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Abstract

Inversion of temperature and species concentration distributions from radiometric measurements involves
solving nonlinear, ill-posed and high-dimensional problems. Machine Learning approaches allow solving
such highly nonlinear problems, offering an alternative way to deal with complex and dynamic systems
with good flexibility. In this study, we present a machine learning approach for retrieving temperatures
and species concentrations from spectral infrared emission measurements in combustion systems. The
training spectra for the machine learning model were synthesized through calculations from HITEMP
2010 for gas mixtures of CO2, H2O, and CO. The method was tested for different line-of-sight temper-
ature and concentration distributions, different gas path lengths and different spectral intervals. Experi-
mental validation was carried out by measuring spectral emission from a Hencken flat flame burner with a
Fourier-transform infrared spectrometer with different spectral resolutions. The temperature fields above
the burner for combustion with equivalence ratios of φ =1, φ = 0.8, and φ = 1.4 were retrieved and were
in excellent agreement with temperatures deduced from Rayleigh scattering thermometry.
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Nomenclature

b bias for the artificial neural network
F cost function
Iη spectral intensity, W·m−2(sr·cm−1)−1

L length of gas column, cm
s length along path, cm
S activation function
T temperature, K
w weight for the artificial neural network
xi concentration by volume fraction of species i, –
x input for artificial neural network
Y measured intensity data, W·m−2(sr·cm−1)−1

y output for artificial neural network

Greek Symbols
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β base function for generation of scalar profiles
η wavenumber, cm−1

κη absorption coefficient, cm−1

φ equivalence ratio, –

Abbreviations

2-D two-dimensional
3-D three-dimensional
FTIR Fourier transform infrared
HAB height above burner
ILS instrument line shape
LBL line-by-line
LIF laser-induced fluorescence
MLP multi-layer perceptron
NPL national physical laboratory
ReLU rectified linear unit
RRMSE relative root mean square error

1. Introduction

Temperature and concentration profiles of gas-phase molecules in a flame are important characteris-
tics to understand flame structure and combustion chemistry. Advanced optical diagnostics and multi-
scale simulation tools will play a central role in the development of next-generation clean and efficient
combustion systems. High-fidelity experimental diagnostics will be required to understand combustion
phenomena, validate chemical kinetic models, and verify advanced numerical simulations. Combus-
tion diagnostics have reached high levels of refinement, but it remains difficult to make quantitatively
accurate nonintrusive measurements of temperature and species concentrations in realistic combustion
environments. It is ideal to perform these measurements in-situ with high temporal and spatial reso-
lution as well as high accuracy and precision. In addition, any disturbances during the measurement
should be avoided, since using intrusive techniques, such as thermocouples for temperature and gas chro-
matographs for concentrations, will invariably alter the flow and heat transfer fields. During the past
few decades, many optical-based combustion diagnostic techniques have been developed and become
the preferred methods for combustion diagnostics. For example, two-color pyrometers have been em-
ployed to measure temperature [1, 2], Rayleigh and Raman scattering are used as powerful combustion
diagnostic tools for laboratory flames [3, 4], laser-induced fluorescence (LIF) was used to determine con-
centration and/or temperature of certain gaseous species [5, 6, 7], Laser absorption spectrometry (LAS)
was employed to determine gases and soot volume fractions [8, 9], etc. Among the numerous combus-
tion diagnostic tools, infrared emission and transmission spectroscopy techniques are especially attractive
due to: (1) strong rotational and vibrational transitions of combustion species in the infrared region, (2)
separable and specific transitional bands for different species and (3) simplicity of emission and trans-
mission measurements [10, 11]. Spectra from a flame or combustion chamber may be recorded with
line-of-sight emission or transmission spectroscopy, and temperature and species concentrations can be
retrieved along the line-of-sight. With proper tomography techniques, the entire combustion fields might
be reconstructed [12, 13].

However, inferring temperature and species concentrations in combustion fields from infrared emis-
sion and transmission spectroscopic measurements are challenging tasks, requiring solutions to non-
linear, ill-posed, and possibly high-dimensional inverse problems. Nonlinear regressions were usually
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performed to address the inverse radiation problems using gradient-based [14] optimization methods.
Griffith et al. [15, 16] were the first to recognize that measurements of the transmissivity or emissivity of
rotational spectral lines of a gas can reveal its temperature. In order to extract temperature, a nonlinear
least-square method was used to fit the integrated transmissivity minima. Best et al. [17, 18] combined
tomography and Fourier transform infrared (FTIR) spectrometer transmission and emission spectra to
extract temperature, concentration and soot volume fraction fields. By measuring spectral intensity of
the CO2 4.3 µm band, temperature profiles were retrieved in a number of ways [19, 20]. At their time
these results were not accurate enough due to lack of an accurate radiation prediction model and robust
inverse algorithms. Song et al. [21, 22] developed a spectral remote sensing technique to reconstruct
CO2 temperature profiles based on radiative intensity measurements. An accurate narrow band radiation
model was employed and several Newton-type regression methods were tested. Due to the nonlinearity
and ill-posedness of the problem, regularization of the inverse problems was applied to enforce some de-
gree of smoothness to the solution. It is always difficult to select an appropriate regularization parameter
and empirical values for the regularization parameter were employed. Ren and Modest [23] applied the
Levenberg–Marquardt optimization method with Tikhonov regularization to reconstruct CO2 tempera-
ture profiles and average concentrations from synthetic line-of-sight spectral intensity data. Two types of
temperature profiles were tested for different gas path lengths and different CO2 spectral bands. A new
regularization selection method based on the combination of the L-curve criterion and the discrepancy
principle was proposed and shows good generality for different temperature profile inversions. However,
the accuracy of retrieved temperatures are highly dependent on initial guesses and “measurement” noise
level.

The optical diagnostics described so far all deal with a single line-of-sight measurement. Researchers
attempted to relax this restriction and focused on axisymmetric flames [24, 25], in which optical data
were collected at uniformly-spaced, parallel lines-of-sight. These data are related to an unknown radial
distribution. The most common approach used to deconvolve axisymmetric flames in the combustion
literature is the Abel three-point inversion [26], which works by smoothing data in the axial direction
but does not treat the underlying ill-posedness of Abel’s equation directly, thereby limiting the accuracy
and stability of the solution. Liu et al. [27] reported 2-D measurements of temperature and CO2 concen-
tration profiles of a laminar co-flow sooting flame obtained by line-of-sight high-resolution absorption
spectroscopy with Tikhonov regularization and assuming the co-flow flame to be axisymmetric. Multi-
line measurements were performed to reconstruct 2-D temperature and species concentration fields. De-
convolution of line-of-sight data from nonaxisymmetric flames requires more elaborate tomography al-
gorithms, which are either based on Fourier transforms, or algebraic reconstruction [28]. Most recently,
hyperspectral imaging devices [29] have been applied to combustion diagnostics [30, 31]. Hyperspectral
imaging is a promising technology, which contains a two-dimensional array of pixels and each pixel of
the spectrometer measures radiation at a large number of continuous wavenumbers along multiple lines-
of-sight, providing spatially and spectrally resolved radiation images. However, due to lack of advanced
3-D tomographic algorithms, only 2-D combustion fields were reconstructed with path-averaged scalar
fields in these studies [12, 30]. A widely used method for 3-D measurements (reconstructions) is com-
puted tomography (CT) [28]. By simultaneously measuring the target at different angles and directions
through low-dimensional sensors, high-dimensional flow fields can be reconstructed through inversion
algorithms [32]. Such CT method requires multiple detectors installed at different angles and positions.
The newly developed light field camera technology [33] is another way to achieve 3-D flame measure-
ments. Light field cameras add a series of micro-lenses in front of the sensor, which are able to capture
both intensity and direction of emitted light. Compared to CT, the light field camera approach reduces
the complexity of the measurement system and eliminates the use of multiple detectors. However, the
application of a light field camera only reduces the measurement complexity, reconstruction algorithms
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are still required to obtain 3-D temperature and concentration fields.
One promising new solution technique is the machine learning method. Machine learning is a field of

computer science that gives computer systems the ability to find relations between inputs and outputs even
if they are impossible to be represented by explicit algorithms. Machine learning algorithms enable com-
puters to learn from experiences without actually modeling the physical and chemical laws that govern
the system [34]. The major focus of machine learning is to extract information from data automatically by
computational and statistical methods, which may provide global solution models for nonlinear inverse
problems when relations between dependent and independent variables are not clear [35]. Due to its
ability for predicting and forecasting, machine learning has found many applications in energy systems,
such as in thermal load prediction [36], energy consumption estimation for buildings [37], solar radiation
forecasting [38], electricity demand forecasting [39], and optimisation of coal-fired boiler combustion
systems [40], etc. The earliest attempts to apply machine learning techniques to retrieve temperatures
and species concentrations from thermal radiation were in the field of meteorology (atmospheric radia-
tion) [41, 42, 43]. Hadji-Lazaro et al. [41] applied the artificial neural network techniques (one group of
machine learning algorithms) to retrieve atmospheric CO total columns from high-resolution nadir radi-
ances from the CO 4.7 µm band. Aires et al. [42] developed a fast atmospheric and surface temperature
retrieval algorithm for the high-resolution Infrared Atmospheric Sounding Interferometer based on arti-
ficial neural network techniques. In these studies, machine learning was found to be an accurate and effi-
cient method to handle a huge volume of data as provided by continuous observation of the atmosphere.
For combustion diagnostics, Garcı́a-Cuesta et al. [44, 45, 46] have tried to retrieve hot gas temperature
profiles from infrared spectra of CO2 and H2O with artificial neural network approaches. Simulations
were conducted using very coarse spatial resolution (5 homogeneous gas cells) with smooth temperature
profiles and small temperature differences (50 K) [45]. Results have shown that the machine learn-
ing method offers some advantages over the conventional gradient-based optimization methods, such as
higher speed, nonsensitivity to initial conditions, and adaptability to other conditions. Drawbacks of their
studies are that “experimental” noise in the spectra has not been simulated and the concentration profiles
for CO2 and H2O were kept unchanged for the entire training datasets. The spectral data dimensionality
was reduced from the line-by-line (LBL) spectra based on the principal component analysis [47], and
fewer spectral data were picked for the study [45]. In a later study [46], a subset of 17 wavenumbers
was selected from the 2110–2410 cm−1 spectral interval to retrieve temperatures from the exhaust gas
plume of a micro-jet engine. Temperature profiles retrieved with the machine learning approach were
compared with thermocouple measurements, with differences as high as 20%. Cieszczyk [48] retrieved
temperature profiles from simulated high-resolution CO2 spectrum between 2350 and 2400 cm−1. The
developed method was based on the dependencies of temperatures on intensity ratios of several spectral
lines. The maximum considered temperature was only 800 K and “experimental” noise in the spectrum
was not considered as well. The method may be problematic when applied to real combustion measure-
ments, since temperature may be much higher than 800 K and line intensities will be subject to theoretical
uncertainties and experimental noise.

The capability of artificial neural networks to expressively represent complex data and the prevalence
of its usage in a wide range of applications inspired us to readdress its application in solving the inverse
radiation problems. For machine learning using the artificial neural network, a large set of training data
has to be routinely available [49, 50]. These data can be either from experimental measurements or nu-
merical simulations, or both. For combustion diagnostics by infrared spectroscopy, it is difficult to collect
a large volume of training data by experiments. However, a number of gas property databases, such as
HITRAN [51, 52], HITEMP [53] and CDSD [54, 55], are available for accurate spectral predictions,
which can be used to generate the training data for the artificial neural network. These databases contain
LBL information for many gas species. HITEMP 2010 [53] is limited to only 5 species (CO2, H2O, CO,
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NO and OH), but contains data for “hot lines,” which become active at high temperature. The database
was extensively tested against measured medium- to high-resolution FTIR spectra of CO2 [56, 57, 58],
H2O [59, 60], and CO [61] at relevant combustion conditions, and can be used to fulfill this task.

In this work, an inverse radiation model is developed based on the Multi-Layer Perceptron (MLP)
neural network approach [62, 63] to retrieve temperate and species concentrations from infrared emission
measurements for combustion gases. A forward calculation model, which is used to generate the training
spectra from HITEMP 2010 for the artificial neural network models is presented. The artificial neural
network inverse radiation model is then tested with synthetic radiative emission “measurements” (with
artificial experimental noises) for different temperature and species concentration distributions (based
on typical laboratory flames). The tested cases have temperature ranges from 300 K to 3000 K for gas
mixtures of nonhomogeneous CO2,H2O, and CO. Experimental validation was conducted by retrieving
temperature and species concentrations from spectral measurements of thermal radiation with an FTIR-
spectrometer for a laboratory laminar flame. Results show that the artificial neural network inverse radi-
ation model provides a powerful tool for accurate retrieval of gas temperatures and concentrations from
infrared emission measurements. Although the current work deals with spectral measurements from a
single line-of-sight, the proposed neural network inverse radiation model can be easily adapted to 3-D
flame diagnostics with advanced spectral measurement devices, such as infrared hyperspectral Fourier
transform infrared spectrometer.

2. Forward radiation calculation

In the present study, a forward radiation calculation model simulates how spectral intensity along
a line-of-sight from combustion products is measured, with known pressure, temperature, species con-
centrations and gas path length. In Fig.1 a non-isothermal combustion gaseous column is shown. It is
assumed the system is in local thermal equilibrium and scattering effects in the medium can be neglected.
The spectral intensity along a line-of-sight within the medium, as seen by a detector at s = L is given
by [64]

0η ηII
Detector

Figure 1: Schematic of radiative emission spectral measurement of a combustion system. External irradiation I0η entering the
gas column 0 ≤ s ≤ L at s = 0 is interacting with combustion gases resulting the spectral intensity along the line-of-sight, as
seen by a detector at s = L, I(η).

I(η) = I0ηe
−

∫ L

0 κηds +

∫ L

0
κηIbηe

−
∫ L

s
κηds′ds (1)

Here κη is the spectral absorption coefficient evaluated at spectral location η. Assuming constant pressure
along the gas column, the values of κη depend on gas temperature and species concentrations. Ibη is
the local blackbody intensity of the medium and I0η is external irradiation entering the gas column 0 ≤
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s ≤ L at s = 0. In this study, we assume there is no external irradiation and only emission from
the gaseous medium is taken into account. In the calculation, the entire gas column is divided into
n homogeneous sub-columns, where temperature and species concentrations are assumed constant. To
accurately determine the intensity given by Eq. (1) numerically, radiative intensities leaving a gas column
are evaluated recursively as,

Ii(η) = Ii−1(η)e−∆siκηi + Ibi

(

1 − e−∆siκηi
)

(2)

where Ii(η) is the spectral intensity leaving the i-th sub-column and κηi is the absorption coefficient for
the temperature and gas concentrations of the i-th sub-column. Therefore, the emission spectrum seen by
a detector is the emission that leaves the last sub-column, or,

I(η) = In(η) (3)

Combustion products usually are mixtures of several gas species. In this study, a gas mixture containing
three major combustion products, i.e., CO2, H2O, and CO are considered. Absorption coefficients for
the three species are calculated from the HITEMP 2010 LBL spectroscopic database. Spectral intensities
calculated from Eq. (1) contain information for each individual transition line. However, LBL data
obtained from HITEMP 2010 are based on quantum mechanical calculations together with experimental
measurements, and are subjected to some degree of theoretical uncertainty (line strengths, shapes, and
widths), while intensity measurements are very susceptible to experimental noise, while also requiring
larger computation/collection times. To mimic the different finite spectral resolutions of a spectrometer,
the LBL spectral intensities from Eq. (3) are convolved with an ideal instrument line shape (ILS) function.
Here triangular apodization is used for creating the ideal ILS Γ(η),

Γ(η) =
0.5
Res

sinc2

(

0.5π
Res
η

)

(4)

where Res is the nominal resolution of the ILS function. After intensity spectra are convolved with the
ILF Γ(η), they become

Ic(η) =
∫ ∞

0
I(η′)Γ(η − η′)dη′ (5)

If one measures intensity with a certain spectral resolution, obtaining m discrete values of wavenumbers,
a system of nonlinear equation results,

I = f
(

T, xCO2 , xH2O, , xCO
)

(6)

Here f is a nonlinear function of the temperatures and concentrations of all sub-columns. Equation (6)
shows the relationship between calculated medium- to lower-resolution spectral intensities and tempera-
ture and concentration distributions along a line-of-sight, where

I = [Ik] ; k = 1, ...,m

T = [Ti] , xCO2 =
[

x1,i
]

, xH2O =
[

x2,i
]

, xCO =
[

x3,i
]

; i = 1, ..., n (7)

and m is the spectral dimension of spectral intensities and n is the spatial dimension for temperatures and
species concentrations along the gas mixture column.

As a forward calculation example, Fig. 2 compares the LBL intensity spectrum with intensity spectra
of different spectral resolutions. Blackbody emission at the same condition is also presented as a refer-
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Figure 2: Calculated LBL radiative intensities for a 10-cm long homogeneous gas mixture column with T = 1500 K, xCO2 =

xH2O = xCO = 0.1 compared against blackbody emission and convoluted spectra with nominal resolution of 1 cm−1, 4 cm−1

and 32 cm−1, respectively.

ence. The LBL spectrum exhibits the precise line shape of each transition line, but requires an enormous
amount of data points to resolve the fine structures. After convolving to medium- to lower-resolution
spectra, smoother averaged shapes of emission spectra were obtained with fewer data points, as shown in
Fig. 2 for convoluted spectra with nominal resolutions of 1 cm−1, 4 cm−1, and 32 cm−1.

The spectra of the three combustion gases contain mostly “spectral windows,” since only a few rovi-
brational bands exist. In order to retrieve temperatures and species concentrations from spectral mea-
surements efficiently and accurately, it is very important to choose appropriate spectral bands to conduct
the calculations. In the spectrum shown in Fig. 2, two spectral intervals, namely 1800–2500 cm−1 and
3000–4200 cm−1, show relatively strong emission over this entire spectral range and these two spectral
intervals are within the measurement capabilities of most infrared instruments. The spectral interval from
1800–2500 cm−1 contains the CO2 4.3 µm band, the CO 4.7 µm band and part of the H2O 6.3 µm band.
On the other hand, the spectral interval from 3000–4200 cm−1 contains the CO2 2.7 µm band, the H2O
2.7 µm band and part of the CO 2.35 µm band. All three species have overlapping spectral lines in these
two spectral intervals. Therefore, choosing these parts of the spectrum may allow retrieving all scalars
simultaneously. In the present study, the two spectral intervals were selected to retrieve temperature and
species concentrations.

Figure 3 shows the case of calculated radiative intensities for the 1800–2500 cm−1 and 3000–4200
cm−1 spectral intervals. Calculations were conducted for a 10-cm long gas column with nonuniform
temperature (as shown in the figure) and uniform gas concentrations of 10% CO2+10% H2O+10% CO
with N2. The spectra have a medium spectral resolution of 8 cm−1. The 10-cm gas column was divided
into different numbers of homogeneous sub-columns. As shown in the figure, 21 gas columns are good
enough to achieve spatial grid independence for both spectral intervals and is used in this study.

3. Machine learning for inverse radiation calculation

Optical diagnostics based on radiometric measurements reconstruct the spatial distribution of tem-
perature, species concentrations and other parameters inside absorbing and emitting combustion gases.
Such retrieval techniques based on radiative measurements are known as inverse radiative heat transfer
calculations [64]. Retrieval of temperatures and species concentrations from Eq. (6) requires solving
nonlinear, ill-posed problems. Conventionally, the solutions to the inverse problems are often obtained
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Figure 3: Calculated medium resolution (8 cm−1) radiative intensity for the 1800–2500 cm−1 and 3000–4200 cm−1 spectral
intervals for a 10-cm long gas mixture column with different numbers of sub-columns.

through optimization, which minimizes a cost function by properly “guessing” temperatures and species
concentrations until the best matches between measured and predicted spectra are achieved. Assuming
Yi to be the measured spectral intensities, and Ii to be the predicted ones from the forward calculations,
the cost function that needs to be minimized is

F (Z) =
m

∑

k=1

(Ik − Yk)
2 (8)

Here we put temperatures and species concentrations for all gas sub-columns into a parameter vector Z,
i.e.,

Z = [T, xCO2 , xH2O, xCO] (9)

Conventional gradient-based [14] optimization methods minimize Eq. (8) gradually by iterations. The
ill-posed nature of the problem may cause slow convergence and the solution may also depend on the
initial guess for the parameter vector Z. At every iteration, a forward calculation has to be conducted to
provide predicted spectral data sets [Ik]. In addition, with different measured spectral data sets [Yk], the
optimization process has to be started again from the very beginning. This makes conventional gradient-
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Figure 4: Diagram of data processing within one neuron [70]. By supposing n inputs that are applied to the network
{xi|x1, ..., xn}, the output y of one neuron is a weighted sum of its inputs transformed by an activation function, where
{wi|w1, ...,wn} are weights and b is the bias.

based methods very inefficient when applied to high-dimensional tomographic problems.
On the other hand, the machine learning method may provide global solution models for nonlinear

inverse problems when explicit inverse relations between spectral radiation of gases and their tempera-
ture and concentration are not available. Inspired by the biological neural network information processes,
artificial neural networks are a group of algorithms used for machine learning that model data process-
ing by artificial neurons [65]. By training on a dataset and given a set of inputs and outputs, a model
is generated which can be used to predict new examples from the same type of input features. The
Multi-Layer Perceptron neural network is the most popular type of artificial neural networks in machine
learning [66, 67]. The MLP consists of an input layer, one or more hidden layers, and an output layer.
Each layer comprises several nodes called neurons. Neurons of one layer are directly connected to the
next layer by weights. By supposing n inputs that are applied to the network {xi|x1, ..., xn}, the output y of
one neuron is a weighted sum of its inputs transformed by an activation function S . The process can be
formulated as [68],

y = S















n
∑

i=1

wixi + b















(10)

where {wi|w1, ...,wn} are weights and b is the bias. This procedure can be understood by the schematic
presentation of the artificial neural network in Fig. 4. The nonlinear activation function is often chosen to
be the sigmoid function or hyperbolic tangent function (“S ”-shaped functions). Most recent deep neural
networks use rectified linear units (ReLU) [69], which output 0 if the input is less than 0, and raw output
otherwise, i.e., S (x) = max(0, x). The present study adopts the ReLU activation function to develop deep
neural networks for temperatures and species concentrations retrieval.

Figure 5 shows a representative MLP neural network architecture for temperatures and species con-
centration retrieval from infrared spectral emission measurements. The leftmost layer, known as the input
layer, consists of a set of neurons representing the input features (infrared spectral intensities). Each neu-
ron in the hidden layers transforms the values from the previous layer with a weighted linear summation,
followed by a nonlinear activation function. The output layer receives the values from the last hidden
layer and transforms them into output values (temperatures/concentrations). The numbers of neurons in
the input and output layers are determined by the input and output dimensions, respectively. There is no
specific approach to determine the number of hidden layers and their neurons for different problems, the
choice is usually made by trial and error [34].
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Figure 5: Schematic of a representative MLP neural network architecture for temperatures and species concentration retrieval
from infrared spectral emission measurements of combustion gases

An important part of modeling with neural networks is the so-called training of the network (learning).
Training neural networks is done by adjusting appropriate weights between neurons to minimize the
error of a cost function so that the output values generated by the network are compared with the actual
corresponding values. Learning is an iterative process and uses a relatively large number of samples,
which contain information spread evenly over the entire range of the system, that allows obtaining a
sufficiently low error of the cost function. After training, the model can be directly used to predict new
outputs by feeding new inputs. In the present study, the model implementation is based on the scikit-learn
Python library [71] and MLP training using a stochastic gradient-based optimizer proposed by Kingma
and Ba [72]. Training inputs of emission intensities were synthesized through calculations from HITEMP
2010 using the forward calculation model, for the gas mixture of CO2, H2O and CO with an inert gas N2

for a large variety of temperature and species concentration distributions.

4. Results and discussion

In this section, first different temperature and species concentration distributions were retrieved from
synthetic spectral emissive intensities for different gas path lengths and different spectral intervals. This
is followed by retrieving temperature and gas concentrations from experimentally measured emission
intensity spectra for a Hencken flat flame burner for combustion with different equivalence ratios.

4.1. Temperature and concentration distributions retrieval from synthetic emission measurements

In this section, three types of symmetric profiles for temperatures and species concentrations were
tested. Profile Type 1 is relatively flat in the middle with large gradients on both edges; while Type 2 has
one peak and Type 3 has two peaks and one valley. 10000 synthetic intensity spectra for each type of
the three profiles for the 1800–2500 cm−1 and 3000–4200 cm−1 spectral intervals were generated from
the HITEMP 2010 database with a medium spectral resolution of 8 cm−1 from Eq. (5). Gaussian random
noises of 3% were added to all intensity spectra to simulate the random error inevitable in experiments.
These 10000 data sets for each type of the profile were separated into two categories: 9900 were used
to train the MLP neural networks, and the remaining 100 were reserved to test its ability for predicting
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temperatures and concentrations from never-seen-before spectral “measurements” for the trained artificial
neural networks. The temperature and concentration profiles used to create the spectra were calculated
from Eqs. (11) to (14) with base functions β(s) as shown in Fig. 6.

T (s) = ∆T × β(s) + T0; T0 = (2700 × Rn1 + 300) K, ∆T = (3000 − T0) × Rn2K (11)

xCO2(s) = ∆x1 × β(s) + x1,0; x1,0 = 0.05, ∆x1 = 0.10 × Rn3 (12)

xH2O(s) = ∆x2 × β(s) + x2,0; x2,0 = 0.05, ∆x2 = 0.10 × Rn4 (13)

xCO(s) = ∆x3 × β(s) + x3,0; x3,0 = 0.01, ∆x3 = 0.05 × Rn5 (14)

In Eqs. (11) to (14), Rn1-Rn5 are random numbers uniformly distributed between 0 and 1; T0, x1,0, x2,0,
x3,0 are the lowest values for temperature and concentrations; ∆T , ∆x1, ∆x2, ∆x3 are the differences
between maximum and minimum values in the temperature and concentration profiles. Equations (11)
to (14) allow randomly generating a set of large variety of temperatures distributions between 300 K
and 3000 K, CO2 concentration distributions between 5% and 15%, H2O concentration distributions
between 5% and 15%, and CO concentration distributions between 1% and 6%. In order to show how
the models perform for different optical thickness from small scales to large scales, emission spectra for
three different gas columns of 10 cm, 1 m, and 10 m were generated. Correlations between temperatures
and gas concentrations were neglected when generating the clouds of spectral data, which may not be
physically true. However, in the present study temperature and species concentrations were retrieved
simultaneously, and neglecting these correlations only makes the inverse problem more challenging.

Once synthetic intensity spectra were generated, these spectral data and the corresponding tempera-
tures and concentrations were used as inputs and outputs to train the MLP neural networks. The optimal
parameters, such as the number of hidden layers, the number of neurons in the hidden layers and regular-
ization parameters, differ from one problem to another for the MLP neural networks and were selected
by trial and error [34]. The MLP neural networks were trained for each type of the distribution profiles,
different spectral intervals, and different gas path lengths. Once a model is “trained,” and we are confident
in its ability to be generalized to unseen inputs, it can be used to predict temperatures and concentrations

s/L
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Figure 6: β functions used to generate different types of temperature and species concentration profiles
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Table 1: The average relative root mean square errors (RRMSE) for the 100 testing samples

Gas path length
Predicted I (1800–2500 cm−1) Predicted II (3000–4200 cm−1)
T xCO2 xH2O xCO T xCO2 xH2O xCO

10 cm
Type 1 4.11 % 2.72 % 2.87 % 4.60 % 8.14 % 5.00 % 4.33 % 16.0 %
Type 2 2.44 % 3.19 % 1.82 % 4.18 % 3.63 % 3.43 % 3.64 % 21.0 %
Type 3 2.97 % 3.77 % 3.42 % 6.48 % 5.55 % 5.44 % 4.92 % 21.6 %

100 cm
Type 1 1.43 % 2.90 % 2.04 % 3.51 % 4.59 % 4.24 % 3.80 % 11.4 %
Type 2 1.55 % 4.28 % 2.07 % 4.63 % 3.70 % 4.36 % 3.55 % 23.7 %
Type 3 1.73 % 3.50 % 2.33 % 4.17 % 4.64 % 4.72 % 3.83 % 12.2 %

1000 cm
Type 1 2.13 % 4.98 % 2.48 % 11.6 % 2.14 % 9.51 % 3.55 % 18.7 %
Type 2 1.28 % 5.89 % 3.00 % 11.2 % 2.81 % 6.38 % 4.04 % 12.5 %
Type 3 2.10 % 4.78 % 2.70 % 10.3 % 2.28 % 6.81 % 3.55 % 11.7 %

from new radiative intensity spectral “measurements.” The performance of the trained models is tested
with the reserved 100 synthetic emission spectra for each case. These spectra were fed into the trained
models as inputs to predict temperature and concentrations (predicted values), which were compared
with known temperature and species concentration distributions used to generate the spectra (observed
values). The relative root mean square error (RRMSE) defined as,

RRMSE = 100 ×

√

1
N

∑N
1 (Pi − Oi)2

1
N

∑N
1 (Oi)

(15)

was used to qualitatively evaluate the performance of the trained models; where Pi and Oi are the pre-
dicted and observed values, respectively. In the present study, temperatures and species concentrations
were retrieved simultaneously. However, temperatures and different species concentrations may show
different responses to the spectrum, therefore, the relative root mean square errors were evaluated sepa-
rately for temperature and different species concentrations.

Table 1 shows the average RRMSE of the retrieved temperatures and concentrations from the 100
testing samples for different cases. As indicated before, tests were conducted for three gas columns
with different gas path lengths and two spectral intervals. Predicted I and II are results from the 1800–
2500 cm−1 and 3000–4200 cm−1 spectral intervals, respectively. As shown in the table, using the 1800–
2500 cm−1 spectral interval can retrieve temperature profiles relatively accurately for all gas columns
with all types of temperature and species concentration distributions. The 3000–4200 cm−1 spectral
interval performs better when the gas path length gets increased from 10 cm to 100 cm. Predicted CO2

concentrations accuracies decrease when the gas path length gets increased from 100 cm to 1000 cm for
both spectral intervals. The conclusions were consistent with our previous work on retrieving temperature
profiles using the Levenberg-Marquardt optimization method [23]. For an ideal spectral interval used
for inverse calculations, within the spectral interval every portion of the gas column should make a
spectrally distinguishable contribution to the detected intensities. A shorter gas path length and smaller
gas absorption coefficient result in optically thin paths. In such cases, the detected intensities are almost
linearly dependent on local emission, making it difficult to distinguish one location from another. When
the optical thickness increases, absorption within the gas column becomes stronger and part of the emitted
intensity gets absorbed along the path, which makes the detected intensity at different locations in the gas
column spectrally different. In the 1800–2500 cm−1 spectral interval, all three species have strongly
overlapping bands. On the other hand, relatively weak bands for these three species overlap in the 3000–
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4200 cm−1 spectral interval. This explains why the 1800–2500 cm−1 spectral interval performs well for
gas path lengths of 10 cm and 100 cm, and the 3000–4200 cm−1 spectral interval performs better when the
gas path length increased from 10 cm to 100 cm. For a large gas path of 1000 cm, in the presence of high
concentrations of CO2, the two strong CO2 radiation bands (4.3 µm and 2.7 µm) may become saturated
and approach blackbody emission, which masks some of the spectral information, making retrieval of
CO2 concentrations less accurate. The CO 2.35 µm band within the 3000–4200 cm−1 spectral interval is
a relatively weak band, With CO2 and H2O bands dominating over CO. Therefore, as shown in Table 1,
large errors occur when using this part of the spectrum to retrieve CO concentrations. But relatively
accurate CO concentrations can be retrieved from the 1800–2500 cm−1 spectral interval, which contains
the stronger CO 4.7 µm band. It should be noted that after training of the MLP neural networks, “global”
inverse radiation models were obtained, which are able to predict scalar fields with similar features and
can handle large volumes of new input data very efficiently. For the 100 test samples for each case,
it only takes less than 1 second CPU time to retrieve all the temperatures and species concentrations
simultaneously, i.e., approximately 10 ms to retrieve temperatures and species concentrations from a
single line-of-sight.

Figures 7 through 9 show examples of the retrieved temperature and species concentration for the
three types of distributions from 10-cm, 100-cm and 1000-cm gas columns, respectively. The RRMSE

for the retrieved temperatures and concentrations for the cases are also indicated in each of the frames.
Retrieved temperature and concentrations for all types of profiles for all species match well with the exact
profiles when using the 1800–2500 cm−1 spectral interval, considering the fact that there is 3% of random
noise in the spectra. The results from the 3000–4200 cm−1 spectral interval are less accurate, especially
for the retrieved CO concentrations. Overall, temperature profiles were retrieved relatively accurately
for all gas path lengths from both spectral intervals for all three types of temperature distributions. The
accuracy of the retrieved CO2 and H2O concentrations depend on different thermodynamic conditions
and spectral intervals, but generally have less than 10% of RRMSEs for all test cases. When using
the 1800–2500 cm−1 spectral interval, the retrieved CO concentrations are only relatively accurate for
relatively small gas path lengths. These tests by using artificial synthetic data show that the machine
learning approach of MLP neural networks is capable of retrieving temperatures, CO2, H2O, and CO
concentrations simultaneously from infrared emission measurement with acceptable accuracies.

4.2. Temperature and concentration distribution retrievals for the NPL standard flame

To experimentally validate the models, measurements were conducted to obtain the spectral radiative
intensities from the NPL standard flame [73, 74]. The measured spectra were used to retrieve tempera-
tures and species concentrations from the flame. The flame system is based on the Hencken flat flame
burner using dry laboratory air and industrial grade (95% nominal purity) propane under open atmo-
spheric conditions. The NPL standard flame is well-characterized and provides a reproducible region of
high-temperature gases of known temperatures and compositions [75, 73], which is ideal for validating
optical thermometry techniques.

4.2.1. Experimental measurements

Infrared emission measurements were performed with an FTIR-spectrometer for the NPL standard
flame. The experimental setup is shown in Fig. 10. The flame was produced by a 40 mm × 40 mm
square burner. All optical parts (from A1 to A4 and the FTIR itself) have been purged with N2 (99.999%)
during the measurements. The purge flow was adjusted to avoid cooling effects on the flame edge.
A silver reflection screen along the flame height was used to reduce the effects of flame radiation on
the FTIR’s thermal stability. The FTIR-spectrometer (Agilent model 660) is equipped with a liquid
nitrogen cooled narrow band high-sensitivity linearized mercury-cadmium-telluride (MCT) detector and
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Figure 7: Predicted temperatures and species concentration profiles for three types of distributions from the 1800–2500 cm−1

spectral interval (predicted I) and 3000–4200 cm−1 spectral interval (predicted II) with a resolution of 8 cm−1 for a gas path
length of 10 cm.
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Figure 8: Predicted temperature and species concentration profiles for three types of distributions from the 1800–2500 cm−1

spectral interval (predicted I) and 3000–4200 cm−1 spectral interval (predicted II) with a resolution of 8 cm−1 for a gas path
length of 100 cm.
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Figure 9: Predicted temperature and species concentration profiles for three types of distributions from the 1800–2500 cm−1

spectral interval (predicted I) and 3000–4200 cm−1 spectral interval (predicted II) with a resolution of 8 cm−1 for a gas path
length of 1000 cm.
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Figure 10: Experimental setup for radiative emission intensity measurements for the NPL standard flame; the schematic image
is not drawn to scale.

KBr beam-splitter, which is capable of conducting measurements in the spectral range of 650–8000
cm−1 with a highest nominal spectral resolution of 0.09 cm−1. The spectrometer was upgraded with an
additional dual A/D card making it possible to perform fast acquisition measurements at medium- to
lower-resolutions, which allows removing flickering effects of the flame in the measured spectra. Raw
interferograms were obtained during the measurements. Because of the finite range of the spectrometer’s
moving mirror, raw interferograms do not extend to infinity, effectively causing the interferogram to be
multiplied by an apodization function. Therefore, the intensity spectra were calculated by performing the
Fourier transform of the interferograms multiplied by the triangular apodization function. The Fourier
transform of the triangular apodization function is the ILS function of Eq.(4). The spectrometer was
calibrated in units of Wm−2sr−1(cm−1)−1 with a portable blackbody at 796.1 ◦C and was re-calibrated after
each measurement sequence. Background measurements (without blackbody and standard flame) were
also taken, which were subtracted from the corresponding flame/blackbody measurements to eliminate
background emission effects.

Spectral measurements were performed at 4 cm−1 and 8 cm−1 resolutions at 10 mm and 20 mm
heights above the center of the burner (HAB) for combustion with equivalence ratios of φ = 1, φ = 0.8,
and φ = 1.4, respectively. The NPL standard flame is highly stable with good long-term reproducibility.
Figure 11 shows two measured spectra with 8 cm−1 resolution, which were measured at 20 mm HAB
for an equivalence ratio of φ = 1. Differences between these two measurements are also presented. The
two measurements were conducted with a time separation of 70 minutes. Typically, the reproducibility
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Figure 11: Two intensity spectra measured with a time separation of 70 minutes at φ = 1, HAB = 20 mm for the NPL standard
flame for the 1800–2500 cm−1 and 3000–4200 cm−1 spectral intervals shows good reproducibility of the measurements

of the measurements, e.g., at φ = 1, HAB = 20 mm in the 2200-2400 cm−1 and 3200-3700 cm−1 spectral
ranges, are better than 2% and 5%, respectively, for time spans from minutes to days. (In essence in the
experiment, temperatures are very stable, with the variations mostly caused by CO2/H2O concentration
fluctuations). The temperature fields for the NPL standard flame at HAB = 10 mm and 20 mm for
equivalence ratios from φ = 0.8 to φ = 1.4 were previously measured at NPL with Rayleigh scattering
thermometry [76]and reported in [73]. It was reported that the uncertainty in the flame temperature is 0.45
% and the long-term reproducibility of the flame temperature is better than 0.20 %. The NPL standard
flame is a flat flame and with temperature profiles flat in the middle and decay only near the edges of the
burner. The species compositions for the post-flame are fairly uniform and were previously calculated
using the chemical equilibrium calculation program GASEQ [77] for equivalence ratios from φ = 0.8 to φ
= 1.4 at NPL, which were also reported in [73]. Therefore, in the present study, the retrieved temperatures
and species concentrations from the spectral emission measurements with MLP neural networks were
compared against the temperatures and species concentrations reported in [73]. It should be noted that
during the spectral measurements the combustion may not reach chemical equilibrium at all locations, but
we are not aware of any other experimental measurements of species concentrations for the NPL standard
flame. Therefore, the predicted concentrations can only be compared against with these equilibrium
calculations.

4.2.2. Training data generations

In order to make accurate predictions based on neural network methods, a significant number of
data sets are required to train the MLP neural network. As discussed before, these data include two
categories: temperature and species concentrations, and spectral emission intensities. Temperature and
species concentrations should be spread evenly over the entire range of the system and cover all possible
distributions. The spectral intensities used to train the model should have the same dimension and reso-
lution as the measured data. Spectral measurements have been performed at 4 cm−1 and 8 cm−1 spectral
resolutions. Therefore, two sets of spectral training data were generated at the two spectral resolutions.
Each set contains 10000 samples from 10000 temperature distributions. The temperature profiles were
created based on the basic features reported for the NPL standard flame, which are flat in the middle
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Figure 12: Example of temperature profile used for generating training data sets

with large gradients near the edges of the burner, similar to the Type 1 profiles of the previous section.
However, the temperature profiles for the NPL standard flame may not be strictly symmetric. Therefore,
Eq. (16) is used to generate non-symmetric temperature distributions, i.e.,

T (s) =
{

∆T1 × β(s) + T0,1 s ≤ L/2
∆T2 × β(s) + T0,2 s > L/2

(16)

where L is the width of the burner and is 40 mm, β(s) is the Type 1 base function from Fig. 6. The lowest
temperatures at the burner edges T0,1 and T0,2 and the temperature differences between the center and two
edges ∆T1, and ∆T2 are defined as,

T0,1 = (2000 × Rn1 + 500) K (17)

∆T1 =
(

3000 K − T0,1
)

× Rn2 (18)

T0,2 = (T0,1 + ∆T1 − 500 K) × Rn3 (19)

∆T2 = ∆T1 + T0,1 − T0,2 (20)

Random numbers of Rn1-Rn3 are uniformly distributed between 0 and 1, which allows generating temper-
ature ranges from 500 K to 3000 K, and are sufficient to cover the flame temperature range. One example
of a temperature profile created with Eq. (16) is shown in Fig. 12, with illustrations of T0,1, T0,2, ∆T1, and
∆T2, respectively. Due to the uniformity of the species compositions for the flame, uniform concentra-
tions are randomly generated between 0 to 20%, and were used as concentrations for CO2, H2O, and CO.
Which were used together with the temperature distribution of Eq. (16) to generate the training spectral
intensities. Again, Gaussian random noises of 3% were added to all generated intensity spectra. After
training of the neural networks, the models were used to predict temperatures and species concentrations
from the measured spectral intensities.
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Figure 13: Predicted temperatures and species concentrations of the NPL standard flame at HAB = 10 mm for φ =1 , φ = 0.8,
and φ = 1.4 from the 1800–2500 cm−1 spectral interval (predicted I) and 3000–4200 cm−1 spectral interval (predicted II) with
a resolution of 4 cm−1

4.2.3. Temperature and concentration retrieval results

Figure 13 shows temperature profiles and concentrations retrieved at HAB = 10 mm for φ = 1, φ
= 0.8, and φ = 1.4, respectively. The spectra used were measured with a resolution of 4 cm−1. Again,
“predicted I” are retrieved from the 1800–2500 cm−1 spectral interval and “predicted II” are retrieved
from the 3000–4200 cm−1 spectral interval. The measured temperature profiles with calculated chemical
equilibrium species concentrations are presented for comparison. The measured temperature profiles
are shown with standard deviations of the measurements. However, these standard deviations do not
represent the uncertainty of the temperature measurements but can be used as an indicator of the flame
stability [73]. As shown in the figure, the NPL standard flame is “flat” and stable around ± 10 mm
from the center of the burner; beyond this, temperatures start to decay with some instability near the
edges. The retrieved temperature profiles follow the trend very well and are able to capture the slightly
non-symmetric features. Temperatures were retrieved very accurately for the most part along the line-of-
sight. If the 1800–2500 cm−1 spectral interval was used for the retrieval, the predicted mean temperatures
within 10 mm from the center of the burner have differences of -1.37%, 0.19%, and 2.08% from the
measured temperatures for φ = 1, φ = 0.8, and φ = 1.4, respectively. And the differences are -2.45%,
0.63%, and 1.43%, respectively for φ = 1, φ = 0.8, and φ = 1.4 if the 3000–4200 cm−1 spectral interval is
used. Concentrations of CO2 and H2O were retrieved qualitatively accurate comparing to the calculated
chemical equilibrium values. Since combustion may not reach chemical equilibrium at HAB = 10 mm,
the retrieved CO2 and H2O for all the cases are close or higher than the chemical equilibrium values.
CO concentrations were retrieved less accurately, especially for the lean and stoichiometric combustion
(φ ≤ 1).
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Figure 14: Predicted temperatures and species concentrations of the NPL standard flame at HAB = 20 mm for φ = 1, φ = 0.8,
and φ = 1.4 from the 1800–2500 cm−1 spectral interval (predicted I) and 3000–4200 cm−1 spectral interval (predicted II) with
a resolution of 8 cm−1

The spectral emission spectra for the standard NPL flame were also measured at HAB = 20 mm
for φ = 1, φ = 0.8, and φ = 1.4 with a relatively coarser resolution of 8 cm−1. The retrieved temperature
profiles and concentrations with these spectra are shown in Fig. 14. Temperature retrieved from the 1800–
2500 cm−1 spectral interval (predicted I) are in good agreement with the measured temperatures for all
equivalence ratios: predicted mean temperatures within 10 mm from the center of the burner differ by
0.23%, -0.21%, and 1.88% from the measured temperatures for φ = 1, φ = 0.8, and φ = 1.4, respectively.
The retrieved temperatures show relatively large differences from the measured temperatures near the
two edges of the burner. However, it was reported in [73] that temperature measurements beyond 15
mm from the center may be in error due to air mixing and the inherent assumptions used in the Rayleigh
thermometry model. The predicted temperatures using the 3000–4200 cm−1 spectral interval (predicted
II) are also shown in Fig. 14. The retrieved mean temperatures within 10 mm from the center of the
burner only show 1.51% and -0.10% differences compared to the measured temperatures for φ = 1 and φ
= 0.8, respectively. However, temperatures were retrieved less accurately if the 3000–4200 cm−1 spectral
interval was used: temperatures for φ = 1.4 were over-predicted at the center about 4% and under-
predicted near the edges of thee burner. Since the calculated chemical equilibrium species concentrations
may not be the actual values under the spectral measurements, the concentrations retrieved from different
spectral intervals can also be used as cross-validation. The retrieved CO2 concentrations from the two
spectral intervals are very close for all equivalence ratios, which are also close to the chemical equilibrium
CO2 concentrations. All predicted H2O concentrations are higher than the chemical equilibrium values,
but the values retrieved from different spectral bands are close to each other. Again, CO concentrations
were retrieved less accurately when there was little or no CO in the flame.
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5. Conclusions

An inverse radiation model based on the multi-layer perceptron neural network method was developed
to retrieve temperature and species concentration distributions from infrared spectral emission measure-
ments for combustion gas mixtures. The developed method shows its excellent capability of solving
nonlinear inverse problems, providing an efficient and global inverse radiation model, and is able to re-
trieve temperature and species concentrations simultaneously for a gas mixture of CO2, H2O, and CO.
The method was tested with synthetic spectral “measurements” for different temperature and concentra-
tion distributions. The performance of the multi-layer perceptron neural network method for retrieving
scalars from different spectral interval and for different optical thickness (represented by different gas path
lengths) were also investigated. The neural network inverse radiation models show good performance in
terms of accuracy and efficiency. Experimental validations were performed by predicting temperatures
and concentrations for the National Physical Laboratory standard flame and the results were compared
against Rayleigh scattering thermometry and chemical equilibrium calculations. Good agreement be-
tween predictions and measurements was found. The retrieval of temperature and species concentrations
is very efficient (in the order of 10 ms per line-of-sight), and thus may be used to monitor and control of
combustion process.

Although the current work deals with spectral measurements from a single line-of-sight, the proposed
neural network inverse radiation model can be easily adapted to 3-D flame diagnostics with advanced
spectral measurement devices, such as infrared hyperspectral Fourier transform infrared spectrometer. It
should be noted that in the present study, three different types of distribution were tested individually.
However, the method is also able to identify different types of distributions if all data are used simultane-
ously to train the neural network. The current model was used to retrieve temperatures and concentrations
for the three gas species simultaneously, from two different relatively wide spectral intervals. Prediction
accuracy for different species is different using different spectral intervals. The performance of the neu-
ral network inverse radiation model can be further improved by investigating optimal spectral bands for
different species.
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