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Abstract. Theory often specifies a particular cointegrating vector

amongst integrated variables and it is often required that one test for a unit

root in the known cointegrating vector. Although it is common to simply

employ a univariate test for a unit root for this test, it is known that this does

not take into account all available information. We show here that in such

testing situations a family of tests with optimality properties exists. We use

this to characterize the extent of the loss in power from using popular methods,

as well as to derive a test that works well in practice. We also characterize the

extent of the losses of not imposing the cointegrating vector in the testing

procedure. We apply various tests to the hypothesis that price forecasts from

the Livingston data survey are cointegrated with prices, and find that although

most tests fail to reject the presence of a unit root in forecast errors the tests

presented here strongly reject this (implausible) hypothesis.

Keywords: Cointegration, optimal tests, unit roots.
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1. Introduction

This paper examines tests for cointegration when the researcher knows the cointe-

grating vector a-priori and when the ‘X’ variables in the cointegrating regression are

known to be integrated of order one (I(1)). In particular, we characterize a family of

optimal tests for the null hypothesis of no cointegration when there is one cointegrat-

ing vector. This enables us to examine the loss in power from using either suboptimal

methods (such as univariate unit root tests on the cointegrating vector) and also losses

that arise from testing cointegration with estimated cointegrating vectors.

There are a number of practical reasons for interest in this family of tests. First, in

many applications a potential cointegrating vector is specified by economic theory (see

Zivot (2000) for a list of examples), and researchers are confident or willing to assume

that variables are I(1). The test of interest then becomes testing that the implied

cointegrating vector has a unit root (which would falsify the theory). The empirical

strategy commonly followed is simply to construct the potential cointegrating vector

and employ a univariate test for a unit root. However, this method avoids using

useful information in the original multivariate model that could lead to more powerful

tests (see Zivot (2000)). While there are tests available that do exploit this extra

information in the problem (e.g. those in Horvath and Watson (1995), Johansen

(1988, 1995), Kremers, Ericsson and Dolado (1992), and Zivot (2000)), these tests do

not use this information optimally. The class of tests suggested below, identical apart

from the treatment of deterministic terms to those in Elliott and Jansson (2003) for

testing for unit roots with stationary covariates, do have optimality properties.

Second, the optimal family we derive allows the power bound of such tests to be

derived. This is interesting in the sense that it gives an objective for examining the loss

of power in estimating rather than specifying the cointegrating vector. A quantitative

understanding of this loss and how it varies with nuisance parameters of the model is
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important for understanding differences in empirical results. If one researcher specifies

the parameters of the cointegrating vector and rejects, while another estimates the

vector and fails to reject, we are more certain this is likely to be due to loss of

power when there are large losses in power from estimating the cointegrating vector.

If the power losses were small, then we would probably conclude that the imposed

parameters are in error. By deriving the results analytically we are able to say what

types of models (or more concretely what values for a certain nuisance parameter)

are likely to be related to large or small power losses in estimating the cointegrating

vector. For many values of the nuisance parameter (which is consistently estimable

and is produced as a by-product of the test proposed herein) the differences in power

is large.

The next section presents our model and relates it to error correction models

(ECM). In the third section we consider tests for cointegration when the cointegrating

vector is known. We discuss a number of approaches that have been used in the

literature and present the methods of Elliott and Jansson (2003) in the context of

this problem. Section four presents numerical results to show the asymptotic and

small sample performances of the Elliott and Jansson (2003) test relative to others in

the literature. An empirical application relating to the cointegration of forecasts and

their outcomes is described in the fifth section.

2. The Model and Assumptions

We consider the case where a researcher observes an (m+ 1)-dimensional vector time

series zt = (yt, x0t)
0 generated by the triangular model
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yt = µy + τ yt+ γ0xt + uy,t (1)

xt = µx + τxt+ ux,t (2)

and

A (L)

⎛⎝ (1− ρL)uy,t

∆ux,t

⎞⎠ = εt, (3)

where yt is univariate, xt is of dimension m × 1, A (L) = Im+1 −
Pk

j=1AjL
j is a

matrix polynomial of finite (known) order k in the lag operator L, and the following

assumptions hold.

Assumption 1: max−k≤t≤0
°°°¡uy,t, u0x,t¢0°°° = Op (1) , where k·k is the Euclidean norm.

Assumption 2: |A (r)| = 0 has roots outside the unit circle.

Assumption 3: Et−1 (εt) = 0 (a.s.), Et−1 (εtε
0
t) = Σ (a.s.), and suptE kεtk2+δ < ∞

for some δ > 0, where Σ is positive definite, andEt−1 (·) refers to the expectation

conditional on {εt−1, εt−2, ...} .

We are interested in the problem of testing

H0 : ρ = 1 vs. H1 : −1 < ρ < 1.

Under the maintained hypothesis, xt is a vector integrated process whose elements

are not mutually cointegrated. There is no cointegration between yt and xt under
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the null, whereas yt and xt are cointegrated under the alternative because yt−γ0xt =

µy ++τ yt+ uy,t mean reverts to its deterministic component when −1 < ρ < 1. We

assume that the researcher knows the value of γ, the parameter that characterizes the

potentially cointegrating relation between yt and xt. This assumption is plausible in

many empirical applications, including the one discussed in Section five of this paper.

Various assumptions on µy, µx, τ y, and τx will be entertained.

Assumptions 1-3 are fairly standard and are the same as (A1)-(A3) of Elliott

and Jansson (2003). Assumption 1 ensures that the initial values are asymptotically

negligible, Assumption 2 is a stationarity condition, and Assumption 3 implies that

{εt} satisfies a functional central limit theorem (e.g. Phillips and Solo (1992)).

There are a number of different VAR-type representations of the model in (1)−(3) .

Ignoring deterministic terms for the sake of exposition, we now present three such

representations, each of which sheds light on the properties of our model and the

precise restrictions of the formulation of the problem above. The restrictions are

precisely those embodied in the idea that xt is known to be I (1) under both the null

and alternative hypotheses.

A general error correction model (ECM) representation for the data is

Ã (L) [Im+1 (1− L)− αβ0L] zt = εt, (4)

where β = (1,−γ0)0. Comparing this to the (1) form we note that the two represen-

tations are equivalent when α = ((ρ− 1), 0)0 where α is (m+ 1)× 1 and also

Ã(L) = A (L)

⎛⎝ 1 −γ0

0 Im

⎞⎠ .
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These are precisely the restrictions on the full system that impose the assumed

knowledge over the system we are exploiting and also the correct normalization on

the root of interest when testing for a unit root in the known cointegrating vector .

First, since Ã(L) is a rotation of A(L) then the roots of each lag polynomial are

equivalent and hence Assumption 2 rules out the possibility of other unit roots in the

system. Second, the normalization of the first element of α to (1− ρ) merely ensures

that the root that we are testing is correctly scaled under the alternative.

The important restriction is setting elements 2 through m+1 of α to zero, which

is the typical assumption in the triangular form. This restriction is precisely the

restriction that xt are constrained to be I(1) under the null and alternative – this

is the known information that the testing procedures developed here are intended to

exploit. We assume that xt is I(1) in the sense that the weak limit of T−1/2x[T ·] is

a Brownian motion under the null and local alternatives of the form ρ = 1 + T−1c,

where c is a fixed constant.

To see this, we show that if zt is generated by (4) and Assumptions 1-3 hold,

then xt is I(1) under local alternatives only if α = (ρ− 1) (1, 00)0 . Now suppose zt is

generated by (4) and let α = (ρ− 1) (1, α0x)
0 . Then

∆

⎛⎝ β0zt

xt

⎞⎠ = (ρ− 1)

⎛⎝ 1− γ0αx

αx

⎞⎠β0zt−1 +

⎛⎝ vy,t

vx,t

⎞⎠ , (5)

where vt =
¡
vy,t, v

0
x,t

¢0
= A (L)−1 εt. Using the fact that T−1/2

P[T ·]
t=1 vt ⇒ B (·) , where

B = (By, B
0
x)
0 is a Brownian motion with covariance matrix Ω = A (1)−1ΣA (1)−10

and ⇒ denotes weak convergence, it is easy to show that T−1/2
P[T ·]

t=1 (β
0zt)⇒ Bc

y (·)

and hence
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T−1/2x[T ·] = cαxT
−1

[T ·]X
t=1

T−1/2 (β0zt−1) + T−1/2
[T ·]X
t=1

vx,t

⇒ cαx

Z ·

0

Bc
y (s) ds+Bx (·)

under local alternatives ρ = 1 + T−1c, where Bc
y (r) =

R r
0
exp (c (r − s)) dBy (s) . The

process on the last line is a Brownian motion if and only if cαx = 0. As a consequence,

xt is I(1) under local alternatives if and only if αx = 0, as claimed. It follows from

the foregoing discussion that if αx was nonzero in (5) , then we would have that

xt is I(1) under the null hypothesis while under the alternative hypothesis we would

suddenly have a small but asymptotically non-negligible persistent component in∆xt.

This would be an artificial difference between the null and alternative models that is

unlikely to map into any real life problem.

A second form of the model is the error correction model (ECM) representation

of the model

∆zt = α∗β0zt−1 +A∗ (L)∆zt−1 + εt, (6)

where A∗(L) is a lag polynomial of order k. Under the restrictions we are imposing

α∗ = Ã(1)α = (ρ− 1)

⎛⎝ A11(1)

A21(1)

⎞⎠ (7)

where we have partitioned A(L) after the first row and column. From this formulation

we are able to see that xt is weakly exogenous for γ if and only if A (1) is block upper

6



triangular when partitioned after the first row and column (i.e. elements 2 through

m+1 of the first column of A (1) are equal to zero). Thus the ’directional’ restriction

we place on α and the restriction on the ECM implicit in the triangular representation

are distinct from the assumption of weak exogeneity. They only become equivalent

when there is no serial correlation (i.e. when A (L) = Im+1). We do not impose weak

exogeneity in general.

Finally, our model can be written as

A (L)

⎛⎝ (1− ρL)Yt

Xt

⎞⎠ = εt, (8)

where Yt = yt − γ0xt and Xt = ∆xt. In other words, the model can be represented

as a VAR model of the form examined in Elliott and Jansson (2003). Apart from

deterministic terms, the testing problem studied here is therefore isomorphic to the

unit root testing problem studied in Elliott and Jansson (2003). In the next section,

we utilize the results of that paper to construct powerful tests for the testing problem

under consideration here.

3. Testing Potential Cointegrating Vectors with Known

Parameters for Nonstationarity

3.1. Existing Methods. There are a number of tests derived for the null hy-

pothesis considered in this paper. An initial approach (for the PPP hypothesis, see

for example Cheung and Lai (2000); for income convergence, see Greasley and Oxley

(1997) and, in a multivariate setting, Bernard and Durlauf (1995)) was to realize

that with γ known one could simply undertake a univariate test for a unit root in

yt − γ0xt. Any univariate test for a unit root in yt − γ0xt is indeed a feasible and

consistent test, however this amounts to examining (1) ignoring information in the
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remainingm equations in the model. As is well understood in the stationary context,

correlations between the error terms in such a system can be exploited to improve

estimation properties and the power of hypothesis tests. For the testing problem un-

der consideration here, we have that under both the null and alternative hypotheses

the remaining m equations can be fully exploited to improve the power of the unit

root test. Specifically, there is extra exploitable information available in the ‘known’

stationarity of ∆xt. (That such stationary variables can be utilized to improve power

is evident from the results of Hansen (1995) and Elliott and Jansson (2003)). The

key correlation that will describe the availability of power gains is the long-run (‘zero

frequency’) correlation between ∆uy,t and ∆ux,t. In the case where this correlation

is zero, an optimal univariate unit root test is optimal for this problem. Outside

of this special case many tests have better power properties. There is still a small

sample issue – univariate tests require fewer estimated parameters. This is analyzed

in small sample simulations in section 4.4.

For a testing problem analogous to ours, Zivot (2000) employs the covariate aug-

mented Dickey Fuller test of Hansen (1995) using ∆xt as a covariate. Hansen’s (1995)

approach extends the Dickey and Fuller (1979) approach to testing for a unit root by

exploiting the information in stationary covariates. These tests deliver large improve-

ments in power over univariate unit root tests, but they do not make optimal use of

all available information. The analysis of Zivot (2000) proceeds under the assumption

that xt is weakly exogenous for the cointegrating parameters γ under the alternative.

In addition, Zivot (2000, p. 415) assumes (as do we) that xt is I(1) . As discussed

in the previous section, these two assumptions are different in general even though

they are equivalent in the leading special case when there is no serial correlation (i.e.

when A (L) = Im+1). The theoretical analysis of Zivot (2000) therefore proceeds

under assumptions that are identical to ours in the absence of serial correlation and

strictly stronger than ours in the presence of serial correlation. Similarly, all local
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asymptotic power curves in Zivot (2000) are computed under assumptions that are

strictly stronger than ours in the presence of serial correlation.

One could also use a trace test to test for the number of cointegrating vectors when

the cointegrating vectors are prespecified. Horvath and Watson (1995) compute the

asymptotic distribution of the test under the null and the local alternative. The trace

test does exploit the correlation between the errors to increase power, but does not

do so optimally for the model we consider. We will show numerically below that the

power of Horvath and Watson’s (1995) test is always below the power of Elliott and

Jansson’s (2003) test when it is known that the covariates are I(1). All of the tests

we consider are able to distinguish alternatives other than the one we focus on in

this paper, however for none of these alternatives (say αx nonzero) are optimality

results available for any of the tests. This lack of any optimality result means that we

have no theoretical prediction as to which test is the best test for those models. This

implication is brought out in simulation results that show that the rankings between

the statistics change for various models when the assumption that xt is I(1) under

the alternative is relaxed.

3.2. Optimal Tests. The development of optimality theory for the testing prob-

lem considered here is complicated by the nonexistence of a uniformly most powerful

(UMP) test. Nonexistence of a UMP test is most easily seen in the special case where

γ = 0 and xt is strictly exogenous. In that case, our testing problem is simply that

of testing if yt has a unit root and it follows from the results of Elliott, Rothenberg

and Stock (1996) that no UMP invariant (to the deterministic terms) test exists. By

implication, a likelihood ratio test statistic constructed in the standard way will not

give tests that are asymptotically optimal. That the more general model is more

complicated than this special case will not override this lack of optimality on the

part of the likelihood ratio test. Elliott and Jansson (2003) therefore return to first

9



principles in order to construct tests that will enjoy optimality properties. Apart

from the test suggested here, none of the tests discussed in the previous section are

in the family of optimal tests discussed here except in special cases (i.e. particular

values for the nuisance parameters). This subsection describes the derivation of the

Elliott and Jansson (2003) test, the functional form of which is presented in the next

subsection.

Given values for the parameters of the model other than ρ (i.e. A (L) , µy, µx, τ y,

and τx) and a distributional assumption of the form εt ∼ i.i.d. F (·) (for some known

cdf F (·)), it follows from the Neyman-Pearson lemma that a UMP test of

H0 : ρ = 1 vs. Hρ̄ : ρ = ρ̄

exists and can be constructed as the likelihood ratio test between the simple hy-

potheses H0 and Hρ̄. Even in this special case the statistical curvature of the model

implies that the functional form of the optimal test statistic depends on the simple

alternative Hρ̄ chosen. To address this problem, one could follow Cox and Hink-

ley (1974, Section 4.6) and construct a test which maximizes power for a given size

against a weighted average of possible alternatives. (The existence of such a test

follows from the Neyman-Pearson lemma.) Such a test, with test statistic denoted

ψ
¡
{zt} , G|A (L) , µy, µx, τ y, τx, F

¢
, would then maximize (among all tests with the

same size) the weighted power function

Z
Prρ

¡
ψ rejects |A (L) , µy, µx, τ y, τx, F

¢
dG (ρ) ,

where G (·) is the chosen weighting function and the subscript on Pr denotes the dis-

tribution with respect to which the probability is evaluated. An obvious shortcoming
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of this approach is that all nuisance parameters of the model are assumed to be

known, as is the joint distribution of {εt} . Nevertheless, a variant of the approach is

applicable. Specifically, we can use various elimination arguments to remove the un-

known nuisance features from the problem and then construct a test which maximizes

a weighted average power function for the transformed problem.

To eliminate the unknown nuisance features from the model, we first make the

testing problem invariant to the joint distribution of {εt} by making a ‘least favor-

able’ distributional assumption. Specifically, we assume that εt ∼ i.i.d. N (0,Σ) .

This distributional assumption is least favorable in the sense that the power envelope

developed under that assumption is attainable even under the more general Assump-

tion 3 of the previous section. In particular, the limiting distributional properties of

the test statistic described below are invariant to distributional assumptions although

the optimality properties of the associated test are with respect to the normality as-

sumption. With other distributional assumptions further gains in power may be

available (Rothenberg and Stock (1997)) Next, we remove the nuisance parameters

Σ, A (L) , and µx from the problem. Under Assumption 2 and the assumption that

εt ∼ i.i.d. N (0,Σ) , the parameters Σ and A (L) are consistently estimable and (due

to asymptotic block diagonality of the information matrix) the asymptotic power of

a test that uses consistent estimators of Σ and A (L) is the same as if the true values

were employed. Under Assumption 1, the parameter µx does not affect the analysis

because it is differenced out by the known unit root in xt. For these reasons, we can

and will assume that the nuisance parameters Σ, A (L) , and µx are known.

Finally, we follow the general unit root literature by considering φ =
¡
µy, τ

0
x, τ y

¢0
to partially known and using invariance restrictions to remove the unknown elements

of φ. We will consider the following four combinations of restrictions.

Case 1: (no deterministics) µy = 0, τx = 0, τ y = 0.
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Case 2: (constants, no trend) τx = 0, τ y = 0.

Case 3: (constants, no trend in β0zt) τ y = 0.

Case 4: No restrictions.

The first of these cases corresponds to a model with no deterministic terms. The

second has no drift or trend in ∆xt but a constant in the cointegrating vector, and

the third case has xt with a unit root and drift with a constant in the cointegrating

vector. The no restrictions case adds a time trend to the cointegrating vector. Cases

1-4 correspond to cases 1-4 considered in Elliott and Jansson (2003). Elliott and

Jansson (2003) also consider the case corresponding to a model where ∆xt has a drift

and time trend. That case seems unlikely in the present problem so we will ignore it

(the extension is straightforward).

Having reduced the testing problem to a scalar parameter problem (involving only

the parameter of interest, ρ), it remains to specify the weighting function G (·) . We

follow the suggestions of King (1988) and consider a point optimal test. The weighting

functions associated with point optimal tests are of the form G(ρ) = 1 (ρ ≥ ρ̄) , where

1 (·) is the indicator function and ρ̄ is a prespecified number. In other words, the

weighting function places all weight on the single point ρ = ρ̄. By construction,

a test derived using this weighting function has maximal power against the simple

alternativeHρ̄ : ρ = ρ̄. As it turns out, it is possible to choose ρ̄ in such a way that the

corresponding point optimal test delivers ‘nearly’ optimal tests against alternatives

other than the specific alternativeHρ̄ : ρ = ρ̄ (against which optimal power is achieved

by construction). Studying a testing problem equivalent (in the appropriate sense) to

the one considered here, Elliott and Jansson (2003) found that the point optimal tests

with ρ̄ = 1 + c̄/T, where c̄ = −7 for all but the no restrictions model and c̄ = −13.5

for the model with a trend in the cointegrating vector, are ‘nearly’ optimal against a
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wide range of alternatives (in the sense of having ‘nearly’ the same local asymptotic

power as the point optimal test designed for that particular alternative).These choices

accord with alternatives where local power is 50% when xt is strictly exogenous. The

functional form of the point optimal test statistics will be given below.

The shape of the local asymptotic power function of our tests is determined by

an important nuisance parameter. This nuisance parameter, denoted R2, measures of

the usefulness of the stationary covariates ∆xt and is given by R2 = ω0xyΩ
−1
xxωxy/ωyy,

where

Ω =

⎛⎝ ωyy ω0xy

ωxy Ωxx

⎞⎠ = A (1)−1ΣA (1)−10

and we have partitioned Ω after the first row and column. Being a squared correlation

coefficient, R2 lies between zero and one. When R2 = 0, there is no useful information

in the stationary covariates, and so univariate tests on the cointegrating vector are

not ignoring exploitable information. The ’common factors’ restriction discussed in

Kremers et. al. (1992) provides an example of a model where R2 = 0.. As R2

gets larger, the potential power gained from exploiting the extra information in the

stationary covariates gets larger.

3.3. Our Method. Our proposed test statistic for cases i = 1, ..., 4, denoted

Λ̃i (1, ρ̄) , can be constructed by following the five step procedure described below.

The test based on Λ̃i (1, ρ̄) is a point optimal (invariant) test against a fixed alternative

ρ = ρ̄.

For r ∈ {1, ρ̄} , let
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Z1 (r) =

⎛⎝ y1 − γ0x1

0

⎞⎠ ,

Zt (r) =

⎛⎝ (1− rL) (yt − γ0xt)

∆xt

⎞⎠ , t = 2, . . . , T,

and

d1 (r) =

⎛⎝ 1 0 1

0 Im 0

⎞⎠0

,

dt (r) =

⎛⎝ 1− r 0 (1− rL) t

0 Im 0

⎞⎠0

, t = 2, . . . , T.

Step 1: Impose the null (ρ = 1) and estimate the VAR

Â (L) zt (1) = ddett + êt, t = k + 2, . . . , T,

where the deterministic terms are as according to the case under consideration

and we have dropped the first observation. (We drop this observation only in

this step.). From this regression, we obtain consistent estimates of the nuisance

parameters Ω and R2 :

Ω̂ =

⎛⎝ ω̂yy ω̂0xy

ω̂xy Ω̂xx

⎞⎠ = Â (1)−1 Σ̂Â (1)−10

and R̂2 = ω̂0xyΩ̂
−1
xx ω̂xy/ω̂yy, where Σ̂ = T−1

PT
t=k+2 êtê

0
t.

14



Step 2: Estimate the coefficients φ on the deterministic terms under the null and

alternative hypotheses. Each case i = 1, ..., 4 imposes a restriction of the form

(Im+2 − Si)φ = 0, where Si is a (m + 2) × (m + 2) matrix and S1 = 0,

S2 =

⎛⎝ 1 0

0 0

⎞⎠ , S3 =

⎛⎝ Im+1 0

0 0

⎞⎠ , and S4 = Im+2. For r ∈ {1, ρ̄} , the

formula for the case i estimate is

φ̂
i
(r) =

"
Si

Ã
TX
t=1

dt (r) Ω̂
−1dt (r)

0

!
Si

#− "
Si

TX
t=1

dt (r) Ω̂
−1zt (r)

#
,

where [·]− is the Moore Penrose inverse of the argument.

Step 3: Construct the detrended series under the null and alternative hypotheses.

For r ∈ {1, ρ̄} , let

ũit (r) = zt (r)− dt (r)
0 φ̂

i
(r) , t = 1, . . . , T.

Step 4: For r ∈ {1, ρ̄} , run the VAR

Ã (L) ũit (r) = ẽit (r) , t = k + 1, . . . , T,

and construct the estimated variance covariance matrices

Σ̃i(r) = T−1
TX

t=k+1

ẽit (r) ẽ
i
t (r)

0 .

Step 5: The test statistic is constructed as

Λ̃i (1, ρ̄) = T
³
tr
h
Σ̃i (1)−1 Σ̃i (ρ̄)

i
− (m+ ρ̄)

´
.
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The test rejects for small values of Λ̃i (1, ρ̄) . As noted above we suggest using the

alternatives ρ̄i = 1 + c̄i/T where c̄1 = c̄2 = c̄3 = −7 and c̄4 = −13.5. Critical values

for these tests are contained in Elliott and Jansson (2003) and reprinted in Table 1.

The critical values are valid under Assumptions 1-3.

TABLE 1 ABOUT HERE

The equivalence between our testing problem and that of Elliott and Jansson

(2003) enables us to use the results of that paper, reinterpreted in the setting of

our model, to show the upper power bound for tests for cointegration when the

cointegrating vector is known and the xt variables are known to be I(1). This power

bound is of practical value. First, it gives an objective standard to compare how

efficiently tests use the data. Second, it allows us to study the size of the loss in

power when the cointegrating vector is not known. Both of these examinations will

be undertaken in the following section.

4. Gains over Alternative Methods and Comparison of Losses From

Not Knowing the Cointegrating Vectors

The results derived above enable a number of useful asymptotic comparisons to be

made. First, there are a number of methods available to a researcher in testing

for the possibility that a pre-specified cointegrating vector is (under the null) not a

cointegrating vector. We can directly examine the relative powers of these methods in

relation to the envelope of possible powers for tests. (The nonexistence of a UMP test

for the hypothesis means that there is no test that has power identical to the power

envelope, however some or all of the tests may well have power close to this envelope

with the implication that they are ‘nearly’ efficient tests.) We examine power for

various values for R2. A second comparison that can be made is the examination of

the loss involved in estimating cointegrating vectors in testing the hypothesis that the

cointegrating vector does not exist. Pesavento (2003) examines the local asymptotic
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power properties of a number of methods that do not require the cointegrating vector

to be known. However, little is known regarding the extent of the loss involved

in knowing or not knowing the cointegrating vector. All results are for tests with

asymptotic size equal to 5%.

4.1. Relative Powers of Tests when the Cointegrating Vector is Known.

Figures 1 through 4 examine the case where the cointegrating vector of interest is

known, and we are testing for a unit root in the cointegrating vector (null of no

cointegration). As noted in Section 2, tests available for testing this null include

univariate unit root test methods, represented here by the ADF test of Dickey and

Fuller (1979) (note that the Zτ test of Phillips (1987) and Phillips and Perron (1988)

has the same local asymptotic power) and the PT test of Elliott et al. (1996). They

also include methods that exploit information in the covariates, which in addition

to the test presented above include Hansen’s (1995) CADF test and Horvath and

Watson (1995) Wald test. Because power is influenced by the assumptions on the

deterministics we present results for each of the four cases for the deterministics

(Figures 1 through 4 are cases 1 through 4 respectively). The power also depends on

R2, the squared zero frequency correlation between the shocks driving the potentially

cointegrating relation and the ‘X’ variables, respectively. We present three sets of

results for each case. Figures 1a through 1c are for the model with no deterministic

terms with R2 = 0, 0.3 and 0.5 respectively (and similarly for each of the other models

of the deterministic component).

FIGURES 1-4 ABOUT HERE

When R2 = 0 there is no gain in using the system methods over the univariate unit

root methods as there is no exploitable information in the extra equations. In this
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case the Elliott and Jansson (2003) test is equivalent to the PT test and the CADF

test has equivalent power to the ADF test. This is clear from Figures 1a, 2a, 3a, and

4a, where the power curves lie on top of each other for these pairs of tests. When there

are no deterministic terms, it has previously been shown (Stock (1994), Elliott et. al.

(1996)) that there is very little distinction between the power envelope, the PT test

and the ADF test. This is evident in Figure 1a, which shows all of the tests as having

virtually identical power curves to the power envelope. When there are deterministic

terms (the remaining cases), these papers show that the PT test remains close to the

power envelope whilst the ADF test has lower power. This is also clear from the

results in Figures 2a, 3a, and 4a. As the equivalence between the test presented here

and the PT test holds (as does the equivalence between CADF and ADF), the test

presented herein has similarly better power than the CADF test.

In all cases when R2 > 0, the multivariate tests have extra information to exploit.

In parts b and c of Figures 1 through 4 we see that the power of the test presented

herein is greater than that of the PT test (and the power of the CADF test is greater

than that of the ADF test). As was to be expected, these differences are increasing

as R2 gets larger. The differences are smaller when there is a trend in the potentially

cointegrating relation (case 4) than when the specification restricts such trends to be

absent (cases 1-3). There is a trade-off between using the most efficient univariate

method (the PT statistic) and using the system information inefficiently (the CADF

statistic and the Horvath and Watson (1995) Wald test). In Figure 2b we see that

the PT test has power in excess of the CADF test, whereas the ranking is reversed

in Figure 2c, where the system information is stronger. In the model with a trend in

β0zt the reversal of the ranking is already apparent when R2 = 0.3, implying that the

relative value of the system information is larger in that case.

In all of the models, the power functions for the Elliott and Jansson (2003) tests

are quite close to the power envelopes. In this sense they are ‘nearly’ efficient tests.
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For the choices of the point alternatives suggested above, there is some distinction

between the power curve and the power envelope in the model where the cointegrating

vector has a trend and R2 is very large (not shown in the figures). However, this

appears to be an unlikely model in practice. The power is adversely affected by

less information on the deterministic terms (this is a common result in the unit root

testing literature). We can see this clearly by holding R2 constant and looking across

the figures. Comparing the constants only model to the model where there is a trend

in the cointegrating vector when R2 = 0.3, we have that the test achieves power at

50% for c around 4.9 when there are constants only, whereas with trends this requires

a c around 8.8, a more distant alternative. This difference essentially means that

in the model with a trend in the cointegrating vector we require about 80% more

observations to achieve power at 50% against the same alternative value for ρ.

Also in all models, the test presented herein has higher power than the CADF

test for the null hypothesis. Again using the comparisons at power equal to 50%, we

have that in the model with constants only and R2 = 0.3 we would require 80% more

observations for the same power at the same value for ρ. As R2 rises, this distinction

lessens. When R2 = 0.5, the extra number of observations is around 60%. The

distinctions are smaller when trends are possibly present. When R2 = 0.3 we would

require only 28% more observations when there is a trend in β0zt, whilst if R2 = 0.5

this falls to 15%. For these alternatives the Horvath and Watson test tends to have

lower power, although as noted this test was not designed directly for this particular

set of alternatives.

Overall, large power increases are available through employing system tests over

univariate tests except in the special case of R2 very small. Since this nuisance

parameter is simply estimated, it seems that one could simply evaluate for a particular

study the likely power gains using the system tests from the graphs presented.
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4.2. Power LossesWhen the Cointegrating Vector is Unknown. When the

parameters of the cointegrating vector of interest are not specified, they are typically

estimated as part of the testing procedure. Methods to do this include the Engle

and Granger (1987) two step method of estimating the cointegrating vector and then

testing the residuals for a unit root using the ADF test, and the Zivot (2000) or

Boswijk (1994) tests in the error correction models. One could also simply use a

rank test, testing the null hypothesis of m+ 1 unit roots versus m unit roots. These

tests include the Johansen (1988, 1995) and Johansen and Juselius (1990) methods,

and the Harbo et al. (1998) rank test in partial systems. The Zivot (2000) test is

equivalent to Banerjee, Dolado, Hendry, and Smith’s (1986) and Banerjee, Dolado,

Galbraith, and Hendry’s (1993) t-test in a conditional error correction model with

unknown cointegration vector (ECR thereafter). Additionally, for the case examined

in this paper in which the right-hand variables are not mutually cointegrated and

there is at most one cointegration vector, the Harbo, Johansen, Nielsen, and Rahbek

(1998) rank test is equivalent to Boswijk’s (1994) Wald test. The rank tests are not

derived under the assumption that xt is I(1) , implying that they spread power (in

an arbitrary and random way) amongst the alternatives we examine here as well as

alternatives in the direction of one (or more) of the xt variables being stationary.

Although the rank tests do not make optimal use of the information about xt, these

tests will of course still be consistent against the alternatives considered in this paper.

We will see numerically that the lack of imposing the information on xt comes at a

relatively high cost.

Pesavento (2003) gives a detailed account of the abovementioned methods and

computes power functions for tests of the null hypothesis that there is no cointe-

grating vector. The powers of the tests are found to depend asymptotically on the

specification of the deterministic terms and R2, just as in the known cointegrating

vector case. Pesavento (2003) finds that the error correction methods outperform the
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other methods for all models, and the ranking between the Engle and Granger (1987)

method and the Johansen (1988, 1995) methods depends on the value for R2, the

first method (a univariate method) being useful when there is little extra information

in the remaining equations of the system (i.e. when R2 is small) and the Johansen

full system method being better when the amount of extra exploitable information is

substantial.

The absolute loss from not knowing the cointegrating vector can be assessed by

examining the difference between the power envelope when the cointegrating vector

is known versus the power functions for these tests. The quantification of this gap

is useful for researchers in examining results where one estimates the cointegrating

vector even though theory specifies the coefficients of the vector (a failure to reject

may be due to a large decrease in power) and also provide guidance for testing in

practice when one has a vector and does not know if they should specify it for the

test. In this case, if the power losses are small, then it would be prudent not to

specify the coefficients of the cointegrating vector but instead estimate it.

FIGURES 5-7 ABOUT HERE

Figures 5 through 7 show the results for these power functions for values for R2 = 0,

0.3, and 0.5, respectively. Each figure has two panels, the first for the model with

constants only and the second for the model with a trend in the cointegrating vector.

The first point to note is that in all cases, the gap between the power envelope when

the coefficients of the cointegrating vector are known and the best test is very large.

This means that there is a large loss in power from estimating the cointegrating

vector. Comparing the first and second panels for each of these figures, we see that

additional deterministic terms (trend versus constant) results in a smaller gap. This

is most apparent when R2 = 0 and lessens as R2 gets larger. In case 2, when R2 = 0.3
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(Figure 6, panel a) at c = −5 we have power of 53% for the power envelope and just

13% for the best test examined that does not have the coefficients of the cointegrating

vector known (the ECR test). In case 2 with R2 = 0.3, we have that at c = −5 the

envelope is 53% but power of the ECR test is 13% as noted above. For the model

with trends the envelope is 24% and power of the ECR test is 8%. The difference

falls from 40% to 16%. In general for the model with trends the power curves tend

to be closer together than in the model with constants only, compressing all of the

differences.

As R2 rises, the gap between the power envelope and the power of the best test

falls. This is true for both cases. In the constants only model when R2 = 0 we have

at c = −10 we have 79% power for the envelope and 27% power for the ECR test.

When R2 increases to 0.5, we have power for the envelope of 98% and 54% for the

ECR test. The difference falls from 52% to 44%.

4.3. Power of the Test When αx is Different From Zero in Equation (5).

Although the assumption that xt is I(1) under both the null and local alternative

is a reasonable assumption in the context of cointegration, we can also examine the

sensitivity of the proposed tests to different values of αx in equation (5) . Recall

that for these models xt is I(1) under the null but under the alternative has a small

additional local to I(2) component. We simulate equation (5) with scalar xt and

β = (1,−1)0 :

∆ (yt − xt) = (ρ− 1) (yt−1 − xt−1) + vy,t,

∆xt = (ρ− 1)αx (yt−1 − xt−1) + vx,t.
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The error process vt = (vy,t, vx,t)
0 is generated by the VAR(1) model

vt = Avt−1 + εt, A =

⎛⎝ 0.3 0.2

0.1 0.2

⎞⎠ ,

where εt ∼ i.i.d.N (0,Σ) andΣ is chosen in such a way thatΩ = (I2 −A)−1Σ (I2 −A)−10 ,

the long-run variance covariance matrix of vt, is given by

Ω =

⎛⎝ 1 R

R 1

⎞⎠ ,

where R ∈ [0, 1) is the positive square root of R2, the nuisance parameter that

determines asymptotic power (when αx = 0).

The system can be written as

∆ (yt − xt) = (ρ− 1) (1−Rαx) (yt−1 − xt−1) +R∆xt +
√
1−R2ηy,t, (9)

∆xt = (ρ− 1)αx (yt−1 − xt−1) + ηx,t, (10)

where ηt =
¡
ηy,t, ηx,t

¢0
= Ω−1/2vt has long-run variance covariance matrix I2. In this

example, if ρ < 1 but Rαx > 1, the error correction term, yt−1, is not mean reverting

and tests based on equation (9) will be inconsistent (see also Zivot (2000, page 429)).

For this reason, only values for αx such that Rαx < 1 will be considered.

The number of lags (one) is assumed known (for the Hansen (1995) and Zivot

(2000) tests one lead of ∆xt is also included). The regressions are estimated for the

models with no deterministic terms, with constants only, and with no restrictions.
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We do not report results for case 3 as they are similar to the included results. The

sample size is T = 1, 500 and 10, 000 replications are used.

TABLES 2-4 ABOUT HERE

Tables 2 though 4 report the rejection rates for various values of αx. The rejection

rates for c = 0 do not vary with αx and are not reported as they equal 0.05. When

αx = 0, the power of Elliott and Jansson (2003) test is higher than the power of any

other tests, including the Horvath and Watson (1995) test. In the simulated DGP,

A is not lower triangular, so αx = 0 does not coincide with weak exogeneity. The

Elliott and Jansson (2003) test exploits the information contained in the covariates

in an optimal way and therefore rejects the null hypothesis with higher probability

than Horvath and Watson’s (1995) test.

When αx is positive, the root of yt in equation (9) is larger (in our simulations

ωxy is positive so Rαx > 0), so all the tests based on equation (9) will have smaller

power, as will the test proposed herein. For positive but small values of αx, Elliott

and Jansson’s (2003) test still performs relatively well compared to other tests. Only

when there are no deterministic terms and R2 is zero, the proposed test rejects a

false null with probability smaller than Hansen’s (1995) CADF test. As αx increases,

Horvath and Watson’s (1995) trace test outperforms the other tests in most cases.

When the deterministic terms include a constant, but not a trend, Elliott and Jansson

(2003) test has power similar to Horvath and Watson (1995) test in a neighborhood

of the null.

The PT test of Elliott et al. (1996) does not use the information in the covariates

and the power for αx = 0 is lower than Elliott and Jansson’s (2003) test when R2 is

different than zero. Given that the PT test is based on the single equation, it is not

sensitive to αx and it rejects with higher probability than Elliott and Jansson’s (2003)
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test for large positive values of αx when R2 is positive. Finally, the test proposed by

Zivot (2000) rejects the null with lower probability than Elliott and Jansson’s (2003)

test for any value of αx. This is not surprising given that Zivot’s test does not fully

utilize the information that the cointegrating vector is known.

When αx is negative, the coefficient for the error correction term in the conditional

equation is further away from zero, and all the tests rejects the null of no cointegration

more often with Elliott and Jansson (2003) test having the highest power as soon as

R2 departs from zero.

4.4. Small Sample Comparisons. The results of the previous sections show

that the Elliott and Jansson (2003) family of tests has optimality properties when

applied in the context of model (1) − (3) and has asymptotic power that depends

on the nuisance parameter R2. Although the particular estimator used to estimate

the nuisance parameters does not affect the asymptotic distributions under the local

alternatives, the finite sample properties of tests for no cointegration can be sensitive

to the choice of the estimation method. To study the small sample behavior of the

proposed test, we simulate equation (5) with scalar xt, αx = 0, and β = (1,−1)0 :

∆ (yt − xt) = (ρ− 1) (yt−1 − xt−1) + vy,t,

∆xt = vx,t.

The error process vt = (vy,t, vx,t)
0 is generated by the VARMA(1,1) model

(I2 −AL) vt = (I2 +ΘL) εt,

where
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A =

⎛⎝ a1 a2

a2 a1

⎞⎠ , Θ =

⎛⎝ θ1 θ2

θ2 θ1

⎞⎠ ,

and εt ∼ i.i.d. N (0,Σ) , where Σ is chosen in such a way that the long-run variance

covariance matrix of vt satisfies

Ω = (I2 −A)−1 (I2 +Θ)Σ (I2 +Θ)0 (I2 −A)−10 =

⎛⎝ 1 R

R 1

⎞⎠ , R ∈ [0, 1) .

The number of lags and leads is estimated by BIC on a VAR on the first differences

(under the null) with a maximum of 8 lags. For case 2, the regressions are estimated

with a mean. For the model with a trend in the cointegrating vector, the regressions

are estimated with a mean and trend (results for other cases were similar). The

sample size is T = 100 and 10,000 replications are used.

TABLES 5-6 ABOUT HERE

Tables 5 and 6 compare the small sample size of Elliott and Jansson’s (2003) test and

Hansen’s (1995) CADF test for various values of Θ and A. To compute the critical

values in each case we estimate the value of R2 as suggested by Elliott and Jansson

(2003) and Hansen (1995). Overall the Elliott and Jansson (2003) test is worse in term

of size performance than the CADF test. This is the same type of difference found

between the PT and DF tests in the univariate case, so is not surprising given that

these methods are extensions of the two univariate tests respectively. The difference

between the two tests is more evident for large values of R2 and for the case with no

trend. When Θ is nonzero both tests present size distortions that are severe in the
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presence of a large negative moving average root (as is the case for unit root tests),

emphasizing the need of proper modeling of the serial correlation present in the data..

5. Cointegration Between Forecasts and Outcomes

There are a number of situations where if there is a cointegrating vector we have

theory that suggests the form of the cointegrating vector. In the purchasing power

parity literature, the typical assumption is that logs of the nominal exchange rate,

home and foreign prices all have unit roots and the real exchange rate does not.

The real exchange rate is constructed from the I (1) variables with the cointegrating

vector (1, 1,−1)0. In examining interest rates, term structure theories often imply

a cointegrating structure of (1,−1)0 between interest rates of different maturities

(however one might find it difficult to believe that the log interest rate is unbounded,

and hence is unlikely to have a unit root).

Another example is forecasts and outcomes of the variable of interest. Since many

variables that macroeconomists would like to forecast have trending behavior, often

taken to be unit root behavior, some researchers have examined whether or not the

forecasts made in practice are indeed cointegrated with the variable being forecast.

The expected cointegrating vector is (1,−1)0 , implying that the forecast error is

stationary. This has been undertaken for exchange rates (Liu and Maddala (1992))

and macroeconomic data (Aggarwal, Mohanty and Song (1995)). In the context

of macroeconomic forecasts, Cheung and Chinn (1999) also relax the cointegrating

vector assumption.

The requirement that forecasts be cointegrated with outcomes is a very weak

requirement. Note that the forecasters information set includes the current value

of the outcome variable. Since the current value of the outcome variable is trivially

cointegrated with the future outcome variable to be forecast (they differ by the change,

which is stationary) then the forecaster has a simple observable forecast that satisfies
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the requirement that the forecast and outcome variable be cointegrated. We can also

imagine what happens under the null hypothesis of no cointegration. Under the null,

forecast errors are I(1) and hence become arbitrarily far from zero with probability

one. It is hard to imagine that a forecaster would stick with such a method when the

forecast becomes further from the current value of the outcome than typical changes

in the outcome variable would suggest are plausible.

FIGURE 8 ABOUT HERE

This being said, of course it is useful that tests reject the hypothesis of no cointegra-

tion and quite indicative of power problems if they do not. Here we employ forecasts

of the price level from the Livingston data set over the period 1971 to 2000. The sur-

vey recipients forecast the consumer price index six months ahead. Figure 8 shows

the forecast errors. As the variables are indexes a value of 1 is a 1% difference relative

to the base 1982-1984. Forecast errors at different times have been quite large, espe-

cially around the times of the oil shocks in the 1970’s. They have been smaller and

more often negative over the last two decades - this was a period of falling inflation

rates which appears to have induced the error on average of overestimating prices.

There is no indication from the data that the errors are getting larger in variance

over time, although there are long swings in the forecast errors that may lead lower

power tests into failing to reject the hypothesis that the forecast error does not have

a unit root.

TABLE 7 ABOUT HERE

Indeed, the Dickey and Fuller (1979) test is unable to reject a unit root in the forecast

error, even at the 10% level. This is shown in Table 7, which provides the results of

the test in column 1. We have allowed under the alternative for a nonzero mean (i.e.
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the constant included case of the test). Commonly employed multivariate tests do

a little better. The Horvath and Watson (1995) test fails to reject at the 10% level,

while the CADF test rejects at 5% but not the 1% level. Thus, even though the null

hypothesis is an extremely weak requirement of the data, the forecasts fail the test

in most cases. However, the problem could be one of power rather than extremely

poor forecasting. This is further backed up by the Elliott et. al. (1996) tests, which

reject at the 5% level but not at the 1% level. The p-value for the PT test is 0.02.

TABLE 8 ABOUT HERE

The first two columns of Table 8 presents results for the Elliott and Jansson (2003)

test under the assumption that the change in the forecasts is on the right hand side

of the cointegrating regression. Our X variable is chosen to be price expectations.

Results are similar when prices are chosen as the X variable, as reported in Table 8.

We are examining case 3 from the paper, i.e. the statistic is invariant to a mean in

the change in forecasts (so this variable has a drift, prices rise over time suggesting

a positive drift) and a mean in the quasi difference of the cointegrating vector under

the alternative. For there to be gains over univariate tests, the R2 value should be

different from 0. Here we estimate R2 to be 0.19, suggesting there are gains from using

this multivariate approach. Comparing the statistic developed here with its critical

value we are able to reject not only at the 5% level but at the 1% level. Comparing

this results with those for the previous tests, we see results that we may have expected

from the asymptotic theory. Standard unit root tests have low power (and we do not

reject with DF). We can improve power through using additional information such

as using CADF or through more efficient use of the data through PT . In these cases

we do reject at the 5% level. Finally, using the additional information and using all

information efficiently, where we expect to have the best power, we reject at not only
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the 5% level but also at the 1% level. We are able to reject that the cointegrating

vector has a unit root and conclude that the forecast errors are indeed mean reverting,

a result not available with current multivariate tests and less assured from the higher

power univariate tests.

As a robustness check, we also tested the data for a unit root allowing for a break

at unknown time. The forecast errors in Figure 8 appear to have a shift in the level

around 1980 to 1983 that could lower the probability of rejection of conventional tests.

To test the data for a unit root with break, we use Perron and Vogelsang (1992) test.

Denote DUt = 1 if t > Tb and 0 otherwise, where Tb is the break date. Following

Perron and Vogelsang (1992) we first remove the deterministic part of the series for

a given break Tb by estimating the regression

yt = µ+ δDUt + eyt.
The unit root test is then computed as the t-test for α = 1 in the regression

eyt = kX
i=0

ωiD(TB)t−1 + αeyt−1 + kX
i=1

ci∆eyt−1 + et

where D (TB)t = 1 if t = Tb = 1 and 0 otherwise.

TABLE 9 ABOUT HERE

Panel A in Table 9 corresponds to the case in which the break is estimated as the

date that minimizes the t-statistics tσ̂ in the unit root test. The number of lags is

chosen for a given break such that the coefficient on the last included lag of the first

differences of the data is significant at 10% level (for details, see Perron and Vogelsang
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(1992)). Panel B corresponds to the case in which the break is chosen to minimize

the t-statistics testing δ = 0 in the first regression.

As the table shows, standard methods reject for some cases but not everywhere.

When the break is chosen to minimize the t-statistic in the unit root test, the unit

root with break test rejects at 10% level. When the break is chosen as the date that

minimizes the t-statistic in the regression for the deterministic, we cannot reject the

unit root hypothesis. Overall it appears that if there is a break, it is small. This is

all the more reason to employ tests that use the data as efficiently as possible.

6. Conclusion

This paper examines the idea of testing for a unit root in a cointegrating vector

when the cointegrating vector is known and the variables are known to be I(1) . Early

studies simply performed unit root tests on the cointegrating vector, however this

approach omits information that can be very useful in improving power of the test

for a unit root. The restrictions placed on the multivariate model for this ‘known

a priori’ information renders the testing problem equivalent to that in Elliott and

Jansson (2003), and so those tests are employed here. Whilst there exists no uni-

formly most powerful test for the problem, the point optimal tests derived in that

paper and appropriate here are amongst the asymptotically admissible class (as they

are asymptotically equivalent to the optimal test under normality at a point in the

alternative) and were shown to perform well in general.

The method is quite simple, requiring the running of a vector autoregression to

estimate nuisance parameters, detrending the data (under both the null and the

alternative) and then running two vector autoregressions, one on the data detrended

under the null and another based on the data detrended under the alternative. The

statistic is then constructed from the variance covariance matrices of the residuals of

these vector autoregressions.
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We then applied the method to examine the cointegration of forecasts of the price

level with the actual price levels. The idea that forecasts and their outcomes are

cointegrated with cointegrating vector (1,−1)0 (so forecast errors are stationary) is a

very weak property. It is difficult to see that such a property could be violated by

any serious forecaster. The data we examine here is six month ahead forecasts from

the Livingston data for prices from 1971-2000. However, most simple univariate tests

and some of the more sophisticated multivariate tests currently available to test the

proposition do not reject the null that the forecast errors have a unit root. The tests

derived here are able to reject this hypothesis with a great degree of certainty.

7. Appendix: Notes on the Data

The current CPI is the non seasonally adjusted CPI for all Urban Consumers from the

Bureau of Labor and Statistics (code CUUR0000SA0) corresponding to the month

being forecasted. All the current values for the CPI are in 1982-1984 base year

The forecasts CPI data are the six month price forecasts from the Livingston

Tables at the Philadelphia Fed from June 1971 to December 2001. The survey is

conducted twice a year (early June and early December) to obtain the six month

ahead forecasts from a number of respondents. The number of respondents varies for

each survey so each forecast in our sample is computed as the average of the forecasts

from all the respondents from each survey. The data in the Livingston Tables are

available in 1967 base up to December 1987 and 1982-1984 base thereafter. Given

that there are not overlapping forecasts at both base years, we transformed all the

forecasts to a 1982-1984 base as follows. We first computed the average of the actual

values for the 1982-1984 base CPI for the year 1967. We then used this value to

multiply all the forecasts prior to 1987 to transform the forecasts to a 1982-1984

base.

At the time of the survey the respondents were also given current figures on which
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to base their forecasts. The surveys are sent out early in the month so the available

information to the respondents for the June and December survey are, respectively,

April and October. For this reason, although traditionally the forecasts are denoted

as 6 month ahead forecasts, they are truly 7 month ahead forecasts. Carlson (1977)

presents a detailed description of the issues related with the price forecasts from the

Livingston Survey.
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Figure 1a: Asymptotic Power, R2 = 0, No deterministic terms.
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Figure 1b: Asymptotic Power, R2 = 0.3, No deterministic terms.
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Figure 1c: Asymptotic Power, R2 = 0.5, No deterministic terms.
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Figure 2a: Asymptotic Power, R2 = 0, Constants, no Trend.
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Figure 2b: Asymptotic Power, R2 = 0.3, Constants, no Trend.
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Figure 2c: Asymptotic Power, R2 = 0.5, Constants, no Trend.
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Figure 3a: Asymptotic Power, R2 = 0, Constants, no Trend in the Cointegrating Vector.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

-c

Po
w

er

EJ

CADF

PT

ADF

ENVELOPE

HW

Figure 3b: Asymptotic Power, R2 = 0.3, Constants, no Trend in the Cointegrating Vector.
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Figure 3c: Asymptotic Power, R2 = 0.5, Constants, no Trend in the Cointegrating Vector.

39



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

-c

Po
w

er

EJ

CADF

PT

ADF

ENVELOPE

HW 

Figure 4a: Asymptotic Power, R2 = 0, No Restrictions in the Deterministic Terms.
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Figure 4b: Asymptotic Power, R2 = 0.3, No Restrictions in the Deterministic Terms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

-c

Po
w

er

EJ

CADF

PT

ADF

ENVELOPE

HW 

Figure 4c: Asymptotic Power, R2 = 0.5, No Restrictions in the Deterministic Terms.
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Figure 5a: Asymptotic Power Known and Unknown Cointegration Vector, R2 = 0,
Constants, no Trend.
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Figure 5b: Asymptotic Power Known and Unknown Cointegration Vector, R2 = 0, No
Restrictions in the Deterministic Terms.
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Figure 6a: Asymptotic Power Known and Unknown Cointegration Vector, R2 = 0.3,
Constants, no Trend.
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Figure 6b: Asymptotic Power Known and Unknown Cointegration Vector, R2 = 0.3, No
Restrictions in the Deterministic Terms.
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Figure 7a: Asymptotic Power Known and Unknown Cointegration Vector,
R2 = 0.5,Constants, no Trend.
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Figure 7b: Asymptotic Power Known and Unknown Cointegration Vector, R2 = 0.5, No
Restrictions in the Deterministic Terms.
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Table 1: Critical Values
R2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Cases 1,2 3.34 3.41 3.54 3.76 4.15 4.79 5.88 7.84 12.12 25.69

Case 3 3.34 3.41 3.54 3.70 3.96 4.41 5.12 6.37 9.17 17.99

Case 4 5.70 5.79 5.98 6.38 6.99 7.97 9.63 12.6 19.03 41.87
Notes: These are reprinted from Elliott and Jansson (2003).
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Table 2: Rejection Rates when αx 6= 0 in equation (5) , No deterministic terms.

EJ HW CADF Zivot PT

αx R2\c -5 -10 -5 -10 -5 -10 -5 -10 -5 -10

0 0.33 0.76 0.43 0.89 0.28 0.63 0.14 0.32 0.30 0.73

−1 0.3 0.93 1.00 0.82 1.00 0.93 1.00 0.50 0.98 0.29 0.72

0.5 0.99 1.00 0.94 1.00 0.99 1.00 0.76 1.00 0.29 0.72

0 0.33 0.76 0.25 0.64 0.30 0.69 0.16 0.38 0.30 0.73

−0.5 0.3 0.77 0.99 0.56 0.95 0.78 0.99 0.32 0.86 0.29 0.72

0.5 0.93 1.00 0.77 0.99 0.92 1.00 0.49 0.96 0.29 0.72

0 0.33 0.76 0.18 0.49 0.32 0.75 0.18 0.45 0.30 0.73

0 0.3 0.51 0.92 0.29 0.72 0.50 0.90 0.21 0.58 0.29 0.72

0.5 0.68 0.98 0.43 0.88 0.67 0.96 0.25 0.72 0.29 0.72

0 0.33 0.76 0.25 0.64 0.35 0.81 0.19 0.48 0.30 0.73

0.5 0.3 0.29 0.61 0.18 0.49 0.26 0.57 0.14 0.31 0.29 0.72

0.5 0.36 0.73 0.20 0.54 0.31 0.61 0.13 0.30 0.29 0.72

0 0.33 0.76 0.44 0.89 0.39 0.86 0.19 0.50 0.30 0.73

1 0.3 0.15 0.26 0.26 0.66 0.13 0.25 0.08 0.14 0.29 0.72

0.5 0.16 0.27 0.22 0.59 0.11 0.17 0.06 0.09 0.29 0.72

0 0.33 0.76 0.59 0.97 0.41 0.88 0.19 0.51 0.30 0.73

1.3 0.3 0.10 0.14 0.39 0.85 0.09 0.14 0.06 0.08 0.29 0.72

0.5 0.10 0.12 0.36 0.82 0.05 0.06 0.04 0.04 0.29 0.72

0 0.33 0.76 0.64 0.98 0.42 0.89 0.19 0.52 0.30 0.73

1.4 0.3 0.09 0.11 0.44 0.89 0.08 0.12 0.05 0.06 0.29 0.72

0.5 0.08 0.09 0.42 0.88 0.04 0.04 0.03 0.03 0.29 0.72
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Table 3: Rejection Rates when αx 6= 0 in equation (5) , Constants, no trend.

EJ HW CADF Zivot PT

αx R2\c -5 -10 -5 -10 -5 -10 -5 -10 -5 -10

0 0.34 0.76 0.19 0.59 0.11 0.24 0.10 0.19 0.30 0.73

−1 0.3 0.94 1.00 0.48 0.96 0.61 0.98 0.28 0.85 0.30 0.73

0.5 0.99 1.00 0.72 0.99 0.89 1.00 0.50 0.98 0.29 0.72

0 0.34 0.76 0.12 0.31 0.11 0.27 0.10 0.22 0.30 0.73

−0.5 0.3 0.78 1.00 0.25 0.74 0.38 0.88 0.17 0.58 0.30 0.73

0.5 0.93 1.00 0.43 0.93 0.66 0.98 0.26 0.82 0.29 0.72

0 0.33 0.76 0.10 0.23 0.12 0.31 0.11 0.24 0.30 0.73

0 0.3 0.53 0.92 0.13 0.38 0.21 0.56 0.11 0.32 0.30 0.73

0.5 0.69 0.98 0.19 0.59 0.35 0.79 0.13 0.44 0.29 0.72

0 0.33 0.76 0.12 0.32 0.13 0.35 0.12 0.27 0.30 0.73

0.5 0.3 0.30 0.61 0.09 0.24 0.11 0.25 0.09 0.18 0.30 0.73

0.5 0.38 0.74 0.10 0.26 0.14 0.32 0.08 0.17 0.29 0.72

0 0.34 0.76 0.19 0.59 0.14 0.40 0.13 0.31 0.30 0.73

1 0.3 0.16 0.27 0.11 0.34 0.05 0.09 0.07 0.10 0.30 0.73

0.5 0.17 0.29 0.11 0.29 0.05 0.07 0.06 0.07 0.29 0.72

0 0.34 0.76 0.27 0.77 0.15 0.43 0.13 0.32 0.30 0.73

1.3 0.3 0.11 0.15 0.17 0.53 0.04 0.05 0.05 0.06 0.30 0.73

0.5 0.10 0.13 0.15 0.49 0.03 0.02 0.04 0.03 0.29 0.72

0 0.34 0.76 0.31 0.82 0.15 0.44 0.14 0.33 0.30 0.73

1.4 0.3 0.09 0.12 0.19 0.61 0.03 0.04 0.05 0.05 0.30 0.73

0.5 0.08 0.10 0.18 0.58 0.02 0.02 0.03 0.02 0.29 0.72
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Table 4: Rejection Rates when αx 6= 0 in equation (5) , No restrictions.
EJ HW CADF Zivot PT

αx R2\c -5 -10 -5 -10 -5 -10 -5 -10 -5 -10

0 0.12 0.32 0.13 0.41 0.08 0.15 0.08 0.13 0.10 0.27

−1 0.3 0.51 0.98 0.31 0.87 0.40 0.93 0.13 0.56 0.09 0.26

0.5 0.75 1.00 0.51 0.98 0.74 0.99 0.21 0.85 0.09 0.26

0 0.12 0.31 0.09 0.22 0.08 0.17 0.08 0.15 0.10 0.27

−0.5 0.3 0.33 0.87 0.16 0.56 0.24 0.69 0.09 0.32 0.09 0.26

0.5 0.50 0.98 0.26 0.81 0.48 0.94 0.12 0.52 0.09 0.26

0 0.11 0.31 0.08 0.16 0.09 0.19 0.08 0.16 0.10 0.27

0 0.3 0.20 0.56 0.10 0.26 0.13 0.36 0.08 0.18 0.09 0.26

0.5 0.28 0.77 0.13 0.40 0.23 0.62 0.08 0.22 0.09 0.26

0 0.11 0.31 0.09 0.22 0.09 0.21 0.09 0.18 0.10 0.27

0.5 0.3 0.11 0.26 0.08 0.16 0.07 0.15 0.07 0.12 0.09 0.26

0.5 0.13 0.35 0.08 0.18 0.10 0.21 0.06 0.11 0.09 0.26

0 0.12 0.31 0.13 0.41 0.10 0.24 0.09 0.21 0.10 0.27

1 0.3 0.06 0.10 0.09 0.23 0.04 0.05 0.06 0.09 0.09 0.26

0.5 0.06 0.10 0.08 0.20 0.04 0.04 0.06 0.07 0.09 0.26

0 0.12 0.32 0.17 0.60 0.10 0.26 0.10 0.22 0.10 0.27

1.3 0.3 0.04 0.05 0.12 0.36 0.03 0.03 0.06 0.06 0.09 0.26

0.5 0.04 0.04 0.11 0.33 0.02 0.01 0.05 0.04 0.09 0.26

0 0.12 0.32 0.19 0.65 0.11 0.27 0.10 0.23 0.10 0.27

1.4 0.3 0.04 0.04 0.13 0.42 0.02 0.02 0.05 0.05 0.09 0.26

0.5 0.03 0.03 0.12 0.40 0.02 0.01 0.04 0.03 0.09 0.26
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Table 5: Small Sample Size, Constants, no trend.
A Θ EJ CADF

a1 a2 θ1 θ2 R2= 0 R2= 0.3 R2= 0.5 R2= 0 R2= 0.3 R2= 0.5

0 0 0 0 0.059 0.070 0.074 0.051 0.055 0.058

0.2 0 0 0 0.060 0.077 0.089 0.047 0.058 0.062

0.8 0 0 0 0.066 0.083 0.103 0.075 0.085 0.086

0.2 0.5 0 0 0.089 0.078 0.076 0.104 0.069 0.059

0 0 −0.2 0 0.104 0.112 0.113 0.077 0.068 0.061

0 0 0.8 0 0.106 0.152 0.207 0.057 0.063 0.067

0 0 −0.5 0 0.167 0.169 0.189 0.102 0.082 0.068

0 0 −0.8 0 0.352 0.341 0.372 0.256 0.197 0.144

0.2 0 −0.5 0 0.160 0.166 0.181 0.104 0.085 0.070
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Table 6: Small Sample Size, No restrictions.
A Θ EJ CADF

a1 a2 θ1 θ2 R2= 0 R2= 0.3 R2= 0.5 R2= 0 R2= 0.3 R2= 0.5

0 0 0 0 0.048 0.054 0.057 0.055 0.051 0.052

0.2 0 0 0 0.037 0.052 0.062 0.039 0.051 0.059

0.8 0 0 0 0.043 0.088 0.143 0.083 0.091 0.100

0.2 0.5 0 0 0.061 0.057 0.060 0.142 0.082 0.063

0 0 −0.2 0 0.098 0.104 0.123 0.091 0.073 0.064

0 0 0.8 0 0.057 0.122 0.207 0.059 0.067 0.075

0 0 −0.5 0 0.173 0.187 0.219 0.131 0.097 0.082

0 0 −0.8 0 0.371 0.324 0.350 0.299 0.232 0.176

0.2 0 −0.5 0 0.161 0.148 0.153 0.134 0.100 0.080
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Table 7: Cointegration tests
ADF HW CADF PT DF-GLS

Forecast Errors -2.72 7.43 -2.48* 2.38* -2.72*

(2) (2) (2) (2)
Notes: The number of lags was chosen by MAIC and is reported in parenthesis. The

star indicates significance at 5%.

Table 8: Cointegration tests stationary covariate.
EJ, Case 3, ∆pet cov R̂2 EJ, Case 3, ∆pt cov R̂2

Forecast Errors 0.60** 0.60**

(2) 0.19 (1) 0.10

p-value 0.003 0.001
Notes: The first two columns give results for tests where Xt = pet , the remaining two

columns give results for Xt = pt. Two stars indicates significance at 1%.

Table 9: Unit Root Test with Breaks
Min t-stat Lags Estimated Break

Panel A

6 months -4.37† 0 1994:II

Panel B

6 months -0.10 4 1979:II
Note: Panel A corresponds to the case in which the break is estimated as the date that

minimizes the t-statistics in the unit root test, Panel B corresponds to the case in which the

break is chosen to minimize the t-statistics testing in the break regression. ( See Perron

and Vogelsang (1992)). The small sample 5% and 10% critical value that take into account

the lag selection procedure are -4.67 and -4.33 for Panel A and -3.68 and -3.35 for Panel B.

* Denotes rejection at 5% while † denotes rejection at 10%.
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