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Abstract 

Visual thinking plays a central role in human cognition, yet we 
know little about the algorithmic operations that make it 
possible. Starting with outputs of a JIM-like model of shape 
perception, we present a model that generates object file-like 
representations that can be stored in memory for future 
recognition, and can be used by a LISA-like inference engine 
to reason about those objects. The model encodes structural 
representations of objects on the fly, stores them in long term 
memory, and simultaneously compares them to previously 
stored representations in order to identify candidate source 
analogs for inference. Preliminary simulation results suggest 
that the representations afford the flexibility necessary for 
visual thinking. The model provides a starting point for 
simulating not only object recognition, but also reasoning 
about the form and function of objects.  

Keywords: visual reasoning; shape perception; object files; 
structural description; type-token problem 

Introduction 
Visual thinking plays a central role in human cognition. From 
deciding whether a quantity of soup will fit into a storage 
container, to interpreting graphical representations of data, or 
reading a circuit schematic, people routinely engage visual 
reasoning in the service of understanding the world and 
solving problems. Visual thinking figures prominently in our 
most creative and uniquely human acts, including 
mathematics, engineering, art and design. But in spite of its 
centrality, comparatively little is known about the 
algorithmic basis for visual and visually-assisted reasoning 
(but see Hummel & Holyoak, 2001, Johnson-Laird, 1983, 
Lovett and Forbus, 2017, for progress in this direction). 
Instead, most computational work in high-level vision has 
been and continues to be addressed to the problem of object 
recognition, the tacit assumption often being that object 
recognition is the final stage of ventral visual processing, as 
though once an object has been visually recognized, there is 
nothing left to be done. Most models in this tradition, 
including modern deep nets for object recognition, represent 
objects as holistic templates of various kinds, which is a 
representational format that does not lend itself to any kind 
of explicit visual reasoning (Hummel, 2000; see Hummel, 
2013, for a review). 

The problem of visual thinking places strong constraints on 
the kinds of representations—for example of object shape or 
scene layout—the visual system must deliver to the rest of 

the cognitive architecture. It places equally important 
constraints on the kind of cognitive architecture that operates 
on those representations (Hummel, 2000; Lovett & Forbus, 
2017). In particular, that architecture must be prepared to 
reason and generalize extremely flexibly—specifically, with 
the flexibility of an explicitly relational (i.e., symbolic) 
system (Hummel & Holyoak, 1997, 2001, 2003a; Lovett & 
Forbus, 2017). And for that purpose, the visual system must 
be equipped to represent the visual world in terms of 
arrangements of objects and object parts in terms of their 
spatial relations (as opposed to, e.g., their literal locations in 
the retinal image; Hummel, 2000).  

 

 
 
Figure 1: An example of visual reasoning in a novel context 
(Green & Hummel, 2004). Even if one has never seen this 
image before, it is obvious that moving the hammer is ill-

advised. 
 

Consider, for example, the arrangement depicted in Figure 
1 (from Green & Hummel, 2004), and imagine oneself in 
need of the hammer. Upon a glance at the figure, it is clear 
that one should not simply pick up the hammer, as doing do 
would cause the wine glasses to fall and break. We can easily 
understand this property of Figure 1 in spite of the fact that, 
for most people, the arrangement in the figure is completely 
unfamiliar. To put the power of this inference into 
perspective, note that an associative response to Figure 1 

1895



(e.g., of the kind that would be learned by a deep net) might 
specify that there was something fragile in the scene, and it 
might even specify that a hammer as an object capable of 
breaking things, but would it would be incapable of even 
representing (much less inferring) a complex relational 
thought such as “moving the hammer is ill-advised because it 
would result in the wine glasses falling.” Although the natural 
associative relation between hammers and breaking is to 
think of hammers as objects that break things, in the case of 
Figure 1, the hammer is preventing the glasses from being 
broken.  

Making the appropriate inference about the arrangement in 
Figure 1 requires us to perceive the spatial relations between 
the hammer, the boxes and the wine glasses, and to infer from 
those relations what kinds of actions will and will not result 
in the glasses falling (Green & Hummel, 2004). Crucially, 
this inference depends much more on the relations between 
the objects than on the features or identities of the objects 
themselves: If we were to replace the wine glasses with a 
baby, the same relations would be in place, and the same 
inference would follow; the same is true if we replace the 
hammer with any other object of an appropriate size to 
support the box.  

Similarly, even recognizing and reasoning about a novel 
instance of a known object class (for example, a new kind of 
coffeemaker), requires this kind of representational 
flexibility: the carafe of a coffeemaker may not always be 
perfectly cylindrical, especially if its designer was feeling 
creative, but it will always reside below the filter basket. The 
coffeemaker may even contain extra parts (e.g. thrown in for 
flourish) or have parts removed for a minimalist aesthetic, but 
barring extreme artistic license, it will still be recognizable as 
a coffeemaker.  

In other words, visual inference, and even object 
recognition, depend on our ability to represent relations 
independently of the object/parts serving as arguments of the 
relations, and to simultaneously bind the objects/parts to their 
relational roles (Hummel & Biederman, 1992; Hummel & 
Holyoak, 1997, 2003a). 

In summary, what is needed is a visual system capable of 
delivering relational (i.e., symbolic) representations of  
objects or scenes in terms of their constituent parts and the 
relations among them, and a cognitive architecture that is 
capable of using those representations in order to make 
flexible relational inferences. 

Perceiving Relations with JIM and Reasoning 
About Them with LISA 
Models of high-level vision that generate explicitly relational 
representations are comparatively rare. The examples with 
which we are familiar are Winston (1975), Lovett and Forbus 
(2017), and Hummel and Biederman’s (1992; Hummel, 
2001; Hummel & Stankiewicz, 1996, 1998) JIM. We will 
focus on JIM, a neural network that was originally developed 
as a model of object recognition, and in that context has 
accounted for, and successfully predicted, a very large 
number of findings in the literature on shape perception and 

object recognition (for a review, see Thoma & Davidoff, 
2007). As such, JIM provides a psychologically and neurally 
plausible theory of the shape representations that can be 
derived from line drawings of objects. As elaborated shortly, 
the model is also useful as a basis for visual reasoning 
because it generates visual representations that are both 
explicitly relational and in a format that is directly usable by 
the LISA model of relational reasoning (Hummel & Holyoak, 
1997, 2003a). 

 

 
 

Figure 2: (a) A cone on top of a brick. (b) The JIM 
representation of a cone on top of a brick. Circles are units 
representing shape attributes. Bars indicate the activity of 

corresponding units over time, with black bars 
corresponding to the brick and gray to the cone. 

 
JIM (Hummel & Biederman, 1992) represents objects as 

configurations of geons (basic volumetric shapes; 
Biederman, 1987) in specific spatial relations to one another. 
For example, the simple object in Figure 2a would be 
represented as a cone on-top-of, smaller-than and orthogonal-
to a brick. The cone and brick are represented in JIM, not as 
atomic primitives, but as patterns of activation distributed 
over neuron-like units representing their shape attributes 
(Figure 2a). For example, the cone would be represented by 
units specifying that it has a curved cross section, a straight 
major axis, non-parallel sides, and a slightly elongated aspect 
ratio; the brick would be represented as having a straight 
cross section, a straight major axis, parallel sides, and a 
slightly elongated aspect ratio. The units representing the 
cone are bound to units representing its relational roles (here, 
smaller and above), and the units for the brick are bound to 
its roles (larger and below) by synchrony of firing: Units 
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representing the cone and its roles fire in synchrony with one 
another, and out of synchrony with the units representing the 
brick and its roles (Figure 2b). (These synchrony relations are 
established in the model’s V1- and V2-like first layers, by 
lateral interactions between local units representing the 
geons’ edges and the vertices where they coterminate; see 
Hummel & Biederman, 1992.)  

The resulting representations (Figure 2b) are then matched 
to stored representations in JIM’s long-term memory (LTM) 
for the purposes of object recognition. This representational 
format also happens to be identical to the format LISA 
(Hummel & Holyoak, 1997, 2003a) uses to represent role-
argument bindings for the purposes of relational reasoning. 
In LISA, relational roles and their arguments are represented 
as patterns of activation over units representing their 
semantic content, and bound into complete propositions by 
synchrony of firing: Within a proposition, such as on-top-of 
(cone, brick) or loves (John, Mary), units for a relational role 
(e.g., above, below, lover, or beloved) fire in synchrony with 
the units representing the arguments to which they are bound 
(with above firing with cone, or lover firing with John) and 
out of synchrony with the units coding the proposition’s other 
role bindings (below+brick or beloved+Mary).  

Armed with these representations, LISA accounts for 
roughly 100 major empirical phenomena in relational 
reasoning, including its development (e.g., Doumas et al., 
2008) and its decline with brain damage, normal aging, and 
frontotemporal dementia (for reviews, see Hummel & 
Holyoak, 2003b; Knowlton et al., 2012). As such, we take 
JIM and LISA as empirically well-grounded starting points 
for developing a model of visual thinking. 

Although the kinds of representations JIM generates 
provide a natural basis for reasoning by LISA, the problem 
remains of adapting JIM-like representations  for a LISA-like 
inference engine. That problem is the focus of the current 
modeling effort. 
 
Object Files as a Basis for Visual Reasoning 
Figure 2b illustrates the kind of distributed representation 
LISA uses to represent the semantic content of propositions 
in working memory (WM). To encode these representations 
into LTM, LISA uses a hierarchy of progressively more 
localist representations (Figure 3). At the bottom of the 
hierarchy, semantic units represent relational roles and their 
arguments in a distributed fashion (as in Figure 2b). 
Argument and role units (Figure 3) code arguments and 
relational roles in a localist fashion and share bidirectional 
excitatory connections with the corresponding semantic 
units. Sub-proposition (SP) units locally code role-filler 
bindings, such as above+cone and below+brick, and 
proposition units bind multiple role-filler bindings into 
complete propositions, such as on-top-of (cone, brick). 
Collections of related propositions are linked together with 
group (for our current purposes, object file) units. The 
resulting hierarchy of units serves both to represent 
propositions in LTM and as the basis for analogical mapping 
and the other functions LISA performs. 

This hierarchy serves as a natural way to represent 
structural descriptions of objects and scenes (a very similar 
hierarchy encodes objects into LTM in JIM; Hummel & 
Biederman, 1992). For example, in order to represent an 
object, propositions would represent the spatial relations 
among the object’s parts, and collections of such propositions 
would constitute a description of the complete object. 
Moreover, these descriptions can be nested hierarchically 
(with propositions taking other propositions as arguments; 
Hummel & Holyoak, 1997), making it possible to represent 
entire scenes as hierarchical collections of objects in various 
relations to each other. 
 

 
 

Figure 3. The LISAese representation of an object file. Left: 
representation of the proposition expressing the relations 
between the cone and the brick (roughly, on-top-of-and-
smaller-than (cone, brick)). In light gray: other potential 

propositions in the object file.  
 
Borrowing from Kahneman et al. (1992), we refer to 

collections of propositions encoding the properties of objects 
and/or scenes as object files. Importantly, the propositions 
composing an object file are assumed to encode (in the limit) 
everything visible about the object, including its shape, color, 
trajectory, and so forth. We also assume they are hierarchical, 
describing the properties of (and relations among) both whole 
objects and of individual object parts. In other words, we 
assume that the goal of early- and middle-vision, as well as 
visual attention, is to deliver a hierarchical description of the 
visual world. Although JIM provides an algorithmic basis for 
computing some of these properties and relations from object 
images, we assume that the visual input to the object files is 
much richer than any computational model is currently 
capable of providing. In the current effort, we therefore 
assume this visual input as a given to the model. Specifically, 
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we assume visual preprocessing that delivers descriptions of 
objects in terms of their properties (shape, color, etc.), spatial 
relations to one another, and the spatial relations among their 
parts. We assume that these descriptions are temporally 
bound into packages corresponding to bindings of relational 
roles to their arguments (e.g., Figure 2b; Hummel & 
Biederman, 1992), where the arguments can either be whole 
objects or object parts. 

The Model 
Given such a representation as a basic input, constructing an 
explicit object file from that input means encoding the 
propositions—i.e., collections of synchronized patterns of 
activation—into active memory (Cowan, 2001) so that they 
can be compared to the contents of LTM and reasoned about. 
The current model borrows and adapts elements of LISA’s 
self-supervised learning algorithm (Hummel & Holyoak, 
2003a) to accomplish this task. Like LISA and JIM, the 
current model uses synchrony of firing at multiple temporal 
scales in order to bind roles to their arguments, role-argument 
bindings into complete propositions, and collections of 
propositions into whole objects or scenes. 

At the fastest temporal scale (i.e., the phase, which we 
assume to last about 25 ms; Hummel & Holyoak, 1997), units 
coding relational roles fire in synchrony with the units coding 
for the features of their arguments. At the next temporal scale 
(the phase set, corresponding to about 100 - 200 ms), 
mutually desynchronized role-filler bindings are grouped into 
complete propositions. And at the slowest temporal scale 
(corresponding to about 200 – 1000 ms), multiple 
propositions (phase sets) are grouped into complete units—
either whole objects, or small groups of objects in specific 
relations (Green & Hummel, 2004). Each of these temporal 
scales corresponds to a specific kind of unit in the hierarchy 
in Figure 3, with the fastest corresponding to argument, role 
and SP units, the second slowest corresponding to 
proposition units, and the slowest to object file (group) units; 
units at each scale of the hierarchy integrate their inputs over 
corresponding temporal intervals (Hummel & Holyoak, 
1997).  

One at a time, patterns of activation corresponding to 
individual phases, i.e., parts or objects in specific relational 
roles, are presented to the model. These patterns correspond 
to packages being delivered by early to middle visual 
processing (e.g., in visual area LOC). In response to each 
such package, the model’s task is twofold: One task is to 
encode new packages (phases), as they arrive into active 
memory, and integrate them into the representation of the 
emerging object file (Figure 3). This operation is performed 
by a simple kind of mapping-guided Hebbian learning (i.e., 
Hummel & Holyoak’s, 2003a, self-supervised learning). At 
the same time, the model performs the parallel task of 
matching these incoming patterns to stored patterns in LTM 
(stored object files). That is, the model attempts to recognize 
each stimulus as an instance of a familiar object category at 
the same time as it encodes it into active memory as a new 
object file to be reasoned about. 

By the time several phase sets have been processed, the 
object file will contain a collection of propositions describing 
(for example) the object’s parts in terms of their spatial 
relations. If the object is familiar, the model will also have 
activated one or more existing object files in LTM, 
effectively recognizing/categorizing the object. The 
preceding describes the model in the language of visual 
cognition. In the language of analogical reasoning, the model 
will have encoded a new target analog (the object file) to be 
reasoned about, and it will have retrieved one or more source 
analogs (i.e., existing object files) to use in the service of 
reasoning about the target. Once this process is complete, the 
machinery of analogical reasoning (as embodied in LISA) 
can take over, mapping the target onto the source in order to 
identify corresponding elements and relations, using the 
source to drive inferences about the target, and inducing a 
more abstract schema capturing what the source and target 
have in common (Hummel & Holyoak, 2003a). 

Token Formation 
This very coarse description of the model’s operation 
necessarily glosses over numerous implementation details, 
but all of these are standard to LISA’s operation (see Hummel 
& Holyoak, 2003a, Appendix A). However, one aspect of the 
algorithm warrants discussion in greater detail. In LISA, 
argument, role, SP, proposition, and group units represent 
tokens of objects, roles, and so forth, in the context of the 
larger structure in which they reside. For example, the cone 
unit in Figure 3 represents a token of “cone” in the context of 
the specific object file depicted in the Figure; the abstract type 
“cone” is represented by the shape units (in LISA, “semantic 
units”) to which the token is connected (Figure 2b). This 
type/token distinction becomes apparent in the case of scenes 
containing more than one instance of a given object or geon: 
If an image contains, say, two cones, then the resulting object 
file must contain separate argument units for each, even if 
those units are connected to otherwise identical shape units: 
Constructing an object file from an image requires the model 
to distinguish clearly between types (“a cone”) and tokens of 
those types (“this cone”).  

Keeping this type/token distinction straight is complicated 
by the fact that a given token is likely to fire more than once 
in the output of visual processing: If the features of a cone 
fire at time t, and a cone also fired at time t-5, then how can 
we know whether the cone that is firing now is the same one 
(the same token) that fired 5 iterations ago? (In this respect, 
the object files created by the current model differ from those 
postulated by Kahneman et al., 1992, in that their object files 
were assumed to be unitary tokens for single objects. By 
contrast, the object files created here are hierarchical tokens 
that can, themselves, contain tokens for smaller parts.) 

The current model solves this problem by exploiting the 
role of mappings in self-supervised learning (Hummel & 
Holyoak, 2003a). In brief, the current model, like LISA, 
knows when a new token is required by knowing the 
mappings between the tokens composing the source of an 
inference (here, an object file in LTM) and those composing 
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the target of that inference (the emerging object file): If an 
unmapped token fires in the source, then a new token is 
required in the target. The current model exploits a similar 
constraint by mapping each token in the emerging object file 
to the location of the corresponding part or object in the 
image: In essence, it knows whether the cone firing at time t 
is the same token as the one from time t-5 by knowing 
whether they occupy the same location. (This heuristic is 
admittedly too simple and will fail with, for instance, moving 
stimuli. In general, we assume that tokens are distinguished, 
not by locations in the image, but by spatiotemporal 
trajectories in 3-space.) 

The model is still in an early stage of development—and 
is, itself, only a component of a much larger emerging 
model—but preliminary simulations provide an encouraging 
proof of concept. 

Simulations 
We ran four sets of simulations as basic tests the model’s 
ability to rapidly encode object files from oscillatory visual 
inputs of the kind illustrated in Figure 2b. In each simulation, 
objects were presented and encoded in the model’s LTM; 
subsequently, additional objects were presented to be 
encoded and categorized as one of the known objects. Objects 
were constructed by combining 14 parts, P1… P14, into 
arrangements by placing them in various two-place relations, 
with roles R1…R15. Each part was coded as a 10-
dimensional feature vector, and each role of a relation was 
also coded as a 10-dimensional vector. In addition, 6 units 
served as location tags, L1…L6, which as discussed above, 
permit the model to solve the type-token problem. The full 
feature space was thus 26-dimensional (10 for parts, 10 for 
roles, and 6 for location tags). The binding of a given part, Pi, 
to a given relational role, Rj, was implemented as the 
concatenation of vector Pi with vector Rj and location vector 
Lk (synchrony of firing is equivalent to vector addition). We 
manipulated the relationships between the stored and 
stimulus objects by varying the parts of the objects, P, the 
relations, R, and the locations L in which they were 
instantiated. For clarity in what follows, we will refer to a 
given part in a given location as Pi,k. The assignment of 
features to part vectors P, role vectors, R, and location vectors 
L was randomized on every simulation. 

Table 1 shows the library of objects used in all simulations. 
In the table, objects are denoted using the format (using 
object O1 as an example): 

 
[(P1,1, R1) + (P4,4, R2)], [(P1,2, R3) + (P4,4, R4)], 

 
where (P1,1, R1) denotes part P1 in location L1 bound to role 
R1, and (P4,4, R2) denotes P4, in L4, bound to R2; and the 
square brackets around these expressions indicate that roles 
R1 and R2 form a single relation linking P1 to P4. Note that P1 
appears in two locations in O1, L1 and L2, and thus instantiates 
two tokens of the same type in the representation of O1.  

Simulation 1 was the most basic test of the model’s ability 
to encode and match objects. We encoded objects O1-O3 into 

the model’s memory and then tested its ability recognize 
object O1. Unsurprisingly, it recognized O1 as O1 on three of 
three simulation runs, in the sense that it activated the O1 
group unit more than the group units for O2 or O3 (roughly 
0.7 versus 0.6 or less, respectively; objects O2 and O3 are as 
active as they are because there is no lateral inhibition 
between group [object file] units).  

Simulation 2 tested the model’s ability to recognize an 
object when it has an extra part. On three runs, the model was 
initially trained on objects O1-O3, and then tested with O4. O4 
is the same as O1, but with an extra part, P3, in a new relation 
to P4. In addition to encoding O4 as a new object file, the 
model also recognized it as most similar to object O1 with 
activation about 0.7, versus about 0.5 for O2 and O3. When 
the model was then tested with O1 as a stimulus (after O4 was 
encoded into memory), the model recognized O1 as O1 (about 
0.7), but also activated O4 as a close match (about 0.6 versus 
about 0.5 for O2 and O3). 
 

Table 1: Object Library for Simulations 
 

O1 [(P1,1, R1) + (P4,4, R2)], [(P1,2, R3) + (P4,4, R4)] 
O2 [(P5,5, R7) + (P11,11, R8)], [(P8,8, R9) + (P11,11, R10)], 

[(P10,10, R11) + (P11,11, R12)] 
O3 [(P13,13, R14) + (P4,4, R2)], [(P12,12, R13) + (P12,12, R14)] 
O4 [(P1,1, R1) + (P4,4, R2)], [(P1,2, R3) + (P4,4, R4)],  

[(P3,3, R5) + (P4,4, R6)] 
O5 [(P5,5, R7) + (P11,11, R8)], [(P10,10, R11) + (P11,11, R12)] 
O6 [(P6,6, R7) + (P11,11, R8)], [(P8,8, R9) + (P11,11, R10)], 

[(P10,10, R11) + (P11,11, R12)] 
 

Simulation 3 tested the model’s ability to recognize an 
object with a missing part. In three runs, the model was again 
trained with O1-O3 and tested with O5, which is like O2, but 
missing part P8. The model correctly recognized O5 as most 
similar to O2 on two out of the three runs. On the third run, 
the model classified O5 as most similar to both O2 and O1 
equally. We speculate that in this case the part and relation 
vectors randomly generated for O1 happened to be similar to 
those of O2, in which case this result would be an example of 
a neighborhood effect. However, in all simulations, when O2 
was re-presented after O5 was encoded, the model recognized 
it as an instance of O2, with O5 as a close second (both near 
0.7), preferentially activating both over O1. 

Finally, simulation 4 tested the effect of replacing one part 
with another. Again, in three runs, the model was trained on 
O1-O3, and then tested with O6 (O6 is like O2, but with P5 
replaced by P6). On two of three runs, the model recognized 
O6 as most similar to O2. On the third, the model slightly 
favored O3. Once again, we speculate that this result is due to 
neighborhood effects created by the randomization of the 
vectors. In all runs, when O2 was re-presented to the model, 
it activated O2 (greater than 0.7), with O6 as a close second. 

Discussion 
The online generation of object files from the output of 
middle-to-late vision is a crucial step in visual thinking. We 
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present a model that, starting with outputs of a JIM-like 
model of shape perception, generates representations that can 
be stored in memory for future recognition and can be used 
by a LISA-like inference engine to reason about those 
objects. Preliminary simulation results suggest that this 
approach provides a promising starting point for simulating 
both object recognition and the visual-cognitive interface. 

Simulations demonstrated that the model can correctly 
recognize familiar objects (simulation 1) as well as new 
objects created by adding (simulation 2), deleting (simulation 
3), and replacing (simulation 4) parts of familiar objects. All 
of these transformations pose problems for non-
compositional (e.g. template-based) accounts of object 
recognition (Biederman, 1987), but they are commonplace in 
human interactions with objects. Parts are often deleted by 
occlusion or by modification of the physical object (e.g. as 
when a tire is removed from a car); added, as when new parts 
are added to objects to extend functional capabilities;  or 
replaced (e.g., for styling reasons). These types of 
modifications are especially common in commercially 
designed objects, so our ability to recognize and reason about 
these objects depends on our ability to tolerate these types of 
modifications: The first time we see a new model of 
coffeemaker, we may decide that the styling is not to our 
liking, but we do not stare at it in confusion about what it is. 

Crucially, the representations used by this model are not 
only useful for recognition, as shown by the simulations, but 
also lend themselves naturally to reasoning about the objects’ 
function. In particular, these representations are already in 
“LISAese”, the representational format used by the LISA 
model, and as such are available to the full inductive power 
of that inference engine. For example, given an object file 
describing a novel coffee maker, LISA is well-equipped to 
infer that the handle is where the pot should be grasped, the 
filter basket is where the ground coffee should be placed, and 
the carafe is where the brewed coffee will collect. Once the 
model is supplied with a JIM-like front-end, it should be in a 
position to start with object images and end with inferences 
about those objects. 
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