Title
Fast 3D T2 -weighted imaging using variable flip angle transition into driven equilibrium (3D T2 -TIDE) balanced SSFP for prostate imaging at 3T.

Permalink
https://escholarship.org/uc/item/2bw5z8nj

Journal
Magnetic resonance in medicine, 74(2)

ISSN
0740-3194

Authors
Srinivasan, Subashini
Wu, Holden H
Sung, Kyunghyun
et al.

Publication Date
2015-08-01

DOI
10.1002/mrm.25430

Peer reviewed
Fast 3D T₂-Weighted Imaging Using Variable Flip Angle Transition into Driven Equilibrium (3D T₂-TIDE)
Balanced SSFP for Prostate Imaging at 3T

Subashini Srinivasan,¹,² Holden H. Wu,¹,²,³ Kyunghyun Sung,¹,² Daniel J.A. Margolis,¹ and Daniel B. Ennis¹,²,³*

Purpose: Three-dimensional (3D) T₂-weighted fast spin echo (FSE) imaging of the prostate currently requires long acquisition times. Our objective was to develop a fast 3D T₂-weighted sequence for prostate imaging at 3T using a variable flip angle transition into driven equilibrium (T₂-TIDE) scheme.

Methods: 3D T₂-TIDE uses interleaved spiral-out phase encode ordering to efficiently sample the k₁–k₂ phase encodes and also uses the transient balanced steady-state free precession signal to acquire the center of k-space for T₂-weighted imaging. Bloch simulations and images from 10 healthy subjects were acquired to evaluate the performance of 3D T₂-TIDE compared to 3D FSE.

Results: 3D T₂-TIDE images were acquired in 2.54 minutes compared to 7.02 minutes for 3D FSE with identical imaging parameters. The signal-to-noise ratio (SNR) efficiency was significantly higher for 3D T₂-TIDE compared to 3D FSE in nearly all tissues, including periprostatic fat (45±12 vs. 31±7, P<0.01), gluteal fat (48±8 vs. 41±10, P=0.12), right peripheral zone (20±4 vs. 16±8, P=0.12), left peripheral zone (17±2 vs. 12±3, P<0.01), and anterior fibromuscular stroma (12±4 vs. 7±2, P<0.01).

Conclusion: 3D T₂-TIDE images of the prostate can be acquired quickly with SNR efficiency that exceeds that of 3D FSE.

Key words: 3D T₂-weighted imaging; variable flip angle; 3D prostate imaging; 3D T₂-TIDE

INTRODUCTION

T₂-weighted prostate MRI is the clinical standard for anatomic imaging of prostate (1) and is routinely performed using fast spin echo techniques (i.e., fast spin echo [FSE], turbo spin echo, or rapid acquisition with relaxation enhancement). Three-dimensional (3D) T₂-weighted prostate imaging is preferred for imaging small tumors and for acquiring near isotropic slices that are amenable to multplanar reformatting, which is useful for multimodal registration applications during biopsy, surgical, or treatment planning (2).

The conventional 2D FSE sequences use a series of 180° refocusing pulses with a long repetition time (TR) for signal recovery to produce purely T₂-weighted images. The use of 180° pulses increases the specific absorption rate (SAR) of the sequence, especially at 3T, and the number of acceptable refocusing pulses is further limited due to fast signal decay and concomitant image blurring. These disadvantages can be overcome by lowering the refocusing flip angles (FAs) (3–4) or by designing variable flip angle (VFA) schemes that modulate the refocusing FA train for T₂-weighted FSE (5–7). However, 3D T₂-weighted FSE prostate imaging can take over 7 minutes to acquire, even with a VFA scheme.

Balanced steady state free precession (bSSFP) imaging is widely used for numerous clinical applications due to its high signal-to-noise ratio (SNR) efficiency. However, the steady state signal of bSSFP is T₂/T₁ weighted, which is not desirable for clinical applications in which the underlying abnormality may vary in both T₁ and T₂. Two-dimensional single-shot T₂-weighted imaging has previously been demonstrated using SSFP techniques such as 2D T₁-transition into driven equilibrium (TIDE) (8) and 2D T₂ variable amplitude PSIF (9) based on the TIDE sequence (10). In these approaches the T₂-weighted signal is obtained by acquiring the central k-space lines during the transient state of the SSFP magnetization using FA = 180°, followed by ramping down the FA to a lower FA while acquiring the outer k-space lines to reduce the overall SAR and maintain the sharpness of the reconstructed image. The T₂ weighting in these techniques is controlled by the initial number of 180° pulses and the partial Fourier factor, similar to 2D single-shot half-Fourier acquisition single-shot turbo spin-echo (HASTE) imaging (11). Extension of these techniques to 3D encoding schemes, however, is not practical because of the SAR limitation that arises from the long acquisition durations, especially with a short TR at higher field strengths (≥3T).

Our objective was to overcome these limitations by developing and evaluating a novel method for fast 3D T₂-weighted TIDE (3D T₂-TIDE) bSSFP imaging with application to prostate imaging at 3T. Three-dimensional T₂-TIDE uses a VFA scheme similar to 2D T₂-TIDE to reduce the SAR and maintain the T₂ weighting by acquiring the central k-space lines first during the
FIG. 1. (a) The simulated signal of the 50th echo and flip angle = 60° for a range of T₁s from 100 ms to 3000 ms in steps of 100 ms and range of T₂s from 30 ms to 300 ms in steps of 50 ms. (b) The percent signal difference between the signal in (a) and pure T₂ decay simulated with a long T₁ = 10⁹ ms for all the T₂s. (b) Shows that for tissues with long T₁s, the T₂ weighting is similar to pure T₂ decay. However, as T₁ and T₂ become shorter, the T₂ weighting of the signal decreases.

The transient state with a FA lower than 180°, followed by ramping down to a lower FA while acquiring the outer k-space lines. The 3D T₂-TIDE images are acquired faster than 3D FSE by using a spiral-out phase encode ordering in the k₀–k₁ plane of the 3D Cartesian k-space trajectory (12) to efficiently sample the central 3D k-space lines with T₂ weighting. Image sharpness is improved by implementing a multishot interleaved acquisition scheme. This k-space acquisition scheme also eliminates the need for partial Fourier acquisitions to control the T₂ weighting, as done for 2D T₂-TIDE or 3D FSE. Furthermore, the acquisition of outer k-space lines with a lower FA steady-state bSSFP approach permits extended echo train durations compared to FSE.

THEORY

The decay of the transient signal (Mₓᵧ) for on-resonance spins in bSSFP, with perfectly balanced gradients and a preparation pulse of α/2, applied for a duration of TR/2 (13) can be expressed as

\[Mₓᵧ(n) = \left(\sin \left(\frac{\alpha n}{2} \right) M₀ - M_{ss} \right)^n + M_{ss} \tag{1} \]

where n is the echo number, α is the FA, M₀ is the proton density, M_{ss} is the steady-state bSSFP signal, and the decay rate (λ) of the transient signal is given as (13–14)

\[\lambda = E₂ \sin^2(\alpha/2) + E₁ \cos^2(\alpha/2) \tag{2} \]

with \(E₁₂ = \exp(-TR/T₁₂) \). λ is purely T₂-weighted if α = 180°, but a 180° FA is not practical for extended echo trains due to SAR limitations. T₂ weighting, however, can also be attained when TR/T₁ ~ 0 (i.e., E₁ ~ 1). This approximation holds at higher field strengths due to the increased T₁ (15) and when using a short TR, which is preferred when using bSSFP to reduce off-resonance–induced banding artifacts and improve sequence efficiency. Figure 1a shows the simulation of the bSSFP transient signal for the 50th echo with TR = 4.84 ms, echo time (TE) = 2.42 ms, and α = 60° for a broad range of T₁s (100 ms to 3000 ms) and a broad range of T₂s (30 ms to 300 ms). The 50th echo was chosen to demonstrate the achievable signal weighting for the chosen T₂s. Figure 1b shows the percentage of signal change between the simulations shown in Figure 1a and the simulation for the pure T₂ decay signal. The pure T₂ decay signal was simulated for all the T₂s for the 50th echo with α = 60° and a long T₁ = 10⁹ ms to ensure TR/T₁ ~ 0 (i.e., E₁ ~ 1). Isocontours (white curves) for 10% and 20% signal differences are highlighted. Note that as T₁ and T₂ decrease, the percentage signal difference becomes larger. For example, the prostate tissues with T₁ ~ 1500 ms and T₂ ~ 50 ms has a percentage signal difference of 15% for T₂ = 50 ms. The decay rate of the transient signal, in the presence of off-resonance, will also be predominantly T₂-weighted for long T₁s (14).

METHODS

3D T₂-TIDE Image Acquisition Scheme

The FA scheme for 3D T₂-TIDE is similar to the 2D T₂-TIDE scheme. Both approaches use preparation pulses to control the T₂ weighting, followed by image acquisition (Fig. 2a). An α_{high}/2 preparation pulse is followed by N_{prep} preparation pulses at α_{high} to control the T₂ weighting of the images; increasing N_{prep} increases the T₂ weighting. These N_{prep} pulses are also used for stabilization of the off-resonance signal. This is followed by data acquisition using α_{high} to maintain the T₂ weighting, then smoothly ramped down (10) to a lower FA α_{low}, which reduces SAR. The α_{high} is lower in 3D T₂-TIDE compared to 2D T₂-TIDE (α_{high} = 180°) to reduce the SAR for 3D acquisitions, in addition to maintaining the T₂ contrast (see Theory section).

The image acquisition duration of 3D T₂-TIDE is made faster by acquiring the 3D Cartesian k-space in the k₀–k₁ plane by utilizing a spiral-out phase encode ordering (12). The acquisition pattern is designed to acquire the 3D central k-space lines with α_{high}, thereby maintaining the T₂ contrast, and moves outward in a spiral pattern to the high spatial frequency k-space lines, which are acquired while the bSSFP signal approaches the steady-state T₂/T₁ weighting. Multishot or interleaved spiral-out phase encode ordering within the k₀–k₁ plane is performed to distribute the transition of the transient signal
across a broader range of spatial frequencies, thereby improving the sharpness of the image compared to single-shot approaches, albeit at the cost of increased scan time. The multishot images are acquired by including a time delay (t_D) after each shot, which allows for recovery of the longitudinal magnetization (M_z) before acquisition of the subsequent shot.

Bloch Simulations

In order to understand parameter selection, image contrast, and spatial resolution, Bloch equation simulations of the 3D T_2-TIDE sequence were performed in MATLAB (Mathworks, Natick, MA). Simulations of the transverse magnetization (M_{xy}) for bSSFP were performed for normal prostate tissue with $T_1/T_2 = 1500/150$ ms (C_0^{17}), $TR/TE = 4.84/2.42$ ms, $N_k_y = 230$, $N_k_z = 48$, $a_{low} = 30$, $N_{prep} = 50$, $N_{high} = 20$, $N_{ramp} = 200$, and $t_D = 1635$ ms for number of shots ($N_{shot}) = 1$ and $N_{shot} = 24$. The N_{low} was calculated as $N_{low} = (N_k_y \times N_k_z/N_{shot}) - (N_{high} + N_{ramp})$. For example, for the above mentioned simulation parameters with $N_{shot} = 24$, N_{low} was calculated as 240. These simulation parameters are identical to that of the subsequent 3D T_2-TIDE in vivo imaging experiments (Table 1). The signal profile within the k_y-k_z plane was generated by combining the simulated single-shot or multishot signal with the generated k_y-k_z spiral-out phase encoding trajectory pattern.

The maximum contrast between normal prostate tissue with $T_1/T_2 = 1500/150$ ms and prostate tumor tissue with $T_1/T_2 = 1500/100$ ms (C_0^{17}) was determined by performing signal difference simulations with constant FA scheme ($a_{high} = a_{low}$) for a range of a_{high}, varying from 10° to 180° and $N_{prep} = 1$ to 150 with $TR/TE = 4.84/2.42$ ms. These simulations were performed to determine the N_{prep} required for maximum signal contrast with the maximum achievable a_{high} determined by the SAR limitations.

The T_1 contributions to the 3D T_2-TIDE signal were simulated for prostate tissue with $T_1/T_2 = 1500/150$ ms, muscle tissue ($T_1/T_2 = 900/30$ ms), and fat tissue ($T_1/T_2 = 382/68$ ms with off-resonance of 440Hz) (15) using the imaging parameters identical to the previous simulations. The signal evolution for each echo was compared to pure T2-weighted simulations with identical T2s, but with long $T_1 = 10^5$ ms, which ensures $TR/T_1 \sim 0$ (i.e., $E_1 \sim 1$ in Eq. [2]).

The effect of N_{shot} on the point spread function (PSF) was determined by simulating the signal (M_{xy}) for normal prostate tissue using imaging parameters identical to the 3D T_2-TIDE in vivo imaging experiments (Table 1) and $N_{shot} = 1, 16, 24, and 48$. The multishot PSF was
Table 1
Prostate Imaging Parameters for the Different Sequences.

<table>
<thead>
<tr>
<th></th>
<th>2D FSE</th>
<th>3D FSE</th>
<th>3D T2-TIDE</th>
<th>3D bSSFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field of view (mm)</td>
<td>200 × 400</td>
<td>200 × 400</td>
<td>200 × 400</td>
<td>200 × 200</td>
</tr>
<tr>
<td>Resolution (mm)</td>
<td>0.6 × 0.6 × 3.0</td>
<td>0.9 × 0.8 × 1.5</td>
<td>0.9 × 0.8 × 1.5</td>
<td>0.9 × 0.8 × 1.5</td>
</tr>
<tr>
<td>Acquisition matrix</td>
<td>320 × 620</td>
<td>256 × 460</td>
<td>256 × 460</td>
<td>256 × 230</td>
</tr>
<tr>
<td>Slice thickness (mm)</td>
<td>3.0</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Interpolated slices</td>
<td>20</td>
<td>72</td>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>Acquired slices</td>
<td>20</td>
<td>48</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>Bandwidth (Hz/px)</td>
<td>200</td>
<td>315</td>
<td>930</td>
<td>930</td>
</tr>
<tr>
<td>Flip angle</td>
<td>90°/150°</td>
<td>90°/110°</td>
<td>VFA</td>
<td>30°−35°</td>
</tr>
<tr>
<td>Phase encoding direction</td>
<td>R to L</td>
<td>R to L</td>
<td>R to L</td>
<td>A to P</td>
</tr>
<tr>
<td>TR/TE (ms)</td>
<td>4000/101</td>
<td>2000/200</td>
<td>4.84/2.42</td>
<td>4.56/2.28</td>
</tr>
<tr>
<td>Echo spacing (ms)</td>
<td>11.2</td>
<td>6.14</td>
<td>4.84</td>
<td>4.56</td>
</tr>
<tr>
<td>Echo train length</td>
<td>25</td>
<td>90</td>
<td>370°*</td>
<td>–</td>
</tr>
<tr>
<td>GRAPPA factor/reference lines</td>
<td>2/32</td>
<td>2/24</td>
<td>2/24</td>
<td>–</td>
</tr>
<tr>
<td>Partial Fourier</td>
<td>–</td>
<td>~6/8</td>
<td>6/8</td>
<td>–</td>
</tr>
<tr>
<td>Averages</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>T_{acq} (min)</td>
<td>3:38</td>
<td>7:02</td>
<td>2:54</td>
<td>0:56</td>
</tr>
<tr>
<td>Specific absorption rate (W/kg)</td>
<td>1.5 ± 0.2</td>
<td>1.5 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>1.8 ± 0.3</td>
</tr>
<tr>
<td>Delay time, t_{Dp} (ms)</td>
<td>3720</td>
<td>1635</td>
<td>1635</td>
<td>–</td>
</tr>
<tr>
<td>N_{shot}</td>
<td>–</td>
<td>96</td>
<td>24</td>
<td>–</td>
</tr>
</tbody>
</table>

Phase encoding direction of A to P indicates anterior to posterior. R to L indicates right to left.

*The echo train length of 3D T2-TIDE does not include the N_{prep} pulses.

2D, two-dimensional; 3D, three-dimensional; bSSFP, balanced steady state free precession; FSE, fast spin echo; GRAPPA, generalized autocalibrating partially parallel acquisitions; TE, echo time; TIDE, transition into driven equilibrium; TR, repetition time.

also compared to the PSF of the 3D steady-state bSSFP signal. The inverse Fourier transform of the signal resulted in the 2D PSF in k_y–k_z plane for each N_{shot}.

In Vivo Imaging

Our institutional review board approved the protocol, and written informed consent was obtained from all subjects prior to the imaging. All images were acquired on a 3T scanner (Trio, Siemens Medical Solutions, Erlangen, Germany) using a six-channel anterior coil and a six-channel posterior spine matrix for prostate imaging. Prostate images were acquired in 10 healthy male subjects (N = 10, age: 29 ± 5 years) using 3D FSE, 2D multislice FSE, 3D T2-TIDE, and 3D bSSFP to compare their signal differences. The 3D FSE sequence was acquired using a linear trajectory in k_y–k_z space. In particular, each echo train consisted of acquiring every other k_y for a particular k_z. Both the 3D FSE and 2D multislice FSE used a constant refocusing FA. The imaging parameters for each of these acquisitions are summarized in Table 1. Separate noise scans (18–19) with identical imaging parameters without applied radiofrequency pulses were acquired for 3D FSE and 3D T2-TIDE sequences to estimate the standard deviation (SD) of the noise for SNR calculations.

Images were also acquired with different N_{prep} = 10, 25, 60, and 100 with constant N_{shot} = 24 in a subset of five healthy subjects to demonstrate the different T_2 weighting achievable with 3D T2-TIDE. The dependence of the PSF on N_{shot} was demonstrated by acquiring 3D T2-TIDE images with different N_{shot} = 1, 2, 4, 8, 16, 24, and 48 with constant N_{prep} = 50. The other imaging parameters for these acquisitions were identical to the 3D T2-TIDE acquisition parameters mentioned in Table 1, except the phase encoding direction was changed to anterior to posterior with 0% to 13% phase oversampling based on the subject and without generalized autocalibrating partially parallel acquisitions (GRAPPA), averages, and partial Fourier.

In Vivo Data Analysis

The SNR was calculated as the ratio of the mean signal to SD of the noise from the noise scan (19) in five different regions: periprostatic fat, gluteal fat, left peripheral zone, right peripheral zone, and anterior fibromuscular stroma. The SNR was divided by $\sqrt{2\pi} = 1.53$ to account for the Rayleigh distribution of the noise (20). The regions of interest (ROIs) were drawn in a single slice of the 3D FSE images for each of the 10 healthy subjects and copied to the identical slice in 3D T2-TIDE and their corresponding noise scans. This was performed by an urologist having read over 1000 prostate MRI studies. The SNR efficiency was calculated as the ratio of the SNR to the square root of the acquisition duration in minutes. The contrast-to-noise ratio (CNR) was calculated between the anterior fibromuscular stroma and the peripheral zone as the difference between their SNR, the anterior fibromuscular stroma being consistently low signal and peripheral zone high signal in normal subjects. The SNR of the peripheral zone was calculated as the average of the SRNs of the left and right peripheral zone. The CNR efficiency was calculated as the ratio of the CNR to the square root of the acquisition duration in minutes. A statistical comparison between the SNR efficiency of the 3D FSE and 3D T2-TIDE was calculated using a paired Student’s t test for
the five different regions with $P < 0.05$. The Student’s t test values were Holm-Sidak post-hoc corrected.

RESULTS

Simulation Results

Simulated 3D T_2-TIDE images of the signal in the k_y-k_z plane were generated using a VFA scheme (Fig. 2a) with interleaved spiral-out phase encode ordering in the k_y-k_z plane. For simulated prostate tissue, the signal (M_{xy}) in the k_y-k_z plane for N_{shot} acquired with the transient bSSFP signal and the outer k-space lines were acquired while the signal was acquired with the transient bSSFP signal and the transient signal for prostate tissue ($T_1 = 1500$ ms) and muscle ($T_1 = 900$ ms) are similar to the pure T_2 decay due to their long T_1. As a consequence of the short T_1, however, the fat signal ($T_1 = 382$ ms) is higher for 3D T_2-TIDE compared to the pure T_2 decay signal at $N_{choicesshot} = N_{prep}$.

The PSF of the 3D T_2-TIDE images was improved by increasing N_{shot}. Figures 5a–b shows the simulation of the 2D PSF for $N_{shot} = 1$ and $N_{shot} = 48$. The line profiles along the center of the y- and z-directions for 3D steady-state bSSFP signal, $N_{shot} = 1, 16, 24$, and 48 are shown in Figures 5c–d. The side lobes of the PSF decrease with increasing N_{shot}, which shows that increasing N_{shot} improves the PSF along the y-direction, albeit at the cost of extended scan times. Similar to the y-direction, the side lobes of the multishot acquisitions are attenuated in the z-direction compared to $N_{shot} = 1$. However, the main lobes of the multishot acquisitions are similar to each other.

In Vivo Results

Figure 6 compares axial prostate images acquired in a healthy subject using 3D FSE, 3D T_2-TIDE, 2D multislice FSE, and 3D bSSFP. The 3D T_2-TIDE images are T_2-weighted, and the main lobes of the multishot acquisitions are similar to each other.
weighted similar to 3D FSE and 2D multislice FSE, with clear delineation of the prostate “capsule.” The acquisition duration of 3D T2-TIDE was 2:54 minutes compared to the 3D FSE acquisition duration of 7:02 minutes. Compared to the T2-weighted images, the 3D bSSFP images show that the contrast between the anterior fibromuscular stroma and the peripheral zone and tissue signal heterogeneity within the prostate are qualitatively reduced. 3D, three-dimensional; bSSFP, balanced steady state free precession; FSE, fast spin echo; TIDE, transition into driven equilibrium.
FIG. 7. Single slice from 3D T_2-TIDE images from a healthy subject showing the differences in T_2 weighting due to (a) $N_{\text{prep}} = 10$, (b) $N_{\text{prep}} = 50$, and (c) $N_{\text{prep}} = 100$ with constant $N_{\text{shot}} = 24$. Higher N_{prep} results in increased T_2 weighting. The images in the bottom row show the change in the sharpness of the image due to (d) $N_{\text{shot}} = 1$, (e) $N_{\text{shot}} = 16$, and (f) $N_{\text{shot}} = 48$ with constant $N_{\text{prep}} = 50$. Higher N_{shot} results in sharper images due to the improvement in PSF. All the images have the same window level. 3D, three-dimensional; PSF, point spread function; TIDE, transition into driven equilibrium.

FIG. 8. Three-dimensional FSE (top row) and 3D T_2-TIDE (bottom row) acquired in axial plane in a healthy subject showing clear delineation of the prostate capsule (yellow arrows). The reformatted images in the coronal and sagittal plane also show good definition of features such as cystic benign nodule (white arrow) within the prostate. 3D, three-dimensional; FSE, fast spin echo; TIDE, transition into driven equilibrium.
fibromuscular stroma and the peripheral zone and tissue signal heterogeneity within the prostate are qualitatively reduced.

Figures 7 a–c shows 3D T2-TIDE images acquired with constant $N_{\text{shot}}=24$ and different T2 weighting by changing $N_{\text{prep}}=10$, 50, and 100. Lower N_{prep} results in reduced T2 contrast with similar image sharpness, whereas increasing N_{prep} improves T2 contrast. All images have the same window level. Figures 7 d–f shows 3D T2-TIDE images acquired with varying $N_{\text{shot}}=1$, 16, and 48 and constant $N_{\text{prep}}=50$. The delineation of the prostate capsule is improved with increasing N_{shot} due to improvement in the PSF, but with a penalty of increased acquisition duration, as shown in each figure.

Figure 8 compares the acquisition of 3D T2-TIDE to 3D FSE for images acquired in the axial plane and reformatted into the coronal and sagittal planes. Overall, the image quality and contrast are very similar, but the 3D T2-TIDE images are acquired significantly faster. In particular, note that the prostate capsule is clearly depicted in both of these acquisitions in all the imaging planes. The isovolumetric resolution allows for improved fidelity in multimodal image fusion, and multiplanar reformatations may obviate the need for acquisition of additional pulse sequences to visualize those planes.

The SNR and the SNR efficiency of 3D T2-TIDE were compared to 3D FSE in five different regions from images acquired in the healthy subjects (N = 10), which are summarized in Table 2. The SNR of gluteal fat was significantly lower in 3D T2-TIDE, and the SNR of the anterior fibromuscular stroma was significantly higher in 3D T2-TIDE compared to 3D FSE. The SNR efficiency of the anterior fibromuscular stroma, periprostatic fat, and left-peripheral zone was significantly higher in 3D T2-TIDE compared to 3D FSE. The CNR between the anterior fibromuscular stroma and peripheral zone using 3D T2-TIDE was 17 ± 9, and for 3D FSE it was 43 ± 22 ($P < 0.01$). The CNR efficiency between the anterior fibromuscular stroma and peripheral zone using 3D T2-TIDE was 10 ± 6, and for 3D FSE it was 16 ± 8 ($P = 0.03$).

DISCUSSION

Three-dimensional T2-TIDE was developed and evaluated for fast 3D T2-weighted prostate imaging at 3T. We demonstrated that images with an acquisition duration of 2:54 minutes compared very favorably to 3D FSE, with an acquisition duration of 7.02 minutes and matched imaging parameters. The 3D T2-TIDE images were acquired during the transient state of the bSSFP signal to control the T2 weighting with multishot spiral-out phase encode ordering in the k−k plane of the 3D Cartesian trajectory, which enabled acquisition of the central k-space during the transient signal and the outer k-space during the approach to the steady state of bSSFP. This approach balanced maintaining T2 weighting, preserving image resolution, and scanning fast.

In principle, pure T2 weighting (identical to a spin echo) is possible with bSSFP imaging during the transient state with FA = 180°. Three-dimensional imaging with FA = 180° for extended echo trains with short TRs; however, is not possible at high field strengths (≥ 3T) due to the SAR limitation. Three-dimensional T2 weighting is still possible with FA < 180° if the tissue T_1 is long compared to TR. Bloch simulation with FA = 60° (Figs. 1a–b) showed that the images will be T2-weighted for long T_1s with minimal percentage signal difference compared to pure T2-weighted signal. When both the T_1 and T2 shorten, the T2 contrast between tissues decreases. Hence, it may be preferable to acquire 3D T2-TIDE images precontrast.

The 3D T2-TIDE signal profile in the first shot is higher than the signal profile in the subsequent shots, which is visible in the signal simulation of $N_{\text{shot}}=24$ as speckles in Figure 2e. This occurs because of the duration required for the 3D T2-TIDE signal to reach a dynamic steady state between the shots (21–22). The effect of the high signal in the first shot compared to the subsequent shots was analyzed by acquiring 3D T2-TIDE prostate images in healthy subjects using a discarded preparation shot. These images were compared to identical 3D T2-TIDE acquisitions without discarding the first shot, and no qualitative effects on the image quality were observed. Thus, all the 3D T2-TIDE in vivo images was acquired without the discarded shot in order to scan faster.

The maximum T2 contrast achieved with $\alpha_{\text{high}} = 180°$ will be higher than the maximum contrast that is achieved using a lower FA ($\alpha_{\text{high}} = 60°$) (Fig. 3). Hence, the CNR and the CNR efficiency between the anterior fibromuscular stroma and the peripheral zone was reduced using 3D T2-TIDE ($\alpha_{\text{high}} = 60°$) compared to 3D FSE ($\alpha = 110°$). However, there was no apparent loss of...
The 3D T2-TIDE images were acquired during the transient state of the bSSFP signal to maintain the T2 contrast. However, since the signal is not constant during the k-space filling, the PSF of 3D T2-TIDE is broader compared to the 3D bSSFP imaging (Figs. 5c–d). The PSF is also dependent on the Nshot and the spiral-out phase encode trajectory pattern in the Cartesian ky–kz plane. Due to the lower resolution along the z-direction compared to the y-direction, the choice of Nshot impacts the PSF along y and z differently (Figs. 5c–d). Different algorithms can be used to design the sampling pattern for the spiral-out trajectory on the ky–kz Cartesian grid, which may improve the PSF in the y- and z-direction uniformly. Warters et al. (23) have used Bloch simulations for designing a VFA scheme that produces constant bSSFP transverse magnetization. Similar simulations may be used to design VFA schemes that reduce the slope of transient bSSFP signal for 3D T2-TIDE imaging, thereby improving the PSF. The 2D PSF of 3D T2-TIDE may be blurred further with partial Fourier acquisitions, and the Bloch simulations did not consider the effects of acquiring data with partial Fourier or GRAPPA.

The 3D FSE sequences used a GRAPPA factor of 2, which permitted acquiring more echoes before the center of k-space (larger partial Fourier factor) and concomitantly reduced image blurring for a fixed echo train duration. The SNR reduction due to parallel imaging in 3D FSE was compensated by averaging twice. Hence, the T2 weighting in 3D FSE sequences is mainly controlled by the partial Fourier factor and parallel imaging factors. In 3D T2-TIDE, however, the T2 contrast is controlled by Nprep and does not depend on the parallel imaging and partial Fourier factors. Herein, the in vivo 3D T2-TIDE experiments used both partial Fourier and parallel imaging factors identical to 3D FSE for fair comparison of acquisition duration and SNR between these sequences.

A low number of Kaiser Bessel (KB) (24) pulses can also be used as preparation pulses instead of the $\epsilon_{\text{Kage}}/2$ preparation pulse. Additional simulations are required to determine the number of required KB and Nprep pulses, an increased number of KB pulses will reduce the transient signal and/or T2 weighting. The signal during the Nprep prep pulses could also be used to acquire the outer k-space lines for more efficient sampling.

The spiral-out phase encode ordering in the ky–kz Cartesian plane of 3D T2-TIDE enables the use of $N_{\text{shot}} \leq N_{kz}$, unlike other conventional 3D linear techniques using $N_{\text{shot}} \geq N_{kz}$ For example, if the Nshot is decreased, the images can be acquired even faster, however, at the cost of broader PSF or increased image blurriness. This may be useful for monitoring 3D T2 changes during interventional procedures. If VFA schemes for 3D FSE can be optimized to increase the echo train duration and be combined with phase encode ordering similar to 3D T2-TIDE, then comparable image contrast and acquisition duration may be possible.

Prostate images are clinically acquired in the axial plane with phase encoding along the right-to-left (RL) direction to reduce rectal motion artifacts, which occur predominantly in the anterior to posterior (AP) direction. As the field of view (FOV) in RL direction is $\sim 2 \times$ larger than the FOV in the AP direction, the acquisition duration for the 3D prostate imaging is nearly doubled compared to swapping the phase and frequency axes. If the phase encoding duration is chosen to be along the AP direction, then the acquisition duration of 3D T2-TIDE can be further reduced to 1.33 minutes (Fig. 7b), which may reduce the prevalence of the apparent rectal motion artifacts and may limit the need for glucagon.

In this paper, 3D T2-TIDE has been applied for fast 3D T2-weighted imaging of the prostate. Further evaluation is needed for different applications of 3D T2-weighted imaging, including the abdomen, breast, uterine tumors (25–26), spine (27), ganglion cysts (28), and ankle.

Limitations

The T2 contrast in the 3D T2-TIDE images is due to the acquisition of central k-space lines during the transient bSSFP signal, which is T2-weighted for a range of T1s and T2s, based on the assumption that the image contrast is mainly contributed by the central k-space. This is especially true for large objects approaching the size of the FOV. However, when the object size decreases in the image domain, the central region of k-space that contributes to image contrast increases. Hence, especially for small prostate tumors, the image contrast is due to both the transient signal and the steady-state signal. This property of 3D T2-TIDE is similar to other VFA acquisition techniques that use higher FAs to acquire the center of the k-space and lower FAs for the outer k-space lines. Furthermore, with regards to image contrast, the T2 weighting in 3D T2-TIDE is preserved only for a range of T1s and T2s. As a result, 3D T2-TIDE may not produce sufficient T2 weighting after contrast administration due to the shortening of the T1.

The 3D T2-TIDE images are susceptible to off-resonance–induced banding artifacts; therefore, they require the use of shim gradients to reduce B0 inhomogeneities and a short TR. The prostate images acquired in healthy subjects did not have banding artifacts when using the standard (i.e., not patient-specific) shim. Susceptibility artifacts were also subtly pronounced in regions surrounding the rectum in the 3D T2-TIDE images compared to the 3D FSE.

The interleaved multishot 3D T2-TIDE acquisition, with spiral-out phase encode ordering in ky–kz, improves the PSF by increasing the distribution of the transient signal in the middle of ky–kz. However, due to the delay between subsequent shots, any motion that occurs between shots may result in motion artifacts because the central k-space lines are partly acquired with each shot. Further improvements such as oversampling of the central ky–kz space may reduce artifacts due to intershot motion.

CONCLUSION

Three-dimensional T2-TIDE can be used for fast 3D T2-weighted prostate imaging at 3T with acceptable image quality and ~58% reduction in acquisition duration
compared to 3D FSE. The flexibility afforded by an interleaved shot strategy in 3D T$_2$-TIDE enables tradeoffs between acquisition speed and image sharpness.

ACKNOWLEDGMENT

The authors are grateful for research support from Siemens Medical Systems.

REFERENCES