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Abstract. Benthic microbial methanogenesis is a known
source of methane in marine systems. In most sediments,
the majority of methanogenesis is located below the sulfate-
reducing zone, as sulfate reducers outcompete methanogens
for the major substrates hydrogen and acetate. The coex-
istence of methanogenesis and sulfate reduction has been
shown before and is possible through the usage of non-
competitive substrates by methanogens such as methanol or
methylated amines. However, knowledge about the magni-
tude, seasonality, and environmental controls of this noncom-
petitive methane production is sparse. In the present study,
the presence of methanogenesis within the sulfate reduc-
tion zone (SRZ methanogenesis) was investigated in sed-
iments (0-30cm below seafloor, cmb.s.f.) of the season-
ally hypoxic Eckernférde Bay in the southwestern Baltic
Sea. Water column parameters such as oxygen, temperature,
and salinity together with porewater geochemistry and ben-
thic methanogenesis rates were determined in the sampling
area “Boknis Eck” quarterly from March 2013 to Septem-
ber 2014 to investigate the effect of seasonal environmental
changes on the rate and distribution of SRZ methanogene-
sis, to estimate its potential contribution to benthic methane
emissions, and to identify the potential methanogenic groups
responsible for SRZ methanogenesis. The metabolic path-

way of methanogenesis in the presence or absence of sul-
fate reducers, which after the addition of a noncompetitive
substrate was studied in four experimental setups: (1) un-
altered sediment batch incubations (net methanogenesis),
(2) '*C-bicarbonate labeling experiments (hydrogenotrophic
methanogenesis), (3) manipulated experiments with the ad-
dition of either molybdate (sulfate reducer inhibitor), 2-
bromoethanesulfonate (methanogen inhibitor), or methanol
(noncompetitive substrate, potential methanogenesis), and
(4) the addition of '3C-labeled methanol (potential methy-
lotrophic methanogenesis). After incubation with methanol,
molecular analyses were conducted to identify key functional
methanogenic groups during methylotrophic methanogene-
sis. To also compare the magnitudes of SRZ methanogen-
esis with methanogenesis below the sulfate reduction zone
(>30cmb.s.f.), hydrogenotrophic methanogenesis was de-
termined by '#C-bicarbonate radiotracer incubation in sam-
ples collected in September 2013.

SRZ methanogenesis changed seasonally in the up-
per 30cmb.s.f. with rates increasing from March
(0.2nmolem™3d~!) to November (1.3nmolcm3d~1)
2013 and March (0.2nmolecm™3d~') to September
(0.4nmolcm™3d~1) 2014. Its magnitude and distribution
appeared to be controlled by organic matter availability,
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C/N, temperature, and oxygen in the water column,
revealing higher rates in the warm, stratified, hypoxic
seasons (September—November) compared to the colder,
oxygenated seasons (March-June) of each year. The ma-
jority of SRZ methanogenesis was likely driven by the
usage of noncompetitive substrates (e.g., methanol and
methylated compounds) to avoid competition with sulfate
reducers, as was indicated by the 1000-3000-fold increase
in potential methanogenesis activity observed after methanol
addition.  Accordingly, competitive hydrogenotrophic
methanogenesis increased in the sediment only below
the depth of sulfate penetration (>30cmb.s.f.). Members
of the family Methanosarcinaceae, which are known for
methylotrophic methanogenesis, were detected by PCR
using Methanosarcinaceae-specific primers and are likely to
be responsible for the observed SRZ methanogenesis.

The present study indicates that SRZ methanogenesis is an
important component of the benthic methane budget and car-
bon cycling in Eckernférde Bay. Although its contributions
to methane emissions from the sediment into the water col-
umn are probably minor, SRZ methanogenesis could directly
feed into methane oxidation above the sulfate—methane tran-
sition zone.

1 Introduction

After water vapor and carbon dioxide, methane is the most
abundant greenhouse gas in the atmosphere (e.g., Hartmann
et al., 2013; Denman et al., 2007). Its atmospheric concen-
tration has increased more than 150 % since preindustrial
times, mainly through increased human activities such as fos-
sil fuel usage and livestock breeding (Hartmann et al., 2013;
Wuebbles and Hayhoe, 2002; Denman et al., 2007). Deter-
mining the natural and anthropogenic sources of methane
is one of the major goals for oceanic, terrestrial, and atmo-
spheric scientists to be able to predict further impacts on the
world’s climate. The ocean is considered to be a modest nat-
ural source for atmospheric methane (Wuebbles and Hayhoe,
2002; Reeburgh, 2007; EPA, 2010). However, research is still
sparse on the origin of the observed oceanic methane, which
automatically leads to uncertainties in current ocean flux es-
timations (Bange et al., 1994; Naqvi et al., 2010; Bakker et
al., 2014).

Within the marine environment, the coastal areas (includ-
ing estuaries and shelf regions) are considered the major
source for atmospheric methane, contributing up to 75 % to
the global ocean methane production (Bange et al., 1994).
The majority of coastal methane is produced during micro-
bial methanogenesis in the sediment, with probably only a
minor part originating from methane production within the
water column (Bakker et al., 2014). However, knowledge
on the magnitude, seasonality, and environmental controls of
benthic methanogenesis is still limited.
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In marine sediments, methanogenesis activity is mostly
restricted to the sediment layers below sulfate reduction
due to the successful competition of sulfate reducers with
methanogens for the mutual substrates acetate and hydrogen
(H;; Oremland and Polcin, 1982; Crill and Martens, 1986;
Jgrgensen, 2006). Methanogens produce methane mainly
from using acetate (acetoclastic methanogenesis) or H, and
carbon dioxide (CO»; hydrogenotrophic methanogenesis).
Competition with sulfate reducers can be relieved through
the usage of noncompetitive substrates (e.g., methanol or
methylated compounds, methylotrophic methanogenesis; Ci-
cerone and Oremland, 1988; Oremland and Polcin, 1982).
The coexistence of sulfate reduction and methanogenesis has
been detected in a few studies from organic-rich sediments,
e.g., salt-marsh sediments (Oremland et al., 1982; Buckley et
al., 2008), coastal sediments (Holmer and Kristensen, 1994,
Jgrgensen and Parkes, 2010), or sediments in upwelling re-
gions (Pimenov et al., 1993; Ferdelman et al., 1997; Maltby
etal., 2016), indicating the importance of these environments
for methanogenesis within the sulfate reduction zone (SRZ
methanogenesis). So far, however, environmental controls of
SRZ methanogenesis remain elusive.

The coastal inlet Eckernforde Bay (southwestern Baltic
Sea) is an excellent model environment to study seasonal
and environmental controls of benthic SRZ methanogene-
sis. Here, the muddy sediments are characterized by high
organic loading and high sedimentation rates (Whiticar,
2002), which lead to anoxic conditions within the upper-
most 0.1-0.2cm b.s.f. (Preisler et al., 2007). Seasonally hy-
poxic (dissolved oxygen <63 uM) and anoxic (dissolved
oxygen =0 puM) events in the bottom water of Eckernforde
Bay (Lennartz et al., 2014; Steinle et al., 2017) provide ideal
conditions for anaerobic processes at the sediment surface.

Sulfate reduction is the dominant pathway of organic car-
bon degradation in Eckernforde Bay sediments in the upper
30cmb.s.f., followed by methanogenesis in deeper sediment
layers where sulfate is depleted (< 30cmb.s.f.; Whiticar,
2002; Treude et al., 2005a; Martens et al., 1998; Fig. 1). This
methanogenesis below the sulfate—methane transition zone
(SMTZ) can be intense and often leads to methane oversat-
uration in the porewater below 50 cm of sediment depth, re-
sulting in gas bubble formation (Abegg and Anderson, 1997;
Whiticar, 2002; Thiefen et al., 2006). Thus, methane is trans-
ported from the methanogenic zone (> 30 cm b.s.f.) to the sur-
face sediment by both molecular diffusion and advection via
rising gas bubbles (Wever et al., 1998; Treude et al., 2005a).
Although upward-diffusing methane is mostly retained by
the anaerobic oxidation of methane (AOM; Treude et al.,
2005a), a major part is reaching the sediment—water interface
through gas bubble transport (Treude et al., 2005a; Jackson et
al., 1998), resulting in a supersaturation of the water column
with respect to atmospheric methane concentrations (Bange
et al., 2010). The time series station Boknis Eck in the Eck-
ernforde Bay is a known site of methane emissions into the
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Figure 1. Overview of processes relevant for benthic methane production, consumption, and emission in the Eckernforde Bay. The thickness
of arrows for emissions and coupling between surface processes indicates the strength of methane supply. Note that this figure combines
existing knowledge with results from the present study. See discussion for more details.

atmosphere throughout the year due to this supersaturation
of the water column (Bange et al., 2010).

The source for benthic and water column methane was
seen in methanogenesis below the SMTZ (<« 30cmb.s.f,;
Whiticar, 2002); however, the coexistence of sulfate re-
duction and methanogenesis has been postulated (Whiticar,
2002; Treude et al., 2005a). Still, the magnitude and envi-
ronmental controls of SRZ methanogenesis are poorly un-
derstood, even though SRZ methanogenesis may make a
measurable contribution to benthic methane emissions given
the short diffusion distance to the sediment—water interface
(Knittel and Boetius, 2009). The production of methane
within the sulfate reduction zone of Eckernforde Bay sedi-
ments could further explain the peaks in methane oxidation
observed in top sediment layers, which was previously at-
tributed to methane transported to the sediment surface via
rising gas bubbles (Treude et al., 2005a).

In the present study, we investigated sediments from
within (<30 cmb.s.f., on a seasonal basis) and below the sul-
fate reduction zone (< 30 cm b.s.f., on one occasion) and the
water column (on a seasonal basis) at the time series station
Boknis Eck in Eckernférde Bay to validate the existence of
SRZ methanogenesis and its potential contribution to ben-
thic methane emissions. Water column parameters like oxy-
gen, temperature, and salinity together with porewater geo-
chemistry and benthic methanogenesis were measured over
the course of 2 years. In addition to seasonal rate measure-
ments, inhibition and stimulation experiments, stable isotope
probing, and molecular analysis were carried out to find out if

www.biogeosciences.net/15/137/2018/

SRZ methanogenesis (1) is controlled by environmental pa-
rameters, (2) shows seasonal variability, and/or (3) is based
on noncompetitive substrates with a special focus on methy-
lotrophic methanogens.

2 Material and methods
2.1 Study site

Samples were taken at the time series station Boknis Eck
(BE; 54°31.15'N, 10°02.18 'E; http://www.bokniseck.de) lo-
cated at the entrance of Eckernforde Bay in the southwestern
Baltic Sea with a water depth of about 28 m (map of sampling
site can be found in Hansen et al., 1999). From mid-March
until mid-September the water column is strongly stratified
due to the inflow of saltier North Sea water and warmer and
fresher surface water (Bange et al., 2011). Organic matter
degradation in the deep layers causes pronounced hypoxia
(March—September) or even anoxia (August—September;
Smetacek, 1985; Smetacek et al., 1984). The source of or-
ganic material is phytoplankton blooms that occur regularly
in spring (February—March) and fall (September—November)
and are followed by the pronounced sedimentation of organic
matter (Bange et al., 2011). To a lesser extent, phytoplank-
ton blooms and sedimentation are also observed during the
summer months (July—August; Smetacek et al., 1984). Sed-
iments at BE are generally classified as soft, fine-grained
muds (<40 um) with a carbon content of 3 to 5 wt % (Balzer
et al., 1986). The bulk of organic matter in Eckernférde Bay

Biogeosciences, 15, 137-157, 2018
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sediments originates from marine plankton and macroalgal
sources (Orsi et al., 1996), and its degradation leads to the
production of free methane gas (Wever and Fiedler, 1995;
Abegg and Anderson, 1997; Wever et al., 1998). The oxy-
gen penetration depth is limited to the upper few millimeters
when bottom waters are oxic (Preisler et al., 2007). Reduc-
ing conditions within the sulfate reduction zone lead to a dark
gray or black sediment color with a strong hydrogen sulfur
odor in the upper meter of the sediment and a dark olive-
green color in the deeper sediment layers (> 1 m; Abegg and
Anderson, 1997).

2.2 Water column and sediment sampling

Sampling was done on a seasonal basis during the years
2013 and 2014. One-day field trips with either RV Alkor
(cruise no. AL410), RV Littorina, or RV Polarfuchs were
conducted in March, June, and September of each year. In
2013, additional sampling was conducted in November. In
each sampling month, water profiles of temperature, salinity,
and oxygen concentration (optical sensor RINKO III; detec-
tion limit = 2 uM) were measured with a CTD (Hydro-Bios).
In addition, water samples for methane concentration mea-
surements were taken at 25 m of water depth with a Niskin
bottle (4 L each) rosette attached to the CTD (Table 1). Com-
plementary samples for water column chlorophyll were taken
at 25m of water depth with the CTD rosette within the
same months during standardized monthly sampling cruises
to Boknis Eck organized by GEOMAR.

Sediment cores were taken with a miniature multi-
corer (MUC; K.UM. Kiel), holding four core liners
(length = 60 cm, diameter = 10cm) at once. The cores had
an average length of ~30cm and were stored at 10°C in
a cold room (GEOMAR) until further processing (normally
within 1-3 days after sampling).

In September 2013, a gravity core was taken in addi-
tion to the MUC cores. The gravity core was equipped with
an inner plastic bag (polyethylene; diameter: 13 cm). Af-
ter core recovery (330cm total length), the polyethylene
bag was cut open at 12 different sampling depths, result-
ing in intervals of 30 cm, and sampled directly onboard for
sediment porewater geochemistry (see Sect. 2.4), sediment
methane (see Sect. 2.5), sediment solid-phase geochemistry
(see Sect. 2.6), and microbial rate measurements for hy-
drogenotrophic methanogenesis as described in Sect. 2.8.

2.3 Water column parameters

In each sampling month, water samples for methane con-
centration measurements were taken at 25 m of water depth
in triplicates. Therefore, three 25 mL glass vials were filled
bubble free directly after CTD rosette recovery and closed
with butyl rubber stoppers. Biological activity in samples
was stopped by adding saturated mercury chloride solution
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followed by storage at room temperature until further treat-
ment.

Concentrations of dissolved methane (CHy) were deter-
mined by headspace gas chromatography as described in
Bange et al. (2010). Calibration for CH4 was done by using
a two-point calibration with known methane concentrations
before the measurement of headspace gas samples, resulting
in an error of <5 %.

Water samples for chlorophyll concentration were taken
by transferring the complete water volume (from 25m wa-
ter of depth) from one water sampler into a 4.5 Nalgene
bottle, from which approximately 0.7-1L (depending on
the plankton content) were filtrated back in the GEOMAR
laboratory using a GF/F filter (Whatman; 25 mm diameter,
8uM pores size). Dissolved chlorophyll a concentrations
were determined using the fluorometric method described by
Welschmeyer (1994) with an error of <10 %.

2.4 Sediment porewater geochemistry

Porewater was extracted from sediment within 24 h after core
retrieval using nitrogen (Nj) pre-flushed rhizons (0.2 pm;
Rhizosphere Research Products; Seeberg-Elverfeldt et al.,
2005). In MUC cores, rhizons were inserted into the sedi-
ment in 2 cm intervals through pre-drilled holes in the core
liner. In the gravity core, rhizons were inserted into the sedi-
ment in 30 cm intervals directly after retrieval.

Extracted porewater from MUC and gravity cores was im-
mediately analyzed for sulfide using standardized photomet-
ric methods (Grasshoff et al., 1999).

Sulfate concentrations were determined using ion chro-
matography (Metrohm 761). Analytical precision was <1 %
based on repeated analysis of IAPSO seawater standards (di-
lution series) with an absolute detection limit of 1 uM cor-
responding to a detection limit of 30 uM for the undiluted
sample.

For analysis of dissolved inorganic carbon (DIC), 1.8 mL
of porewater was transferred into a 2 mL glass vial, fixed with
10 pL saturated HgCL; solution, and crimp sealed. DIC con-
centration was determined as CO, with a multi N/C 2100
analyzer (Analytik Jena) following the manufacturer instruc-
tions. Therefore, the sample was acidified with phosphoric
acid and the outgassing CO, was measured. The detection
limit was 20 uM with a precision of 2-3 %.

2.5 Sediment methane concentrations

In March 2013, June 2013, and March 2014, one MUC core
was sliced in 1 cm intervals until 6 cm b.s.f. followed by 2 cm
intervals until the end of the core. In the other sampling
months, the MUC core was sliced in 1cm intervals until
6 cmb.s.f. followed by 2 cm intervals until 10cmb.s.f. and
5 cm intervals until the end of the core.

Per sediment depth (in MUC and gravity cores), 2cm™>
of sediment were transferred into a 10 mL glass vial contain-

www.biogeosciences.net/15/137/2018/
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Table 1. Sampling months with bottom water (~ 2 m above the seafloor) temperature (Temp.), dissolved oxygen (O,), and dissolved methane

(CHy) concentration.

Sampling month  Date Instrument  Temp. O, CHy Typeof
°C) (M) (nM) analysis
March 2013 13.03.2013 CTD 3 340 30 WC
MUC All
June 2013 27.06.2013 CTD 6 94 125 WC
MUC All
September 2013 25.09.2013 CTD 10 bdl 262 WC
MUC All
GC GC-All
November 2013 08.11.2013 CTD 12 163 13 WC
MUC All
March 2014 13.03.2014 CTD 4 209 41*  WC
MUC All
June 2014 08.06.2014 CTD 7 47 61 WC
MUC All
September 2014  17.09.2014 CTD 13 bdl 234 WC
MUC All

MUC: multicorer, GC: gravity corer, CTD: CTD rosette, bdl: below detection limit (5 uM), All: methane gas
analysis, porewater analysis, sediment geochemistry, net methanogenesis analysis, hydrogenotrophic
methanogenesis analysis, GC-All: analysis for gravity cores including methane gas analysis, porewater
analysis, sediment geochemistry, hydrogenotrophic methanogenesis analysis, WC: water column analyses
including methane analysis, chlorophyll analysis. * Concentrations from the regular monthly Boknis Eck
sampling cruises on 24 September 2013 and 5 March 2014 (www.bokniseck.de).

ing SmL NaOH (2.5 %) for the determination of sediment
methane concentration per volume of sediment. The vial was
quickly closed with a butyl septum, crimp sealed, and shaken
thoroughly. The vials were stored upside down at room tem-
perature until measurement via gas chromatography. There-
fore, 100 uL of headspace was removed from the gas vials
and injected into a Shimadzu gas chromatograph (GC-2014)
equipped with a packed Haysep-D column and a flame ion-
ization detector. The column temperature was 80 °C and the
helium flow was set to 12mLmin~!. CH4 concentrations
were calibrated against CH,4 standards (Scotty gases). The
detection limit was 0.1 ppm with a precision of 2 %.

2.6 Sediment solid-phase geochemistry

Following the sampling for CHy, the same cores described
under Sect. 2.5 were used for the determination of the sedi-
ment solid-phase geochemistry, i.e., porosity, particulate or-
ganic carbon (POC), and particulate organic nitrogen (PON).

The sediment porosity of each sampled sediment section
was determined by the weight difference of 5cm™ of wet
sediment after freeze-drying for 24 h. Dried sediment sam-
ples were then used for analysis of particulate organic carbon
(POC) and particulate organic nitrogen (PON) with a Carlo
Erba element analyzer (NA 1500). The detection limit for C
and N analysis was <0.1 dry weight percent (%) with a pre-
cision of <2 %.

www.biogeosciences.net/15/137/2018/

2.7 Sediment methanogenesis

2.7.1 Methanogenesis in MUC cores

In each sampling month, three MUC cores were sliced
in 1cm intervals until 6¢cmb.s.f., in 2cm intervals until
10 cm b.s.f., and in 5 cm intervals until the bottom of the core.
Every sediment layer was transferred to a separate beaker
and quickly homogenized before subsampling. The exposure
time with air, i.e., oxygen, was kept to a minimum. Sedi-
ment layers were then sampled for the determination of net
methanogenesis (defined as the sum of total methane produc-
tion and consumption, including all available methanogenic
substrates in the sediment), hydrogenotrophic methanogen-
esis (methanogenesis based on the substrates CO, and Hj),
and potential methanogenesis (methanogenesis at ideal con-
ditions, i.e., no lack of nutrients) as described in the follow-
ing sections.

Net methanogenesis

Net methanogenesis was determined with sediment slurry
experiments by measuring the headspace methane concen-
tration over time. Per sediment layer, triplicates of 5 cm™ of
sediment were transferred into N»-flushed sterile glass vials
(30 mL) and mixed with 5 mL of filtered bottom water. The
slurry was repeatedly flushed with N, to remove residual
methane and to ensure complete anoxia. Slurries were incu-
bated in the dark at in situ temperature, which varied for each
sampling date (Table 1). Headspace samples (0.1 mL) were

Biogeosciences, 15, 137-157, 2018
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taken out every 3—4 days over a time period of 4 weeks and
analyzed on a Shimadzu GC-2104 gas chromatograph (see
Sect. 2.5). Net methanogenesis rates were determined by the
linear increase in the methane concentration over time (min-
imum of six time points; see also Fig. S1 in the Supplement).

Hydrogenotrophic methanogenesis

To determine if hydrogenotrophic methanogenesis, i.e.,
methanogenesis based on the competitive substrate Hj, is
present in the sulfate-reducing zone, radioactive sodium bi-
carbonate (NaH!*CO3) was added to the sediment.

Per sediment layer, sediment was sampled in triplicates
with glass tubes (5 mL) that were closed with butyl rubber
stoppers on both ends according to Treude et al. (2005b).
Through the stopper, NaH!'#COj (dissolved in water, injec-
tion volume 6 pL, activity 222 kBq, specific activity = 1.85—
2.22GBgqmmol~!) was injected into each sample and in-
cubated for 3 days in the dark at in situ temperature (Ta-
ble 1). To stop bacterial activity, sediment was transferred
into 50 mL glass vials filled with 20 mL of sodium hydrox-
ide (2.5 % w/w), closed quickly with rubber stoppers, and
shaken thoroughly. Five controls were produced from vari-
ous sediment depths by injecting the radiotracer directly into
the NaOH with sediment.

The production of '“C-methane was determined with the
slightly modified method by Treude et al. (2005b) used for
the determination of the anaerobic oxidation of methane. The
method was identical, except no unlabeled methane was de-
termined by using gas chromatography. Instead, DIC values
were used to calculate hydrogenotrophic methane produc-
tion.

Potential methanogenesis in manipulated experiments

To examine the interaction between sulfate reduction and
methanogenesis, inhibition and stimulation experiments
were carried out. Therefore, every other sediment layer was
sampled resulting in the following examined six sediment
layers: 0-1, 2-3, 4-5, 6-8, 10-15, and 20-25 cm. From each
layer, sediment slurries were prepared by mixing 5 mL of
sediment in a 1 : 1 ratio with an adapted artificial seawater
medium (salinity 24; Widdel and Bak, 1992) in N;-flushed,
sterile glass vials before further manipulations.

In total, four different treatments, each in triplicates,
were prepared per depth: (1) with sulfate addition (17 mM),
(2) with sulfate (17mM) and molybdate (22mM) addi-
tion, (3) with sulfate (17 mM) and 2-bromoethanesulfonate
(BES; 60 mM) addition, and (4) with sulfate (17 mM) and
methanol (10 mM) addition. From here on, the following
names are used to describe the different treatments, re-
spectively: (1) control treatment, (2) molybdate treatment,
(3) BES treatment, and (4) methanol treatment. Control treat-
ments feature the natural sulfate concentrations occurring in
sediments of the sulfate reduction zone at the sampling site.

Biogeosciences, 15, 137-157, 2018

Molybdate was used as an enzymatic inhibitor for sulfate re-
duction (Oremland and Capone, 1988) and BES was used as
an inhibitor for methanogenic Archaea (Hoehler et al., 1994).
Methanol is a known noncompetitive substrate, which is used
by methanogens but not by sulfate reducers (Oremland and
Polcin, 1982), and thus it is suitable to examine noncompet-
itive methanogenesis. Treatments were incubated similar to
net methanogenesis (see the previous paragraph about net
methanogenesis) by incubating sediment slurries at the re-
spective in situ temperature (Table 1) in the dark for a time
period of 4 weeks. Headspace samples (0.1 mL) were taken
every 3-5 days over a time period of 4 weeks and potential
methanogenesis rates were determined by the linear increase
in methane concentration over time (minimum of six time
points).

Potential methylotrophic methanogenesis from methanol
using stable isotope probing

One additional experiment was conducted with sediments
from September 2014 by adding '3C-labeled methanol to in-
vestigate the production of '3C-labeled methane. Three cores
were stored at 1°C after the September 2014 cruise until
further processing ~ 3.5 months later. The low storage tem-
perature together with the expected oxygen depletion in the
enclosed supernatant water after the retrieval of the cores
likely led to slowed anaerobic microbial activity during stor-
age time and preserved the sediments for potential methano-
genesis measurements.

Sediment cores were sliced in 2 cm intervals and the up-
per 0-2cmb.s.f. sediment layer of all three cores was com-
bined in a beaker and homogenized. Then, sediment slurries
were prepared by mixing 5cm™3 of sediment with 5mL of
artificial seawater medium in N-flushed, sterile glass vials
(30mL). After this, methanol was added to the slurry with
a final concentration of 10 mM (see also the previous para-
graph about potential methanogenesis in manipulated exper-
iments). Methanol was enriched with >C-labeled methanol
in a ratio of 1: 1000 between 3C-labeled (99.9 % 3C) and
non-labeled methanol mostly consisting of '>C (manufac-
turer: Roth). In total, 54 vials were prepared for nine dif-
ferent sampling time points during a total incubation time of
37 days. All vials were incubated at 13 °C (in situ tempera-
ture in September 2014) in the dark. At each sampling point,
six vials were stopped: one set of triplicates was used for
headspace methane and carbon dioxide determination and a
second set of triplicates was used for porewater analysis.

Headspace methane and carbon dioxide concentrations
(volume 100 uL) were determined on a Shimadzu gas chro-
matograph (GC-2014) equipped with a packed Haysep-D
column, a flame ionization detector, and a methanizer. The
methanizer (reduced nickel) reduces carbon dioxide with
hydrogen to methane at a temperature of 400 °C. The col-
umn temperature was 80°C and the helium flow was set
to 12mL min~!. Methane concentrations (including reduced
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CO;,) were calibrated against methane standards (Scotty
gases). The detection limit was 0.1 ppm with a precision of
2%.

Analyses of the '3C/!2C ratios of methane and car-
bon dioxide were conducted after headspace concentration
measurements by using a continuous-flow combustion gas
chromatograph (Trace Ultra; Thermo Scientific), which was
coupled to an isotope ratio mass spectrometer (MAT253;
Thermo Scientific). The isotope ratios of methane and car-
bon dioxide given in the common delta notation (§'3C in
permill) are reported relative to Vienna Pee Dee Belemnite
(VPDB) standard. Isotope precision was 0.5 %o when mea-
suring near the detection limit of 10 ppm.

For porewater analysis of methanol concentration and iso-
tope composition, each sediment slurry of the triplicates was
transferred into argon-flushed 15 mL centrifuge tubes and
centrifuged for 6 min at 4500 rpm. Then 1 mL of filtered
(0.2 um) porewater was transferred into Nj-flushed 2 mL
glass vials for methanol analysis, crimp sealed, and immedi-
ately frozen at —20 °C. Methanol concentrations and isotope
composition were determined via high-performance liquid
chromatography—ion ratio mass spectrometry (HPLC-IRMS;
Thermo Fisher Scientific) at the MPI Marburg. The detection
limit was 50 uM with a precision of 0.3 %e.

2.7.2 Methanogenesis in the gravity core

Ex situ hydrogenotrophic methanogenesis was determined
in a gravity core taken in September 2013. The pathway is
thought to be the main methanogenic pathway in the sedi-
ment below the SMTZ in Eckernforde Bay (Whiticar, 2002).
Hydrogenotrophic methanogenesis was determined using ra-
dioactive sodium bicarbonate (NaH14CO3). At every sam-
pled sediment depth (12 depths in 30 cm intervals), tripli-
cate glass tubes (5 mL) were inserted directly into the sedi-
ment. Tubes were filled bubble free with sediment and closed
with butyl rubber stoppers on both ends according to Treude
et al. (2005). The methods following sampling were identi-
cal to those described in the previous paragraph about hy-
drogenotrophic methanogenesis.

2.8 Molecular analysis

During the non-labeled methanol treatment of the 0—
1 cmb.s.f. horizon from the September 2014 sampling (see
also the previous paragraph about potential methanogenesis
in manipulated experiments), additional samples were pre-
pared to detect and quantify the presence of methanogens
in the sediment. Therefore, an additional 15 vials were pre-
pared with the addition of methanol as described in the pre-
vious paragraph about potential methanogenesis in manipu-
lated experiments for five different time points (day 1 (=1ty),
day 8, day 16, day 22, and day 36) and stopped at each
time point by transferring sediment from the triplicate slur-
ries into whirl-paks (Nasco), which then were immediately
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frozen at —20°C. DNA was extracted from ~500mg of
sediment using the FastDNA® SPIN Kit for Soil (Biomed-
ical). The quantitative real-time polymerase chain reaction
(qPCR) technique using TagMan probes and TagMan chem-
istry (Life Technologies) was used for the detection of
methanogens on a ViiA7 qPCR machine (Life Technolo-
gies). Primer and probe sets as originally published by Yu et
al. (2005) were applied to quantify the orders Methanobac-
teriales, Methanosarcinales, and Methanomicrobiales along
with the two families Methanosarcinaceae and Methanosae-
taceae within the order Methanosarcinales. In addition, a uni-
versal primer set for the detection of the domain Archaea was
used (Yu et al., 2005).

Absolute quantification of the 16S rDNA from the groups
mentioned above was performed with standard dilution se-
ries. The standard concentration reached from 108 to 10!
copies per uL. Quantification of the standards and samples
was performed in duplicates. Reaction was performed in a
final volume of 12.5puL containing 0.5 uL of each primer
(10pmol uL=!; MWG), 0.25uL of the respective probe
(10pmol uL—!; Life Technologies), 4uL of H,O (Roth),
6.25 uL of TagMan Universal Master Mix II (Life Technolo-
gies), and 1L of sample or standard. Cycling conditions
started with an initial denaturation and activation step for
10 min at 95 °C followed by 45 cycles of 95 °C for 155, 56 °C
for 30's, and 60 °C for 60 s. Non-template controls were run
in duplicates with water instead of DNA for all primer and
probe sets and remained without any detectable signal after
45 cycles.

2.9 Statistical analysis

To determine the possible environmental control parame-
ters of SRZ methanogenesis, a principal component analysis
(PCA) was applied according to the approach described in
Gier et al. (2016). Prior to PCA, the dataset was transformed
into ranks to ensure the same data dimensions.

In total, two PCAs were conducted. The first PCA was
used to test the relation of parameters in the surface sed-
iment (integrated methanogenesis (0—5 cm, mmol m~2d~1),
POC content (average value from 0-5 cmb.s.f., wt %), C /N
(average value from 0-5 cm b.s.f., molar) and the bottom wa-
ter (25 m of water depth) oxygen (uUM), temperature (°C),
salinity (PSU), chlorophyll (ug L), and methane (nM). The
second PCA was applied on depth profiles of sediment SRZ
methanogenesis (nmol cm ™3 d—1), sediment depth (cm), sed-
iment POC content (wt %), sediment C / N ratio (molar), and
sampling month (one value per depth profile at a specific
month, the later in the year the higher the value).

For each PCA, biplots were produced to view data from
different angles and to graphically determine a potential pos-
itive, negative, or zero correlation between methanogenesis
rates and the tested variables.
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Figure 2. Parameters measured in the water column and sediment in the Eckernforde Bay in each sampling month in the year 2013. Net
methanogenesis (MG) and hydrogenotrophic (hydr.) methanogenesis rates are shown in triplicates with mean (solid line).
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3 Results
3.1 Water column parameters

From March 2013 to September 2014, the water column
had pronounced temporal and spatial variability in temper-
ature, salinity, and oxygen (Figs. 2 and 3). In 2013, the tem-
perature of the upper water column increased from March
(1°C) to September (16 °C), but decreased again in Novem-
ber (11 °C). The temperature of the lower water column in-
creased from March 2013 (2 °C) to November 2013 (12 °C).
In 2014, the lowest temperatures of the upper and lower wa-
ter column were reached in March (4 °C). Warmer tempera-
tures of the upper water column were observed in June and
September (around 17 °C), while the lower water column
peaked in September (13 °C).

Salinity increased over time during 2013, showing the
highest salinity of the upper and lower water column in
November (18 and 23 PSU, respectively). In 2014, the salin-
ity of the upper water column was highest in March and
September (both 17 PSU) and lowest in June (13 PSU). The
salinity of the lower water column increased from March
2014 (21 PSU) to September 2014 (25 PSU).

In both years, June and September showed the most pro-
nounced vertical gradient of temperature and salinity, featur-
ing a pycnocline at around ~ 14 m of water depth.

Summer stratification was also seen in the O, profiles,
which showed O, depleted conditions (O3 < 150 uM) in the
lower water column from June to September in both years,
reaching concentrations below 1-2uM (detection limit of
CTD sensor) in September of both years (Figs. 2 and 3).
The water column was completely ventilated, i.e., homog-
enized, in March of both years with O, concentrations of
300—400 uM down to the seafloor at about 28 m.

3.2 Sediment geochemistry in MUC cores

Sediment porewater and solid-phase geochemistry results for
the years 2013 and 2014 are shown in Figs. 2 and 3, respec-
tively.

Sulfate concentrations at the sediment surface ranged be-
tween 15 and 20mM. The concentration decreased with
depth in all sampling months but was never fully depleted
until the bottom of the core (18-29 cmb.s.f.; between 2 and
7mM sulfate). November 2013 showed the strongest de-
crease from ~20mM at the top to ~2mM at the bottom
of the core (27 cmb.s.f.).

Opposite to sulfate, the methane concentration increased
with sediment depth in all sampling months (Figs. 2 and 3).
Over the course of a year (i.e., March to November in 2013
and March to September in 2014), the maximum methane
concentration increased, reaching the highest concentration
in November 2013 (~ 1 mM at 26 cmb.s.f.) and September
2014 (0.2 mM at 23 cm b.s.f.). Simultaneously, methane pro-
files became steeper, revealing higher methane concentra-
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tions at a shallower sediment depth late in the year. The mag-
nitudes of methane concentrations were similar in the respec-
tive months of 2013 and 2014.

In all sampling months, the sulfide concentration increased
with sediment depth (Figs. 2 and 3). Similar to methane, sul-
fide profiles revealed higher sulfide concentrations at a shal-
lower sediment depth together with higher peak concentra-
tions over the course of the sampled months in each sampling
year. Accordingly, November 2013 (10.5 mM at 15 cmb.s.f.)
and September 2014 (2.8 mM at 15cmb.s.f.) revealed the
highest sulfide concentrations. September 2014 was the only
sampling month showing a pronounced decrease in sulfide
concentration from 15 to 21 cm b.s.f. of over 50 %.

DIC concentrations increased with increasing sediment
depth in all sampling months. Concomitant with the high-
est sulfide concentrations, the highest DIC concentration was
detected in November 2013 (26 mM at 27 cmb.s.f.). At the
surface, DIC concentrations ranged between 2 and 3 mM in
all sampling months. In June of both years, DIC concentra-
tions were lowest at the deepest sampled depth compared to
the other sampling months (16 mM in 2013, 13 mM in 2014).

In all sampling months, POC profiles scattered around
5+ 0.9 wt % with depth. Only in November 2013, June 2014,
and September 2014 did POC content exceed 5 wt % in the
upper 0-1 cmb.s.f. (5.9, 5.2, and 5.3 wt %, respectively) with
the highest POC content in November 2013. Also in Novem-
ber 2013, the surface C / N ratio (0-1 cmb.s.f.) of the partic-
ulate organic matter was the lowest of all sampling months
(8.6). In general, the C / N ratio increased with depth in both
years with values around 9 at the surface and values around
10-11 at the deepest sampled sediment depths.

3.3 Sediment geochemistry in gravity cores

Results from sediment porewater and solid-phase geochem-
istry in the gravity core from September 2013 are shown
in Fig. 4. Please note that the sediment depth of the grav-
ity core was corrected by comparing the sulfate concentra-
tions at Ocmb.s.f. in the gravity core with the correspond-
ing sulfate concentration and depth in the MUC core from
September 2013 (Fig. 2). The soft surface sediment is often
lost during the gravity coring procedure. Through this correc-
tion, the topmost layer of the gravity core was set at a depth
of 14cmb.s.f.

Porewater sulfate concentration in the gravity core de-
creased with depth (i.e., below 0.1 mM at 107 cmb.s.f.) and
stayed below 0.1 mM until 324 cmb.s.f. Sulfate increased
slightly (1.9 mM) at the bottom of the core (345 cmb.s.f.).
In concert with sulfate, methane, sulfide, DIC, POC, and
C /N profiles also showed distinct alteration in the profile
at 345cmb.s.f. (see below, Fig. 4). As fluid seepage has
not been observed at the Boknis Eck station (Schliiter et
al., 2000), these alterations could either indicate a change in
sediment properties or result from a sampling artifact from
the penetration of seawater through the core catcher into the
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Figure 3. Parameters measured in the water column and sediment
in the Eckernforde Bay in each sampling month in the year 2014.
Net methanogenesis (MG) and hydrogenotrophic (hydr.) methano-
genesis rates are shown in triplicates with mean (solid line).
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deepest sediment layer. The latter process is, however, not ex-
pected to considerably affect sediment solid-phase properties
(POC and C / N), and we therefore dismissed this hypothesis.

The methane concentration increased steeply with depth,
reaching a maximum of 4.8 mM at 76 cm b.s.f. The concen-
tration stayed around 4.7 mM until 262 cm b.s.f. followed by
a slight decrease until 324 cmb.s.f. (2.8 mM). From 324 to
345 cm b.s.f. methane increased again (3.4 mM).

Both sulfide and DIC concentrations increased with depth,
showing a maximum at 45 (~5mM) and 345cmb.s.f.
(~1mM), respectively. While sulfide decreased after
45cmb.s.f. to a minimum of ~300uM at 324cmb.s.f,, it
slightly increased again to ~ 1 mM at 345cmb.s.f. In ac-
cordance, DIC concentrations showed a distinct decrease be-
tween 324 and 345 cmb.s.f. (from 45 to 39 mM).

While POC contents varied around 5 wt % throughout the
core, the C / N ratio slightly increased with depth, revealing
the lowest ratio at the surface (~ 3) and the highest ratio at
the bottom of the core (~ 13). However, both POC and C /N
showed a distinct increase from 324 to 345 cmb.s.f.

3.4 Methanogenesis activity in MUC cores
3.4.1 Net methanogenesis

Net methanogenesis activity (calculated by the linear in-
crease of methane over time; see Fig. S1) was detected
throughout the cores in all sampling months (Figs. 2 and 3).
Activity measured in MUC cores increased over the course
of the year in 2013 and 2014 (that is, March to November
in 2013 and March to September in 2014) with lower rates
mostly <0.1 in March and higher rates >0.2 nmol cm =3 d~!
in November 2013 and September 2014. In general, Novem-
ber 2013 revealed the highest net methanogenesis rates
(1.3 nmolem—3d~! at 1-2cmb.s.f.). Peak rates were de-
tected at the sediment surface (0-1cmb.s.f.) in all sam-
pling months except for September 2013 when the maxi-
mum rates were situated between 10 and 15 cm b.s.f. In addi-
tion to the surface peaks, net methanogenesis showed sub-
surface (=below 1 until 30 cmb.s.f.) maxima in all sam-
pling months, but with alternating depths (between 10 and
25cmb.s.f).

A comparison of the integrated net methanogenesis rates
(025 cmb.s.f.) revealed the highest rates in September and
November 2013 (0.09 and 0.08 mmol m~2 d~!, respectively)
and the lowest rates in March 2014 (0.01 mmol m—2 d-1;
Fig. 5). A trend of increasing areal net methanogenesis rates
from March to September was observed in both years.

3.4.2 Hydrogenotrophic methanogenesis
Hydrogenotrophic methanogenesis activity determined by
14C-bicarbonate incubations of MUC cores is shown in

Figs. 2 and 3. In 2013, maximum activity ranged between
0.01 and 0.2 nmolcm=3d~!, while in 2014 maxima ranged
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only between 0.01 and 0.05 nmolcm ™3 d~!. In comparison,
maximum hydrogenotrophic methanogenesis was up to 2 or-
ders of magnitude lower compared to net methanogenesis.
Only in March 2013 did both activities reach a similar range.

Overall, hydrogenotrophic methanogenesis increased with
depth in March, September, and November 2013 and in
March, June, and September 2014. In June 2013, activity de-
creased with depth, showing the highest rates in the upper
0-5 cmb.s.f. and the lowest at the deepest sampled depth.

Concomitant with integrated net methanogenesis,
integrated hydrogenotrophic methanogenesis rates (0-
25cmb.s.f.) were high in September 2013, with slightly
higher rates in March 2013 (Fig. 5). The lowest areal rates
of hydrogenotrophic methanogenesis were seen in June of
both years.

Hydrogenotrophic methanogenesis activity in the grav-
ity core is shown in Fig. 4. The highest activity
(~0.7nmol cm™3 d~ ') was measured at 45 and 138 cm b.s.f.
followed by a decrease with increasing sediment depth
reaching 0.01 nmolcm™3d~! at the deepest sampled depth
(345 cmb.s.f)).
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3.4.3 Potential methanogenesis in manipulated
experiments

Potential methanogenesis rates in manipulated experiments
included either the addition of inhibitors (molybdate for the
inhibition of sulfate reduction or BES for the inhibition of
methanogenesis) or the addition of a noncompetitive sub-
strate (methanol). Control treatments were run with neither
the addition of inhibitors nor the addition of methanol.

Controls. Potential methanogenesis activity in the control
treatments was below 0.5nmol cm™3d~! from March 2014
to September 2014 (Fig. 6). Only in November 2013 did con-
trol rates exceed 0.5 nmolcm™ d~! below 6 cm b.s.f. While
rates increased with depth in November 2013 and June 2014,
they decreased with depth in the other two sampling months.

Molybdate. Peak potential methanogenesis rates in the
molybdate treatments were found in the uppermost sedi-
ment interval (0—1 cm b.s.f.) in almost every sampling month
with rates being 3-30 times higher compared to the con-
trol treatments (<0.5nmolcm =3 d~'). In November 2013,
potential methanogenesis showed two maxima (0-1 and
10-15cmb.s.f.). The highest measured rates were found in
September 2014 (~ 6 nmol cm ™3 d~!) followed by Novem-
ber 2013 (~5nmolcm =2 d~ ).

BES. Profiles of potential methanogenesis in the BES
treatments were similar to the controls mostly in the lower
range <0.5nmolcm—3d~'. Only in November 2013 did
rates exceed 0.5 nmol cm ™3 d~!. Rates increased with depth
in all sampling months, except for September 2014, when
the highest rates were found at the sediment surface (0-
lcmb.s.f)).

Methanol. In all sampling months, potential rates in the
methanol treatments were 3 orders of magnitude higher com-
pared to the control treatments (<0.5nmolcm™3d~!). Ex-
cept for November 2013, potential methanogenesis rates
in the methanol treatments were highest in the upper 0-
5cmb.s.f. and decreased with depth. In November 2013, the
highest rates were detected at the deepest sampled depth (20—
25cmb.s.f).

Biogeosciences, 15, 137-157, 2018
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Figure 6. Potential methanogenesis rates versus sediment depth in sediment sampled in November 2013, March 2014, June 2014, and
September 2014. Presented are four different types of incubations (treatments): control (blue symbols) describes the treatment with sediment
plus artificial seawater containing natural salinity (24 PSU) and sulfate concentrations (17 mM), molybdate (green symbols) is the treatment
with the addition of molybdate (22 mM), BES (purple symbols) is the treatment with 60 mM BES addition, and methanol (red symbols) is
the treatment with the addition of 10 mM of methanol. Shown are triplicates per depth interval and the mean as a solid line. Please note the

different x axis for the methanol treatment (red).

3.4.4 Potential methanogenesis followed by
13C-methanol labeling

Total methanol concentrations (labeled and unlabeled) in the
sediment decreased sharply in the first 2 weeks from ~ 8 mM
at day 1 to 0.5mM at day 13 (Fig. 7). At day 17, methanol
was below the detection limit. In the first 2 weeks, residual
methanol was enriched with 13C, reaching ~ 200 %o at day
13.

Over the same time period, the methane content in the
headspace increased from 2 ppmv at day 1 to ~ 66 000 ppmv
at day 17 and stayed around that value until the end of the
total incubation time (until day 37; Fig. 7). The carbon iso-
topic signature of methane (§ 13CCH4) showed a clear en-
richment of the heavier isotope '>C (Table 3) from day 9
to 17 (no methane was detectable at day 1). After day 17,
8 13CCH4 stayed around 13 %o until the end of the incuba-
tion. The content of CO; in the headspace increased from
~ 8900 ppmv at day 1 to ~ 29 000 ppmv at day 20 and stayed
around 30000 ppmv until the end of the incubation (Fig. 7).
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Please note that the majority of CO, was dissolved in the
porewater, and thus the CO, content in the headspace does
not show the total CO, abundance in the system. CO; in the
headspace was enriched with '3C during the first 2 weeks
(from —16.2 to —7.3 %o) but then stayed around —11 %o un-
til the end of the incubation.

3.5 Molecular analysis of benthic methanogens

In September 2014, additional samples were run during the
methanol treatment (see Sect. 2.7.) for the detection of ben-
thic methanogens via qPCR. The qPCR results are shown in
Fig. 8. For a better comparison, the microbial abundances are
plotted together with the sediment methane concentrations
from the methanol treatment, from which the rate calculation
for the methanol-methanogenesis at O—1 cmb.s.f. was done
(shown in Fig. 6).

Sediment methane concentrations increased over time, re-
vealing a slow increase in the first ~ 10 days followed by a
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Figure 7. Development of headspace gas content and isotope com-
position of methane (CHy) and carbon dioxide (CO,) as well as
porewater methanol (CH3OH) concentration and isotope composi-
tion during the 13C—1abeling experiment (with sediment from the
0-2 cmb.s.f. horizon in September 2014) with the addition of B¢
enriched methanol (13 c:l2c= 1:1000). (a) Concentrations of pore-
water methanol (CH3OH) and headspace content of methane (CHy)
and carbon dioxide (CO,) over time. (b) Isotope composition of
porewater CH3OH, headspace CHy, and headspace CO; over time.
Shown are means (from triplicates) with standard deviation.

steep increase between day 13 and day 20 and ending in a
stationary phase.

A similar increase was seen in the abundance of to-
tal and methanogenic Archaea. Total Archaea abundances
increased sharply in the second week of the incubation,
reaching a maximum at day 16 (~ 5000 x 10 copies g~ 1),
and stayed around 3000 x 10°—4000 x 10° copies g~! over
the course of the incubation. Similarly, methanogenic ar-
chaea, namely the order Methanosarcinales and within this
order the family Methanosarcinaceae, showed a sharp in-
crease in the first 2 weeks as well with the highest abun-
dances at day 16 (~6 x 10% and ~ 1 x 10° copies g~!, re-
spectively). Until the end of the incubation, the abundances
of Methanosarcinales and Methanosarcinaceae decreased to
about one-third of their maximum abundances (~2 x 10%
and ~ 0.4 x 10° copies g~ !, respectively).
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Figure 8. Sediment methane concentrations (with sediment from
the O—1cmb.s.f. in September 2014) over time in the treatment
with the addition of methanol (10 mM) are shown above. Shown
are triplicate values per measurement. DNA copies of Archaea,
Methanosarcinales, and Methanosarcinaceae are shown below in
duplicates per measurement. Please note the secondary y axis for
Methanosarcinales and Methanosarcinaceae. More data are avail-
able for methane (determined in the gas headspace) than from DNA
samples (taken from the sediment) as sample volume for molecular
analyzes was limited.

3.6 Statistical analysis

The PCA of integrated SRZ methanogenesis (0-5 cmb.s.f.;
Fig. 10) showed a positive correlation with bottom water
temperature (Fig. 10a), bottom water salinity (Fig. 10a), bot-
tom water methane (Fig. 10b), surface sediment POC con-
tent (0—5 cmb.s.f.; Fig. 10c), and surface sediment C / N (0-
Scmb.s.f.; Fig. 10b). A negative correlation was found with
bottom water oxygen concentration (Fig. 10b). No correla-
tion was found with bottom water chlorophyll.

The PCA of methanogenesis depth profiles showed pos-
itive correlations with sediment depth (Fig. 11a) and C/N
(Fig. 11b), and it showed negative correlations with POC
(Fig. 11a).

4 Discussion

4.1 Methanogenesis in the sulfate-reducing zone

On the basis of the results presented in Figs. 2 and 3, it is
evident that methanogenesis and sulfate reduction were con-
currently active in the sulfate reduction zone (0-30 cm b.s.f.)
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Figure 9. Temporal development of integrated net surface methano-
genesis (0-5cmb.s.f.) in the sediment and chlorophyll (green)
and methane concentrations (orange) in the bottom water (25 m).
Methanogenesis (MG) rates and methane concentrations are shown
in means (from triplicates) with standard deviation.

at Boknis Eck. Even though sulfate reduction activity was
not directly determined, the decrease in sulfate concentra-
tions with a concomitant increase in sulfide within the up-
per 30 cm b.s.f. clearly indicated its presence (Figs. 2 and 3).
Several previous studies confirmed the high activity of sul-
fate reduction in the surface sediment of Eckernférde Bay,
revealing rates up to 100—10 000 nmol cm ™3 d~! in the upper
25 cmb.s.f. (Treude et al., 2005a; Bertics et al., 2013; Dale et
al., 2013). The microbial fermentation of organic matter was
probably high in the organic-rich sediments of Eckernforde
Bay (POC contents of around 5 %; Figs. 2 and 3), providing
high substrate availability and variety for methanogenesis.
The results of this study further identified methylotrophy
to be a potentially important noncompetitive methanogenic
pathway in the sulfate-reducing zone. The pathway utilizes
alternative substrates, such as methanol, to bypass compe-
tition with sulfate reducers for Hp and acetate. The poten-
tial for methylotrophic methanogenesis within the sulfate-
reducing zone was supported by the following observations.

1. Hydrogenotrophic methanogenesis was up to 2 orders
of magnitude lower compared to net methanogenesis,
resulting in insufficient rates to explain the observed
net methanogenesis in the upper 0-30 cm b.s.f. (Figs. 2
and 3). This finding points towards the presence of alter-
native methanogenic processes in the sulfate reduction
zone, such as methylotrophic methanogenesis.

2. Methanogenesis increased when sulfate reduction was
inhibited by molybdate, confirming the inhibitory effect
of sulfate reduction on methanogenesis with competi-
tive substrates (Hy and acetate; Oremland and Polcin,
1982; King et al., 1983; Fig. 6). Consequently, the usage
of noncompetitive substrates was preferred in the sulfate
reduction zone (especially in the upper 0—1cmb.s.f;
Fig. 6). Accordingly, hydrogenotrophic methanogenesis
increased at depths at which sulfate was depleted and
thus the competitive situation was relieved (Fig. 4).
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3. The addition of BES did not result in the inhibition of

methanogenesis, indicating the presence of unconven-
tional methanogenic groups using noncompetitive sub-
strates (Fig. 7). The unsuccessful inhibition by BES
can be explained by either incomplete inhibition or
the fact that the methanogens were insensitive to BES
(Hoehler et al., 1994; Smith and Mah, 1981; Santoro
and Konisky, 1987). The BES concentration applied in
the present study (60 mM) has been shown to result
in the successful inhibition of methanogens in previ-
ous studies (Hoehler et al., 1994). Therefore, the pres-
ence of methanogens that are insensitive to BES is more
likely. The insensitivity to BES in methanogens is ex-
plained by heritable changes in BES permeability or the
formation of BES-resistant enzymes (Smith and Mabh,
1981; Santoro and Konisky, 1987). Such BES resis-
tance was found in Methanosarcina mutants (Smith and
Mah, 1981; Santoro and Konisky, 1987). This genus
was successfully detected in our samples (for more de-
tails see point 5) and is known for mediating the methy-
lotrophic pathway (Keltjens and Vogels, 1993), support-
ing our hypothesis on the utilization of noncompetitive
substrates by methanogens.

. The addition of methanol to sulfate-rich sediments in-

creased methanogenesis rates by up to 3 orders of mag-
nitude, confirming the potential of the methanogenic
community to utilize noncompetitive substrates, espe-
cially in the 0-5cmb.s.f. sediment horizon (Fig. 6).
At this sediment depth either the availability of non-
competitive substrates, including methanol, was high-
est (derived from fresh organic matter), or the usage
of noncompetitive substrates was increased due to the
high competitive situation as sulfate reduction is most
active in the 0-5 cmb.s.f. layer (Treude et al., 2005a;
Bertics et al., 2013). It should be noted that even though
methanogenesis rates were calculated assuming a linear
increase in methane concentration over the entire incu-
bation to make a better comparison between different
treatments, the methanol treatments generally showed
a delayed response in methane development (Figs. 8,
S2). We suggest that this delayed response was a reflec-
tion of cell growth by methanogens utilizing the surplus
methanol. We are therefore unable to decipher whether
methanol plays a major role as a substrate in the Eck-
ernforde Bay sediments compared to possible alterna-
tives, as its concentration is relatively low in the natural
setting (~ 1 uM between 0 and 25 cmb.s.f., June 2014
sampling; Zhuang, unpublished data). It is conceivable
that other noncompetitive substrates, such as methy-
lated sulfides (e.g., dimethyl sulfide or methanethiol),
are more relevant for the support of SRZ methanogene-
sis.

. Methylotrophic ~ methanogens of the  order

Methanosarcinales were detected in the methanol treat-
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Figure 10. Principal component analysis (PCA) from three different angles of integrated surface methanogenesis (0-5 cm b.s.f.) and surface
particulate organic carbon averaged over 0-5cmb.s.f. (surface sediment POC), surface C /N ratio averaged over 0-5cmb.s.f. (surface
sediment C / N), bottom water salinity, bottom water temperature (7'), bottom water methane (CHy), bottom water oxygen (O3 ), and bottom
water chlorophyll. Data were transformed into ranks before analysis. (a) Correlation biplot of principal components 1 and 2, (b) correlation
biplot of principal components 1 and 3, and (c) correlation biplot of principal components 2 and 3. Correlation biplots are shown in a
multidimensional space with parameters shown as green lines and samples shown as black dots. Parameters pointing in the same direction
are positively related; parameters pointing in the opposite direction are negatively related.

ment (Fig. 8), confirming the presence of methanogens 6. Stable isotope probing revealed highly '3C-enriched
that utilize noncompetitive substrates in the natural methane produced from '3C-labeled methanol, further
environment (Boone et al., 1993; Fig. 8). The delay confirming the potential of the methanogenic commu-
in the growth of Methanosarcinales moreover hints nity to utilize noncompetitive substrates (Fig. 7). The
towards the predominant usage of noncompetitive production of both methane and CO, from methanol
substrates other than methanol (see also point 4). has been shown previously in different strains of methy-

www.biogeosciences.net/15/137/2018/ Biogeosciences, 15, 137-157, 2018



152 J. Maltby et al.: Microbial methanogenesis in the sulfate-reducing zone

lotrophic methanogens (Penger et al., 2012). The fast
conversion of methanol to methane and CO; (methanol
was consumed completely in 17 days) hints towards the
presence of methylotrophic methanogens (e.g., mem-
bers of the family Methanosarcinaceae, which is known
for the methylotrophic pathway; Keltjens and Vogels,
1993). Please note, however, that the storage of the
cores (3.5 months) prior to sampling could have led to
shifts in the microbial community and thus might not
reflect the in situ conditions of the original microbial
community in September 2014. The delay in methane
production also seen in the stable isotope experiment
was, however, only slightly different (methane devel-
oped earlier between day 8 and 12; data not shown)
from the non-labeled methanol treatment (between day
10 and 16; Fig. S2), which leads us to the assumption
that the storage time at 1 °C did not dramatically affect
the methanogen community. Similar to a previous study
with arctic sediments, the addition of substrates had no
stimulatory effect on the rate of methanogenesis or on
the methanogen community structure at low tempera-
tures (5 °C; Blake et al., 2015).

4.2 Environmental control of methanogenesis in the
sulfate reduction zone

SRZ methanogenesis in Eckernférde Bay sediments showed
variations throughout the sampling period, which may be in-
fluenced by variable environmental factors such as tempera-
ture, salinity, oxygen, and organic carbon. In the following,
we will discuss the potential impact of those factors on the
magnitude and distribution of SRZ methanogenesis.

4.2.1 Temperature

During the sampling period, bottom water temperatures in-
creased over the course of the year from late winter (March,
3-4°C) to autumn (November, 12 °C; Figs. 2 and 3). The
PCA revealed a positive correlation between bottom wa-
ter temperature and integrated SRZ methanogenesis (0—
Scmb.s.f.). A temperature experiment conducted with sed-
iment from ~75cmb.s.f. in September 2014 within a par-
allel study revealed a mesophilic temperature optimum of
methanogenesis (20 °C; data not shown). Whether methano-
genesis in the sulfate reduction zone (0-30cm) has the
same physiology remains speculative. However, AOM organ-
isms, which are closely related to methanogens (Knittel and
Boetius, 2009), studied in the sulfate reduction zone from
the same site were confirmed to have a mesophilic physi-
ology, too (Treude et al., 2005a). The sum of these aspects
leads us to the conceivable conclusion that SRZ methanogen-
esis activity in the Eckernférde Bay is positively impacted
by temperature increases. Such a correlation between ben-
thic methanogenesis and temperature has been found in sev-
eral previous studies from different environments (Sansone
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Figure 11. Principal component analysis (PCA) from two different
angles of net methanogenesis depth profiles and sampling month
(Month), sediment depth, and depth profiles of particulate organic
carbon (POC) and C /N ratio (C / N). Data were transformed into
ranks before analysis. (a) Correlation biplot of principal compo-
nents 1 and 2 and (b) correlation biplot of principal components 1
and 3. Correlation biplots are shown in a multidimensional space
with parameters shown as green lines and samples shown as black
dots. Parameters pointing in the same direction are positively re-
lated; parameters pointing in the opposite direction are negatively
related.

and Martens, 1981; Crill and Martens, 1983; Martens and
Klump, 1984).

4.2.2 Salinity and oxygen

From March 2013 to November 2013 and from March 2014
to September 2014, salinity increased in the bottom-near wa-
ter (25m) from 19 to 23 and from 22 to 25PSU (Figs. 2
and 3), respectively, due the pronounced summer stratifica-
tion in the water column between saline North Sea water
and less saline Baltic Sea water (Bange et al., 2011). The
PCA detected a positive correlation between integrated SRZ
methanogenesis (0-5cmb.s.f.) and salinity in the bottom-
near water (Fig. 10a). This correlation can hardly be ex-
plained by salinity alone, as methanogens feature a broad
salinity range from freshwater to hypersaline (Zinder, 1993).
It is more likely that salinity serves as an indicator of wa-
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ter column stratification, which is often correlated with low
O3 concentrations in the Eckernforde Bay (Fig. S3, Bange et
al., 2011; Bertics et al., 2013). Methanogenesis is sensitive
to Oy (Oremland, 1988; Zinder, 1993), and hence conditions
might be more favorable during hypoxic or anoxic events,
particularly in the sediment closest to the sediment—water in-
terface, but potentially also in deeper sediment layers due to
the absence of bioturbating and bioirrigating infauna (Dale
et al., 2013; Bertics et al., 2013), which could introduce O,
beyond diffusive transport. Accordingly, the PCA revealed a
negative correlation between O, concentration close to the
seafloor and SRZ methanogenesis.

4.2.3 Particulate organic carbon

The supply of particulate organic carbon (POC) is one of
the most important factors controlling benthic heterotrophic
processes, as it determines substrate availability and variety
(Jgrgensen, 2006). In Eckernférde Bay, the organic mate-
rial reaching the seafloor originates mainly from phytoplank-
ton blooms in spring, summer, and autumn (Bange et al.,
2011). It has been estimated that > 50 % in spring (February—
March), <25 % in summer (July—August), and >75 % in au-
tumn (September—October) of these blooms is reaching the
seafloor (Smetacek et al., 1984), resulting in an overall high
organic carbon content of the sediment (5 wt %), which leads
to high benthic microbial degradation rates including sul-
fate reduction and methanogenesis (Whiticar, 2002; Treude
et al., 2005a; Bertics et al., 2013). Previous studies revealed
that high organic matter availability can relieve competi-
tion between sulfate reducers and methanogens in sulfate-
containing marine sediments (Oremland et al., 1982; Holmer
and Kristensen, 1994; Treude et al., 2009; Maltby et al.,
2016).

To determine the effect of POC concentration and C / N ra-
tio (the latter as a negative indicator for the freshness of POC)
on SRZ methanogenesis, two PCAs were conducted with
(a) the focus on the upper 0-5 cm b.s.f., which is directly in-
fluenced by freshly sedimented organic material from the wa-
ter column (Fig. 10), and (b) the focus on the depth profiles
throughout the sediment cores (up to 30 cm b.s.f.; Fig. 11).

4.2.4 Effect of POC and C / N ratio in the upper
0-5 cm b.s.f.

For the upper 0-5 cmb.s.f. in the sediment, a positive corre-
lation was found between SRZ methanogenesis (integrated)
and POC content (averaged; Fig. 10c), indicating that POC
content is an important controlling factor for methanogen-
esis in this layer. In support, the highest bottom-near wa-
ter chlorophyll concentrations coincided with the highest
bottom-near water methane concentrations and high inte-
grated SRZ methanogenesis (0-5cmb.s.f.) in September
2013, probably as a result of the sedimentation of the sum-
mer phytoplankton bloom (Fig. 9). Indeed, the PCA revealed
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a positive correlation between integrated SRZ methanogen-
esis rates and bottom-near water methane concentrations
(Fig. 10b) when viewed over all investigated months. How-
ever, no correlation was found between bottom water chloro-
phyll and integrated SRZ methanogenesis rates (Fig. 10).
As seen in Fig. 9, bottom-near high chlorophyll concentra-
tions did not coincide with high bottom-near methane con-
centration in June—September 2014. We explain this result
by a time lag between primary production in the water col-
umn and the export of the produced organic material to the
seafloor, which was probably even more delayed during strat-
ification. Such a delay was observed in a previous study
(Bange et al., 2010), revealing an enhanced water methane
concentration close to the seafloor approximately 1 month
after the chlorophyll maximum. The C /N ratio (averaged
over 0-5 cm b.s.f.) also showed no correlation with integrated
methanogenesis from the same depth layer (0-5cmb.s.f.),
which is surprising as we expected that a higher C /N ra-
tio indicative of less labile organic carbon would have a
negative effect on noncompetitive methanogenesis. However,
methanogens are not able to directly use most of the labile or-
ganic matter due to their inability to process large molecules
(more than two C—C bondings; Zinder, 1993). Methanogens
are dependent on other microbial groups to degrade large or-
ganic compounds (e.g., amino acids) for them (Zinder, 1993).
Because of this substrate speciation and dependence, a de-
lay between the sedimentation of fresh, labile organic matter
and the increase in methanogenesis can be expected, which
would not be captured by the applied PCA.

4.2.5 Effect of POC and C / N ratio over 0-30 cm b.s.f.

In the PCA for the sediment profiles from the sulfate reduc-
tion zone (0-30cmb.s.f.), POC showed a negative correla-
tion with methanogenesis and sediment depth, while C /N
ratio showed a positive correlation with methanogenesis and
sediment depth (Fig. 11). Given that POC remained basi-
cally unchanged over the top 30 cmb.s.f. with the exception
of the topmost sediment layer, its negative correlation with
methanogenesis is probably solely explained by the increase
in methanogenesis with sediment depth and can therefore be
excluded as a major controlling factor. As sulfate in this zone
was likely never depleted to levels that critically limit sul-
fate reduction (lowest concentration 1300 uM; compare with
Treude et al., 2014), we do not expect a significant change in
the competition between methanogens and sulfate reducers.
It is therefore more likely that the progressive degradation
of labile POC into dissolvable methanogenic substrates over
depth and time had a positive impact on methanogenesis. The
C / Nratio indicates such a trend as the labile fraction of POC
decreased with depth.
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4.3 Relevance of methanogenesis in the sulfate
reduction zone of Eckernforde Bay sediments

The time series station Boknis Eck in Eckernforde Bay
is known for being a methane source to the atmosphere
throughout the year due to supersaturated waters, which
result from significant benthic methanogenesis and emis-
sion (Bange et al., 2010). The benthic methane formation is
thought to take place mainly in sediments below the SMTZ
(Treude et al., 2005a; Whiticar, 2002).

In the present study, we show that SRZ methanogenesis
within the sulfate zone is present despite sulfate concen-
trations > 1 mM, a limit above which methanogenesis has
been thought to be negligible (Alperin et al., 1994; Hoehler
et al.,, 1994; Burdige, 2006), and could thus contribute to
benthic methane emissions. In support of this hypothesis, a
high dissolved methane concentration in the water column
occurred with concomitantly high SRZ methanogenesis ac-
tivity (Fig. 9). However, whether the observed water col-
umn methane originated from SRZ methanogenesis, from
gas ebullition caused by methanogenesis below the SMTZ,
or a mixture of both remains speculative.

How much of the methane produced in the surface sed-
iment is ultimately emitted into the water column depends
on the rate of methane consumption, i.e., the aerobic and
anaerobic oxidation of methane in the sediment (Knittel and
Boetius, 2009; Fig. 1). In organic-rich sediments, such as
in the present study, the oxygenated sediment layer is of-
ten only millimeters thick due to the high O, demand of mi-
croorganisms during organic matter degradation (Jgrgensen,
2006; Preisler et al., 2007). Thus, the anaerobic oxidation
of methane (AOM) might play a more important role for
methane consumption in the studied Eckernférde Bay sed-
iments. In an earlier study from this site, AOM activity
was detected throughout the top 0-25cmb.s.f., which in-
cluded zones that were well above the actual SMTZ (Treude
et al.,, 2005a). But the authors concluded that methane
oxidation was completely fueled by methanogenesis from
below sulfate penetration, as integrated AOM rates (0.8—
1.5mmol m~2d~!) were in the same range as the predicted
methane flux (0.66—1.88 mmol m—2 d~!) into the SMTZ.

Together with the dataset presented here we postulate that
AOM above the SMTZ (0.8 mmol m~2d~!; Treude et al.,
2005a) could be partially or entirely fueled by SRZ methano-
genesis. A similar close coupling between methane oxida-
tion and methanogenesis in the absence of definite methane
profiles was recently proposed from isotopic labeling exper-
iments with sediments from the sulfate reduction zone of
the nearby Aarhus Bay in Denmark (Xiao et al., 2017). It
is therefore likely that such a cryptic methane cycling also
occurs in the sulfate reduction zone of sediments in the Eck-
ernforde Bay. If, in an extreme scenario, SRZ methanogen-
esis represented the only methane source for AOM above
the SMTZ, then maximum SRZ methanogenesis could be on
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the order of 1.6mmolm—2d~! (1.5 mmolm—2d~! AOM +
0.09 mmol m~2 d~! net SRZ methanogenesis).

Even though the contribution of SRZ methanogenesis to
AOM above the SMTZ remains speculative, it leads to the as-
sumption that SRZ methanogenesis could play a much bigger
role for benthic carbon cycling in the Eckernférde Bay than
previously thought. Whether SRZ methanogenesis at Eckern-
forde Bay has the potential for the direct emission of methane
into the water column goes beyond the scope of this study
and should be tested in the future.

5 Summary

The present study demonstrated that methanogenesis and sul-
fate reduction were concurrently active within the sulfate-
reducing zone in sediments at Boknis Eck (Eckernforde Bay,
SW Baltic Sea). The observed methanogenesis was proba-
bly based on noncompetitive substrates due to the competi-
tion with sulfate reducers for the substrates Hy and acetate.
Accordingly, members of the family Methanosarcinaceae,
which are known for methylotrophic methanogenesis, were
found in the sulfate reduction zone of the sediments and
are likely to be responsible for the observed methanogene-
sis with the potential use of noncompetitive substrates such
as methanol, methylamines, or methylated sulfides.

Potential environmental factors controlling SRZ methano-
genesis are POC content, C /N ratio, oxygen, and tempera-
ture, resulting in the highest methanogenesis activity during
the warm, stratified, and hypoxic months after the late sum-
mer phytoplankton blooms.

This study provides new insights into the presence and
seasonality of SRZ methanogenesis in coastal sediments and
was able to demonstrate that the process could play an im-
portant role for the methane budget and carbon cycling of
Eckernforde Bay sediments, for example by directly fueling
AOM above the SMTZ.
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