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Abstract 
We use a nonlinear, nonparametric method to forecast the unemployment rates.  We 

compare these forecasts to several linear and nonlinear parametric methods based on the work of 
Montgomery et al. (1998) and Carruth et al. (1998).  Our main result is that, due to the nonlin-
earity in the data generating process, the nonparametric method outperforms many other well-
known models, even when these models use more information.  This result holds for forecasts 
based on quarterly and on monthly data. 
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Superior Forecasts of the U.S. Unemployment Rate 

Using a Nonparametric Method 

 
 

I.  Introduction 

 Predicting the unemployment rate is one of the most important applications of out-of-

sampling forecasting for economists and policymakers.  We demonstrate that a new data-driven 

method that is nonparametric in both functional form and distribution outperforms traditional 

data-driven, time-series models (which use only lagged observations of unemployment) and 

compares favorably with several economic-theory-based models (which also use other explana-

tory variables) in predicting unemployment rates.  We compare the forecasts of various models 

using both quarterly and monthly data. 

 Recently, Montgomery, Zarnowitz, Tsay, and Tiao (1998, henceforth “MZTT”) com-

pared the forecasting abilities of a large number of linear and nonlinear models using unem-

ployment rate data from 1948-1993.  Using the data that they graciously supplied, we compare 

the forecasts from our nonparametric model to the models they studied and to the recent model 

developed by Carruth, Hooker and Oswald (1998, henceforth “CHO”). 

 Both MZTT and CHO take to heart Ramsey's (1996) admonition: “If nonlinear models 

cannot forecast, what good are they?”  Though their objective may be to enhance the understand-

ing of the process governing the U.S. unemployment rates, they judge the “goodness” of the dif-

ferent models in terms of their forecasting abilities.  We follow in this tradition by focusing on 

the relative forecasting abilities of the various models. 
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II.  Nonlinear, Nonparametric Forecasting - A Short Summary 

 The nonlinear, nonparametric approach to forecasting that we use was introduced in Su-

gihara and May (1990) and Sugihara et al. (1996) and was modified by Mulhern and Caprara 

(1994) and Agnon, Golan, and Shearer (1999).  In a recent paper, Fernandez-Rodriguez and Sos-

villa-Rivero (1998) employ a closely related nearest neighbor approach to construct a test for 

nonlinearities in time-series data.  In all of these studies, as well as in the one proposed here, 

forecasting is based on projecting historical patterns into the future without reliance on paramet-

ric assumptions on the distribution and functional form. 

 The method we use here is a variation of the nearest neighbor approach.  For each point 

we wish to forecast, we find a simplex that contains this point, and use the points in the simplex 

to forecast the desired point.  If such a simplex is not found, we use a combination of a noninclu-

sive simplex and near points to forecast. 

 Let y be a T-dimensional vector of time-series observations of the unemployment rate.  

We start by breaking y into two mutually exclusive subsamples: the history and the future.  Let 

the history include time periods 1,…, Th and the future include points Th+1,…,T.  Next, we 

choose the embedding dimension E, which we discuss in the Appendix. We represent each 

lagged sequence of data points as a point in this E-dimensional space: 

{ }1 2 ( 1), , ,...,j j j j j
t t t t t Ez y y y y− − − −=

j
tz {

, where j = 1, 2,..., E+1, and t = E, E+1, ..., T.  To simplify notation 

we rewrite  as }1 2 ( 1),..., Ey y− − − −, ,z y y= . 

 The six basic steps of our algorithm are:1 

Step 1.  For each E-dimensional point z in the future subsample, we order the points in the 

history subsample from the closest to the furthest point using a distance measure.2  The measure 

we use to determine the distance between point z and point z* is .   z - z     = d *
ii

E

1  =  i
∑   

                                                           
1  In addition to these basic steps, our computer code includes a large number of additional con-
trols that may be specified by the user (e.g., the number of close points for choosing the inclusive 
simplex, number of possible lags, etc.).  Our C code is available upon request.  
 
2 As a practical matter to increase speed, we cam restrict the search to a limited number (here 40) 



 
 

3

 Step 2. We choose the E+1 closest points. 

 Step 3. We check whether these E+1 closest points form a simplex that contains the point 

z.  If it contains z, we call it an “inclusive” simplex.  Because it is based on the nearest points, it 

is likely to be the minimum volume simplex, where the volume is defined in terms of the deter-

minant (Greene 1997).3 

 The inclusive simplex for point z is a collection of E+1 E-dimensional points: 

.  These points are the vertices of an inclusive simplex iff the volume of the 

E+1 simplex equals the sum of the E+1 simplexes that are constructed by exchanging each one 

of the E+1 points with points in z.

1 2 1( , , , )ES z z z +…

4 Equivalently, S is an inclusive simplex iff the determinant of 

S equals the sum of the determinants of the E+1 other simplexes.  The determinant for z is 

 

1 ( 1)

1 ( 1)

1 ( 1)

1 1 1
E

2 2 2
E

E+1 E+1 E+1
E

1y y y

1y y y
D      

 
1y y y

− − −

− − −

− − −

≡

…

…

# # # #
…

. 

We substitute the values of z for each row in D to construct D1, D2, ..., DE.  Thus, S is inclusive if 

D = D1 + D2 + ...+ DE. 

 In Figure 1, we illustrate how an inclusive simplex is determined given that the embed-

ding dimension is E = 2.  We want to find the inclusive simplex for point z.  The three closest 

two-dimensional neighboring points are z1, z2, and z3.  We start by defining the simplex consist-

                                                                                                                                                                                           
of the neighboring points. 
 
3 We experimented with additional searches to find the actual minimal volume simplex (i.e., 
checking all possible inclusive simplexes) and found that this simpler method usually finds the 
minimal volume simplex and, in any case, produces comparably good forecasts. 
 
4 Other nearest neighbor approaches are also reasonable.  For example, Sugihara and May (1990) 
searched for the minimal diameter simplex or the "simple" nearest neighbor approach that chooses 
the k closest neighbors where k is determined by the researcher.  In our approach, k always equals 
E+1. 
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ing of these three points as S = simplex(z1, z2, z3).  For this simplex to be inclusive, z must lie 

within the triangle formed by points z1, z2, and z3.  To determine if S is an inclusive simplex, we 

use the three neighboring points z1, z2, and z3 together with z, to build the three simplexes S1 = 

simplex(z2, z3, z), S2 = simplex(z1, z3, z), and S3 = simplex(z1, z2, z).  Each of these three sim-

plexes is constructed with two points of the three points that formed the original simplex S to-

gether with the two-dimensional point z.  The simplex includes point z iff Det(S) = det(S1) + 

det(S2) + det(S3).  That is, the determinant of S equals the sum of the determinants of Si (i = 1, 2, 

3).5  In the figure, the three simplexes (triangles) S1, S2, and S3, combine to exactly form the sim-

plex (triangle) S, which has vertices z1, z2, and z3.  

 Step 4.  If the three closest points do not constitute a simplex, we exchange one of the 

points with the next closest point.  We check whether we have an inclusive simplex.  If not, we 

continue to look at the next closest points. 

 We illustrate this approach in Figure 2, where we start with the three closest points z1, z2*, 

and z3.  That is, we have a point z2* that is closer to z than is z2. Unfortunately, these points do not 

constitute an inclusive simplex because z does not lie within the triangle these points form.  

Therefore, we need to exchange one of these points with the next closest point: point z2. 

   The point to be exchanged is chosen as follows.  First, we calculate the determinant of 

each one of the three simplexes6:  Det(S1) = -1, Det( ) = 1, and Det(S*
2S 3) = -2.  Next, we com-

pare the signs of the calculated determinants.  The point, , that is associated with the simplex *
2z

                                                           

5 1

4.5 4 1
( ) 6 3 1 2

5 5 1
Det S = = , 2

3 3 1
( ) 4.5 4 1

5 5 1
Det S 1= = , 3

3 3 1
( ) 6 3 1 3

4.5 4 1
Det S = = , 

3 3 1
( ) 6 3 1 6

5 5 1
Det S = =  and = + + . ( )Det S 1( )Det S 2( )Det S 3( )Det S

6 1

4.5 4 1
( ) 4 5 1 1

5 5 1
Det S = = − , *

2

3 3 1
( ) 4.5 4 1 1

5 5 1
Det S = =  and 3

3 3 1
( ) 4 5 1 2

4.5 4 1
Det S = = − . 



 
 

5

with the opposite sign to the other two is the one that is exchanged with the next closest point, z2.  

Loosely speaking, the opposite sign of the determinant means that this point is “hidden” in the 

relevant space and therefore should be exchanged for another point.  We note that in a higher 

dimension there could be more than a single hidden point.  In that case, we exchange the point 

that farthest from z.  This procedure continues until an inclusive simplex is found or there are no 

more substitutions possible.   In Figure 2, after replacing z2* with z2, we have three points, z1, z2, 

and z3, that constitute an inclusive simplex (as confirmed in our discussion of Figure 1). 

Step 5.  If no inclusive simplex exists (we cannot find three points that “surround” point z 

in the historical data set), we have two alternatives.  Either, we choose the E +1 closest points, or 

we choose a simplex that is not inclusive.  The first option of using the closest neighbors for 

forecasting is straightforward.  The second option of using a non-perfect simplex involves sev-

eral steps.  We define the ratio 
1

1
( ) / ( )

E

i
i

R Det S Det S
+

=

= ∑ . Because the determinant of an inclu-

sive simplex equals the sum of the other determinants, if the target point z lies within the sim-

plex, R = 1.  If the point z to be forecast lies “outside” of the simplex, then 0 < R < 1.  The closer 

R is to one, the closer the proposed simplex comes to being inclusive.  If we fail to find an inclu-

sive simplex, we specify a minimal value that the ratio much equal or exceed in order to for a 

noninclusive simplex to be used.  If we do not find such a noninclusive simplex with that large a 

ratio, we forecast using the E+1 closest E-dimensional points. 

For example, suppose in Figure 2 that point z2
 did not exist (nor any other point that could 

be used to form an inclusive simplex).  The simplex for the available points are z1
, z2*, and z3 has 

an R = 0.5.  If we specify the minimal acceptance value of R ≤ 0.5, say R = 0.3, then these three 

points (a noninclusive simplex) are chosen.  If we choose a criterion of R > 0.5, then these points 

are not chosen, and instead we forecast using the three two-dimensional closest neighbors. 

Step 6.  Finally, we forecast by projecting the domain of the simplex into its range.  That 

is, the forecasts are based on the “observed” historical time-series data.  We follow the change of 
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the E+1 surrounding points µ-steps into the future, where the forecasted point is an exponentially 

weighted average of these neighbors:7 

 
j

j

-d

-d

j

e
ˆ

e
,

j
t + 

j
t + 

y
 = y

µ

µ

∑

∑
 

where j = 1, 2, ..., E+1 and dj is the distance between the points. 

 

III.  Comparison Models 

 We compare our results to those from various data-based and economic-theory-based 

models reported by MZTT and CHO (see those papers for details).  MZTT estimated two uni-

variate linear models: an ARIMA(1, 1, 0) model and a modified version that adjusts for season-

ality using a multiplicative seasonal ARMA(4, 4).  They re-estimated the threshold auto-

regressive (TAR) model of Tong (1983), which is a version of the familiar tent-map and takes 

account of the unemployment rate's asymmetric cyclical behavior, where the unemployment rate 

increases at a faster rate than it decreases.  They also re-estimated Hamilton's (1989, 1990) 

Markov switching autoregressive (MSA) model that captures asymmetric behavior using a hid-

den Markov process that switches between two autoregressive models. 

   In addition, MZTT estimated an "economic-theory-based" model, a bivariate autoregres-

sive (AR) model, which uses initial claims of unemployment to predict unemployment rates.  

Presumably initial claims lead changes in the actual unemployment rate.  We also compare our 

nonparametric model forecasts to those of several other models reported in MZTT (but that are 

not re-estimated there).8  CHO develop an efficiency-wage theoretical framework in which they 

                                                           
    7  See Sugihara and May (1990) and Satchell and Timmermann (1995).  It would be possible to 
use other weights instead, such as the linear weights in Fernandez-Rodriguez et al., forthcoming. 

8 The BVAR is a Bayesian vector autoregressive model with six variables and six quarterly lags 
estimated sequentially with data available in 1993.  The Sims (1989) model is a nine-variable, 
five-lag BVAR model that allows time variation in coefficients and forecast error variance and 
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use real prices and real interest rates (in addition to lagged unemployment rates) to predict un-

employment levels. 
 

IV.  Results 

 Using both the MSE and RMSE criteria (as MZTT suggested), we compare forecasts of 

the various models using both quarterly and monthly data.  Aggregating monthly data into quar-

terly observations may exclude important information.  As MZTT noted, models based on quar-

terly data implicitly assume that the aggregation of monthly data is linear.  If the data were gen-

erated by a nonlinear process, the aggregation from monthly to quarterly process may result in an 

essential loss in information that will adversely affect our forecasts.  Further, as MZTT observed, 

the reformulation of the standard quarterly models as monthly ones is problematic and most re-

cent work is done in terms of quarterly forecasts.  Consequently, they estimated only the ARIMA 

and bivariate ARMA models using monthly data.  For comparison purposes, we estimated the 

nonparametric model using both quarterly and monthly data. 

 We generate out-of-sample forecasts for the same period as MZTT do with their paramet-

ric models.  We also use their rolling forecast approach:  Each model is estimated using the ob-

servations from the historical period, and then forecasts are generated for each period (fore-

casting origin) using these estimated coefficients.  In Table 1, the historical period is the 83 quar-

ters from 1948:1-1968:2.  The rolling forecasts are then calculated for each origin beginning with 

1968:3 and ending with 1993:3.  MZTT ended in 1993:3 because the Labor Department changed 

its survey technique in the next quarter, which resulted in an increase in the unemployment rate 

by 0.5%. 

 Table 1 shows the relative MSE of forecasts from the various models, where the bench-

mark is the nonparametric model with an embedding dimension of four estimated using quarterly 

                                                                                                                                                                                           
nonnormality in disturbances.  The Michigan Research Seminar in Quantitative Economics 
(RSQE) macroeconomic forecasting model is estimated over a slightly different time period than 
are the other models.  MZTT include this model in their presentation because it dominates a con-
sensus forecast for long-term (forth and fifth quarters) forecast horizons. 
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data.  The MSE of this benchmark model appears in the last row.9  The MSEs of the other quar-

terly models are many times larger that those of our nonparametric model. 

 MZTT presented additional monthly forecasts for the ARIMA and bivariate ARMA 

model using extra information in the form of the actual unemployment rate data for the first 

month of the first quarter to be forecast.10  Where their forecasts use this extra information and 

the nonparametric models do not, these time-series models forecast better than the nonparametric 

model in the first quarter, but not in subsequent quarters. 

 Finally, Table 1 also compares the forecasts of the various estimation models to a well-

known, consensus forecast, the group median forecast of the Survey of Professional Forecasters 

(SPF), which is currently collected by the Federal Reserve Bank of Philadelphia.  To improve the 

consensus forecasts, MZTT used only those forecasters who had participated in at least 10 sur-

veys.  The forecasters may have access to many estimated models and additional information.  In 

particular, some forecasters had access to between zero and two months of data for the first quar-

ter they forecast.  Nonetheless, the quarterly nonparametric model dominates the SPF in all but 

the fourth and fifth forecasted quarters. 

 In Table 2, we compare the quarterly nonparametric model to other models in a different 

period using the RMSE criterion for the period 1968:3 through 1989:4.11  The monthly ARIMA 

model in Table 2 reflects MZTT's assumption that the first month after the forecasting origin is 

known.  MZTT concluded that "much of the improvement in the short-term forecasts of the SPF 

survey and the Michigan RSQE forecasting model over the simple univariate ARIMA model is 

                                                           
9  The mean value of the forecasted period is 6.5 with σ = 1.53.  The forecast standard deviations 
for the first five periods in the future are .14, .31, .56, .74, and .74. 

10 We might expect that the parametric models based on monthly data to forecast better than 
those based on quarterly data because monthly data contain substantially more information than 
quarterly data for a given length of time.  The results in Table 1 are not entirely consistent with 
this belief.  MZTT noted that the use of monthly data results in substantial improvement in short-
term forecasts in ARIMA and bivariate ARMA models, but not necessarily in longer-term fore-
casts. 
 
11   Except for the nonparametric model forecasts, these statistics are from MZTT, Table 7. 
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due to the incorporation of monthly information through forecasts of exogenous variables and 

constant adjustments of the forecasts."  They further observed that the SPF dominates the fore-

casts of most of their other models in terms of RMSE and hence they suggested that one can use 

the SPF as "a proxy for a full-information (although not an optimal) forecast."  The quarterly 

nonparametric model compares reasonably well using the RMSE criterion.  The nonparametric 

models dominate the quarterly ARIMA, TAR, and SIMS in all quarters and the monthly ARIMA 

in all but the first quarter (where the monthly ARIMA uses extra information).  The nonparamet-

ric model performs about as well as the SPF, the Bayesian vector autoregressive (BVAR) model 

(with six variables and six quarterly lags), and the Michigan Research Seminar in Quantitative 

Economics (RSQE) macroeconomic forecasting model (estimated over a slightly different time 

period), though, those models are slightly superior to the nonparametric model in several quar-

ters.  The nonparametric model dominates the Sims (1989) model (nine-variable, five-lag BVAR 

model that allows time variation in coefficients and forecast error variance and nonnormality in 

disturbances).  Further, the nonparametric model has smaller RMSEs than do the monthly 

ARIMA and bivariate ARMA models based on the same amount of data. 

 The success of the nonlinear, nonparametric model may suggest that unemployment data 

are highly nonlinear and chaotic.  To investigate this issue further, we compare the monthly non-

parametric model (with an embedding dimension of eight, which outperform the nonparametric 

quarterly forecasts) to MZTT’s monthly ARIMA(2, 0, 1)(12, 0, 12) in Figure 3.  The forecasts of 

the nonparametric model have much lower MSEs than does the ARIMA model, and the nonpara-

metric model's advantage grows the more months in the future is the forecast.  For the first 

month, the MSE of the ARIMA model is 1.73 times larger than that of the nonparametric model.  

By the tenth month, the ARIMA's MSE is 2.53 times larger.  However, as is expected with 

nonlinear data, the MSE’s increase exponentially with the periods forecasted implying the exis-

tence of a positive Lyaponov exponent. 

   As one might expect, the monthly unemployment rate data have a much more complex 

structure than do the quarterly data.  Monthly unemployment rates are extremely difficult to pre-
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dict with parametric models due to the high dimensionality and highly nonlinear structure of the 

system generating these quantities.  The nonparametric forecasts based on monthly data have 

relative RMSE’s of 1.05, 0.92, and 0.72 for the first three quarters respectively (see Table 2).  

These results show the superiority of the monthly data forecasts when compared to the other 

models in Table 2.12 

 For the monthly data, we used Theil's U criterion to compare the forecast accuracy of the 

nonparametric and ARIMA models relative to a random walk.  For the ARIMA model, Theil's U 

values are .88, .74, .77, .85, .87, and .86 for the first 5 periods of the forecast.  The corresponding 

values are .63, .66, .69, .56, and .53 respectively for the nonparametric simplex model with E = 

8.13 

 Finally, we compare forecasts based on our method to those from the Error Correction 

Model (ECM) in Carruth, Hooker and Oswald (1998).  The ECM method uses information on 

real oil prices and real interest rates as well as information on lagged unemployment rates; 

whereas our nonparametric method uses only information on lagged unemployment rates. 

 CHO used the ECM to estimate quarterly data from 1954 through 1978 and then pre-

dicted unemployment rates through the end of their data set.  When using the correct lagged un-

                                                           
12 To make sure that there are no basic structural changes during the period investigated (the 
complete sample: 1948:1-1993:3), we re-estimated the forecasts using “in-sample” data.  That is, 
the history and future groups are the same and include the whole sample.  However, to avoid re-
dundancy between forecast and correct points, we sequentially exclude points in the “history” 
library of points that are in the neighborhood of each predicted point.  (This practice eliminates a 
large number of points and thereby reduces the quality of the forecasts.)  As is predicted by the 
theory, this curve lies above the “out-of-sample” curve (since the in-sample curve uses less in-
formation) but it exhibits the same qualitative structure (Figure 3) and the same optimal embed-
ding dimension of eight.  This result implies that the same basic mechanism generates the 
monthly unemployment data over the entire period analyzed. 
 
13 The corresponding values are .97, .86, .95, .99, and 1.09 for the nonparametric simplex model 
with E = 7, and 4.07, 2.92, 2.55, 2.35, and 2.18 for the best nearest-neighbor model (e.g., Fer-
nandez-Rodriguez and Sosvilla-Rivero forthcoming) with E = 2.  As in Figure 3, the results show 
the relative superiority of the nonparametric-simplex model with E = 8 and demonstrate that the 
simplex approach dominates the "simple" nearest neighbor approach for these data. 
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employment rates, their method predicts well (CHO's Figure 2) except for a brief period of over-

shooting from late 1980 through early 1981.  Using the same quarterly unemployment data (but 

ignoring the extra information that the ECM method employs), we forecasted unemployment 

rates over the same period (one step ahead forecasts) and compare our forecasts with the actual 

unemployment rates in Figure 4.  Our nonparametric method performs well in general but under-

shoots during the 1982-1984 period of very high unemployment rates. 

 We also repeated CHO’s experiment of using data from 1954:4-1990:4 to predict the re-

cession of 1991-1992 (cf. CHO's Figure 3).  In Figure 5, we compare our nonparametric esti-

mates based on both quarterly and monthly data to those from CHO’s ECM approach (where the 

averages of the real oil prices and interest rates over the 1991-1992 period were used).  Our fore-

casts based on quarterly data (RMSE = 0.55 over the eight quarters) are comparable to those 

from the ECM (RMSE = 0.54).  Our forecasts based on monthly data (RMSE = 0.18) substantial-

ly outperform those from the ECM method that is based on only quarterly data but that includes 

extra information about the real oil price and real interest rate. 
 

V.  Conclusions 

 Our results suggest that a relatively simple, nonlinear, nonparametric estimation method 

provides superior short-term and moderate-term forecasts of unemployment rates.  Additional 

research is required to explain why the nonparametric model equals or dominates structural and 

other economic-theory models that use more information. 

 One possible explanation for the forecasting superiority of our highly nonlinear, nonpar-

ametric approach is that traditional, relatively simple time-series models as well as the more 

complex econometric models cannot capture the high dimensionality and very nonlinear struc-

ture of the true system.  Economists do not know the exact dynamical structure generating the 

unemployment levels.  Consequently, it is difficult to build reasonable structural models.  The 

nonparametric approach does not require that we understand the structure exactly. 
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 Further, due to the structure of the data, parametric studies usually work with the first dif-

ference of the data (to avoid unit root problems).  For a highly nonlinear data set, taking differ-

ences may reduce the informational content of the data and thus affect the quality of the fore-

casts.  This restriction does not apply to nonparametric models. 
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Appendix: Choosing the Embedding Dimension 

 The best embedding dimension for the quarterly nonparametric model is four, in the 

sense that we get the lowest MSE in the first quarter with E = 4.  For example, the MSEs of fore-

casting one quarter into the future for the simplex approach are 0.27, 0.24, 0.08, 0.02, and 0.05 

for E = 1, 2,..., 5 respectively.  [In contrast, the MSEs for the nearest neighbor approach are 1.01, 

1.41, 1.87, 2.47, and 2.80, respectively.]  Thus, using a lower or a higher value of E yields fore-

casts that are inferior to that of E = 4 even for one-period-into-the-future forecasts.  Because E 

reflects the number of real variables or the autoregressive order, this result is consistent with the 

various estimators used by MZTT.  Their ARIMA model is characterized by three parameters, 

while both the TAR and MSA models are characterized by six parameters each.  Thus, they all 

are roughly similar in dimension to the nonparametric model.  An embedding dimension of four 

means that the underlying attractor (where the dynamical system will “end up” eventually) has a 

dimension of about two because the (approximate) dimension of the attractor is smaller than (E-

1)/2 (Sugihara and May, 1990; Agnon et al., 1999).   

For the monthly model, the optimal embedding dimension is seven or eight, which corre-

sponds to a chaotic attractor of about three to four.  Using the simplex method, the MSEs for one 

period forecast into the future are 0.12, 0.07, 0.06, 0.08, 0.07, 0.017, 0.018, and 0.02 for E = 1, 2, 

..., 10, respectively.  For the nearest-neighbor approach, the MSEs are 0.93, 0.63, 0.68, 0.79, 

0.90, 1.04, 1.18, 1.36, 1.51, and 1.66, respectively.  Again, the nearest neighbor approach has a 

much lower "optimal" embedding dimension, but is inferior to the simplex approach.



 
 

14

References 

Agnon, Yehuda, Amos Golan, and Matthew Shearer, "Nonparametric, Nonlinear, Short-Term 
Forecasting: Theory and Evidence for Nonlinearities in the Commodity Markets," Eco-
nomic Letters, forthcoming in 1999. 

Carruth, A. A., M. A. Hooker and A. J. Oswald, “Unemployment Equilibria and Input Prices: 
Theory and Evidence From the United States," Review of Economics and Statistics, 
LXXX (November, 1998):621-628. 

Fernandez-Rodriguez, F., and S. Sosvilla-Rivero, “Testing Nonlinear Forecastability in Time 
Series: Theory and Evidence from the EMS," Economics Letters, 59 (1998):49-63. 

Fernandez-Rodriguez, F., S. Sosvilla-Rivero, and J. Andrada-Felix, “Exchange-Rate Forecasts 
with Simultaneous Nearest-Neighbor Methods: Evidence from the EMS," International 
Journal of Forecasting, forthcoming. 

Greene, William H., Econometric Analysis, 3rd Edition, Prentice-Hall: 1997. 
Hamilton, James D., "A New Approach to the Economic Analysis of Nonstationary Time Series 

and the Business Cycle," Econometrica, 57 (1989):357-84. 
Hamilton, James D., "Analysis of Time Series Subject to Changes in Regime," Journal of 

Econometrics, 45(1-2), (July-August 1990):39-70. 
Hamilton, J. D., Time Series Analysis, Princeton University Press, Princeton, NJ, 1994. 
Montgomery, Allan L., Victor Zarnowitz, Ruey S. Tsay, and George C. Tiao, "Forecasting the 

U.S. Unemployment Rate," Journal of the American Statistical Association, 92(442), 
(June 1998):478-93. 

Mulhern, Francis J., and Robert J. Caprara, "A Nearest Neighbor Model for Forecasting Market 
Response," International Journal of Forecasting, 10 (1994), 191-207. 

Ramsey, J. B., If Nonlinear Models Cannot Forecast, What Good Are They?  Studies in Nonlin-
ear Dynamics and Econometrics, 1 (1996) 65-86. 

Satchell, S., and A. Timmermann, "An Assessment of the Economic Value of Non-linear For-
eign Exchange Rate Forecasts," Journal of Forecasting 14 (1995), 477-497. 

Sims, Christopher A., "A Nine-Variable Probabilistic Macroeconomic Forecasting Model," Dis-
cussion Paper 14, Federal Reserve Bank of Minneapolis, 1989. 

Sugihara, G. and R. M. May, "Nonlinear Forecasting as a Way of Distinguishing Chaos from 
Measurement Error in Time Series," Nature 344 (April 19, 1990) 734-741. 

Sugihara, G., W. Allen, D. Sobel, and K. D. Allen, "Nonlinear Control of Heart Rate Variability 
in Human Infants,"  Proc. Natl. Acad. Sci., USA 93 (March 1996) 2608-2613. 

Tong, H., Threshold Models in Nonlinear Time Series Analysis, Lecture Notes in Statistics 21, 
New York: Springer-Verlag, 1983. 



 
 

15

Table 1 
Relative MSEs of Forecasts from Various Models 

 
 Steps Ahead 

 1 2 3 4 5 

Quarterly Data 

 Nonparametric 1 1 1 1 1 

 Seasonal ARIMA 3.81 3.20 1.91 1.55 1.41 

 ARIMA(1,1,0) 3.97 3.59 2.14 1.77 1.69 

 TAR               3.81 3.33 1.89 1.52 1.45 

 MSA               4.54 4.45 2.67 2.25 2.26 

 Bivariate AR 4.58 3.87 2.06 1.62 1.45 

Monthly Data 

No Extra Data 

 ARIMA          3.05 2.95 1.96 1.74 1.70 

 Bivariate ARMA    2.21 2.34 1.49 1.29 1.25 

First Month Known 

 ARIMA .92 1.86 1.47 1.40 1.49 

 Bivariate ARMA .88 2.02 1.43 1.26 1.22 

Consensus Forecasts 
  (First or Second Month Known to Some) 

SPF Median Forecast           1.24 1.64 1.11 .93 .91 

MSE of Quarterly Nonparametric Model .02 .10 .35 .73 1.10 

 
 
Source: Forecasts for all but the nonparametric models are from MZTT, Tables 1 and 4.  The 
nonparametric estimates were calculated for this paper. 
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Table 2 
Relative RMSEs of Various Time Series and Econometrics Models 

 
 Steps Ahead 

Model 1 2 3 4 5 

Nonparametric (Quarterly data) 1.00 1.00 1.00 1.00 1.00 

ARIMA (Quarterly data) 1.63 1.64 1.24 1.19 1.38 

ARIMA (Monthly data, first month known) .79 1.22 1.09 1.12 1.31 

TAR (Quarterly data) 1.63 1.64 1.22 1.16 1.36 

University of Michigan RSQE .89 1.22 .87 .84 .98 

BVAR 1.47 1.39 .96 .84 1.47 

Sims 2.89 2.19 1.49 1.32 1.40 

SPF median forecasts .89 1.17 .93 .90 1.08 

RMSE of the Quarterly Nonparametric 
Model 

.19 .36 .69 .93 .95 

 
 
Source: Forecasts for all but the nonparametric models are from MZTT, Table 7.  The nonpara-
metric forecasts were calculated for this paper. 
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Figure 1 
An Example of a Minimum Volume Simplex 
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Figure 2 
An Example of an Imperfect Simplex 
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Figure 3 
MSEs for Monthly Forecasts 
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Figure 4 
Comparison of Actual Unemployment Levels to  
Quarterly Nonparametric Forecasts 1979-1993 
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Figure 5 
Comparison of Actual Unemployment Levels to Various Forecasts 1991-1992 
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