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Abstract

Dispersion and Tidal Dynamics of Channel-Shoal Estuaries

by

Christopher Dean Holleman

Doctor of Philosophy in Engineering – Civil and Environmental Engineering

University of California, Berkeley

Professor Mark T. Stacey, Chair

Estuaries, and the varied ecosystems they support, are affected by human action in
many ways. One of the fundamental environmental questions pertaining to estuaries is how
material is mixed into ambient waters and transported within and beyond the estuary. Char-
acterizing transport and mixing is essential for tackling local environmental questions, such
as gauging the water-quality impacts of a wastewater outfall, or how dredging may alter es-
tuarine circulation. In many estuaries the dominant physical dispersion mechanism is shear
dispersion. A fundamental and idealized approach to the scalar transport problem is under-
taken, in which canonical shear dispersion regimes are augmented with a new, intermediate
regime. This mode of shear dispersion, in which the longitudinal variance of the plume in-
crease with the square of time, is likely to occur in channel-shoal basins where bathymetric
transitions can create sheared velocity profiles. A key tool in the engineer’s arsenal for pur-
suing studies of scalar transport is the numerical model, but care must be taken to separate
physical mixing effects from numerical artifacts. Unstructured models are particularly well-
suited to estuarine problems as the grid can be adapted to complex local topography, but the
numerical errors of these models can be difficult to characterize with standard methods. An
in-depth error analysis reveals a strong dependence of numerical diffusion on the orientation
of the grid relative to the flow. Flexible grid generation methods allow for optimizing the
grid in light of this dependence, and can decrease across-flow numerical diffusion by a factor
of two.

The most far-reaching impact of our actions, though, must certainly be global climate
change. A period of rising sea level is being ushered in by climate change, and the final
research-oriented chapter seeks to further our understanding of how rising sea levels will
affect basin-scale tidal dynamics. Numerical and analytic approaches show that as basins
get deeper tidal amplification becomes more effective and tidal range increases. The crux of
the analysis, though, is the inclusion of inundation within these scenarios. Inundated areas
dissipate incident tidal energy, countering the added amplification due to basins becoming
deeper. The net effect, in the case of San Francisco Bay, is that tidal amplification under
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sea level rise actually decreases, such that a particular rise in mean higher high water in the
coastal ocean is predicted to raise mean higher high water within the bay by a lesser amount.
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Chapter 1

Introduction

Estuaries are the bodies of water where tidally drive, saline ocean waters meet freshwater
rivers. The interaction of tides and river flow and the mixing of freshwater and saltwater
make estuaries ecologically important and dynamically complex. The tidal, brackish habitats
offered by estuaries are unique and important for a wide range of species; the tidal marshlands
such as those found in the margins of San Francisco Bay support shorebirds, waterfowl, young
salmon and steelhead trout, harbor seals and a host of other birds, mammals and fish. Some
species live their entire life cycle in estuarine waters, while for other species the unique
habitat supports a specific life phase. For some animal species estuaries offer a shallow,
protected environment for rearing their young. For migratory birds, flyways often coincide
with large estuaries and these areas serve as seasonal stopping points during migration.

For the human population estuaries provide protection in the form of calm waters where
ocean-going trade vessels can find refuge from wind and waves. In addition to shelter from
ocean conditions, estuaries are also, by definition, the junction of rivers and the ocean and
thus the gateway to river-based commerce. It is no surprise that historically estuaries around
the world have been a popular backdrop for settlement, development and increasingly large
population centers on their shores. The hidden caveat, though, is that this development
comes with many new problems, both in terms of how we have an impact on the estuary
and how we come to depend on a tame and predictable waterway.

With concerns for both the continued ecological function within estuaries and the sup-
port and protection of population centers adjacent to estuaries, environmental engineers are
tasked with quantifying the key physical processes in these water bodies. Not only must we
characterize the natural state of these systems, but also how human actions, past, present
and future, affect these water bodies. The effects are sometimes intentional, dredging nav-
igational channels or leveeing shorelines for flood protection, but often as not there are
unintentional side effects. Construction of causeways decreases exchange, allowing pollutant
concentrations to peak. In portions of San Francisco Bay upstream mining operations intro-
duced mercury which has accumulated in bed sediments. The devastation of oil spills speaks
for itself.

A broad category of environmental issues surrounding estuaries concerns the introduc-
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tion and dispersal of pollutants. With both large population centers and agricultural regions
often located near estuaries, there are numerous situations in which a contaminant is intro-
duced into the waterways and we must determine the spatial and temporal extents of its
effects. One example is agricultural lands where water runoff tends to have unnaturally high
nutrient content. Such nutrient loading can lead to algal blooms, which in turn deplete the
water of oxygen, threatening fish. Similarly, in urban settings treated wastewater is often
discharged into adjacent waters, and though the wastewater treatment process nearly purifies
the wastewater, there is some non-negligible, residual nutrient and contaminant loading. In
all of these cases, the size of the affected water mass and its ultimate fate are important for
understanding ecological implications and making related management decisions. Quantify-
ing the mixing and dispersal of these sources allows informed decisions ranging from where
to site a wastewater treatment outfall to selecting the most appropriate treatment methods.

The available methods for characterizing transport and mixing processes in the estuarine
context can be roughly categorized into analytic descriptions, lab- or field-based methods,
and numerical modeling. Analytic descriptions offer the purity of a mathematical approach
which distills the problem down to the barest necessities and establishes functional relation-
ships between the parameters of the problem and the resulting transport and mixing. While
real world situations introduce many complexities which are generally beyond the scope of
an analytic approach, purely analytic descriptions are highly useful for quick or preliminary
analyses, and as a tool to inform decisions on how to proceed with a more in-depth analysis.
For example, in the case of a pollutant plume introduced into a tidally oscillating flow, an
analytic solution could offer an estimate of how quickly the plume will grow based on a a
minimal description of the basin. Such a description may then help rule out or highlight
particular concerns, such as whether a fragile ecosystem some distance away is at all likely
to be affected the plume. Analytic models also inform how more in-depth observational or
model-based techniques should be applied. Questions such as how big the model domain
should be, where measurements should be taken and what time scales are relevant can be
answered by leveraging the simplified mathematical description of the problem. These solu-
tions also provide hints for how a particular process might be parameterized when included
in a larger-scale analysis.

One of the most efficient large-scale mixing processes in rivers and estuaries is shear dis-
persion, also known as Taylor dispersion due to the original description in [74]. A vertical or
cross-flow velocity shear in the along-stream direction, coupled with a lateral mixing process
such as small-scale turbulent mixing, are shown to lead to a highly amplified longitudinal
mixing rate. The typical shear dispersion analysis focuses on the long term evolution of a
scalar field, i.e. over time scales longer than the lateral mixing time. This is particularly
appropriate for flows such as pipe flow (the application of [74]), and river flows where bank-
to-bank width is small compared to the length of a reach. Estuarine basins, however, are
often much larger than the width of the in-flowing river, and basins with a planform aspect
ratio in the range of 1–10 are common. In light of this geometry, significant evolution of a
scalar plume occurs before the assumptions of lateral mixing are met. This has led to the
analysis of transient dispersion regimes, the focus of chapter 2. This chapter explores the
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evolution of a plume as it transitions from a spatial scale smaller than the length scale of
velocity variations (e.g. the width of a shear layer separating a channel and a shoal), through
an intermediate scale for which lateral boundaries have not begun to limit the lateral expan-
sion of the plume, and finally the limit of Taylor dispersion with complete lateral mixing.
The first and last periods have been well-studied, and a plume in these cases can be shown
to exhibit growth in its along-channel variance of σ2

x ∼ t3 and σ2
x ∼ t, respectively. The

intermediate regime is introduced and is shown to fill in the gap between the two previously
described regimes, having a variance evolution proportional to t2. In terms of the time rate
of change of the variance, the linear case has a constant rate, dσ2

x/dt ∼ 2K (with dispersion
coefficient K). For the quadratic and cubic regimes, though, there are still terms of t in
the expression for the time rate of change. These factors indicate the presence of additional
state in the plume, and this chapter explores the origin and quantification of this additional
state.

When the details of the problem are known and there is a need for quantitative informa-
tion, numerical models are often the best tool. Analytic approaches and scaling arguments
help enumerate which physical processes are relevant, but as the number of processes involved
grows, interactions between competing processes can be difficult to characterize through the
simplifying lens of scaling laws and analytic relationships. It is at this point that one must
turn to numerical models. Such models, though, come with their own limitations, and es-
tuarine hydrodynamic models are not yet sophisticated enough (and may never be) to be
blindly applied to an arbitrary problem. Rather, the user must take care in selecting a model
which includes the relevant physics and resolves the range of scales expected to be impor-
tant. This decision is often complicated by the nuanced line between numerical artifacts
and resolved physical physical processes. In the context of scalar transport and mixing, the
distinction can be particularly difficult, and effective application of numerical model includes
quantifying and taking steps to reduce numerical errors.

High-order numerical schemes with minimal numerical mixing are widely available in
models based on rectilinear and curvilinear grids, where larger stencils are straightforward
and well-behaved. The simple geometry of most river reaches and the broad open space of
coastal ocean domains lend themselves to structured grids. When attempting to apply these
models in estuarine domains, though, one must confront the complicated geometry of many
estuaries, which is difficult to shoehorn into a structured grid. Irregular shorelines and the
desire to resolve different parts of the domain with different spatial resolutions motivate the
use of unstructured grid models in these situations. Unfortunately, the high-order numerical
schemes available on structured grids are difficult to translate to unstructured grids. How-
ever, unstructured grids do offer some advantage in allowing the grid orientation to be locally
adapted to the flow. Chapter 3 develops an estimate for the numerical diffusion on trian-
gular grids, similar to grids used in several unstructured hydrodynamic models. The error
estimate, in the form of a numerical diffusion tensor, depends on the alignment of the flow
relative to faces of the grid and quantifies the benefits of designing a flow-aligned grid. Grid
alignment approaches often rely on manual specification of the alignment direction, but in
complicated geometries this is time-consuming and prone to errors. An automated algorithm
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for generating a flow-aligned grid is presented, based on a new, optimizing, orthogonal grid
generator. Dominant flow directions are extracted from an unaligned, reference simulation
of the same domain, then used to govern the placement of triangular cells during generation
of the aligned grid. Along-flow diffusion is only mildly decreased in the aligned grid, but
cross-flow diffusion is very sensitive to grid alignment. In the case of a perfectly regular
triangular grid the cross-flow diffusion can be eliminated entirely, and reduced by 50% in a
realistic case.

Chapters 2 and 3 focus on scalar mixing, tracking the composition of the water. The
applications of scalar transport most commonly cover the fate of materials introduced into the
estuary, originating from the shorelines or upstream rivers. But the other defining feature of
estuaries is the direct connection to ocean waters, and in thinking broadly of anthropogenic
effects on an estuary one eventually must consider changes in the ocean forcing. This,
of course, includes one of the most significant anthropogenic changes in our environment:
climate change. From the perspective of estuarine dynamics, the ocean conditions are taken
as a given, and from the climate modeling community we know that higher sea levels and
a shifting distribution of extreme weather events are possible. Understanding how these
coastal conditions correlate to conditions inside the estuary is the subject of chapter 4. At
first glance it may seem sufficient to examine present day high water levels and extrapolate
that a specific rise in coastal high water elevation would lead to the same rise in high water
within an estuary. This over-simplified view is problematic, though, as even under present
day conditions there are significant variations in mean sea level and tidal range throughout
a typical estuary. Frictional damping of the tidal wave decreases amplitudes as one moves
farther from the ocean. At the same time, many basins have a converging geometry, getting
narrower and shallower as one moves upstream. This convergent geometry has an effect
opposite to the frictional damping, leading to amplification of the tidal range in the upstream
reaches of an estuary. The nonlinear aspects of these mechanisms mean that a simple increase
in the tidal range or mean sea level at the ocean boundary will not necessarily translate to
the same increase of tidal range of mean sea level within the basin. Clearly one must account
for the basin geometry and the role of friction in accurately predicting a basin’s response to
a change in the tidal forcing.

Even with a physically-based model of a basin with reasonable skill at predicting present-
day conditions, sea level rise scenarios still present a significant challenge. Areas which are
currently above the reach of tidal action will become tidal in the future, and their contribution
to the wetted area of the basin should be considered. Furthermore, tidal dynamics and
inundation are inherently coupled. Any increase or decrease of the tidal range caused by
newly inundated areas will in turn increase or decrease the inundated area. Newly inundated
areas are expected primarily to attenuate the tidal range, as these areas will be shallow and
friction-dominated. At the same time, sea level rise will cause the interior of the basin to
become deeper, lessening the effects of bed friction. In most basin geometries deepening
leads to an increase in the tidal range. These competing effects, amplification in response to
deepening and attenuation in response to inundation, further motivate the need for numerical
modeling to characterize the effects of sea level rise.
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Capturing the extent of inundation comes with its own challenges, too. In some cases
the land area susceptible to flooding is presently broad marsh lands which will presumably
transition to mud flats as sea level rises. In many cases, though, these low-lying areas have
already been extensively alterated by human action, with levee systems and dredged channels
partitioning the landscape into tidal and non-tidal areas. These complex landscapes have
hydrodynamically relevant features at spatial scales down to tens of meters, where a single
narrow levee may segregate expansive tracts of low-lying marsh from the action of the tides.
Special care must be taken to include as much information as possible about connectivity
between basins, ponds, sloughs and rivers. Chapter 4 introduces a method for preserving a
significant degree of hydrodynamic connectivity even when the physical features are smaller
than the nominal grid resolution. A static inundation analysis of the grid with and without
this additional process demonstrates the efficacy of the method, where the original grid shows
extensive flooding under present-day conditions while the connectivity-preserving method
more accurately reflects the known present-day conditions.

A series of tidal simulations are used to explore the coupling between sea level rise, tidal
amplification and inundation. The study area comprises two basins, with predominantly M2
tides which are near a standing wave in one basin, and a partially progressive wave in the
other basin. Simulating a wide range of scenarios combining various shoreline configurations
and sea level rise conditions, the analyses explore the tidal response and role of inundation.
For the hypsometry of San Francisco Bay, the results show that the additional amplification
from a deeper basin is more than offset by the damping in the inundated areas. The response
of a specific basin depends not only on the details of the forcing but also the tidal wave
characteristics in that basin. The spatially varying characteristics of the tidal wave in each
basin are analyzed in terms of energy flux and change in tidal phasing. Energy flux analysis
shows a general shift towards standing wave tides under conditions of sea level rise without
inundation. When inundation is allowed, energy fluxes show increased dissipation of the
incident M2 wave on perimeter sloughs and rivers. Modulation of the M2, though, accounts
for only a fraction of the change in high water inside the bay. Analysis of M2 overtides show
complex and significant differences in overtide generation between the scenarios, and these
differences make up the bulk of the remaining differences in high water across scenarios.
Though the specific quantitative details of the sea level rise simulations depend on the
details of San Francisco Bay, the broader conclusion is that the dynamics of inundation are
an important factor when studying sea level rise within enclosed basins.

Estuaries will always be important ecologically due to their unique habitats. Though we
have made great progress in reducing pollution from population centers adjacent to most
estuaries, there are still significant present day sources of concern as well as the lingering
presence of past contaminants. Sea level rise, the continued expansion of developed areas
around estuaries, and an increasing willingness to engage in restoration projects all point to
the continued importance of understanding how our actions have an impact on these water
bodies.
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Chapter 2

Transient Shear Dispersion Regimes

Abstract

Characterizing scalar dispersion is a key concern in a wide variety of applications, including
both steady-state and time-dependent studies of wastewater outfalls, salinity distribution
in estuaries, and the spreading of pollutants from industrial spills. As the size of a scalar
plume grows with respect to the size of the containing water body, the effective dispersion
varies, from the well-known σ2

x ∼ t3 behavior for a plume smaller than the lateral extent of
the shear, to the σ2

x ∼ t behavior at the limit of a laterally well-mixed plume. An additional
regime is introduced in which the plume extends across the full range of the available shear,
but is not significantly affected by the lateral bounds of the water body. An analytical
treatment shows that this regime exhibits a σ2

x ∼ t2 behavior, independent of lateral mixing
coefficient. Particle tracking results in an idealized, tidal channel-shoal basin demonstrate
this regime as particle clouds straddle the channel-shoal interface. Quantitative analysis of
spatial moments as plumes transition between regimes show good correlation between the
observed parameters and parameters predicted by the analytical framework.

2.1 Introduction

Scalar dispersion, in the most general sense, describes any of a numerous set of physical
processes by which features of the flow lead to the spreading out of a scalar species. When
considered in Fickian terms the effective dispersion rate is often much greater than the
molecular diffusion rate. This rate of spreading is often of fundamental interest in a wide
range of applications. In environmental flows, questions related to spatial distributions of
nutrient abundance, the spreading of algal blooms, larval transport, and the zone of influence

Also in press as: Holleman, R. C. and M. T. Stacey. Transient Dispersion Regimes. J. Fluid Mech., 2013.
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of engineered sources such as wastewater treatment outfalls all trace back to questions of
scalar dispersion. In ocean flows dispersion rates are essential for understanding the mixing
effects of eddies, formation and break down of patches of heightened biological activity, and
the mixing action of passing and breaking internal waves [85].

Of particular relevance to riverine and estuarine environments is the case of linear shear
dispersion, also known a Taylor dispersion due to the first mathematical analysis of [74].
Given the primary application to estuarine and riverine systems, the term longitudinal is
used to refer to the along-flow axis of the domain (x), and the term lateral to refer to the
perpendicular horizontal axis (y). Taylor demonstrated that lateral gradients in the longitu-
dinal velocity interacting with lateral diffusion leads to Fickian longitudinal dispersion, albeit
with a highly amplified dispersion coefficient. Though the original analysis was targeted at
laminar pipe flow, subsequent work in [75] and [2] expanded the analysis to cover a broad
range of domains under both laminar and turbulent conditions, summarized in [23]. Central
to Taylor’s analysis and many subsequent works is the description of dispersion in terms of
the growth of the second central moment of the tracer distribution, σ2

x, equivalently labeled
the spatial variance. In the common Fickian model in which scalar flux is proportional to
the concentration gradient, σ2

x grows with a linear dependence in time σ2
x ≈ 2Kxt, with

longitudinal dispersion coefficient Kx.
Scalar dispersion in environmental flows may result from the combined action of multiple

dispersive processes, such as turbulent mixing, flow asymmetries giving rise to tidal pumping
[69], tidal trapping [53], and various interactions of velocity shear in one direction with
dispersion in an orthogonal direction. The mixing due to these often complex dispersive
processes is at least superficially similar to the homogenizing effects of Fickian diffusion, and
Fickian models are often used to describe the bulk mixing effects. However, the underlying
processes do not necessarily obey a Fickian model [22], and at short time scales plume
spreading may significantly depart from the Fickian description. These departures from the
Fickian model are often termed anomalous diffusion, and when considered in terms of a
power law relating tracer variance and time, σ2

x ∼ tβ; the term subdiffusion indicates β < 1
and superdiffusion indicates β > 1 [84].

[2] presented a general framework for evaluating shear dispersion, showing that lateral
diffusion coupled with lateral shear in the longitudinal velocity leads to longitudinal disper-
sion with a Fickian behavior at asymptotically long time scales. [61] extended the analysis of
Aris to the case of a plume released at ground level into a semi-infinite shear layer above the
plane of the ground, showing that in such a case the variance grows with a cubic dependence
on time compared to the linear dependence of Taylor’s and Aris’ scenarios. [3] refined the
analysis of Aris, clarifying the mathematical assumptions of the analysis, and for a broad
subset of flows presented a method for distilling the PDEs into a simpler set of ODEs. Solving
the more tractable set of ODEs leads to analytical solutions, valid at all time scales, for the
moments of a scalar cloud. In introducing considerable mathematical rigor, the approaches of
Barton become difficult to apply to environmental flows. For example, while scaling analyses
may easily reach the results of [61], a semi-infinite flow is incompatible with the approach
of [3], such that one could not arrive at a relationship directly describing the cubic time
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dependence in unbounded, constant shear cases. Scaling laws and corresponding qualitative
regimes are quite helpful and broadly applied in understanding environmental flows where
the precise global flow field may not be known, which in turn motivates the more schematic
methods described below. Other recent dispersion mechanism studies include [68], consider-
ing shear dispersion in a laterally bounded flow but with a non-zero Lagrangian time scale,
demonstrating that a non-zero Lagrangian time scale can increase the dispersion coefficient.

The present work is concerned with three regimes of shear dispersion in environmental
flows and the transitions there between. The initial shear dispersion regime is essentially
that described by [61], among others, in which a constant shear velocity profile completely
envelopes the scalar plume. As the plume expands laterally the range of velocities sampled
by the parcels within the plume also increases, leading to an ever-increasing velocity scale as-
sociated with the longitudinal dispersion. The straining of the plume by this ever-increasing
velocity scale has been shown to result in cubic in time variance growth, σ2

x ∼ t3, and will
generally be referred to as the “cubic” regime.

A second regime, introduced more fully in section 2.2, describes the variance growth of
a plume which is not bounded in the lateral direction, but for which the range of velocities
sampled by its parcels is essentially constant in time. Schematically this could correspond
to a narrow (relative to the lateral extent of the plume) shear layer separating two regions
of smaller velocity gradients. Physically, a plume may experience such a flow when the
discrete spatial features leading to velocity gradients are large compared to plume extent.
One particular example is the geometry of a channel-shoal basin, in which shear is maximal
over the sloping region joining the channel and shoal, with comparatively little shear in the
channel or shoals. A simple scaling approach to this scenario starts with a plume centered on
a shear layer with velocity +U to one side of the shear layer and −U to the other side. The
centroid of the plume is stationary and the longitudinal variance a function of the typical
displacement ∆x of a parcel. While on a particular side of the shear layer, ∆x ∼ ±Ut and
σ2
x ∼ U2t2. The variance growth is then dσ2

x/dt ∼ U2t2/T , where T is the characteristic
time for a parcel to return to the shear layer. T scales with the lateral size of the plume as
T ∼ σ2

y/Ky, and in the absence of lateral boundaries σ2
y ∼ Kyt, leading to an overall scaling

dσ2
x/dt ∼ U2t or σ2

x ∼ U2t2. The application of the Aris method of moments to this flow in
section 2.2 supports this scaling and provides the exact coefficients of proportionality.

In the case of a plume subject to shear but also constrained by lateral boundaries, the
variance growth asymptotes to the linear shear dispersion limit σ2

x ∼ t after a time sufficient
for the plume to become laterally well-mixed. Only in this final regime does the plume
assume a Fickian behavior.

Section 2.3 moves to the inverse problem of taking a time series of spatial moments
describing the evolution of a plume and estimating the relative importance and parameters
of each dispersion regime. Following a description of the inverse problem, idealized flows and
plume releases, described in section 2.4, serve as a testbed for the inverse problem.
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2.2 Analytical Derivation

Following the approach of [2], the advection-diffusion equation can be transformed into an
evolution equation for the spatial moments of the scalar distribution. The derivations of
this section assume a rectangular channel aligned with the x axis, with lateral coordinate
y ∈ [−B/2, B/2] and vertical coordinate z ∈ [−H, 0]. Define pth moment in x for a filament
extending along a given line of constant y and z as cp (y, z, t):

cp (y, z, t) ≡
∫ ∞
−∞

xpC (x, y, z, t) dx. (2.1)

The pth moment of the overall scalar cloud, mp, is then defined as the integral of cp over the
cross-section of the channel

mp (t) ≡
∫ B/2

−B/2

[∫ 0

−H
cp (y, z, t) dz

]
dy. (2.2)

Assuming a constant but anisotropic diffusivity described completely by the axis-aligned
diffusivities Kx, Ky and Kz, lateral and vertical velocities equal to zero, and along-channel
velocity u = u (y, z), the advection-diffusion equation can be written

∂C

∂t
+ u

∂C

∂x
= Kx

∂2C

∂x2
+Ky

∂2C

∂y2
+Kz

∂2C

∂z2
. (2.3)

(2.3) is then multiplied by xp and integrated over x ∈ (−∞,∞) to get∫ ∞
−∞

(
xp
∂C

∂t
+ uxp

∂C

∂x

)
dx =

∫ ∞
−∞

(
Kxx

p∂
2C

∂x2
+Kyx

p∂
2C

∂y2
+Kzx

p∂
2C

∂z2

)
dx. (2.4)

Pulling the time derivative outside the spatial integral and rearranging the advection term
leads to

∂

∂t

[∫ ∞
−∞

xpCdx

]
+ u

∫ ∞
−∞

[
∂

∂x
(xpC)− pxp−1C

]
dx =

Kx

∫ ∞
−∞

xp
∂2C

∂x2
dx+Ky

∫ ∞
−∞

xp
∂2C

∂y2
dx+Kz

∫ ∞
−∞

xp
∂2C

∂z2
dx. (2.5)

Applying the boundary conditions that C and its derivatives approach zero as x → ±∞,
(2.5) can be further simplified and expressed in terms of cp, cp−1 and cp−2 as

∂cp
∂t
− upcp−1 = Kxp (p− 1) cp−2 +Ky

∂2

∂y2
cp +Kz

∂2

∂z2
cp. (2.6)

Define an initial condition for the scalar distribution C (x, t = 0) ≡ C0 (x) from which
cp,0 (y, z) can be directly evaluated, and Neumann boundary conditions of zero flux at the y
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and z boundaries: Kij
∂C
∂xi
· n̂
∣∣∣
δΩ

= 0, where δΩ denotes the boundaries of the domain, and n̂

the unit vector normal to the boundary. Over the cross-section, the lateral and vertical dif-
fusion integrate to zero, such that substituting the definition of the moment mp, one arrives
at an evolution equation for arbitrary moments,

dmp

dt
= pucp−1 +Kxp (p− 1)mp−2., (2.7)

where the overbar denotes integration over the cross-section. As a final step, if the coordinate
reference frame is chosen such that m1 = 0 for all time, i.e. the reference frame of the centroid
of the distribution, then the longitudinal spatial variance of the plume may then be described
by

dσ2
x

dt
=

1

m0

dm2

dt
. (2.8)

Linear and cubic time dependence

[2] developed the above method and applied it to the case of a channel with an arbitrary
lateral velocity profile u = u (y). Taking the simplest shear velocity profile, a linear profile
with constant shear S = ∂u/∂y, u = Sy, with lateral boundaries at y = ±W/2 (illustrated
in panel c of figure 2.1), the spatial variance is described by:

dσ2
x

dt
=
W 4S2

60Ky

+ 2Kx (2.9)

where σ2
x has a linear time dependence - the familiar shear dispersion. If the lateral bound-

aries are absent but the constant shear velocity profile is retained (panel a of figure 2.1), the
evolving spatial variance is instead described by

dσ2
x

dt
= 2KyS

2t2 + 2Kx (2.10)

such that σ2
x has a cubic time dependence [61].

Quadratic time dependence

In the linear case described above both the velocity range and the lateral domain are
bounded, leading to a linear growth rate. The cubic case has an unbounded velocity range as
well as a lack of lateral boundaries, and the method of moments predicts a cubic time depen-
dence. At a qualitative level, a scenario in which exactly one of the velocity range or lateral
boundaries are finite would be expected to yield a quadratic time dependence. Construction
of a finite width channel with an infinite range of velocities is distinctly non-physical, but
an unbounded channel with finite shear is well-posed and potentially physical, such as the
limiting case of a plume which is large relative to local variation in the velocity field but
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Figure 2.1: Schematic of the three dispersion regimes

small relative to the width of the channel. This section applies the method of moments
to the scenario of an infinitely wide domain with a finite velocity range. In order to avoid
introducing an additional length scale into the model corresponding to the thickness of the
shear layer, an infinitely thin shear layer is imposed, with velocity field u (y, z) = Usgn (y),
where U is a constant velocity scale.

The zeroth per-filament moment c0 is purely a function of lateral diffusion and takes the
form of a simple Gaussian distribution:

c0 (y, t) =
m0

H
√

4πKyt
exp

(
− y2

4Kyt

)
. (2.11)

Assuming that the plume is vertically well-mixed, solving for the per-filament first moment
requires a solution for c1 satisfying the equation

∂c1

∂t
= Usgn (y) c0 +Ky

∂2c1

∂y2
. (2.12)

The form c1 = fc0 is assumed, where f = f (y, t) gives the longitudinal per-filament centroid
location as a function of time and lateral coordinate. Substituting fc0 into the evolution
equation for c1 produces

∂f

∂t
= u+Ky

∂2f

∂y2
− y

t

∂f

∂y
. (2.13)
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This can be further simplified by non-dimensionalizing f by Ut, and assuming a similarity
variable η = y/

√
4Kyt, such that f/Ut = g (η) and the PDE is reduced to a second order

nonlinear ODE in η:

g +
η

2
g′ − g′′

4
− sgn (η) = 0. (2.14)

By symmetry g (y = 0, t) = 0. As y approaches±∞ the motion of the centroid is independent
of the shear at y = 0 and carried only by the uniform flow, giving boundary conditions for
f :

lim
y→±∞

f = ±Ut (2.15)

or equivalently
lim

η→±∞
g (η) = ±1 (2.16)

The solution to (2.14), subject to the constraints at y = 0 and (2.16) is then

g (η) =
√
πη exp

(
η2
)

erfc |η| . (2.17)

g is both continuous and differentiable at η = 0, however the second derivative is undefined
at η = 0. While further manipulations are required to demonstrate that g is formally a weak
solution to (2.14), g has exactly the expected behavior, and precisely matches a numerical
integration of (2.14).

Returning to the method of moments,

c1 = c0Utg(η) (2.18)

is substituted back into the cross-sectional integral of (2.7) to obtain an equation for the
evolution of the second moment m2. Applying (2.8), the time dependence of σ2

x for the
infinite domain, finite shear case is reached:

dσ2
x

dt
= U2t+ 2Kx. (2.19)

Integrating in time from an initial point release recovers the original quadratic scaling:

σ2
x =

1

2
U2t2 + 2Kxt. (2.20)

As expected, the time dependence falls between the two previously discussed cases, with
variance growing quadratically in time. Additionally, the quadratic case includes no depen-
dence on the lateral dispersion coefficient Ky.
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Figure 2.2: Schematic of plume interaction with bathymetry variability

Effects of Bathymetry

In physical shoal-channel flows, lateral variation of the velocity field is typically correlated
to variation in depth. Sloping regions of the lateral bathymetry profile act as partial lateral
boundaries, and a scalar plume which extends over sloping areas would be partially bounded
at depth. In this partially bounded state one might assume that the realized growth of σ2

x is
then best described by a combination of regimes. For the specific case of a vertically mixed
plume centered on a break in the lateral bathymetry, such as in panel a of figure 2.2, the
growth of variance is shown to remain purely quadratic in time, though with an attenuation
factor which is a function of the ratio between the two depths. The derivation of this behavior
relies on the observation that when the plume is centered on the step then solutions for the
per-filament moments cp are the same as for the flat-bottom case. (2.7) is applied to get the
first and second moments of the total tracer distribution. µx = m1/m0 describes the centroid
of the plume, and in the step bathymetry case this is no longer stationary but instead follows

µx =
1− α

2 (α + 1)
Ut (2.21)

where α ≡ Hs/Hc, the ratio of the two depths. In order for m2/m0 to represent the second
central moment, (2.7) is evaluated in a coordinate system centered on µx, leading to

dσ2
x

dt
=

[
4α

(α + 1)2

]
U2t+ 2Kx. (2.22)

In essence the step bathymetry leads to an attenuated quadratic dispersion, where the at-
tenuation factor depends only on the ratio of the two depths. This result only holds in the
very specific case of a plume centered on the bathymetric break — in general one would
expect that bathymetry, acting as a submerged boundary, would have a significant effect on
the lateral tracer concentration distribution and the resulting dispersion would be a mix of
regimes.
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Transitions

The scaling arguments and results of the method of moments clearly delineate behavior of
σ2
x in the simplified, “pure” scenarios, but for a tracer cloud which passes through each

regime there is the additional question of how one regime transitions to the next. Further
examination of (2.9), (2.10) and (2.19) reveals that these transitions are characterized by a
continuous dσ2

x/dt.
Examining the evolution of σ2

x in the cubic case, (2.10), σ2
y = 2Kyt describes the lateral

variance and σy =
√

2Kyt gives a linear scale for the lateral extent of the plume. When

coupled with the shear this gives a scale for the range of velocities U (t) ≈ ∂u/∂y
√
Kyt.

(2.10) could then be rewritten dσ2
x/dt ≈ U2 (t) t, similar to the first term in the quadratic

evolution described by (2.19). The transition from cubic to quadratic is contained in the
time-dependency of the velocity scale, where the cubic regime implies a linear growth in
U , and as the range of velocities asymptotes to a constant value the plume moves to the
quadratic regime.

The transition from quadratic to linear dispersion can be examined in terms of the time
scale for lateral mixing T ∼ W 2/Ky. For t > T , quadratic regime must be shut down and
the dispersion reverts to the linear regime. Evaluating (2.19) with t = T returns exactly the
linear scaling, implying that the variance growth rate during the linear regime is also the
maximum growth rate achieved by the quadratic regime.

More broadly, the generic scaling

dσ2
x

dt
∼ U2(t)τ(t), (2.23)

may be considered, where U(t) is a velocity scale describing the range of velocities sampled
by the plume and τ(t) is a time scale describing how long it takes for a parcel to sample
that range of velocities. The three regimes can then be categorized by the time dependency
in U(t) and τ(t). In the cases where the lateral extent of the plume is not constrained by
domain boundaries, the lateral mixing time grows with the plume size such that τ(t) ∼ t,
but as the plume becomes large enough to “feel” the constraints of the boundaries the time
scale τ asymptotes to a constant value W 2/Ky, where W is the width of the domain. During
periods when the plume has not yet sampled the full range of velocities in the flow, the
lateral spreading and an assumed linear shear profile lead to U2(t) ∼ t. However, any finite
flow has a finite range of velocities such that eventually U must also asymptote to a constant
value. Combining the velocity and time scales, the resulting evolution of σ2

x is then clearly
continuous, with time dependence ranging from t2 when neither U nor τ have reached their
asymptote, to a constant value in the linear shear dispersion limit of a constant U and τ .

2.3 Estimation of Regimes and Parameters

The next analysis considers a number of particle plumes released in an idealized flow and
analyzed through the lens of the regimes discussed above. The aim is to discern, , by careful
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Figure 2.3: Accumulation of strain by a plume in the finite shear, infinite domain case

evaluation of the time series of spatial moments, (i) the relative importance of each regime,
and (ii) the degree to which the parameters of the simulated flow predict the evolution of the
plume. The goal is then to describe the evolution of σ2

x (t) in terms of the three regimes and
the relevant parameters including the shear S, finite velocity range U , and lateral dispersion
coefficient Ky. While the parameters of the regimes are generally changing in time, both due
to the changing plume size and the local hydrodynamics driving the dispersion, the problem
is simplified by considering the parameters to be constant over short windows of time. For
each time window the time rate of change of the variance can be modeled by a second degree
polynomial

dσ2
x

dt
≈ α2t

2 + α1t+ α0 (2.24)

with the three coefficients corresponding conceptually to the three dispersion regimes. The
presence of t and t2 in (2.24) imply a time origin for the cubic and quadratic regimes. Since
the plume behavior should not depend on the choice of an absolute time origin, one must
assume that t is instead relative to one or more time origins related to the plume state.
One possible choice is to take all times relative some ty at which σ2

y = 0. However, as a
plume shifts between regimes the x-y covariance of the plume of the plume may not evolve
in lockstep with the lateral variance σ2

y and, as will be shown below, the covariance plays a
key role in the time dependence of variance evolution.

Consider a pair of particles, such as in figure 2.3, in the finite shear flow of the quadratic
regime, where one particle ⊕ is in the y > 0 half-plane and advected with a velocity +U , and
the other, 	, is in the y < 0 half-plane advected with velocity −U . Ignoring for the moment
effects of Kx and Ky, the longitudinal separation between the particles is then expected to
evolve as ∆x = 2U(t− tc), where tc indicates the time when the particles are aligned across
the flow (and more generally the time at which the covariance is zero). In the quadratic and
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cubic cases the particles are free to diffuse laterally without limit and on average never mix
back across the shear region, which allows the approximation σx ≈ ∆x/2 (as opposed to the
laterally bounded, linear regime where particles are periodically mixed back to the center of
the domain and this scaling does not hold). The variance then evolves as the square of time,
and the time rate of change goes as dσ2

x/dt ∼ U2 (t− tc). Combining the tc dependence from
the present scaling argument with (2.19), the adjusted form for the evolution of the variance
is then

dσ2
x

dt
≈ U2 (t− tc) . (2.25)

Understanding the independent effects of ty and tc in the cubic regime requires a return to
the method of moments. The previous analysis is modified in the choice of initial conditions
for c0, which now describes a laterally spreading Gaussian plume for which σ2

y (t = ty) = 0,

c0 (y, t) =
m0

H
√

4πKy (t− ty)
exp

(
− y2

2Ky (t− ty)

)
. (2.26)

For ty = tc = 0, (2.26) reduces to (2.11), the lateral mass distribution in both the cubic and
quadratic analyses. The longitudinal concentration distribution is also modified such that
covxy (t = tc) = 0. ty < tc indicates an offset in time between the start of lateral spreading
and the start of straining. Subject to the initial and boundary conditions, and satisfying
(2.6), the per-filament centroid is described by

c1 (y, t) =
c0Sty

2

(
1 +

tc − ty
t− ty

)
. (2.27)

Applying (2.7), the evolution of the longitudinal variance is then given by

dσ2
x

dt
= 2KyS

2 (t− tc) (t− 2ty + tc) + 2Kx. (2.28)

The schematic of figure 2.4 depicts the relationship between tc, ty, covxy, σ
2
y and σ2

x. Con-
ceptually, σ2

y (t = tc) dictates the initial range of velocities sampled by the plume and the
covariance reflects an accumulation of strain in the plume, the same role as in the quadratic
analysis above.

In moving from the pure, analytical cases of section 2.2 to the present forms which aim
to be applicable to transitional states, it also becomes necessary to distinguish between the
internal mixing of parcels within the plume, given by the dispersion coefficient Ky, and the
lateral spreading of the plume, dσ2

y/dt. In the unbounded case these are related by a factor
of two, but as a plume becomes partially bounded or in the linear limit fully constrained
by lateral boundaries dσ2

y/dt and Ky diverge. Ky continues to describe mixing within the
plume but dσ2

y/dt tends towards zero. In the infinite shear case it is the lateral spreading of
the plume which is relevant, and which should be attenuated when lateral boundaries play a
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Figure 2.4: Relationship between σ2
x and the time origins for covariance and lateral variance

in the case of infinite shear.

role. Combining the time origins and replacing Ky with the more directly descriptive dσ2
y/dt,

the infinite shear regime is then characterized by the form

dσ2
x

dt
≈
(
∂u

∂y

)2 dσ2
y

dt
(t− tc) (t− 2ty + tc) . (2.29)

In the case of linear shear dispersion, for which the plume is laterally well-mixed, the
lateral variance is by definition constant. The covariance in the linear dispersion case also
asymptotes to a constant value with a time scale proportional to the lateral mixing time,
after which the straining action of the shear is balanced by the homogenizing effect of lateral
diffusion, shown schematically in figure 2.5. Corresponding to the lack of any evolving state
in the linear case other than σ2

x, there is no additional time dependence and no need to
include tc or ty at times beyond the lateral mixing time, and the evolution of σ2

x remains

dσ2
x

dt
≈ U2W 2

γKy

(2.30)

where γ is a constant related to the specific velocity profile.
The simplest representation of the combined effects of the three regimes is then a simple

summation of the individual contributions, taking into account the time origins for the higher
order regimes:

dσ2
x

dt
≈
(
∂u

∂y

)2 dσ2
y

dt
(t− tc) (t− 2ty + tc) + U2 (t− tc) +

U2W 2

γKy

(2.31)
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Figure 2.5: Asymptotic behavior and lack of accumulated state for linear shear dispersion.
The upper panel shows a sample tracer distribution, with corresponding time series of co-
variance and longitudinal variance in the lower panels.

In order to make meaningful comparisons between observed coefficients of a polynomial fit
as in (2.24) and (2.31) it becomes necessary to estimate tc and ty. Considering the effect
of the time origins on each term, the terms of (2.31) are connected with the polynomial
coefficients of (2.24). The highest order coefficient is unaffected by the time origins:(

∂u

∂y

)2 dσ2
y

dt
≈ α2. (2.32)

Taking into account the time origins of the cubic dispersion term, the coefficient for t can
then be approximated by [

U2 − 2

(
∂u

∂y

)2 dσ2
y

dt
ty

]
≈ α1. (2.33)

Similarly, time origins for both the cubic and quadratic dispersion terms are relevant for the
constant term of (2.24):

U2W 2

γKy

− U2tc +

(
∂u

∂y

)2 dσ2
y

dt

(
2tcty − t2c

)
≈ α0. (2.34)

Note that (2.24), while including terms quadratic, linear and constant in time, does not map
directly to the cubic, quadratic and linear shear dispersion regimes due to the time origins tc
and ty. To more cleanly separate the influence of each regime, (2.32)-(2.34) are used to define
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Figure 2.6: Bathymetry profiles idealized domains, (a) narrow channel and (b) wide channel.
Horizontal, dashed lines bracketing z = 0 denote the range of the tidal boundary condition.
Vertical, dotted lines denote particle release locations.

a set of coefficients α∗i , in terms of αi, which describe the role of each individual regime:

α∗2 = α2 ≈
(
∂u

∂y

)2 dσ2
y

dt
(2.35)

α∗1 = α1 + 2α2ty ≈ U2 (2.36)

α∗0 = α0 + α∗1tc − α∗2
(
2tcty − t2c

)
≈ U2W 2

γKy

(2.37)

With the effects of the time origins removed from each coefficient, what remains is a series of
coefficients with one-to-one relationships with the three dispersion regimes and a prediction
of each based on parameters of the flow.

2.4 Tidally-forced Channel-Shoal Domain

In a step towards applying the above analysis to real world conditions this section considers
a more realistic but still idealized flow. Two domains are utilized, both 100km long, and
20km wide, varying in the lateral bathymetry profile as shown in figure 2.6. The x = 0
end of the channel is forced by 12 hour periodic tides, with a peak-to-peak amplitude of
1.0m, while at x = 100km the landward end of the channel is closed. The hydrodynamic
simulations utilize the SUNTANS RANS model [28], run in 2-D mode. The primary goal of
these simulations is to drive a moderately complex but tractable two dimensional flow field
in which the three dispersion regimes may be simultaneously observed. Dimensions of the
basin, tidal amplitudes and the lateral bathymetry profile fall within the range of typical
physical values. The focus is on the subtidal dispersion caused by interaction of the subtidal
flow field with shorter time scale turbulent mixing and tidal stirring. The residual flow field
is essentially the landward portion of the flow described by [43], in which the channel carries
a residual landward flow and the shoals have a residual seaward flow.
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Particle tracking model

FISH-PTM [32] simulates the transport and dispersion of passive particles by the predicted
hydrodynamic flow field output by SUNTANS. This particle tracking model includes both
deterministic transport by the Eulerian velocity field as well as a non-deterministic parame-
terization of turbulent dispersion. The non-deterministic component, a carefully formulated
random walk, is calculated at each time, for each particle, according to the formulation of
[37] with a constant eddy diffusivity of K0 = 0.1 m2 s−1. The diffusivity has been chosen to
be relatively small so that transitions between regimes are sufficiently separated in time to
allow a detailed analysis of each regime. While the full formulation of [37] is quite involved,
the bulk of the mathematical machinery is due to treatment of gradients and discontinuities
in K0. In the present case the diffusivity is constrained to be constant, uniform and isotropic,
such that the particle tracking integration is greatly simplified. Under these conditions, each
particle location is updated according to the split time-stepping scheme

X
n+1/2
i = Xn

i + ui (X
n) ∆t (2.38)

Xn+1
i = X

n+1/2
i +R

√
2r−1K0∆t (2.39)

where i denotes the coordinate dimension, Xn
i the particle’s location in the ith dimension at

step n, ui (X) the velocity from the hydrodynamic model, interpolated in time and space as
needed, R a random number evenly distributed over [−1, 1], and r = 1/3. Both the advective
step and the diffusive step are subcycled as needed. The advective step is subcycled as
particles cross an edge into a new cell of the hydrodynamic grid, and the diffusive step is
subcycled according to the time step constraints detailed in [60]. The diffusion step may
lead to a particle location which falls outside the domain. In this case the particle location
is reflected back into the domain.

Particle clouds are released, evenly distributed in the vertical, at several locations in
both the lateral and longitudinal directions, shown in figures 2.6 and 2.7. The initial lateral
position of the plume ranges from the center of the channel to halfway between the channel
center and the lateral boundary of the domain. Each plume is tracked over 100 tidal periods.
At the start of each tidal cycle the first and second moments are calculated as:

µj (t) =
1

N

N∑
p=1

rp,j (t) , and (2.40)

σjk (t) =
1

N

N∑
p=1

[rp,j (t)− µj (t)] [rp,k (t)− µk (t)] , (2.41)

where rp,j (t) is the position of particle p along axis j at time t, N is the total number
of particles and the indices j and k range over the coordinate axes x and y. With these
definitions, σ2

x ≡ σxx, σ
2
y ≡ σyy and covxy ≡ σxy.

In addition to tracking the evolution of each plume, the particle tracking model is also
used to estimate a residual Lagrangian velocity field. This field is estimated by releasing
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Figure 2.7: Plan view of the central portion of the wide channel idealized domain. Locations
of particle plume releases are shown by empty circles, and the Lagrangian residual field is
shown by arrows. Greyscale depth breaks shown at depths of 11, 15 and 19 m.
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Figure 2.8: Instantaneous plume distributions after 0 (gray), 7 (blue), 20 (green), 50 (orange)
and 100 (red) tidal periods. Greyscale depth breaks at 11, 15, and 19 m, with the lower
portion of the plot falling within the channel region and the upper half in the shoal region.
Ellipses are drawn according to the 2-D covariance matrix.

particles on a uniform, 200m grid throughout the domain, and extracting the displacement
of each particle after being advected for exactly one tidal period with the dispersive random
walk disabled. The displacements define the residual Lagrangian velocity, anchored in space
at each respective initial position. The residual velocity field for the wide channel domain is
shown by the arrows in figure 2.7 domain.

A sample plume trajectory is shown in figure 2.8, showing the interaction of the plume
with slope-generated residual shear. The initial release is within the channel, close to the
edge of the slope region. The initial residual transport carries the plume towards the closed
end of the domain, while a mix of dispersion and lateral advection lead to a growing portion
of the plume which samples the slope and shoal regions. Straining of the plume across the
slope region leads to a significant quadratic growth in the variance. The time series of σ2

x

is shown in figure 2.9, partitioned into contributions from the three dispersion regimes as
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Figure 2.9: Cumulative growth of σ2
x for the same particle cloud as depicted in figure 2.8.

The time series of σ2
x has been partitioned into the cumulative contributions of the three

shear dispersion regimes, based on the observed values for α∗i , plus the constant contribution
of the imposed K0.

well as the constant contribution from the imposed background dispersion rate K0. The
partitioning is according to the values of α∗i and estimates for tc and ty.

Comparison of fit parameters to direct estimates

In order to assess the relevance of the analytical regime descriptions to cases where the net
dispersion is an evolving combination of multiple regimes, the adjusted observed polynomial
coefficients α∗i is compared to predicted quantities according to (2.35)-(2.37). The predicted
quantities depend on approximations of parameters describing the subset of the flow sampled
by the plume during each time window. Within a single tidal cycle the internal dispersion
is dominated by the imposed K0 and for the estimates in this section Kx = Ky = K0 is
assumed. While the particle tracking results include tidal variations, the present analysis
consider only the subtidal signals, obtained by extracting parameters only at integer tidal
periods tn = nT where T = 12h is the tidal period. The width scale W (tn) is approximated
by σy (tn). The velocity scale U (tn) is extracted from the residual Lagrangian velocity field
by taking the standard deviation σu of the residual along-channel velocity at each particle
location at time tn. Per-window quantities W and U are then taken as averages of W (tn) and
U (tn) over all tn in the time window. Approximation of the quadratic coefficient in (2.35)
is simplified to a direct estimate of the rate of change of the range of velocities sampled by
the plume. Assuming a uniform, constant shear ∂u/∂y in the vicinity of the plume (the base
assumption for the cubic regime),(

∂u

∂y

)2 dσ2
y

dt
=

d

dt

(
∂u

∂y
σy

)2

=
dσ2

u

dt
(2.42)

where the right hand side is evaluated by fitting a line to the time series of σ2
u within each time

window. The time origins tc and ty are estimated by a least-squares linear fit to time series of
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Figure 2.10: Correlation between predicted and observed growth coefficients. Diagonals show
the 1:1 lines and grey perpendiculars intersect at (0, 0). Panels show correlation for (a) the
infinite shear regime, (b) the finite shear / unbounded regime, and (c) the linear, Fickian
limit of bounded shear dispersion. Correlation coefficients are R = 0.890, 0.867, and 0.565
for α∗2, α∗1 and α∗0, respectively.

both covxy and σ2
y over the time window and solving for the time when the line crosses zero.

The polynomial fit (2.24) is also constrained to a non-negative leading quadratic coefficient.
While it is possible for a plume to exhibit growth described by a negative coefficient on t2,
the scaling relationships presently discussed are not applicable to such flows. Flow features
including longitudinal convergence or mean vorticity which rotates longitudinal variance into
the lateral axis could lead to decreasing σ2

x but are beyond the present analysis.
A comparison of the measured α∗i and corresponding predicted coefficients is shown in

figure 2.10. Since the velocity shape factor γ is not one of the estimated parameters, it
is given a nominal value of 25 for the purposes of the plotting, noting that the slope of
the correlation in the right-hand panel is arbitrary. The comparison for α∗2 (figure 2.10a)
shows good agreement for larger observed values, but significant clustering around 0, largely
due to the limitation that α2 is required to be non-negative. Windows for which α2 would
have been negative if not constrained are most often times when the plume encounters
some longitudinal variation in the flow. For example, plumes in the center of the channel
move slowly to the closed end of the basin and eventually encounter a significant longitudinal
convergence, ∂u/∂x < 0, compressing the plume and decreasing σ2

x. A similar process occurs
for plumes in the shoals which advect far enough towards to the open end of the domain to
encounter the “null” in the residual field. Both cases fall outside the range of regimes covered
by the method of moments as applied in section 2.2, and a broader, fully two-dimensional
approach would be required to adequately treat these cases. The lower correlation for α∗0
(figure 2.10c), relative to α∗2 and α∗1 (figure 2.10a,b), is due in part to variability of the
velocity profile which is not captured by the constant value of γ. The fact that α∗0 relies
on all three values of αi, as well as linear and nonlinear terms in tc and ty undoubtedly
contributes to the higher error relative to the higher order α∗2 and α∗1.
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2.5 Discussion

The flows presented here have been purposely distilled down to cases where higher order
dispersive regimes may be observed and quantified. In observations or physically realistic
simulations a broad range of processes lead to a more complex picture, in particular in the
temporal and spatial variability of Ky and Kx. In the context of subtidal dispersion, these
dispersion coefficients parameterize the combined effects of numerous processes including
turbulent mixing, longitudinal-vertical shear dispersion, tidal stirring and lateral-vertical
shear dispersion. Additional non-Fickian processes may also contribute to the overall plume
dynamics, including residual density-driven transport in both longitudinal and lateral axes.
Depending on the time scales involved, these processes may add to or mask high-order
dispersion regimes. However, there remains the fundamental notion that the velocity scale
U present in shear dispersion relations cannot be assumed to asymptote to a constant value
in the same time period as the lateral extent of the plume asymptotes to a constant value.

Note that the quantitative estimates for the importance of quadratic dispersion do not
necessarily exclude periods of cubic dispersion, which when observed for a short period may
exhibit a quadratic time dependence. Further examination of periods of significant quadratic
dispersion, however, show little correlation between the measured quadratic and cubic terms,
suggesting that dispersion in these periods is best classified as quadratic. Specifically, com-
paring α∗2 and α∗1 the correlation coefficient is R = −0.07. A similar comparison, but between
the predicted coefficients shows a correlation coefficient of R = 0.20. Both comparisons rein-
force the conceptual model of a plume quickly growing beyond the lateral scale of the shear
and then reverting to a quadratic dispersion regime.

Of particular interest in the high order regimes is that the overall dispersion, in terms of
cross-sectionally averaged gradients and fluxes, is not Fickian. Operational 1-D models (e.g.
[62]) must make many simplifying assumptions, and the use of Fickian dispersion coefficients
is one of them. While Fickian dispersion is easily expressed in terms of either plume growth
(σ2 ≈ 2Kt) or a differentially defined flux (F ≈ −K ∂C

∂x
), high order dispersion regimes cannot

be expressed in terms of local gradients. For the simplest, infinitely long, steady state case
one can argue that all time scales for lateral mixing are achieved and all dispersion reverts
to linear Taylor dispersion. In more realistic applications, though, embayments are finite
and often exhibit significant variation along the axis. One can imagine a situation such as
figure 2.11 where a residual circulation transports salt through the embayment. In terms of
a one dimensional salt balance, though, gradients of the cross-sectionally averaged salinity
〈s〉 are negligible, even though the salt flux is quite significant. This situation is analogous
to the quadratic dispersion regime in the sense that straining of the concentration field leads
to significant dispersion or flux before lateral mixing is able to homogenize the cross-section.
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Figure 2.11: Flux view of quadratic dispersion in an estuarine reach which is not later-
ally well-mixed. Significant salt flux occurs even though gradients in the cross-sectionally
averaged salinity 〈s〉 are negligible.

2.6 Conclusions

Motivated by the structure of environmental flows, this chapter has introduced a dispersion
regime with quadratic dependence on time, to augment the previously studied cubic and
linear dispersion regimes. This regime may be prevalent in flows where the lateral extent
of the velocity shear is smaller than the lateral extent of the domain, such as channel-shoal
systems in which the slope features are narrow compared to the width of the channel or the
total width of the basin. A plume with a lateral length scale falling between the width of the
shear and the width of the domain is expected to evolve according to this quadratic regime.
While simple scaling arguments quickly arrive at this behavior, a more rigorous and precise
description is obtained by way of the method of moments. In a suitably constructed idealized
flow all three regimes occur and the net evolution of the plume variance can reasonably be
predicted by parameters extracted from the flow.
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Chapter 3

Numerical Diffusion on Unstructured,
Flow-aligned Meshes

Abstract

The benefits of unstructured grids in hydrodynamic models are well understood but in many
cases lead to greater numerical diffusion compared to methods available on structured grids.
The flexible nature of unstructured grids, however, allows for the orientation of the grid
to align locally with the dominant flow direction and thus decrease numerical diffusion.
This chapter investigates the relationship between grid alignment and diffusive errors in the
context of scalar transport in a triangular, unstructured, 3-D hydrodynamic code. Analytical
results are presented for the 2-D anisotropic numerical diffusion tensor and verified against
idealized simulations. Results from two physically realistic estuarine simulations, differing
only in grid alignment, show significant changes in gradients of salinity. Changes in scalar
gradients reflect reduced numerical diffusion interacting with the complex three-dimensional
structure of the transporting flow. Also described is a method for utilizing flow fields from
an unaligned grid to generate a flow-aligned grid with minimal supervision.

3.1 Introduction

Unstructured grid models are used in a wide variety of computational fluid dynamics appli-
cations, including extensive use in hydrodynamics [11, 28, 12]. Unstructured models allow
seamless transitions from large scales to small and efficient adaptation to complex domain
geometry. Along with these advantages come challenges related to grid generation, higher-

Previously published by Wiley and Sons: Holleman, R. C., O. B. Fringer and M. T. Stacey. Numerical
Diffusion on Unstructured, Flow-aligned Meshes. Int. J. Numer. Meth. Fluids, 2013.
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order methods and error analysis. In particular, many higher-order advection schemes are
not directly applicable to unstructured grids, leaving these models to use diffusive low-order
advection schemes. Characterizing this numerical diffusion and finding ways to reduce its
impact on global model error are important facets of utilizing unstructured models.

A standard mathematical tool for evaluating discretization errors is modified equation
analysis [33, 82], which can be applied to structured grid methods with relative ease. This
analysis is still possible in the case of unstructured grids, but irregular stencils and coupling
between coordinate dimensions complicate matters. Special care must be taken to account
for heterogeneities in the grid and the fact that neighboring cells may not be characterized
by the same modified equation and may not be independently consistent with the original
PDE being modeled. For example, Bouche [5] investigated the upwind finite volume method
applied to the scalar advection equation and observed an apparent loss of consistency when
analyzing the method on unstructured grids. Even discretizations on structured but nonuni-
form grids can lead to inconsistency, such as the nonuniform curvilinear meshes studied
by Turkel [77]. They observed that irregular meshes led to inconsistent discretizations if
the spacing was not quasi-uniform and the staggering placed the dependent variable at cell
centers. In the specific case of finite volume, first-order upwind on triangular unstructured
grids, the focus of this chapter, these heterogeneities arise on a uniform triangular grid due
to asymmetries between two classes of cells, distinguished by the number of in-flow faces.

In practice first-order accurate advection schemes are often too diffusive to accurately
predict scalar gradients [15]. While there do exist higher-order methods that are commonly
implemented on unstructured grids, such as TVD and FCT, these methods are generally
formulated as corrections or extensions to an underlying low-order method [20]. Monotonic
higher-order schemes are necessarily nonlinear, as Godunov’s theorem states that a linear
monotone numerical scheme is at most first-order accurate [30]. This nonlinearity makes a
generalized error analysis difficult and motivates an investigation of the diffusive behavior of
the underlying low-order method, for which a complete analysis is possible in the case of a
uniform mesh.

The bulk of analysis for numerical methods is focused on (i) consistency (with particu-
lar attention paid to the order of the error terms) and (ii) stability. Together, consistency
and stability imply convergence by way of the Lax equivalence theorem [42], and for some
applications it is sufficient to identify only the order of the error terms and the presence of sta-
bility, without regard to the coefficients on the error terms. Several aspects of hydrodynamic
applications, however, call for a more quantitative analysis of numerical diffusion. Firstly,
hydrodynamic applications often have well defined principal velocity directions, whether due
to river flows, prevailing winds, or the major axis of the tidal ellipse. This attribute of marine
flows motivates the desire to understand not just the worst case behavior of an advection
operator, but also the expected behavior given a specific velocity distribution. Additionally,
hydrodynamic applications often need to distinguish between lateral, or cross-flow, diffusion
and longitudinal, or streamwise, diffusion. Secondly, oceanographers are often interested in
quantifying physical mixing due to processes ranging from small-scale turbulent diffusion to
diffusive processes arising from the evolution of the structure of the large-scale flow. Non-
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physical diffusive errors are not just a frustration, but significantly raise the noise floor when
the ultimate goal is to quantify diffusion arising from physical processes.

Both physical and numerical diffusion can interact with spatial variations in the velocity
field to modify large-scale mixing and transport. For instance, shear in the velocity field
will cause the spreading of a scalar distribution as fluid parcels sample different portions
of the velocity profile. Diffusion perpendicular to the flow will cause a single parcel to
sample a broader swath of the velocity profile. In the limit of infinite lateral diffusion, all
parcels will sample all parts of the velocity profile equally, such that the mean transport of
each parcel is identical and the distribution of parcels in the direction of the straining will
remain constant. This interaction of shear and lateral diffusion where longitudinal diffusion
is inversely proportional to lateral diffusion (i.e. shear dispersion, [74]) is an example of
the potentially hidden effects of numerical diffusion, and motivates the need to differentiate
lateral and longitudinal numerical diffusion.

There have been many methods proposed for reducing numerical diffusion in unstructured
finite volume schemes while retaining monotonicity. TVD methods for one-dimensional
problems (see [71]) are naturally extensible to multi-dimensional structured methods by
way of operator splitting, and have more recently been extended to unstructured multi-
dimensional problems, e.g. [48, 18]. Another approach, the Reservoir method [1], decreases
numerical diffusion by time-shifting fluxes to achieve an effective local Courant number near
unity. Grid alignment has long been known to affect the accuracy of results which has
resulted in a number of approaches for adapting a grid to flow features. Adapting a grid
to the flow may occur before the simulation, such as in applications focused on resolving
boundary layers that use a static grid which envelopes boundaries with layers of highly
anisotropic, boundary-oriented cells (such as the advancing layers method discussed in [54]),
and the methods described in the current chapter. Many adaptive methods rely on runtime
error estimates to target areas for refinement, such as the methods described in [34] applied
to quadtree and octree meshes. Adaptive methods for fully unstructured grids such as [73]
are able to apply anisotropic stretching and refining of grid elements in order to better
resolve oriented features of a flow. Another perspective on adaptive grid methods is the
Vofire method of [39] in which triangular cells are subdivided parallel to the local velocity
direction at each step, decreasing the cross-flow component of numerical diffusion. These
runtime adaptive methods require significant modifications to or complete reimplementation
of the numerical core of a simulation code. Additionally, due to the nonlinear character of
most of the schemes numerical diffusion is both difficult to predict a priori, and may be
either positive or negative (such as the over-sharpening of gradients seen with the superbee
limiter[18]).

For an important class of finite volume C-grid hydrodynamic solvers (e.g. [11, 28]) the
computational grid must be orthogonal, meaning that the line joining adjacent cell centers
must be perpendicular to their common edge, which is equivalent to requiring that cell
centers are the circumcenters of the cells. Additionally they require that the cell center falls
within the cell itself, a condition which is violated for triangular cells which are not acute.
This constraint both limits the utility of anisotropic mesh approaches, and makes re-gridding
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Figure 3.1: Schematic for derivation of recurrence relation

generally too expensive to be done dynamically.
Section 3.2 presents the details of the modified equation analysis for the linear advection

equation on an idealized triangular grid. The analysis focuses on a first-order upwind, finite
volume discretization of the scalar advection equation. Numerical diffusion is first analyzed
in each of two classes of grid cells independently to demonstrate that such an independent
analysis is insufficient to capture the coupling of errors between the two classes of cells.
Consequently the analysis is extended to consider the aggregate errors due to the interaction
of the two classes of cells, leading to analytical expressions for the components of the 2-D
anisotropic numerical diffusion tensor. Section 3.3 introduces a series of idealized scalar
advection test cases which are used to calculate empirical numerical diffusion coefficients.
These empirical estimates are shown to verify the analytical expressions derived in Section
3.2. Section 3.4 presents an algorithm for generating flow-aligned grids and a simple test
case applying this algorithm and evaluating the effects on numerical diffusion in the test
case. Section 3.5 describes a physically realistic pair of simulations of San Francisco Bay,
where the first case uses an unaligned grid and the second employs a grid with cells aligned
to the principal velocity directions. Comparisons of salinity model data to observations
show significant improvements in salinity gradients when using the aligned grid, consistent
with decreased non-physical lateral diffusion. While the first-order upwind advection scheme
utilized in these simulations is not state-of-the-art, it is effective at highlighting the role of
grid alignment in numerical diffusion and the effect of anisotropic numerical diffusion on
scalar distributions, both of which are present in higher-order advection schemes.

3.2 Analytical Grid Diffusion

As a point of reference for modified equation analysis [82], this section briefly considers the
modified equivalent partial differential equation for one-dimensional, first-order, forward in
time, backward in space scalar advection. This scheme can be written

An+1
j = CAnj−1 + (1− C)Anj (3.1)



30

where Anj is the scalar concentration in cell j and time step n, and C = U∆t/∆x denotes
a volumetric Courant number, equivalent to the fraction of each cell’s mass displaced by
advective fluxes during each time step. A Taylor series expansion of all scalar values about
time n and location j leads to the modified equivalent equation

At + UAx =
∆x2

2∆t
C (1− C)Axx +O

(
∆x2,∆t2

)
(3.2)

where subscripts denote the corresponding partial derivative, and the coefficient on Axx is
interpreted as numerical diffusion. The stability of this scheme can be related to the sign of
the diffusive term, leading to the conclusion that this method is stable for 0 ≤ C ≤ 1.

In the context of two-dimensional structured grids this analysis may be applied directly,
but a difficulty arises in applying a modified equation analysis to an unstructured triangular
grid, even when the flow is uniform and the grid regular. The key hurdle to direct application
of modified equation analysis is the fact that for a uniform and constant flow, half of the
cells have one inflow face and two outflow faces (type A cells in Figure 3.1), while the other
half have two inflow faces and one outflow face (type B cells). The direct, decoupled analysis
is illustrated in the following section which derives the truncation error independently for
type A and type B cells. The result is unrealistic, but motivates an extension of the analysis
that considers the coupling of type A and B cells.

In the derivation below, following the schematic in Figure 3.1, the scalar concentration
in type A cells at time step n is denoted Ani , and for type B cells Bn

i , to reinforce the notion
that the two scalar fields are not interchangeable. Scalar values are cell averages, and for
the purpose of gradients are located at the circumcenter of each cell. The orientation of the
grid relative to horizontal is given by 0 ≤ θ ≤ π

3
, and the three types of edges are denoted by

α, β, and γ. The free-stream velocity U is taken parallel to the x axis, and the components
of the velocity normal to the faces are given by Uα = U sin θ, Uβ = U sin

(
θ + π

3

)
, and

Uγ = U sin
(
θ + 2π

3

)
. Since the grid is congruent over rotations of nπ/3, the given range of θ

is sufficient to cover all possible orientations of the grid relative to the flow. The edge length
is l, and the cell area is a, which for the case of equilateral triangles is a =

√
3

4
l2.

Independent analysis of A and B cells

The discretization of the scalar advection equation for axis-aligned flow, At + UAx = 0, for
a type A cell using a first-order upwind, finite volume discretization is

a
(
An+1

3 − An3
)

= l∆t (UβB
n
1 − UαAn3 − UγAn3 ) . (3.3)

Defining a finite volume analog to the Courant number for each face Cζ = Uζl∆t/a, and
noting that, from continuity, Cβ = Cα + Cγ, (3.3) is rewritten:

An+1
3 = (1− Cβ)An3 + CβB

n
1 (3.4)
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Applying Taylor series expansions in time and space, centered around An3 , the modified
equation for a type A cell is

At +
4

3
cos2

(
θ − π

6

)
UAx +

4

3
cos
(
θ − π

6

)
sin
(
θ − π

6

)
UAy (3.5)

=

[
2

3
√

3
cos3

(
θ − π

6

)
Ul − 1

2
∆tU2

]
Axx

+
2Ul

3
√

3
cos
(
θ − π

6

)
sin2

(
θ − π

6

)
Ayy

+
4Ul

3
√

3
cos2

(
θ − π

6

)
sin
(
θ − π

6

)
Axy +O

(
∆t2, l2

)
The analysis of type B cells follows in the same manner, with the resulting modified equation:

Bt +
4

3

[
sin2

(
θ +

2π

3

)
+ sin2 θ

]
UBx +

2

3

[
sin
(

2θ +
π

3

)
− sin (2θ)

]
UBy (3.6)

=

[
2l

3
√

3

(
sin3

(
θ +

2π

3

)
+ sin3 θ

)
− 1

2
U∆t

]
UBxx

+
2l

3
√

3

(
cos
(
θ +

π

6

)
sin2

(
θ +

π

6

)
+ cos2 θ sin θ

)
UByy

+
4Ul

3
√

3

[
cos2

(
θ +

π

6

)
sin
(
θ +

π

6

)
− cos θ sin2 θ

]
Bxy +O

(
∆t2, l2

)
Denoting the coefficients on Ax and Bx as the effective advective speeds UA and UB, the coef-
ficients of Axx, Ayy, and Axy as numerical diffusivities Kx

A, Ky
A, and Kcross

A (and similarly for
B cells), the modified equations for each type of cell have an apparent loss of consistency, due
to UA 6= UB 6= U . Similar observations of loss of consistency have been made for discretiza-
tions on irregular structured grids, for example [77]. However, in this regular, unstructured
case the expected advective speed U can be recovered by assuming a simple average of the
coefficients in (3.5) and (3.6), which also allows the cross-stream advection coefficients on
Ay and By to cancel. Similarly, averaging the diffusion coefficients and simplifying gives

Kx
mean =

[
1

3
√

3
sin3 θ +

1

4
cos θ

]
Ul − 1

2
U2∆t (3.7)

Ky
mean =

(
1

3
√

3
cos2 θ sin θ +

1

12
cos θ

)
Ul (3.8)

Kcross
mean =

(
1

6
− 2

3
√

3
cos θ sin θ

)
sin θUl (3.9)

While the cross-stream advection coefficients cancel, coefficients on ∂
∂x2

and ∂
∂y2

in the Taylor
series expansion are always positive and do not cancel, such that the resulting diffusion
coefficients will overpredict both lateral and longitudinal diffusion. Note that the cross term
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Figure 3.2: Schematic showing vanishing of lateral diffusion for θ = 0. Solid lines denote
zero-flux faces of the cells, and dashed edges have nonzero flux. The arrows along the center
strip show the vector (∆x,∆y) for which the Taylor series expansion is evaluated for each
cell’s upwind neighbor. The nonzero y component of the vectors leads to an overpredicted
Ky unless the two types of cells are treated simultaneously.

only provides information on the orientation of diffusion - the magnitude of the total diffusion
depends only on Kx and Ky. This result is intuitively evident from examining a strip of
triangular cells, parallel to the flow, such as in Figure 3.2. Cell centers of the two types of cells
are offset from each other in the cross-flow direction, such that the Taylor series expansion in
the lateral direction includes positive coefficients on Ayy and Byy. The positive coefficients
lead directly to a nonzero Ky in the averaged modified equation. Geometrically, though,
any diffusive spreading is limited to this single-width triangle strip, as the flow-aligned faces
have zero flux. The source of this discrepancy is that a Taylor series expansion about one
type of cell ignores the biases in the other type of cell.

Combined analysis

One method for amending the analysis is to expand the values Bn
i for type B cells in terms

of values in type A cells, using a recurrence relation rather than a Taylor series expansion.
For the schematic in Figure 3.1, the update equation for cell B1 at time step n, analogous
to (3.4) but for a type B cell, is

Bn
1 = (1− Cα − Cγ)Bn−1

1 + CαA
n−1
1 + CγA

n−1
2 (3.10)

For notational convenience λ ≡ 1−Cα−Cγ. Successive application of the recurrence relation
replaces Bn−j

1 with an expression containing Bn−j−1 and An−j−1
i , such that the result of k

expansions is

Bn
1 = λkBn−k

1 + Cα

k∑
j=1

An−j1 λj−1 + Cγ

k∑
j=1

An−j2 λj−1 (3.11)
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The upwinded values from Ai at past time steps can be expanded as a Taylor series in time
around step n, yielding An−ji in terms of Ani and its time derivatives. Since the purpose
of the analysis is to quantify numerical diffusion, the expansion are limited to the second
derivative. Assuming an n large enough that Bn

1 is fully decoupled from the initial condition
B0

1 , i.e. n∆t� l/U and λn ≈ 0, allowing k to go to infinity results in

Bn
1 =

∞∑
j=0

λj

[
CαA

n
1 + CγA

n
2 − (j + 1) ∆t

(
CαA

n
1,t + CγA

n
2,t

)
(3.12)

+
(j + 1)2 ∆t2

2

(
CαA

n
1,tt + CγA

n
2,tt

)
+O

(
∆t3
)]

for which the infinite sums can be replaced with closed expressions:

Bn
1 =

1

1− λ
[CαA

n
1 + CγA

n
2 ]− ∆t

(1− λ)2

[
CαA

n
1,t + CγA

n
2,t

]
(3.13)

+
(1 + λ) ∆t2

2 (1− λ)3

[
CαA

n
1,tt + CγA

n
2,tt

]
+O

(
l3
)

This expression for Bn
1 is now in terms of values at time step n evaluated only at the centers

of type A cells. For the purposes of the modified equation analysis Ani and corresponding
derivatives are then expressed as Taylor series expansions around An3 and its derivatives.
After substitution, the modified equation (now dropping the subscript on A3, as all values
have been expanded about this point) reads

At + UeffAx = [2Kx]Axx + [2Ky]Ayy + [2Kcross]Axy +O
(
∆t2, l2

)
(3.14)

The simplified expressions (see appendix A for details of the simplification) for the anisotropic
numerical diffusion coefficients are:

2Kx =

[
2
√

3

3

(
cos2 θ cos

(
θ +

π

6

)
+ sin θ cos2

(
θ − π

3

))
(3.15)

−
√

3

4 sin
(
θ + π

3

)]Ul − U2∆t

2Ky =
sin (3θ)

2
√

3
Ul (3.16)

2Kcross =

[
4√
3

sin θ sin
(
θ − π

6

)
sin
(
θ − π

3

)]
Ul (3.17)

Ueff = U

The factor of 2 arises from the fact that the analysis includes truncation errors for both the
update of a B cell from its upwind A neighbors and for an A cell updated from its upwind B
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neighbor. The effective mean numerical diffusion coefficients are consequently one-half the
coefficients that appear in the modified equation.

For the special case of a flow-aligned grid θ = 0 and the longitudinal numerical diffusion
simplifies to

Kx =
1

4
Ul − 1

2
U2∆t (3.18)

Employing the fact that the longitudinal spacing of cell centers is ∆x = l/2 when θ = 0,
and the Courant number C = U∆t/∆x, the longitudinal diffusion can be further simplified
to Kx = 1

2
(U∆x− U2∆t) = ∆x2

2∆t
C (1− C). Thus in the case of exactly aligned flow, the

unstructured method reduces to the same behavior as a one-dimensional structured grid.
Likewise, the lateral diffusion coefficient goes to zero for an aligned grid, consistent with the
schematic of Figure 3.2.

Since the update equation in the aligned-grid case is identical to that for a regular 1-D
discretization, the same conditions apply for stability, namely that 0 ≤ C ≤ 1. For arbitrary
θ the condition for monotonicity, which is a sufficient condition for stability [20], is

0 ≤ Cβ =
4U∆t sin

(
θ + π

3

)
√

3 l
≤ 1 (3.19)

The worst-case scenario, which occurs at θ = π
6
, requires 0 ≤ U∆t

l
≤
√

3
4

. Stability may
also be investigated in terms of the diffusion coefficients. Since stability is related to the
fastest growing Fourier mode, which may be anisotropic and not necessarily aligned with the
axes, the two-dimensional case requires consideration of the signs of the eigenvalues of the
diffusion tensor

K =

[
Kx 1

2
Kcross

1
2
Kcross Ky

]
(3.20)

rather than the total diffusion Kx + Ky or the separate axis-aligned diffusion coefficients
Kx and Ky. The condition that the smallest eigenvalue of K be non-negative can be shown
to be equivalent to the monotonicity condition (3.19), though the lengthy and generally
unenlightening algebra is omitted from this chapter.

For comparison, the diffusion coefficients for the same first-order upwind advection scheme
on a regular Cartesian grid can be similarly (and more simply) derived. The discretization
is

An+1 = (1− CW − CN)An + CWA
n
W + CNA

n
N (3.21)

Where subscripts W and N denote the respective quantities for the upwind cells to the
“west” (negative x direction when θ = 0) and “north” (positive y when θ = 0) direction.
The Courant numbers are defined as:

CN = sin θ
U∆t

l
(3.22)

CW = cos θ
U∆t

l
(3.23)
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Where θ takes on the same sense as in the triangular case, namely a counterclockwise rotation
of the grid relative to a +x directed mean flow. The modified equation analysis follows the
same conventions as for the triangular grid, although with only a single type of cell the
derivation is straightforward and as such has been omitted for brevity. The anisotropic
numerical diffusion coefficients for a Cartesian grid then read:

Kx =
1

2

[
sin3 θ + cos3 θ

]
Ul − 1

2
U2∆t (3.24)

Ky =
1

2

[
cos θ sin2 θ + cos2 θ sin θ

]
Ul (3.25)

Kcross =
[
cos2 θ sin θ − cos θ sin2 θ

]
Ul (3.26)

For the Cartesian case the edge length l is equal to the cell-center spacing ∆x, and θ is
constrained to the interval

[
0, π

2

]
. As expected, the flow-aligned (θ = 0) behavior is identi-

cal to the one-dimensional case and the two-dimensional flow-aligned triangular case. The
condition for monotonicity is 0 ≤ 1 − CW − CN ≤ 1, which for arbitrary θ leads to the
condition

0 ≤ U∆t

l
≤ 1√

2 sin
(
θ + π

4

) (3.27)

The worst case scenario for monotonicity in the Cartesian case occurs at θ = π
4
, for which

U∆t
l
≤ 1√

2
. For equivalent edge lengths l, the Cartesian grid permits a longer time step by

a factor of 2
√

2√
3
≈ 1.63. For equivalent cell areas (i.e. equivalent spatial resolution), the

Cartesian grid still permits a longer time step, though by only a factor of
√

2
4√3
≈ 1.075.

3.3 Idealized Simulations

Empirical estimates of numerical diffusion are used to corroborate the modified equation
analysis of Section 3.2. The estimates come from a series of idealized scalar transport test
cases simulating uniform flow in a flat-bottomed channel. The uniform nature of the test
domain and the aim of quantifying the full 2-D diffusion tensor motivate the use of the
method of moments [2] for estimating diffusion coefficients from the time rate of spreading
of a Gaussian scalar plume. The domain, shown in Figure 3.3, extends L = 50km in the x
dimension and W = 20km in the y dimension, with a constant depth of 10m. In all cases
the northern and southern boundaries are closed, and a uniform velocity u = 0.5 m s−1 is
imposed throughout the domain. Simulations are carried out using the discretization given
by equations (3.4) and (3.10).

The simulations sample a portion of the parameter space relevant to physical simulations
of estuarine domains, where the parameters are l, the side length of the cells ranging from
75m to 500m, θ, the smallest positive counter-clockwise angle between grid edges and the x
axis, ranging from 0◦ to 60◦, and the time step. The grid is created by taking a tessellation of
equilateral triangles, rotating by θ, and removing all triangles that fall outside the rectangular
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Figure 3.3: Idealized domain with initial condition for passive scalar. l = 500m, θ = 15◦.

boundary (leaving the grid with two or four “ragged” edges). The time step ranges from
40s for the highest resolution runs to 120s for the low resolution runs. The corresponding
range of the volumetric Courant number is from 0.80 to 0.24. The passive scalar field is
initialized with a Gaussian plume, centered at (L/4,W/2) with σx = 0.05L and σy = 0.1W
as shown in Figure 3.3. These dimensions ensure that the plume is sufficiently free from
wall effects as it advects through the domain, while keeping computational costs reasonable.
An additional constraint on the size of the plume is that it should cover a sufficient number
of cells to reasonably approximate a Gaussian distribution. The simulations run until the
domain-integrated scalar mass falls to 99% of its original value, at which point the trailing
25% of the simulation period is additionally discarded to avoid outflow boundary effects,
leaving the period t ∈ [t0, tf ]. The tracer field is output every 20 minutes, and each snapshot
of the tracer distribution is processed to find the centroid, second central moments in x and
y, and the spatial covariance. The centroid of the scalar plume is computed at each output
time step according to

µ =

∑
i riViAi∑
i ViAi

(3.28)

where ri = (xi, yi) denotes the location of the ith cell center, Vi its volume, and Ai its tracer
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concentration. The second central moments and spatial covariance are then computed as

σ2
x =

∑
i (xi − µx)

2 ViAi∑
i ViAi

(3.29)

σ2
y =

∑
i (yi − µy)

2 ViAi∑
i ViAi

(3.30)

covxy =

∑
i (xi − µx) (yi − µy)ViAi∑

i ViAi
(3.31)

Values of the time-averaged diffusion coefficients Kx, Ky and Kcross are estimated as one
half the average rate of growth for the second central moments and covariance [2], specifically

Kx =
1

2

(
dσ2

x

dt

)
=

1

2

(
σ2
x|tf − σ2

x|t0
tf − t0

)
(3.32)

Ky =
1

2

(
dσ2

y

dt

)
=

1

2

(
σ2
y

∣∣
tf
− σ2

y

∣∣
t0

tf − t0

)
(3.33)

Kcross =

(
dcovxy
dt

)
=

(
covxy|tf − covxy|t0

tf − t0

)
(3.34)

where t0 corresponds to the time when the initial Gaussian plume is introduced, and tf
the cutoff time as described above. Correlation between predicted and measured numerical
diffusion, using the results of the independent modified equation analysis (Section 3.2), are
shown in Figure 3.4. Both Kx and Ky are consistently overpredicted, and for the case of Ky

with θ = 0 it is apparent that measured diffusion is nearly zero despite the prediction being
only mildly attenuated relative to the unaligned case. As shown in Figure 3.5, the analytical
predictions for numerical diffusion using the combined approach of Section 3.2 correlate very
well with measured diffusion from simulations, with slightly more noise in the correlation for
Kcross than Kx or Ky.

3.4 Automated Grid Alignment in an Idealized Flow

The analytically derived diffusion coefficients (3.15)-(3.17) quantify how much the orientation
of grid cells affects grid diffusion, confirming that cells aligned with the velocity field lead to
zero lateral diffusion. This motivates the desire to create computational grids locally aligned
with the dominant flow, a common but labor-intensive practice. This section describes an
algorithm for automating this process, demonstrated on an idealized, rigid-body rotation
flow field, and evaluates the efficacy of aligning the grid in terms of the measured and
predicted numerical diffusion coefficients. The steps to creating a flow-aligned grid are (i)
run a reference simulation on an unaligned grid for a representative period of time (ii)
extract principal velocity directions from the reference simulation, (iii) construct principal
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Figure 3.4: Measured versus predicted numerical diffusion, using the average of the inde-
pendent modified equations. (a) Longitudinal diffusion (b) Lateral diffusion. (c) Cross
diffusion. Grid alignment in (a)-(c) is shown by the orientation of the triangular markers,
relative to a left-to-right flow as illustrated in (d).
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Figure 3.5: Measured versus predicted numerical diffusion using a recurrence relation to unify
the two types of cells. (a) Longitudinal diffusion (b) Lateral diffusion (c) Cross diffusion.
Grid alignment in (a)-(c) is shown by the orientation of the triangular markers, relative to
a left-to-right flow as illustrated in (d).
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Figure 3.6: Unaligned grid for rigid-body rotation test case, upper-right quadrant

streamlines by integrating trajectories in the principal velocity field and (iv) generate a new
grid in which the principal streamlines are embedded in the grid as cell edges.

The flow for the idealized flow test case is steady rigid body rotation,

u =
2π

T
y (3.35)

v = −2π

T
x (3.36)

such that a full revolution is achieved over a time period T . The domain is the region
[−L,L]2, chosen to be square such that the boundaries do not coincide with streamlines.
The unaligned grid is denoted G, with a velocity field umi (tn) where i ∈ {1, 2} indicates
components of the 2-D depth-averaged velocity field, m an index unique to each cell, and tn
the time at step n of the simulation. For the steady rigid body rotation case, umi is clearly
independent of tn, but in anticipation of the tidal case described in Section 3.5, the present
description of the algorithm retains the time variability. The upper right quadrant of the
unaligned grid G for the test case is shown in Figure 3.6, with L = 1000 m and a nominal
edge length l of 20 m. In the more general case, the nominal edge length, for both the
unaligned and aligned grids, is potentially variable in space, prescribed by the target edge
length l = l (x, y).

The reference simulation on the unaligned grid is run for a time period long enough to
obtain accurate principal velocities from the flow, such as a spring-neap cycle for a tidal flow.
In the steady test case the reference simulation is run for 12 h after which principal velocities
are extracted from the simulation results. For the purposes of the principal velocities the
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velocity field is treated as constant within each cell. The velocity correlation matrix for each
cell m, over N time steps of the unaligned simulation, is computed as

Cm
ij = umi u

m
j =

1

N

N∑
n=0

umi (tn)umj (tn) . (3.37)

λm1 and λm2 denote the eigenvalues of Cm, with λm1 ≥ λm2 . The principal velocity direction
ûmi is then defined as the eigenvector corresponding to λm1 , and the ratio em ≡ λm2 /λ

m
1

is a measure of how well-defined the principal velocity direction is. A direct analog to a
tidal ellipse can be defined with the orientation of the major axis parallel to the principal
velocity direction ûmi , and the lengths of the major and minor axes defined to be λm1 and
λm2 respectively, though the principal velocity captures variability at all frequencies, while
tidal ellipses are specific to each tidal constituent. For the steady flow of the test case, the
principal velocity directions coincide with the steady velocity field itself, within a constant
factor (since the principal directions are eigenvectors).

A collection of flow-aligned curves, termed principal streamlines, are created by integrat-
ing trajectories in the principal velocity field. These contours are similar to streamlines,
but differ in that they come from an integration of the principal velocity directions rather
than the instantaneous velocity field. Two aspects of the creation of principal streamlines
for grid alignment present a challenge relative to calculating streamlines in an instantaneous
velocity field. The first issue is that since ûi is defined as an eigenvector, it is only deter-
mined within a constant factor. This issue is handled by assuming that when a principal
streamline crosses from cell m to cell p, ûpi is scaled by a factor α = ±1 such that ûmi αû

p
i > 0

(utilizing Einstein summation notation). For a well-resolved velocity field this heuristic has
been robust and all cases for which ûmi û

p
i ≈ 0 also exhibited em ≈ 1, indicating that the

principal velocity direction in cell m was poorly defined and the local orientation of the grid
irrelevant. The second issue is that only a limited number of curves can be embedded in
the aligned grid. The collection of principal streamlines should be dense enough to force
most cells to be aligned but not so dense as to over-constrain the grid generation process
which would lead to poor quality cells. A lower limit on the proximity between shorelines
and principal streamlines, defined by a constant factor εl times the local target edge length l.
enforces reasonable spacing. Tests show that εl = 3 acheives a reasonable trade-off between
grid quality and alignment, meaning that there is space for three to four cells between any
two principal streamlines or shorelines.

An algorithm, described below, has been implemented to evenly distribute principal
streamlines throughout the domain while maintaining this lower bound on proximity between
curves, T is the constrained Delaunay triangulation of the shoreline, incrementally updated
with principal streamlines as they are calculated. All edges, both from the shoreline and the
principal streamlines, are sampled such that adjacent vertices are separated by at most the
local grid scale l. m (x) is the grid cell in G containing point x, c (t) is the circumcenter of
Delaunay triangle t, and r (t) the circumradius of Delaunay triangle t. T ′ is defined as the
set of triangles t ∈ T for which m (c (t)) 6= ∅, and em(c(t)) < εe. These are the triangles of T
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which fall inside the computational domain and for which the circumcenter lies in a region
where the principal velocity direction is well-defined. Observed distributions of em suggest a
nominal choice of εe = 0.2. Each principal streamline is traced according to the algorithm:

1. Find the triangle t ∈ T ′ with the greatest circumradius relative to the local scale,
r (t) /l (c (t)).

2. If r (t) < εll (c (t)) then terminate

3. Add the point c (t) to the triangulation T

4. For each α0 in {+1,−1}:

a) Initialize i← 0, x0 ← c (t), α = α0

b) Loop:

i. Calculate the minimum δ such that m
(
xi + δαûm(xi)

)
6= m (xi), i.e. take a

step in the principal velocity direction to reach another grid cell.

ii. xi+1 ← xi + δαûm(xi)

iii. If the distance between xi+1 and any constrained edge of T is less than εll
then end loop

iv. Insert the point xi+1 into T , with a constrained edge xixi+1

v. If ûm(xi) · ûm(xi+1) < 0 then α← −α
vi. i← i+ 1

This process is repeated until the termination condition in step 2 is achieved. The set of all
edges added in step 4(b)iv form the principal streamlines which will be used as constraints in
the grid generation step. In the rigid-body rotation test case, the principal streamline tracing
generates a set of concentric rings as shown in Figure 3.7, with a gap of approximately 3l
between each ring, and a similarly sized gap in each ring. Finally, the set of scale-compatible
principal streamlines are included as additional constraints for the generation of an aligned
grid, following the method described in section D.2. The upper-right quadrant of the aligned
grid for the rigid-body rotation test case is shown in Figure 3.8.

To quantify the effects on diffusion of orienting the grid with the principal streamlines, a
passive tracer field is advected in both the unaligned and aligned domains. The tracer field
is initialized with a Gaussian concentration distribution centered at (L/2, 0) with standard
deviation σ = L/10, as shown in Figure 3.9. The rigid-body rotation flow advects this tracer
distribution for one full revolution period T . Comparison of the second central moments
between the initial and final concentration distributions allow an estimate of the grid diffusion
during one revolution. While the plume spans some finite range of angles relative to the
center of the domain, for the sake of simplicity the analysis uses the Cartesian moments σ2

x

and σ2
y to approximate the radial diffusion coefficient

Kr ≈ σ2
x (T )− σ2

x (0)

T
(3.38)
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Figure 3.7: Principal streamlines extracted from the unaligned simulation
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Figure 3.8: Upper-right quadrant of the aligned grid for the rigid-body rotation test case
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Figure 3.9: Initial scalar field on the unaligned grid. Grayscale graduations indicate 0.1
contours, with a maximum concentration of 1.0

and tangential diffusion coefficient

Kθ ≈
σ2
y (T )− σ2

y (0)

T
. (3.39)

In the case of the unaligned grid, this leads to an estimate of Kr = 0.081m2s−1, and Kθ =
0.145m2s−1. For the aligned grid Kr = 0.020m2s−1 and Kθ = 0.134m2s−1. Evaluating the
analytical diffusion coefficients at the center of the release, a perfectly aligned grid should
have zero radial diffusion and Kθ = 0.162m2s−1. A “perfectly” unaligned grid, taking
θ = π/6, leads to Kr = 0.105m2s−1 and Kθ = 0.137m2s−1. The along-flow diffusion
coefficient Kθ is comparable in both cases, and falls within the expected range based on
the analytical coefficients. While theory suggests that along-flow tangential diffusion should
be slightly greater on the aligned grid, the results show a slightly attenuated tangential
diffusion. The major difference is in the radial, or cross-flow diffusion. Here the observed
diffusion on the unaligned grid is 77% of the predicted maximum, while the aligned grid sees
only 19% of the predicted maximum.

3.5 Application to a Physical System

To further explore the effects of grid alignment and grid diffusion, this section describes a
physically realistic tidal simulation of San Francisco Bay, with and without grid alignment,
and a comparison of the resulting salinity fields. The SUNTANS [28] code in hydrostatic
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Figure 3.10: Computational domain for the San Francisco Bay model runs. Nominal grid
edge-length is 5000m in the coastal ocean, 500m in North San Francisco Bay, and 250m in
South San Francisco Bay. For computational efficiency and boundary condition simplicity
the Sacramento-San Joaquin Delta has been replaced by a pair of long dissipative channels.
The dashed line represents the tidal ocean boundary condition.

mode is utilized to solve the 3-D Reynolds-averaged primitive equations with the Boussinesq
approximation in a rotating frame of reference. In accordance with the hydrostatic approx-
imation, the vertical velocity field w is solved by continuity. Horizontal numerical diffusion
is assumed to be on the order of or larger than the physical horizontal eddy viscosity and
the latter is omitted from the equations of motion. The equations of motion are then

∂u

∂t
+∇ · (uu)− fv = − 1

ρ0

∂p

∂x
+

∂

∂z

(
νV
∂u

∂z

)
(3.40)

∂v

∂t
+∇ · (uv) + fu = − 1

ρ0

∂p

∂y
+

∂

∂z

(
νV
∂v

∂z

)
(3.41)

∇ · u = 0 (3.42)

Where u is eastward velocity, v northward velocity, f = 2ω sinφ the Coriolis parameter with
angular velocity of the Earth ω and latitude φ, νV the vertical eddy viscosity derived from a
two-equation turbulence model (Mellor-Yamada 2.5 [47]), and ρ0 a constant reference density
(ρ0 = 1000 kg/m3). The hydrostatic pressure p is defined by ∂p

∂z
= − (ρ0 + ρ) g, where ρ = βs

is the density anomaly due to salinity s and coefficient of contractivity β. These equations
are discretized on a prismatic finite-volume grid comprising unstructured triangles in the
horizontal and structured z-levels in the vertical.
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Two nearly identical simulations of San Francisco Bay are carried out, differing only in the
alignment of grid cells. Model outputs from both simulations are compared to observations
of depth-averaged salinity in the study area, South San Francisco Bay. The model domain,
shown in Figure 3.10, extends to the south through South San Francisco Bay (SSFB) as far
as Calaveras Point (CP), beyond which the basin devolves into a network of tidal sloughs. In
the northern end of the bay, the domain includes San Pablo Bay (SPB), Suisun Bay (SuB),
and a pair of false deltas each with a width of 1km. The false deltas are surrogates for
the Sacramento (Sac) and San Joaquin (SJ) Rivers, and have hypsometric curves matched
to accurate Delta bathymetry, evenly split between the two channels. The ocean boundary
is an arc of radius 100km, centered on the Golden Gate (GG). The spatial resolution is
nominally 5km in the coastal ocean, gradually decreasing to 250m in South San Francisco
Bay, leading to approximately 26,000 2-D cells and 430,000 3-D cells. The vertical dimension
is discretized with 40 z-levels, with cell thicknesses ranging from 0.5m at the free-surface to
10m at a depth of 100m. Depths below 100m are lumped into a single layer. The time step is
60s, and the scalar transport routines utilize substepping such that the overall hydrodynamic
time step is limited only by the propagation speed of wetting and drying fronts and internal
waves.

The ocean boundary is forced with zero velocity and a free-surface height set by observed
tides from Point Reyes (PR). In order to reach phase and amplitude agreement at the Golden
Gate, the ocean tides are advanced in time by 17.7 minutes and attenuated by a factor of 0.97.
Winds in the model were spatially uniform, as measured at Alameda (AL). Wind stress is
calculated using the drag law of Large and Pond [41]. Freshwater inputs are assembled from a
wide range of data sources, including Delta flows from the Delta Dayflow [21] measurements,
USGS gauged streams, and ungauged streams correlated to nearby gauges based on drainage
area. Discharges from wastewater treatment plants are also included, based on daily data for
the larger sources and monthly data otherwise. Evaporation and precipitation are spatially
uniform, with evaporation based on a monthly climatology at Burlingame (Bu) and hourly
precipitation from a gauge in Union City (UC). In order to avoid introducing a bias towards
the validation of one grid over the other, calibration is limited to the already mentioned
phase and amplitude tuning at the Golden Gate. The simulations are initialized with a
quiescent velocity field and a salinity distribution extrapolated from salinity observations
[78] along the thalweg of the bay. Following a spin-up period starting on August 1, 2008 and
running for 90 days, the analysis period is October 30, 2008 through January 22, 2010.

While the model domain includes the majority of the San Francisco Bay system, the
study area for the simulations is South San Francisco Bay (Figure 3.11), a 45km long basin
forming one of two branches in the larger San Francisco Bay system. Most of this embayment
exhibits a channel-shoal morphology, with channel depths of 15-20m and shoal depths of 0-
4m. The pronounced channel-shoal geometry leads to significant lateral shear and lateral
salinity gradients.

In the present case of San Francisco Bay, a tidally dominated estuarine and coastal
ocean domain, the depth-averaged principal velocities are essentially stationary over time-
scales greater than the spring-neap cycle, such that the representative period for the reference
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10km

Figure 3.11: South San Francisco Bay bathymetry used in the physically realistic model
runs. Contours at -15, -10, -5 (shaded) and -2.5m (NAVD88). Transect sampling locations
are shown as black dots, with the start of the transect (0km) at the southern end.

simulation should span at least one spring-neap tidal cycle. Model output from the unaligned
simulations over the first 90 days of the analysis period is used to establish a representative
principal velocity field. Figure 3.12 shows the principal velocity ellipses for a portion of the
domain, resampled to a coarse regular grid for clarity as well as normalized such that the
length of the major axis is constant. Principal streamlines, consistent with the grid resolution
function l (x, y), are depicted in Figure 3.13. The flow-aligned grid, with identical resolution
and shoreline data, is then constructed such that the flow-aligned contours are embedded in
the grid as edges of cells (shown in Figure 3.15). Section D.2 gives further details on the
mesh generation algorithm. Figure 3.14 compares distributions of cell-center spacing and cell
skewness between the original unaligned grid and the aligned grid. Cell skewness is defined
as 1−Aeq/A where A is the area of the cell and Aeq is the area of an equilateral triangle with
the same circumcircle, such that 0.0 indicates a perfectly equilateral cell and 1.0 a zero-area
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Figure 3.12: Principal velocity ellipses in the vicinity of the study area, derived from model
output from the unaligned grid. Ellipses are calculated for all cells, but are shown interpo-
lated onto a coarse regular grid and normalized by major axis magnitude for clarity.

sliver. These distributions reflect the entire domain, but since the majority of the cells are
in the high-resolution South San Francisco Bay area, it is this area with a nominal 250m
resolution that dominates the histograms. Cell-center spacings are similar between the two
grids, but skewness shows an increase of moderately low-quality cells in the aligned grid,
most likely due to the greater number of constraints on cell placement.

To quantify the effects of grid alignment in the San Francisco Bay case, (3.15)-(3.17) are
evaluated to obtain Kx, Ky, and Kcross for each grid cell, depth-averaged and averaged over
the first 90 days of the analysis period. While the method of Burchard and Rennau [7] would
likely give a more accurate measure of the total numerical mixing for a specific scalar field,
our approach directly evaluates the numerical diffusion coefficients rather than calculating
decay of scalar variance on a per-scalar basis (though a diffusion coefficient may be obtained
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Figure 3.13: Flow-aligned contours, traced from the principal velocities, ready for input
to the re-gridding process. The separation between adjacent contours scales with the grid
resolution, leading to sparser contours in the north and west.

by normalizing by the gradient of the scalar concentration). Our method also retains the
distinction between lateral and longitudinal diffusion, which is helpful in interpreting the
effects of numerical mixing on the synoptic evolution of the scalar field. The alignment angle
θ was taken from the cell edge most closely aligned with the instantaneous velocity vector,
modulo π/3. Since the expressions of Section 3.2 give the diffusion tensor in a coordinate
system parallel to the instantaneous velocity, it is necessary to rotate each instantaneous
diffusion tensor into a common coordinate system before averaging over time and depth.
The principal velocity direction of each cell is used as the common coordinate system, such
that the resulting diffusion tensor gives Kx as longitudinal diffusion, parallel to principal
flow and Ky as lateral diffusion, perpendicular to principal flow. Figure 3.16 shows the
resulting spatial distributions of longitudinal Kx and lateral Ky. Volume- and time-averaged
diffusion coefficients for the study area, roughly defined as the southern two thirds of the
region shown in Figure 3.16, over days 91-180, are Kx = 12.9m2/s, Ky = 6.5m2/s, and
Kcross = 0.25m2/s for the unaligned grid. For the aligned grid, the same calculation gives
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Figure 3.14: (a) Distribution of cell-center spacing for the unaligned grid. (b) Distribution
of skewness for the unaligned grid. (c) Distribution of cell-center spacing for the aligned
grid. (d) Distribution of skewness for the aligned grid.
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(a) (b)

Figure 3.15: Details of the computational grids, towards the southern end of the study area.
(a) The unaligned grid. (b) The aligned grid with flow-aligned contours superimposed.

Kx = 12.8m2/s, Ky = 3.2m2/s, and Kcross = 0.1m2/s, showing a significant decrease in lateral
numerical diffusion while the longitudinal component is essentially unchanged. While the
mean lateral diffusion is improved in the aligned grid, the spatial distribution of the diffusion
coefficient shows much more variability than the unaligned grid. Low-diffusion regions occur
along embedded contours and high-diffusion regions between the contours. This small-scale
heterogeneity may lead to anomalous results when the length scale of a tracer distributions
is small relative to the inter-contour length scale.

Validation of unaligned and aligned model output

While the focus of the comparisons is the difference between the two models rather than
specific validation against observations, included below is a comparison of both models to
observed salinity in South San Francisco Bay. A full treatment of model predictive skill would
necessarily include evaluations of forcing data, the turbulence closure and bathymetry, and
is beyond the scope of this chapter. Model-data comparisons of the longitudinal salinity field
are shown in Figures 3.17 and 3.18. Each set of salinity observations was collected by the
USGS Polaris [78] over the course of a particular day, starting at the southern end of San
Francisco Bay. Model output has been interpolated in time to match the respective time
of each observation along the transect. Both the model and observations resolve the water
column at approximately 1m resolution, but have been depth-averaged for simplicity.

Considering only the portion of the transects that fall within the high resolution portion of
the grid (the region depicted in Figure 3.11), bias (mean error), the Pearson product-moment



52

Figure 3.16: Distribution of depth- and time-averaged longitudinal and lateral diffusion in
m2s−1. (a) Kx for unaligned grid. (b) Kx for aligned grid, showing minimal decrease in
numerical diffusion relative to the unaligned grid. (c) Ky for unaligned grid. (d) Ky for
aligned grid, showing a significant decrease in numerical diffusion.

correlation coefficient, the index of agreement [83], and the RMS error in the longitudinal
salinity gradient are calculated over all transect observations available for the 450 day analysis
period. These results and definitions of the respective metrics are summarized in Table 3.1.
While the unaligned grid has a marginally smaller bias, both the unaligned and aligned
simulations under-predict salinity and the difference in bias is small relative the standard
deviation of the errors. The aligned grid, however, has better correlation with observations
and a slightly better prediction of longitudinal gradients.

The observed transects, such as those shown in Figures 3.17 and 3.18, are available only
once a month and are timed to the phase of the tide. As such, there is the possibility of a
sampling bias relative to the true mean salinity distribution. Figure 3.19 shows predicted
long-term average salinity distributions sampled every 20 minutes. The difference in longi-
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Figure 3.17: Comparison of unaligned and aligned model output and observations of salinity
along a longitudinal transect in South San Francisco Bay (shown in Figure 3.11), from
November 5, 2008. (upper) Depth-averaged salinity (lower) Absolute error of model output
compared to observations.
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Figure 3.18: Comparison of unaligned and aligned model output and observations of salinity
along a longitudinal transect in South San Francisco Bay (shown in Figure 3.11), from
January 1, 2009. (upper) Depth-averaged salinity (lower) Absolute error of model output
compared to observations.
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Definition Unaligned Aligned

Mean error [psu] 〈sni − ŝni 〉 −0.36± 0.69 −0.42± 0.49

Correlation coefficient (r) cov(s,ŝ)
σsσŝ

0.945 0.958

Index of agreement 1−
∑

(ŝni −sni )
2∑

(|ŝni −〈s〉|+|sni −〈s〉|)2 0.966 0.971

RMS gradient error [psu]
〈[

(sni − ŝni )−
(
sni−1 − ŝni−1

)]2〉 1
2

0.29 0.22

Table 3.1: Error statistics for comparison to longitudinal salinity transects.
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Figure 3.19: Time and depth averaged salinity for the unaligned and aligned grids, along the
thalweg of South San Francisco Bay. Decreased longitudinal gradients in the aligned grid
model are consistent with an increase in longitudinal diffusion.

tudinal salinity gradients between the two simulations is persistent and significant, though
of similar order to the error relative to observations.

3.6 Discussion

A priori estimates of the diffusion tensor have been both verified for idealized simulations
and estimated for physically realistic simulations. A distinct advantage to estimation of the
diffusion tensor compared to other error estimates is that it communicates the error back to
the modeler in the same language as the original governing PDE. In this way the effects of
numerical diffusion and how it compares to and interacts with physical dispersion processes
is clearer.

Perhaps the greatest advantage of using grid alignment to combat numerical diffusion
is that it is code agnostic. Any simulation code which uses a prismatic triangular grid can
potentially benefit from an aligned grid, though of course the specifics of the numerical
diffusion will vary by choice of numerical scheme. The fact that grid generation in a non-
adaptive simulation is decoupled from the computation itself allows for greater reuse of
the grid generation methods across simulation frameworks. Of course a key step in the
application of these methods to realistic simulations is the creation of a high quality grid
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which enforces cell alignment. While the method detailed in section D.2 is able to produce
reasonably aligned grids, there are always trade-offs. In particular, the price of enforcing
cell alignment is a slight decrease in cell quality in terms of cell-center spacing, which in
turn affects the maximum scalar advection time step. 90 day simulations on the unaligned
grid average 20.5h wall-time, compared to 23.1h for the aligned grid (with both simulations
using 16 cores of an HPC cluster). Still, given the linear dependence of Klat on the grid size
l, a simple reduction of grid scale to achieve the same 50% reduction in lateral numerical
diffusion would require four times more cells and potentially twice as many time steps.
While switching to higher-order advection schemes is almost certainly a more efficient way
to achieve the same decrease in numerical diffusion, the two approaches are complementary,
and the results of using a flow-aligned grid in conjunction with a high-resolution advection
scheme can be expected to perform better than either method alone. Another trade-off is
in heterogeneity of the lateral diffusion coefficient. Grid alignment, as implemented here,
increases quality of many cells at the expense of a small number of cells. The misaligned
cells tend to fall into lines between the embedded contours, creating streaks of high lateral
diffusion. Small scalar plumes may experience erratic diffusion until they are large enough
to sample regions of both high and low lateral diffusion.

The primary observation from comparing the salinity gradients predicted in the unaligned
and aligned simulations is an effective increase in longitudinal diffusion in the aligned grid
simulations. While estimates of the longitudinal numerical diffusion are essentially equal
between the two grids, the interaction of lateral shear and lateral diffusion leads to an
effective increase in the longitudinal diffusion, i.e. the shear flow dispersion scaling of [23],
Klon ∼ U2h2/Klat. In physical systems this mechanism is often responsible for the bulk of
longitudinal dispersion, and comparisons between the two simulations show this scaling at
work, translating the decreased lateral dispersion of the aligned grid into a more efficient
longitudinal shear dispersion process. Enhanced longitudinal diffusion is evidenced by the
decreased salinity gradients in Figure 3.19, most notably around 10km along the transect,
and in fact the salinity gradients in the aligned case more closely track the observations.
Note, however, that comparisons between either simulation and the observations should be
viewed through a wide-angle lens, as the quality of the validation is affected by a broad set
of factors, ranging from the quality of available data for freshwater flows to the treatment
of unstable stratification by the turbulence closure. It is the comparison between the two
simulations, in particular the difference in mean gradients shown in Figure 3.19, which best
demonstrates the effect of grid alignment.

Only velocity fields where the principal velocities are statistically stationary have been
considered. This is a valid assumption for strongly tidal embayments, but there is a clear
extension to non-stationary flows with an adaptive re-gridding process. Compared to related
forms of adaptive mesh refinement, such as the algorithm proposed by Marcuzzi et al [46] in
which directionality in the error field adaptively controls anisotropy in a finite element mesh,
the numerical schemes with which this chapter is concerned place much tighter constraints
on the geometry of the grid. These constraints translate to more computationally intensive
grid generation procedures, and while our current implementation would be inefficient for
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frequent, global re-gridding steps, localized re-gridding in areas with non-stationary principal
velocities would be feasible even with the current implementation. In applications such
as persistent, meandering ocean currents or morphological hydrodynamic models, the re-
gridding costs could be amortized over relatively long computational periods.

3.7 Conclusions

Numerical diffusion for first-order upwind advection on a regular triangular grid has been
analytically derived and shown to agree with estimates from idealized simulations. Two
distinct classes of cells, when analyzed independently, lead to two distinct modified equations.
The sum of these equations recovers consistency but overestimates numerical diffusion. An
analysis that takes into account the coupling of the two cell types results in a numerical
diffusion tensor that correctly quantifies the known behavior that flow-aligned grids eliminate
lateral numerical diffusion.

In the context of a physically realistic simulation, we have presented a largely unsuper-
vised process for creating a flow-aligned computational grid, and compared model results
from an unaligned grid and an aligned grid. The mean predicted lateral numerical diffusion
within the study area, South San Francisco Bay, was reduced by a factor of two. Longitudinal
salinity gradients were smaller on the aligned grid, consistent with an increase in longitudinal
diffusion. Considering the interaction of lateral shear and diffusion, this increase in longitu-
dinal diffusion is in turn consistent with a decrease in lateral diffusion. Model-observation
comparisons confirm that the salinity gradient is better predicted by the aligned grid model.
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Chapter 4

Coupling of Sea Level Rise, Tidal
Amplification and Inundation

Abstract

With global sea level rising it is imperative to quantify how the dynamics of tidal estuaries
and embayments will respond to increased depth and newly inundated perimeter regions.
With increased depth comes a decrease in frictional effects in the basin interior and altered
tidal resonance. When inundation is considered, sea level rise also causes an increase in
planform area, tidal prism, and potentially significant frictional effects in newly inundated
areas. A high resolution 2-D hydrodynamic model of San Francisco Bay, California, US is
employed to investigate the coupling between ocean forcing, tidal dynamics and inundation.
This domain comprises two basins with distinct tidal characteristics. Multiple shoreline
scenarios are simulated, ranging from a fully leveed scenario, in which tidal flows are limited
to present day mean higher high water shorelines, to a freely inundating simulation, in which
all topography is allowed to flood. These simulations show that increasing the mean sea
surface elevation while preserving original shorelines leads to additional tidal amplification.
However, the inclusion of inundated areas, flooded by the increased sea surface elevation,
introduces frictional, intertidal regions around the perimeter of the basins which serve as
energy sinks for the incident tidal wave. This dissipation more than compensates for the
reduction in friction due to a deeper basin interior, and net tidal amplification in most areas
is ultimately lower in the sea level rise scenarios. Details of the changes in dynamics are
analyzed in terms of energy flux and tidal phasing, which show a shift to a more progressive-
wave, dissipative environment with rivers and tidal sloughs becoming major energy sinks.
The near standing-wave southern arm of San Francisco Bay couples more strongly back to

Under consideration for publication in J. Phys. Oceanogr.: Holleman, R. C. and M. T. Stacey. Coupling of
Sea Level Rise, Tidal Amplification and Inundation.
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the central portion of the bay, in contrast to the progressive-wave northern reach of the bay.
Overtide generation, specifically the M4 wave, is also found to vary significantly between
scenarios and is a non-negligible factor in determining net changes to high water elevations.

4.1 Introduction

Among the many concerns related to recent and predicted climate change is the trend of rising
sea levels. At global scales studies such as [19] show global sea level rising approximately
0.20 m in the past 100 years, and predictions for sea level rise in the the next 100 years range
from 0.5 m to 1.4 m [58]. Adding to trends in global mean sea level, observations in some
regions also show a pattern of increasing tidal amplitudes and increasing non-tidal variations
in sea surface height. The combined effects of sea level rise and potentially increasing tidal
ranges will have far-reaching impacts on coastal inundation as many low-lying areas either
become uninhabitable or require massive mitigation measures to fend off higher sea levels.
As inundation is a consequence of peak sea level, not mean sea level, it is essential to consider
both coastal ocean trends in mean sea level and how those trends will couple with local tidal
dynamics to affect the peak sea surface height adjacent to areas in danger of flooding. At
the same time, inundated areas add to the available tidal prism and the overall tidal energy
dissipation, such that one must consider the whole system in order to accurately capture the
coupling of tidal dynamics and inundation.

Nearshore regions are also influenced management decisions, which in turn rely on pre-
dictions of flooding and sea level rise. Relevant management actions fall into two main
categories. The first category, shoreline “hardening”, describes construction of hydrody-
namic barriers such as concrete sea walls or levees. These projects may be motivated by
flood risks, “reclamation” of shallows into dry land, or creation of ponds for salt harvest-
ing. In many areas shoreline hardening is widespread and significantly alters the dynamics
of the basin, such as in San Francisco Bay, California where upwards of 85% of historic
marshlands have been filled or fundamentally altered [17]. Shoreline hardening decreases
the tidal prism and often leads to greater tidal amplification. The second, generally oppo-
site, category of shoreline modifications could be labeled shoreline “softening”, but since it
is often attempting to reverse the effects of earlier hardening projects, these actions may
also be termed restorations. Typical restoration projects include breaching old levees or
dredging new channels. Returning tidal action to these areas serves a number of purposes
including reestablishing highly productive marsh ecosystems, improving water quality, and
even mitigating flood risks. These projects often increase the area available to tidal action,
and introduce softer, natural shorelines and slough networks which are effective at dissipat-
ing tidal energy. Between the growing number of restoration projects and the potential for
widespread sea level rise mitigation efforts, it will be important in the coming century to
quantify the range of shoreline modifications and the effects those changes will have both on
localized inundation and basin-wide tidal dynamics.
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Tidal amplification

Variations in tidal range within a basin come primarily from four physical processes: stand-
ing wave resonance from reflection of the incident tidal wave, frictional effects, converging
geometry (i.e. cross-sectional area decreases upstream), and inertial effects [79]. Resonance
and converging shoreline geometry lead to an increase in tidal amplitude away from the
open ocean boundary of a basin, while diverging shorelines and friction lead to attenuation.
Inertial effects are typically negligible and are ignored in most analyses which do not target
shallow macrotidal systems.

Standing wave resonance is easily understood in terms of a simple prismatic channel, in
which the tides can be described by the superposition of an incident wave and a reflected
wave. Standing tidal waves occur when the incoming tidal wave is fully reflected, such as
in a non-frictional basin with a non-dissipative landward boundary, and in this case the
superposition of the two waves simplifies to

η =
H

2
cos kx cosωt, (4.1)

where η is the space- and time-varying free surface perturbation, x the distance from the close
end of the basin, ω the angular frequency of the tidal forcing, and H the tidal range at the
close end of the estuary. Given the length L from the closed, reflective landward boundary of
a basin to the open, ocean-forced mouth, the amplification is simply α = sec kL. In systems
where L is near a quarter-wave node the amplification approaches a resonant peak, such as
the famous tides of the Bay of Fundy. The resonant period of a basin depends on the phase
speed of the tidal wave; if the resonant period is altered towards the dominant period of
the tidal forcing one would expect that the net result would be an increase in tidal range.
However, in most basins, locations which are close enough to the closed end of the basin
for the reflected wave to retain significant amplitude (and thus behave as a standing wave
system) are also shorter than the quarter-wave resonance length. In these cases an increase
in the tidal wave phase speed will push a system farther from resonance. A fundamental
parameter characterizing the degree to which a standing wave is present is the velocity phase
lead φ, which is defined here as the phase offset between peak flood velocity and peak high
water for a specific tidal constituent. A progressive wave tide in which reflected energy is
vanishingly small will have a phase lead approaching zero, while a standing wave system will
see φ ≈ 90◦. The velocity phase lead provides a useful local estimate of basin-wide tidal
energy dynamics. Aside from diagnosing standing wave or progressive wave dynamics, φ is
also relevant for residual scalar transport and sediment dynamics, since Stokes transport is
greatest for φ = 0 and negligible when φ = 90◦.

The geometry of a basin can also lead to amplification or attenuation through converging
or diverging shorelines. [79] investigated the competing roles of convergence (both in depth
and width), friction and reflection. He found that in sufficiently long, deep and converging
estuaries the amplifying effects dominate and tidal amplitude increases towards the head
of the estuary. Shallow converging channels are dominated by friction, resulting in an at-
tenuated tidal range landward of the mouth. In broad terms, he found that the reflected
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wave, if one exists, affects roughly the landward third of the basin, as the reflected wave is
both dissipated by friction and attenuated by diverging shorelines as it travels seaward. In
strongly converging channels the phase lead of the peak flood velocity ahead of high water
approaches 90◦, independent of the presence of a closed landward boundary. [66] and [79]
term this condition an apparent standing wave.

The friction term is often the most challenging term in analytic treatments of tidal basins
due to nonlinearity of the quadratic drag relation. Using a linear combination of two ap-
proaches to the friction term, [8] derived an analytic model of basin amplification applicable
over a wide range of basin parameters. The resulting expressions allow a classification of
basins based on how the actual depth compares to the ideal depth (i.e. producing zero am-
plification) and the critical depth (i.e. producing maximum amplification). The model also
includes prognostic equations for the phase lead and non-dimensional amplification factor,
as a function of basin geometry, tidal forcing, friction, and mean depth. The flexibility of
the input parameters and wide range of behaviors which can be predicted make this model
particularly relevant for sea level rise forecasts. Section 4.54.5 applies it to a portion of the
study area and compares analytic and numerical predictions for the M2 tide in order to
understand the degree to which the analytic approach captures the necessary physics.

Inundation and tides

In regions with considerable inundatable area, the effects of inundation on tidal dynamics
must also be considered. Higher sea surface heights allow the tides to access a greater tidal
prism. The inundated areas are almost universally very shallow, and while the increased tidal
prism may increase tidal velocities seaward of the inundated region, the shallow expanses
have an overall dissipative effect on the tides. This additional dissipation tends to decrease
reflection and mitigate some fraction of the sea level rise. While there is a well-established
body of work on inundation resulting from storm surge, the literature on energetics of in-
undation coupled with tides is relatively sparse. Depending on the characteristics of the
newly wetted area, the amount of dissipation of tidal energy at the perimeter may decrease
or increase. At one end of the continuum one could imagine a basin with shear vertical
walls at the original mean higher high water (MHHW) contour. As the sea surface rises
shallows which were originally intertidal become subtidal and less frictional. Overall, the
perimeter becomes more reflective, leading to a greater tidal range. At the other end of the
continuum, one can imagine that the region that was originally supertidal is instead flat and
littered with drag-inducing features. In this case, the newly inundated areas are dissipative
and tend to absorb the energy of the incoming tidal wave. Flows within the perimeter would
shift towards a frictional regime, and flows in the interior of the basin would shift towards a
progressive wave as incident tidal energy is absorbed in the intertidal areas.

Despite continual progress in analytic solutions to tidal propagation such as [40, 66, 79],
the complications of real world tidal basins limit the application of such models. Spatially
varying friction and reflection, and geometries which do not fall cleanly into straight, expo-
nentially converging, or steadily sloping beds still frustrate analytic treatment and dictate
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the need for numerical approaches. Adding two-way coupling between inundation and tidal
energetics, the problem is most thoroughly treated with numerical approaches. Recent work
in tide-inundation coupling includes [52], who implemented a wetting and drying scheme
in the Princeton Ocean Model (POM) which was then applied to modeling the dynamics
of the wetting and drying on the extensive mudflats of Cook Inlet, Alaska. Their results
showed up to a 20% increase in tidal range when wetting and drying were included, as well
as a slowing of the tidal wave, reducing phase angles by up to 10%. The increase in tidal
range with inundation appears to contradict expectations based on frictional dissipation in
intertidal areas. The exact comparison in [52], though, is between a case with wetting and
drying allowed in the intertidal, and a case where the would-be intertidal area is numerically
“dredged” to become subtidal. [64] used the same wetting and drying adapted version of
POM in a model sensitivity study of an idealized semi-submerged seamount. They found
that tidal ranges in the simulations with wetting and drying were higher on the seaward side
of the island and lower on the landward side, compared to non-wetting simulations. Con-
tributions to the momentum balance from bottom stress and barotropic pressure gradients
were twice as great in the wetting and drying simulations, further emphasizing the role of
friction in inundation studies.

Modeling effects of sea level rise

Over the next century anticipated sea level rise will require a wide range of managed re-
sponses, with potentially far-reaching and complexly interacting side-effects. The practical
approaches for studying tide-inundation coupled dynamics range widely in complexity. The
most basic sea level rise analyses completely ignore all dynamics, treating the basin as a
bathtub with equal peak sea surface height everywhere. Inundation is then a matter of
simply drawing a constant contour at the anticipated ocean MHHW elevation. Even with
this simple approach, care must be taken in evaluating the sea level at which regions be-
come tidally active. In many situations levees isolate low-lying ponds from tidal action and
rising sea level, and evaluating hydrodynamic connectivity requires resolving small levee
and channel features. Appendix B compares two methods for preparing elevation data for
model bathymetry, and applies this basic approach to inundation in San Francisco Bay to
demonstrate the importance of accounting for connectivity and levees below the nominal
grid scale.

Studies such as [35] add considerable but necessary complexity to the analysis of inun-
dation. A hydrodynamic model predicts future conditions in the interior of the basin, based
on rising sea level, altered tidal ranges, and predictions of storm effects. The predicted high
water marks at the basin perimeter are then extended over high resolution topography ad-
jacent to the basin to ascertain the extent of inundation. Resolving hydrodynamics within
a basin at this level can be accomplished with a very efficient model, allowing a wide range
of ocean forcing conditions to be sampled. However, this approach omits the coupling of
inundation back to tides.
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Present goals

The aim of this chapter is to investigate how sea level rise in the coastal ocean modifies the
coupled tidal-inundation dynamics, in hopes of informing future mitigation and restoration
efforts and anticipating their consequences. In an attempt to capture the complexities of
a physical system, while maintaining broad applicability to other systems, San Francisco
Bay, California has been chosen as the domain for the numerical experiments. San Francisco
Bay has moderate, mixed tides, representative of a wide area [6], and without particular
anomalies which would make an analysis irrelevant for other basins. One advantageous
feature of San Francisco Bay is its pair of dynamically distinct channels: a short, reflective,
convergent channel to the south and a longer, progressive-wave channel to the north leading
to a dissipative inland river delta. A single numerical experiment is thus able to reproduce
a wide variety of responses and interactions.

San Francisco Bay is also a prime example of the range of management actions which
affect and are affected by inundation dynamics. Multiple large restoration projects will be
returning previously nontidal salt ponds to tidal action. In addition to anticipated restoration
efforts, sea level rise mitigation projects are also likely to alter significant reaches of shoreline
in the next 50–100 years, with two airports and numerous transportation corridors within
reach of rising bay waters. An important question for planners is how far-reaching the
effects of a particular mitigation effort are. This research is motivated by the need to answer
questions such as whether the hardening of a stretch of shoreline by additional levees will
increase inundation risk for neighboring soft shorelines. At larger spatial scales one may
ask whether hardening shorelines around one embayment alters the tidal signal in another
embayment. To this end, multiple shoreline scenarios are modeled, with leveed reaches of
shoreline inserted into the model bathymetry to simulate shoreline hardening. Understanding
the interplay between tidal dynamics, sea level rise, tidal marsh restoration and the resulting
inundation is essential for achieving the goals of these coastal engineering projects at the
same time as predicting and mitigating inundation hazards.

4.2 Physical Domain

San Francisco Bay has one of the longest continuous tidal records on the Pacific Ocean
[72], showing sea level trends of 0.22 m rise per century [24]. The trends are not limited to
mean sea level, but also include tidal and non-tidal variation, such as the 64 mm increase
in diurnal tide range over 1900-1998 [24]. Interestingly, San Francisco saw a decrease in
the diurnal tide range at a nearby coastal ocean sea level gauge (Point Reyes), but at the
mouth of the bay diurnal tide range has been increasing, a trend which gets more pronounced
at gauges landward of the mouth. Considering the power density across the full spectrum
of sea level variation, records also show that decadal, annual and semiannual variability
are increasing. [6] focused on measures of storminess, and found oscillatory and increasing
signals of storminess on the US west coast. Other recent analysis [59] has found a reversal
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Figure 4.1: Overview of model domain. Shaded depth contours are shown at -5 m and -12
m NAVD88. The solid gray line outlines the present day MHHW shoreline in South San
Francisco Bay and San Pablo Bay. The solid black outlines the model domain including
three false deltas. Dashed black line is the end-to-end thalweg, with the origin at the Golden
Gate marked by ? and 10 km intervals marked by •.

in the trend of sea level off the coast of California since 1997, though they attribute this to
the Pacific decadal oscillation, and note that in due time the trend of increasing sea level is
likely to return. These trends all underline the importance of understanding how dynamics
will evolve within a basin such as San Francisco Bay as coastal sea level evolves.

In addition to long term trends in ocean forcing, landward forcing has also seen significant
changes, including sediment loading, total river flows and shifts in the annual cycle of peak
flows, all changes which are likely to continue into the future. Given the strong anthropogenic
controls on river and watershed forcings, and the difficulty in projecting how those controls
will evolve, the simulations described below take river inputs as constant, with no further
consideration of changes in the landward forcing.

San Francisco Bay is a bifurcated, mesotidal estuary. Tides at the mouth are mixed
diurnal and semidiurnal, with a great diurnal range at the mouth of 1.8 m [51]. The mouth
of San Francisco Bay is the Golden Gate (? in figure 4.1), a 100 m deep, constricted channel,
connecting Central Bay to the Pacific Ocean. Along channel distances throughout this
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chapter are referenced to the Golden Gate with negative distances denoting the southern
transect and positive denoting the northern transect. The southern branch of the bay,
typically referred to as South San Francisco Bay, has little freshwater inflow, is roughly
funnel-shaped, and is characterized by a single channel 12-20 m deep and broad shoals
tapering from 5 m deep to intertidal. Tides in South Bay are close to a standing wave, with
a velocity phase lead for the M2 constituent in the channel of approximately φM2 ≈ 75◦ (i.e.
peak flood velocity leads the peak sea surface elevation by 75◦). The perimeter of South
San Francisco Bay, particularly to the south and southeast, is dominated by tidal sloughs
and salt ponds. Ongoing restoration projects are returning many of the salt ponds to tidal
action by levee breaches.

The northern branch of San Francisco Bay connects through two largely self-contained
bays, consecutively San Pablo Bay and Suisun Bay, before reaching the Sacramento-San
Joaquin River Delta. A large fraction of the northern borders of both San Pablo Bay and
Suisun Bay are tidal marshland joined to the respective bays via networks of tidal sloughs.
A large number of wetland restoration projects, in various phases of planning or completion,
are also targeted at the northern perimeter of San Pablo Bay.

4.3 Numerical Model

To quantify the tidal processes and contributions to variation in high water across the do-
main, the SUNTANS hydrodynamic code [28, 80] is employed to model a range of sea level
and shoreline configurations in San Francisco Bay. The model is run in depth-averaged mode
and solves the shallow water equations,

∂u

∂t
+ u · ∇u− fv = −g ∂η

∂x
− 1

2h
CDu ‖u‖ (4.2)

∂v

∂t
+ u · ∇v + fu = −g∂η

∂y
− 1

2h
CDv ‖u‖ (4.3)

∂η

∂t
= −∇ · (hu) (4.4)

where u is eastward velocity, v northward velocity, f = 2Ω sin Φ the Coriolis parameter with
angular velocity of the Earth Ω and latitude Φ. Elevation of the free surface is given by
η, measured as a departure from the NAVD88 (North American Vertical Datum of 1988)
geopotential surface, and h gives the total height of the water column. While estuarine
circulation and other 3-D processes will undoubtedly be altered by sea level rise, the model
is run in the less computationally expensive depth-averaged mode since baroclinic effects
are likely to have only minimal effects on inundation and the barotropic tidal response.
These equations are discretized on a prismatic, finite-volume grid comprising unstructured
triangles in the horizontal. The drag coefficient CD is derived from a bottom roughness z0

which in turn is calculated from the water column height based on relationships from previous
modeling efforts in San Francisco Bay [31]. At each time step the bottom roughness for each
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Table 4.1: Bottom roughness as a function of water column height (values taken from [31]).

h [m] z0 [m]
0.1 0.00123
0.6 0.00229
2.0 0.00116
6.5 0.00025
8.5 0.00010

cell is found by linear interpolation over the values in table 4.1. Following [45], roughness
throughout the false delta regions is set to a minimal 10−5m. At each time step n an effective
drag coefficient Cn

D,j is calculated from the edge-local bed roughness zn0,j as

Cn
D,j =

 κ

log
(

hnj
2zn0,j

)
2

(4.5)

where hnj is the height of the water column on edge j at time step n, and κ = 0.42.
Wetting and drying in the model is handled by deactivating cells for which the water

column height falls below a threshold height. A threshold of 5 mm is used, chosen to be
small enough to avoid significant artificial storage, but large enough that the model is stable
at a reasonable time step of 10 s.

The ocean boundary of the model domain is approximately 50 km beyond the Golden
Gate, coinciding with a long-term tidal gauge at Point Reyes (see figure 4.1). The focus of
the present study is South San Francisco Bay and San Pablo Bay. Within these basins the
model domain extends up to the 3.5 m NAVD88 contour to accommodate tidal amplification
and sea level rise. Upstream of San Pablo Bay and seaward of the Golden Gate the model
extends up to the present day MHHW shoreline. Beyond Suisun Bay, the Sacramento-San
Joaquin Delta is represented by a pair of hypsometry-matched false deltas, as is the slough
and marsh network north of Suisun Bay. For each of the three false deltas, hypsometry
(the relationship between planform area and free surface elevation) is extracted from a 10 m
digital elevation model (DEM), excluding areas already accounted for in the original grid. A
length for each false delta is determined by the along-channel length of the primary channel
in each region. The width is then a consequence of this length and the maximum area found
in the hypsometry calculations. A regular triangular grid is constructed to match these
dimensions, with a resolution of approximately 400 m. The hypsometry is then binned by
depths such that each successive depth bin corresponds to an increase in the planform area
equivalent to the area of one cell. These ordered depths are then assigned to cells starting at
the seaward end of the false delta, proceeding first along a strip of cells to the landward end,
and then proceeding laterally to the next strip of cells until all cells have been assigned a
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depth. This simple approach ensures that a subtidal channel extends the length of the false
delta (consistent with known river features), with a bed which slopes up in the landward
direction and has a degree of lateral bathymetry variation. By matching hypsometry and
length the false deltas approximate the tidal response of the more complex physical channel
network with a substantial reduction in the number of grid cells compared to a fully resolved
delta.

For the purpose of this study, the portion of the domain at elevations between 0 m and
3.5 m NAVD88 is the most relevant as this is the intertidal range across the imposed sea
level rise scenarios of 0 m – 1.0 m. The grid resolution in the area between these contours is
set to a uniform nominal length scale of 50 m (resolving the broad intertidal areas at finer
resolution than this runs into practical computational limits). Additionally, five dynamically
important channels outside this region are also given increased resolution: the Golden Gate
(resolved at a scale of 125 m), Carquinez Strait and Suisun main channel (100 m), Suisun
Cutoff (100 m), and New York Slough (200 m). In all other areas, the grid resolution is
allowed to increase at a rate of 10%, up to a maximum grid scale of 3 km at the open ocean
boundary. The resulting grid has 937,759 cells.

Bathymetry data were derived from a range of sources covering subtidal, intertidal, and
supertidal areas up to the 3.5 m NAVD88 contour. The base elevation data source was a 10 m
seamless topography-bathymetry product designed for inundation studies [9]. Bathymetry at
10 m resolution for the Sacramento-San Joaquin Delta was taken from [25]. Given the impact
of small levee and slough features on inundation and hydrodynamic connection, special care
was taken to assemble up-to-date and high resolution intertidal topography. This included
the preprocessed 2 m bathymetry from [26], as well as gridded bare earth LiDaR datasets
from [27], [49], and [50]. Missing data in the LiDaR datasets in small regions were filled via
interpolation from nearby LiDaR data, or, in cases where the LiDaR was missing data over
a span greater than 10 m, data were filled in from [9].

Though the intertidal regions are resolved at 50 m, the length scale of many channels
and levee features, essential for the inundation characteristics of the marshes, is 5–25 m. As
in previous studies such as [4], simple averaging of the DEM along each edge was insufficient
to resolve either channels or levees robustly. [4] proposed a solution for a similar application,
but they explicitly state that small coherent structures such as levees are not adequately
captured by their statistical analysis. Additionally, the grid orthogonality constraints of the
finite-volume code utilized in the present study preclude the flexible manipulation of grid
geometries which they are able to leverage. The importance of narrow channels and levees in
quantifying inundation motivated development of a bathymetry approach which calculates
the overtopping elevation for each edge. The method is described in appendix B along with
a comparison to a simple averaging approach.

Calibration and validation of the model (see appendix C) has been performed with ob-
served tides and winds (scenario sObs). Periodic tides are used for all subsequent analysis
in order to avoid the need for spring-neap duration runs of each scenario and to allow the
analysis to focus on the individual effects of a single tidal constituent. The ocean free surface
is forced with an M2 period (12.42h) sinusoidal signal with a peak-to-peak amplitude of 1.64
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Table 4.2: Naming convention for numerical experiments. Obs. denotes observed tides, M2
denotes 12.42h periodic tides with amplitude matched to spring range of observed tides.
(“N” denotes hardening in the Northern Reach; “S” in the Southern.)

Sea level Hardened shorelines
Tides rise [m] none SPB SSFB both
Obs. 0.0 sObs
M2 0.0 s0 hN0 hS0 hNS0
M2 0.6 s60 hN60 hS60 hNS60
M2 1.0 s100 hN100 hS100 hNS100

m. The amplitude was chosen to match the great diurnal range observed at the Golden Gate.
The imposed M2 amplitude, large compared to the measured M2 constituent, allows for a
range of inundation similar to the combined tides. This avoids the complications of nonlin-
ear interactions between constituents, but retains and resolves the interplay between tidal
dynamics and inundation regions, which is not affected by these interactions, and allows the
development of higher frequency harmonics. The tidal boundary condition is applied with
uniform phase and amplitude across the entire ocean boundary; tidal dynamics outside the
Golden Gate are not expected to be realistic.

The numerical experiments cover three variations in sea level rise and four shoreline
configurations, with a naming convention outlined in table 4.2. The range of ocean boundary
conditions comprises (i) present day mean sea level, (ii) an increase of 0.6 m and (iii) an
increase of 1.0 m. These values were chosen to roughly cover the range of predictions over
the next 50-100 years [58]. Multiple shoreline configurations are used to simulate the effects
of mitigation efforts such as the construction of levees at present day MHHW shorelines, and
how shoreline hardening in one portion of the domain affects tidal range in other portions of
the domain. The first shoreline scenario, “soft” (s), does not include any explicit shoreline
protection, only present day topography and bathymetry. The completely hardened scenarios
(hNSx) limit flows in both San Pablo Bay and South San Francisco Bay to present day
MHHW shorelines. Two additional scenarios represent shoreline hardening limited to either
San Pablo Bay (hN) or South San Francisco Bay (hS). In all cases except sObs, the model
is allowed to spin up for four days before data is extracted for a single M2 period.

4.4 Energy Flux and Tidal Phase Analysis

Energy flux and tidal phasing provide fundamental information about the spatially vari-
able dynamics in each basin. While the one-dimensional tidal propagation problem is well-
described by the velocity phase lead φ, in two dimensions the direction of wave propagation
and the sense of landward or seaward can become ambiguous. Switching to a comparison of



68

depth-averaged tidal energy flux and an effective tidal phase lag derived from the energy flux
allows for a more robust description. The eastward and northward energy fluxes are defined
as the pressure work done by the flow on an imaginary surface normal to the respective
coordinate direction, averaged over the mean depth of the water column [36]:

Fi =

〈∫ 0

−h
puidz

〉
(4.6)

where ui is the velocity component in the ith coordinate direction (assumed constant in the
vertical), p = −ρgz is the hydrostatic pressure, h is the time varying height of the water
column, and 〈◦〉 denotes a tidal average. For a tidal constituent with frequency ωc, the
harmonic velocity and depth are given by

uc = Uc cos (ωct+ φx,c) (4.7)

vc = Vc cos (ωct+ φy,c) (4.8)

hc = H + ηc cosωct. (4.9)

where H is the mean depth. Substituting (4.7) – (4.9) into (4.6), the energy flux for con-
stituent c is then

Fx,c =
1

2
ρgUcHηc cosφx,c (4.10)

Fy,c =
1

2
ρgVcHηc cosφy,c. (4.11)

Consistent with the energy flux estimates, a measure of the tidal phase can then be deter-
mined as the inverse cosine of the ratio of the energy flux to the maximum possible flux for
a fully progressive wave with the same H, Uc, Vc and ηc:

φc = cos−1

[√
(Uc cosφx,c)2 + (Vc cosφy,c)2√

U2
c + V 2

c

]
. (4.12)

In the case of unidirectional tidal flow aligned with the x coordinate, (4.12) simplifies to
φc = φx,c. However, compared to considering the tides to be unidirectional along the principal
axis, (4.12) is robust to amphidromes and rotary tides where the principal axis is poorly
defined.

The tidal energy in higher harmonics is relatively small in the majority of the domain
and our initial analysis is focused on the M2 constituent. The numerical experiments do
predict a significant M4 overtide, which is later considered in section 4.6. From each of the
periodic scenarios in table 4.2, M2 phase and amplitude of the sea surface height, eastward
velocity and northward velocity were extracted by a least squares approach over exactly one
tidal period. Changes in M2 energy flux between pairs of scenarios elucidate how the tides
change in response to shoreline hardening and sea level rise, and how this response differs
between the two bays.
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Figure 4.2: South San Francisco Bay: φM2 and tidal energy flux for hNS0.

South San Francisco Bay

Figure 4.2 shows the M2 energy flux and tidal phase for South San Francisco Bay. The
dominantly standing-wave tidal dynamics are clear, with the majority of the embayment
showing φM2 > 80◦. The channelized portion of the bay to the southwest is slightly more
progressive, but still much closer to a standing wave than the channel in San Pablo Bay
(discussed below). Though the tidal phase is generally close to standing throughout the bay,
the energy flux magnitudes are still substantial due to the large tidal range.

Interestingly, in much of the bay the easternmost portion of the shoals shows slightly
“overstanding” tides with a seaward energy flux. At the most eastward margins of the bay the
seaward-directed progressive component is sufficient to reduce φM2 below 80◦. This seaward
energy flux has been observed in South San Francisco Bay [38] and is reminiscent of the
seaward residual transport in [43]. In that study, analytic solutions to the residual transport
in a short, V-shaped basin yield landward transport in the channel and seaward transport
in the shoals. To better understand the overstanding wave, the analytic, intratidal solution
of [44] (which served as the intratidal solution on which the subtidal solution of [43] was
based) is applied to the circulation in this stretch of South San Francisco Bay. The analytic
solution describes the time-varying velocity and free surface in terms of complex amplitudes
U , V and A for the longitudinal velocity, lateral velocity and free surface anomaly. Each
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complex amplitude describes a magnitude and phase in the form (with variables renamed
for consistency within the chapter)

h(x, y, t) = <
{
η(x, y)eiωt

}
+H(y) (4.13)

u(x, y, t) = <
{
U(x, y)eiωt

}
(4.14)

v(x, y, t) = <
{
V (x, y)eiωt

}
(4.15)

where H(y) is the mean depth and a function only of the lateral position for the purposes
of the analytic solution. The analytic solution is then described by

β =
8CDU0

3π
(4.16)

F = −
∫ D

0

gH

iω + β/H
dy (4.17)

σ2 =
iωD

F
(4.18)

η = η0
cos [σ (x− L)]

cosσL
(4.19)

U =
g

iω + β/H

η0σ

cosσL
sin [σ(x− L)] (4.20)

V = − η

H

(
iωy +

∫ y

0

gHσ2

iω + β/H
dy

)
(4.21)

where CD = 0.0025 is the drag coefficient, D = 11.8 km is the width of the cross-section,
U0 = 0.83 m s−1 a representative velocity scale, i =

√
−1, η0 = 0.4 m the tidal amplitude at

the open boundary, and L = 30 km the length of the basin. The form of H(y) (figure 4.3a)
was extracted from gridded bathymetry data at -38 km from Golden Gate. The results of
the analytic model are shown in figure 4.3b, where the velocity phase lead has been plotted
as a function of the cross-channel distance. The deep channel is the only portion of the
cross-section with a landward energy flux, with the greatest seaward energy flux in the far
shoals, in general agreement with figure 4.2. Note that the analytic model can only describe
rectangular basins, and since the standing wave of South San Francisco Bay is largely due to
channel convergence, it is not surprising that this analysis predicts more progressive features
compared to figure 4.2. Nonetheless, the qualitative agreement in the velocity phase lead
is a good indicator that a channel-shoal bathymetry profile and a reflective basin are the
drivers of the overstanding wave in the shoals.

Analysis of how the present day M2 dynamics are altered by sea level rise proceeds in
two steps. First, to approximately separate the effects of deepening from inundation, the
changes due to sea level rise with hardened shorelines are considered throughout the region.
The change in M2 phase and energy flux between the hNS0 and hNS100 scenarios is shown
in figure 4.4. The choice of the 1.0 m scenarios was motivated by the characteristics of
inundation in South San Francisco Bay, where a majority of the inundation occurs above
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Figure 4.3: Application of [44] analytic intratidal solution to South San Francisco Bay. (a)
Bathymetry profile extracted from DEM at -38 km from Golden Gate. (b) Predicted velocity
phase lead for the along-channel velocity. The subscript u denotes that velocity phase lead
was calculated just for the longitudinal velocity, such that φu < 90◦ describes a progressive
wave with landward energy flux, and φu > 90◦ a progressive with seaward energy flux, i.e.
an overstanding wave.

a sea level rise of 0.6 m. The phase changes in the bulk of the bay are minimal. The
landward end of the bay has a convergent geometry and is nearly closed, such that, absent
any dissipation from inundation, tidal energy has nowhere to go and the landward energy
flux is constrained to be near zero. The southern half of the bay shows only small and
scattered changes in the energy flux, while the northern half shows a distinct seaward shift
in the energy flux. This shift is consistent with a deeper South Bay that is less frictional and
more reflective. Portions of the eastern shoals become more progressive, departing slightly
from the bulk of the bay, but notably the change in energy flux is actually seaward, showing
that the overstanding tidal phasing of the shoals is accentuated by the deeper sea level and
greater tidal range in the far south end.

The effects of inundation on M2 dynamics are shown in figure 4.5, comparing scenarios
hNS100 and s100. The greatest changes are at the mouths of sloughs, which function as
gateways to the increased tidal prism when inundation is permitted. South San Francisco
Bay is ringed by numerous tidal sloughs, connecting pond and slough networks to the main
body of the bay. The sloughs are typically small, but when considered in the aggregate
they are a significant sink of tidal energy in the M2 band. The change in energy flux is
everywhere landward, consistent with a basin transitioning towards a progressive wave. The
eastern shoals actually show an increase in φM2, towards a standing wave. In the scenarios
with hardened shorelines, these shoals had a seaward energy flux, such that as the basin
as a whole becomes more progressive, those areas which were originally overstanding (i.e. a
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Figure 4.4: South San Francisco Bay: change in depth-averaged M2 energy flux between
scenarios hNS0 and hNS100. Change in φM2 is contoured in the background.

seaward tidal energy flux) shift towards a standing wave. The flux changes of figure 4.5 are
quite uniform across the width of the bay, especially compared to the baseline energy flux
of figure 4.2 which has significant lateral variation. This stems from the fact that in South
San Francisco Bay the majority of the inundation occurs in the southern portion of the bay.
The primary effect of inundation for most of the bay is directly related to the amplitude of
the reflected wave, rather than local or lateral dynamics.

In South San Francisco Bay the competing effects of deepening and inundation are clearly
demonstrated. Deepening reduces frictional effects in the subtidal basin interior, and allows
energy to reflect back out of the basin, shifting the dynamics towards a standing wave.
Inundation counters this shift by attenuating the incident wave in the southern end of the
basin. Less energy is reflected and the phase shifts towards a progressive, non-amplifying
wave.

San Pablo Bay

Figure 4.6 shows φM2 throughout the interior of San Pablo Bay, under present day conditions
(scenario hNS0). San Pablo Bay has somewhat progressive tides along the main channel in
the south, and a partially standing wave across the shoals. Separated from the main channel
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Figure 4.5: South San Francisco Bay: change in depth-averaged M2 energy flux between
hNS100 and s100. Change in φM2 is contoured in the background.

Figure 4.6: San Pablo Bay: φM2 and tidal energy flux for the hNS0 scenario.
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by the broad shoals, two significant river/slough mouths connect to the northern shore of San
Pablo Bay: the Petaluma River to the west and Sonoma Creek to the west. Additionally, the
Napa River joins Carquinez Strait shortly upstream of San Pablo Bay. Under present day
conditions all three of these riverine features are significant sinks of tidal energy. However,
the ranges of their respective influence are localized, as indicated by the spatial extent of the
depression in φM2 near each mouth (figure 4.6).

As with South San Francisco Bay, scenarios hNS0 and hNS100 are compared first in order
to isolate the effects of a deeper basin interior, without significant change in inundation
or tidal prism. Figure 4.7 shows the change in energy flux and phase between these two
scenarios. Unlike South San Francisco Bay where most inundation occurs above a 0.6 m
increase in sea level, in San Pablo Bay the incremental change in inundated area between s0
and s60 is similar to the change between s60 and s100. The landward energy flux shifts from
the channel to a proportionally greater flux in the shoals. The present day mean depth of the
off-channel areas of San Pablo Bay is quite shallow, making it highly frictional and a high
impedance path for tidal propagation. A 1 m increase in mean sea level has a proportionally
greater effect on the role of friction in the shoals, allowing a greater fraction of the tidal
energy to propagate via the shoals. Another feature of the change in energy flux is the
significant increase of energy leaving San Pablo Bay by way of Carquinez Strait to the east.
This is likely due to a combination of less energy being lost in San Pablo Bay, and that the
upstream prism is greater, with more area and more dissipation which attenuates the return
wave and allows a greater net energy flux landward. In terms of the tidal phasing the trend is
clear that almost all of the bay shifts towards a progressive wave. The most striking feature is
the northeastern shoreline, which, under the higher sea level, permits a southeasterly energy
flux with a much more progressive wave, feeding tidal energy to Carquinez Strait. In both
hNS0 and hNS100 this progressive, along-shore wave is evident, but in the hNS100 case the
greatly increased flux through the shoals means that there is that much more tidal energy
available to then be transported south to Carquinez Strait.

Figure 4.8 shows the incremental change in energy flux and phase between scenarios
hNS100 and s100, depicting the effect of soft shorelines under 1.0 m rise in sea level. The
bulk effect in San Pablo Bay is an increase in tidal energy entering the bay from the south,
and a decrease in tidal energy leaving the bay in the east (note that figure 4.8 shows depth-
averaged fluxes; in the south, the incoming flux is in twice the depth as the outgoing flux).
Based on these changes in energy fluxes it is clear that the inundation of the soft shorelines
leads to greater dissipation and the bay has become a greater sink of tidal energy. The hot
spots of energy flux and progressive phase at the mouths of all three rivers (west to east,
Petaluma River, Sonoma Creek, and Napa River) show that the bulk of the newly inundating
areas are not directly connected to the main body of the bay but are instead connected via
river and slough features. While in figure 4.7 the eastern shore had a pronounced shift
towards a progressive wave, this same region partially reverts towards a standing wave once
the additional tidal prism is available via the two nearby river mouths. In the hard shorelines
case the tidal wave propagates through the shoals but with no outlet to the north it is focused
on the eastern shore and then routed to the south. The soft shorelines case introduces highly
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Figure 4.7: San Pablo Bay: change in depth-averaged M2 energy flux between hNS0 and
hNS100. Change in φM2 is contoured in the background.

Figure 4.8: San Pablo Bay: change in depth-averaged M2 energy flux between hNS100 and
s100. Change in φM2 is contoured in the background.
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dissipative river features, such that tidal energy is partially redirected and dissipated in the
sloughs rather than being focused on the eastern shore and routed south to Carquinez Strait.

4.5 Tidal Amplification and Damping
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Figure 4.9: Transect of relative high water for soft shoreline scenarios s0 – s100. Negative
longitudinal distance indicates South San Francisco Bay, positive is San Pablo Bay and
beyond.

The analysis has so far examined only the M2 wave, but to more concisely address
potential for inundation, the following section turns to a direct measure of the peak sea
surface height. The high water elevation includes the combined effects of the M2 wave
and its harmonics, as well as constant offsets from processes such as the Stokes transport
increasing mean free surface setup. Changes in high water within the basin are a combination
of changes in the ocean forcing and changes in dynamics within the basin. Capturing only
the effects of dynamics within the basin, the relative high water is defined as

∆η (x) = max
t
η (x)−max

t
ηBC . (4.22)

This is the height by which the high water level at a point in the domain exceeds or falls shy
of a reference high water level at the coastal ocean boundary. Lateral variations in ∆η are
typically small, allowing comparisons between scenarios simply along the central thalweg of
the bay, as shown in figure 4.9.

The highly reflective and converging South San Francisco Bay is evidenced by the tidal
amplification on the left side of the plot. At its most extreme, high water at the far south end
of the bay exceeds coastal ocean high water by nearly 0.6 m in the s0 scenario. Interestingly,
the highest rate of amplification in the southern reach occurs in the first 20 km, which is still
essentially part of Central San Francisco Bay. The amplification rate slumps for the reach
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between 20 km and 40 km, consistent with the divergent geometry of the bay here, with a
slight uptick south of 40 km as the shorelines converge.

The more transmissive and dissipative northern reach of the bay sees mild amplification
for the first 35 km, up to the transition from San Pablo Bay to Carquinez Strait. The
seaward half of that stretch has particularly complex geometry and bathymetry, leading to
greater variability over short length scales, up to the transition into San Pablo Bay proper,
at 25 km from Golden Gate. The greatest amplification occurs in the middle of San Pablo
Bay. In a sense, San Pablo Bay can be considered a “leaky” reflective basin, particularly at
present day sea level. The landward outlet for tidal energy, Carquinez Strait, is relatively
small; M2 velocity phase lead within the strait itself dips below 30◦ (figure 4.6), but this
depression of φM2 extends only partially into San Pablo Bay itself, approximately to the
point of maximum amplification at 25 km from Golden Gate. In fact the northern shoal
areas are far enough from the main channel to see additional, though minor, amplification
relative to the main channel (not shown). This effect can be traced to the wide aspect ratio
of San Pablo Bay and how the northern shoals behave somewhat like an off-axis standing
wave basin with the accompanying amplification of a standing wave basin.

The progression of tidal amplification from scenario s0 to s100 in figure 4.9 demonstrates
the combined, attenuating effect of inundation and sea level rise. Beyond Central Bay, i.e.
-20 km – 15 km, the attenuation due to inundation more than offsets the amplification
expected from a deeper basin. The locations at which the scenarios begin to diverge roughly
correspond to where the inundatable regions occur, notably south of -40 km and north of 25
km. Figure 4.10 shows the incremental extent of inundation for each soft shoreline scenario.
The most marked change in inundation in South San Francisco Bay occurs when sea level
rise approaches 1.0 m, compared to a relatively small change in inundated area between the
s0 and s60 scenarios. Consistent with the inundation distribution in the south, the greatest
change in amplification is between the s60 and s100 scenarios, where inundation leads to a
significantly attenuated ∆η south of -40 km. San Pablo Bay has a more even distribution of
inundated area, both in terms of where these areas are located and at what rise in sea level
they become inundated. In San Pablo Bay the incremental difference in attenuation between
s0 and s60 is similar to the difference between s60 and s100. The longitudinal variation in
the attenuation is also less pronounced than in South San Francisco Bay.

The comparisons between soft shorelines and hard shorelines approximately separate the
effects of deepening from the effects of inundation, but also allow a comparison of local
effects versus remote effects, by selectively hardening only a portion of the domain. This
demonstrates the dynamic interactions of the basins, and at the same time informs practical
management decisions regarding the degree to which mitigation efforts must be coordinated
throughout a basin. The local and remote effects of shoreline hardening are quantified in
figure 4.11, where the change in relative high water is shown for the four shoreline configu-
rations. The baseline amplification of scenario s0 has been subtracted out, as the changes
are small relative to the baseline tidal amplification (i.e. the solid line of figure 4.9). When
all shorelines are allowed to inundate the model shows that a small portion of Central Bay
is essentially unchanged, but throughout the regions with significant inundatable shoreline
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Figure 4.10: Extent of inundation across scenarios, progressing from least inundation to
most.
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Figure 4.11: Longitudinal transect showing change in ∆η for s100, hN100, hS100 and
hNS100, relative to the baseline ∆η of scenario s0. Negative longitudinal distance indicates
South San Francisco Bay, positive is San Pablo Bay and beyond.

area tides are attenuated. With a maximum change in ∆η of approximately -0.13 m, the
attenuation is significant, though small compared to baseline tidal amplification. Hardening
the shorelines of South San Francisco Bay has a more pronounced effect, where the already
large tidal amplification of 0.60 m in the far southern reach sees an additional 0.06 m in-
crease. Hardening South San Francisco Bay also affects the high water level in Central Bay.
Hardening and sea level rise both shift South San Francisco Bay towards a more reflective,
standing wave environment, and it is apparent in figure 4.11 that the reflected tidal wave
couples back into Central Bay, which also changes the seaward boundary condition for the
northern reach of the bay.

Modifications to San Pablo Bay have similar local effects as in South San Francisco
Bay. With soft shorelines, the broad inundatable regions of San Pablo Bay and its adjacent
marshlands become a greater sink of tidal energy and tidal amplitudes decrease. Hardening
the San Pablo Bay shorelines reverses that trend, leading to some amplification. Contrary to
South San Francisco Bay, though, hardening the shorelines of San Pablo Bay has a negligible
effect on South San Francisco Bay, as the progressive wave dynamics of the northern reach
reflect little energy back to Central Bay.

Analytic approach for converging basin

Analyzing the whole of San Francisco Bay through the analytic lens of converging estuary
hydraulics such as [66, 79, 8] is frustrated by the various branching, diverging, and recon-
verging features. Nonetheless, analytic approaches aid in identifying the dominant factors
controlling the tidal response and can quickly predict the general response of a system with-
out detailed observation or involved numerical approaches. Although the complex geometry
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of much of San Francisco Bay makes a large-scale application of analytic theory difficult,
the central portion of South San Francisco Bay has a smoothly convergent geometry. This
section applies the methods of [8] (CST) to this reach, between 30 km and 55 km south of
the Golden Gate (roughly the widest point of South San Francisco Bay to the point at which
the bay transitions to a broad slough at the far south end). The goal is to understand the
predictive skill of the analytic model and its capacity to include inundation effects.

The formulations of CST include the following parameters in predicting the behavior of a
basin: a, the length scale of the basin convergence, h̄, the mean depth, K = n−1, the inverse
of the Manning-Strickler friction coefficient, and rs, the relative width of off-channel storage.
The ocean boundary condition is described by the tidal amplitude η0 and angular frequency
ω. These parameters are combined as:

c0 =

√
gh̄

rs
(4.23)

ζ =
η0

h̄
(4.24)

γ =
c0

ωa
(4.25)

(4.26)

such that c0 is the effective celerity including off-channel storage, ζ a non-dimensional tidal
amplitude, and γ an estuary shape factor relating convergence and tidal wavelength. The
tidal response of the system is described in terms of the non-dimensional numbers

δ =
1

η

dη

dx

c0

ω
(4.27)

χ =
rsgc0ζ

K2ωh̄4/3
(
1− (4ζ/3)2) (4.28)

µ =
1

rs

vh̄

ηc0

(4.29)

where δ is the amplification factor, χ the friction number, v the velocity scale, µ the velocity
number, and additionally ε = π/2 − φ describes the velocity phase lead. CST then derives
the system of equations

µ =
cos ε

γ − δ
, (4.30)

tan ε =
λ

γ − δ
, (4.31)

λ2 = 1− δ (γ − δ) , and (4.32)

δ =
γ

2
− 4

9π
χ
µ

λ
− 1

3
χµ2. (4.33)
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The solution to this system of equations is a prediction of the tidal response. Application
of CST to real bathymetry and shorelines, even with idealized tidal forcing, leaves consid-
erable room for interpretation. While CST focuses on channels with a constant depth and
converging width, the basis for the exponential convergence is in terms of the cross-sectional
area, such as in [65]. In the present case the cross-sectional area demonstrates a significantly
smoother trend, and base the length scale a on this dimension rather than the the width.
In all cases K was taken to be 36.9, based on the range of h̄ and corresponding roughness
values in table 4.1. The in-channel region is defined as a contiguous set of cells on either
side of the thalweg with a mean depth of at least 1.0 m and a tidal amplitude of at least 0.2
m. The across-channel distance between the bounds of this region then define the channel
width B̄ (as a function of the along-channel distance), and similarly the integration of the
cross-sectional area between these bounds gives Ā. The storage ratio rs was calculated as
the ratio of the planform area of all tidally active cells (tidal amplitude greater than 0.2 m)
to the planform area of all in-channel cells. Both the shallow intertidal margins of the main
basin and all slough or pond features off the main channel are counted as off-axis storage,
contributing to an increase in rs. The open boundary tidal amplitude η0 is taken from the
model at a single cell along the thalweg. The mean depth at each cross-section, h̄ (x), is the
equivalent depth of a rectangular channel with area Ā and width B̄. While CST assumes a
constant depth, South San Francisco Bay has a trend of decreasing depth towards the head
of the estuary, and h̄ is taken as the mean over all cross-sections.
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Figure 4.12: Comparison of amplification factor δ in scenario hNS100, as predicted by the
model and by the analytic approach of [8]. The longitudinal transect is limited to the
convergent portion of South San Francisco Bay.

The input parameters for each scenario and a comparison of phase and amplification
between the numerical and analytic models are shown in table 4.3. The range of η0 is fairly
small, showing that, according to the model, dynamics seaward of this section account for
about 0.05 m of change in tidal amplitude. The greatest differences in the inputs parameters
are the variation of h̄ with sea level and the variation of rs with inundated area. All scenarios
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Table 4.3: Application of method of Cai to numerical scenarios

h̄ η0 a rs model analytic
scenario [m] [m] [km] φ [◦] δ φ [◦] δ
hNS0 3.88 1.19 11.5 1.06 83.1 0.237 79.7 0.165
hNS100 4.81 1.21 12.1 1.05 85.2 0.273 84.7 0.240
s100 4.74 1.16 12.2 1.33 79.4 0.236 80.2 0.214

fall within the amplified classification of CST, meaning that the net amplification is positive
and incremental increases in the depth would result in additional amplification. While the
velocity phase lead is predicted well by CST, the amplification factor is uniformly under-
predicted, visible in figure 4.12 for the hNS100 scenario. The results from the analytic model
reinforce the idea of competing effects of deepening and inundation, where an increase in
h̄ due to sea level rise is partially offset by an increase in rs due to inundation. In terms
of the amplification, these competing effects are nearly in balance in the numerical model,
while the analytic approach is more sensitive to deepening than inundation, suggesting that
inundation is not fully captured by considering storage alone, but rather frictional effects
within the storage areas must also be considered.

4.6 Overtides

The total change in high water between hNS100 and s100, at -60 km from Golden Gate, is
approximately 0.16 m (figure 4.11), but the M2 amplitude explains only about 0.07 m of
this difference. While the ocean boundary is forced only with an M2 tide, local generation
of overtides leads to significant M4 amplitudes within the domain, shown in figure 4.13.
Previous analysis of the nonlinearities in the shallow water equations [55] has shown that
M4 overtides are predominantly generated by the depth dependence of the friction term,
depth dependence in continuity, and the nonlinear advection term. The depth dependent
generation mechanisms are likely significant throughout much of San Francisco Bay, given the
O(1 m) tides and O(2 m) depths prevalent in shoals throughout the domain. Furthermore,
though the mean M4 amplitude is small (up to about 0.1 m), the differences across scenarios
of the M4 amplitude is of the same order as the differences in M2 amplitudes. In addition to
varying amplitudes, the distribution of M4 generation and the resulting phase relationships
between the M2 and M4 vary greatly between scenarios.

The panels of figure 4.14 show that in all cases Central Bay is a significant source of
M4, but portions of South San Francisco Bay may be sources or sinks of M4 depending on
the scenario. In all cases, M4 appears to be generated in shallow, off-axis portions of the
domain, and propagates seaward.

The differences in M4 generation appear to be driven by three factors: change in mean
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Figure 4.13: Amplitude of M4 overtide for (a) hNS0, (b) hNS100 and (c) s100

depth (i.e. hNS0 versus hNS100 or s100), change in M2 amplitude from which M4 can be
extracted, and the potential for locally generated M4 to be locally dissipated when inundation
is allowed.

Another complicating factor in the M4 dynamics is the fact that the M4 wavelength is
short enough that a node of the standing wave can be present within the basin. In particular,
the hNS0 scenario displays M4 minima consistent with nodes both at the widest point of
South San Francisco Bay and in the middle of San Pablo Bay. The hNS100 scenario shows a
seaward displacement of the node in San Pablo Bay, consistent with deepening and a longer
wavelength.

It is clear that the M4 is significant, and taking into account the amplitude as well as
the phase relative to the M2 phase, the M4 in hNS100 adds roughly 0.04 m to high water
in most of South San Francisco Bay, compared to the M4 in s100 which actually decreases
high water by up to 0.04 m. Of the original hNS100-s100 difference of 0.16 m (at -60 km),
the combined M2/M4 wave then accounts for roughly 0.15 m. With the M2 wave varying
between standing and landward progressing, and the M4 wave primarily seaward progressing,
the phase relationships and resulting effect on high water is complex, and highly variable in
space. When the M4 generation is plotted per-cell as in figure 4.15, as opposed to regionally
aggregated as in figure 4.14, the field is both noisy and shows large variation over very short
distances. Further analysis will require a more nuanced consideration of wetting/drying,
which may be contaminating the results, and possibly aggregating generation and dissipation
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Figure 4.14: Region-integrated M4 generation and dissipation for (a) hNS0, (b) hNS100 and
(c) s100. Arrows indicate integrated M4 energy flux between regions.

of the overtide by depth rather than region.

4.7 Discussion

The tidal and inundation response of an estuary to sea level rise is a complex interaction
between a number of factors as well as interaction with adjacent tidal basins and the coastal
ocean. Within a particular estuary or bay the dominant factors controlling the response to
sea level rise include geometric factors, such as the aspect ratio of the basin, the baseline
phasing of the tidal wave, and the spatial distribution of inundated areas

The aspect ratio determines the relative importance of longitudinal variation versus lat-
eral variation. In the longer, high aspect ratio, South San Francisco Bay, changes due to
sea level rise were relatively consistent across lateral transects, and lateral dynamics appear
secondary. In contrast, San Pablo Bay, with a round, low-aspect ratio footprint, showed sig-
nificant shifts of tidal propagation from the channel to shoals, and changes in the direction
of tidal energy propagation.

Tidal phasing is also a major factor in determining the response to sea level rise, both
in terms of local tidal amplification and how much the tides in one part of a basin feed back
to other parts of the system. A standing wave system such as South San Francisco Bay
appears more sensitive to sea level rise, both in the case of deepening only and deepening
with inundation. Additionally, standing wave systems tend to have greater tidal range such
that even small changes in phasing or dissipation lead to large changes in energy flux and
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Figure 4.15: Non-aggregated M4 generation and dissipation for hNS100.

net amplification.
The quantity and relative location of inundatable areas also affects the tidal response.

Greater expanses of inundatable areas relative to the subtidal area lead to greater atten-
uation of the incident tidal wave. The location of inundatable areas, along with the tidal
phasing within a bay, affect the spatial extent of the attenuation due to inundation. In a
purely progressive wave system, any attenuation due to inundation can only alter the tidal
amplitudes landward of the attenuation. In a reflective, standing wave system, though, in-
undation even at the head of the estuary can attenuate the tidal range throughout the bay
and even in adjacent tidal basins.

In addition to the incoming tidal wave constituents, overtides generated within a basin
may add to or subtract from the high water elevation and appear to be very sensitive to
shoreline conditions and incident tidal wave amplitudes. The importance of overtide genera-
tion depends on the tidal amplitude relative to water depth, at least for the depth-dependent
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M4 generation mechanisms. In an amplifying basin the greatest tidal ranges will be near
the head of the basin, coinciding with shallow mean depths. One would then expect that a
seaward propagating M4 wave is not at all unusual in such basins. With the complexity of
a seaward propagating M4 and landward propagating M2, along with the potential for M4
resonance, modulation of overtides by sea level rise is a non-obvious but important aspect
of predicting peak sea level within tidal basins.

The net physical response to coastal sea level rise clearly depends on a broad set of factors.
This chapter focuses on M2 tidal forcing, but diurnal tides and interactions between diurnal
and semidiurnal tides are likely significant. The long wavelength of diurnal tides leads to
phasing closer to a standing wave, though net amplification is typically smaller at longer
wave lengths (for example, the analysis of section 4.54.5 when applied to the s0 scenario
yields 24% less amplification when the tidal period is doubled). Similarly, the dissipative
effects of inundation are likely to be less important for diurnal tides.

Perhaps the largest uncertainty in predicting what will happen in a particular estuary
is the unknown evolution of morphology, whether by natural or managed actions. Under-
standing how basins respond to sea level rise when morphology is kept static is the first
step towards understanding what natural changes are likely to occur and what management
decisions may be deemed necessary.

4.8 Conclusions

The effects of basins becoming deeper and the effects of increased inundation under sea level
rise are approximately separated with a collection of numerical experiments with varying
coastal sea level rise and shoreline configurations. Comparisons of phase and energy flux of
the M2 tidal wave show that deepening decreases the influence of friction, while inundation
adds considerable dissipation in the margins of the basin.

Deepening allows additional tidal amplification (consistent with an amplified estuary
in the parlance of [8]), which was observed in all hard shoreline cases with sea level rise.
Changes in energy flux and tidal phase are spatially variable and depend on details of each
basin. The long, convergent southern arm becomes more reflective when deepened, while the
shorter, transmissive northern arm primarily shows a lateral redistribution of the landward
energy flux towards the shoals.

In both the progressive wave northern arm of San Francisco Bay and the standing wave
southern arm, inundation introduced large energy sinks at the margins of the bays. Most
inundation occurred off perimeter sloughs and rivers, causing the most drastic changes in
tidal phasing and tidal prism at points where these features join the larger bays. Energy
sinks in newly inundated regions caused a progressive shift in tidal phasing, a decrease in
tidal amplification, and an increase in the landward tidal energy flux.

In the case of South San Francisco Bay, local changes in the shoreline altered both the
tidal range within the basin, and also the magnitude of the reflected wave. The reflected wave
subsequently affected tidal range in other parts of the domain. In contrast, local changes
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in the shoreline of San Pablo Bay have limited effects on tidal range downstream of San
Pablo Bay, as a much smaller fraction of tidal energy is reflected back compared to South
San Francisco Bay.

Another key distinction between the two basins is the role of lateral dynamics and the
degree to which the system is better described as a one-dimensional or two-dimensional
tidal basin. South San Francisco Bay, with its higher aspect ratio and the inundating areas
concentrated near the head of the estuary, is amenable to a one-dimensional treatment, and
tidal amplification in portions of this bay can be roughly described by one-dimensional,
analytic estuary models. San Pablo Bay exhibits greater lateral variation, due to its low
aspect ratio and the fact that majority of the inundating areas are displaced laterally from
the thalweg, rather than being situated near the head of the channel.

The present study focuses on the semidiurnal tide, and while the baseline M2 amplitude is
much larger than the amplitudes of overtides, the variation in M4 amplitude across numerical
experiments is comparable to the variation in M2 amplitude between experiments. Together
with significant variation in the phase of the M4 wave relative to the M2 wave, overtides
are a significant component of the variation in high water. Depth-dependent nonlinearities
in the shallow water equations are the most likely sources of M4 generation, consistent with
the large expanses of shoals in San Francisco Bay with a depth on the same order as the
tidal range. Further work is needed to better understand the generation and dissipation of
the M4 wave in intertidal bay margins.

Overall, the coupling between sea level rise, tidal amplification, and inundation is im-
portant and must be taken into account for accurate assessment of future restoration and
mitigation questions. Quantitatively approaching these problems in a manner suitable for
aiding management decisions still presents many challenges. Realistic boundary forcing will
be required for the results to accurately predict future conditions. Some amendments to
the boundary forcing are simple, such as including the full range of tidal harmonics, but in
the grander scheme of climate change, many aspects of the forcing are difficult to quantify.
Establishing future forcing conditions was a central aspect of [35], including measures of
increased storm surge, trends in tidal constituents, El Niño, and of course sea level rise. In
regions where mean sea surface height is also affected by river discharge, such as Suisun Bay
in the current study area, river flow predictions will also be part of making model scenarios
as accurate as possible. The biggest challenge, though, for coupled tidal-inundation mod-
eling is geomorphology. Each scenario in this chapter assumes a static landscape, but in
reality the landscape will evolve in step with sea level rise. Studies of past sea level variation
have found that marsh elevation generally keeps up with rising sea levels [76], but recent
studies such as [70] have found that accretion will not be sufficient relative to the highest
anticipated rates of sea level rise. Predicting the elevation response of individual marshland
areas will be difficult and likely variable between sites. The human element is also difficult
to predict, as the fate of mitigation efforts is tied to funding and public sentiment, no longer
a question of environmental fluid mechanics but public policy. A best-effort approach will
probably require ensembles of model scenarios covering many variations in future topography
and forcing, not unlike the current state of global climate models.
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In many estuaries and bays rising sea level in the coastal ocean will lead to newly in-
undated areas. To a degree this inundation can mitigate sea level rise by decreasing tidal
amplification within the basins. Reinforcing and hardening impacted shorelines can actually
increase flooding risk in adjacent areas, and in highly reflective basins the effects can be
far-reaching. Restoration of tidal marshland and construction of new low-lying tidal areas
offer significant protection from rising tides by dissipating incident tidal energy, and these
benefits may extend well beyond the areas directly sheltered by marshland.
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Chapter 5

Conclusion

Understanding the physical processes at work in estuaries, and how those processes interact
with human action, is a broad and ongoing field of study. This dissertation has explored
fundamental dispersion processes, the artifacts of numerical models when applied to mixing
and transport problems, and the application of numerical models to questions of sea level
rise and flooding. Each of the preceding chapters ends with concluding remarks specific
to the respective material; rather than repeating and further summarizing those remarks,
the following section instead considers potential research directions for the future, namely
improvements to the architecture of numerical models and eddy-scale investigations into
mechanics of estuarine mixing.

In the physical context, there are opportunities for exploration into smaller scale dynam-
ics, where eddy-resolving models and high resolution spatiotemporal observations open the
door to answering questions related to the mechanics of mixing. The foray into sea level
rise in chapter 4 brings up an additional, open-ended question: how can we make progress
in understanding the future of complex systems which combine scientific questions of fluid
mechanics, geomorphology and marsh ecology, engineering questions of levee construction
and wetland restoration, all with the social and political questions of what actions we are
willing to support. New approaches to interdisciplinary studies and the ways we communi-
cate our findings may both have to adapt as we study the complex intersection of science,
engineering and policy. These new approaches may range from visualization to error analysis
and stochastic approaches.

A common remark from scientists in physical oceanography is that essentially every pro-
posal has a modeling component now, increasingly requested and sometimes even required
by funding agencies. Studies which may not have involved any modeling ten years ago now
have some model-based aspect, and pure-modeling studies involve increasingly complex sim-
ulations which combine multiple models across sub-disciplines to characterize the coupling
between an array of processes. Observational powers are also increasing, creating loads of
scientific data which rival the volume of model data created by modern simulations. As the
observational data streams grow, the same technologies which support large-scale modeling
will also be indispensable for analyzing large observational datasets. There are many oppor-
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tunities to improve not just the numerics and parameterizations in these models but also to
improve the interface between the scientist and the model. To match the increasing reliance
on and ubiquity of these models there is a need to move modeling from the domain of the
specialist to a commodity tool accessible for all scientists. At the same time, the fast pace of
hardware development and the increasing power of compiler and language technologies will
necessitate strong and rich abstractions between the scientist and the numerical kernel.

As models are developed and utilized by a broader audience and for a wider range of appli-
cations, there is increasing value in looking into ways of commoditizing modeling technology.
More simply expressed, setting up a numerical model should not solely be the purview of
modeling specialists. Standardization of steps in the modeling process will help, but there
is also a need to make the models and associated tools smarter. In some ways, creating a
numerical model is like typesetting: it was once a laborious process left to the specialist,
but algorithms improved, new systems were developed, and today anyone can publish a high
quality typeset article, concerning themselves only with content and leaving the low-level
details to the codified knowledge of the algorithmist. A similar trend in model development
is necessary to make numerical modeling usable for the broader community.

There are plenty of potential steps in this direction, some general and some specific
to the physical oceanography community. For many estuarine models, the grid generation
step requires a significant time investment. Advances in adaptive methods like Gerris [57]
and Chombo [16] are perhaps leading the way, but the efficiency of these adaptive methods
still lags far behind curvilinear codes like ROMS and even static unstructured codes like
SUNTANS. Mixed triangle/quadrangle grids have seen great success in combining advan-
tages of unstructured and structured models, but require extensive manual input during the
generation step.

The software architecture behind the scenes of numerical models is ripe for innovation.
Quantifying model error should also come to the forefront and be supported as a first-class
objective of models. The mathematical machinery for error estimation is well established
but without strong software architecture which supports extensible numerics, such modifi-
cations are time-consuming and lead to brittle implementations. By improving abstractions
within the modeling frameworks we can improve reliability and flexibility. Separating the
description of the computation from the implementation is valuable, perhaps exploiting the
notion of domain-specific languages. This will allow scientists and engineers more freedom
to choose the most appropriate implementation, and cleanly separate the roles of physical
oceanographer and applied mathematician.

Observational and computational capabilities are continually enabling investigations into
broader ranges of spatial and temporal scales. The small-scale portions of these data are
particularly rich, where turbulent and other transient flow features evolve. In a sense, there
appears to be a gap in the scales on which we focus. Basin-scale circulations are well-
characterized by numerical models and sparse observational arrays. Inertial and viscous
range measurements from acoustic doppler velocimetry can say a lot about local turbulent
quantities. Topographically-induced horizontal eddies are likely important, but it is not
clear how these transient, intermediate-scale features affect mixing, dispersion or smaller-
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scale turbulence. Autonomous underwater vehicles, passive drifters, high resolution CODAR,
and drone-based remote sensing are all under active development. These observational plat-
forms can be expected to provide increasingly detailed snapshots of environmental flows at
intermediate and small scales.

At the same time as observational capabilities are extending into this range of spatial
scales, numerical models are also reaching a point where eddy-resolving estuarine simulations
will be possible. The LES approaches typical of atmospheric and engineering CFD codes have
established capabilities in resolving portions of the turbulence spectrum. A major challenge
along the way to fully three-dimensional large eddy simulation in estuaries, though, will
be confronting the highly anisotropic spatial scales. Horizontal length scales range from a
kilometer to a hundred kilometers while vertical motions are constrained to scales on the
order of a meter by the sea surface, the bed, and stratification. Existing LES methods
will have to be adapted and perhaps hybridized with the RANS models common in modern
estuarine codes.

One of the defining features of environmental fluid mechanics, under the umbrella of
environmental engineering, is the acknowledgment that society depends on and has an im-
pact on the environment. In cases like the construction of new wetlands, the impacts are
intentional. In other cases the impacts are not only unintentional but may be so subtle as to
elude detection for many years, such as anthropogenic climate change. Questions of climate
change also highlight the importance of multi-scale modeling and data analyis. While the
root causes of climate change exist primarily at the global scale, the effects are observable
at many scales and it is not unlikely that most dramatic effects will be felt at the scales
of sloughs and intertidal shorelines. In all cases, though, the systems in question are com-
plex and represent the combined influences of many factors, spanning multiple disciplines.
Adapting modeling tools to support the integration of processes from various sub-fields will
be essential for informing management decisions. The complexity of these systems and nu-
ance of the results also dictate a need for improved communication of findings. Visualization
is likely to become more important in a world of data-driven discovery.

Estuaries are home to some of the richest ecosystems but also experience the impacts
of human action in myriad ways. The underlying theme of the research presented here and
the potential trajectories for future work is to improve the tools with which we can predict
future scenarios and to further the understanding of how human action affects these water
bodies.
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Appendix A

Calculation of Diffusion Coefficients

Starting from the closed-form recurrence expression for Bn
1 :

Bn
1 =
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And the update equation for An+1
3 :

An+1
3 = (1− Cβ)An3 + CβB

n
1 (A.2)

Expressions for the volumetric Courant numbers are:
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Taylor expansions of A1, A2 and respective derivatives, where a lack of subscript on A implies
evaluation at A3:

Ani = An + δxiAx + δyiAy +
δ2
xi

2
Axx +

δ2
yi

2
Ayy + δxiδyiAxy +O

(
l3
)

(A.6)

(Ani )t = −U (Ax + δxiAxx + δyiAxy) +O
(
l2
)

(A.7)

(Ani )tt = U2Axx +O (l) (A.8)

While the expansions for first and second time derivatives have been truncated at O (l2) and
O (l), the coefficients on these terms after substitution below retain the overall O (l3) bound
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on the modified equation. Distances between cell centers are defined:

δx1 = −l cos
(
θ − π

3

)
(A.9)

δy1 = −l sin
(
θ − π

3

)
(A.10)

δx2 = −l cos θ (A.11)

δy2 = −l sin θ (A.12)

Substituting (A.3)-(A.12) into (A.1), Bn
1 can be written in the form

Bn
1 = DA+DxAx +DxxAxx +DxyAxy +DyyAyy +O
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l3
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(A.13)

Where the coefficients are identified by superscripts, and subscripts continue to denote partial
derivatives. Expressions for each of the coefficients simplify to

D = 1 (A.14)
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Now considering (3.4), the update equation for A3, it remains to expand An+1
3 in time

and substitute for Bn
1 to get
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Canceling A and replacing second-order time derivatives with spatial derivatives and
omitting all higher-order terms for brevity, we obtain the modified equation
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Considering each term separately, the effective advective speed

Ueff = −CβDx
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Longitudinal diffusion:
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Lateral diffusion:
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Appendix B

Connectivity-based Model
Bathymetry

Algorithm

In potentially flooded and intertidal regions, it is more important to capture the connectivity
(or lack thereof) between hydrologic features than to preserve cross-sectional area or mean
depth. This appendix describes the method used for assigning bathymetry to each edge of
the numerical model in a manner which explicitly includes connectivity. The base input
to the algorithm is a high resolution DEM, typically a 1 m LiDaR dataset including inter-
tidal and supertidal regions). Where available, additional datasets of the present-day extent
of tidal action are used to correct for erroneous LiDaR “dams.” These dams are a conse-
quence of overpasses, bridges, and aerial clutter which appear as an obstruction obscuring
the underlying channel.

Bathymetry in the numerical model is stored at both cell edges and cell centers. For the
present application edge bathymetry is the primary concern, and cell depths follow from the
deepest adjacent edge. For each edge, a graph search algorithm is executed to determine the
minimum water surface elevation at which the two cells adjacent to the edge are connected.
For a given water surface elevation ηw, cells are considered connected via their shared edge
if there exists a path along pixels of the DEM which connects representative points within
the two cells, subject to the conditions that all DEM pixels along the path are below the
elevation ηw, and that the path lies entirely within the footprint of the two cells. Depending
on prior knowledge of the region, one of two approaches is taken for choosing a representative
point from each cell. In the general case where no additional information is available on the
tidal regions of the domain, the lowest point of the cell is chosen as the representative point.
When a single deep channel is flanked by areas of higher elevation, this approach is effective at
maintaining connectivity along the channel and enforcing a lack of connectivity through the
channel banks. For portions of the domain, however, additional information was available
in the form of a polygon which overlays the extent of areas known to be tidally active.
Incorporating this additional information into the edge-centered bathymetry was a two part
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process. First, the medial axis of the tidal regions was extracted, yielding a branching set of
polylines along the “skeleton” of the tidal regions, roughly similar to thalwegs. Pixels of the
DEM along the medial axis lines were lowered as necessary to force the pixels to be intertidal.
This corrects for missing connections in the LiDaR data due to bridges, culverts and other
unresolved channel features. Second, the choice of representative point when evaluating cell-
cell connections, when a cell overlaps the medial axis, is chosen to be on the medial axis.
In cases where a cell overlaps multiple channels, this favors channels which are known to be
tidal.

The results of a simple averaging approach are shown in figure B.1. A narrow, deep
channel is flanked by levees of a similar width, and broad ponds lie beyond the pair of levees.
The widths of the features are small compared to the 50 m grid spacing, and the averaging
yields model bathymetry which fails to resolve the channel and significantly under-estimates
the height of the levees preventing flow from one pond to the other. Figure B.2 shows
the same region, now with the tidal area, medial axis of the tidal area, and resulting edge
bathymetry. Channel connectivity is present at a more representative elevation, while levees
flanking the channel on either side are resolved with much higher elevations. While the
resolved channel is much wider than the true channel, the grid properly connects cells along
the channel and prevents unrealistic overtopping flows from connecting the channel and the
adjacent ponds.

This graph search approach is considerably more expensive than a typical averaging
approach, but with the help of accelerated image processing methods (primarily a binary
image connected components algorithm), the algorithm is not prohibitively slow. For a model
grid with 937,759 cells and 1,413,110 edges, the bathymetry processing takes approximately
4 h running serially on a 2.4 GHz desktop workstation.

Figure B.1: Edge-centered depths taken from averaged bathymetry along edges. Background
bathymetry is shown desaturated but otherwise with the same color scale as the edge ba-
thymetry.
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Figure B.2: Edge-centered depths by levee and channel embedding method. Dashed black
lines show the boundary of the tidal polygon, and the solid black line the medial axis of that
polygon.

Static analysis

A non-dynamic inundation analysis is applied to the computational grid as a simple means of
understanding the efficacy of the above bathymetry processing to embed channels and levees.
The analysis is similar to simply considering all areas below a given elevation contour to be
inundated, but takes into account the connectivity between the bay, channels and ponds at
a given sea surface elevation.

Figure B.3: Sea level of inundation for (a) edge-averaged bathymetry and (b) connectivity-
based bathymetry. Arrows on the colorbar indicate the NAVD88 heights of MHHW in the
coastal ocean under 0,0.6 and 1.0 m sea level rise.

Each grid cell is assigned a value equal to the sea surface elevation at which that cell
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becomes connected to the open ocean boundary. The result is a spatial map of “sea level of
inundation”, though with no consideration of tidal dynamics. The method for this calculation
stems directly from graph theory and connected components. Given the primary interest
in ranges of sea level rise, a starting sea level elevation η0=1 m NAVD88 is chosen, below
present day mean high water throughout the domain. Considering the cells of the model grid
as nodes in a graph, and edges in the model grid with elevation below η0 as edges of a graph
connecting those nodes, the problem is equivalent to a connected components analysis. The
ocean component is defined as the component containing a reference point in the coastal
ocean, and cells which are initially members of this component are labeled with a sea level of
inundation of η0. The remaining edges with elevations above η0 are then sorted in ascending
order of elevation, and incrementally added to the graph. At each step, the next lowest edge,
with some elevation ηi, is added to the graph, and the connected components are updated
with this new connection. Any cells which become part of the ocean component due to this
connection are then given a sea level of inundation equal to ηi.

Figure B.3 compares this static inundation analysis as applied to the averaged bathym-
etry and connectivity-based bathymetry. From these plots it is clear that an abundance of
connectivity information is lost when topography is averaged across 50 m edges. Panel B.3b
also highlights the extensive preexisting tidal marshes adjacent to the Napa River in the
northeast, and the extensive levees in the south which isolate low-lying salt ponds from the
high tidal ranges of South San Francisco Bay.
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Appendix C

Model Calibration and Validation
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Figure C.1: Observed and predicted sea level near the San Mateo Bridge. Heights are relative
to local MSL.

The tidal boundary condition was calibrated to match phase and amplitude of the sea
surface height at the Golden Gate over the period February 24, 2009 to March 15, 2009,
which required scaling measured tidal amplitude by 0.931, and compensating for a 120s
phase lag. The model has been validated against observed tidal stage at two locations and
depth-averaged velocity at two locations, over the period February 26, 2009 to March 9,
2009 (with the exception of the velocity validation in South Bay, for which observations
are truncated at March 6, 2009). Model forcing for the validation run was taken from
observed coastal ocean sea level as measured at Point Reyes, and observed winds from Point
Reyes, Port Chicago, Alameda, Redwood City, Richmond, and Union City. River flows were
included for the San Joaquin and Sacramento Rivers, where the Net Delta Outflow Index [21]
was apportioned 25% and 75% respectively. Table C.1 summarizes the comparison between
observations and model predictions.

Figure C.1 shows time series comparisons in South San Francisco Bay, near the 40 km
mark in figure 4.1 and laterally situated at the eastern edge of the channel at the foot of
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Figure C.2: Observed and predicted along-channel, depth-averaged velocity near the San
Mateo Bridge, edge of the main channel. Velocities are rotated to respective principal direc-
tions, with positive up-estuary.
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Figure C.3: Observed and predicted sea level at Mare Island. Heights are relative to
NAVD88.
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Figure C.4: Observed and predicted along-channel, depth-averaged velocity at Martinez,
each rotated to respective principal direction with positive up-estuary.
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Table C.1: Velocity and stage comparisons, forced with observed tides and winds. r denotes
the Pearson correlation coefficient. Lags are computed as the time offset which maximizes
the correlation coefficient. rms ratio is the ratio of model rms amplitude to observed rms
amplitude.

r bias lag rms ratio
η @ -40 km 0.997 -0.003 m 92 s 1.009
u @ -40 km 0.983 0.02 m s−1 -151 s 0.985
η @ 40 km 0.996 -0.076 m -146 s 1.016
u @ 53 km 0.948 -0.06 m s−1 -1517 s 0.826

the slope leading into the shoal. A storm system passed through between March 2, 2009
and March 4, 2009. Uncertainty in the exact distribution of wind-based surface stress is
the likely cause for the trend of over-predicted sea surface height during this period. Depth
averaged currents at the same location are shown in figure C.2.

Validation for sea surface height in San Pablo Bay is taken at the tide gauge at Mare
Island, immediately west of the mouth of the Napa River. The comparison is shown in figure
C.3. Long-term measurements of velocity in San Pablo Bay during the validation period were
not available. Velocity measurements at the other end of Carquinez Strait are available for a
site near the southern shore (near 53 km along the thalweg shown in figure 4.1). Comparison
at this location is shown in figure C.4. Note that this site is beyond the intended study area,
and validation here is adversely affected by proximity to the false deltas, decreased grid
resolution outside the study area, and the highly energetic and spatially variable flows in
this constricted tidal strait. Nonetheless, velocity phase and temporal patterns of variation
in current magnitude are reasonably captured by the model.
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Appendix D

Tools for Estuarine Modeling

This appendix outlines the collection of modeling tools developed in the course of the re-
search for the preceding chapters. This includes a range of modifications to the SUNTANS
hydrodynamic code, tools for preparing inputs to the model, and tools for processing model
outputs.

D.1 Changes to the Numerical Kernel

The majority of the changes to the internal core of SUNTANS have been motivated by the
specific applications covered in this dissertation. While these modifications may not represent
novel advances in numerical methods, they have hopefully resulted in a more practical, usable
modeling ecosystem. The SUNTANS code base utilized throughout this dissertation was
forked from the trunk SUNTANS version in the spring of 2008. More recently, the trunk
SUNTANS version has been made publicly available, and has seen significant enhancements,
especially in terms of core numerics for advection of momentum. The features described
below have so far been introduced only into the forked code base.

Scalar substepping

Many hydrodynamic models advance the freesurface via an explicit time-stepping method,
and are therefore subject to a Courant number limitation based on the barotropic wave
speed. SUNTANS, to the contrary, follows the formulation of [10] in which the freesurface
perturbation is advanced semi-implicitly with the θ method. By selecting the unconditionally
stable Eulerian-Lagrangian method for momentum of advection, the model is generally stable
even for Courant numbers greater than unity.

In many cases the most restrictive time step limitation in SUNTANS is then due to scalar
advection. Where advection of momentum in shallow estuaries is often captured sufficiently
by the non-conserving ELM, in the typical estuarine modeling context there is a fundamental
need to conserve scalar mass. Even slight discrepancies in the conservation of salt mass may
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have significant impacts on the structure of density driven flows or the analysis of the salt
balance. The basic scalar transport discretization in SUNTANS is first-order upwind; a
less diffusive total-variation diminishing method is also available. Either method, though,
requires that the timestep be sufficiently small to control the maximum Courant number
in the domain (for first order upwind, this maximum is 1.0, while for TVD the maximum
Courant number is 0.5). Note that this Courant number is formally the volumetric Courant
number, utilizing the θ method semi-implicit velocity field, and corresponds to the fraction
of a cell’s volume which is flushed out of the cell in the passing of a single time step of the
simulation.

In order to make the most of the implicit free surface solver and the unconditionally stable
ELM for advection of momentum, a scalar substepping modification has been implemented
for all scalar advection in SUNTANS. At each time step, once the new velocity field has
been calculated, the global maximum volumetric Courant number is calculated. A number
of substeps is chosen such that within this smaller time substep the maximum Courant
number is within the limits defined by the base scalar advection scheme. In this manner a
long time step is achievable for the hydrodynamics, and the scalar fields will be advanced
with a shorter time step chosen as needed to ensure stability.

This feature is always active in the present version, and is applied for all scalar species
including turbulent quantities and sediment species.

Manipulation of interprocessor boundaries

SUNTANS is implemented as a parallel code, based on MPI and a spatial partitioning of
the computational grid. This partitioning is optimized by the PARMETIS library, and is
configured to minimize the amount of interprocessor communication required at each step.
While in general this is exactly the optimization one would desire, there are some hidden
implications for hydrodynamics when ELM is used for advection of momentum. The problem
stems from the fact that in the current implementation, the tracebacks for ELM are not
allowed to span multiple processors. Essentially, processor boundaries function as blockades
for advected momentum. This is not the case for conservative advection schemes such as
upwind, since in that case the ghost cells provide sufficient information to advect momentum
between processors. The crux of the issue between optimizing the partitions and ELM is
that graph cuts for the partitioning tend to coincide with headlands, peninsulas and other
features near which the advection of momentum is a significant term. While the weakness of
ELM at partition boundaries is negligible in regions of low velocity gradients, it can lead to
large errors and instabilities when velocity gradients coincide with interprocessor boundaries.

As a workaround for this issue, an option has been added to bundle groups of cells together
for the purpose of partitioning. A set of axis-aligned rectangular regions are specified during
the partitioning step in a file “contiguous.dat,” containing lines such as

560400 4160700 560800 4161100
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which each specify a region by the coordinates xmin, ymin, xmax, ymax. For the purposes
of partitioning, all cells within that region will be lumped together and partitioned as a
single entity (with a computational weight equal to the sum of the computational weights
of the original cells). In most applications this step is unnecessary, but in locally advection-
dominated regions this can be a useful tool for combatting numerically unstable eddies at
headlands or other points of land.

Sediment transport

While there has been significant previous development of a SUNTANS-integrated suspended
sediment, bed sediment and wind-wave model, described in [14], this development has tended
towards the ideal of including as many processes as possible. The downside of such a broad
formulation is that many processes require parameterizations which in turn require the user
to have detailed knowledge of tunable coefficients that are obscure or difficult to determine.
As a simpler method of modeling basic sediment transport processes in a more “turn-key”
approach, the sediment model of [63] has been implemented. This model is both well-
regarded in the field and relatively direct in its parameterizations. For many applications this
approach is sufficient and avoids the complexities of a much larger set of parameterizations.

The translation of the original Sanford implementation to SUNTANS is relatively straight-
forward. Vertical diffusion of sediment properties has not been included in the present im-
plementation, and no attempt was made to apply smoothing or diffusion of bed properties
in the horizontal.

Perhaps the most important link between the hydrodynamics and the sediment model
is the bed stress, and special care is required to avoid numerical artifacts in the bed stress
field. Bed stress in the sediment model is used at cell centers to calculate resuspension and
deposition fluxes, but the hydrodynamic kernel evaluates the momentum balance, including
bed stress, at edges, not cell centers. Further complicating the bed stress calculation is the
z-level vertical grid utilized in SUNTANS.

Using z-levels for the vertical grid avoids pressure errors common in sigma-coordinate
models, and typically allows wetting and drying of cells with tighter tolerances. Unfor-
tunately, z-levels lead to two specific issues which can introduce artifacts into bed stress
calcuations. The first issue is a discrepancy in the number of vertical levels between nearby
cells or edges. In areas of sloping bathymetry, it is unavoidable that there will be adjacent
pairs of water columns with different numbers of z-levels, and likewise there is no guarantee
that the three edges of a single cell have the same number of vertical levels. Blindly inter-
polating velocities from the same z-level may lead to artifacts where one velocity is from the
bottom of a water column and and another is from the middle of a water column. Choosing
an edge velocity from each edge’s respective bed z-level still has the problem that the height
of that edge may be different between the cells, and reflect different heights above bed. To
decrease the sensitivity to differing number of z-levels, the bed stress is calculated based on
a per-edge velocity interpolated to a reference height. Obtaining the vertically interpolated
velocity on each edge starts with averaging the edge-normal velocities from the bed up to a
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reference height of O(1m). The velocity, averaged over the lowest portion of the watercolumn,
is then converted to a velocity at the reference height above the bed by assuming a log-law
profile and using the prescribed bed roughness. These edge velocities, now interpolated to
a consistent height above the bed, can be combined to a single, cell-centered velocity vector
at the reference height, from which the bed stress is calculated. This approach does mean
that the bed stress for sediment departs from that used for the hydrodynamics. However,
tests in idealized domains show that the actual bed stress from hydrodynamics is highly
variable even between adjacent cells. This is not problematic for hydrodynamics, but with
resuspension fluxes being a nonlinear function of the excess bed stress, this variation can
lead to adjacent cells experiencing wildly different sediment fluxes at the bed.

A more subtle issue with z-levels is that the vertical spacing near the bed is typically
non-uniform. Even if the prescribed vertical spacing of z-levels is uniform, the bed cell is
typically “shaved down” such that the bed is at the correct local elevation. When such
shaved cells are allowed to be very thin, vertical finite differences are poorly behaved due
to the nonuniform ∆z. This is especially evident when evaluating the turbulence closure in
bed cells. The near bed region typically has high shear, high gradients in TKE production
and dissipation, and significant vertical fluxes of TKE. Poorly conditioned finite difference
operators in this portion of the watercolumn can lead to oscillatory behavior in the turbulence
closure. Even when temporal oscillations are not triggered, the depth-averaged velocity can
differ significantly between adjacent water columns where the number of z-levels differs but
the total depth is nearly the same. As a rough measure to counter the issues of thin cells,
the vertical discretization has been updated to allow more aggressive lumping of vertical
layers. Assuming that one wishes to keep the ratio of successive layer thicknesses as close as
possble to unity, then a simple geometric argument leads to the conclusion that layers should
be combined when the ratio of their thicknesses reaches the inverse of the golden ratio, i.e.
when

∆zb
∆z

<
∆z

∆zb + ∆z
(D.1)

where ∆zb is the original thickness of the bed layer and ∆z the thickness of layers not
truncated by the bathymetry. This adjustment does not entirely remove the artifacts from
changes in the number of layers, but tests show that the artifacts are greatly reduced com-
pared to a simulation without lumping. Recent work in [56] considers this problem in more
depth, with an even more aggressive lumping scheme extending higher into the water col-
umn. Future work may include adapting more specialized boundary discretizations for the
turbulence closure to reduce sensitivity to thin z-levels without affecting near-bed transport.

Despite the above measures intended to reduce the artifacts created by z-levels and
variable bathymetry, the sediment resuspension fluxes typically still have a high degree of
non-physical spatial variation, often showing up as a sawtooth or 2∆x pattern. Typical
methods of assigning bathymetry to a grid either evaluate the input DEM at cell centers or
edge centers. Taking the example of a regular grid aligned with a channel, the cells along a
particular isobath can be viewed as a “strip” of triangles with alternating left-pointing and
right-pointing triangles. The respective cell-centers also alternate, offset to either side by
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a small amount. When the isobath lies on a slope, this lateral offset between adjacent cell
centers leads to an alternating pattern of cell depths. Similarly, if bathymetry is evaluated
at edges, half of the cells in the strip will have two edges straddling the isobath and one
shallower. The other half of the cells in the strip will have two edges straddling the isobath
and one deeper edge. Again, the resulting grid will have cell depths alternating shallower
and deeper. Conceptually this leads to along-channel flow encountering a series of bedforms
at the scale of the grid, creating alternating ridges of high bed stress and troughs of low bed
stress.

Methods for reducing this artifact are commonly termed “terracing,” and amount to
smoothing the bathymetry along isobaths. Rather than explicitly extracting isobaths and
smoothing grid bathymetry along those contours, a more general and simpler approach is
to compute depths from the DEM at edge centers and then define the cell depths as the
median of the edge depths. This yields a depth for each cell, and the final edge depths are
then dictated by the shallower of the two adjacent cells for each edge. In the simple case
of a regular grid aligned with a channel with an arbitrary lateral bathymetry profile, this
approach yields a bathymetry field which is constant along isobaths. As the grid departs from
regularity or being aligned with the channel the method will tend to create small patches of
smooth bathymetry, at least reducing the number of sites where step changes in bathymetry
introduce bed stress artifacts.

D.2 Grid Generation

The discretization used in SUNTANS and other Arakawa C grid models places several con-
straints on the geometry of the computational grid. These models calculate gradients of
cell-centered quantities under the assumption that the line between adjacent cell centers
intersects and is perpendicular to the common edge. A consequence of this requirement is
that cell centers must be the circumcenters of the triangles. In order for the circumcenter
to lie within the cell itself the cell must be an acute triangle. The primary motivation for
development of TOM (Triangular grid Orthogonal Mesh generator), is to provide automated
creation of triangular meshes with all cells obeying the acute angle constraints. The base
algorithm is a variant of the advancing front method [29], with extensions for preserving or-
thogonality and embedding linear features. Furthermore, as noted in [81], truncation errors
when interpolating on a triangular grid are minimized when the cells are regular and equi-
lateral. Where the requirement of acute triangles is relatively strict, there is an additional
soft requirement that cells be as close to equilateral as possible. Grid generation approaches
such as that of Triangle [67] provide a mechanism for accepting or rejecting a triangle based
on parameters like area and internal angle, but do not provide a way to heuristically push
the triangulation towards an equilateral tiling.
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Inputs and preprocessing

Inputs to the mesh generation process are (a) a polygon (possibly with holes) representing
the shoreline and computational boundaries, (b) a set of points and associated length-scales
giving the requested grid scales, and optionally (c) a collection of polylines in the interior
of the domain for controlling cell alignment. The grid scale refers to the nominal edge
length, defined as a continuous function across the entire domain. In the simplest usage of
TOM this scale function is based on a natural neighbors interpolation from the set of input
points. More complicated approaches to specifying the scale have been implemented and are
discussed below. Before grid creation can begin the shoreline must be made consistent with
the requested scale. For example, if a region contains a slough with a width of 50 m, but
the requested resolution for the area is 100 m, one of three options must be taken: widen
the representation of the slough to 100 m, remove the slough, or locally decrease the grid
scale down to 50 m. The most common approach is to remove the features which are too
small (an option for instead modifying the requested scale is described later). Starting with
a constrained Delaunay triangulation of the input shoreline (Figure D.1a), Steiner points
are added until the circumcenters lie near the medial axis of the shoreline. Specifically,
for each constrained edge in the triangulation, the circumradius of the adjacent triangle
internal to the domain is compared to the point-line distance from the triangle’s center (the
Voronoi point) to the constrained edge. If ratio between these distances is greater than a
prescribed threshold (empirically chosen to be 1.2), the edge is subdivided with a Steiner
point inserted at its midpoint (Figure D.1b). The process is repeated until no more edges
require subdividing. This resampling ensures that the circumradius reflects the length scales
between features and not the length scale between successive vertices on the shoreline. Any
triangles with a circumradius smaller than half the requested grid scale are removed, and
a new shoreline polygon is constructed from the union of the remaining triangles (Figure
D.1c).

In applications where it is desirable to control the alignment of cells, additional polylines
internal to the domain may be specified. These lines are treated identically to shorelines, with
the caveat that both sides of each line are internal to the domain. In addition to controlling
alignment, such polylines can also be used to efficiently resolve linear bathymetric features
such as underwater ridges or “zero-width” dams.

Paving

In an advancing front method, the front is the boundary of the region in which no cells have
been created, initially identical to the shoreline. Starting with the preprocessed shoreline
polygon and any interior lines, the paving process iteratively applies the following steps,
illustrated in Figure D.2:

1. Find the point along the front with the smallest internal angle, label it B, and keep a
reference to the points A and C that are immediately clockwise and counterclockwise
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(a) (b) (c)

Figure D.1: Removal of features smaller than local grid scale. (a) Input shoreline and
constrained Delaunay triangulation. (b) Constrained Delaunay triangulation after adding
Steiner points. (c) Smoothed shoreline after removal of triangles with circumradius smaller
than l/2 (illustrated by minimum circumcircle shown on the right).
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Figure D.2: One iteration of the paving algorithm. The node B is chosen based on the
smallest internal angle. The strategy for how to add edges and cells at B is chosen based on
the internal angle and whether the local scale is smaller than, equal to, or greater than the
desired scale. After updating the topology, node locations are refined by minimizing a cost
function involving cell angles and edge lengths.
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respectively from B along the front. This will be the site of the cell or cells created
during this iteration.

2. There are multiple choices or strategies for how new cells will be added at B. Topo-
logically these strategies correspond to how the degree of node B, the number of edges
adjacent to B, is modified. For example, adding a line AC to create the cell ABC
preserves the degree of B, while adding a new point D to form two new cells increases
the degree by one. In a perfectly regular triangular grid all nodes have a degree of
six. Strategies that result in a greater degree will tend to create shorter edges, while
the edge length can be increased by limiting the degree of B. In this way, the choice
of strategy is the key mechanism by which a specific requested scale is achieved. In
many situations, though, local geometric constraints rule out some strategies, so it
becomes necessary to construct a prioritized list of strategies based on the local scales
and geometry. The steps in constructing the prioritized list are:

a) Calculate a scale factor s as the ratio of the current scale (the average of edge
lengths, 1

2
(|AB|+ |BC|)) to the requested grid scale L.

b) Scan the vicinity around B for the possibility of non-local connections, i.e. when
the advancing front encounters an island, an opposing shoreline, or an internal
polyline. A constantly updated constrained Delaunay triangulation of all the grid
features (shorelines, internal polylines and completed triangular cells) enables
querying of nearby features in O(1) time. If the non-local feature is within 1.25L,
the highest priority strategy will be creating an edge from B to this feature. In the
event that the nearest point on the non-local feature is not a preexisting vertex,
a new vertex will be inserted in the feature at the point closest to B.

c) Based on both the interior angle θ = ∠ABC and the scale factor s, the remaining
local strategies are prioritized. For example, if the angle were 60◦, a cutoff will
add the edge AC, making a roughly equilateral triangle ABC. The scale factor
changes the thresholds between choosing one strategy over another. If the angle
were instead 80◦ but the current scale were large compared to the requested scale,
the bisect strategy would attempt to bisect the angle ∠ABC by adding a new
point D and creating two triangles ABD and BCD (and increasing the degree
of B in an attempt to reduce the edge lengths). If the current scale were small
compared to the requested scale, the cutoff strategy would be tried first, creating
a single triangle ABC with longer edge lengths. Aside from non-local connections,
the strategies (and the range of θ for which each is the highest priority strategy)
are:

i. join - merge AB and CB into a single edge [θ < 30◦]

ii. cutoff - add the edge AC [30◦ ≤ θ < 85◦s−3/2]

iii. bisect - add a new node D, and edges AD, BD, and CD
[85◦s−3/2 ≤ θ < 160◦ − 50◦ (s− 1)]
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iv. wall - add a new node D, but only create the edges AD and BD
[θ ≥ 160◦ − 50◦ (s− 1)]

3. For each attempted strategy, the mesh topology is updated and a local optimization
step adjusts vertex locations to restore the acute angle constraints. The cost function
minimized during this optimization is

C (p) = 10

[
maxi∈I (|φi − 60◦|)

φmax − 60◦

]5

+ exp

(
maxi∈I (φi)− φmax

3◦
− 1

)
· · · (D.2)

· · ·+ 2

([
maxe∈E (le)

L

]2

+

[
L

mine∈E (le)

]2
)

where I denotes the set of internal angles φi of triangles that include the vertex p, φmax
is the target maximum internal angle, chosen to be 85◦, E the set of edges with p as
an endpoint, and le the respective length of each of those edges. The first term favors
equilateral triangles, the second term penalizes angles approaching φmax, and the third
term favors edge lengths close to L. If the optimization is not able to satisfy the angle
constraints or the optimization causes a self-intersection, the mesh is reverted to its
original state and the next strategy is attempted.

Post-processing

While the paving process creates only cells which respect the interior angle criterion, poor
quality cells that only barely satisfy the angle requirements may still exist. Two post-
processing methods are applied to improve overall grid quality: relaxation and repaving.
The relaxation steps apply the same optimization method used during paving to regions
containing low quality cells. By applying the optimization over a larger group of vertices
it is sometimes possible to nudge the vertices toward a better layout without modifying
the grid topology. Where this approach is unable to improve the cells, the offending cell
and its neighbors are removed and the paving method is re-applied locally. While repaving
usually creates cells with better geometry, it may upset the alignment of cells that are not
constrained by an adjacent shoreline or interior line. For most cases, only the most borderline
low quality cells are selected for repaving in an effort to preserve as much of the alignment
and regularity as possible.

Implementation and complexity

The current implementation of TOM is primarily in Python, with broad utilization of the
numerical libraries numpy, CGAL and scipy. While the asymptotic complexity is O (n log n),
where n is the total number of cells, in practice the optimization step is the most expensive
and for grids at least up to 5 × 105 cells the run time is very close to linear in n. On
a typical 64-bit desktop computer the speed ranges from approximately 40 cells/second in
tightly constrained areas to 110 cells/second in broad, unconstrained areas.
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Additional methods for defining scale
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Figure D.3: Inputs to the grid generation process. Solid black denotes the intended shoreline.
Dashed lines define the constrained Delaunay triangulation and interpolated scale values.
Dotted lines denote auto-telescoping scale constraints (with the telescoping rate set to 8%).
Background color denotes the requested scale based resulting from these scale inputs.

The simplest approach to defining the requested scale is a collection of points with a
scale value assigned to each. A Delaunay triangulation is constructed over this set of points,
and a natural neighbors interpolation method is used to interpolate the point values to a
continuous field covering the domain.

In many cases, though, the exact structure of the Delaunay triangulation does not con-
form to the expectations of the user. By associating scale values with polylines rather than
individual points, the user can control the structure of the triangulation (now technically a
constrained Delaunay triangulation). This is helpful in making sure that a small scale value
in one location does not “bleed over” into an adjacent area.
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Figure D.4: The triangulation resulting from the inputs in figure D.3. Cells are colored by
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There is a common rule of thumb in unstructured grids that the change in linear scale
between adjacent cells should not exceed 10%. The modeler is often presented with cases
where a particular discrete feature needs to be resolved at a particular scale (for example, a
slough or breach), but this increased resolution is unnecessary in neighboring areas. In this
case, the nearby resolution should be dictated only by the telescoping rate.

TOM supports specifying such “auto-telescoping” scales through the use of a novel datas-
tructure known as the Apollonius graph. In the non-telescoping, purely interpolating method
from above, it is simple to compute which input points are relevant for a particular scale
query: they are the points forming the Delaunay triangle containing the query point. In
the telescoping method, though, this test becomes significantly more complicated. A nearby
point with a large scale may be superseded by a far away point with a very small scale. A
näıve implementation of the scale query would have to check all input points, considering
their respective scales and distances from the query point, in order to find the correct tele-



120

scoped scale. The Apollonius graph, an algorithm borrowed from computational geometry,
allows efficient queries of this sort. This datastructure is a generalization of the Delaunay
triangulation in which each point is allowed a finite radius. By assigning points with small
scales larger radii, and points with large scales small radii, graph queries can efficiently ac-
count for both scale and distance. Global graph search is still slow, but the spatial coherence
between successive queries can be exploited for significant performance gains.

Most uses of the telescoping scale functionality rely on a user-provided set of points and
respective scales. As described above, the resulting scale distribution is then used to simplify
the shorelines to the point that they are consistent with the requested scale. A novel use of
the telescoping scale functionality, though, is to reverse this relationship. The shoreline can
be triangulated as above, but rather than using the local feature scale to determine which
portions of the domain to remove, this scale can be used instead to dictate the requested
scale. Telescoping scale constraints then enforce that the scale does not change too quickly.
This was in fact the original approach for the slough and levy-resolving grids of chapter 4, but
difficulties in robustly defining levee features from LiDaR made this ultimately untenable.

Mixing interpolated and telescoped scales is as simple as querying both and returning
the smaller of the two values. The end result is that complex distributions of grid resolution
can be specified with minimal inputs from the modeler. A sample input demonstrating
mixed scale specification is shown in figure D.3. This setup might be relevant for a basin in
which a narrow channel runs east to west through a broad shoal, with a study site in the
center-northern portion of the domain. Telescoping 400 m resolution around the channel
ensures that it is captured in the grid, without costing too many unnecessary grid cells in
the shoals. Resolution throughout the study area (perhaps a wastewater outfall) is pinned
at 400 m, and allowed to safely telescope up to the background scale of 1000 m outside the
study area. The resulting grid is shown in figure D.4. Here the resulting edge length, for
plotting purposes, is calculated as the edge length of an equilateral triangle with equivalent
area.

D.3 Boundary Forcing

The stock SUNTANS code base has historically defined boundary conditions from a cus-
tomized C source file. This provided the ultimate in flexibility as all aspects of the model
are accessible and the complexity of a boundary forcing scheme was limited only by the savvi-
ness of the programmer. However, there are several potential issues with an open-ended and
low-level description of boundary conditions. First, the model setup is tied to model inter-
nals. If a future version of SUNTANS changes the way that wind stress is evaluated or the
name of a boundary velocity variable, all models developed to the older standard become
unusable. Second, it discourages code reuse, and instead puts each model developer in the
position of re-inventing the wheel when it comes to reading in time series, evaluating har-
monic constituents, or coding up spatial interpolation methods. There is also the issue that
data and code become intertwined, where boundary condition code must know something
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about the input grid in order to apply the correct boundary condition to the correct portion
of the boundary.

In an effort to streamline model development, reduce the chance of boundary condition
errors, and improve forward-compatibility, a framework for defining and implementing a
range of boundary conditions common to a hydrodynamic model has been developed. In-
stantiating boundary conditions requires detailed knowledge of the computational grid and
simulation parameters. Consequently, the codebase has evolved into a convenient frame-
work for handling a range of model deployment tasks from automated grid generation to
post-processing of model data for validation.

The framework is primarily in the form of an object-oriented class library, with essential
top-level classes:

Domain the procedural glue, typically common to multiple simulations spanning multiple
time periods, possibly run on multiple architectures, but all using the same grid (or
the same recipe for creating a grid), and similar boundary conditions.

TriGrid a geometric description of the triangular 2-D grid which supports many geometric
and topological operations and queries.

SunReader a specific model run, whether being prepared for execution or already executed.
If the run has been completed, this class also provides access to the model output.

Field A generic class for describing a 2-D field, i.e. a mapping R2 → R. Useful for describing
variation in grid scale, bathymetry data, wind fields, spatiall varying roughness values,
etc.

GlobalForcing a collection of boundary conditions for a particular grid. Subsets of the
grid are chosen based on indices or geographic filters, and multiple variables may be
forced within each subset of the grid.

DataSource For each variable which is forced, the relevant scalar or vector data is defined
in a DataSource, which may represent a constant value, a time series, or a harmonic
decomposition. Subclasses determine how the data is populated, including on-demand
downloading from internet sources.

The intended usage pattern is to derive a project-specific subclass of Domain, with grid
specifics, boundary conditions and custom “recipes” (methods prefixed with cmd and ac-
cessible from the command line) defined in the subclass. This allows building up complex
recipes using smaller recipes as steps. One example is the batch recipe, which roughly breaks
down into the following pseudocode:
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Data: folder,start,stop
folder: path prefix for the series of runs
[start,stop]: time interval for the first run in the series.

begin initialize run in folder
if no grid present then

generate grid
end
if grid has changed or is missing bathymetry data then

interpolate bathymetry onto grid
end
if grid has changed then

update marks in grid to reflect boundary conditions
partition grid into subdomains

end

end
repeat

download data for the period [start,stop]
write forcing data to per-processor data files
queue the simulation to the local cluster
// C code within SUNTANS parses and applies specified boundary conditions
wait for simulation to complete
start, stop ← stop,stop + (stop - start)

until interrupted by user
Algorithm 1: process for batch recipe

The full power of an object-oriented framework becomes evident when suites of simula-
tions are desired. A minimal subclass can substitute a different value for a parameter or
override an arbitrary step of the framework. Multiple runs differing only in the simulation
period can be invoked from the same subclass, just specifying different time periods on the
command line.

D.4 Visualization

As computational power and numerical models progress, both the volume of model data
and its complexity increase. Low resolution, two-dimensional model data can be plotted
directly and quickly allowing efficient inspection, analysis and debugging by the modeler.
High resolution, three-dimensional models, with perhaps ten or more different scalar and
vector quantities to examine, spread across dozens of subdomains, present a challenge to the
modeler who wants a glimpse of the model results.

The need to efficiently visualize and explore large volumes of model data is common
among modern numerical modelers, and high performance tools are increasingly available
to the modeler. One particular package, VisIt [13], is particularly well-suited to CFD and
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cluster computing. Features of VisIt include support for scalar, vector and tensor fields,
two- and three-dimensional domains, and a client-server architecture which takes advantage
of local graphics acceleration while minimizing network traffic to remote compute resources.

To facilitate debugging, exploration, and presentation of simulation results, a plugin for
VisIt has been developed which allows reading of the native SUNTANS output binaries.
The plugin currently parses grid geometry, bathymetry, freesurface elevation, νT , salinity,
temperature, and cell-center velocities. The full-state output files (typically store.dat.N )
can also be parsed to obtain instantaneous edge-velocity and freesurface fields, helpful for
post-mortem diagnosis of crashes.

An additional feature, when the Berkeley SUNTANS codebase is used, is the automatic
recognition of “raw” files. logger.c provides a set of utility functions for outputting static
or time-varying fields to a basic binary format. A simple naming scheme describes the data
layout, such that the VisIt plugin can parse the filename and associate the binary data
with the correct elements of the grid. This provides a quick and flexible mechanism for
debugging, for example by outputting intermediate values in the momentum calculation, or
to add nonstandard output of values like bed stress. The sediment module also uses these
output methods for bed layer mass and suspended sediment concentration output.

In the long term, this plugin is expected to become obsolete as SUNTANS output moves to
CF-compliant NetCDF and CF-compliant VisIt plugins become available. In the meantime,
though, this is likely the most complete visualization approach for SUNTANS output.




