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MAGPI: A Framework for Maximum Likelihood MR Phase 
Imaging Using Multiple Receive Coils

Joseph Dagher* and Kambiz Nael
Department of Medical Imaging, The University of Arizona, Tucson, AZ

Abstract

Purpose—Combining MR phase images from multiple receive coils is a challenging problem, 

complicated by ambiguities introduced by phase wrapping, noise and the unknown phase-offset 

between the coils. Various techniques have been proposed to mitigate the effect of these 

ambiguities but most of the existing methods require additional reference scans and/or use ad-hoc 

post-processing techniques that do not guarantee any optimality.

Theory and Methods—Here, the phase estimation problem is formulated rigorously using a 

Maximum-Likelihood (ML) approach. The proposed framework jointly designs the acquisition-

processing chain: the optimized pulse sequence is a single Multi-Echo Gradient Echo scan and the 

corresponding post-processing algorithm is a voxel-per-voxel ML estimator of the underlying 

tissue phase.

Results—Our proposed framework (MAGPI) achieves substantial improvements in the phase 

estimate, resulting in phase SNR gains by up to an order of magnitude compared to existing 

methods.

Conclusion—The advantages of MAGPI are: (1) ML-optimal combination of phase data from 

multiple receive coils, without a reference scan; (2) ML-optimal estimation of the underlying 

tissue phase, without the need for spatial processing; and (3) robust dynamic estimation of 

channel-dependent phase-offsets.
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INTRODUCTION

Quantitation using the magnitude of the reconstructed MR image is the predominant practice 

in various clinical applications. Recently, the phase of the MR signal has demonstrated its 

promise in expanding the quantitative capability of MRI. For example, the phase signal has 

been directly linked with Electro-Magnetic (EM) properties of tissues (such as susceptibility 

and conductivity), tissue temperature, venous oxygenation, blood velocity, tissue elasticity, 

among others (1, 2, 3, 4, 5, 6). The MR phase has also been extensively used for “fieldmap 

estimation” in the neuroimaging community to calculate and correct for the inhomogeneity 
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of the static field, ΔB0 (7, 8, 9, 10, 11). We note that, while ΔB0 is usually used to describe 

slowly spatially-varying field profile (8, 10), we use hereafter the term MR phase to indicate 

general voxel-per-voxel variations in the phase domain that would additionally be explained 

by inherent tissue properties (velocity, susceptibility, etc.)

While currently utilized MR pulse sequences and algorithms are optimized for magnitude-

domain contrast or SNR, there are fundamental challenges that make SNR-optimal MR 

phase acquisition and estimation more difficult than magnitude.

Phase noise and wrapping

We have shown in (7) that there are three phase-imaging regimes that acquisition methods 

operate in: (I) a regime dominated by phase-wrapping, with reduced levels of noise, (II) a 

regime dominated by noise, with minimal instances of phase-wrapping and (III) a regime 

where the original signal needs to be disambiguated from both phase-wrapping and noise 

contributions. It is not always possible to choose which regime to operate in due to hardware 

constraints (minimum echo time spacing, gradient strengths, bandwidth) or total imaging 

time restrictions.

Most single-echo acquisition methods operate in Regime III where post-processing is relied 

on in order to recover phase wrapping and noise errors. As rigorously documented in (12), 

phase unwrapping methods are not robust in the presence of noise, are computationally 

expensive and often require expert-user intervention. The authors in (12) have also shown 

that phase unwrapping is inefficient in the presence of moderately complex geometrical 

patterns. Furthermore, in order to mitigate the effects of noise, most single-echo phase 

processing methods rely on aggressive spatial averaging, such as 5×5×5 median filters (12). 

The impact of such a simplistic approach on phase quantitation could be detrimental and 

limits the spatial resolution of the resulting estimates.

Multi-echo acquisition methods, such as two-echo methods (9), three-echo methods (8, 12, 

13) and higher (11, 14), are constrained to choose at least one of the echo step sizes to be 

small enough to avoid phase wrapping (Regime II). A shortcoming with these methods is the 

referencing of the phase amongst echoes (phase difference), which amplifies the noise even 

further. Hybrid methods use short echo steps to unwrap longer echo steps (8, 12, 13, 14) but, 

as we have shown in (7), such an approach results in error propagation. Our proposed 

solution in (7) was also based on phase difference, however, we chose 2 echo step sizes 

large enough (Regime I) to improve the noise performance and purposefully induce phase-

wrapping. The wrapping pattern was precisely engineered in (7) such that a corresponding 

voxel-per-voxel estimation heuristic could disambiguate the original phase value.

Phase-Offset

The phase-offset φ0,c(x, y) varies both spatially and across the channels, due to dependence 

on coil position, cable lengths, and electronic delay (12). φ0,c(x, y) also varies with time due 

to drifts in frequency synthesizer and/or imperfections in the centering of k-space (15). 

Combining coils’ complex data is thus a challenging problem where existing solutions could 

be classified into methods that:
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(A) invert the sensitivity profiles using SNR-optimal methods for multi-channel 

combination. However, this requires exact knowledge of the complex coil 

sensitivities (16) or data correlation matrices (17). To that end, popular methods 

utilize an additional reference scan to estimate φ0,c(x, y), which assumes it to be 

temporally invariant over scan duration (18). Other methods approximate 

relative estimates of φ0,c(x, y) from the acquired complex images (19). Severe 

artifacts and loss of phase information occur in areas where a good SNR is not 

maintained every pixel across more than one coil. This “virtual coil” approach 

also assumes slowly varying φ0,c(x, y) across coils, and slowly varying tissue-

phase across space (19).

(B) reference the measurements to either (i) a time point, (ii) a defined region of 

interest, or (iii) a coil. (i) Echo time referencing suffers from inherent SNR 

penalty due to noise amplification (18, 20). (ii) Referencing the phase signal to a 

user-defined region aligns the phase of the complex data in that region, but 

introduces artifacts and signal loss away from the reference region (21). (iii) 

Coil referencing requires a coil with good sensitivity across the entire FOV of 

interest.

Our contribution

In this paper, we present a novel framework for MR phase imaging that jointly addresses the 

challenges outlined above. We formulate the phase estimation problem in rigorous terms and 

show that our reconstructed phase image is the Maximum-Likelihood (ML) estimate of the 

underlying tissue phase. Our framework does not require a reference scan, and does not 

increase the acquisition time. Furthermore, our reconstruction algorithm does not require the 

use of ad-hoc phase unwrapping/denoising methods, and is strictly a voxel-per-voxel 

approach, thus preserving the spatial resolution of the image.

We should note that another ML method has been proposed in the past for fieldmap 

estimation (8). As mentioned above, the work in (8) uses echo-referencing (phase 

difference) and a small echo step size in order to avoid phase wrapping and phase-offset 

ambiguities. The performance of the method in (8) is thus constrained by these ambiguities. 

Our approach, however, is fundamentally different: phase wrapping, phase-offset and phase 

noise ambiguities are all purposefully designed into the acquisition process. This novel 

framework enables a range of advantages not achievable with other methods, as we detail in 

the Discussion section.

THEORY

We will consider here the theory associated with MR phase originating as a response to a 

Gradient-Echo (GRE) sequence. Similar analysis could be extended to other sequences. The 

measurement obtained using a GRE at channel (receiver) element c and echo time TEk could 

be written as (22)

[1]
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where the magnitude term ρk,c(x, y) is the spin density at echo time TEk modulated by the 

sensitivity of channel c, 2πΔB(x, y)TEk is the underlying “tissue phase” value and φ0,c(x, y) 

is the spatially-varying channel-dependent phase offset of channel c. Note that we use a left-

hand coordinate system here to match the phase sign in our vendor’s (Siemens) phase 

reconstructions. The tissue frequency term ΔB(x, y) accounts for all deviations in the main 

magnetic field at location (x, y) due to the presence of the object. These deviations are due to 

both, inherent tissue properties (such local magnetic susceptibility changes), as well as 

object coil-loading effects. The noise term w(x, y) in each voxel is drawn i.i.d. from a 

complex Gaussian random variable, i.e. w = wR + iwI, wR, .

The goal of quantitation from MR phase is to extract the term ΔB(x, y) from the 

measurements mk,c(x, y). Instead of the phase, however, we are restricted to the numerically 

computed angle of mk,c(x, y), namely,

[2]

where Ωk,c(x, y) is the phase contribution of the additive noise term and rk,c(x, y) is a phase 

wrapping integer which forces the sum in [2] to be in the range [−π, π). Therefore, the 

integer rk,c(x, y) is a function of both echo time index k and channel index c. Note that 

Ωk,c(x, y) also depends on echo time and channel index. That is because the contribution of 

the noise w(x, y) to the phase depends on ρk,c(x, y) (7).

Hereafter, we drop the pixel subscripts (x, y) with the understanding that the remaining 

analysis applies separately to each voxel in the image.

Maximum Likelihood Phase Estimation

Formally, the ML estimate of a parameter of interest θ from measurements g is obtained 

through maximizing the probability of obtaining g, given an underlying parameter model, 

namely:

[3]

where the conditional probability Pr(g/θ) is the likelihood function. The popularity of ML 

estimation (MLE) is mainly due to its optimality properties such as efficiency, sufficiency, 

consistency and invariance (23). Other common estimators (e.g., Least Squares) do not 

possess such important properties. The Invariance property is very important in our view. 

Stated formally, if θ is the true value of a parameter and Θ = f (θ) is a function of that 

parameter, then the ML estimate of Θ is given by:

[4]

That is, the ML estimate of a function of a parameter is the function of its ML estimate (23, 

24). This property is key because the end goal is to extract paramaters from ΔB.

In this problem, we are concerned with the estimation of parameter ΔB from ψk,c. We can 

show that the corresponding likelihood function, , is given by:
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[5]

where ψk,c is a realization of the angle random variable Ψk,c. Note that, because the phase 

wrapping integer rk,c depends on the phase noise random variable Ωk,c, this implies that rk,c 

is also a (discrete) random variable. Using the total probability theorem, we can write:

[6]

where P (rk,c = r) is the probability of obtaining a given wrapping integer r and fΩk,c is the 

Probability Density Function of the noise in channel c, at echo time k. We have derived both 

of these probabilities in closed form, with the wrapping probability given by (see Appendix 

A):

[7]

[8]

where σk,c is the standard deviation of phase noise given by [25] (Appendix A). The phase 

noise distribution could also be derived in closed-form (see (7)):

[9]

[10]

and SNR0,c is the magnitude-domain SNR in channel c at TE= 0. We validate these 

derivations in Figure 1 where we plot the likelihood function using theoretical derivations 

(solid red line) and numerical simulations (blue cross markers), for various example voxels, 

SNR0,c and T2* values. We note the strong match between our theoretical predictions and 

the numerical simulations.

We focus here on the dependence of the likelihood functions on TEk, ΔB, T2* and SNR0,c. 

We plot in Figure 2a two families of likelihood functions obtained in an example voxel at 

two different values of TEk. We ignore the channel offsets (φ0,c = 0, ∀c) in this figure. Note 

first that, for long TEk, the likelihood functions exhibit sharp but multiple global maxima, 

whereas short TEk yield a broad unimodal maximum. Second, we see that repeated 

measurements yield randomly shifted likelihoods (dashed family of lines of same color). 

Measurements at the longer TEk result in a family of likelihood functions that are more 

tightly distributed, as compared to the shorter TEk. Both of these observations show that the 

likelihood function are subject to the inherent trade-offs with respect to the choice of TEk: 

long TEk induce wrapping-dominated errors, while shorter TEk induce noise-dominated 
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errors. We include the effects of the unknown phase offset in Figure 2b, where we plot 

example  for different channels. Note that likelihoods in the same voxel are now 

shifted with respect to one another by an unknown amount, φ0,c.

This example illustrates that maximizing the tissue frequency (or phase) likelihood is made 

difficult by: (1) a tradeoff between multiple global maxima or, a maximum whose location is 

sensitive to noise and (2) the unknown φ0,c. We propose next a framework which overcomes 

these fundamental challenges.

Proposed Solution: MAGPI

Our proposed framework, coined MAGPI (Maximum AmbiGuity distance for Phase 

Imaging), acquires Multi-Echo Gradient Echo (MEGE) measurements from a collection of 3 

echoes, and Nc channels, within a single TR. The estimation step is described using the 3-

pass process detailed below.

• Pass I: Find the most likely ΔB that explains the angle buildup between 
echoes—Instead of searching for the most likely tissue frequency value ΔB that explains 

the angle measurements of a given echo/channel ψk,c, we look for the most likely value that 

explains the phase buildup (i.e., phase difference) between echo pairs. Formally, we can 

show that the angle difference between two echoes k = 1 and k = 2 is:

[11]

where , , and r2:1,c is a phase wrapping integer 

which forces the sum in [11] to be in the range [−π, π). There are two differences in [11] as 

compared to [2]. First, the measured angle buildup does not depend on φ0,c. The second 

difference is a reduced phase SNR (due to multiplication with a smaller term, ΔTE2:1, and 

noise amplification from two noise RVs instead of one). We will address this shortcoming in 

Pass III below. The dual-echo likelihood function, denoted by 

, is now given by:

[12]

where the noise and wrapping probabilities fΔΩ2:1,c and P (r2:1,c) could be readily obtained 

in closed-form, similar to the derivations in [7] and [9]. Note that, in the absence of phase-

offset ambiguity, the ML solution for each coil also maximizes the product of the dual-echo 

likelihoods over all coils, . This product assumes that the angle measurements 

over all the coils are conditionally independent. This assumption may not be exact, due to 

noise correlation across coils, but we ignore any inter-coil dependence for now.

Nevertheless, dual-echo likelihoods still face here the same unimodal vs multimodal trade-

off as single-echo likelihoods. We address this limitation with the use of a third echo, k = 3, 

and we pose this question: what is the ΔB that most-likely explains both angle buildups from 

echo pairs {1,2} and {1,3}? Formally,
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[13]

[14]

We make the following comments about [13]:

i. We define  as the “system likelihood.” We claim that  is not 

subject to the single noisy maximum vs multiple globale maxima tradeoff of single 

and dual echo likelihoods. Specifically, the logical argument we disprove here is: 

system likelihoods always possess multiple global maxima whenever the function 

is multimodal. We disprove this argument in Figure 3 using multiple counter-

examples where  is multimodal but has a single sharp global maximum. 

This was achieved despite the underlying dual-echo likelihoods possessing multiple 

global maxima (Figure 3a) or both unimodal and multimodal maxima (Figure 3b).

ii. The quality of the solution obtained from [13] depends on the choice of system 

likelihoods. For example, in the ideal limit of infinite SNR, we can show that it is 

possible to achieve a system likelihood equal to a Dirac delta function, perfectly 

positioned at the true ΔB. Any deviation from this ideal system likelihood function 

inevitably yields loss of estimation performance.

iii. For a given ΔB, T2* and SNR0,c in a voxel, it is obvious that there exists a large 

number of system likelihood functions (selected by TEk) that one could choose 

from. Bullet i and ii above point to the fundamental key to our method: the design 

of acquisition parameters (echo times) such as the resulting system likelihood is as 

close as possible to the ideal system likelihood function. We develop this idea more 

fully in the Optimizer section below.

The estimation problem could be terminated at this step but, the performance at this stage is 

limited by the inherent noise amplification through the use of the product in [11]. We 

address this issue in the two following steps.

• Pass II: Estimate the channel-dependent phase offsets φ0,c—After obtaining an 

ML estimate of ΔB in Pass I, the remaining data in the original measurements [2] that is 

unexplained by the Pass I model [11] can be attributed to φ0,c and errors in the ΔB estimate. 

The task in this step is to extract φ0,c from these remainder terms: . 

To achieve this, we take advantage of the following distinct features of φ0,c: smooth 

variation over space and invariance with echo times. Using this prior knowledge, we can use 

various signal-separation techniques to extract φ0,c from . We resort here to a simple 

spatio-temporal low-pass filter applied in the Fourier domain  (12).
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• Pass III: Find the most likely ΔB that explains the angle of the three echoes—
After obtaining the estimate of eiφ0,c from Pass II, we can rewrite the single-echo likelihood 

functions in [6] without any channel-offset ambiguity, namely:

[15]

[16]

Thus, in this pass, we ask the following MLE question: what is the most likely tissue 

frequency that could explain the angles, as given by [16]? We can answer this question here 

without resorting to phase differencing. Formally, we solve:

[17]

[18]

 is another system likelihood, given by the product of the three individual 

likelihoods, over all channels. We make the same notes about the system likelihoods of Pass 

III as those of Pass I: (i) the system likelihoods are not subject to the noise-wrapping trade-

offs of individual likelihoods, and (ii) we advocate the design of  (through selection of 

TEk) to be as similar to a Dirac delta as possible.

We emphasize that the main goal of Pass I in our algorithm is to create a “rough unbiased 

estimate” of ΔB, so that Pass II could remove it from the original data and create a residue 

image . This residue image is then used in Pass II to separate random noise fluctuations 

from phase-offsets φ0,c. Once phase-offsets are computed, Pass III revisits the ΔB estimation 

step, this time without the need for echo referencing (or phase differences). As we will show 

in our results, there is no error propagation from Pass I to Pass III.

MAGPI Optimizer

The solutions to problems [13] and [17] are not guaranteed to yield the “best” tissue 

frequency (and tissue phase) estimate for arbitrary choices of echo times. As mentioned in 

Pass I and Pass III, a careful optimization routine picks the echo times such that the resulting 

likelihoods,  and , are as close to Dirac delta functions. Denote by 

, a distance measure between an arbitrary function f and the Dirac delta 

function centered at ΔB. Ideally, we would want to minimize both 

and , for all possible values of ΔB and measurements. There are 

various ways to approach this challenging multiobjective optimization problem. In this 

work, we propose to minimize the average  subject to upper bound 

constraints on the average . The motivation for this choice is that the 

ΔB estimate from Pass III is the final estimate, and thus should be optimally chosen. The ΔB 
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estimate from Pass I, however, needs to be constrained so that its errors to Pass II are only 

limited by unbiased random noise (and not biased by phase wrapping). Formally, the 

optimization problem is as follows:

[19]

where  is the set of allowable echo times, which takes into account constraints such as 

the minimum echo time spacing (ΔTEmin) and the minimum echo time (TEmin) achievable 

with the pulse sequence of choice. We note the following:

i. Distance measures. There is a large variety of distance measures 

. In this work, we use the Kullback-Leibler distance measure 

as the statistical distance between the distributions (23, 24). Other distance 

measures could be proposed.

ii. Design Specifications. We emphasize that it is the pulse sequence of choice that 

defines the optimization design specifications. These specifications include 

constraints on echo timings such as (TEmin, TEmax and ΔTEmin). Also, since 

SNR0,c and T2* are spatially-varying quantities, we only optimize the echoes over 

the minimum SNR0,c and T2* of interest, SNR0,min and , as expected with 

the pulse sequence of choice. Voxels with SNRs larger than SNR0,min are 

guaranteed to never do worse than this worst-case voxel.

iii. Tissue Frequency Prior information. We assume in [19] a uniform distribution for 

ΔB within ±ΔBmax, which could be readily approximated based on the strength of 

the B0 field and the anatomy of interest.

iv. Computation. Since the optimizer is run offline, once, various design specifications 

(see above) corresponding to different sequences of interest could be tabulated and 

used at acquisition time. Because of the closed form of the probability distributions 

of noise and phase wrapping, we can use Monte Carlo methods to rapidly compute 

the expectation in [19]. We solve the optimization problem using Genetic 

Optimization methods. The optimization step takes anywhere between 1-5 minutes 

on a personal computer, depending on the size of the constraint set .

METHODS

ML-MAGPI Phase Reconstruction

We applied our 3-pass ML MAGPI algorithm outlined above. The reconstruction method in 

either Pass I or Pass III follows these steps independently in each voxel:

1. The likelihood functions ([12] and [15]) are estimated at each echo time and 

channel.

i. The SNR in each voxel, channel and echo time is approximated by 

computing the ratio of the magnitude signal to the noise standard deviation 

in the background region. This ratio approximates snrk,c in [10] which 
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allows rapid computation of the noise probability distribution [9], phase 

noise standard deviation [25] and phase wrapping probability distribution 

[7].

2. The system likelihoods are computed in Pass I and Pass III, by taking the product 

of the likelihoods functions computed in the step above, according to [13] and [17], 

respectively.

3. The system likelihoods are maximized. Although the system likelihoods could 

possess local maxima, the global maximum can be obtained rapidly with “brute 

force” search methods since the likelihoods are given by a 1-dimensional analytical 

expression.

4. Given that the likelihood are guaranteed to have a single global maximum in the 

optimization step (see Optimizer), the search method is guaranteed to return one 

single solution.

We performed these computations serially on a personal computer (Mac Pro, dual 3.1GHz 

CPU, 8 core each) using code written in MATLAB. Reconstructing a 256 × 256 ΔB map, 

after running all three passes, took around 2 minutes. These rapid computations can be 

further accelerated using the highly parallelizable nature of the voxel-per-voxel approach. 

Unless otherwise noted, all of the MAGPI ΔB estimates presented below are those obtained 

at Pass III.

Literature Methods

We compared to the following methods from the literature throughout our experiments 

below:

i. Phase Difference (PD): This popular method uses a dual-echo approach to combine 

and estimate ΔB maps (20).

ii. Single Echo + Reference: This method is based on a single-echo acquisition along 

with a separate reference scan (18). The combined phase is subsequently 

unwrapped and denoised, using standard techniques (18).

iii. UMPIRE: This triple-echo MEGE method was shown in (12) to outperform phase 

unwrapping algorithms in estimating tissue phase with complex geometries. The 

UMPIRE echoes are chosen here according to the prescription in (12), whereby the 

smallest difference between two echo steps is able to unwrap a maximum tissue 

frequency buildup of ±125Hz according to the constraints imposed by the utilized 

3D sequence. In order to maintain the same spatial resolution across all methods, 

we did not employ any spatial denoising with UMPIRE.

iv. Adaptive Combine: This single-echo Siemens product sequence inverts the 

sensitivity profile of the coil array using SNR-optimal methods described in (17). 

This requires the use of a reference scan.

v. Homodyne-Processed Phase: This popular method (3) first high-pass filters the 

complex data (to reduce the contributions from phase-offsets), then the result is 
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coherently added. Clearly, the filtering results in loss of information from the 

underlying tissue phase of interest.

Simulations

We validated the performance of our proposed MAGPI framework on a modified Shepp-

Logan phantom using a 128 × 128 tissue frequency map, and a corresponding magnitude 

image with a homogeneous T2* of 40ms. We simulated a GRE acquisition of this complex-

domain object using an array of 16-channel receive coils (25) at different SNRs. We 

evaluated the performance of our proposed method in reconstructing the tissue frequency 

map, and compared to some of the literature methods above.

Phantom Study

We also validated the performance of MAGPI in phantom studies. A water phantom was 

acquired at 1.5T on a Siemens Aera scanner using a 20-channel head coil. Figure 6a shows 

an example magnitude combined (SSQ) image of the phantom at a short echo time. We 

computed the frequency map using the following 3D GRE-based methods:

i. 20× Averaged PD with TE1 = 3.52ms and TE2 = 9.38ms, 20 averages each, TR = 

20ms. This serves as the reference we compare our results to.

ii. Single Echo + Reference at TE = 40ms, TR = 45ms, with TA = 5min30s for both 

scans. We use the channel-dependent phase-offsets estimated from the 20× 

Averaged PD scan above as the reference scan.

iii. UMPIRE at TE = {6.67, 21.67, 40}ms, TR = 45ms, TA = 3min09s.

iv. MAGPI at echo times TE = {16.01, 27.51, 34.87}ms, TR = 40ms, TA = 2min45s. 

These echoes were optimized for a  of 40ms, SNR0,min = 28dB, and ΔBmax = 

125Hz. The MEGE sequence constraints were ΔTEmin = 5.82ms and TEmin = 

6.1ms.

The following were the common pulse-sequence parameters used by all methods above: 3D 

GRE, FOV = 220(read out) × 200mm2, Nx = 256, Ny = 232, slice thickness 0.9mm, FA = 

15°, BW=240Hz/pxl. The voxel size in this scan is thus 0.9 × 0.9 × 0.9 mm3.

in Vivo Study

The brain of healthy volunteers was imaged after approval was obtained from our 

Institutional Review Board (IRB) and informed consent was given by the subjects. All scans 

were done on a Siemens Aera 1.5T with a 20-channel head coil. We acquired three types of 

scans: (Scan SR) standard-resolution mode, (Scan HR) high-resolution mode, and (Scan HT) 

standard-resolution mode with half the TR, i.e. half the acquisition time. For each scan type, 

we collected data using standard single echo GRE sequences, where the phase map was 

generated using both, the Adaptive Combine technique and the “Homodyne-Processed 

Phase” method. We also collected these three scans using our MAGPI protocol. The echo 

times optimized by [19] used , SNR0,min = 28dB and ΔBmax = 125Hz (as 

expected at 1.5T in the brain). Details of the scans are shown in Table 1.
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RESULTS

Numerical Phantom

We generated 1000s of different realizations of ΔB maps, random noise and phase-offset 

patterns in our numerical phantom. We plot in Figure 4a the RMSE of the reconstructed 

tissue frequency as a function of the underlying SNR0 in the image (SNR at TE=0) for the 

following methods:

1. PD (blue dashed lines): two PD methods ((PD-40, × marker) and (PD-10, + 

marker)) use a 3.5ms echo step which avoids phase wrapping for frequencies 

within ±125Hz. The PD-40 method uses echoes at {36.5, 40}ms. The 40ms echo is 

chosen for its utility as a magnitude contrast, while the PD-10 method uses echoes 

at {6.5, 10}ms.

2. Single Echo + Reference (green solid line with squares) at TE= 40ms. Here, we 

assume perfect knowledge of the phase-offset maps. Thus, errors in this method are 

only due to wrapping and noise.

3. UMPIRE (dash-dotted magenta line) at TE= {6.67, 21.67, 40}ms.

4. MAGPI (red solid line) which used TE= {16.01, 27.51, 34.87}ms for SNR0 < 30dB 

and TE= {26.56, 35, 40.91}ms for SNR0 ≥ 30dB. The first set of echoes was 

optimized for SNR0,min = 30dB, and the second set for SNR0,min = 27dB, both with 

, and ΔBmax = 125Hz.

5. 1-Echo-Limit (solid black line with upside-down triangles): This method assumes 

(a) perfect knowledge of φ0,c and (b) ΔB values that induce no phase wrapping. 

Thus, the only errors with this method would be due to noise. This constitutes a 

lower bound on the RMSE obtained with single echo scans.

6. ML bound (solid black line with rightside-up triangles): This is another theoretical 

lower-bound predicting the lowest RMSE achievable with ML-based methods with 

3 echoes. This bound was derived by numerically computing the Fisher-

Information (discussion beyond scope here).

An example phantom and corresponding estimates obtained with PD-40, UMPIRE and 

MAGPI at SNR0 = 27dB are shown in Figures 4c-f, respectively, with the corresponding 

RMSE shown in the sub-captions. An SNR0 of 27dB, or 22.38 unitless, corresponds to an 

SNR of 8.23 at TE=40ms with our T2* of 40ms. In such a low SNR regime, we see that 

PD-40 and UMPIRE are not robust, and exhibit noise-induced phase wrapping. MAGPI 

clearly outperforms both of these methods and is able to correctly recover both low and high 

ΔB values. In this example, MAGPI achieves RMSE reductions by a factor of 22.37 (over 

PD-40) and 30.13 (over UMPIRE). The resulting RMSE with MAGPI of 0.61Hz at such a 

low SNR is impressive. We also show in Figures 4g and 4h an example of the 16-channel 

phase-offsets used in the simulations and the corresponding estimate obtained using MAGPI 

at an SNR of 27dB, respectively.
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Real Phantom

Figure 5 shows the resulting frequency maps obtained in the phantom for each of the PD-10 

(Figure 5a), Single-Echo + Reference (Figure 5b), UMPIRE (Figure 5c) and MAGPI (Figure 

5d). Figure 6b shows the 20-channel phase-offsets as estimated using the 20× averaged 

PD-10 method while Figure 6c shows the corresponding phase-offsets as estimated with 

MAGPI.

in Vivo

Figure 7 shows the frequency maps obtained by each of the Adaptive Combine (first 

column) and MAGPI (second column) techniques, for Scans SR (row 1), HT (row 2) and 

HR (row 3).

The homodyne-combined frequency images are shown in Figure 8. The first column are the 

results obtained with the single-echo methods, for each of the scan types (across rows). The 

second column is the result of applying the exact same homodyne filter, as used with the 

first column, on the MAGPI frequency images of Figures 7b, 7d and 7f.

DISCUSSION

We have presented a novel theory and corresponding method for combining MR phase 

images, acquired using a coil-array, in an ML-optimal sense. Our proposed optimizer 

designs the acquisition process, by engineering the System Likelihood for optimal phase 

SNR in reconstruction.

All our closed-form derivations of probability distributions and likelihood functions were 

validated through rigorous numerical simulations. We emphasize two observations from the 

theoretical treatment. First, contrary to common assumptions, the phase noise is 

inadequately represented by a Gaussian probability distribution (Figures 1b and 1c), 

particularly at low SNRs. Second, our derivations show that the probability of obtaining a 

given wrapping integer is not always uniform over all possible wrapping values ([7] and 

Figure 1a). This is due to noise-induced phase wrapping effects at the boundary of the range 

of ΔB values.

We have validated the optimality of our proposed framework using numerical phantoms 

(Figure 4). The results in Figure 4a show that MAGPI is able to accurately recover the tissue 

frequency estimate at all SNRs, while overcoming the trade-offs and limitations of other 

methods. For example, note that the single-echo Phase Unwrapping method (Phun w/ φ0) 

fails to correctly unwrap the tissue phase (despite its assumed ideal reference scan) for our 

moderately complex phantom geometry. This is consistent with results reported in (12). 

PD-40 and UMPIRE are not robust, as their performance quickly degrades in the presence of 

noise. PD-10 outperforms PD-40, as expected, due to its shorter echo times, albeit without 

the desired magnitude contrast of longer echoes. The lower bound on the RMSE of single-

echo methods (line with inverted triangles) shows the expected noise-only trend in the 

absence of phase wrapping and phase-offset ambiguities. The performance gains (RMSE 

reductions) with MAGPI, shown in Figure 4b, are particularly significant at low SNRs. 

MAGPI achieves a gain of ~11× (at all SNRs) over PD-10. MAGPI’s gains over UMPIRE 
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increases as SNR decreases, ranging from 3.83× at 40dB to 41× at 27dB. Furthermore, 

MAGPI outperforms even the lower bound for ideal single echo methods by a factor of 

1.81× at 40dB up to 3.9× at 27dB.

We also show in Figure 4a the RMSE of MAGPI’s Pass I only (red dotted line) and note that 

it is always larger than the RMSE of Pass III due to the inherent noise amplification of echo 

referencing (phase difference) methods. Thus, we strongly advocate running all 3 passes of 

the algorithm. Figure 4a also plots on the right axis (brown color) the bias in MAGPI’s ΔB 

estimate as a function of SNR for both Pass I (circles) and Pass III (X). This plot asserts that 

MAGPI is an unbiased estimator of tissue frequency and phase. Finally, we note from this 

figure that MAGPI’s RMSE in Pass III is very close to the Minimum Variance Unbiased 

(MVU) bound predicted by theory (line with right-side up triangles). This shows that our 

ML estimation algorithm is efficient. This observation also implies that the errors from Pass 

I do not propagate to Pass III. This is expected: recall that Pass II selects spatially smooth 

terms in the residue image from Pass I (channel offsets) and discards high spatial frequency 

terms. Since the errors in Pass I are only due to random noise fluctuations (no bias), Pass II 

will inhibit these errors from propagating to Pass III.

The real phantom results are consistent with the numerical simulations. As can be seen from 

Figures 5a-d, we note a similarity in the ΔB estimate amongst all methods, yet with a clear 

SNR improvement obtained with MAGPI. In order to quantify this SNR gain, we removed 

any smooth background phase variations in the phantom, and displayed the result in second 

row of Figure 5. Since this is a water-only phantom, the result of such filtering process is 

mainly due to noise inherent in the ΔB estimate. The reduced level of noise in MAGPI’s 

estimate (Figure 5h) is clear. The reported reduction in noise standard deviation (or gain in 

phase SNR) with MAGPI was: 3.95× over the 20-time averaged PD-10, 3.661× over Single 

Echo+Reference and a 7.9× over UMPIRE. These gains are consistent with our predictions 

from simulations (Figure 4b at SNR0 of 32dB in this water phantom) where the expected 

gains are: 12× over PD-10 (for 1 average, or 2.7× with 20 averages), 3.7× over ideal single-

echo methods (such as the Single-Echo+Reference scan in a phantom which has no 

wrapping ambiguity) and 8.1× over UMPIRE. We emphasize here that the acquisition time 

with MAGPI was the shortest amongst all methods.

We point out the ring structure in the MAGPI image (Figure 5h). These rings, also visible in 

the phantom’s windowed magnitude image (Figure 6a), are due to truncation artifacts in 3D. 

These rings are not discernible in other phase estimation methods, due to being buried 

within large noise variations. MAGPI is able to overcome these noise limits without spatial 

smoothing.

Similar SNR gains are also seen with our in-vivo experiments. Figure 7 shows that the 

Adaptive Combine method suffers from severe phase artifacts due to both, inaccurate phase-

offset inversion and phase unwrapping errors. MAGPI, however, was able to reconstruct the 

underlying ΔB without any artifacts, for all three scan types. MAGPI’s SNR advantage is 

best visualized in “homodyne” domain, as shown in Figure 8. The traditional single echo 

method achieves poor phase SNR, especially in Scans HT and HR. Scan HT is particularly 

challenging, due to its reduced SNR (short TR) and reduced phase accumulation (short TE). 
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The corresponding homodyne MAGPI images (second column), obtained using the same 

homodyne filter, show substantially improved phase SNR over the traditional homodyne 

method for every scan type. In Scan SR, the phase SNR gain with MAGPI is evident with 

improved resolution of fine cortical structures and basal ganglia (Figure 8a vs. 8b). The gain 

obtained with MAGPI is even higher for Scans HT and HR, which have lower SNR0 than 

Scan SR. This is expected from simulations where we showed that the gain of MAGPI over 

single-echo methods increases as SNR0 decreases. This gain is translated in Scans HT and 

HR into improved CNR and ability to identify deep brain structures such as basal ganglia in 

Figures 8e and 8h when compared to almost non-diagnostic Figures 8d and 8g, respectively. 

Note that the high-pass filters with MAGPI are applied directly on the estimated ΔB maps, 

rather than in complex domain as is done with single-echo methods. This enables the use of 

specialized high-pass filters with MAGPI that are better suited at preserving edges with 

reduced artifacts and noise amplification. One such filter is the Bilateral filter (26), shown in 

the third column of Figure 8. The bilateral filter achieves similar contrast and SNR gains 

obtained with homodyne MAGPI, albeit with reduced artifacts (such as blooming and edge 

effects) especially around cortical regions. We draw attention in particular to Figure 8f and 

note its improved phase SNR and comparable contrast compared to the single-echo SR scan 

of Figure 8a despite requiring half the latter’s acquisition time.

MAGPI’s phase SNR gains in Scan HR are highlighted in Figure 9, where we show a ΔB 

estimate combined over a stack of 4 slices (8mm slab), using both the traditional single echo 

homodyne method (Figure 9a) and MAGPI+Bilateral filtering (Figure 9b). Using our 

technique, we observe high resolution images at 1.5T resulting in diagnostic image quality 

with excellent SNR and CNR as compared to standard single echo methods where 

accentuated noise clearly impairs definition of fine structural details. We emphasize that the 

acquisition time with MAGPI in this scan was 15% shorter than the traditional single-echo 

scan, further highlighting the impact of the choice of MAGPI’s echo times on the SNR of 

the phase image.

Finally, our proposed ML framework is fundamentally different than the ML fieldmap 

estimation method previously presented in (8). As shown above, our system likelihoods 

modulate the inherent phase ambiguities, whereas the likelihood function in (8) is 

constrained by phase wrapping and phase-offsets. The following are some practical results 

of this important difference:

i. The Funai method uses a phase difference method in order to (a) minimize phase 

wrapping errors and (b) cancel channel-dependent phase offsets. As we have shown 

here, such an echo referencing approach suffers from inherent noise amplification 

(Pass I vs Pass III).

ii. The Funai method requires the use of at least one short echo time step size in order 

to avoid phase wrapping. That further amplifies noise and introduces error 

propagation onto the long echo steps. MAGPI, on the other hand, engineers phase 

wrapping as part of the likelihood function to achieve a significant phase SNR 

advantage.
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iii. The work in Funai’s paper requires the use of multiple GRE acquisitions in order to 

accommodate short echo step sizes. MAGPI cuts the acquisition time substantially 

by incorporating purposefully wrapped long echo times into one MEGE 

acquisition.

iv. Unlike MAGPI’s voxel-per-voxel approach, the Funai method requires spatial 

regularization. This introduces bias, and increases computation cost, as noted by 

Funai et.al.

CONCLUSION

We proposed here a novel framework which enables the design of phase-SNR optimal 

sequences. The overall advantages of our framework are the following: (1) ML-optimal 

combination of phase data from multiple receive coils, without a reference scan; (2) ML-

optimal estimation of the underlying tissue phase, without the need for spatial averaging, 

denoising or phase unwrapping; and (3) dynamic estimation of channel-dependent phase-

offsets. The result is an achieved gain in the phase image SNR by up to an order of 

magnitude compared to existing methods. In particular, the gain over ideal single-echo 

methods, which are free of wrapping and phase-offset errors, is at least a factor of 3.7× at 

low SNRs. We have used such gains here to enable higher resolution, higher CNR, and more 

rapid phase imaging at 1.5T.
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APPENDIX A

We derive here the probability distribution of the phase wrap integer rk,c. We assume here 

that φ0,c = 0, since the channel offsets are generally canceled out in Passes I and III. The 

analysis could be easily extended to non-zero channel offsets. From (2) we know that rk,c = 

0 if the sum of 2πΔBTEk + Ωk,c is always within [−π, +π]. Or, in general, we can write:

[20]

[21]

[22]
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[23]

[24]

where [22] uses the convolution theorem for the sum of 2 independent random variables, 

and [23] assumes ΔB to be uniformly distributed between ±ΔBmax. This assumption makes 

sense in the absence of prior information about tissue frequency. In these equations, fφk,c(ζ) 

is the probability distribution of the phase noise (φk,c = Ωk,c/2πTEk, units in Hz) given by a 

scaled version of [9]. In [24], we carry out the integral by approximating fφk,c(ζ) with a 

Gaussian with the same standard deviation σk,c. Finally, using known properties of integral 

of error functions the final form of the phase wrapping probability distribution in [7] 

follows.

We note here that σk,c could also be derived in closed form, and is readily given by (27):

[25]

where snrk,c is given by [10], and αn and βn are closed form polynomials rapidly decaying 

with n given by:

[26]

[27]

[28]
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Figure 1. 
(a)-(c) Comparison between theoretical derivations (red solid line) and numerical 

simulations (blue dots) in various example voxels. In (a), the maximum wrapping integer 

Rmax = 1 and the true ΔB = −5Hz. In (b) and (c) ΔB = 0Hz, and Rmax = 0, thus the likelihood 

is simply the noise distribution. The dashed magenta line is a Gaussian distribution with the 

same mean and standard deviation as the true noise distribution. Note the divergence 

between the noise probability distribution and the Gaussian approximation.
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Figure 2. 
(a) Example likelihood functions, with θ0,c = 0, in a voxel where ΔB = 20Hz, SNR0=22 

(27dB) and T2*=30ms. The family of blue lines correspond to  for different ψk,c 

realizations, at TE = 5ms. The red lines are  obtained at TE = 40ms. (b) The effect 

of phase-offsets on  is shown here for the same voxel as (a) at TE=40ms. Note 

that different channels will possess substantially shifted  depending on their 

respective φ0,c.
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Figure 3. 
Example system likelihood functions obtained from individual dual-echo likelihoods. Note 

that the system likelihoods (red) are not subject to the same noise-phase wrapping trade offs 

as the dual-echo likelihoods (green and blue). That is, system likelihoods do not always 

possess multiple maxima whenever the function is multimodal.
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Figure 4. 
(a) Result of Monte-Carlo simulations showing RMSE (log-scale on left) of various ΔB 

estimates averaged over random realizations of noise, ΔB and φ0,c. The bias in the MAGPI 

ML estimates is shown on the right axis of the plot using the o (Pass I) and × (Pass III) 

markers. The MVU bound (black line with triangles) and the unbiased results show that 

MAGPI is an efficient estimator. (b) Average RMSE reduction (or performance gain) 

achieved with MAGPI over select methods: at the lowest SNR of 27dB, MAGPI reduces the 

RMSE by 41× compared to UMPIRE, 11× compared to PD-10 and 3.9× compared the 

“ideal” single-echo method. We show example original tissue frequency ΔB in (c) and 

corresponding phase-offsets in (g). Example ΔB estimates obtained at SNR0 of 27dB (or 

SNR(TE=40ms) = 8.23) using: (d) PD-40 (RMSE = 13.65Hz), (e) UMPIRE (RMSE = 

18.38Hz) and (f) MAGPI (RMSE = 0.61Hz). MAGPI also generates an estimate of φ0,c in 

(h). Phase-offsets are shown as ∠{exp(iφ0,c)} between [−π, π].
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Figure 5. 
Estimated ΔB in a water phantom using (a,e) PD-10, with 20 averages, (b,f) a single echo 

method which uses PD-10 scan as a φ0,c reference scan, (c,g) UMPIRE and (d,h) MAGPI. 

Bottom row is the remainder after applying background phase removal on images of top row 

and thus, is a measure of noise content in estimate. All units are in Hz. The reduction in 

noise standard deviation obtained with MAGPI was a factor of 3.95× over PD-10 ×20avgs, 

3.661× over Single-Echo+Ref, and 7.9× over UMPIRE. The ring patterns detected with 

MAGPI in (h) are also present in the magnitude image of Figure 6a. We elaborate on this 

observation in the Discussion section.
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Figure 6. 
(a) The magnitude image at an early echo of 3.5ms reconstructed using standard Sum of 

Squares method. The phase-offset in the water phantom as estimated using (b) the PD-10 

×20 averages scan and (c) MAGPI. Note the similarity between the two estimates.
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Figure 7. 
In-vivo ΔB maps at 1.5T, at in-plane resolution of 0.49 × 0.49mm2, obtained with (first 

column) traditional single echo methods with Adaptive Combine and (second column) 

MAGPI. Rows 1-3 represent Scans SR (Standard Resolution), HT (same as HR with half the 

TR) and HR (half the voxel size of SR), respectively. Note the wrapping artifacts and phase-

offset inversion errors obtained with Adaptive Combine. The MAGPI ΔB estimates are 

obtained voxel-per-voxel, without any smoothing or phase unwrapping.
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Figure 8. 
(First column) Multi-coil data from first column of Figure 7 now combined using 

Homodyne filtering, for each of Scans SR, HT and HR across rows. (Second column) 

MAGPI ΔB estimates from second column of Figure 7 filtered using the same homodyne 

operator as the traditional method. (Third column) Same as second column, except we used 

a Bilateral filter instead of the traditional homodyne high pass filter. We note the following: 

in Scan SR, the phase SNR gain with MAGPI allows for improved resolution of fine cortical 

structures and basal ganglia. In Scans HT and HR, MAGPI achieves clear SNR and CNR 

gains over the non-diagnostic Figures 8d and 8g. Despite the challenging magnitude-domain 

SNR of Scans HT and HR, MAGPI still allows for improved visualization of deep brain 

structures with fine delineation of basal ganglia and clear distinction of caudate head and 

lentiform nuclei from anterior and posterior limb of internal capsule (Figures 8e,f and 8h,i). 
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MAGPI+bilateral filter attains improved SNR and CNR gains, without blooming artifacts, 

compared to MAGPI+homodyne filters (Figures 8f,i vs 8e,h). Phase images are scaled here 

between ±0.5Hz for Scan SR and ±1Hz for Scans HT and HR.
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Figure 9. 
High-pass filtered ΔB maps from Scan HR, shown across a slab of 4 slices (8mm thick) for 

(a) single-echo Homodyne-Processed Phase and (b) Bilateral filtered MAGPI. MAGPI 

enables very high resolution images at 1.5T compared to the standard method, where 

accentuated noise clearly impairs definition of fine structural details. The phase CNR and 

SNR achieved with MAGPI significantly improves the image quality, with excellent white-

gray matter differentiation and clear distinction of deep brain structures such as basal 

ganglia.
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Table 1
In-Vivo Scans

Scan Type Single-Echo MAGPI Parameters

Scan SR TE = 40ms, TR
= 46ms, TA =
3min30s

TE = {26.56,
35, 40.91}ms,
TR = 46ms, TA
= 3min40s

3D GRE, FOV = 220(r.o.)×
200mm2, Nx = 256,Ny = 232,
Δz= 2mm, TR = 45ms, FA =
15°, BW= 240Hz/pxl, Voxel
size: 0.9 × 0.9 × 2 mm3,
CTE: TEmin = 6.1ms, ΔTEmin = 5.82ms.

Scan HT TE = 20ms, TR
= 23ms, TA =
1min40s

TE = {6.73,
14.63,
20.75}ms,
TR = 24ms, TA
= 1min40s

Same as the SR scan, except
with half the TR: TR=23ms.

Scan HR TE = 40ms, TR
= 46ms, TA =
6min07s.

TE = {16.18,
27.98,
35.57}ms,
TR = 40ms, TA
= 5min20s

Same as the SR scan, except
with: Nx = 448, Ny = 406, voxel size of 0.49 × 0.49 × 2 mm3;
CTE: TEmin = 7.52ms,

ΔTEmin = 7.00ms.
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