, I don’t know 

 

* This question was exploratory, as described in the preregistration. It was not scored for this 
study or used in the analysis. 

 

These questions are organized from most broad to most specific with the goal of being able to 
observe what kinds of answers students give spontaneously (e.g., what kind of reasoning they 
engage in), before seeing how students answer when prompted for more specific information and 
for a more specific style of reasoning. The goal was that this style of scaffolded questions would 
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make a more sensitive measure, with the highest scores for those who generate complex 
reasoning responses spontaneously from the beginning, with the next highest scores for those 
who reason more complexly when prompted, and finally those who have not reasoned complexly. 
See the scoring guide for additional details.  

Interrater reliability for open-ended questions 

Interrater reliability was calculated using Pearson’s correlation coefficient (r) since there were two 
raters and the scores were continuous. Overall agreement across all open-ended questions was 
high (r = .94). 

Table S1. Interrater reliability for the open-ended questions in the first part of the pre-test measured by Pearson’s 
r. 

 

  

Question Timepoint Pearson’s r 

Part 1: Q2 

Pre .92 

Post .90 

Overall .92 

Part 1: Q3 

Pre .95 

Post .90 

Overall .93 

Part 2: Q1 

Pre .84 

Post .83 

Overall .84 

Part 2: Q2 

Pre .95 

Post .99 

Overall .97 

Part 2: Q3 

Pre .95 

Post .97 

Overall .96 

Part 2: Q4 

Pre .96 

Post .96 

Overall .96 

All responses .94 
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Lesson 

Instructional Block 
y-intercept 

Question 
(Type) 

Graph 
Visual Features  

Lesson 
Relational Reasoning 

Lesson 

instructional 
video 

 

The y-intercept is the value of y when x = 0. 

In other words, it is 
where the line 
intersects with the y-
axis. 

In other words, this 
value can be thought of 
as a “baseline” or 
starting point. 

practice Q1 
(MC) 

 

What is the y-intercept 
of Brianna’s line? In 
other words, when x = 
0? 
 

What would Brianna 
score on the test if she 
decided not to study at 
all? In other words, 
when hours studied = 
0. 

practice Q2 
(MC) 

 

What is James’s y-
intercept? 

What would James 
score on the test if he 
decided not to study at 
all? 

practice Q3 
(MC) 

Which student has the 
higher y-intercept? 

Which student would 
score higher on the test 
without studying? 
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practice Q4 
(MC) 

 

What is the y-intercept 
of Cameron’s line? 

How many hours of 
sleep would Cameron 
get if he didn’t watch 
any TV in a day? 

 

Slope direction 

Question 
(Type) 

Graph 
Visual Features  

Lesson 
Relational Reasoning 

Lesson 

instructional 
video 

 

The slope describes 
both the direction and 
the steepness of the 
line. 

 

The direction of the 
line can be positive, 
negative, or 0. 

The slope of a line 
represents the nature 
of the relationship 
between x and y. 

 

This relationship can be 
positive, negative, or 0. 

A positive slope means that… 

… the line is going up 
from left to right.  

 

 

For example, the slope 
of Brianna’s line is 
positive since it is going 
up from left to right. 

… as x increases, the 
value of y also 
increases. 

 

For example, the slope 
of Brianna’s line is 
positive since as she 
studies more for the 
test, her test score also 
increases. 

A negative slope means that… 
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… the line is going 
down from left to right. 

 

For example, the slope 
of Cameron’s line is 
negative since it is 
going down from left to 
right. 

 

… as x increases, the 
value of y decreases. 

 

 

For example, the slope 
of Cameron’s line is 
negative since when he 
watches more hours of 
TV in a day, he sleeps 
fewer hours at night. 

 

Here, the slope of Amari’s line is 0 since… 

… the line is flat as it 
goes from left to right. 

 

… when she watches 
more hours of TV in a 
day, her sleep at night 
doesn’t change, it stays 
the same. 

practice Q1 
(MC) 

[No graph presented for 
these questions] 

The line is going down 
from left to right. The 
slope of this line is 
______.  

Options: positive, 
negative, 0 

As x increases, y 
decreases.  
The slope of this line is 
______.  

Options: positive, 
negative, 0 

practice Q2 
(MC) 

The line is flat from left 
to right. The slope of 
this line is ______.  

Options: positive, 
negative, 0 

As x increases, y stays 
the same.  
The slope of this line is 
______.  

Options: positive, 
negative, 0 

practice Q3 
(MC) 

The line is going up 
from left to right. The 
slope of this line is 
______.  

Options: positive, 
negative, 0 

As x increases, y 
increases.  
The slope of this line is 
______.  

Options: positive, 
negative, 0 
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Note that the way that graphs were animated in the instructional videos also differed by 
condition. See the videos posted on OSF to view the animations in action. 

Slope steepness 

Question 
(Type) 

Graph 
Visual Features  

Lesson 
Relational Reasoning 

Lesson 

instructional 
video 

 

In addition to the slope being positive, negative, 
or 0, the slope can be steeper or shallower 
depending on… 

… the angle of the line. 

 
Steeper lines go up or 
down faster than 
shallower lines. 

 

… how much y changes 
for each increase in x. 

As x increases, y 
changes (either 
increases or decreases) 
more for a steeper line 
than for a shallower 
line. 

 

Let’s use the graph of hours studied and test 
score to take a closer look. This time, we are 
going to be look at the data for two students, 
Diamond and Malik. 

In this graph, Diamond and Malik have the same 
y-intercept, which means that… 

… when x is equal to 0, 
y = 75 for both 
students. 

 

… if they both study 0 
hours for a test, they 
would get the same 
score on the test, a 75. 

Even though they both have positive slopes, 
Diamond’s like has a steeper positive slope. 

This means that as you 
go from left to right, 
Diamond’s line goes up 
faster than Malik’s line. 

 

This means that for 
each hour the students 
study, Diamond’s test 
score improves more 
from that hour of 
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studying that Malik’s 
score. 

practice Q1 
(MC) 

 

Which person’s line has 
the shallower slope? 

Which person’s sleep is 
less affected by each 
additional hour of TV 
watched? 
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Practice Block 

Graph 1 (Day 1) 

 

 

 

 

 

 

Question 
(type) 

Visual Features Lesson Relational Reasoning Lesson 

Cover 
story 

Here’s a graph showing hours 
studied on the x-axis and test score 
on the y-axis with lines for two new 
students, Isaiah and Rosa. 

Here’s a graph showing the relationship 
between hours studied and test score for two 
new students, Isaiah and Rosa. 

Q1 
(OE) 

How would you explain to a friend 
what you see in this graph? 

Feel free to use any terms you’ve 
learned. 

A) What are some similarities, if any, in the 
relationship between hours studied and test 
score for Isaiah and Rosa? 

B) What are some differences, if any, in the 
relationship between hours and test score for 
Isaiah and Rosa? 

Feel free to use any terms you’ve learned. 

Q2  
(MC) 

Which student has the greater y-
intercept? 

If Isaiah and Rosa decided not to study for 
the test at all, which student would score 
higher on the test? 

Q3  
(MC) 

Which student’s line has a steeper 
slope? 

Which student’s test score would benefit 
more from studying for more hours? 

Q4  
(MC) 

Which student has the greater y-
value when x = 2? 

Which student would score higher on the 
test if they both had less than 3 hours to 
study? 
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Q5  
(VF: MC;  
RR: OE) 

Which student has the greater y-
value when x = 6? 

For what amounts of study time would Isaiah 
score higher on the test than Rosa? 

 

Graph 2 (Day 1) 
 

 

 

 

 

 

 

Question 
(type) 

Visual Features Lesson Relational Reasoning Lesson 

Cover 
story 

Your friend is growing bamboo and jade 
plants. Here’s a graph showing the 
amount of water given to the plants 
every day on the x-axis and how tall the 
plant will be after 2 months on the y-
axis, with lines for the two plants. 

Your friend is growing bamboo and jade 
plants, and wants to understand the 
relationship between the amount of 
water given to the plants every day and 
how tall they will be after 2 months. 

Q1 
(OE) 

How would you explain to a friend what 
you see in this graph? 

Feel free to use any terms you’ve 
learned. 

A) What are some similarities, if any, in 
the relationship between amount of 
water and plant height for bamboo and 
jade? 

B) What are some differences, if any, in 
the relationship between amount of 
water and plant height for bamboo and 
jade? 

Feel free to use any terms you’ve 
learned. 

Q2 
(MC) 

Which plant has the lower y-intercept? If no water is given to either plant, 
which plant would be shorter? 
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Q3 
(MC) 

Which plant’s line has the steeper 
slope? 

Which plant would grow more from 
being watered more? 

Q4 
(MC) 

Which plant has the higher y-value 
when x = 10? 

Which plant would be taller if they were 
both watered less than 15mL a day? 

Q5  
(VF: MC; 
RR: OE) 

Which plant has the greater y-value 
when x = 45? 

For what amounts of water would 
bamboo be taller than jade? 

 

Graph 3 (Day 2) 

 

 

 

 

 

Question 
(type) 

Visual Features Lesson Relational Reasoning Lesson 

Cover 
story 

Here’s a graph showing temperature on 
the x-axis and number of items sold on 
the y-axis, with lines for two kinds of 
snack bar food. 

Here’s a graph showing the relationship 
between the temperature outside and 
the number of items sold at a snack bar 
for two kinds of food. 

Q1 
(OE) 

How would you explain to a friend what 
you see in this graph? 

Feel free to use any terms you’ve 
learned. 

A) What are some similarities, if any, in 
the relationship between temperature 
and number of items sold for ice cream 
and hot chocolate? 

B) What are some differences, if any, in 
the relationship between temperature 
and number of items sold for ice cream 
and hot chocolate? 

Feel free to use any terms you’ve 
learned. 

Q2  
(MC) 

Which food has the greater y-intercept? When it is 0 degrees outside, which 
item would sell more? 
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Q3  
(A: MC, 
B: OE) 

A) Which food’s line has a steeper 
slope? 

B) Explain how you know. 

A) Which food shows the bigger change 
in sales between 0F and 100F? 

B) Explain how you know. 

Q4  
(VF: MC; 
RR: OE) 

Which food has the greater y-value 
when x = 80? 

When would ice cream sales be more 
than hot chocolate sales? 

Q5  
(OE) 

What would x be when y = 30 for both 
foods? 

Would ice cream sales and hot 
chocolate sales ever be equal? If so, 
when? 

Q6  
(OE) 

What would x be when y = 25 for both 
foods? 

Imagine you are the store owner and 
you want to sell at least 25 ice creams 
and 25 hot chocolates in a day. For what 
temperatures would you want to open 
your store to accomplish this goal? 

 
 
Graph 4 (Day 2) 

 

 

 

 

 

Question 
(type) 

Visual Features Lesson Relational Reasoning Lesson 

Cover 
story 

Here’s a graph showing the number of 
people in an audience on the x-axis and 
anxiety rating on the y-axis, with lines 
for two people who are in a musical.  

Here’s a graph showing the relationship 
between the number of people in an 
audience and the anxiety rating for two 
people who are in a musical. 

Q1 
(OE) 

How would you explain to a friend what 
you see in this graph? 

Feel free to use any terms you’ve 
learned. 

A) What are some similarities, if any, in 
the relationship between number of 
people in the audience and anxiety 
rating for Carlos and Payton? 
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B) What are some differences, if any, in 
the relationship between number of 
people in the audience and anxiety 
rating for Carlos and Payton? 

Feel free to use any terms you’ve 
learned. 

Q2  
(MC) 

Which person has the lower y-intercept? If there were no people in the audience, 
which person would be less anxious? 

Q3  
(MC) 

Which person’s line has a positive 
slope? 

Which person would get more anxious 
having more people in the audience? 

Q4  
(A: MC, 
B: OE) 

A) Which person’s line has the steeper 
slope? 

B) Explain how you know. 

A) Which person’s anxiety rating 
changes the most as the number of 
people in the audience increases? 

B) Explain how you know. 

Q5  
(VF: MC;  
RR: OE) 

When x = 100, which person’s y-value is 
greater? 

For what numbers of people in the 
audience would Carlos be more anxious 
than Peyton? 
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