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ABSTRACT OF THE DISSERTATION 

 

Development and Application of 

Single Cell Multi-omics 

Methods for Complex Disease 

 

by 

 

Russell Littman 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2022 

Professor Xia Yang, Chair 

 

Complex diseases such as Alzheimer’s disease are driven by molecular changes in many cell 

types in different tissues. Recent advances in scRNAseq and spatial transcriptomics provide tools 

to determine cell type specific effects in individual tissues resulting from genetic and 

environmental perturbations. Properly interpreting these data require computational tools and 

biologically rooted analyses to identify key mechanisms underlying complex diseases. Here we 

design, develop, and apply computational methods for integrating scRNAseq and spatial 

transcriptomics data to identify mechanisms underlying pathogenesis of disease and potential 

therapeutics. First, we designed a deep learning approach, JSTA, for integrating scRNAseq and 

spatial transcriptome data from multiplexed FISH for cell segmentation and cell type annotation, 

revealing spatially distributed cell subtypes and spatially differentially expressed genes in the 

mouse hippocampus. Next, we developed a gradient-boosting machine based approach, SCING, 

for identifying cell type specific gene regulatory networks (GRN) using scRNAseq and spatial 

transcriptomics data. This tool provides GRN subnetworks annotated with biological pathways for 
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associating subnetwork expression with disease phenotypes and spatial domains. We applied 

these and other existing tools to scRNAseq and spatial transcriptomics datasets to understand 

the mechanism underlying diverse types of diseases or physiological traits, including Alzheimer’s 

disease and heart innervating neurons and satellite glial cells in the stellate ganglion in the context 

of dilated cardiomyopathy. Our studies established new computational tools applicable to diverse 

types of single cell omics data and revealed biological insights to complex diseases.  
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Chapter 1. Introduction 

It is widely recognized that most common diseases such as Alzheimer’s disease (AD) are complex 

and involve many different factors including both genetic and environmental changes1,2. These 

diseases require systems level multi-omic approaches to understand mechanisms underlying 

their pathophysiology to further therapeutic discovery3. As transcriptomics represents 

downstream changes of both genotype and environmental changes, studying the transcriptome 

can help reveal important biological insights. In recent years, single cell RNA sequencing 

(scRNAseq) has become a widespread and powerful tool for understanding cell type specific gene 

expression alterations underlying these diseases4. Spatial transcriptomics, a newer technology, 

elucidates spatial distribution of cells and genes throughout a tissue, informing on cell 

microenvironment, cell-cell interaction5, cell type specific spatial variation6, and cell type pathology 

interaction7. These data types require efficient, robust computational tools to integrate and extract 

underlying pathophysiological mechanisms of disease and to identify key drivers and potential 

targets.  

 

My dissertation is comprised of two specific aims, one focusing on single cell multi-omics 

integration tool development (Chapter 2, Chapter 3) and the other focusing on application studies 

to understand cell-type specific mechanisms of IDOL knockdown treatment in APP/PS1 mice, as 

well as heart innervating neuronal subpopulations and satellite glia in the stellate ganglion in the 

context of DCM (Chapter 4, Chapter 5, Chapter 6). 

 

In Chapter 2 we develop JSTA, a computational framework for joint cell segmentation and cell 

type annotation that utilizes prior knowledge of cell type-specific gene expression. RNA 

hybridization-based spatial transcriptomics provides unparalleled detection sensitivity. However, 

inaccuracies in segmentation of image volumes into cells cause misassignment of mRNAs which 

is a major source of errors. Simulation results show that leveraging existing cell type taxonomy 
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increases RNA assignment accuracy by more than 45%. Using JSTA, we were able to classify 

cells in the mouse hippocampus into 133 (sub)types revealing the spatial organization of CA1, 

CA3, and Sst neuron subtypes. Analysis of within cell subtype spatial differential gene expression 

of 80 candidate genes identified 63 with statistically significant spatial differential gene expression 

across 61 (sub)types. Overall, our work demonstrates that known cell type expression patterns 

can be leveraged to improve the accuracy of RNA hybridization-based spatial transcriptomics 

while providing highly granular cell (sub)type information. The large number of newly discovered 

spatial gene expression patterns substantiates the need for accurate spatial transcriptomic 

measurements that can provide information beyond cell (sub)type labels. 

 

In Chapter 3, we present Single Cell INtegrative Gene regulatory network inference (SCING), a 

gradient boosting and mutual information based approach for identifying robust GRNs from 

scRNAseq, snRNAseq, and spatial transcriptomics data. Gene regulatory network (GRN) 

inference is an integral part of understanding physiology and disease. Single cell/nuclei RNAseq 

(scRNAseq/snRNAseq) data has been used to elucidate cell-type GRNs; however, the accuracy 

and speed of current scRNAseq-based GRN approaches are suboptimal.  Performance 

evaluation using held-out data, Perturb-seq datasets, and the mouse cell atlas combined with the 

DisGeNET database demonstrates the improved accuracy and biological interpretability of 

SCING compared to existing methods. We applied SCING to the entire mouse single cell atlas, 

human AD, and mouse AD spatial transcriptomics. SCING GRNs reveal unique disease 

subnetwork modeling capabilities, have intrinsic capacity to correct for batch effects, retrieve 

disease relevant genes and pathways, and are informative on spatial specificity of disease 

pathogenesis. 

 

In Chapter 4, we utilized an antisense oligonucleotide (ASO) to reduce IDOL expression 

therapeutically in the brains of APP/PS1 male mice. Brain lipoprotein receptors have been shown 
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to regulate the metabolism of ApoE and β-amyloid (Aβ) and are potential therapeutic targets for 

AD. Previously, we identified E3 ubiquitin ligase IDOL as a negative regulator of brain lipoprotein 

receptors. Genetic ablation of Idol increases low-density lipoprotein receptor protein levels, which 

facilitates Aβ uptake and clearance by microglia. ASO treatment led to decreased Aβ pathology 

and improved spatial learning and memory. Single-cell transcriptomic analysis of hippocampus 

revealed that IDOL inhibition upregulated lysosomal/phagocytic genes in microglia. Furthermore, 

clustering of microglia revealed that IDOL-ASO treatment shifted the composition of the microglia 

population by increasing the prevalence of disease-associated microglia. Our results suggest that 

reducing IDOL expression in the adult brain promotes the phagocytic clearance of Aβ and 

ameliorates Aβ-dependent pathology. Pharmacological inhibition of IDOL activity in the brain may 

represent a therapeutic strategy for the treatment of AD. 

 

In Chapter 5, we leveraged retrograde tracing techniques using adeno-associated virus (AAV) 

expressing fluorescent proteins (GFP or Td-tomato) with single cell RNA sequencing to identify 

and resolve the transcriptomic profiles of SGNs innervating the heart. The soma of postganglionic 

sympathetic neurons innervating the heart primarily reside in the stellate ganglion (SG), along 

with those of neurons innervating other organs and tissue beds. Whether cardiac-innervating 

stellate ganglionic neurons (SGNs) exhibit diversity and distinction from those innervating other 

tissues is not known. We investigated electrophysiologic, morphologic, and physiologic roles for 

subsets of cardiac-specific neurons and found that three of five adrenergic SGN subtypes 

innervate the heart, differentiated by NPY expression. We also report that these subtypes exhibit 

distinct morphological, neurochemical, and electrophysiologic characteristics, including 

differential roles in cardiac physiologic control. In a mouse model of non-ischemic heart failure, 

we demonstrate that cardiac disease differentially impacts these cardiac neuronal subtypes and 

alters their distribution to yield a dominant subtype, which represents a viable cell-specific anti-

adrenergic target in heart failure. These findings provide novel insights into the unique properties 
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of neurons responsible for cardiac sympathetic regulation, with implications for novel strategies 

to target specific neuronal subtypes for sympathetic blockade in cardiac disease. 

Stellate ganglion neurons, important mediators of cardiopulmonary neurotransmission, are 

surrounded by satellite glial cells (SGCs), which are essential for the function, maintenance, and 

development of neurons. However, it remains unknown whether SGCs in adult sympathetic 

ganglia exhibit any functional diversity, and what role this plays in modulating neurotransmission.  

 

In Chapter 6, we performed single-cell RNA sequencing of mouse stellate ganglia (n = 8 animals), 

focusing on SGCs (n = 11,595 cells). SGCs were identified by high expression of glial-specific 

transcripts, S100b and Fabp7. Microglia and Schwann cells were identified by expression 

of C1qa/C1qb/C1qc and Ncmap/Drp2, respectively, and excluded from further analysis. 

Dimensionality reduction and clustering of SGCs revealed six distinct transcriptomic subtypes, 

one of which was characterized the expression of pro-inflammatory markers and excluded from 

further analyses. The transcriptomic profiles and corresponding biochemical pathways of the 

remaining subtypes were analyzed and compared with published astrocytic transcriptomes. This 

revealed gradual shifts of developmental and functional pathways across the subtypes, originating 

from an immature and pluripotent subpopulation into two mature populations of SGCs, 

characterized by upregulated functional pathways such as cholesterol metabolism. As SGCs 

aged, these functional pathways were downregulated while genes and pathways associated with 

cellular stress responses were upregulated. These findings were confirmed and furthered by an 

unbiased pseudo-time analysis, which revealed two distinct trajectories involving the five subtypes 

that were studied. These findings demonstrate that SGCs in mouse stellate ganglia exhibit 

transcriptomic heterogeneity along maturation or differentiation axes. These subpopulations and 

their unique biochemical properties suggest dynamic physiological adaptations that modulate 

neuronal function. 
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In summary, the bioinformatics methods I developed and the scRNAseq analysis projects I 

completed will be useful to the broader community for advancing the knowledge of complex 

disease by comprehensively utilizing scRNAseq and spatial transcriptomics data. JSTA and 

SCING will enable analysis on high quality spatial transcriptomics data from multiplexed FISH 

experiments, and the inference of high quality, interpretable GRNs for physiology and disease 

interpretation respectively. Furthermore, we utilize scRNAseq data to show cell type specific 

pathogenesis in dilated cardiomyopathy, and a potential therapeutic avenue in AD. These 

computational methods and analyses help advance the use of scRNAseq and spatial 

transcriptomics for profiling physiology and complex disease.  
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Chapter 2. Joint cell segmentation and cell type annotation for spatial transcriptomics 

2.1 Introduction 

Spatial transcriptomics has been employed to explore the spatial and cell-type specific gene 

expression to better understand physiology and disease8-9. Compared to other spatial 

transcriptomics methods, RNA hybridization based approaches provided the highest RNA 

detection accuracies with capture rates > 95%10. With the development of combinatorial 

approaches for RNA hybridization, the ability to measure the expression of hundreds to thousands 

of genes makes hybridization based methods an attractive platform for spatial transcriptomics 10-

13. Nonetheless, unlike dissociative approaches, such as single-cell RNA sequencing (scRNAseq) 

where cells are captured individually, RNA hybridization based approaches have no a priori 

information of which cell a measured RNA molecule belongs to. Segmentation of image volumes 

into cells is therefore required to convert RNA detection into spatial single-cell data. Assigning 

mRNA to cells remains a challenging problem that can substantially compromise the overall 

accuracy of combinatorial FISH approaches.  

 

Generation of spatial single-cell data from imaging based spatial transcriptomics relies on 

algorithmic segmentation of images into cells. Current combinatorial FISH work uses watershed 

based algorithms with nuclei as seeds, and the total mRNA density to establish cell borders 11,12,13. 

Watershed algorithm was proposed more than 40 years ago14 and newer segmentation 

algorithms that utilize state of the art machine learning approaches have been shown to improve 

upon classical watershed approach 15,16. However, their performance is inherently bounded by 

the quality of the “ground truth” dataset used for training. In tissue regions with dense cell 

distributions, there is simply not enough information in the images to perform accurate manual 

labeling and create a sufficiently accurate ground truth training datasets. Therefore, there is an 

urgent need for new approaches that can combine image information with external datasets to 

improve image segmentation and thereby the overall accuracy of spatial transcriptomics.  
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Due to the deficiency in existing image segmentation algorithms, a few segmentation free spatial 

transcriptomics approaches were proposed. pciSeq’s primary goal is to assign cell types to nuclei 

by using proximity to mRNA, and an initialized segmentation map to compute the likelihood of 

each cell type17. Similarly, SSAM creates cell type maps based on RNA distributions, without 

creating a cell segmentation map because it ignores cellular boundaries18. Therefore while both 

pciSeq and SSAM leverage cell type catalogs to provide insights into the spatial distribution of 

different cell types they do not produce a high quality cell segmentation map. More recently, an 

approach for updating cell boundaries in spatial transcriptomics data has been developed19. 

Baysor uses neighborhood composition vectors and markov random fields to segment spatial 

transcriptomics data and identify cell type clusters. 

 

Here we present JSTA, a computational framework for jointly determining cell (sub)types and 

assigning mRNAs to cells by leveraging previously defined cell types through scRNAseq. Our 

approach relies on maximizing the internal consistency of pixel assignment into cells to match 

known expression patterns. We compared JSTA to watershed in assigning mRNAs to cells 

through simulation studies to evaluate their accuracy. Application of JSTA to MERFISH 

measurements of gene expression in the mouse hippocampus together with Neocortical Cell Type 

Taxonomy20 (NCTT) provides a highly granular map of cell (sub)type spatial organization and 

identified many spatially differentially expressed genes (spDEGs) within these (sub)types21. 

2.2 Results 

JSTA overview and method 

Our computational framework of JSTA is based on improving initial watershed segmentation by 

incorporating cell (sub)type probabilities for each pixel and iteratively adjusting the assignment of 

boundary pixels based on those probabilities (Figure 2.1a). 
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To evaluate JSTA we chose to use the mouse hippocampus for two reasons. 1) the mouse 

hippocampus has high cell (sub)type diversity as it includes more than 35% of all cell (sub)types 

defined by the NCTT. 2) the mouse hippocampus has areas of high and low cell density. These 

two reasons make the mouse hippocampus a good test case for the hypothesis that external cell 

(sub)type specific expression data could be leveraged to increase the accuracy of spatial 

transcriptomics, as implemented in our approach. We performed Multiplexed Error Robust 

Fluorescent In Situ Hybridization (MERFISH) of 163 genes which include 83 selected cell marker 

genes, which show distinct expression between cell types and are used for cell classification and 

segmentation and 80 genes previously implicated with biological importance in traumatic brain 

injury. (Figure 2.1b). Combining this MERFISH dataset, DAPI stained nuclei, and the NCTT 

reference dataset using JSTA, we created a segmentation map that assigns all mRNAs to cells 

while simultaneously classifying all cells into granular (sub)types based on NCTT.  

 

In JSTA, we leverage the NCTT information to infer probabilities at the pixel level. However, 

learning these probabilities from NCTT is challenging for two reasons. 1) NCTT data was acquired 

with scRNAseq technology that has higher sparsity due to low capture rates and needs to be 

harmonized. 2) NCTT data provides expression patterns at the cell level and not the pixel level. 

We expect the mean expression among all pixels in a cell to be the same as that of the whole 

cell. Yet, variance and potentially higher distribution moments of the pixel level distribution are 

likely different from those of the cell level distribution due to sampling and biological factors such 

as variability in subcellular localization of mRNA molecules12. To address these issues JSTA 

learns the pixel level cell (sub)type probabilities using two distinct deep neural networks (DNN) 

classifiers, a cell level type classifier, and a pixel type classifier. Overall, JSTA learns three distinct 

layers of information: segmentation map, pixel level classifier, and cell level classifier.  
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Learning of model parameters is done using a combination of NCTT and the MERFISH data. The 

cell type classifier is learned directly from NCTT data after harmonization. The other two layers 

are learned iteratively using expectation maximization (EM) approach22. Given the current cell 

type assignment to cells, we train a pixel level DNN classifier to output the cell (sub)type 

probability of each pixel. JSTA can be applied on any user selected subset of the genes; the local 

mRNA density of these selected genes around each pixel are used as the input for the pixel level 

classifier. The selection of genes drives how well the cell type classifier can distinguish between 

distinct cell types. The updated pixel classifier is used to assign probabilities to all border pixels. 

The new probabilities are then used to “flip” border pixels’ assignment based on their type 

probabilities. The updating of the segmentation map requires an update of the cell level type 

classification which triggers a need for an update of pixel level classifier training. This process is 

then repeated until convergence. Analysis of the mean pixel level cell (sub)type classification 

accuracy shows an increase in the algorithm’s classification confidence over time demonstrating 

that the NCTT external information gets iteratively incorporated into the tasks of cell segmentation 

and type annotation (Fig S1). For computational efficiency, we iterate between training, 

reassignment, and reclassification in variable rates. As this approach uses cell type information 

to improve border assignment between neighboring cells, in cases where two neighboring cells 

are of the same type, the border between them will stay the same as the initial watershed 

segmentation. The final result is a cell type segmentation map that is initialized based on 

watershed and adjusted to allow pixels to be assigned to cells to maximize consistency between 

local RNA density and cell type expression priors.      

 

Performance evaluations 

Performance evaluation using simulated hippocampus data  

To test the performance of our approach we utilized synthetic data generated based on the 

NCTT21 (Figure 2.2ab). Details on the synthetic generation of cell position, morphologies, type, 
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and expression profiles are available in the methods section. Using this synthetic data we 

evaluated the performance of JSTA in comparison to watershed at different cell type granularities. 

For example, two cells next to each other that are of subtypes CA1sp1 and CA1sp4 would add to 

the error in segmentation, but if the cell type resolution decreases to CA1 cells, these would be 

considered the same type, and misassignment of mRNA between these cells is no longer 

penalized. Evaluating the methods in this manner allows us to explore the trade-off between cell 

type granularity and mRNA assignment accuracy. Our analysis shows that JSTA consistently 

outperforms watershed at assigning spots to cells (Figure 2.2c). Interestingly, the benefit of JSTA 

was evident even with a small number of genes (Figure 2.2d).  With just 12 genes, the 

performance jumps to 0.50 at the highest cell type granularity, which is already higher than 

watershed’s accuracy; at a granularity of 16 cell types, the accuracy reached 0.62 (Figure 2.2cd). 

Overall the synthetic data showed that JSTA outperforms watershed approach, and at 

physiologically relevant parameters, can increase mRNA assignment accuracy by > 45%. We 

additionally compared JSTA to pciSeq17, in the assignment of mRNA molecules to cells. We note 

that pciSeq is mainly designed to assign cell types to nuclei based on surrounding mRNA, and 

therefore is not primarily focused on assigning most mRNA molecules to cells as JSTA does. 

Furthermore, since pciSeq is not designed to operate on 3D data, we simulated 2D data and 

applied both JSTA and pciSeq. We found that JSTA was more accurate at assigning mRNA 

molecules to cells than pciSeq (Figure SF2.1a). pciSeq tends to incorrectly assign many spots to 

background, as segmentation is not its primary goal. However, when ignoring mRNAs assigned 

to background in a true positive calculation, pciSeq performs well as it primarily assigns mRNAs 

close to the nuclei, which is an easier task. In this case, JSTA has comparable performance 

(Figure SF2.1b). 

 

Time requirements of JSTA 
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We simulated data of different sizes and ran JSTA to determine how the run time scales with 

larger datasets. We simulated 3 replicates of data with a width and height of 100, 200, 300, 400, 

500, and 1000 microns. The run time of JSTA scales linearly with both the area, and number of 

cells in the section (Figure SF2.7ab). 

 

Performance evaluation using empirical spatial transcriptomics of mouse hippocampus 

We next tested the performance of JSTA using empirical data and evaluated its ability to recover 

the known spatial distribution of coarse neuron types across the hippocampus (Figure 2.3). First, 

we subset the NCTT scRNAseq data to the shared genes we have in our MERFISH data and 

harmonized the MERFISH and scRNAseq datasets23. Using the cell type annotations from the 

single-cell data, we trained a DNN to classify cell types. As expected, our classifier derived a cell 

type mapping agreeing with known spatial patterns in the hippocampus (Figure 2.3a). For 

example, CA1, CA3, and DG cells were found with high specificity to their known subregions 

(Figure 2.3b). We found that the gene expression of the segmented cells in MERFISH data highly 

correlated with their scRNAseq counterparts, and displayed similar correlation patterns between 

different cell types (Figure 2.3c) as seen in scRNAseq data (Figure 2.3d). These results show that 

our data and JSTA algorithm can recover existing knowledge on the spatial distribution of cell 

types and their gene expression patterns in the mouse hippocampus.   

 

JSTA performs high resolution cell type mapping in the mouse hypothalamic preoptic region 

We applied JSTA to a MERFISH from a previously published mouse hypothalamic preoptic region 

with 134 genes provided23. Using the provided scRNAseq reference dataset, we accurately 

mapped 87 high resolution cell types in this region (Figure SF2.2a). The mapped cell types follow 

spatial distributions of high resolution cell types of this region previously annotated through 

clustering and marker gene annotation. We find the gene expression profiles of the cell types from 

the MERFISH data is highly correlated with their scRNAseq counterparts (Figure SF2.2b). 
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JSTA performs high resolution cell type mapping in the mouse somatosensory cortex 

Next, we applied JSTA to an osmFISH dataset from the mouse somatosensory cortex with the 35 

genes provided24. Using the NCTT reference, we mapped 142 high resolution cell types in this 

region. We found that the glutamatergic neuronal populations follow known spatial organization 

(Figure SF2.3a), and that the gene expression patterns of high resolution cell types in the 

osmFISH data are highly correlated with their NCTT counterparts (Figure SF2.3b). 

 

Applications of JSTA for biological discovery 

JSTA identifies spatial distribution of highly granular cell (sub)types in the hippocampus 

A key benefit of JSTA is its ability to jointly segment cells in images and classify them into highly 

granular cell (sub)types. Our analysis of mouse hippocampus MERFISH data found that these 

subtypes, defined only based on their gene expression patterns, have high spatial localization in 

the hippocampus. From lateral to medial hippocampus, the subtypes transitioned spatially from 

CA1sp10 to CA1sp6 (Figure 2.4a). Likewise, JSTA revealed a non-uniform distribution of 

subtypes in the CA3 region. From lateral to medial hippocampus, the subtypes transitioned from 

CA3sp4 to CA3sp6 (Figure 2.4b). This gradient of subtypes reveals a high level of spatial 

organization and points to potentially differential roles for these subtypes.    

 

JSTA shows that spatially proximal cell subtypes are transcriptionally similar  

Next, we tested whether across different cell types spatial patterns match their expression 

patterns by evaluating the colocalization of cell subtypes and their transcriptional similarity. 

Indeed, spatially proximal CA1 subtypes showed high transcriptional similarity (Figure 2.5a, S5). 

For example, cells in the subtypes CA1sp3, CA1sp1, and CA1sp6 are proximal to each other and 

show a high transcriptional correlation. Interestingly, this relationship was not bidirectional, and 

transcriptional similarity by itself is not necessarily predictive of spatial proximity. For example, 
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subtypes CA1sp10, CA1sp7, and CA1sp4, show >0.95 correlation but are not proximal to each 

other. Similar findings were seen in the CA3 region as well (Figure 2.5b, SF2.5).   

 

To test if this principle goes beyond subtypes of the same type we compared CA1 neurons and 

the Sst interneurons. We found that many Sst subtypes have high specificity in their localization 

and are transcriptionally related to their non Sst neighbors. Using permutation tests we found that 

subtypes Sst12, Sst19, Sst20, Sst28 subtypes are significantly colocalized with these same 

subtypes and are specific to the CA1 region (Figure 2.5cd, methods). Analysis of their 

transcriptional similarity showed that these subtypes are highly correlated in their gene expression 

to all CA1 subtypes (Figure 2.5e) but not to CA3 subtypes. These results show that both within a 

cell type and across cell types spatial proximity indicates similarity in expression patterns.  

 

JSTA identifies spatial differential gene expression (spDEGs) 

Given our results on the relationship between spatial localization and gene expression patterns 

across cell subtypes, we next tested whether spDEGs within the highly granular cell subtypes can 

be identified. We focused our analysis on the 80 genes in our dataset that were not genes used 

to classify cells into cell (sub)types. We identified spDEGs by determining if the spatial expression 

pattern of a given gene was statistically different from a null distribution by permuting the gene 

expression values. Importantly, the null model was restricted to the permutation of only the cells 

within that subtype. As a result our spDEGs analysis specifically identifies genes whose 

expression within a specific subtype has a spatial distribution that is different than random. We 

found that within hippocampal cell subtypes, many genes were differentially expressed based on 

their location (Figure 2.6). For example, Tox in CA1sp1 shows higher expression on the medial 

side of the hippocampus and decreases to the lateral side.  Leng8 in subtype CA3sp3 is highly 

expressed closer to the CA1 region, and lower in the medial CA3. Hecw1 in the DG2 subtype has 

varying spatial distribution in the DG region. The lower portion of the DG has clusters of higher 
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expression, while the upper portion has lower expression. These spatial differences in gene 

expression are not limited to neuronal subtypes. Astrocytes subtype “Astro1” shows spatial 

heterogeneity in expression of Thra, with large patches of high expression levels and other 

patches of little to no expression (Figure 2.6a). Overall, we tested for spDEGs in 61 (sub)types 

with more than 40 cells. We found that all 61 of the tested hippocampal cell subtypes have 

spDEGs (Figure 2.6b, SF2.6b), with more than 50% (63 of 80) of the tested genes showing non-

random spatial pattern (Figure 2.6c, SF2.6c). Certain genes also show spatial patterns in many 

subtypes (e.g., Thra S4ac), while others are more specific to a one or a few subtypes (e.g., Farp1, 

S6ac). Identification of spDEGs highlights an interesting application of highly accurate cell type 

and mRNA assignment in spatial transcriptomics data.  

 

2.3 Discussion 

Spatial transcriptomics provides the coordinates of each transcript without any information on the 

transcript cell of origin25. Here we present JSTA, a new method to convert raw measurements of 

transcripts and their coordinates into spatial single cell expression maps. The key distinguishing 

aspect of our approach is its ability to leverage existing scRNAseq based reference cell type 

taxonomies to simultaneously segment cells, classify cells into (sub)types and assign mRNAs to 

cells. The unique integration of spatial transcriptomics with existing scRNAseq information to 

improve the accuracy of image segmentation and enhance the biological applications of spatial 

transcriptomics, distinguishes our approach from other efforts that regardless of their algorithmic 

ingenuity are bounded by the available information in the images themselves. As such, JSTA is 

not a generalist image segmentation algorithm rather a tool specifically designed to convert raw 

spatial transcriptomics data into single cell level spatial expression maps. We show the benefits 

of using a dedicated analysis tool through the insights it provides into spatial organization of 

distinct (sub)types in the mouse hippocampus and the hundreds of newly discovered cell 

(sub)type specific spDEGs. These insights into the molecular and cellular level structural 
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architecture of the hippocampus demonstrates the types of biological insights provided by highly 

accurate spatial transcriptomics.  

 

The promise of single cell and spatial biology lends itself to intense focus on technological and 

computational development and large scale data collection efforts. We anticipate that JSTA will 

benefit these efforts while at the same time benefit from them. On the technology side, we have 

demonstrated the performance of JSTA for one specific variant of spatial transcriptomics, 

MERFISH. However, the algorithm is extendable and could be applied to other spatial 

transcriptomics approaches that are based on in situ sequencing 26,27,28, subcellular spatial 

barcoding 29,30, and potentially any other spatial “omics” platforms 31–36. Additionally, cell 

segmentation results from JSTA can be used as input for other tools such as GIOTTO37 and 

TANGRAM38 to facilitate single cell and spatial transcriptomic data analysis. The benefits of JSTA 

are evident even with a small number of measured genes. This indicates that it is applicable to a 

broad range of platforms across all multiplexing capabilities. JSTA is limited by its ability to 

harmonize technical differences between spatial transcriptomics data modalities and the 

scRNAseq reference. Harmonization between datasets is an active area of research, and JSTA 

will benefit from these advances39–43. JSTA relies on initial seed identification (nuclei or cell 

centers), and incorrect identification can lead to split or merged cells. JSTA currently does not 

split or merge cells, but this post processing step could be added to further improve 

segmentation44–47. On the data side, as JSTA leverages external reference data, it will naturally 

increase in its performance as both the quality and quantity of reference cell type taxonomies 

improve48. We see JSTA as a dynamic analysis tool that could be reapplied multiple times to the 

same dataset each time external reference data is updated to always provide highest accuracy 

segmentation, cell (sub)type classification, spDEG identification.    
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Due to the nascent status of spatial transcriptomics there are many fundamental questions related 

to the interplay between cell (sub)types and other information gleaned from dissociative 

technologies and tissue and organ architecture49,50. Our results show that strong co-dependency 

between spatial position and transcriptional state of a cell in the hippocampus, these results mirror 

findings from other organs51–53. This codependency supports the usefulness of the reference 

taxonomies that were developed without the use of spatial information. Agreements between cell 

type taxonomies developed solely based on scRNAseq and other measurement modalities, i.e. 

spatial position, corroborates the relevance of the taxonomical definitions created for mouse 

brain20. At the same time, the spatial measurements demonstrate the limitation of scRNAseq. We 

discovered many spatial expression patterns within most cell (sub)types that prior to these spatial 

measurements would have been considered biological heterogeneity or even noise but in fact 

they represent key structural features of brain organization. High accuracy mapping at the 

molecular and cellular level will allow us to bridge cell biology with organ anatomy and physiology 

pointing towards a highly promising future for spatial biology.  

 

2.4 Materials and Methods 

Tissue Preparation. B6 mouse was euthanized using carbon dioxide with cervical dislocation. 

Its brain was harvested and flash frozen in Optimal Cutting Temperature Compound (OCT) using 

liquid nitrogen. 15 um sections were prepared and placed on pretreated coverslips. 

 

Coverslip Functionalization. Coverslips were functionalized to improve tissue adhesion and 

promote gel attachment 54. Briefly, 40 mm No.1 coverslips were cleaned with a 50:50 mixture of 

concentrated 37% hydrochloric acid and methanol under sonication for 30 minutes. Coverslips 

were silanized to improve gel adhesion with 0.1% triethylamine and 0.2% allyltrichlorosiloxane in 

chloroform under sonication for 30 minutes then rinsed once with chloroform then twice with 

ethanol. Silanization was cured at 70C for 1 hour. An additional coating of 2% 
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aminopropyltriethoxysilane to improve tissue adhesion was applied in acetone under sonication 

for 2 minutes then washed twice with water and once with ethanol. Coverslips were dried at 70C 

for 1 hour then stored in a desiccator for less than 1 month.  

 

Probe Design and Synthesis. A total of 18 readout probes were used to encode the identity of 

each gene. Each gene was assigned 4 of the possible 18 probes such that each combination was 

a minimum hamming distance of 4 away from any other gene. This provides classification that is 

robust up to 2 bit errors. 80 to 120 encoder probes were designed for each target gene. Encoder 

probes contained a 30 bp region complementary to the transcript of interest with a melting point 

of 65C and less than 17 bp homology to off target transcripts including highly expressed ncRNA 

and rRNA. Probes also contained 3 of 4 readout sequences assigned to each gene. Sequences 

are available in supplementary material. Probes were designed using modified MATLAB code 

developed by the Zhuang Lab 54. Probes were ordered from custom arrays as a single strand 

pool. A T7 promoter was primed into each sequence with a limited cycle qPCR to allow 

amplification through in vitro transcription and reverse transcription54.   

 

Hybridization. Hybridization was performed using a modified MERFISH protocol 54. Briefly, 

Tissue sections were fixed in 4% PFA in 1xPBS for 15 minutes and washed 3 times with 1xPBS 

for 5 minutes each. Tissue was permeabilized with 1% Triton X-100 in 1xPBS for 30 minutes and 

washed 3 times with 1x PBS. Tissue was incubated in 30% formamide in 2xTBS at 37C for 10 

minutes. Encoding probes were hybridized at 5 nM per probe in 30% Formamide 10% dextran 

sulfate 1 mg/mL tRNA 1 uM poly T acridite anchor probed and 1% Murine RNAse inhibitor in 

2xTBS. A 30 uL drop of this encoding hybridization solution was placed directly on the coverslip 

and a piece of parafilm was placed on the coverslip to prevent evaporation. Probes were 

hybridized for 30-40 hours at 37C in a humidity chamber. Tissue was washed twice with 30% 

formamide in 2xTBS for 30 minutes each at 45C. Tissue was washed 3 times with 2xTBS. Tissue 
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was embedded in a 4% polyacrylamide hydrogel with 0.5uL/mL TEMED 5uL 10% APS and 

200nm blue beads for 2 hours (Can expand if wanted). Tissue was cleared with 1% SDS, 0.5% 

Triton x-100, 1 mM EDTA, 0.8 M guanidine HCl 1% proteinase K in 2xTBS for 48 hours at 37C 

replacing clearing solution every 24 hours. Sample was washed with 2xTBS and mounted for 

imaging. Readout hybridization was automated using a custom fluidics system. Sample was 

rinsed with 2xTBS and buffer exchanged into 10% dextran sulfate in 2xTBS for hybridization. 

Hybridization was performed in 10% dextran sulfate in 2xTBS with a probe concentration of 3nM 

per probe. Sample was washed with 10% dextran sulfate then 2xTBS. Sample chamber was filled 

with a 2mM pca 0.1& rPCO 2mM VRC 2mM Trolox in 2xTBS Imaging Buffer. Sample was imaged 

at 63X using a custom epifluorescent microscope. After imaging fluorophores were stripped using 

50mM TCEP in 2xTBS and the next round of readout probes were hybridized. 

 

Image Analysis. Image analysis was performed using custom python code55. To register multiple 

rounds of imaging together with sub pixel resolution, fiduciary markers were found and a rigid 

body transformation was performed. Images were preprocessed using hot pixel correction, 

background subtraction, chromatic aberration correction, and deconvolution. An 18 bit vector was 

generated for each pixel where each bit represented a different round and fluorophore. Each bit 

was normalized so that background approached 0 and spots approached 1. An L2 normalization 

was applied to the vector and the euclidean distance was calculated to the 18 bit gene barcode 

vectors. Pixels were classified if their euclidean distance was less than a 2 bit error away from 

the nearest gene barcode. Individual pixels that were physically connected were merged into a 

spot. Dim spots and spots that contained 1 pixel were removed.   

 

Nuclei Segmentation. Nuclei were stained using dapi and imaged after MERFISH acquisition. 

Each 2D image was segmented using cellpose with a flow threshold of 1 and a cell probability 

threshold of 056 CITE. 2D masks of at least 10um2 area were merged if there was at least 30 
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percent overlap between frames. 3D masks that were present in less than 5 z frames (2um) were 

removed.  

 

Simulation. scRNAseq reference preparation. The NCTT was subset to the cells found in the 

hippocampus, and to the genes from our MERFISH data. Expression levels of simulated genes 

were taken from scRNAseq reference and were harmonized to qualitatively match the variance 

observed in measured in MERFISH data. These were then rounded to create a scaled counts 

matrix. For each of the 133 hippocampal cell types from the NCTT, we computed a mean vector 

and covariance matrix of  gene expression. We additionally computed the cell type proportions in 

the single cell data for later use in cell type assignment. 

 

Creating the cell map. Initially, the cell centers were placed in a 200 X 200 X 30 micron grid, 

equidistant from one another, with an average distance between cell centers of 4 microns. The 

cell centers were then moved around in each direction (x, y, z) based on a gaussian function with 

mean 0 and standard deviation 0.6. Pixels were then assigned to their closest center with a 

minimum distance of 5 microns and maximum distance of 7 microns. Cell’s with less than 30 

pixels were removed due to small unrealistic sizes. To create more realistic and non-round cells, 

we merged neighboring, touching cells twice. Each cell was assigned a (sub)type uniformly across 

all 133 types in our dataset. Nuclei were randomly placed within each cell with 20 pixels. Nuclei 

pixels placed on the border were removed. We simulated 10 independent replicates in each 

simulation study.  

 

Generating cell transcriptional profiles, and placing spots. Each cell’s gene expression profile was 

drawn from a multivariate gaussian using the mean vector, and covariance matrix computed from 

the scRNAseq reference. This vector and matrix are cell type specific, and each cell’s gene 

expression profile is sampled from these cell type specific distributions. The mRNA spots were 



 20 

then placed inside of each cell, slightly centered around the nucleus, but mostly uniform 

throughout. 

 

Simulated data on limited genes. To perform feature selection and extract a limited number of 

important genes (4, 12, 20, 28, 36, 44), we used a random forest classifier with 100 trees to predict 

cell types in the reference dataset. The top n important features for classifying cell types were 

used. Other simulation parameters were the same as above.  

 

K-Nearest Neighbors (KNN) based Density Estimation Method. We used a KNN approach to 

estimate density for many genes at each point57. The volume required to reach the 5th spot was 

computed and used to compute the density estimation (Equation 1). Where  is the radius to the 

5th closest spot of that gene. We repeated this process for all genes. 

 

 

  

JSTA Overview. Expectation Maximization (EM) can be used to jointly classify the identity of an 

observation of interest, while learning the parameters that describe the class distributions. In EM, 

the object classes are initialized with a best guess. The parameters of the classifying function are 

learned from this distribution of initialized classes (M-step). The objects are reclassified according 

to the updated function parameters (E-step). These steps are repeated until the function 

parameters converge. JSTA is designed with an EM approach for reclassifying border pixels in 

the 3 dimensional grid of pixels based on their estimated  transcriptional densities. First, we 

initialize the spatial map with watershed, in euclidean space with a maximum radius. Next we 

classify cell types of the segmented cells based on the computed count matrix. We then randomly 

sample a fraction of the pixels’ gene expression vectors, and train a pixel classifier (M-step). The 
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pixel classifier is used to reclassify the cell identity of pixels that are at the border between different 

cell types, or between a cell and empty space (E-step).  

 

Cell Type Classification. Data preparation. To match the distributions of both scRNAseq and 

MERFISH, we centered and scaled each cell across all genes. We then subsequently centered 

and scaled each gene across all cells. We note that other harmonization approaches could be 

applied here. 

 

Cell type classifier. We parameterized the cell type classifier as a neural network, with 3 

intermediate layers with 3 times the number of input genes as nodes. We used a tanh activation 

function with L1 regularization (1e-4) allowing for the influence of negative numbers in the scaled 

values and parameter space sparsity58. Batch normalization was used on each layer59, and a 

softmax activation was used for the output layer60 (Table S1).  

 

Training the classifier. The network parameters were initialized with Xavier initialization61. The 

neural network was trained with two steps with learning rates of 5e-3 and 5e-4 for 20 epochs 

each, with batch size of 64, and the Adam optimizer was used 62. A 75/25 train validation split was 

used to tune the L1 regularization parameter and reduce overfitting. We used 75/25 to increase 

the representation of lower frequency cell classes. Cross entropy loss was used to penalize the 

model and update parameters accordingly (Figure SF2.4ab). 

 

Pixel Classification. Pixel classifier. We parameterized the pixel classifier as a neural network 

with 3 intermediate layers. Each layer was twice the size of the last to increase the modeling 

power of this network, and indirectly model the other genes not in the MERFISH dataset. Each 

layer used the tanh activation function and used an l2 regularizer (1e-3). Each layer was centered 
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and scaled with batch normalization, and the output activation was an l2 regularized softmax 

function (Table S2).  

 

Training the classifier. Each time cell types are reclassified, a new network was reinitialized with 

Xavier initialization. The network was initially trained with learning rates or 1e-3 and 1e-4 for 25 

epochs. After the first round of classifying and flipping the assignment of pixels, the network was 

retrained on a new sample of pixels starting from the previous parameter values. This was then 

trained with a learning rate of 1e-4 for 15 epochs. All training was performed with the Adam 

optimizer and a batch size of 64. We used an 80/20 train validation split to help monitor any 

overfitting that might be occurring, and adjust the hyperparameter selection accordingly. We used 

cross entropy loss (Figure SF2.4cd).  

 

Identifying border pixels. Border pixels are defined as pixels that are between two cells of different 

types, or between a cell and empty space. To enhance the smoothness of cells’ borders, we 

require a border pixel to have 5 of its surroundings be from a different cell, and 2 of its 

surroundings be from the same cell.  

 

Classifying pixels. The trained classifier was then used to estimate the cell type class of border 

pixels. The pixel classifier outputs a probability vector for each cell type, and the probabilities are 

scaled by a distance metric based on the distance to the cells’ nuclei that it could flip to. 

Probabilities less than 0.05 are set to 0. The classification is sampled from that probability vector 

subset to cell types of its neighbors, and renormalized to 1. If the subset probability vector only 

contains 0, the pixel identity is set to background. To balance the exploration and exploitation of 

pixel classification map, we anneal the probability of selecting a non-maximum probability cell 

type by multiplying the maximum probability by (1 + number of iterations run * 0.05). If this is 
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selected as 0, complete stochasticity presides, and if it is large, the maximum probability will be 

selected. 

 

JSTA Formalization. Definitions and background. The gene expression level of  cells and  

pixels are described by the matrices  (cells) and  (pixels) which are  and 

 matrices respectively, where is the number of genes. Likewise, cell type probability 

distributions of all cells or pixels can be described by matrices. These distributions for cells and 

pixels are  and  respectively, represented as  and  matrices, where  is 

the number of cell types. We aim to learn  and , such that  and , accurately map from 

 to  and  to . We used the cross-entropy loss function for penalizing our models. 

 

Cell type classification. First, we learn the parameters of  by: 

 

 

 

Where  is an  gene expression matrix representing the harmonized NCTT data 

and  is an  vector of cell types labels provided by NCTT. We then use the newly 

learned mapping to infer the cell type probability distributions in the initialized dataset  with: 

 

 

 

We classify each cell as the highest classification probability for that cell: 
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Where  are the predicted cell types for each of the cells in the matrix . 

 

Joint pixel and parameter updates. We initialize the labels  for all pixels based on the current 

segmentation map that assigns pixels to cells.  We then learn the parameters of the mapping 

function  (maximization). Learning is performed by updating the parameters of the mapping 

function  with: 

 

 

 

The updated mapping function is then used to infer the probability of observing a type  given 

expression  in all pixels: 

 

 

 

The next step is to update  based on spatial proximity to cells of each type. Using the notation 

 for the vector of probabilities of a single pixel ( ) we next 

update the elements in the vector q based on neighborhood information. We scaled the values of 

 based on its distance from the nuclei and its neighbors.  is intermediate in the calculation 

that does not represent true probabilities.  
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Where  is the distance from the nucleus of the closest cell of cell type ,  is the distance 

threshold for which a pixel should automatically be assigned to that nucleus. The values 10 and 

5 were determined empirically to modify the sharpness of probability decline based on distance. 

10 was chosen to be much bigger than probabilities produced by  and 5 was chosen to allow 

the probability to decay to half over .  

 

We then only kept probabilities for cell types of neighboring cells: 

 

 

 

We then used the intermediate q’ to recalculate the pixel type probabilities: 

 

 

 

The updated values per cell ( ) are then used to update the probability matrix . The type per 

pixel ( ). The assignment of pixel to cells is then stochastically assigned according to: 

the inferred probability  per pixel basis.  
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We then repeat updating  and  until convergence. 

 

Segmentation. Density estimation. The 3 dimensional space was broken into a grid of pixels with 

the edge of each pixel 2 microns in length (1 micron in simulation). The density was estimated at 

the center of each pixel, for each gene. The volume required to reach 5 mRNA molecules was 

used as the denominator of the density estimation. 

 

Segmentation with JSTA. The cell assignment map was initialized with watershed on the distance 

transform with a maximum distance from the nucleus of 2 microns. The cells were only classified 

once. The pixel classifier was trained 6 times (5 in simulation) on 10% of the pixels excluding 

pixels without assignment. After each training step, we reassigned pixels for 10 iterations (5 in 

simulation). The lowest probability kept in the predicted pixel assignment vector was 0.05 (0.01 

in simulation. 

 

Segmentation with watershed. The overall gene density was the sum of each gene in a given 

pixel. To smooth the range of the density, we log2 transformed the density values. Log 

transformed density values less than 1 were masked. The segmentation used the nuclei locations 

as seeds and watershed from the skimage python package, with compactness of 10. Using 

compactness of 10 was the highest performing value for watershed. A watershed line was used 

to separate cells from one another.  

 

Evaluation of Segmentation in Simulated data. mRNA spot call accuracy was evaluated at 

different taxonomic levels. For a given cell the accuracy was defined as the number of mRNA 

spots correctly assigned to that cell divided by the total number of mRNA spots assigned to that 
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cell. To match the algorithm's ability to segment based on cell type information, RNAs that were 

assigned to a neighboring cell of the same (sub)type were also considered correct assignment. 

The overall segmentation accuracy was the mean accuracy across all cells in a given sample. To 

evaluate accuracy at different levels, we utilized the NCTT dendrogram. We used dendrogram 

heights at 0 through 0.8 with a step size of 0.05 (133, 71, 32, 16, 11, 8, 5, 4, 3, 2 cell types).    

 

Correlation of Segmented MERFISH with scRNAseq. The NCTT scRNAseq data was subset 

to the genes from our MERFISH data. Cells in the segmented MERFISH dataset were assigned 

to canonical hippocampus cell types (Astrocyte, CA1 pyramidal neuron, CA2 Pyramidal neuron, 

CA3 Pyramidal, Dentate Gyrus, Inferior temporal cortex, Macrophage, Oligodendrocyte, 

Subiculum, Interneuron) based on their high resolution cell type classification. In each cell type 

the average expression in each gene was calculated. Only genes were kept that had an average 

expression of at least 5 counts in one of the cell types. Values were centered and scaled across 

all cell types. The Pearson correlation was computed for each gene for the matching cell types 

between scRNAseq and MERFISH.  

 

Distribution of High Resolution Celltypes in the Hippocampus. CA1 and CA3 subtypes were 

projected onto the lateral medial axis. The smoothed density across this dimension was plotted 

for each of the subtypes. 

 

Colocalization of High Resolution Celltypes. Significant colocalization of subtypes was 

determined through a permutation test. First, the 20 nearest cell types around each cell were 

determined. We counted the number of cells from each type that surround each cell type and 

computed the fraction of neighbors coming from each subtype. This created a matrix with the 

fraction of colocalizations per cell between each cell type combination. We then permuted the 

labels of the cell types 1000 times, and recomputed this interaction matrix to create a null 
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distribution. For each cell type colocalization, we determined the percentage of colocalizations in 

the null distribution that are higher than the true colocalization number to create a p-value for each 

colocalization. We corrected for multiple testing with the benjamini hochberg procedure and 

determined significance using FDR < 0.05. 

 

Identification of Spatial Differential Gene Expression (spDEGs). spDEGs were calculated in 

cell types with more than 40 cells. Within each cell type, we computed a local expression of each 

gene for each cell. The local expression was the mean expression of a gene in the cell and its 9 

nearest neighbors. We then built a null distribution by permuting gene expression values within 

the cell type, and repeating the local expression process for 100 permutations. Determining if a 

gene was spatially differentially expressed, we compared the variance of the null distribution 

within a cell type with the variance of the true distribution of local expression to get a p-value. We 

corrected for multiple testing with benjamini hochberg procedure and determined significance 

using FDR < 0.05.  

 

Python packages used. 

python (3.8.3), numpy (1.18.5), pandas (1.0.5), matplotlib (3.2.2), scipy (1.5.0), scikit-learn 

(0.23.1), scikit-image (0.16.2), tensorflow (2.2.0). seaborn (0.10.1) 

 

Data Availability  

Source code: GitHub (https://github.com/wollmanlab/JSTA)  
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2.5 Figures 

 

Figure 2.1. Overview of JSTA and the spatial transcriptomics data used for performance 

evaluation.   

a. Joint cell segmentation and cell type annotation (JSTA) overview. Initially, watershed based 

segmentation is performed and a cell level type classifier is trained based on the Neocortical Cell 

Type Taxonomy (NCTT) data. The deep neural network (DNN) parameterized cell level classifier 

then assigns cell (sub)types (red and blue in this cartoon example). Based on the current 

assignment of pixels to cell (sub)types, a new DNN is trained to estimate the probabilities that 

each pixel comes from each of the possible (sub)types given the local RNA density at each pixel. 

In this example, two pixels that were initially assigned to the “red” cells got higher probability to 

be of a blue type. Since the neighbor cell is of type “blue” they were reassigned to that cell during 
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segmentation update. Using the updated segmentation and the cell type classifier cell types are 

reassigned. The tasks of training, segmentation, and classification are repeated over many 

iterations until convergence.  

b. Multiplexed Error Robust Fluorescent in situ hybridization (MERFISH) and DAPI stained nuclei 

in the mouse hippocampus. Each gene is represented by a different color. For the entire 

hippocampus (left), only the mRNA spots are shown with a scale bar of 500 microns. On the 

zoomed-in section (right), each gene is represented by a different color dot, and the DAPI intensity 

is displayed in white. The scale bar is 20 microns. 
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Figure 2.2 Performance evaluation of JSTA using simulated data.  

a. Representative synthetic dataset of nuclei (black) and mRNAs, where each color represents a 

different gene.  

b. Ground truth segmentation map of the cells in the representative synthetic dataset. Each color 

represents a different cell.  

c. Average Accuracy of calling mRNA spots to cells at different cell type resolutions using 83 

genes across 10 replicates. Accuracy was determined by the assignment of each mRNA molecule 

to the correct cell type. JSTA (solid line) is more accurate than watershed (dashed line) at 

assigning mRNA molecules to the correct cells (FDR < 0.05). Statistical significance was 

determined with a Mann-Whitney test and false discovery rate correction.  

d. Accuracy (as described in c) of calling mRNA spots to cells when using JSTA to segment cells 

with a lower selection of cell type marker genes (8-44 genes tested). The color of the line gets 

progressively darker as the number of genes used increases. 
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Figure 2.3 Segmentation of MERFISH data from the hippocampus using JSTA.  

a. High resolution cell type map of 133 cell (sub)types segmented and annotated by JSTA. Colors 

match those defined by Neocortical Cell Type Taxonomy (NCTT). Scale bar is 500 microns.  

b. JSTA based classification of CA1 (green), CA3 (cyan), and DG (red) neurons matches their 

known domains.  

c. Correlation of the average expression of 163 genes across major cell types between MERFISH 

measurements to scRNAseq data from NCTT.  

d. Correlation of the average expression of the same genes as in c between expression of types 

in scRNAseq data from NCTT. The correlation structure in c panel C closely mirrors the structure 

in dpanel D. 

  



 33 

 

 

Figure 2.4 Spatial distribution of neuronal subtypes in the hippocampus.  

a(i). (i) Cell subtype map of CA1 neurons in the hippocampus as annotated by JSTA. Scale bar 

is 500 micron. Distribution of CA1 subtypes in the hippocampus, computed by projecting cell 

centers to the lateral to medial axis. CA1 neuronal subtypes show a non-uniform distribution 

across the whole CA1 region. a(ii) Smoothed histogram highlighting the density of CA1 subtypes 

across the CA1 region.   

b(i). (i) Cell subtype map of CA3 neurons in the hippocampus as annotated by JSTA. Distribution 

of CA3 subtypes in the hippocampus, computed by projecting the cell centers to the lateral to 

medial axis. CA3 neuronal subtypes show a non-uniform distribution across the whole CA3 

region. b(ii) Smoothed histogram highlighting the density of CA3 subtypes across the CA3 

region.  
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Figure 2.5 Agreement between spatial proximity and gene coexpression in highly granular 

cell subtypes in the hippocampus.  

a-b. Relationship between the frequency of a (sub)type’s neighbors and it’s transcriptional 

pearson correlation between CA1 subtypes (a) and between CA3 subtypes (b).  

c. Cell type map in the hippocampus shows specific colocalization patterns between a subset of 

Sst subtypes (purple) and CA1 neurons (green); these Sst subtypes do not colocalize with CA3 

neurons (cyan).  

d. Colocalization patterns of Sst subtypes with CA1 and CA3 subtypes. Sst subtypes that 

colocalize with the CA1 subtypes have high transcriptional similarity. Colocalization was defined 

as the percent of neighbors that are of that subtype (Materials and Methods)  
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e Transcriptional correlation patterns between Sst subtypes and CA1 and CA3 neurons. Green, 

purple and cyan sidebars highlight the subset of Sst co-localized with CA1 (purple), CA1 (green) 

and CA3 (cyan).  
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Figure 2.6 Identification of spatial differential gene expression (spDEGs).  

a. Normalized expression of Tox in CA1sp1, Leng8 in CA3sp3, Hecw1 in DG3, and Thra in Astro1 

show variable expression throughout the hippocampus. Scale bar is 500 microns.  spDEGs were 

computed by comparing the true variance in gene expression between cell subtype 

neighborhoods to that of randomly permuted cell (sub)type neighborhoods.  

b. Histogram of the number of statistically significant spDEGs (Benjamini-Hochberg corrected 

FDR < 0.05) in each subtype.  

c. Histogram of the number of subtypes that have an spDEG for each gene. 
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Expanded View Figures 

 

Figure SF2.1. Performance evaluation of JSTA, pciSeq, and watershed.  

A, B pciSeq is unable to run on 3D data (solid line), so we simulated additional 2D data (dotted 

line). We evaluated these methods on the performance of accuracy of assigning mRNA to the 

correct cell (a). JSTA is more accurate than pciSeq on the accuracy metric. pciSeq is not very 

accurate here, because many mRNA are incorrectly assigned to background. We additionally 

tested these methods on their performance of assigning mRNA to the correct cell while ignoring 

mRNA assigned to background (b). pciSeq is highlighted here, because it mainly assigns spots 

close to the nucleus; JSTA is comparable. 
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Figure SF2.2. Application of JSTA to MERFISH data from the mouse hypothalamic preoptic 

region.  

A. High resolution cell types identified by JSTA (a). The spatial mappings of these high resolution 

cell types are consistent with the manually annotated data from Moffit et al.  
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B. JSTA mapped high resolution (sub)types are highly correlated to their scRNAseq reference 

counterparts in terms of gene expression patterns (b; Supplementary table 3). Cell types with at 

least 5 cells were kept. 
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Figure SF2.3. Application of JSTA to osmFISH data from the mouse somatosensory 

cortex.  
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A. Glutamatergic neurons are consistent with previously identified spatial patterns of the 

somatosensory cortex (a).  

B. JSTA mapped high resolution (sub)types are correlated with their NCTT counterparts in terms 

of gene expression patterns (b; Supplementary table 4). Cell types with at least 5 cells were kept. 
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Figure SF2.4. Cross entropy loss and accuracy of cell type (a-, b) and pixel (c-, d) classifier 

during training for the train (blue) and validation (orange) data sets.  

a-, b. Cross entropy (a) loss and accuracy (b) during training cell type classifier. The cell type 

classifier overfits the training data, and is mitigated by stopping training after 40 epochs.  

c-, d. Cross entropy loss (c) and Accuracy (d) during training of the pixel classifier. Black lines 

indicate new training iteration after pixel reassignment.  
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Figure SF2.5. Correlation structure of cell types compared to their colocalization.  

Neuronal subtypes that are highly collocalized are often correlated in their gene expression. Cell 

types with more than 10 cells were included.  

a. pearson Pearson correlation of 122 (sub)types across 83 selected genes.  

b. Frequency of neighbors between each of 122 (sub)types. Only significant (FDR < 0.05) 

colocalizations are shown. Labels and values are detailed in supplementary table 5 and 6. 
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Figure SF2.6. Identification of spatial differentially expressed genes (spDEGs).   

spDEGs were computed by comparing the true variance in gene expression between cell subtype 

neighborhoods to that of randomly permuted cell (sub)type neighborhoods.  

a. 63 genes across 61 cell types show significant spDEGs. Heatmap values correspond to -log2(p-

value).  
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b. Number of spDEGs in each of the 61 cell types.  

c. Number of cell types with each of the 63 spDEGs.  
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Figure SF2.7. Run time evaluation of JSTA on simulated data.  

A, B We ran JSTA on data simulated with a width and height of 100, 200, 300, 400, 500, and 

1000 microns, with 3 replicates each. We evaluated the time taken to run JSTA by the area of the 

section (a), and the number of cells in each section (b).  
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2.6 Tables 

Table S2.1. Cell type classifier architecture.  

The network was initialized with Xavier initialization. Learning rates of 5e-3 and 5e-4 for 20 epochs 

each. A batch size of 64 was used. The Adam optimizer was used to update parameters. Cross 

entropy loss was used. 

 

Layer Type Num Nodes Activation Regularization 

Input 83 - - 

Dense 249 tanh L1 (5e-3) 

Batch Normalization - - - 

Dense 249 tanh L1 (5e-3) 

Batch Normalization - - - 

Output 133 softmax L1 (5e-3) 

 

Table S2.1. Pixel classifier architecture.  

The network was initialized with Xavier initialization. Initially the model was trained for 25 epochs 

with 1e-4 and 1e-3 learning rate. Subsequent updates were done on 15 epochs with a learning rate 

of 1e-4. We used the Adam optimizer to update parameters. Cross entropy loss was used. 

Layer Type Num Nodes Activation Regularization 

Input 83 - - 

Dense 166 tanh L1 (1e-3) 
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Batch Normalization - - - 

Dense 166 tanh L1 (1e-3) 

Batch Normalization - - - 

Dense 332 tanh L1 (1e-3) 

Batch Normalization - - - 

Output 133 softmax L1 (1e-3) 
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Chapter 3. SCING: Single Cell INtegrative Gene regulatory network inference elucidates 

robust, interpretable gene regulatory networks 

3.1 Introduction 

Understanding pathophysiology is necessary for the diagnosis and treatment of complex 

diseases, which involve the perturbation of hundreds or thousands of genes3,63–65. Identifying 

perturbed gene pathways and key drivers of complex diseases requires the elucidation of gene 

regulatory networks (GRN) from high dimensional omics data66,67. Previous approaches have 

been developed and applied to identify these GRNs through bulk transcriptomic data and to 

determine causal mechanisms of disease68–70. More recently, with the advent of single cell RNA 

sequencing (scRNAseq) and spatial transcriptomics, the contributions of numerous genes in 

individual cell types have been implicated in diseases across many disciplines of biology and 

medicine4,71,72. 

 

GRN construction from scRNAseq data has been tackled with limited success73–75. Existing GRN 

tools utilize scRNAseq data with thousands of pre-select genes and cells, because GRNs from 

full transcriptomes in large scRNAseq datasets are often computationally intensive and 

intractable73,75. Additionally, benchmarking studies have shown limited accuracy of existing 

methods on both synthetic and real data73. While tools such as ppcor76 and PIDC77 use partial 

correlation and partial information decomposition, respectively, to identify gene coexpression 

modules, few methods are able to identify directed networks74. One tool that can identify directed 

networks is GRNBOOST278, a gradient boosting based method that has been successful in 

benchmarking studies73,75. However, most of the regulatory edges from GRNBOOST2 point in 

both directions, and the resulting GRNs contain too many edges in the range of 34,000 to 47,000 

edges for networks with only 3,000 input genes, making this approach impractical for datasets 

with thousands of cells and full transcriptomes78. SCENIC79, an extension of GRNBOOST2, 

prunes edges based on known transcription factor binding sites (TFBS). However, it only focuses 
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on regulatory behavior between transcription factors (TF) and its downstream target genes79, 

thereby missing other non-TF gene regulatory mechanisms80,81, as well as regulatory patterns 

due to low TF expression82. While there exist other GRN inference approaches based on 

pseudotime analysis83–85, their performance is generally inferior to those that rely solely on the 

scRNAseq data73. 

 

Here, we present Single Cell INtegrative gene regulatory network inference (SCING), a gradient 

boosting based approach to efficiently identify GRNs in full single cell transcriptomes. The 

robustness of SCING is achieved via i) merging and taking consensus of GRNs through bagging, 

and ii) further directing and pruning edges through the use of edge importance and conditional 

mutual information. SCING GRNs are then partitioned into modules, to compute module specific 

expression for each cell. These modules can be used for clustering, phenotypic association, and 

biological annotation through pathway enrichment. We show our approach is both efficient and 

robust on large scRNAseq datasets, able to predict perturbed downstream genes of high 

throughput perturbation experiments, and produces gene subnetworks with biologically 

meaningful pathway annotations. We evaluate our approach against GRNBOOST2, ppcor, and 

PIDC through perturbation target prediction in Perturb-seq data, goodness of fit, network 

characteristic metrics, and disease modeling accuracy. Furthermore, we apply SCING to the 

mouse single cell atlas86, snRNAseq87, and spatial transcriptomics7 datasets to demonstrate its 

versatility in datatype accommodation and its biological interpretability of high-throughput 

transcriptomics datasets. Our code and tutorials for running SCING are publicly available at 

https://github.com/XiaYangLabOrg/SCING. 

 

3.2 Results 

SCING method and evaluation overview 
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SCING leverages the power of abundant cell-level transcriptome data from scRNAseq/snRNAseq 

to identify potential directional regulatory patterns between genes. However, single cell 

transcriptomics data has technical issues, such as high sparsity and low sequencing depth88,89, 

which make the use of traditional linear or correlative approaches challenging. Additionally, these 

datasets often contain tens of thousands of cells each with hundreds to thousands of genes, 

making identifying GRNs using complex non-linear approaches on full transcriptomes difficult73. 

To address these limitations, we employ a combination of supercell, gene neighborhood based 

connection pruning, bagging, gradient boosting regression, and conditional mutual information 

approaches to identify robust regulatory relationships between genes based on single cell 

transcriptomics data (Figure 3.1a; Methods). 

 

We evaluated our approach against PIDC, a partial information decomposition approach; ppcor, 

a partial correlation approach; and GRNBOOST2, a gradient boosting approach. We selected 

these particular methods for comparison due to their overall better performance in recent 

benchmarking studies73,75 and diverse approaches. We compared these methods on the ability to 

predict downstream gene targets of large scale perturb-seq studies (Figure 3.1b), robustness of 

the network on training and test data (Figure 3.1c), metrics including the consistency of edge 

overlap on GRNs built on independent cells, and the ability to model disease subnetworks (Figure 

3.1d). Furthermore, we demonstrated the utility of using SCING on the full mouse cell atlas and 

a human prefrontal-cortex snRNAseq dataset87 with AD and control patients to perform 

snRNAseq batch harmonization, gene module identification with biological annotation (Figure 1e), 

and module-trait association analysis (Figure 3.1f). Data from Morabito et al. has snRNAseq from 

11 AD and 7 control human prefrontal cortex samples, with 61,472 nuclei across 7 cell types, 

which provides a high quality dataset for benchmarking. Furthermore, we applied SCING to a 

visium mouse dataset with AD vs control samples7. We show that the SCING subnetworks are 

versatile in data type accomodation (scRNAseq, snRNAseq, spatial transcriptomics), can resolve 
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spatial biology, and are powerful in retrieving biologically meaningful pathways, gene connections, 

and disease associations. 

 

SCING extends network node inclusion capacity and improves computing speed 

SCING builds many GRNs for each dataset and the speed of such computation is paramount to 

reasonable computation for a whole dataset. The use of supercells and gene covariance based 

potential edge pruning enables faster performance of SCING. We show that SCING improves 

computational speed over GRNBOOST2 and PIDC, when increasing the number of genes 

(SF3.1a, Table 3.1), and number of cells (SF3.1b, Table 3.2). GRNBOOST2 scales exponentially 

on the number of genes, while PIDC scales exponentially on the number of cells, making whole 

transcriptome and large dataset GRN inference difficult. Supercells in SCING ensure the network 

building run time does not increase as a function of cells and potential edge pruning enables linear 

increase in computation with respect to genes. We note that ppcor’s fast general matrix 

formulation improves GRN inference time compared to all other approaches, including SCING. 

While SCING is slower than ppcor, it performs inference on 4,000 genes in ~21 seconds for all 

cell types, which is reasonable to compute hundreds of GRNs for any given sample. 

 

SCING GRNs better predict downstream genes of perturbed genes in Perturb-seq 

We tested whether GRNs from each approach can predict gene expression changes in 

downstream genes from gene knockdown treatments. Here, we used perturb-seq datasets, which 

enabled us to identify the effects of many perturbed genes in parallel. We utilize previously 

published datasets with THP-1, dendritic (DC), and K562 cells with 25, 24, and 21 genes 

perturbed, respectively90,91. The DC cells were split into lipopolysaccharide (LPS) stimulated and 

non-stimulated cells with perturbations targeting transcription factors (TFs) as two datasets, and 

the K562 cells were split into  two datasets based on the genes initially perturbed (TFs or cell 
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cycle related genes) in the Perturb-seq experiments. THP-1 cells contain perturbations targeting 

PD-L1 regulators. 

 

We identified genes downstream of each perturbation through an elastic net regression 

framework to determine the effect of RNA guides on each gene while regressing out cell state91 

(Methods). We compared GRNs generated from SCING to GRNs generated from GRNBOOST2, 

PIDC, and ppcor in predicting genes downstream of each target gene in each perturb-seq 

experiment. For any given network, we iterated through the downstream genes of an initially 

perturbed gene by the RNA guide and determined if the predicted downstream genes were 

significantly altered. We determined the true positive rate (TPR) and false positive rate (FPR) at 

each network depth to compute the area under the receiver operating characteristic (AUROC) 

curve, as well as the TPR at an FPR of 0.05. We examine TPR at FPR 0.05 to show perturbation 

prediction accuracy in a setting more relevant to biological analysis (controlling for FPR 0.05). We 

first examine the prediction performance of each GRN approach when building GRNs on datasets 

with cells removed that have zero expression of the target gene. Removing these cells mitigates 

performance effects from sparsity (SF3.2a). Since ppcor and PIDC produce undirected graphs, 

and GRNBOOST2 generally has bidirectional edges, we first evaluated SCING against the other 

methods without considering edge direction, showing a higher AUROC for SCING (Figure 3.2a). 

However, edge direction only affects prediction accuracy in TPR at FPR 0.05 for dc 3hr cells 

(Figure 3.2b). We additionally show SCING improves TPR at FPR of 0.05 (Figure 3.2c), and 

similarly, edge direction typically does not affect this metric (Figure 3.2d). 

 

Across all perturb-seq datasets tested and when no cells were removed, SCING either 

outperformed, or met the performance of the other tools in both AUROC (SF3.2b) and TPR at 

FPR 0.05 (SF3.2d) and performance was minimally affected by edge direction (SF3.2ce). For 

AUROC, SCING outperforms ppcor across all datasets, PIDC across 4 datasets, and 
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GRNBOOST2 across 2 datasets. For TPR at FPR 0.05, SCING outperforms ppcor and PIDC 

across 4 datasets and GRNBOOST2 across all datasets (SF3.2d). SCING performed best in the 

Papalexi et al. THP-1 dataset, although there is a large variance in both AUROC (SF3.2b) and 

TPR at FPR 0.05 (SF3.2d) for both ppcor and SCING. 

 

Overall, SCING outperforms all other approaches at predicting perturbation effects in perturb-seq 

data when sparsity is adjusted (Figure 3.2) and outperforms select methods when all cells are 

used (SF3.2). Thus, we recommend removing cells with sparse gene expression when using 

SCING. 

 

SCING mitigates overfitting and builds more robust GRNs 

Models often overfit to their data and fail to properly perform on new datasets. In the GRN context, 

we aimed to identify connections and networks that are able to capture biological variation rather 

than sample or batch specific effects. To test the performance of GRN inference approaches and 

their ability to capture robust biological signals, we tested the ability of a model trained on parents 

of each gene in training data to predict the gene expression of the downstream target gene in 

testing data. We split the scRNAseq data from control human prefrontal cortex87 into training and 

testing sets (Methods). First, we built GRNs on the training data from oligodendrocytes, 

astrocytes, and microglia using SCING, ppcor, PIDC, and GRNBOOST2. Subsequently, we 

trained gradient boosting regressors for each gene based on the parents in a given network using 

the training data. The trained regressors were then used to predict the gene expression of cells 

in testing data based on the expression of the parent genes in those cells. We evaluated the 

performance of each GRN approach by averaging the cosine similarity score over all downstream 

genes that have parents in the network. This process was repeated for 10 replicates on random 

subsamples of 3,000 genes to reduce runtime. 
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To measure overfitting, we used the cosine similarity score (ratio between the test and training 

sets) with a higher ratio indicating lower overfitting. We found that SCING GRNs had less 

overfitting than the other approaches (Figure 3.2e). In terms of performance in the test sets, 

SCING performed similarly to ppcor and PIDC, outperforming GRNBOOST2 (Figure 3.2f). On 

training data, GRNs from ppcor, PIDC, and GRNBOOST2 had higher cosine similarity scores 

compared to SCING, reflecting overfitting on the training data by the other methods (Figure 3.2g). 

We noted that the number of genes in the resulting network to be very low in the ppcor 

oligodendrocyte network (Figure 3.2h), which likely affected the results of ppcor as evaluated by 

the cosine similarity measure here. These results support the robustness of SCING GRNs, 

highlighting its ability to identify a robust GRN without overfitting or sacrificing performance. 

 

SCING fits scale free model, and shows edge consistency 

As another measure of GRN quality and performance, we compared GRNs generated by each 

method by various standard network metrics (scale-free network fit, number of edges, number of 

genes, and betweenness centrality), as well as robustness of network edges between networks 

on 50/50 split datasets. We tested this on 10 replicates for each of the 3 cell types 

(oligodendrocyte, astrocyte, and microglia) in the scRNAseq data from control human prefrontal 

context, with 3,000 different genes randomly selected for each subsample of cells. 

 

GRNs are thought to follow a scale-free network structure, in which there are few nodes with 

many connections, and many nodes with few connections92. We computed scale-free network 

structure through the R-squared coefficient of a linear regression model regressing on the log of 

each node's degree and the log of the proportion of nodes with that given degree. We show that 

the R-squared value for SCING is significantly higher than that of the other methods, indicating 

SCING networks more closely follow a scale free network structure (Figure 3.3a). In a typical 

scale-free network plot of log10 node count vs log10 degree, we expect a power law distribution. 
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However, we found that networks built on scRNAseq data have a parabolic distribution, with only 

the right half following a power law distribution whereas the left portion of the plot is driven by 

genes that were very sparse and likely do not fit typical distributions (Figure 3.3b). Therefore, we 

excluded the sparse genes from the regression calculation. 

 

Among all 4 methods tested, PIDC produced the largest networks (Figure 3.3cd), followed by 

ppcor, GRNBOOST2, and SCING. Since SCING aims to find robust edges, as expected, SCING 

networks have much fewer edges than the other approaches while keeping similar numbers of 

genes (Figure 3.2h). One exception is that the ppcor oligodendrocytes network contains only 

214.8 edges on average compared to 14,545.8, 46,891.9, and 449,850 in SCING, GRNBOOST2, 

and PIDC, respectively. Many genes without regulatory edges were not included in the final ppcor 

network. The smaller ppcor oligodendrocyte network has implications for the betweenness 

centrality and edge overlap metrics, as follows. 

 

Betweenness centrality is often used as another metric to determine the overall connectedness 

of a graph93. For a given node, betweenness centrality is the number of shortest paths that pass 

through that node, indicating how much information that node presents to the graph. High 

betweenness centrality indicates that a node conveys a lot of information to a given graph. We 

found that SCING networks generally have higher variance of betweenness for the nodes in the 

networks (Figure 3.3e). This indicates that some nodes are more centralized than others when 

compared to other approaches, again consistent with the scale-free network model. 

 

To determine network consistency, we split each cell type into two groups of non-overlapping 

cells. We built networks for each dataset using all methods and calculated the fraction of total 

edges that overlap between the two networks. While larger networks tend to have more edge 

overlap, this also holds for larger random networks. We designed a normalized overlap score: the 
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fraction of edges overlapped divided by the expected number of overlapping edges of a random 

network of the same size (Methods). When controlling for network size, SCING has significantly 

more overlap, or higher reproducibility, between networks of 50/50 split data than the other 

approaches (Figure 3.3f). 

 

SCING more accurately models disease subnetworks 

To evaluate the performance of GRNs on disease modeling, we applied an approach developed 

by Huang et al94. Briefly, given a known disease gene set and a GRN, we evaluate the ability of 

the GRN to reach held out disease genes by starting from select disease genes in the network 

through random walks. We then compared the performance for each network to that of a random 

network in which the nodes follow similar degree characteristics to derive a performance gain 

measurement. Here, we selected known gene sets for 3 classes of diseases from DisGeNET 

(Immune, Metabolic, and Neuronal) (Supplementary Table 3.1) and obtained scRNAseq data for 

cell types from 3 tissues relevant to each disease class from the mouse cell atlas86 (bone marrow 

for immune diseases, brain for neuronal diseases, and liver for metabolic diseases) 

(Supplementary Table 3.2). First, to reduce the number of genes, we filtered the scRNAseq data 

by removing genes expressed in fewer than 5% of cells and added expressed disease genes 

from all DisGeNET disease gene sets. We built GRNs using each method and evaluated the 

performance gain over random networks on the disease gene sets. We found that across all 

tissues and all disease types, SCING outperformed all other approaches (Figure 3.4a). 

 

Application case 1: constructing SCING GRNs using Mouse Cell Atlas (MCA) scRNAseq 

datasets to interpret diseases 

After establishing the performance of SCING GRNs using the various approaches described 

above, we established a SCING GRN resource for diverse cell types and tested the broader utility 

of SCING to produce biologically meaningful GRNs. To this end, we applied SCING to generate 
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GRNs for all cell types with at least 100 cells in all tissues of the MCA. We constructed a total of 

273 cell-type specific networks, across 33 tissues and 106 cell types. To identify which GRN 

informs on which disease, we applied the above random walk approach from Huang et al. and 

summarized the results in (SF3.3abc, Supplementary Table 3.3). We found clusters of cell type 

GRNs defined by DisGeNET diseases that had similar patterns (SF3.3a, Figure 3.4b). Some 

disease genes can be modeled well using GRNs from numerous cell types (SF3.3a) whereas 

others are more cell type or tissue specific (SF3.3b). Additionally, some cell type GRNs are able 

to model a broad range of diseases (SF3.3ac). We found that immune cell type (light blue squares 

in Figure 3.4b) GRNs can model a wide range of diseases, whereas non-immune cell type GRNs 

(light purple squares in Figure 3.4b) are more specific to vasculature related diseases. 

 

We further explored the dynamics of GRNs of immune cell types across all diseases in DisGeNET. 

We clustered the cell types in the performance gain matrix with only immune cell types included, 

and sorted the GRNs by the number of diseases they can accurately model (Figure 3.4cd, 

SF3.4ab). We noticed that cell types of the innate immune system can model a broader range of 

diseases than those of the adaptive immune system95 (Figure 3.4e). 

 

Our SCING cell type GRNs resource and the above patterns of relationships between cell type 

GRNs and diseases support the utility of the SCING cell type GRN in disease interpretation. The 

networks can be accessed at https://github.com/XiaYangLabOrg/SCING to facilitate further 

biological mining of complex diseases. 

 

Application case 2: Using SCING GRNs to interpret Alzheimer’s disease (AD) 

We next applied SCING to a single nuclei RNAseq (snRNAseq) dataset from Morabito et al. that 

examined human prefrontal cortex samples from AD and control patients to evaluate the 

applicability of SCING GRNs in understanding AD pathogenesis87. We focused on microglia, due 
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to their strong implication in AD96,97 and a better current understanding of the genes and biological 

pathways in microglia in AD, to demonstrate that  SCING GRNs can retrieve known biology. 

 

The SCING microglia GRN contained 10,159 genes and 63,056 edges. Using the Leiden 

clustering algorithm98, we partitioned the SCING microglia GRN into 21 network modules. Next, 

we summarized module-level expression for each cell using the AUCell method from SCENIC on 

the partitioned GRN modules79. When cells were clustered based on the raw gene expression 

values, as is typical with human samples, cells from individual samples clustered together (Figure 

3.5a), making it difficult to isolate sample heterogeneity from biological variability. However, when 

using SCING module expression to cluster cells, the sample, batch, and RNA quality effects were 

mitigated (Figure 3.5ab). In contrast, biologically relevant variation, such as sex, AD diagnosis, 

and mitochondrial fraction were better retained (Figure 3.5cd). In the UMAP control cells tend to 

localize to the right side, while cells from females tend to localize to the top part. These results 

suggest that SCING GRNs have intrinsic ability to correct for non-biological variations. 

 

To quantitatively evaluate how well SCING GRNs can be used for batch effect correction and 

biological preservation, we compared SCING GRNs with commonly used batch correction 

methods, such as FastMNN99, Harmony100, and Seurat40, chosen based on their better 

performance in previous benchmarking studies39. We first performed dimension reduction and 

clustering of cells based on corrected data from each batch correction method. For SCING, the 

values used were SCING GRN module AUCell scores. We took each cell, determined how many 

neighbors in the PC space had the same annotation of interest (sample, batch, diagnosis, etc.), 

and then scored each batch correction approach by the fraction of cells that had the same 

annotation. We removed batch and sample specific effects using the F1 score (Methods)39. We 

found that the SCING GRN module based dimensionality reduction carried the ability to correct 

for batch effect and retain biological information (Figure 3.5ef) in a similar manner to dedicated 
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batch correction methods such as FastMNN99, Harmony100, and Seurat40. Although SCING GRN 

based batch correction was not as optimized as the dedicated batch correction methods, SCING 

is unique in that each GRN module has direct biological interpretability, since each SCING module 

can be associated with phenotypic traits and annotated with pathways, as described below. 

 

We identified SCING GRN modules associated with AD diagnosis, plaque stage, and tangle stage 

through linear regression of the phenotypic traits and each module’s expression across cells, 

while regressing out sex specific differences. We found that ~43% of modules were significantly 

(FDR < 0.05) associated with at least one trait and ~24% of modules were significantly associated 

with all three traits. To examine the biological interpretation of these modules, we performed 

pathway enrichment on the genes in each module utilizing the GO biological process, DisGeNET, 

Reactome, BioCarta, and KEGG knowledge bases. We found that 78% of the significantly trait-

associated modules were significantly enriched for biological pathways (Figure 3.5g, 

Supplementary Table 3.4). These modules recapitulated pathways related to Alzheimer’s disease 

(module 9), immune processes (modules 0, 2, 9, 13, and 19), cytokine triggered gene expression 

(modules 12, 18, 19), and endocytosis (modules 2, 9, and 13). These are expected perturbed 

pathways for microglia in AD96. 

 

We dug into the vesicle mediated transport pathway from module 2 and visualized the network 

with the differential gene expression of each gene (SF3.5). This microglia pathway is important in 

AD101. Additionally, we found the APOE and APP subnetwork within the vesicle mediated 

transport pathway which are among the most significant genetic risk factors for AD (Figure 

3.5h)102–104. 
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Therefore, our results demonstrate that SCING GRNs can correct for batch effects intrinsic to 

scRNAseq studies and can recapitulate known cell type specific genes, pathways, and network 

connections. 

 

Application case 3: Using SCING to model GRNs based on 10x Genomics Visium spatial 

transcriptomics data to interpret AD 

To evaluate the applicability of SCING beyond scRNAseq and snRNAseq, we next applied SCING 

to spatial transcriptomics data from Chen et al.7 as a new approach for spatial transcriptomics 

analysis. We built a SCING GRN on all spots in the visium data to obtain a global GRN with 

128,720 edges across 15,432 genes. Additionally, Chen et al. profiled beta amyloid plaque with 

immunohistochemistry, and we included this protein expression value in the SCING GRN, 

highlighting the possibility of constructing multi-omics networks using SCING. 

 

We partitioned the genes in the resulting SCING GRN with the leiden graph partition algorithm 

into 33 modules and performed the AUCell score from SCENIC79 to obtain module specific 

expression for each spot and annotated the enriched pathways for each module (Supplementary 

Table 3.5). We found module specific expression in the mouse brain subregions (Figure 3.6ab, 

SF3.6), based on clustering of the average module expression across spots in each brain 

subregion (SF3.7). We found cortical subregions to cluster together, as well as the thalamus and 

hypothalamus (SF3.7), based on GRN module expression patterns. We also identified modules 

more specifically expressed in the cortex and hippocampus (CS, HP) (module 12), or the fiber 

tract, thalamus, and hypothalamus (BS) (module 14) (Figure 3.6ab). Module 12 was highly 

enriched for genes involved in neuronal system, axonogenesis, and chemical synapse, which 

might reflect the dynamic status of hippocampus and cortex neurons for memory formation and 

cognitive function. In contrast, module 14 was enriched in genes involved in myelination105 and 

blood-brain barrier106, consistent with the high enrichment of oligodendrocyte populations in the 
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fiber tracts, and indicated blood-brain barrier changes in the thalamus. We also found modules 

that separate more similar subregions from one another such as module 27 (enriched for 

axonogenesis) and 21 (enriched for calcium ion transport) expressed much higher in the thalamus 

than in the hypothalamus (SF3.7). By contrast, modules, such as module 5 (enriched for 

chromatin organization and peroxisomal lipid metabolism) and module 19 (enriched for ribosomal 

biogenesis and protein processing), are much less specific to subregions (SF3.6, SF3.7). These 

are general cellular functions that are expected to have broad expression across the brain. 

 

We found many modules to be AD associated (Figure 3.6c), in particular, module 9 (enriched for 

neurodegeneration) (Figure 3.6d) and module 25 (enriched for microglial activation, lysosome, 

and cell migration) (Figure 3.6e). We further explored these subnetworks and found most of the 

genes in module 9 to be neuronal marker genes, while most of the genes in module 25 to be 

microglial marker genes (SF3.9). The module 25 subnetwork to contain the Trem2 and C1q 

subnetworks, highly profiled in AD microglial cells (Figure 3.6f). Interestingly, we found a cross-

module edge and several cross-cell-type edges, likely revealing intercellular communications. 

 

We also identified all but two modules that were significantly correlated with amyloid beta plaque 

(Figure 3.6g). Modules most highly correlated with plaque were module 25 (enriched for immune 

function), module 19 (enriched for nonsense mediated decay, and infectious disease), and 

module 9 (enriched for neurodegeneration), which were all also associated with AD (Figure 3.6c). 

 

We found that amyloid plaque staining could be partitioned based on the expression of module 

10 in the SCING GRN (SF3.8), which had significantly higher expression in AD mice than in WT 

(Figure 3.6c), and is also quantitatively correlated with plaque (Figure 3.6g). Module 10 contains 

genes highly related to metabolism, neurodegenerative diseases, and immune function 

(Supplementary Table 3.5). We show the subnetwork for the amyloid beta plaque in module 10 
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(SF3.9). Additionally, module 25 (enriched for microglial activation, lysosome, and cell 

migration)  was also highly associated with plaque (Figure 3.6g), as expected in AD pathogenesis. 

 

In addition to plaque association, we explored the age related modules through pearson 

correlation of age (6, 12, and 18 months) and module expression in WT samples. We found most 

modules to be age related (Figure 3.6h); however, some modules such as module 21 (enriched 

for muscle contraction and calcium ion transport) have a lower correlation coefficient. The top 2 

positively correlated modules with age, module 10 (subnetwork with amyloid protein) and 13, have 

age related pathways. Module 10 is involved in protein degradation, neurodegeneration, and cell 

cycle, and module 13 is involved in metabolism, cellular response to stress, and immune system 

(Figure 3.6h, Supplementary Table 3.5). 

 

We found certain modules such as module 30 (enriched for neuropeptide signaling) to be spatially 

variable (SF3.7) and associated with AD (Figure 3.6b). Based on the locations from the Allen 

Brain Atlas107 (SF3.10a), we find module 30 to be more specific to the hypothalamus than other 

regions of the BS (SF3.10b). We also find that within the hypothalamus, module 30 expression is 

higher in 18 month old AD mice compared to the WT mice (SF3.10c). Hypothalamic alterations 

have been observed in the hypothalamus in AD development108. The module 30 subnetwork 

(SF3.10d) shows key hypothalamic neuropeptides, such as Pomc109 and Pnoc110 which is 

consistent with their enrichment in the hypothalamus. 

 

Our applications of SCING to spatial transcriptomics data demonstrate its broader utility beyond 

scRNAseq/snRNAseq and revealed spatial network patterns of AD. 

 

3.3 Discussion 
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Single cell multiomics has become a powerful tool for identifying regulatory interactions between 

genes, but the performance of existing tools is limited in both accuracy and scalability73. Here, we 

present SCING, a gradient boosting, bagging, and conditional mutual information based approach 

for efficiently extracting robust GRNs on full transcriptomes for individual cell types. We validate 

our networks using a novel perturb-seq based approach, held-out data prediction, and established 

network characteristic metrics (network size, network overlap, scale-free network, and 

betweenness centrality)  to determine performance and network features against other existing 

tools. SCING not only offers robust and accurate GRN inference and improved gene coverage 

and speed compared to previous approaches70,78, but also versatile GRN inference with 

scRNAseq, snRNAseq, and spatial transcriptomics data. Using various application examples, we 

show that SCING infers robust GRNs that inform on cell type specific genes and pathways 

underlying pathophysiology while simultaneously removing non-biological signals from data 

quality, sample, and batch effects through gene regulatory module detection and functional 

annotation. We also provide a comprehensive SCING GRN resource for 106 cell types across 33 

tissues using data from MCA to facilitate future applications of single cell GRNs in our 

understanding of pathophysiology. 

 

SCING efficiently identifies robust networks using supercells, a bagging approach, and mutual 

information based edge pruning, to remove redundant edges in the network. The supercell and 

reduction in potential edges make the bagging approach possible by removing computational time 

for each GRN. GRNBOOST2 uses a similar framework as SCING (gradient boosting regression) 

but overfits the data by generating too many edges to be interpretable, which are also undirected, 

making them less useful for biological interpretation. Meanwhile, ppcor and PIDC use partial 

correlation and partial information decomposition approaches, which are more accurately 

described as measures of coexpression, rather than gene regulation. In contrast, the directed 

graphs built with SCING show better perturbation prediction and consistency across replicates. 
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Validation of GRN inference tools has remained challenging73. Our novel perturb-seq based 

approach provides a unique way to determine GRN accuracy. Prediction of perturbed genes is a 

very powerful aspect of GRN construction, and SCING stands out above all other methods in this 

regard111.  

 

We demonstrate that SCING networks are applicable to scRNAseq, snRNAseq, and spatial 

transcriptomics data. Our network-based module expression provides batch corrected, 

biologically annotated expression values for each cell that can be directly used for disease 

modeling (Figure 3.4), phenotypic correlation (Figure 3.5), and spatially resolved analysis (Figure 

3.6) to boost our ability to interpret single cell data. 

 

At the intersection of single cell omics and complex diseases, SCING provides sparse but robust, 

directional, and interpretable GRN models for understanding biological systems and how they 

change through pathogenesis. GRNs can be analyzed to identify and predict perturbed 

subnetworks, and as a result, be used to investigate key drivers of disease112. Identifying key 

drivers of disease by teasing apart biology and technical variation from high throughput, high 

dimensional datasets will lead to more successful drug and perturbation target identification, as 

well as robust drug development113–115.  

 

We note that SCING is currently tested to infer GRNs based on individual scRNAseq, snRNAseq, 

and spatial transcriptomics data. Other types of omic information such as scATACseq, scHi-C, or 

cell type specific trans-eQTL information can be included in SCING to further inform on regulatory 

structure to refine and improve on GRNs70,116–119. Information from multiple data types will become 

an integral part of the systems biology, and future efforts to properly model multiomics data 

simultaneously to inform on complex disease are warranted. 
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3.4 Materials and Methods 

SCING method overview 

To reduce the challenges from data sparsity from single cell omics, as well as reduce 

computational time, we first used supercells which combine gene expression data from subsets 

of cells sharing similar transcriptome patterns. To improve the robustness of GRNs, we built GRNs 

on subsamples before merging the networks, keeping edges that appear in at least 20% of 

networks. Lastly, we removed cycles and bidirectional edges where one direction was >25% 

stronger than the other direction and pruned the network using conditional mutual information to 

reduce redundancy. These steps are described in more detail below. To benchmark the 

performance of SCING, we selected three existing methods, namely GRNBOOST2, ppcor, and 

PIDCm with default parameters. These methods were selected based on previous benchmarking 

studies where superior performance of these methods were supported73.  

 

Supercell construction 

For each dataset, we first normalized the data for a total count number of 10,000 per cell120. We 

then took the log of the gene expression values, identifying and subsetting to the top 2000 highly 

variable genes. Data were then centered and scaled and used to compute the nearest neighbor 

embedding with 10 neighbors. We then used the Leiden graph partitioning algorithm to separate 

cells into groups. The leiden resolution is determined by the user input specifying the final number 

of supercells. Here, we used 500 supercells which balances runtime, with dataset summarization. 

We then merged each group of cells into a supercell by averaging the gene expression within 

each group. 

 

GRN inference in SCING 
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We normalized the total number of counts in each cell to 10,000 and took the natural log of the 

gene expression. We removed genes not expressed in any cells and any duplicate genes. We 

transposed, centered, and scaled the data before running principal component analysis (PCA). 

This provides us with low dimensional embeddings for each gene. A nearest neighbor algorithm 

from scikit-learn121 was used to find the nearest neighbors of each gene. The potential regulatory 

relationship between genes was limited to the 100 nearest neighbors. For each gene, we trained 

a gradient boosting regressor78 to predict the expression based on its nearest neighbors. For each 

gradient boosting regressor, we used 500 estimators, max depth of 3, learning rate of 0.01, 90 

percent subsample, the square root of the total number of features as max features, and an early 

stop window of 25 trees, if the regressor was no longer showing improved performance78.  

 

SCING parameter selection 

Parameter selection was used to retain biological accuracy while limiting computational cost. We 

determined that using 500 supercells and 100 GRNs per merged network balanced computational 

resourcefulness with robustness. If computational cost is not an issue, supercells are not 

necessary and more GRNs can be built as intermediates. Since GRNs are typically built within a 

single cell type, we use 10 principal components (PCs) for determining gene covariance. Typically 

in scRNAseq analysis more PCs are used, but there is less variation overall within one cell type. 

We determined 100 neighbors to be chosen for each gene, again balancing computational cost. 

 

Merging GRNs from data subsamples 

For each network from subsampled data, we kept the top 10 percent of edges based on the edge 

weight, as well as  the top 3 edges for each downstream gene and edges that appeared in greater 

than 20% of all networks. We also removed reversed edges if the edge with a higher weight was 

at least 25% stronger than that of the reverse direction. Otherwise, we kept the edge bidirectional. 

We removed cycles in the graph by removing the edge with the lowest edge weight. We removed 
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triads in the network based on the significance of the conditional mutual information. The p-value 

of the conditional mutual information is based on the chi-squared distribution122. If an edge 

between two genes is not statistically significant given a parent of both of the genes, then the 

edge is removed.  

 

Other GRN methods 

We benchmarked SCING against GRNBOOST2, ppcor, and PIDC. Default parameters were used 

for all existing approaches unless otherwise specified. 

 

For GRNBOOST278, we ran this approach by predicting the expression of all genes from all other 

genes. We then took the top 10% of edges to reduce the number of edges with extremely low 

importance (e.g. 10-17).  

 

For ppcor76, due to the sparse non-linear nature of scRNAseq connections, we ran the approach 

using spearman correlation. We only kept edges with a Benjamini-Hochberg FDR < 0.05.  

 

For PIDC77, according to their tutorial, we used a threshold of 0.1, to keep the top 10% of highest 

scoring edges. 

 

Datasets 

For the perturb-seq validation, we used datasets from Dixit et al.91 and Papalexi et al.90. Dixit et 

al. has 24 transcription factors perturbed in dendritic cells and 25 cell cycle genes targeted in 

K562 cells, while Papalexi et al. has 25 PD-L1 regulators perturbed in THP-1 cells.  

 



 69 

For the train-test split and network consistency assessment, we used the human AD snRNAseq 

data from Morabito et al.87. This adds another slightly different data type from the scRNAseq in 

the perturb-seq and MCA and is later used for biological application with microglial cells in AD.  

 

We used the mouse cell atlas86 scRNAseq database, since it has a large number of cell types 

(106 cell types) across numerous tissues (33 tissues), to test 446 disease associations with the 

random walk approach from Huang et al.94 This additionally provides a resource of GRNs 

throughout cell types of the entire mouse. 

 

Finally, to test the applicability of SCING on spatial transcriptomics data, we used the mouse AD 

dataset from Chen et al.7 This dataset contains AD and WT mice from various age groups (3, 6, 

12, 18 months), in addition to amyloid beta plaque staining.  

 

Computation of time requirements 

We determined the run time to build a GRN from each approach on  subsets of cells and genes 

with varying cell numbers and gene numbers. All tests were performed on a ryzen 9 3900X 12-

Core processor with 64Gb RAM. We determined the speed on 10 iterations of randomly selected 

genes (1000, 2000, 4000) with 1000 cells each, and on randomly selected cells (250, 500, 1000) 

with 1000 genes each. 

 

Overview of network robustness evaluation based on Perturb-seq datasets 

Briefly, to determine the accuracy of the GRNs from each approach with perturb-seq data, we first 

identified significantly altered genes downstream of each guide RNA perturbation through an 

elastic net regression approach91, as detailed below. We then determine the accuracy of a given 

network by identifying the true positive rate (TPR) and false positive rate (FPR) at each depth in 
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the network. The AUROC and TPR at FPR 0.05 were determined for each network on a given 

perturbation. More details on each step are below.  

 

Computation of guide RNA perturbation coefficients 

First, we downloaded the perturb-seq data from Papalexi et al.90 and Dixit et al91. We then followed 

the steps as described by Dixit et al91 to compute guide RNA perturbation coefficients, which 

indicate the effects of a specific guide RNA (single perturbation) on other genes. As cell state can 

affect gene perturbation efficiency, to determine cell states and remove state specific 

perturbations, we clustered the non-perturbed cells in each dataset through Leiden clustering. 

The leiden resolution was determined by identifying unique subclusters in the data (Table 3.3). 

We subset the data to highly variable genes (min_mean=0.0125, max_mean=3, min_disp=0.5). 

We centered and scaled the data and performed PCA to get the first 50 PCs. We then trained a 

linear support vector machine (C=1) on the 50 PCs of the data and determined the probability of 

each cell in the dataset being from each state. We used these continuous state probabilities in 

our regression equation to regress out state specific effects on gene expression. To identify the 

perturbation effect of a given guide RNA on genes other than the target gene, we utilized elastic 

net regression (l1_ratio=0.5, alpha=0.0005)91. We fit the elastic net model to predict the gene 

expression of all genes from the binary matrix determined by the guide sequenced in each cell, 

combined with the continuous state values determined for each cell. To remove the effect of 

synergistic perturbations, we removed cells with multiple perturbations. We determined each 

guide’s perturbation effect on a given gene by the regression coefficient.  

 

Determination of significant perturbation effects 

To determine the significance of a given perturbation coefficient, we employed a permutation test 

as in Dixit et al91. For each guide, we permuted the vector of perturbations to randomize which 
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cells received the given perturbation of interest. The elastic net regression model was trained with 

the same hyperparameters to determine the coefficients of perturbation. This approach was 

repeated 100 times to generate a null distribution of the perturbation effect of a given guide on 

each gene. The p-value was calculated as the fraction of null coefficients that were greater than 

or less than the true coefficient, determined by the sign of the coefficient. Significant perturbations 

were determined at a false discovery rate of 0.05 using the Benjamini-Hochberg procedure. This 

permutation approach was repeated for each guide RNA. A gene was determined as a 

downstream perturbation if at least one guide had a significant perturbation for the given gene. 

 

Selection of genes and cells for perturb-seq networks 

To reduce computational cost and enable network building for all approaches, we first took the 

top 3,000 highly variable genes using the variance stabilizing transform method123, including the 

differentially perturbed genes. We built two networks for each dataset, one using all cells and the 

other using only cells with non-zero expression of the gene of interest.  

 

Evaluation of perturbation predictions 

We built networks for each perturbed gene separately using SCING, GRNBOOST2, ppcor, and 

PIDC. Starting from the perturbed gene of interest, at each depth in the network, we determined 

the TPR and FPR based on the perturbed genes computed above. This gives a TPR vs FPR 

graph, from which an AUROC was computed. For each perturbed gene, we calculated the 

AUROC and the TPR at a FPR of 0.05.  

 

Network robustness evaluation based on training and held out testing data 

We performed a train test split (75/25) on the dataset from Morabito et al on each random 

subsample of 3000 genes. We built GRNs on the training data and trained a gradient boosting 

regressor for each gene based on the predicted regulatory parents. We used the trained gradient 



 72 

boosting regressor to predict the expression of all genes in the test dataset and evaluated the 

performance based on the cosine similarity metric. We performed this on the training and testing 

data separately and computed the test to train ratio of the cosine similarity, with a smaller test to 

train ratio indicating potential overfitting of the training data.  

 

Computation of network characteristics 

We built GRNs on oligodendrocytes, astrocytes, and microglia from snRNAseq data from 

Morabito et al87. For each cell type, we randomly selected 3000 genes (reduce computational time 

of methods) for each sample and generated 10 GRNs, in which 3000 genes were randomly 

subsampled from the full transcriptome. To compute scale-free network characteristics for each 

network, we fit a linear regression model on the log of each node degree with the log of the 

proportion of nodes at each degree. We removed low degree data points that are an artifact of 

scRNAseq sparsity. We also characterized each network by the number of edges in the network, 

number of genes remaining in the resulting network, and the mean betweenness centrality of 

nodes across the network.  

 

Computation of network overlap 

We used the Morabito et al datasets described above and split each dataset in half and generated 

GRNs on each subset of cells. We checked the overlapping edges between the two networks and 

normalized for the expected number of overlapping edges based on the number of total edges in 

each network and the hypergeometric distribution. The overlap score measured the fraction of 

overlap between the two networks, divided by the expected number of overlapping edges. 

 

Assessment of disease subnetwork retrieval of GRNs 

We utilized a random walk approach from Huang et al94 to determine the ability for GRNs from 

different methods to accurately model disease gene subnetworks. This approach provides a 
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biologically relevant benchmarking approach to determine a GRNs ability to model disease 

subnetworks. Briefly, the approach splits a known disease gene set into two groups, to attempt to 

reach the held out gene set starting from the selected disease genes through random walks. An 

improvement score is computed by calculating the z-score for a given network relative to 50 

degree-preserved randomized networks. 

 

We built networks from the MCA on immune cells from bone marrow, neurons from the brain, and 

hepatocytes from the liver. To accommodate less efficient tools, we subsetted the transcriptome 

to genes that are expressed in more than 5% of the cells in the dataset. We used the method 

from Huang et al. using relevant immune, neuronal, and metabolic disease gene sets from 

DisGeNET. We kept these genes with >5% percent expression and included the genes from the 

disease gene sets. We determined performance of each subnetwork based on the improved 

performance compared to the random network distribution. 

 

Application of SCING to construct GRNs for all MCA cell types and  assessment of network 

relevance to all DisGeNET disease gene sets 

We applied SCING to all cell types for all tissues in the MCA and utilized the approach from Huang 

et al. to determine the ability of each network to accurately model each disease gene set. We 

clustered the disease gene sets and cell types using hierarchical clustering with complete linkage. 

We determined the number of disease sets accurately modeled by each cell type based on a 

performance gain of at least 0.1. We subsequently computed the number of cell types that can 

accurately model each disease set. To compare the number of diseases modeled by cell types 

from the adaptive and innate immune system on tissue relevant subsets of the DisGeNET 

diseases, we performed a t-test between the distributions of the number of disease gene sets 

each cell type can accurately model.  
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Biological application to microglia in Alzheimer’s disease patients 

We built a SCING network for the microglia on the genes expressed in at least 2.5 percent of cells 

in the Morabito et al. dataset87. For the SCING pipeline, we used 500 supercells, 70 percent of 

cells in each subsample, 100 neighbors, 10 PCs, and 100 subsamples. We utilized the Leiden 

graph partitioning algorithm to divide genes in the resulting GRNs into modules. We performed 

Leiden clustering at different resolutions and performed pathway enrichment analysis on the 

modules using the enrichr124 R package, using the  GO biological process, DisGeNET, Reactome, 

BioCarta, and KEGG knowledge bases. We selected the resolution (0.0011) that had the highest 

fraction of modules annotated for between 20 and 50 modules per network. This avoids clustering 

too  many modules with few genes while maintaining enough separate modules to have biological 

interpretation. We used the AUCell method from the SCENIC workflow79, to retrieve module 

specific expressions (AUCell scores) for each cell. We found trait (diagnosis, plaque stage, tangle 

stage) associated modules by fitting a linear regression model to predict the trait based on the 

module score, while regressing out the effects of sex. For each trait, multiple testing was 

controlled at FDR < 0.05 with the Benjamini-Hochberg procedure. The subnetwork for vesicle-

mediated transport in module 2 was visualized using Cytoscape125. We determined marker genes 

using the Allen Brain Atlas whole brain Smartseq2 data20.  

 

Batch correction comparison 

We compared top batch correction methods from Seurat, Harmony, and fastMNN with SCING 

module embeddings. To evaluate each method, we determined the average proportion of cells 

with the same group assignment (sample, batch, diagnosis, tangle stage, plaque stage, and sex), 

using 20 PCs and a variable number of neighbors (0.25, 0.5, 1, 2, 4, 8, and 16 percent of the 

dataset) (Equation 1). We determined the ability of each approach to remove batch and sample 

specific differences while retaining biologically relevant differences (diagnosis, tangle stage, 
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plaque stage, and sex) by removing the batch and sample differences with an F1-score39 

(Equation 2).  

 

 

Equation 1. 

neigh_score: neighborhood score used to find the average fraction of neighbors of the same type 

(i.e. batch).  

similar_neighbors: number of neighbors of a given cell that have the same identity (i.e. batch) 

n_neighbors: number of total neighbors checked 

ncell: total number of single cells 

 

 

Equation 2. 

neigh_score: neighborhood score computed in Equation 1 for a given identity 

 

Application of SCING to Visium spatial transcriptomics data for mouse AD and WT brain 

To determine the applicability and interpretability of SCING to spatial transcriptomics data, we 

applied SCING to mouse whole brain AD and WT data7. Since the network was built on the whole 

brain rather than a single cell type, we expect more variance amongst networks from subsamples, 

therefore we built 1,000 GRNs to be merged into the final network. We partitioned the genes with 

the Leiden graph partitioning algorithm into 33 modules. Using AUCell from SCENIC79, we 

obtained module specific expression for each spot. We determined regional specificity between 

pairs of larger regions (cortex, hippocampus, brainstem) through t-tests and overall variance for 
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the smaller subregions through ANOVA. We determine differential module expression between 

AD and WT through t-tests, and correlation with age or plaque with Pearson correlation. Finally, 

the module 9, 10, 25, and 30 subnetworks were visualized using Cytoscape125. We determined 

marker genes using the Allen Brain Atlas whole brain Smartseq2 data20. 
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3.5 Figures 
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Figure 3.1. SCING overview, benchmarking, and application.  

SCING overview (a). First, we select a specific cell type, or use whole visium data. We then cluster 

the cells using the leiden graph partitioning algorithm and merge subclusters into supercells. We 

utilize bagging through subsamples of supercells to keep robust edges in the final GRN. For each 

subsample, the genes are clustered to only operate on likely regulatory edges. We then identify 

edges through gradient boosting regressors (GBR). We find the consensus as edges that show 

up in 20% of the networks. We then prune edges and cycles using conditional mutual information 

petrics. perturb-seq validation (b). We identified downstream perturbed genes of guides for 

specific genes. We then predict perturbed genes at each depth in the network from the perturbed 

gene. True positive rate, and false positive rate are determined at each depth in the network. We 

utilize AUROC and TPR at FPR 0.05 as metrics for evaluation. Gene prediction validation, to 

determine network overfitting (b). We split data into train and test sets and build a network on the 

train set. A GBR is trained for each gene based on its parents in the train data. We then predict 

the expression of each gene in the test set and determine the distance from the true expression 

through cosine similarity. Biological validation through disease subnetwork modeling (c). We 

utilize a random walk framework from Huang et al. to determine the increase in performance of a 

GRN to model disease subnetworks versus random GRNs with similar node attributes (d). We 

utilize the leiden graph partitioning algorithm to identify GRN subnetworks. We combine these 

subnetworks with the AUCell method to get module specific expression for each cell and further 

combine the gene modules with pathway knowledge bases to annotate modules with biological 

pathways (e). We apply SCING to human prefrontal cortex snRNAseq data with AD and Control 

patients, whole brain visium data, for AD vs WT mice at different ages, and to the mouse cell atlas 

in 33 tissues and 106 cell types (f).  
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Figure 3.2. Performance evaluation.  

Predicted downstream affected genes of perturb-seq based perturbation in 5 datasets with GRNs 

built on cells with non-zero expression of the perturbation of interest. Area under receiver operator 

characteristic (AUROC) curve for prediction of downstream perturbations using undirected GRNs 

(a). AUROC for prediction of downstream perturbation on directed GRNs for SCING (b). True 
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positive rate (TPR) at a false positive rate (FPR) of 0.05 for the prediction of downstream 

perturbations on undirected GRNs (c). TPR at FPR of 0.05 for the prediction of downstream 

perturbations on directed GRNs for SCING. (d) Measure of network overfitting by similarity of 

predicted gene expression and actual in held out data for astrocytes, microglia, and 

oligodendrocytes. Cosine similarity of predicted gene expression and actual in testing data show 

few differences between SCING and others (e). Cosine similarity of predicted gene expression 

and actual in training data shows other methods overfit to the training data (f). Ratio of test to train 

shows SCING does not overfit to the data as much as other approaches (g). 

 (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001) 
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Figure 3.3. Network features and consistency.  

Descriptive features of networks across SCING and other approaches for 10 networks on 

astrocytes, microglia, and oligodendrocytes. Linear regression R-squared for log degree vs log 

count for goodness of fit metric of scale-free network (a). Example scatter plot of log degree vs 

log count with the average sparsity of genes in each dot. Brighter red indicates less sparse. This 

shows highly sparse genes tend to have lower degrees (b). Average number of edges (c) and log 

of the number of edges (d) for each method across all cell types. The variance of the betweenness 

centrality across nodes in each graph (e). The overlap score (number of overlapping 

edges/expected number of edges)  in independent sets of cells (f).  

(*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001) 
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Figure 3.4. Application case 1: constructing and using SCING GRNs based on Mouse Cell 

Atlas scRNAseq datasets to interpret diseases.  

Performance of modeling disease subnetworks for DisGeNET gene sets related to the immune, 

metabolic, and neuronal diseases with GRNs built on bone marrow, brain, and liver cells, reveals 

SCING models disease subnetworks more accurately than other methods (a). Clustermap 
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depicting GRNs built with SCING from immune cell types (light blue), model disease subnetworks 

from many different disease gene sets, while vascular cell types (purple) are more specific to 

vascular diseases (b). Cell types (rows) from the adaptive (blue) and innate (orange) immune 

systems, show variability in the number of diseases (columns) they model (>0.1). Clustermap 

shows diseases clustered with hierarchical clustering (c) and sorted by the number of cell types 

that can accurately model that disease subnetwork (d). Diseases are colored by disease category 

(immune related: red; cardiothoracic: green; cancer: blue; immune related cancer: purple), and 

cell types are colored by innate (orange), and adaptive immune system (dark blue). Innate 

immune system cell types better model disease subnetworks from more diseases (e). 

 (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001) 
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Figure 3.5. Application case 2: Using SCING GRNs to interpret Alzheimer’s disease (AD).  

UMAP representation of scRNAseq data shows sample specific differences when operating on 

gene expression space (left panel). Dimensionality reduction on SCING module embeddings 

removes sample specific effects (right panel). SCING removes RNA quality effects on gene 

expression clustering (b). Clustering on SCING modules, keeps biologically relevant features 

such as AD status (left panel) and sex (right panel) (c), as well as mitochondrial fraction (d). 

SCING corrects batch (top) and sample (bottom) specific effects based on the fraction of 

neighbors with the same batch or sample status (lower is better) for a given cell (e). This was 

performed at different fractions of the cells used as neighbors for a given cell. Dedicated batch 

correction techniques have better batch correction. F1 score of nearest neighbor score with batch 

and sample effects corrected (higher is better), shows SCING corrects sample, and batch effects 

while retaining biologically relevant features (f). Heatmap showing coefficients of linear regression 

of diagnosis, plaque, and tangle status, on module expression, while regressing out sex (g). 

Pathway annotations for significant (*: FDR < 0.05) modules are provided. Subnetwork reveals 

collocalization of canonical Alzheimer’s genes and subnetworks such as APOE and APP (h). 

Colors indicate the linear regression coefficients between a phenotype and module expression. 
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Figure 3.6. Application case 3: Using SCING to model GRNs based on 10x Genomics 

Visium spatial transcriptomics data to interpret AD.  

Boxplots show regional specificity of specific modules, namely module 12 and 14 (red boxes) (a). 

Scale bar shows the t-test statistic of the test between regions. Regional specificity of module 12 

(hippocampus and cortex) and module 14 ( hypothalamus, thalamus, and fiber tract), visualized 

on brain samples of 3 month old WT mice (b). Module association in AD vs WT mice (c). Scale 

bar shows the t-test statistic of the test between mouse groups. Visualization of module 9 in 18 

month old WT and AD mice (d). Visualization of module 25 in 18 month old WT and AD mice (e). 

Module 25 subnetwork of Trem2 and complement proteins shows microglial association of 

module 25 (f). Full subnetwork in supplement 9. Nodes are colored by marker gene status of 

neuronal (blue), microglial (red), or both (purple), as determined from the Allen Brain Atlas. Cross 

cell type communication edges seen between red and blue. Pearson correlation between module 

expression and plaque (g) and age (h), shows with significance (*: p<0.05) 

Subpanel a,c:  (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001) 
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SF 3.1. Run time comparison of methods for building a single GRN.  

SCING is faster than GRNBOOST2 and PIDC as the number of genes increases (a). The test 

increasing the number of genes was performed on 1000 cells. SCING is faster than GRNBOOST2 

and PIDC as the number of cells increases (b). The test increasing the number of cells was 

performed on 1000 genes. ppcor is faster than all other methods. Red significance indicates that 

SCING is faster, while blue indicates SCING is slower.  

 (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001) 
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SF 3.2. Predicted downstream affected genes of perturb-seq based perturbation in 5 

datasets with GRNs built on all cells in each dataset.  

Performance of SCING in predicting downstream gene perturbation as a function of the fraction 

of zeros in each perturbation, before and after removing cells with zero expression of the gene of 

interest (a). Area under receiver operator characteristic (AUROC) curve for prediction of 

downstream perturbations using undirected GRNs (b). AUROC for prediction of downstream 

perturbation on directed GRNs for SCING (c). True positive rate (TPR) at a false discovery rate 

(FDR) of 0.05 for the prediction of downstream perturbations on undirected GRNs (d). TPR at 

FDR of 0.05 for the prediction of downstream perturbations on directed GRNs for SCING (e). 

 (*: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001) 
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SF 3.3. SCING GRNs’ modeling capabilities of DisGeNET diseases on entire MCA.  

Clustermap of all cell types in mouse cell atlas and SCING GRNs modeling of disease 

subnetworks across all diseases in DisGeNET (a). Number of cell types each disease subnetwork 

can be accurately (>0.1) modeled by (b). Number of disease subnetworks accurately modeled (> 

0.1) by each cell type (c). 
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SF 3.4. Clustermap of immune cell types and all diseases.  

Cell types are ordered by the number of diseases they accurately model, and diseases are either 

clustered with hierarchical clustering (a), or ordered by the number of cell types they are modeled 

by (b). Diseases are colored by disease category (immune related: red; cardiothoracic: green; 

cancer: blue; immune cell cancer: purple), and cell types are colored by innate (orange), and 

adaptive immune system (dark blue).  
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SF 3.5. Subnetwork of the vesicle-mediated transport pathway from module 2 in the 

snRNAseq microglia GRN.  

Nodes are colored by their log-fold change (logFC) between AD and Control patients. APOE and 

APP subnetwork is highlighted (red box).  
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SF 3.6. Expression of each module visualized in each brain.  

Mice are ordered by age (3, 6, 12, 18 months) and genotype (WT vs AD) mice.  
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SF 3.7. Distribution of module expression in each region of the brain. Significantly variable 

expression is determined by ANOVA (p<0.05).  
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SF 3.8. Subnetwork of module 9 (triangles) and 25 (squares), from the visium AD dataset.  
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Marker genes were determined from the Allen Brain Atlas whole brain smart-seq dataset. Nodes 

are colored by marker gene status (microglia:red; neuronal:blue; both:purple). Cross cell type 

communication edges are between microglia and neuronal nodes. Module 9 is composed mostly 

of neuronal genes, while module 25 is composed mostly of mostly microglia genes. 

 

SF 3.9. Subnetwork containing amyloid beta plaque in module 10 from the visium data.  

Nodes are colored by marker gene status (microglia:red; neuronal:blue; both:purple). 

Hypothesized cross cell type communication edges are between microglia and neuronal nodes. 

This contains the amyloid-beta plaque stain (colored green). 
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SF 3.10. Localization and association of neuropeptide signaling in the hypothalamus.  

Diagram from the Allen Brain Atlas shows the location of the hypothalamus (outlined in pink) (a). 

Module 30 has localizes to the hypothalamus (b) and has higher expression in AD (c). The module 

30 subnetwork (d) is enriched for neuropeptide signaling. Color of each node represents the 

logFC in AD vs WT mice. The color of the text represents significance (green: adjusted p-value < 

0.05, blue: p-value < 0.01). 
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3.6 Tables 

Table 3.1. Average run time (seconds) of GRN building methods on variable number of 

genes for 1,000 cells across 10 iterations. 

  
1000 

genes 

2000 

genes 

4000 

genes 

astrocytes SCING 10.8 14.2 21.4 

ppcor 4.3 4.1 4.1 

PIDC 74.3 77.2 85.1 

GRNBOOST2 35.0 98.2 272.9 

microglia SCING 10.5 13.8 20.8 

ppcor 4.4 3.9 4.2 

PIDC 73.0 75.8 83.0 

GRNBOOST2 43.0 340.5 340.5 

oligodendrocytes SCING 10.3 13.5 20.7 

ppcor 4.9 4.6 4.1 

PIDC 74.5 77.3 86.0 

GRNBOOST2 13.8 29.0 71.3 
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Table 3.2. Average run time (seconds) of GRN building methods on variable number of 

cells for 1,000 genes across 10 iterations. 

 

  
250 

cells 

500 

cells 

1,000 

cells 

astrocytes SCING 9.9 11.0 10.6 

ppcor 0.6 2.1 4.3 

PIDC 0.2 19.6 74.1 

GRNBOOST2 9.8 14.8 33.3 

microglia SCING 10.1 11.0 10.5 

ppcor 0.7 2.3 4.6 

PIDC 9.2 18.7 73.1 

GRNBOOST2 10.2 15.3 45.8 

oligodendrocytes SCING 9.5 9.9 10.5 

ppcor 0.52 2.2 4.7 

PIDC 9.2 19.9 75.0 

GRNBOOST2 9.0 10.3 13.9 
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Table 3.3. Hyperparameters for perturb-seq clustering 

Dataset Resolution 

DC 0hr 1.2 

DC 3hr 0.7 

K562 cell cycle 1.0 

K562 promoters 1.0 

Papalexi 1.2 
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Chapter 4. Therapeutic IDOL reduction ameliorates amyloidosis and improves cognitive 

function in APP/PS1 mice 

4.1 Introduction  

The APOE genotype is the strongest genetic risk factor for Alzheimer’s disease (AD). ApoE has 

been shown to independently influence several key factors that drive pathogenesis of AD, 

including β-amyloidosis, tauopathy, and synaptic dysfunction126–128. The impact of ApoE on 

amyloidosis has been the subject of intensive research, since β-amyloid (Aβ) accumulation and 

aggregation are key initiators of complex pathological changes in the brain that culminate in 

neurodegeneration years later. Mounting evidence suggests that ApoE primarily influences AD 

pathology via its effects on Aβ metabolism. ApoE exerts the greatest impact on amyloidosis during 

the initial seeding stage; accordingly, lowering ApoE levels prior to the formation of Aβ plaque in 

APP/PS1 mice reduces Aβ plaque pathology129. ApoE has also been reported to promote Aβ 

aggregation130 and to impair its clearance from the brain interstitial fluid131. 

 

In the brain, ApoE functions as a ligand for members of the lipoprotein receptor family, including 

low-density lipoprotein receptor (LDLR), LDL receptor-related protein 1 (LRP1), very low-density 

lipoprotein receptor (VLDLR), and ApoE receptor 2 (ApoER2). Among ApoE receptors, LDLR and 

neuronal LRP1 are the principal regulators of ApoE metabolism, acting to mediate the uptake and 

degradation of ApoE-containing lipoprotein particles by brain cells132. Overexpression of the LDLR 

in glia cells reduces brain ApoE and Aβ deposition level by enhancing Aβ clearance133, suggesting 

that increasing glial LDLR levels may represent a therapeutic strategy to treat AD. 

 

We previously identified E3 ubiquitin ligase IDOL as a negative regulator of LDLR in microglia. 

Loss of IDOL in microglia increases LDLR protein levels, which in turn facilitates ApoE and Aβ 

uptake and clearance by microglia. Ablation of IDOL in both male and female APP/PS1 mice—a 

transgenic mouse model of Aβ amyloidosis—led to decreased soluble and insoluble Aβ, reduced 
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amyloid plaque burden, and ameliorated neuroinflammation 134. Whether pharmacological 

inhibition of IDOL in the adult brain can serve as a safe and effective therapeutic strategy to 

ameliorate Aβ-related pathology remains to be determined. In this study, we utilized an antisense 

oligonucleotide (ASO) to therapeutically inhibit IDOL activity in the adult brain of APP/PS1 mouse 

model of AD amyloidosis. IDOL ASO treatment reduced soluble and insoluble Aβ and amyloid 

plaque load in the brain and also decreased neuritic dystrophy around plaques. Importantly, IDOL 

ASO treatment also improved the cognitive performance of APP/PS1 mice in the Morris water 

maze. Our results provide validation of the potential utility of IDOL as a therapeutic target for AD 

pathogenesis. 

 

4.2 Results 

ASO treatment reduces IDOL expression in vivo. 

We optimized a central nervous system (CNS)-acting ASO against IDOL to enable the inhibition 

of IDOL activity in the adult mouse brain. To evaluate the efficacy of the anti-IDOL ASO (here 

referred to as IDOL ASO) and determine the optimal dose, five groups of C57BL/6J male mice 

(n = 5 for each group) received intracerebroventricular (i.c.v.) injection of various doses of IDOL 

ASO or PBS (vehicle control) into the lateral ventricle. After a 2-week incubation, we measured 

IDOL mRNA level in total brain lysates. IDOL ASO showed high potency with half-maximal 

inhibitory concentration (IC50) of 12.5 μg/mice and prolonged stability with an estimated half-life 

(t1/2) of 9 weeks (Figure 4.1A). A single bolus dose of 40 μg of IDOL ASO reduced IDOL mRNA 

level by at least 80% relative to controls by qPCR, and knockdown of IDOL was seen in all the 

brain regions examined, including the hippocampus, cortex, thalamus, and cerebellum (Figure 

4.1B). We chose a 40 μg of IDOL ASO i.c.v. injection every 2 to 3 months as the optimal treatment 

strategy for the following studies. This approach achieves close to maximum IDOL knockdown 

efficiency with minimal amount of ASO, thereby minimizing nonspecific effects. Since IDOL is 

mainly expressed in the microglia and neurons, we examined the cellular uptake of ASO by 
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immunohistochemical staining of brain sections with a pan-ASO antibody (Figure 4.1C). This 

analysis showed that the ASO was taken up by both microglia and neurons. Consistent with 

reduced IDOL expression, the protein level of IDOL substrates—LDLR, VLDLR, and ApoER2—

were all increased in the brains of IDOL ASO-treated mice (Figure 4.1D), despite the fact that 

their mRNA levels remain unchanged (data not shown). We did not observe changes in body 

weight or gross behavior associated with IDOL ASO treatment in our study. When evaluated in 

contextual fear conditioning and the Morris water maze, IDOL ASO treatment did not affect the 

cognitive performance of wild-type mice (Figure 4.1E and F). 

 

IDOL-ASO treatment ameliorates Aβ plaque pathology. 

To assess the effects of brain IDOL inhibition on amyloidosis in an AD mouse model, we 

administered IDOL ASO (40 μg/mouse) or vehicle (phosphate-buffered saline [PBS]) via i.c.v. 

injection to a cohort of APP/PS1 male mice (n = 8 to 10 per group) at 3 months of age (before the 

onset of plaque formation), followed by a booster dose at 6 months of age. Mice were sacrificed 

at 8 to 9 months of age and brains were collected for pathological analysis. We first assessed Aβ 

deposition by immunostaining with an anti-Aβ antibody (82E1). Aβ plaque area in IDOL ASO-

treated APP/PS1 mice was reduced >50% compared to controls (Figure 4.2A). Quantification of 

fibrillar plaque load using X-34 dye also showed a marked reduction (>50%) in the ASO-treated 

group (Figure 4.2B). Next, we biochemically assessed Aβ40 and Aβ42 levels in 

radioimmunoprecipitation assay (RIPA; soluble) and Guan (insoluble) fractions of brain lysates. 

IDOL ASO treatment reduced Aβ40 and Aβ42 load in both soluble and insoluble fractions in 

APP/PS1 mice (Figure 4.2C and D). Western blot analysis of RIPA fractions of brain lysates 

further confirmed that IDOL ASO treatment led to reduction of total amyloid species and ApoE 

levels (Figure 4.2E). 
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To examine the effects of IDOL knockdown on plaque size distribution, we analyzed the X34-

stained data set by grouping individual plaques based on size. We found reduced plaque density 

and average size in the IDOL ASO group compared to controls (Figure 4.2F). We also observed 

a shift in the size distribution of the plaques between groups. The total area covered by larger 

plaques (>1,000 μm2) was dramatically reduced, and plaques larger than 2,000 μm2 were only 

rarely observed in the ASO group (Figure 4.2G). Together, these results suggested that 

pharmacological inhibition of brain IDOL activity is sufficient to reduce Aβ levels and plaque 

burdens in APP/PS1 mice. These consequences of acute IDOL knockdown are consistent with 

our previous findings of reduced AD-like pathology in IDOL-deficient APP/PS1 mice134. 

 

Plaque-associated neuritic dystrophy—a well-described consequence of Aβ-induced 

neurotoxicity—is a key feature of pathological processes downstream Aβ in AD135. To investigate 

the effects of brain IDOL inhibition on plaque-associated neurotoxicity in vivo, brain sections of 

control or IDOL ASO-treated APP/PS1 mice were costained with X-34 and an antibody against 

lysosomal-associated membrane protein 1 (LAMP1), a marker of dystrophic neurites. IDOL ASO-

treated mice showed a reduction in the volume of dystrophic neurites (Figure 4.3A). We also 

costained brain sections with X-34 and amyloid precursor protein (APP; another marker of 

dystrophic neurites)136 and again found a reduction in the volume of plaque-associated dystrophic 

neurites in IDOL ASO-treated mice (Figure 4.3B). These results suggest that IDOL inhibition in 

brain ameliorates plaque-associated neuritic dystrophy. 

 

Glial cells, including microglia and astrocytes, play essential roles in neuroinflammation and are 

believed to be responsible for neuronal toxicity and synaptic dysfunction downstream of Aβ. To 

determine the extent of Aβ-mediated gliosis in control and IDOL ASO-treated mice, we examined 

anti-glial fibrillary acidic protein (anti-GFAP)-positive reactive astrocytes in mice by 

immunostaining. The IDOL ASO group had fewer GFAP-positive astrocytes than controls (Figure 
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4.4A), consistent with the effects of IDOL ASO on amyloid plaque load. To evaluate the changes 

in the microglial response to amyloid plaque, we performed histological staining for ionized 

calcium-binding receptor 1 (Iba1), a marker of activated microglia. Plaque-associated microglial 

activation was evident around Aβ deposits in both groups. However, when corrected with plaque 

area, analysis of the Iba1-positive area did not reveal differences between treatment and control 

groups (Figure 4.4B). Microglia localized in close proximity to Aβ plaques were distributed in a 

circumferential pattern around the plaque periphery and showed an enlarged cell body size 

(Figure 4.4C), a feature typical of amoeboid microglia with enhanced phagocytic capacity. 

Interestingly, microglia in the IDOL ASO-treated group were less hypertrophic and displayed a 

reduced cell body size compared to those in the vehicle-treated group (Figure 4.4C). 

 

IDOL ASO treatment improves cognitive function in APP/PS1 mice. 

To determine whether reduced plaque load in ASO-treated APP/PS1 mice affected cognitive 

functions, including the ability to learn, we treated another cohort of APP/PS1 male mice (n = 12 

per group) with IDOL ASO. Two groups of mice were administered IDOL ASO (40 μg/mice) or 

vehicle (PBS) at 3 months of age (before the onset of plaque formation), followed by two booster 

doses at 6 and 9 months of age. Mice were then subjected to behavioral testing at 10 months of 

age. We first examined hippocampus-dependent spatial memory acquisition with the Morris water 

maze137. APP/PS1 mice were trained to memorize the location of a hidden, submerged platform 

in a water-filled pool over a 5-day period. The ASO-treated group required less time to reach the 

platform compared to the control group on days 4 and 5 (Figure 4.5A). To determine the degree 

of reliance of the mice on spatial versus nonspatial cues to find the platform, we performed probe 

trials on day 6 in which the platform was removed. The ASO-treated group spent more time and 

traveled longer distances (Figure 4.5B) in the quadrant of the submerged platform. These results 

suggested that IDOL-ASO treatment improves spatial memory acquisition in APP/PS1 mice. This 

improvement in performance could not be attributed to vision or locomotor differences, since both 
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groups performed similarly in the visible platform test (Figure 4.5C, left) and exhibited comparable 

swimming speed (Figure 4.5C, right). 

 

We next tested cued and contextual-fear conditioning, a paradigm that assesses hippocampus-

dependent (context) and amygdala-dependent (context and cued) fear learning138 in vehicle- and 

IDOL ASO-treated APP/PS1 mice. On day 1, mice were trained to associate environment and 

sound with a foot shock. On day 2, mice were placed back into the same environment and 

assessed for freezing for 5 min to evaluate the contextual association with the foot shock. On day 

3, mice were placed in a novel environment for 6 min and assessed for freezing during the last 3 

min, when the same tone was played to measure the association of tone with foot shock. Both 

groups of mice displayed similar freezing behavior during training (Figure 4.5D). On days 2 and 

3, both groups showed a high level of freezing when returned to the same context or presented 

with the same tone. ASO-treated mice were not different from control mice in their ability to 

memorize the association between shock and the context (Figure 4.5E, left) or auditory cue 

(Figure 4.5E, right). The failure to detect a difference in this test may be due to the fact that 

performance in both groups was comparable to wild-type mice (Figure 4.1E). 

Single cell RNA sequencing reveals enhanced phagocytic function of microglia in IDOL 

knockdown mice. 

Local environmental cues are critical for shaping and maintaining brain microglial phenotypes in 

both mice and humans139,140. Furthermore, recent studies have highlighted the heterogeneity of 

microglial populations during brain development141, in different brain regions142, and in various 

disease states143. We previously showed that loss of IDOL facilitates Aβ uptake and clearance by 

microglia in vitro134. However, the role of IDOL in the function of microglia within physiological 

environments has not been investigated. To better capture heterogeneity of microglia and other 

brain cells, we used single-cell RNA sequencing (scRNA-seq) to profile the transcriptome of 

individual cells in mouse hippocampus. Hippocampal cells from PBS- and ASO-treated APP/PS1 
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mice (n = 3/group) were isolated 1 week after behavior testing, and subjected to scRNA-seq with 

the Drop-seq platform144. We obtained data for a total of 14,682 cells (6,888 from the PBS group 

and 7,794 from the ASO-treated group) after quality control filtering. 

We clustered the hippocampal cells based on their similarities in gene expression pattern and 

projected the cells onto two dimensions using uniform manifold approximation and projection 

(UMAP)145, and determined cell-type identities of the main clusters using a mouse hippocampal 

reference panel146 (Figure 4.6A). Each cell cluster contained cells from all six samples without 

batch effects, and there were no clear clustering differences between the PBS and ASO groups 

(Figure 4.6B). To further confirm cell cluster specificity, we highlighted known marker genes for 

each cell type and found these key genes to be uniquely expressed in their respective clusters, 

such as C1qc for microglia and Snap25 for neurons (Figure 4.6C to F). By assessing IDOL 

expression in each cell type, we confirmed that IDOL was highly expressed in microglia and that 

its expression level was effectively reduced by ASO treatment (data not shown). To determine 

specific genes and pathways that were altered by IDOL knockdown, we identified differentially 

expressed genes (DEGs) between PBS- and ASO-treated groups within each cell cluster (Table 

4.1) at P < 0.05 and at a false discovery rate (FDR) of <0.05. Microglia and oligodendrocytes had 

the largest numbers of DEGs between the PBS and ASO groups. Annotation of the DEGs with 

curated biological pathways revealed the lysosomal pathway as the top enriched biological 

pathway in microglia. IDOL-ASO treatment upregulated lysosomal/phagocytic genes, such as 

those for cathepsins (Ctsb and Ctsd) and CD63, strongly suggesting that knockdown of IDOL 

enhanced phagocytic function of microglia in vivo (Table 4.1). 

 

To further examine the impact of IDOL ASO treatment on microglia heterogeneity in APP/PS1 

mice, we reclustered and projected the microglia cells in two dimensions using t-distributed 

stochastic neighbor embedding (t-SNE)147 and identified four distinct subgroups (Figure 4.7A) that 

did not show apparent clustering distinction between PBS and ASO mice (Figure 4.7B). The gene 
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expression patterns of subgroups 0 and 1 resembled the signatures of homeostatic microglia, 

with high expression of marker genes such as P2ry12 and Cx3cr1 (Figure 4.7C, F, and G), 

whereas subgroups 2 and 3 resembled disease-associated microglia (DAM), with high expression 

of marker genes such as Cst7, Trem2, and ApoE96 (Figure 4.7D, F, and G). The separation of 

subgroups 0 and 3 from subgroups 1 and 2 was mainly due to differential expression of 

inflammatory genes, such as the cytokine genes Il1a, Il1b, and Tnf (Figure 4.7E to G). 

Interestingly, IDOL-ASO treatment shifted the microglia population to a higher proportion of DAM-

like subgroups 2 and 3 (22.45% in PBS group versus 35.36% in ASO group; P = 0.04154 [Fisher 

exact test]) (Figure 4.7A). Consistently, microglia in the ASO group displayed higher expression 

levels of DAM markers, including B2m, Ctsb, Ctsd, Lpl, and Cd63 (Table 4.1). It has been shown 

that DAM cells are abundant near amyloid plaques and actively participate in phagocytic removal 

of amyloid plaques96. Thus, this shift in microglial populations in IDOL-ASO-treated mice could 

plausibly be responsible for the reduced amyloid plaque load. 

We also reclustered and projected the general neuronal population onto two dimensions using t-

SNE to identify neuronal subtypes (Figure 4.8A and B). The CA neurons and the subiculum 

neurons did not clearly separate, since their gene profiles and physical locations are similar to 

one another. However, neurons of the dentate gyrus, interneurons, and Cajal-Retzius neurons 

were clearly separated from the others and demonstrated unique gene expression profiles (Figure 

4.8C and D). Pathway analysis of the DEGs (P < 0.05) revealed that ASO treatment changed the 

expression of genes enriched in the Wnt signaling pathway in Cajal-Retzius neurons, the oxidative 

phosphorylation pathway in subiculum neurons (mostly pyramidal cells), and the homeostatic 

responses in interneurons (Table 4.1). 

 

4.3 Discussion 

ApoE4 has a powerful impact on the development of late-onset AD. Aβ turnover and clearance in 

the mouse brain in vivo is strongly dependent upon ApoE isoform131, suggesting 
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that APOE alleles contribute to human AD risk by differentially regulating clearance of Aβ from 

the brain and that enhancing Aβ clearance may be a therapeutic strategy for AD prevention and 

treatment. It is reasonable to speculate that the biological effects of ApoE are at least partially 

mediated by the receptors to which it binds. LDLR is an ApoE receptor known to regulate brain 

Aβ clearance. LDLR deficiency is associated with increased Aβ deposition in Tg2576 APP-

transgenic mice148,149, while overexpression of the LDLR in the brain enhances Aβ clearance and 

decreases Aβ deposition133. These findings suggest that increasing LDLR levels in brain cells 

could be beneficial in AD, but it is pivotal to validate tractable approaches to regulate brain LDLR 

levels in order to translate basic science knowledge to clinical application. We previously identified 

E3 ubiquitin ligase IDOL as a negative regulator of LDLR proteins levels in microglia and 

neurons134. In this study, we examined the effects of IDOL reduction in adult APP/PS1 mice using 

an anti-IDOL ASO. IDOL inhibition led to a reduction in Aβ pathology, a decrease in neuritic 

dystrophy around the plaques, and an improvement in spatial memory. This study suggests that 

pharmacologically inhibiting IDOL could be a feasible approach to ameliorate Aβ-related 

pathology. 

 

Microglia are professional phagocytes capable of clearing targeted pathogens, cellular debris, 

and pathogenic Aβ in the brain. Previous in vitro studies suggested that loss of IDOL in microglia 

enhances the uptake and clearance of Aβ. In this study, our scRNA-seq data showed that ASO 

treatment increased the expression of lysosomal/phagocytic cell-related genes in microglia in 

vivo, corresponding to the enhanced clearance of soluble Aβ and reduced plaque deposition in 

the brains of APP/PS1 mice. High-level expression of genes in phagocytic and lipid metabolism 

pathways is the molecular signature of disease-associated microglia (DAM), a recently identified 

subset of CNS-resident microglia in the 5XFAD mouse model96. The existence of DAM in mice 

and humans has recently been confirmed in tauopathy AD models150,151, aging151,152, and other 

neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS)153 and multiple 
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sclerosis154. DAM has been shown to associate with amyloid plaques and actively participate in 

the dismantling and digestion of the amyloid plaques96. In our exploration of the impact of IDOL 

on microglia heterogeneity, we found that IDOL-ASO treatment shifted the microglial populations 

to a higher proportion of DAM-like subgroups (Figure 4.6), despite the fact that ASO-treated 

APP/PS1 mice had lower levels of Aβ and plaque deposition (Figure 4.1 and 4.2). These findings 

suggest that the IDOL-LDLR pathway regulates the phagocytotic function in microglia in response 

to Aβ challenge. The underlying mechanisms through which increased LDLR levels enhanced 

phagocytic function in microglia remain to be clarified. 

 

Since LDLR is a major metabolic receptor for ApoE, the IDOL-LDLR pathway is expected to 

regulate ApoE uptake and recycling in microglia. It has been reported that ApoE facilitates the 

microglial response to amyloid plaque pathology155. We reason that LDLR may enhance 

phagocytic activity of microglia through the ApoE pathway. Given that ApoE also serves as ligand 

for TREM2156, we further speculate that ApoE may increase phagocytosis of Aβ by enhancing 

TREM2 signaling. Future experiments will address whether the effect of the IDOL-LDLR pathway 

on microglial phagocytic function is dependent on ApoE and different ApoE alleles. 

 

When reclustering microglia, we detected two previously identified subtypes: the homeostatic 

microglia (subgroups 0 and 1) and DAM (subgroups 2 and 3). Within each of these subtypes, we 

also identified subgroups with different expressions of inflammatory genes, such as Il1b and Tnfa. 

Compared to subgroups 1 and 2, microglial subgroups 0 and 3 were enriched for pathways 

involved in tumor necrosis factor alpha (TNF-α) signaling, interferon gamma (IFN-γ) response, 

and the inflammatory response (FDR <0.05). The exact role of these microglia subgroups in 

amyloid pathology remains unclear and will be a topic for future investigation. Interestingly, 

inflammatory cytokine genes (Il1a, Il1b, and Tnfa) were positively associated with the DAM-

associated gene Csf1 in our study (Figure 4.6B). CSF-1 is considered a key regulator of 
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inflammatory responses in the brain. Several lines of evidence suggest that microglial activation 

is mediated by a CSF-1/CSF-1R autocrine loop, which results in reactive microgliosis and the 

release of inflammatory cytokines157,158. Our results are consistent with these previous findings. It 

has been shown that CSF-1 increases microglial phagocytic activity and stimulates clearance of 

Aβ159; however, CSF-1 also mediates microglial-induced neurotoxicity by promoting the release 

of inflammatory cytokines. Our result showed both homeostatic microglia and DAM can be further 

divided into subgroups with different Csf1 expression levels (Figure 4.6B). It is plausible that these 

four subgroups may contribute differently to the pathogenesis of AD. Discovering ways of 

precisely modulating microglial inflammation and phagocytosis in AD is an exciting area for future 

investigation. 

 

IDOL is also expressed in neurons, where it posttranslationally regulates the level of neuronal 

lipoprotein receptors, including ApoER2/LRP8 and VLDLR. IDOL-dependent regulation of 

synaptic ApoER2 has been implicated in the modulation of dendritic filopodium initiation and 

synapse maturation during the early postnatal stage160. ApoER2 has also been shown to 

functionally couple to NMDA receptors160 and to protect against the loss of cortical neurons during 

normal aging161. IDOL ASO treatment increased brain ApoER2 levels in our study (Figure 4.1C). 

Our scRNAseq results yielded only small number of DEGs in neurons between PBS and ASO 

groups when comparing to microglia, suggesting that knockdown of IDOL has more a prominent 

impact on microglial functions. However, we cannot rule out the possibility that enhanced neuronal 

ApoER2 levels also contribute to the neuroprotective effects of IDOL knockdown, such as the 

decreased neuritic dystrophy around the plaques. We are in the process of evaluating the impact 

of neuron- and microglia-specific IDOL deletion on neuropathological progression and cognitive 

function in AD mouse models. The results from these studies will offer a better understanding of 

the mechanisms through which IDOL impacts AD-related pathology. 
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4.4 Materials and Methods 

Animals. 

Male C57BL/6J (000664) and B6.Cg-Tg(APPswe,PSEN1dE9)85Dbo/Mmjax (005864) mice were 

purchased from The Jackson Laboratory. All mouse experiments were approved and performed 

under the guidelines of the Animal Care and Research Advisory Committees at the University of 

California, Los Angeles (UCLA). 

Antibodies and reagents. 

Primary antibodies used in this study are: anti-human amyloid β (N) (82E1) from IBL Co., Ltd.; 

anti-amyloid precursor protein antibody [Y188] (ab32136), anti-apolipoprotein E antibody 

(ab183596), anti-ApoER2 antibody (ab108208), and anti-LAMP1 antibody (ab25245) from 

Abcam; anti-LDL receptor polyclonal antibody from Cayman; anti-Iba1 antibody from Wako; and 

anti-glial fibrillary acidic protein (anti-GFAP) from Dako. Anti-VLDLR antibody was a gift from 

Joachim Herz, University of Texas Southwestern Medical Center. All secondary antibodies were 

purchased from Thermo Fisher or Jackson Immunoresearch. Antisense oligonucleotides (ASOs) 

targeting IDOL (5′-TTCCTTTTTTCCACACGCCA-3′) were provided by Ionis Pharmaceuticals, 

Carlsbad CA. Complete ASO chemistry information was as follows. IDOL ASO (Tes Tes mCes 

mCeo Tes Tds Tds Tds Tds Tds mCds mCds Ads mCds Ads mCeo Ges mCes mCes Ae), where 

capital letters indicate base abbreviation, m is 5-methylcytosine, e is 2′-O-methoxyethylribose 

(MOE), k is (S)-2′,4′onstrained 2′-O-ethyl (cEt), d is deoxyribose, s is phosphorothioate, and 

o is phosphodiester. When administrating IDOL ASO to a cohort of wild-type mice (two 

groups, n = 5 for each group), IDOL mRNA levels were downregulated 92 and 62%, respectively, 

1 week or 2 months after ASO administration. The half-life of ASO was estimated around 9 weeks. 

mRNA analysis. 

mRNA level was determined by real-time RT-qPCR (Diagenode, Denville, NJ) from RNA isolated 

from frozen tissues with TRIzol (Life Technologies, Carlsbad, CA) according the manufacturer’s 
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instructions. Statistical analysis was conducted using a two-tailed unpaired t test or one-way 

ANOVA. 

Protein analysis. 

Proteins were sequentially extracted from brain tissues with RIPA, and 5 M guanidine buffer in 

the presence of protease inhibitors as described previously161. For Western blots, equal amounts 

of proteins (10 to 40 mg) were separated on NuPAGE bis-tris gels (Invitrogen), and membranes 

were probed with primary and secondary antibodies. Signals were visualized by 

chemiluminescence (ECL Plus; GE Healthcare). Blots were quantified by densitometry with 

ImageJ software (National Institutes of Health [NIH]). To quantify Aβ40 (KHB3481) and Aβ42 

(KHB3441), human ELISA kits from Life Technologies were used. Statistical analysis was 

conducted using a two-tailed unpaired t test or one-way analysis of variance (ANOVA). 

Histological analysis. 

Brains were sectioned on a cryostat at a 40-mm thickness. For immunofluorescence staining, 

free-floating sections were blocked with PBS containing 10% normal goat serum (NGS) at room 

temperature for 30 min, incubated with primary antibody in blocking solution at 4°Covernight, and 

then incubated with secondary antibody at room temperature for 1 h. Sections were mounted on 

slides with ProLong Diamond (Life Technologies). For immunohistochemistry, free-floating 

sections were treated with 0.3% H2O2 and blocked with 3% NGS. Sections were then incubated 

with biotinylated 82E1 (1:500) or anti-Iba1 (1:1,000) in blocking solution at 4°C for 24 h. Sections 

were incubated with biotinylated anti-rat or anti-rabbit IgG antibody (Vector Laboratories) in 

blocking solution at room temperature for 1 h. Antibody binding was detected with Vectastain ABC 

Elite (Vector Laboratories) and DAB peroxidase (horseradish peroxidase) substrate kits (Vector 

Laboratories) supplemented with nickel solution. Sections were dehydrated and mounted on 

slides with Permount (Fisher Scientific). Images were captured on a confocal microscopy (Zeiss) 

and quantified using ImageJ software. Statistical analysis was conducted using a two-tailed 

unpaired t test or one-way ANOVA. 
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Behavior tests. 

(i) Morris water maze test. The Morris water maze is a stainless-steel circular tank with a 200-

cm diameter. The tank is filled water dyed with white, using liquid tempera paint to make the water 

opaque. A platform is placed in one of the quadrants of the pool and submerged 1 cm below the 

surface. During the trial, mice were placed in the desired start position facing the tank wall and 

released into the water at water level. If a mouse failed to find the platform within 60 s, it was then 

placed on the platform for 15 s before being removed. Mice were then placed at a new start 

location, and the trial repeated four times/day. On day 6, the probe test (wherein the mouse was 

allowed to free swim for 60 s with the submerged platform removed) was conducted. The percent 

time spent in the goal quadrant was calculated and analyzed for each mouse. The experimenter 

was blind to the genotype of the animals. Behavioral data from the training period were analyzed 

using repeated-measures ANOVA. Data from the probe test were analyzed using one-way 

ANOVA. Data from the visual cue test were analyzed using a two-tailed unpaired t test or 

repeated-measures ANOVA. All behavioral data were analyzed in Prism 7 (GraphPad Software, 

Inc.). 

 

(ii) Fear conditioning. To assess fear conditioning, mice were placed in a shock chamber (Med 

Associates, Inc.) on day 1 for a 7-min training period; during the last 5 min, the mice were exposed 

to three pairings (1-min intervals) of a 20-s tone immediately followed by a 2-s, 0.38-mA foot 

shock. On day 2, the mice were placed in the training context for 5 min, and the level of freezing 

was recorded. On day 3, the mice were placed in a different context for 6 min, and during the last 

3 min the tone was played. Mouse freezing was recorded with the FreezeFrame program and 

analyzed using the FreezeView program. 

Normal nociception of all animal strains was ascertained by registering. One-way ANOVA was 

used to analyze the percent freezing scores of the contextual and cue-dependent freezing. All 

behavioral data were analyzed in Prism 7. 
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(iii) Single cell preparation. Single-cell suspensions from bulk tissue were generated as 

previously described162 at a final concentration of 100 cells/μl in 0.01% bovine serum albumin 

(BSA)-PBS by digesting freshly dissected hippocampus tissue with papain (Worthington, 

Lakewood, NJ). Briefly, the hippocampus was rapidly dissected and transferred into 4 ml of ice-

cold Hibernate A (HA; BrainBits LLC, Springfield, IL)-B27 (Invitrogen, Carlsbad, CA)-GlutaMAX 

(Fisher Scientific, Hampton, NH) (HABG) and then incubated in a water bath at 30°C for 8 min 163. 

The supernatant was discarded, and the remaining tissue was incubated with papain (12 mg in 

6 ml of HA-Ca) at 30°C for 30 min. After incubation, the papain solution was removed from the 

tissue and washed with HABG three times. Using a siliconized 9-in Pasteur pipette with a fire-

polished tip, the suspension was triturated approximately ten times in 45 s. Next, the cell 

suspension was carefully applied to the top of the prepared Opti-Prep density gradient (Sigma-

Aldrich, St. Louis, MO). The gradient was then centrifuged at 800 × g for 15 min at 22°C. We 

aspirated the top 6 ml containing cellular debris. To dilute the gradient material, we mixed the 

desired cell fractions with 5 ml of HABG. The cell suspension containing the desired cell fractions 

was centrifuged for 3 min at 22°C at 200 × g, and the supernatant containing the debris was 

discarded. Finally, the cell pellet was loosened by flicking the tube, and the cells were 

resuspended in 1 ml of 0.01% BSA (in PBS). This final cell suspension solution was passed 

through a 40-μm strainer (Fisher Scientific) to discard debris, followed by cell counting. 

 

(iv) Drop-seq single-cell barcoding, library preparation, and sequencing. Drop-seq was 

performed as previously described144, with the following modifications: (i) the number of beads in 

a single PCR tube was increased to 4,000/tube, (ii) the number of PCR cycles was increased to 

4 + 11 cycles, and (iii) multiple PCR tubes were pooled prior to size selection and purification with 

AMPure XP (Beckman Coulter, Brea, CA). The amplified cDNAs were then checked using the 

Agilent TapeStation system (Agilent, Santa Clara, CA) for library quality, average size, and 



 121 

concentration estimation. The samples were then tagmented using a Nextera DNA library 

preparation kit (Illumina, San Diego, CA), and multiplex indices were added. The Drop-seq library 

molar concentration was determined by Qubit fluorometric quantitation (Thermo Fisher, Canoga 

Park, CA), and library fragment length was estimated using a TapeStation. Sequencing was 

performed on an Illumina HiSeq 4000 (Illumina, San Diego, CA) instrument using the Drop-seq 

custom read 1B primer (IDT, Coralville, IA). 100-bp paired-end reads were generated with an 8-

bp index read for multiplexing. Read 1 consists of the 12-bp cell barcode, followed by the 8-bp 

unique molecular identifier (UMI). Read 2 contains the single cell transcripts. 

 

(v) Drop-seq data preprocessing and quality control. The demultiplexed fastq files from the 

Drop-seq sequencing data were processed into a digital gene expression matrix using the 

dropSeqPipe (https://github.com/Hoohm/dropSeqPipe) SnakeMake wrapper for Drop-seq tools 

version 1.13. Briefly, read pairs with quality score of <10 were discarded, transcript reads were 

trimmed to remove TSO contamination, and poly(A) tails and then aligned to mm10 using STAR 

v2.5.0c with default settings. A digital gene expression matrix for each sample was generated, 

wherein each row is the read count of a gene, and each column represents a unique cell. The 

transcript counts of each cell were normalized by the total number of UMIs for that cell. These 

values were then multiplied by 10,000 and Ln transformed. Digital gene expression matrices from 

the six samples (three PBS- and three ASO-treated samples) were combined to create a pooled 

digital gene expression matrix. Single cells were identified from background noise by using a 

threshold of at least 250 genes and 500 transcripts. 

 

(vi) Identification of cell clusters. The Seurat R package (version 

2.3.1; https://github.com/satijalab/seurat) was used to project all sequenced cells onto two 

dimensions using uniform manifold approximation and projection (UMAP), and Louvain 

modularity clustering164 was used to define clusters. To further refine the microglia and neuronal 
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cell clusters, clusters expressing either microglia- or neuron-specific markers were pooled, 

projected onto two dimensions using t-distributed stochastic neighbor embedding (t-SNE), and 

reanalyzed separately in a similar fashion, only considering this microglia or neuronal subset. 

Briefly, the most highly variable genes were identified using the mean and dispersion 

(variance/mean), which were used to scale and center the data. Principal component analysis 

was performed on this normalized data, and significant principal components were identified using 

the JackStraw permutation-based approach165. These significant PCs were used in t-SNE and 

UMAP to project the data onto two dimensions, and graph-based clustering was used to identify 

cell clusters. 

 

(vii) Resolving cell identities of the cell clusters. To resolve the identities of the cell clusters, 

the single-cell data were mapped with a hippocampal reference data set146 using 

FindTransferAnchors and TransferData in the Seurat Package40. Cell types were confirmed by 

comparing marker genes to known markers for hippocampal cell types and neuronal subtypes166–

168. These markers were sufficient to confirm all major cell types, as well as neuronal 

subpopulations. 

 

(viii) Identification of differentially expressed genes (DEGs). Differentially expressed genes 

were determined using FindAllMarkers in the Seurat Package. The log fold change was 0.25, and 

the minimum fraction of cells expressing each gene was set at 0.10. The Wilcoxon test was used 

to determine differential expression. The Benjamini-Hochberg procedure was used to correct 

multiple testing, and an FDR threshold of 0.05 was used to determine differentially expressed 

genes. 

 

(ix) Pathway analysis of DEGs. P values for enriched pathways were determined using a 

hypergeometric distribution, taking into account the number of overlapping differentially 
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expressed genes with a pathway, the total number of genes in the pathway, and the total number 

of genes, and the total number of differentially expressed genes. All pathways were determined 

significant or suggestive with a Bonferroni corrected P value of 0.05. Significant pathways were 

determined with Benjamini-Hochberg corrected differentially expressed genes at a threshold of 

0.05. Suggestive pathways were determined with differentially expressed genes at a P value 

threshold of 0.01. 

 

Data availability. 

The sequencing data have been deposited to GEO under accession number GSE142535. 
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4.5 Figures 
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Figure 4.1 IDOL expression reduced following ASO injection 

(A) IDOL ASO administration via i.c.v. bolus injection led to dose-dependent reduction of IDOL 

mRNA levels in the brains of C56BL/6j mice. (B) IDOL ASO (40 μg) administration suppresses 

the IDOL mRNA level across different brain regions detected by RT-PCR. (C) Immunofluorescent 

staining of brain sections from PBS- or ASO-treated APP/PS1 mice. Primary antibody against the 

general backbone of ASOs (a gift from Ionis Pharmaceuticals) was used to visualize the 

distribution of ASOs in brain cells. ASOs (green) are taken up by both neurons and microglia 

(arrows). (D) Representative Western blot analysis of total protein lysate from brains of WT mice. 

(E) Average freezing behavior during the fear conditioning training (left), average freezing 

behavior over 5 min, 24 h after training, in the same context in which training was carried out on 

day 1 (middle), and average freezing behavior in the different context 48 h after training (right), 

The tone was played for the last 2 min. All values are expressed in means ± the standard errors 

of the mean (SEM), using two-way repeated-measures ANOVA for statistical analysis (*, P < 0.05; 

**, P < 0.01). (F) Escape latency to find the hidden platform during training trials of wild-type mice 

in the Morris water maze (n = 5/group) (left) and time spent in the target quadrant searching for 

the hidden platform within a 1-min test duration (n = 5/group) (right). 
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Figure 4.2 ASO injection reduces plaque  

(A) Brain sections from APP/PS1 mice were immunostained with anti-Aβ antibody 82E1, and the 

extent of Aβ deposition was quantified from the cortex (right). (B) Brain sections from the same 

cohort were stained with X-34 dye, and the fibrillar plaque load was quantified (right). *, P < 0.05; 

**, P < 0.01. (C) Soluble (RIPA fraction) Aβ40 and Aβ42 levels were measured from the cortex. 

(D) Insoluble (guanidine fraction) Aβ40 and Aβ42 levels were measured from the same cohort 

(n = 8 per group). *, P < 0.05; **, P < 0.01. (E) Western blot analysis of Aβ and ApoE from RIPA 

fractions of cortical lysates. (F) The densities of Aβ antibody-stained plaques and average plaque 

sizes were analyzed in the same cohort of mice. (G) Analysis of plaque distribution based on size 

and the total area covered by plaques in each group. *, P < 0.05; **, P < 0.01. 
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Figure 4.3 ASO injection reduces neuritic dystrophy and plaque-associated AAP 

(A) Representative images of brain sections from PBS- or IDOL ASO-treated APP/PS1 mice 

stained with LAMP1 (scale bars, 100 μm), and the volume of LAMP1 staining in cortex was 

quantified (n = 8 per group). (B) Representative images of brain sections from PBS- or IDOL ASO-

treated APP/PS1 mice costained with X-34 and APP, and the volume of APP staining associated 

with amyloid plaques was quantified (n = 8 per group). 
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Figure 4.4 ASO injection reduces GFAP-positive astrocytes  
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(A) Representative images of brain sections from PBS- or IDOL ASO-treated APP/PS1 mice 

costained with X-34 and GFAP, and the volume of GFAP staining was quantified (n = 8 per group). 

*, P < 0.05; **, P < 0.01. (B) Representative images of brain sections from PBS- or IDOL ASO-

treated APP/PS1 mice stained with Iba1 (scale bars, 100 μm), and the volume of Iba1 staining 

normalized to the plaque size was quantified (n = 8 per group). (C) Representative images of brain 

sections from PBS- or IDOL ASO-treated APP/PS1 mice stained with Iba1 (scale bars, 10 μm), 

and the diameters of the microglia cell bodies around the plaques were quantified (n > 50 

microglia from each mouse, and eight mice for each group were measured). *, P < 0.05; **, P < 

0.01. 
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Figure 4.5 ASO injection recovers learning and memory deficits 
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(A) Escape latency to find the hidden platform during training trials of APP/PS1 mice in the Morris 

water maze (n = 12/group). (B) Representative swimming path of APP/PS1 mice treated with PBS 

or IDOL ASO (left) and time or distance spent in the target quadrant searching for the hidden 

platform within 1 min test duration (n = 12/group) (right). *, P < 0.05 (one-way ANOVA with 

repeated measures). (C) Escape latency to find the visible platform and swimming speeds of 

APP/PS1 mice in each group. (D) Average freezing behavior during the fear conditioning training. 

(E) Average freezing behavior over 5 min, 24 h after training, in the same context in which training 

was carried out on day 1 (left), and average freezing behavior in the different context 48 h after 

training. A tone was played for the last 2 min (right). All values are expressed as means ± the 

SEM, using two-way repeated-measures ANOVA for statistical analysis. *, P < 0.05; **, P < 0.01. 
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Figure 4.6 scRNAseq reveals distinct hippocampal cell types 

(A) Uniform manifold approximation and projection (UMAP) dimensionality reduction plot showing 

hippocampal cell type cluster separation. Each colored dot is a cell and different cell types are 

labeled with different colors. (B) UMAP plot showing no clear cell type separation by treatment. 

Red cells originated from PBS-treated mice, and blue cells originated from IDOL ASO-treated 

mice. (C and D) Feature plot highlighting the expression of known cell markers: C1qc for Microglia 

(C) and Snap25 for neuron (D). (E) Heat map showing distinct cluster-specific gene expression 

patterns by plotting the top ten marker genes from each cluster (y axis) against the cell types 

(x axis). (F) Normalized expression values of top cell-type-specific marker genes are plotted as 

violin plots, with cell types as rows and genes as columns. Cells were from three PBS- and three 

ASO-treated mice. 
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Figure 4.7 ASO treatment shifts the microglia population 

(A) t-SNE plot showing microglia subtypes. Each colored dot is a cell, microglia subtypes are 

labeled with different colors (left), and the percentages of each subtypes in each treatment group 

are indicated (right). (B) t-SNE plot shows no clear separation of microglia subtypes by treatment 
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group. Microglia originating from PBS-treated mice are labeled in red, and microglia originating 

from IDOL ASO-treated mice are labeled in blue. (C to E) Feature plot highlighting key marker 

genes for microglia subtypes. P2ry12, a homeostatic microglia marker gene; Cst7, a disease 

associated microglia marker gene; Il1a, an inflammatory microglia marker gene. (F) Heat map 

showing the distinct transcriptional patterns of the four microglia subgroups. (G) Normalized 

expression values of top marker genes for microglia subtypes are plotted as violin plots, with 

subtypes as rows and genes as columns. 
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Figure 4.8 scRNAseq hippocampal neuronal subtypes 

(A) t-SNE plot showing neuronal subtypes. Each color indicates a different cell type cluster 

identified. (B) t-SNE plot showing no clear separation of neuronal subtypes by treatment group. 

Red cells originated from PBS-treated mice, and blue cells originated from IDOL ASO-treated 

mice. (C) A heat map of Drop-seq defined marker genes of major neuronal subtypes shows 

distinct gene expression patterns between each neuronal subtype. (D) Normalized expression 

values of top marker genes for neuronal subtypes are plotted as violin plots, with subtypes as 

rows and genes as columns. 
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4.6 Tables 

Table 4.1. DEGs and Pathways 

 

  



 140 

Chapter 5. Defined subsets of sympathetic neurons innervate the heart and differentially 

respond to cardiac pathology 

5.1 Introduction 

Cardiac autonomic regulation is exerted by reflex loops consisting of afferent vagal and spinal 

afferent inputs to the nervous system, and descending control by efferent parasympathetic and 

sympathetic control169,170. Postganglionic sympathetic neurons (PGNs) responsible for direct 

cardiac sympathetic neurotransmission are located within the cervico-thoracic sympathetic chain, 

particularly, the stellate ganglia and middle cervical ganglia171,172. These stellate ganglion neurons 

(SGNs) release neurotransmitters that regulate all aspects of cardiac function including inotropy 

and chronotropy. However, following cardiac injury such as myocardial infarction (MI) and heart 

failure (HF), SGNs undergo profound structural, neurochemical, and electrophysiologic 

remodeling, contributing directly to progressive cardiac dysfunction and lethal ventricular 

arrhythmias such as ventricular tachycardia/fibrillation173–177. As a result, anti-adrenergic therapies 

such as beta-adrenergic receptor and neurohormonal blockers remain cornerstone treatments of 

MI and VT/VF178–180. Further, interventional and surgical therapies targeting the stellate ganglion 

(e.g., percutaneous anesthetic blockade and surgical sympathetic denervation, respectively) are 

increasingly applied clinically181–183. 

Despite strong clinical data supporting therapies targeting SGNs to treat cardiac disease, the 

efficacy of available therapies remains limited, particularly by systemic side effects such as 

hypotension or renal dysfunction184–188. Little is known about the subtypes and properties of 

neurons that innervate the heart, compared to neurons innervating other tissue beds e.g., skin 

and paw, that might facilitate the development of more specific targets for therapeutic purposes. 

Prior work investigating SGN subpopulations focusing on nipple and piloerector neurons utilized 

single cell RNA sequencing (scRNAseq) to identify eight subpopulations of neurons within the 

stellate ganglion189.Specifically, five noradrenergic, two cholinergic sympathetic neurons, and one 
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glutaminergic neuronal subtypes were identified, each with unique combinations of transcription 

factors, neuropeptides, and ion channels. Whether a specific subtype of neurons innervates the 

heart, or whether various subtypes contribute to cardiac adrenergic control remains unknown. 

In this study, we utilized retrograde viral tracing using adeno-associated viruses (AAVs) injected 

into the subepicardium in mice, to identify and label cardiac-specific SGNs with the reporter green 

fluorescent protein (GFP), and in contrast, the front paws were injected with AAVs encoding the 

Td-tomato protein. Ganglia were collected after 4 weeks and subjected to dissociation and 

scRNAseq, with cells containing GFP or tdTomato identifying cardiac and paw-innervating 

neurons respectively. We found that the heart and paws are innervated by three and four subtypes 

of noradrenergic neurons respectively, which largely segregate by neuropeptide Y (NPY 

expression). These subtypes were also identified in porcine and human stellate ganglia. We find 

that NPY+ vs. NPY- neurons exhibit unique transcriptional profiles, along with unique 

morphological, neurochemical, and electrophysiologic properties. Functional studies in NPY 

ablated mice indicate that NPY is required for maximal cardiac sympatho-excitation. Further, heart 

failure reduces the transcriptomic diversity of cardiac sympathetic neuronal subtypes, yielding a 

dominant neuronal subtype with an altered transcriptome. Collectively, these findings shed light 

on cell-specific cardiac adrenergic regulation, with implications for novel therapeutic targeting of 

adrenergic signaling following cardiac injury. 

5.2 Materials and Methods 

Mouse strains 

Animal experiments complied with institutional guidelines and ethical regulations. The study 

protocol was approved by the UCLA institutional Animal Care and Use Committee. The ethical 

approvals for the use of AAVs were taken from Institutional Biosafety Committee (IBC), UCLA. 

Adult male mice, aged between 8 to 10 weeks, were housed according to the standard laboratory 
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conditions (12 h light/dark) with ad libitum access to food and water. Mice strains C57BL/6J 

(000664), NPY-hrGFP (006417), and Npy-IRES-Cre (027851) mice were purchased from the 

Jackson Laboratory. Dilated cardiomyopathy mice (DCM-Tg9) were a gift from Dr. Patrick Jay. 

Retrograde neuronal tracing experiments 

We used C57BL/6J, NPY-hrGFP, and DCM-Tg9 mice strains for tracing the target organs-

innervated neurons in the stellate ganglion. We injected 10 μl of each retrograde tracers Adeno-

associated virus (AAV) or cholera toxin-B (CTB) either from heart or paw. AAVs serotype 

AAV2/retro-CAG-flex-tdTomato (1e+12 gc/ml) and AAV2/retro-CAG-flex-GFP (1e+12 gc/ml) were 

procured from Viral vector core, Boston children’s Hospital. The cholera toxin subunit-B 

conjugated; Alexa Fluor-488 (C-34775), Alexa Fluor-555; (C-34776), Alexa Fluor-647 (C-34778) 

were procured from Molecular Probes. 

Single cell clustering of neuronal subpopulation 

To identify the neuronal subtypes from neuronal populations, we processed scRNAseq data as 

mentioned in the supplementary method section 3. First, we integrated the data as described, 

reduced the dimensionality with PCA on 30 PCs, found the nearest neighbor embedding, and 

determined the 8 subclusters with the Louvain community detection algorithm. We identified 

marker genes for each cluster by the Wilcoxon test (FDR < 0.05). These neuronal subclusters 

were annotated according to previously defined neuronal cell subtypes189. We identified 5 neuro 

adrenergic clusters (NA1a, NA1b, NA1c, NA2, NA3), 2 acetylcholine (Ach1, Ach2), and 1 

glutamatergic subtype (Supplementary Figure 5.2). We identified cardiac and paw innervating 

neurons based on the expression of GFP and tdTomato transcripts respectively. We determined 

Npy (low, medium, and high) subpopulations of neurons through the bottom 30%, middle 40%, 

and top 30% quantile. We identified Npy associated genes in the cardiac (NA1a, NA1b, NA3) and 

paw (NA1a, NA1b, NA1c, NA3) innervating subclusters. For each gene, to eliminate the effects 
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of high zero content, we identified cells that were expressing at least one transcript of both Npy 

and the other gene of interest. We then computed the Pearson correlation coefficient, and 

corrected p-values based on the Benjamini-Hochberg procedure. Significant associations 

(FDR<0.05) were kept for further analysis. To visualize the association of receptors, transcription 

factors, neuropeptides, and ion channels, we split the neurons into 3 categories based on their 

Npy expression. The bottom 30% based on Npy were categorized as low/negative, the middle 

40% were categorized as medium, and the top 30% were categorized as high Npy expressions. 

We then visualized the relative expression of each gene with heatmaps using the seaborn python 

package. 

 

Statistical Analysis. Microsoft Excel and GraphPad Prism 9.0.1 were used for data handling, 

analysis, and graphs. Sample sizes and statistical tests performed are indicated in the legend for 

each figure. Normality of data was assessed using the Shapiro-Wilk or Kolmogorov–Smirnov test. 

Normally distributed data was compared through a Welch’s t-test or ANOVA, while data 

not normally distributed were analyzed through a Mann-Whitney test or Kruskal-Wallis test. 

Legend for statistical significance: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤0.0001. All data are 

shown as individual data points. 

 

Software packages. scRNAseq processing: R, cell ranger, Seurat v3. Visualization: python, 

scaNpy, pandas, numpy, matplotlib, seaborn. Npy association: python scipy. 

 

5.3 Results 

Three unique stellate ganglion neuronal subtypes innervate the heart 

We performed scRNAseq on stellate ganglion neurons from eight retrogradely labeled C57BL/6 

mice. We clustered scRNAseq data, identified cell types based on their canonical markers, and 
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separated out the neuronal population based on Dbh, Th, and Snap25 (Supplementary Figure 

5.1, Supplementary Figure 5.2, Supplementary Figure 5.3, Supplementary Table 1, 

Supplementary Table 2). To identify cardiac innervating neuronal subpopulation in stellate 

ganglia, we labeled mice retrogradely from the heart using AAV-GFP (Figure 5.1a, left panel) and 

from front paws using AAV-tdTomato as control (Supplementary Figure 5.4a, left panel). We 

observed regional specificity in stellate ganglia for cardiac vs. paw innervating neurons. Most 

cardiac-labeled neurons were localized in the cranio-medial region (cardiac pole) of the stellate 

ganglion (Figure 5.1a, right panel) while paw labeled neurons were distributed across the stellate 

ganglion (Supplementary Figure 5.4a, right panel). We identified five dopaminergic, two 

cholinergic, and one glutamatergic neuronal subtype in the stellate ganglia (Figure 5.1b, c, 

Supplementary Figure 5.2). 

In our scRNAseq studies, we identified labeled cells in the stellate ganglion either as cardiac- or 

paw- innervating neuronal subtypes based on the presence of GFP or tdTomato transcript, 

respectively. We found a total of 3 GFP-expressing (Cardiac) neuronal subpopulations NA1a, 

NA1b, and NA3 (Figure 5.1d) and 4 tdTomato-expressing (Paw) neuronal subtypes NA1a, NA1b, 

NA1c, and NA3 (Supplementary Figure 5.4b). 

Interestingly, we found that similar neuronal subpopulations (NA1a, NA1b, and NA3) innervate 

both heart and front paws, however the front paws are innervated by an additional neuronal 

subpopulation NA1c (Supplementary Figure 5.4b). This suggests that similar subsets of neurons 

in the stellate ganglion are responsible for neural control of various tissues. We observed 

significant differences in the transcriptome of each neuronal subtype (Figure 5.1e, Supplementary 

Figure 5.4c), with distinct relative expression levels of secreted neuropeptides, transcription 

factors, and receptors (Figure 5.1f-h and Supplementary Figure 5.4e-g). 
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Next, we validated the retrograde labeling of SGNs from heart by staining AAV-GFP injected 

heart-sections with antibodies against the pan-neuronal marker PGP9.5. In multiple cardiac cross-

sections, we found nerve fibers co-labeled with GFP and PGP9.5 antibodies (Supplementary 

Figure 5.5). Since this expression largely requires retrograde transport of AAV to the soma from 

nerve endings in the heart, GFP expression, and antegrade transport of GFP to cardiac nerve 

fibers, it confirms that we successfully labeled postganglionic neurons in the stellate ganglion by 

cardiac injections. 

To validate the neuronal subtypes identified by scRNAseq and their localization in heart and paw 

neurons (Figure 5.1i and Supplementary Figure 5.4h), we performed retrograde labeling from the 

heart and paw using CTB conjugates to either 555 or 647 in wildtype or NPY-hrGFP transgenic 

mice. We then performed immunohistochemistry (IHC) using antibodies against markers specific 

each transcriptomic subtype of neurons. We performed combinatorial IHC as follows; Npyhigh, 

Cntn5high for NA1a, Npylow, Kcnt1high for NA1b, and Npylow, Vimhigh for NA3, and Npylow, Sctrhigh for 

NA1c (Figure 5.1i and Supplementary Figure 5.2g). As illustrated in the figure, we identified all 

expected markers in cardiac and paw neuronal subtypes. We also carried out combinatorial 

immunohistochemistry for the non-cardiac innervating neuronal subtypes using specific markers 

for each subtype. We found that less than ≤6% of cells co-labeled with the cardiac retrograde 

label (CTB-647) when stained for these combinations of markers (Supplementary Figure 5.6), 

confirming the accuracy of our AAV-labeling and scRNAseq approach. 

Finally, we validated the presence of these cardiac-innervating neuronal subpopulations in 

porcine (Figure 5.2a) and human (Figure 5.2b) stellate ganglia to support the translational 

potential of the neuronal subtypes we identified. We used the following combination of subtype-

specific markers; NPYhigh, CNTN5high (NA1a), NPYlow, CASZ1high (NA1b), and NPYlow, VIMhigh 

(NA3) in pig stellate ganglia (Figure 5.2a) and NPYhigh, CNTN5high (NA1a); NPYlow, CASZ1high 

(NA1b); and NPYlow, FABP7high (NA3) in human stellate ganglia (Figure 5.2b). 
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Cardiac subtypes differentially express NPY 

NPY is a co-transmitter released by the sympathetic nerve terminals along with norepinephrine 

to modulate cardiac function dynamically190. Elevated circulating NPY levels are associated with 

adverse outcomes chronic heart-failure patients191. Our scRNAseq findings demonstrate high Npy 

expression in NA1a neurons, but lower expression in NA1b and NA3, independent of cardiac (or 

paw) innervation (Figure 5.3a and Supplementary Figure 5.7a). Furthermore, we identified 114 

genes positively and 527 genes negatively associated with Npy (FDR<0.05; methods) for cardiac 

subtypes. We show the top 10 positively and negatively correlated genes with Npy in cardiac 

subtypes (Figure 5.3b) and in paw subtypes (Supplementary Figure 5.7b).  

We confirmed previously known associations between Npy and Gal (Pearson correlation: 0.64; 

Figure 5.3c) and uncovered new correlation such as that between Col5a3 and Npy (Pearson 

correlation: -0.52; Figure 5.3d) in cardiac neuronal subtypes. We stratified cardiac and paw 

subtypes by Npy expression level (low, medium, and high) and found unique expression patterns 

of neuropeptides, transcription factors, receptors, and ion channels by NPY expression level 

(Figure 5.3e-g, Figure 5.4a-d, and Supplementary Figure 5.7c-f). We corroborated this by 

performing gene set enrichment analysis on the combined, positive, and negative set of Npy 

associated genes (methods). This analysis revealed that biochemical pathways associated with 

high Npy expression included dopamine neurotransmitter release cycle (catecholamine 

biosynthesis and release), inotropic activity of kainate receptors (excitatory glutaminergic 

receptors), and respiratory electron transport (mitochondrial metabolism and function) suggesting 

that NPY expression is associated with neuronal metabolism and excitability (Figure 5.3h-j and 

Supplementary Figure 5.7g-i). These findings suggest that the high Npy expressing neuronal 

subtype NA1a and lower expressing subtypes, NA1b and NA3, are indeed distinct cardiac-

innervating neuronal subtypes in stellate ganglia. 
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High Npy-expressing cardiac neurons exhibit greater excitability 

To determine whether NPY-rich cardiac neuronal subtypes exhibit unique electrophysiologic 

properties, we examined the transcriptome of these subtypes for ion channel expression. We 

identified differential expression of potassium, sodium, calcium, and proton channels in cardiac 

NA1a compared to the other subtypes (Figure 5.4a-d). We hypothesized that the unique ion 

channel expression patterns in NA1a conferred differential cellular electrophysiologic properties. 

To test this, we studied the electrophysiological properties of Npy expressing neurons in the 

cardiac pole of the stellate ganglion. We used a reporter mouse line NPY-hrGFP that expresses 

humanized Renilla Green Fluorescent protein under control of the Npy promoter. Cells with 

(GFP+) and without GFP expression (GFP-), were selectively targeted in ganglion whole-mounts 

using epifluorescence (Figure 5.4e, f). Resting membrane potential values were -51.91 ± 3.14 mV 

for GFP+ and -52.45 ± 2.45 mV for GFP- cells (p = 0.899). Membrane input resistance values 

were 106.9 ±12.63 M in GFP+ and 103.5 ± 10.40 M in GFP- neurons (p = 0.8391) (Figure 5.4g). 

Current-voltage relationship (Figure 5.4g) were also similar for both cell types over a range of 

tested currents (-500pA to +500pA, Δ100pA) and showed a mostly linear I-V relationship with little 

rectification (F(9, 128) = 0.562, P = 0.825). In response to depolarizing current steps, both cell types 

elicited an increasing number of action potentials in response to increasing magnitude of 

depolarization, while the excitability curves were similar (p = 0.5392) up to 300 pA current, NPY+ 

cells showed significantly a greater number of action potentials (p < 0.0001) than NPY- cells at 

500 pA current (NPY+ = 4.250 ±0.901, n = 8; NPY- = 1.818 ± 0.1820, n = 11) (Figure 5.4i). These 

findings further support the notion that high NPY expressing cardiac sympathetic neurons (NA1a) 

possess distinct electrophysiological properties from NA1b and NA neurons which express low 

levels or are negative for NPY. 

NPY expressing subpopulation in stellate ganglia are necessary to achieve maximal 

cardiac sympathoexcitation 
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Next, we sought to examine how high Npy-expressing subtype, NA1a, might impact cardiac 

function in physiologic studies in mice lacking NPY. We injected AAVs carrying DIO-EGFP or 

DIO-EGFP+taCasp 3 in right stellate ganglia of Npy-IRES-Cre mice. We electrically stimulated 

RSG from NPYCre mice injected either DIO-EGFP (n=3) or DIO-EGFP+taCasp 3 (n=5) at 1, 5, 

10, 15, and 20 Hz and compared change in heart rate from baseline in response to escalating 

RSG stimulation intensities (Figure 5.5a,b). Stimulation frequency and heart rate change showed 

a showed a linear relationship for both control and NPY ablated mice. However, overall response 

in heart-rate change was significantly lower for NPY ablated mice compared to controls (p = 

0.0240) (Figure 5.5c). We observed maximal significant heart rate change difference for NPY 

ablated mice (91.061 +2.628 bpm; n = 5) vs. controls (27.017 ±11.888 bpm; n = 3) at 10 Hz (p = 

0.0240) stimulation frequency. However, the baseline heart rate remains the same for both the 

groups at 1, 5, 10, 15, and 20 Hz stimulation frequency (Figure 5.5d). Further to confirm the 

transfection efficiency of AAVs virus in stellate ganglia, we visualized the whole stellate ganglia 

from controls and taCasp 3 injected mice (Figure 5.5e,f). We observed EGFP labeling in the 

stellate ganglia from both the group but EGFP+ cells were very few in DIO-EGFP+taCasp 3 

compared to those injected with only DIO-EGFP virus (Figure 5.5e,f). Moreover, in a magnified 

view, blebs or tiny holes appeared in taCasp 3 injected stellate ganglia indicating neuronal 

degradation initiated by caspase3 (Figure 5.5f). These findings suggest that NA1a neuron which 

express high NPY, potentially required to achieve maximal cardiac sympathoexcitation mediated 

by right stellate ganglia. 

High Npy expressing neurons uniformly innervate disparate regions of the heart 

Next, we sought to determine whether cardiac neuronal subtypes differentially innervate disparate 

regions of the heart, such as the apex vs. base of the left ventricle. We performed retrograde 

labeling from the apex (using CTB-555) and base (using CTB-647) in NPY-hrGFP mice (Figure 

5.6a). First, we found that neurons traced from the apex or base colocalized to the craniomedial 
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pole of the stellate ganglion irrespective of their site of injection in heart (Figure 5.6b). Next, we 

examined the subtype distribution (i.e. NPY+ vs. NPY-) of neurons innervating the apex (CTB-

555+), base (CTB-647+), or both (CTB-555 & CTB-647 double positive). We observed that more 

NPY+ neurons (vs. NPY-) were labeled from apex+base (Figure 5.6f, p < 0.001), apex alone 

(Figure 5.6g, p < 0.001) or base alone (Figure 5.6h, p = 0.0026). Across animals, ~70% of cardiac 

innervating neurons express high Npy (Figure 5.6i), compared to 30% innervating the paw. These 

results suggest that cardiac neuronal subtypes NA1a (high NPY expressing) and NA1b/NA3 (low 

to negative NPY expressing) uniformly innervate the cardiac apex and base, however, most 

neurons innervating the heart are NPY+. 

Interestingly, we assessed whether NPY expression was associated with morphologic differences 

in cardiac-specific neurons identified by retrograde tracing. We found that the soma of NPY+ 

neurons were physically larger than those of NPY- neurons (Figure 5.6j). Mean soma size for 

NPY+ vs. NPY- neurons were 546±252µm2 vs.342±170 µm2 (mean±SD, p<0.0001). 

Heart failure differentially impacts cardiac sympathetic neurons to produce a dominant 

subtype 

To understand how cardiac SGN subtypes are altered by heart failure, we performed scRNAseq 

on stellate ganglia from an established transgenic mouse model of chronic nonischemic heart 

failure (DCM TG9)192–194 and control littermates (WT). In this model cardiac dysfunction begins at 

7 weeks of age, and over heart failure at 10 weeks, confirmed by transthoracic echocardiography 

(Supplementary Figure 5.8a-d). 

We performed scRNAseq of stellate ganglia from 10-week old DCM animals and WT littermates. 

We identified the same neuronal subtypes from our prior analysis with a support vector machine 

(SVM) classifier. However, we observed that unlike WT animals where cardiac subtypes are 

equally distributed among NA1a, NA1b, and NA3 subtypes, the NA1b subtype was predominant 
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in DCM animals (Figure 5.7a,b). We found that NA1b neurons represented a greater proportion 

of DCM cardiac neurons, while NA1a and NA3 subpopulations were reduced (Figure 5.7b). Since 

NPY has an important role in heart failure, we characterized the distribution of NPY expression in 

tertiles (low, medium, and high) across the cardiac subtypes in DCM mice (Figure 5.7c) compared 

to WT animals. While most NA1a and NA1b neurons remained high and low NPY expressing, 

respectively, most NA3 neurons were high NPY expressing, suggesting remodeling of this 

subtype of neurons towards greater NPY expression. 

We analyzed a subset of differentially expressed genes (DEGs) in cardiac SGNs from DCM and 

WT animals. We found significant DEGs only in the NA1b subtype with the top 10 upregulated 

and downregulated genes in NA1b subtype in DCM animals shown in Figure 5. 7d,e. Our data 

suggest that lack of DEGs in other cardiac subtypes (NA1a, NA3) is likely due to relatively low 

cell numbers of these subtypes in WT and DCM animals (Supplementary Figure SF 5.9c). 

Interestingly, we observed a specific and significant increase in the expression of M-current 

conducting ion channel Kcnq2 in DCM mice (Figure 5.7f). Along with Kcnq2, a slowly activating 

and deactivating potassium channel that plays a critical role in the regulation of neuronal 

excitability and synaptic transmission across the chemical synapses, we found observed trends 

indicating increased expression of voltage gated sodium channels (Nav1.1, Nav1.2), potassium 

channel (Kv11.3), calcium channel (Cav2.2), and vesicle transport proteins (Ap2a2, Snap25) 

(Figure 5.7f). These alterations in ion channel expression in this subtype implicate the NA1b 

subtype in the alterations of sympathetic neuronal excitability demonstrated in the setting of heart 

failure195–200. 

We performed pathway enrichment analysis on the suggestive DEGs (p < 0.05) stellate ganglion 

neurons from DCM mice and found enriched pathways (FDR < 0.05) in only NA1a and NA1b 

subtypes. We identified relevant significantly enriched pathways from NA1b subtypes where three 

or more than three genes were affected. We selected over-representative pathways: oxidative 
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phosphorylation (FDR=6.49e-12), neurodegenerative disease (FDR=1.90e-11), and neurotrophin 

signaling (FDR=2.04e-2) pathways from NA1b subtype (Figure 5.7g). In these pathway 

enrichment studies, we found significant downregulation of mitochondrial genes in cardiac 

neuronal subtypes (NA1a, NA1b, NA3), suggesting an impairment in the metabolic function during 

the heart failure (Figure 5.7g). Based on the DEGs and pathways enrichment analysis, our studies 

suggest that perturbed excitability of NA1b sympathetic neurons may enhance release of 

neurotransmitters that amplify chronic sympathetic signaling in heart failure (Figure 5.7h). 

5.4 Discussion 

The major findings of the present study are; 1) three unique subtypes of stellate ganglion neurons 

innervate the heart, although similar subtypes of neurons may innervate other tissue beds; 2) 

these three subtypes are subdivided by high NPY expression, such that neuronal subtypes with 

high NPY expression (i.e. NA1a subtype) are morphologically, transcriptionally, and 

electrophysiologically distinct cells; 3) NPY release, presumably from NA1a neurons is required 

for maximal cardiac sympatho-excitation; and 4) Heart failure shifts cardiac neuronal subtypes 

such that one subtype (NA1b) becomes dominant, and exhibits robust changes in transcriptomic 

architecture relative to controls. These findings reveal the subtypes of postganglionic sympathetic 

neurons controlling the heart and the impact of chronic cardiac disease. These findings lay the 

groundwork for new therapeutic approaches targeting a specific neuronal subtype in heart failure.  

Stellate ganglion neurons innervate a variety of tissue beds and organs with principal 

neurotransmitters being cholinergic (Ach) or adrenergic (NE)189. However, whether SGN subtypes 

are restricted to particular tissue beds is not understood. In our study, we identified significant 

overlap between subtypes that innervate the heart (NA1a, NA1b, & NA3) and the paw (NA1a, 

NA1b, NA1c, and NA3), although paw neurons consisted of more subtypes than the heart. These 

findings suggest that multiple SGN subtypes contribute to peripheral nervous system control of 
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organs and tissues. These findings are consistent with those of Furlan et al189, who used 

scRNAseq to explore SGNs innervating nipple- and pilo-erector muscles and found that these 

neurons acquired cell type specification during organogenesis via the acquisition of unique 

combinations of growth factor receptors, and expression of ligands by nascent target tissues. 

 

In the present study, we identified specific subsets of cardiac-innervating neurons in stellate 

ganglia distinguished by NPY expression. NPY, a key co-transmitter released from sympathetic 

nerve endings are implicated in a diverse array of metabolic functions including temperature 

regulation, hunger and satiety, and cardiac adrenergic regulation191,201–204. NPY receptors are 

expressed by various tissues205–207, and in the heart, couple with downstream signaling 

mechanisms that amplify cardiomyocyte calcium transients and increase diastolic calcium release 

from the sarcoplasmic reticulum208–210. Furthermore, the importance of NPY as a cardiac 

neurotransmitter is underscored by the recent finding that cardiac sympathetic blockade using 

beta-adrenergic receptor antagonists without NPY antagonists did not significantly raise 

ventricular fibrillation threshold, however, concomitant antagonism of both NPY and beta-receptor 

signaling did202. Additionally, it is recognized that low frequency sympathetic ganglion stimulation 

induced cardiac norepinephrine release, however, high frequency stimulation of such ganglia 

induced norepinephrine and NPY release into the myocardium from distal axonal projections from 

sympathetic neurons211. These data, interpreted in light of the new findings in this study, suggest 

that cardiac sympathetic regulation exists as a two-tiered system, where low-level cardiac 

sympathoexcitation is mediated by NPY-low or NPY-negative neurons, while high-level 

sympathoexcitation requires the recruitment of NPY expressing neurons. 

 

A few findings in the present study support this notion. First, distinct cells are high or low in NPY, 

suggesting that when robust cardiac sympathetic activation is required for the fight or flight 

responses, subsets of neurons rich in NPY are recruited. Second, mice with NPY ablated neurons 
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in stellate ganglia are unable to reach maximal levels of cardiac chronotropic response during 

escalating sympathetic stimulation frequencies, unlike wildtype littermates. 

 

In the setting of cardiac injury such as myocardial infarction or chronic heart failure, elevated 

circulating or coronary sinus levels of NPY are associated with adverse outcomes in patients 

including death, ventricular arrhythmias, and need for orthotopic heart transplantation191. Findings 

from human stellate ganglia suggest that in chronic heart failure, expression of NPY remains at 

levels comparable to those in humans without heart failure, however, there is increased axonal 

transport for distal release to maintain chronic symapthoexcitation characteristic of heart failure191. 

Strikingly, another study showed that NPY is protective and preventive during heart failure 

development212.  

 

As such, we investigated how heart failure influences the distribution of cardiac SGN subtypes, 

and how NPY expression is altered in NPY high and NPY low/negative subsets. Two main findings 

from our study provide insights into potential mechanisms driving elevated NPY levels in the 

setting of chronic cardiac injury. First, we find that the 3 cardiac SGN subtypes (NA1a, NA1b, and 

NA3) remain preserved, however, heart failure shifts the relative distribution across the 3 subtypes 

towards one dominant one (NA1b). Importantly, NA1b, which had low levels of NPY expression 

in control littermates, exhibited increased NPY expression albeit to levels lower than that seen in 

NA1a. Taken together, our findings suggest that the transcriptomes of cardiac SGNs generally 

shift to amplify the subtypes and numbers of cells that express NPY. Given the profound actions 

of NPY as a potentiator of adrenergic signaling, our findings provide a basis for the prognostic 

role of elevated circulating or coronary sinus levels of NPY in identifying patients with severe 

sympathoexcitation for whom outcomes are dismal. Our findings are in line with those of Davis et 

al213, who performed scRNAseq in rats with spontaneous hypertension (SHR) and Wistar controls. 

In this study, cardiovascular SGNs were not specifically identified for characterization, however, 
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SGNs in the SHR model exhibited functional (increased excitability and tonic firing) and 

transcriptomic alterations (reduced transcript levels of genes encoding the M-current, subunits 

KCNQ2, KCNQ3, and KCNQ5). In our study, we found increased expression of KCNQ2 in heart 

failure animals, contrary to decreased expression observed in the SHR model. This suggests that 

although sympathetic activation is characteristics of both hypertension and chronic heart failure, 

the mechanisms, at the neuronal level, that drive sympathetic activation may differ fundamentally 

at the neuronal level. 

 

Our findings of a dominant neuronal subtype with greater NPY expression in the setting of heart 

failure may have significant clinical implications. In patients with chronic heart failure or 

arrhythmias, systemic pharmacologic blockade of neurohormonal activation and sympathetic 

signaling, is a mainstay of treatment179,195,197. While these drugs have proven lifesaving benefits, 

they result in substantial side effects such as hypotension, mental incapacitation, fatigue, 

weakness, and sexual side effects to name a few214. Of note, therapies that target the stellate 

ganglion, rather than systemic blockade, have shown significant benefit and are increasingly used 

clinically. Yet, these approaches also target the entire stellate ganglion with potential off target 

issues to the other tissue beds and organs innervated by neurons in the stellate ganglion. Hence, 

more specific targeting of neurons that innervate the heart, and drive the excessive chronic 

sympathetic signaling characteristic of chronic cardiac injury are needed. Our study presents one 

such candidate, the cardiac SGN subtype NA1b, which becomes the dominant cardiac neuronal 

subtype in heart failure. Analysis of the transcriptome of this cell identifies potential targets that 

can be modulated directly, or used to identify this cell type for other forms of intervention, for 

example, biologic agents. Coupling such cell specific targeting with localized delivery or such 

agents to the stellate ganglion via minimally invasive approach (for example as used with stellate 

ganglion block) provides novel avenues to target sympathetic excess in chronic cardiac injury. 
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The present study has limitations. First, while we carefully optimized tissue-specific labeling, we 

cannot completely exclude non-specific labeling of a few cells in stellate ganglia. However, our 

IHC studies validated the subpopulations we identified by scRNAseq. Second, changes in 

transcript levels in DCM vs control stellate ganglia identified by scRNAseq do not connote 

functional changes, hence our findings imply but do not prove functional differences in the setting 

of heart failure. However, the extensive prior published literature showing functional changes in 

SGNs following cardiac injury support functional consequences of the differences in gene 

expression we identified in this study. Second, although we find that the NA1b subtype becomes 

dominant in the setting of heart failure, we postulate but do not have direct evidence that they are 

responsible for chronic hyperactive cardiac sympathetic tone. 

 

5.5 Conclusions 

In summary, we have identified the distinct subtypes of SGNs that innervate the heart and have 

shown that the subtypes fall into two groups based on expression of NPY. We present evidence 

that the absence of NPY expressing subpopulations in the stellate ganglia results in the inability 

to achieve maximal sympathoexcitation, and finally, that cardiac neuronal subtypes in the SGN 

are differentially impacted by heart failure, yielding a dominant cardiac SGN subtype that may 

represent a novel target for adrenergic blockade in heart failure. These findings expand our 

understanding of cardiac sympathetic control mechanisms and suggests that cell-specific 

targeting of sympathetic neurons may offer new therapies for heart failure.  
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5.6 Figures 
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Figure 5.1 Distribution of cardiac specific neuronal sub-population in the mouse stellate 

ganglia. 

a, Experimental overview, diagrammatic representation of tracing from cardiac (AAV-GFP) 

neurons to the stellate ganglion, followed by single cell RNA sequencing (scRNAseq) analysis 

(left). The CTB labeled stellate ganglion shows the regional specificity of cardiac neurons (right) 

in the stellate ganglion. b, tSNE plot visualize eight Louvain identified neuronal subpopulations 

with prior annotations. c, Violin plot of key marker genes that were used for the validation of the 

sympathetic cardiac neuronal subtypes. d Distribution of cardiac neuronal subpopulations in 

stellate ganglia. n = 8 mice. e, Dot-plot shows the transcriptomic profile in each cardiac subtype.  

Dot-plot shows relative expression of neuropeptides (f); transcription factors (g); and receptors 

(h) associated with subtypes. I, Immunohistochemistry validation of cardiac innervating neuronal 

subtypes (NA1a, NA1b, NA3). Scale bar: 10 µm. 
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Figure 5.2 Cardiac neuronal subtypes identified in stellate ganglia 

from porcine (a) and humans (b). Cardiac-specific neuronal subtypes were identified by 

immunostaining with antibodies against specific key marker genes. n =3. Scale bars: 50 μm. 
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Figure 5.3 Npy Association in cardiac neuronal subtypes 
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Npy gene distribution and the associated genes in cardiac neuronal subtypes. a, Distribution of 

subtypes across quantiles of Npy expression. B, Top 10 positively (red) and negatively (blue) 

associated genes with Npy. Intensity of the color indicates the strength of the Pearson correlation 

coefficient. c,d Scatter plots showing the positive correlation of Gal I and, negative correlation of 

Col5a3 (d) with Npy expression on the log scale. The dots in the scatter plots are colored to 

represent each cardiac neuronal subtypes. Cells containing zeros for either gene were removed. 

e,f,g, Dot-plots show relative expression of neuropeptide (e), receptors (f), and transcription 

factors (g) in cells with low, medium, and high Npy expression. h, Top 10 combined; i, Positively 

and; j, Negatively enriched pathways associated with Npy. n = 8 mice. 
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Figure 5.4 Transcriptomic and electrophysiological properties of Npyhigh vs. Npylow/neg 

neurons. 

a,b,c,d Distribution of different ion channels associated with Npyhigh and Npylow/neg expressing 

cells: Potassium channels (a); Sodium channels (b); Calcium channels (c); and several other 

chloride, acid sensing ion channels (d) in high, medium, and low Npy expressing Cells. e, 

Confocal image of a fixed stellate ganglion whole-mount. PGP9.5 (red), NPY-GFP+ (green), and 

Neurobiotin (yellow). Magnified images from boxed region shown in right hand panels. f, NPY+ 

cells identified by epifluorescence during targeting with intracellular microelectrodes. Left panels 
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DIC image (i,iv), right panel GFP (green) (ii,v). iii,vi; Membrane potential tracings from a GFP+ 

(iii) and a GFP- (vi) cells in response to 500ms hyperpolarizing and depolarizing pulses. Resting 

membrane potential for both cells was more or less similar to ~ -52.45mV. Dash is 0mV. g,h,i 

Summary electrophysiology data for the NPY+ (n = 11 mice) and NPY- cells (n = 11 mice). GFP+ 

cells had similar input resistance (g), current-voltage relationship (h), and increased excitability 

(i). Data are shown as means ± SEM; *p<0.01, **p<0.001 compared with NPY- cells. Panel (g) 

was analyzed using an unpaired t test. The two-way ANOVA followed by Sidak’s multiple 

comparison test was used for statistical analyses of panel h and i.  
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Figure 5.5 Cardiac sympathetic activation by stellate ganglion neurons requires Npy 

expressing subpopulations. 

a, A schematic view of the chemogenetic based approach used for ablating Npy expressing 

neurons. b, The representative electrocardiogram snaps during right stellate ganglion stimulation 

(RSGS) from control and Npy ablated mice. c, Heart rate change at 1, 5, 10, 15, and 20 Hz 

stimulation frequencies in control and Npy ablated mice. d, Baseline heart rate for control and 

Npy ablated mice at 1, 5, 10, 15, and 20 Hz stimulation frequencies. e, Stellate ganglia isolated 

from EGFP and EGFP+taCasp3 virus injected mice. f, High magnification images obtained from 

control and taCasp3 injected stellate ganglia. Data are shown as means ± SEM. n = 3 for control 

mice and n = 5 for caspase-3 injected mice. *p<0.05; Scale bar: 200 and 50 μm. The two-way 
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repeated measures ANOVA followed by Sidak’s multiple comparison test was used for statistical 

analyses. 
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Figure 5.6 Distribution of NPY innervating neurons in disparate regions of the heart. 

Cholera toxin subunit B (CTB) conjugated Alexa Fluor 555 and 647 (CTB-555 or -647) were 

injected into the apex and base of the heart, respectively. a, A schematic depiction of the 

approach used to retrogradely label the stellate ganglion neurons (SGNs). b, An image of the 

right stellate ganglia after CTB-555 and CTB-647 retrograde labeling from the heart. Scale bars: 

200 µm. c,d,e, High-resolution images of several types of co-labeled cells appeared in the stellate 

ganglia. Scale bars: 10 µm. f, Cell count for NPY+ and NPY- neurons that innervate apex and 

base regions of the heart simultaneously. NPY+ and NPY- neurons that innervate either only the 

apex (g) or base (h) regions of the heart. i, Stellate ganglia from NPY-GFP animals labeled 

retrograde with CTB-555 from heart showing that majority of cardiac neurons are NPY expressing 

neurons. High-GFP expression is seen in the cardiac pole (box). j, Soma size measurements for 

cardiac innervating NPY+ and NPY- neurons. n = 7 mice/group. Data are shown as means±SEM 

and individual data points in f, g, and h represent each stellate ganglion. Mann-Whitney non-

parametric test was used for statistical analyses for f, g, and h. A box and 
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whisker plot representing data points as individual cells was used for visualization of the trend in 

the soma size for cardiac NPY+ and NPY- neurons and Welch's t-test was used for finding the 

statistical significance in panel j. ** = p < 0.01, **** = p < 0.001. 
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Figure 5.7 Cardiac neuronal subtypes and their transcriptomic profile in the stellate ganglia 

from dilated cardiomyopathy (DCM) mouse 

 a, UMAP plot shows the cardiac subpopulations in DCM and WT mice. In DCM mice, NA1b 

becomes the predominant neuronal subtypes. b, Proportion of neuronal subtypes cell count in 

DCM and WT littermates. c, Distribution of cardiac subtypes across the quantiles of NPY 

expression in DCM mice. d,e Violin plots show top ten significantly upregulated genes (d) and 

downregulated genes (e) in NA1b subtypes in heart failure. f, Violin plot indicating differential 

expression of ion channels and vesicular transport genes in NA1b subtype in heart failure. g, 

Relevant significantly enriched pathways in NA1b subtype. h, A schematic diagram of the 

potential mechanism underlying the increased neuronal activity in NA1b subtype, elucidated 
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based on the DEGs and pathway analysis in heart failure mice. Data are shown as means ±SD. 

* p < 0.05 compared to control. For each group (WT and DCM), n = 4 mice were used. 
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Figure 5.8 A schematic diagram of the approach taken in the current study 

scRNAseq analysis was carried out for stellate ganglia tissue from normal and DCM mice. We 

identified and characterized the cardiac innervating neuronal subtypes either high or low Npy 

expressing cells. We identified intracardiac distribution of Npy expressing cells and characterized 

their structural and electrophysiological properties and determined the physiological function of 

Npy in relation to cardiac contractility. We also determined that heart failure causes remodeling 

in the cardiac-innervating neuronal subtypes. 
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Figure SF 5.1 scRNAseq clustering of all cell types in the stellate ganglion, showing the 

heterogeneous populations of cells. 

a, UMAP clearly shows separation between major cell types. b, Violin plot; c, Dot plot shows that 

different cell types are transcriptionally separable by curated and data driven cell type marker 

genes. n = 8 mice. 
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Figure SF 5.2 Neuronal subtypes in the stellate ganglion. 

a, tSNE visualizes eight louvain identified neuronal subpopulations with prior annotation (n = 8 

mice). b,c Feature plots containing Dbh and Th (sympathetic neuron markers) for the neuronal 

population on the log scale. d, Dot-plot shows different transcriptomic profiles of each subtype.  

e, Violin plot for the expression levels of previously known, and novel marker genes. Genes that 

were used to validate the clusters by immunohistochemistry were included in the plot. f, Pearson 

correlation between neuronal subtypes based on mean gene expression in each cluster. g, 

Immunohistochemistry validation of scRNAseq identified neuronal subtypes in the stellate 

ganglion. n = 6 mice. Scale bar: 20 µm. 
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Figure SF 5.3 scRNAseq quality control. 

Samples are indicated with their batch, sample number, and disease status. Violin plots showing 

the distribution of the number of genes, UMIs, and mitochondrial percentage per cell in the first 

experiment with 8 WT mice (a) and in the second experiment with WT and DCM mice (b). The 

number of cells in each cell type for each sample in the first experiment (c) and second experiment 

(d). 
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Figure SF 5.4 Paw innervating neuronal subpopulation in the mouse stellate ganglion. 

a, Experimental overview, diagrammatic representation of tracing the paw-specific neurons to the 

stellate ganglion, followed by scRNAseq analysis (left). Unlike cardiac-specific neurons, CTB 

labeled paw neurons did not show regional specificity in the stellate ganglia (right). b, Distribution 

of paw innervating neuronal subtypes identified and characterized using scRNAseq data analysis. 

(n = 8 mice). c, Dot-plot shows the transcriptomic profile for each paw innervating neuronal 

subtypes. d, Violin plot of the key marker gene that were used for the validation of the paw 

neuronal subtypes. e,f,g Dot-plot show relative expression of neuropeptides (e), receptors (f), 

and transcription factors (g) associated with paw neuronal subtypes. h, Immunohistochemistry 

validation of paw innervating neuronal subtypes (NA1a, NA1b, NA1c, NA3). n = 6. Scale bar: 10 

µm. 
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Figure SF 5.5 Validation of retrograde tracing of AAVs from myocardium (Heart injections). 

a, Cross-section of the heart is labeled with AAV-GFP (green) and cardiac troponin I (blue). Scale 

bar: 1000 µm. b, PGP9.5 staining in the nerve fibers of the heart section. c, AAV-GFP labeling in 

the nerve fibers of the heart section. d, Merge image shows the colabeling of PGP9.5 and AAV-

GFP in nerve fibers of the heart-section that travels to the stellate ganglia. n = 3 mice. Scale bar: 

50 µm 
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Figure SF 5.6 Confirming the accuracy of cardiac and paw innervating neuronal subtypes 

in stellate ganglia identified using scRNAseq analysis. 

Stellate ganglia were labeled retrogradely using either CTB-647 or CTB-555 from paw, and 

stained with specific key markers for paw non-innervating neuronal subtypes. a, 

Immunohistochemistry validation of cardiac and paw non-innervating neuronal subtypes. b, 

Percent cell count for cardiac and paw non-innervating neuronal subtypes. c, Total cell count for 

cardiac and paw non-innervating subtypes. Note that only CTB labeled cells from paw were 

significantly higher compared to CTB colabeled cells with cardiac and paw non-innervating 

neuronal subtypes. n = 3 mice. Scale bar: 10 and 20 µm. 
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Figure SF 5.7 Npy distribution and associated genes in paw innervating neuronal 

subtypes. 

a, Distribution of subtypes across quantiles of Npy expression. b, Top 10 positively (red) and 

negatively (blue) associated genes with Npy. Intensity of the color indicates the strength of the 

Pearson correlation coefficient. c, Relative expression of neuropeptide; d, transcription factors; e, 

receptors and; f, ion channels in cells with low, medium, and high Npy expression. Top 10 

enriched pathways for the: g, combined; h, Positive; and i, negative associated genes with Npy.
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Figure SF 5.8 Echocardiography and fibrosis analysis in dilated cardiomyopathy mice 

(DCM). 

a, DCM hearts grow bigger in size due to increased left ventricular (LV) chamber size. b, Ejection 

fraction, fractional shortening, LV anterior wall, LV posterior wall, and LV internal diameter in 

wildtype (control) and DCM mice. c, Masson’s trichrome staining in heart sections from control 

and DCM mice. d, Fibrosis analysis in control and DCM mice. Data are shown as means ± SEM. 

For each group n = 6 mice were used. * p < 0.05, **p < 0.01. Mann-Whitney test was used for the 

statistical analyses. 
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Figure SF 5.9 Neuronal subtype prediction accuracy in scRNAseq 

a, Confusion matrix showing the percentage of SVM predicted subtypes that are correctly 

classified (diagonal) and incorrectly classified (off-diagonal). The percentage is separate for each 

predicted subtype. b, Pearson correlation between the average gene expression in the subtypes 

of the DCM vs WT data set, and the subtypes in the WT dataset used to define the neuronal 

subtypes. c, Tables showing the number of cardiac subtypes in DCM and WT mice, and; d, 

Euclidean distance based on the average gene expression of DCM vs WT mice in each cardiac 

subtypes. 



 182 

 



 183 

 

Figure SF 5.10 Immunohistochemistry validation of the neuronal subtypes in the stellate 

ganglion identified from scRNAseq data analysis. 

Except NA2 and Glut, all other neuronal subtypes express either high Npy or low Npy. NA1a, 

NA1b, NA1c neurons appeared more in numbers compared to the NA2, NA3, ACh1, ACh2, and 

Glut. a) NA1a neuronal subtypes in the stellate ganglia. NA1a neurons express high Cntn5 and 

Npy (Inset), and can be easily distinguished from the low Npy expressing neurons colabeled with 

CNTN5high. b) Stellate section contain neurons that stained for Kcnt1 and express either low or 

high Npy but NA1b subtype can be distinguished by low Npy and high Kcnt1 expression (inset). 

c) NA1c subtype similar to NA1b contain low Npy but higher SCTR labeled on the cell borders 

(inset). d). NA2 neurons are differentiated from the Glut with expression of high Calm1 and low 

Ngfr while Glut neuronal subtype express low Calm1 and high Ngfr. e) NA3 subtype can be 

separated from ACh1 based on low Npy and high Vimentin gene expression whereas ACh1 f; 

express high Npy and low Vimentin. g) ACh2 subtype was separated from others with low Npy 

and high VIP expression. h) Gluts expressed high Ngfr expression and are negative for Cntn5 

and Sst. In insets, all subtypes are marked for each group and their magnified view is shown in 

the upper right corner of the figure. n = 6. Scale bars 50 and 20 µm. 
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Figure SF 5.11 Cardiac cluster validation in porcine and human stellate ganglia 

Cardiac clusters were also validated in porcine (a) and human (b) stellate ganglia using 

immunohistochemistry by combining the specific marker genes for each neuronal subtype. a,b(i) 

NA1a neurons express high NPY and CNTN5. a,b(ii) NA1b subtype have low NPY and high 

CASZ1 expression level. a(iii) NA3 similar to NA1b has low NPY but unique higher Vimentin 

expression in porcine tissues. b(iii) NA3 like NA1b express low NPY and high FABP7 expression 

in humans. Scale bar: 50 µm. n = 3 samples. 
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Chapter 6. Single-cell RNA sequencing reveals molecular heterogeneity of glia within 

mouse sympathetic ganglia 

6.1 Introduction 

Glia are non-neuronal cells that are present throughout the entire nervous system. In the central 

nervous system (CNS), glial cells have been demonstrated to play important roles in both health 

and disease215. Astrocytes, the most abundant glial type in the CNS, are of particular importance 

in the development and functioning of the CNS, but can become pathologically activated in 

response to injury215,216. Even though astrocytes are widely studied, much less is known about 

their peripheral counterpart, satellite glial cells (SGCs). These cells are found in sensory, 

parasympathetic, and sympathetic ganglia of the peripheral nervous system (PNS), where they 

envelope the neurons217. SGCs and neurons have been demonstrated to reciprocally modulate 

each other’s activity via gap junctions as well as through the release of signaling molecules, such 

as adenosine triphosphate (ATP) and gamma aminobutyric acid (GABA)217–220. Furthermore, 

SGCs have been described to become reactive in response to neuronal injury, which is reflected 

by an increase in size221 and number222 and is accompanied by changes in modulatory 

activity223,224. This reactivity is often objectified by the upregulation of glial fibrillary acidic protein 

(GFAP)225,226. Despite this clear evidence that SGCs play a dynamic and important role in the 

PNS, studies into SGC biology are limited. Furthermore, most studies of SGCs have focused on 

their role in the sensory nervous system. 

 

Nevertheless, it has been shown that SGCs in the sympathetic ganglia are able to modulate 

efferent sympathetic cardiac outflow227,228. Moreover, Ajijola et al. (2017) demonstrated that GFAP 

was upregulated in the stellate ganglia SGCs of humans with heart failure (HF) and arrhythmias. 

As sympathetic outflow from the stellate ganglia is known to be increased in HF, these 

observations indicated a potential role for SGC activation in the development and/or progression 

of HF.  
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As much remains unknown about the molecular background of SGCs and their role in health and 

disease, we used single-cell RNA sequencing (scRNAseq) to study SGCs from healthy adult 

murine stellate ganglia to characterize their transcriptomic diversity. We demonstrate that SGCs 

in murine stellate ganglia can be divided into subpopulations that reflect different stages of 

maturation and activation, similar to astrocytes in the CNS. Moreover, we highlight the various 

developmental trajectories within the subtypes.  

 

6.2 Materials and Methods 

Animals 

Eight C57BL/6J male mice (Jackson Laboratory, Bar Harbor, ME, USA), 10 to 12 weeks of age, 

were used for scRNAseq. Animals were sedated in an induction chamber (3-5% isoflurane) and 

sacrificed by decapitation. All experiments were performed in accordance with guidelines set forth 

by the University of California Institutional Animal Care and Use Committee (IACUC), and The 

National Institutes of Health Guide for the Care and Use of Laboratory Animals. Data from study 

animals were also used for neuronal scRNAseq, and cardiac/paw neurons were identified by 

retrograde labeling using adeno-associated viruses (AAV, subtype 2). Those data are being 

reported elsewhere. AAVs are known to trigger very low immune responses and are thus unlikely 

to have caused much reactive response in the stellate ganglia229,230. 

 

Cellular Dissociation 

Bilateral stellate ganglia were identified, isolated and collected in artificial cerebrospinal fluid 

(ACSF; Figure 1A). Next, ganglia were incubated for an hour at 37°C in a digestion solution 

prepared with 500 μl TrypLE Express (ThermoFisher Scientific. Waltham, Massachusetts), 2000 

μl Papain solution (Worthington Biochemical Corporation. Lakewood, New Jersey; 25 units/mL in 

ACSF), 100 μl Collagenase-Dispase (Millipore Sigma. Burlington, Massachusetts; 20 mg/mL in 
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ACSF) and 270 μl DNAse I (Worthington Biochemical Corporation. Lakewood, New Jersey; 200 

units/mL in ACSF). Following this first hour, the cells were carefully triturated with fire-blown 

Pasteur pipettes every thirty minutes. After the second trituration, 100 μl fresh Collagenase-

Dispase (20 mg/mL in ACSF) was added to the solution and cells were incubated for another hour 

at 37°C, triturating every thirty minutes. Next, the suspension was filtered through a 40mm filter 

(ThermoFisher Scientific. Waltham, Massachusetts) and ACSF was added to stop the enzymatic 

digestions. The suspension was spun down at 100g for four minutes at room temperature, and 

the pellet was collected and resuspended in 500 μL ACSF and 500 μL supplemented Neurobasal-

A medium (ThermoFisher Scientific. Waltham, Massachusetts; 250 μL B27, 250 μL Penicillin-

streptomycin, 31.3 μL L-Glutamine). The cell suspension was transferred onto a density 

gradient (Millipore Sigma. Burlington, Massachusetts) and centrifuged at 100g for 10 minutes at 

room temperature. The supernatant was carefully removed until the solution was concentrated to 

500 μL. 

  

Single Cell RNA Sequencing 

Single cell RNAseq was performed by microfluidic capture-based encapsulation, barcoding, and 

library preparation (10x Genomics Chromium scRNAseq system (10x Genomics, Pleasanton, 

California). Cells were loaded into a Chromium Chip B along with partitioning oil, reverse 

transcription reagents, and a mix of hydrogel beads containing 3,500,000 unique 10X Barcodes. 

Paired end sequencing was performed on a Novaseq S4 system, using the v3 Illumina platform. 

Coverage depth was 20K per cell, and the read length was 2x50. Analysis including 

demultiplexing, reference based mapping (GRCm38.98), and UMI identification, was performed 

according to the 10X Cell Ranger pipeline. 

 

scRNAseq data quality control, normalization, and integration 
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To eliminate lowly expressed genes, a gene was required to be expressed in at least 5 cells per 

sample, or was removed. Cells with more than 20,000 UMIs, 6,000 expressed genes, or less than 

500 expressed genes were considered outliers, and removed. Cells were removed with more than 

15 percent mitochondrial gene content. All of the following processing steps were performed in 

the R package Seurat (v3.0.0)40. Each sample was normalized separately, scaling the total UMI 

count to 10,000 per cell and log transformed. 2000 variable genes were identified among each 

sample with FindVariableFeatures function. The samples were integrated with Canonical 

correlation analysis231 and mutual nearest neighbors with FindIntegrationAnchors and 

IntegrateData functions.   

 

scRNA processing and clustering 

The integrated scRNAseq data was scaled, regressing out the total number of genes, and percent 

mitochondrial content in each cell. Principal component analysis was performed reducing the 

dimensionality to 30 dimensions. A graph of cell neighbors was created with the first 20 principal 

components (PCs), and Louvain clustering232 was used to find cell clusters. We performed 

Uniform Manifold Approximation and Projection (UMAP)145 on the first 20 PCs to visualize the 

clustering in 2 dimensions. 

 

Identification of cell clusters and marker genes 

SGCs were identified by the expression of SGC markers S100B and Fabp7 (Figure 1A; 

supplementary figure 1)233,234. The feature counts of individual cells were divided by the total 

number of counts for that cell, multiplied by 10,000 and natural-log transformed. 50 principal 

components were used for Louvain clustering, which was visualized using T-distributed stochastic 

neighbor embedding (t-SNE) dimensionality reduction analysis from the Seurat R Package 

(version 3.6.2) (Figure 1A). Differentially expressed genes (DEGs) were defined as genes that (1) 
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were expressed in ≥ 30% of the cells from the cluster of interest and (2) if there was a ≥ 0.25 log 

fold change in gene expression between this cluster and the other groups and (3) adjusted p-

value < 0.05 using the Benjamini–Hochberg method to correct for multiple testing.  

Resolving cell identities of the different clusters  

We determined cell identities by (1) manual assessment of the cellular function of the proteins 

encoded by the DEGs, (2) comparing DEGs of each cluster with expression patterns of astrocytes 

in different stages of maturation and (3) in-depth analysis of canonical pathways associated with 

DEGs of the clusters. Astrocyte-specific markers were retrieved from multiple studies that have 

previously published the transcriptome of astrocytes in different stages of development 235–242. 

Cell lineage trajectory analysis 

Trajectory analysis was performed using the Slingshot R package243. This method first identifies 

lineages based on the minimum spanning tree between nodes, which are cell clusters here. Using 

a user defined root node, Slingshot subsequently computes individual cell pseudotimes for each 

inferred trajectory. We used cluster 1 as the root node, because it expressed genes suggestive 

of astrocyte progenitor cells such as Slc12a2, Ptprz1 and Itgb8 (supplementary figure 2)235,237. To 

identify trajectory associated genes for each predicted trajectory, we trained a random forest 

model (parsnip R package) on the top 1000 highly variable genes to predict cell pseudo times. 

We used 1,400 trees, 200 predictors sampled per split, and 15 as the minimum number of data 

points per node to be split again. This trained random forest model was used to identify the 

pseudotime associated genes based on their regression coefficients. A different random forest 

model was trained for each trajectory.  

Pathway annotation of cluster marker genes 

Ingenuity Pathway Analysis (IPA;  QIAGEN's Ingenuity Pathway Analysis, Qiagen Redwood City, 

Build and content version: 49932394) was used to annotate the enriched Ingenuity pathways 
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among cluster marker genes. Lists containing the normalized average expression of the 500 

highest expressed genes or cluster-specific DEGs were used to establish associated canonical 

pathways. All analyses were performed with the following settings: “Reference set: Ingenuity 

Knowledge Base (Genes only), Relationship to include: Direct and Indirect, Networks: Interaction 

and causal, Data sources: All, Species: All, Tissues and Cell lines: Nervous system, Consider 

only relationships where confidence = Experimentally Observed”. Multiple testing was corrected 

for using the Benjamini–Hochberg method. Pathways were considered to be significantly 

associated with a cluster when -log(BH-adjusted p-value) ≥ 1.3. 

 

6.3 Results 

Identification of SGC clusters in the mouse SG 

Using acutely dissociated stellate ganglion preparations from 8 mice, we performed single cell 

RNA sequencing using the 10x Genomics scRNAseq platform. In total, 11,595 single SGCs were 

captured, expressing 5538 ± 2486 genes on average. Using the bi-dimensional t-distributed 

stochastic neighbor embedding (t-SNE) algorithm, we transformed the multidimensional data and 

visualized the relationships between the cells in a two-dimensional t-SNE plot. Louvain clustering 

produced 6 subclusters of SGCs (Figure 6.1B; supplementary file 1). All clusters were similarly 

represented in the stellate ganglia of the 8 mice (supplementary file 2; supplementary figure 3). 

The top 10 differentially expressed genes (DEGs) per cluster with the highest discriminatory 

power in terms of p-value are depicted in the heatmap in Figure 6.1C. The sixth cluster was 

excluded from further analyses due to relatively high expression of reactive markers, including 

interferon-related genes which may be related to an endogenous low-level reactive subtype, or 

transient exposure to AAVs. 

 

Similarities between SGC clusters in the mouse SG 
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We began by examining similarities across the subclusters in their gene expression. A correlation 

map showing the similarities in average gene expression, demonstrated a high level of correlation 

between all clusters (Figure 6.2A; Supplementary file 3).  Biochemical pathways associated with 

the 500 highest expressed genes for each cluster are listed in Supplementary file 4. As shown in 

Figure 2B, 36 ± 14% of the pathways were similar across clusters, representing cellular signaling, 

growth and development, metabolism, immune response, cell cycle, and cellular stress and injury. 

These pathways, corresponding to glia-glia and glia-neuron communication, indicate that these 

functions were important for cell types across all clusters.  

 

Determination of SGC identities in the mouse SG 

Next, we investigated the cellular heterogeneity among the subclusters by examining differentially 

expressed genes (DEGs). In-depth analysis of the DEGs in each cluster suggested that the cell 

populations were distinct from each other based on state of maturation or functionality (Figure 

6.3A; supplementary figure 6.4).  

Cluster 1, representing 14.57% of all SGCs, was identified as immature SGCs. This population 

was enriched in genetic cell cycle and pluripotency markers, corresponding to developing 

astrocytes in the CNS (Figure 6.3B)235,238–242. This corresponded with the, though insignificant, 

upregulation of the pluripotency pathway in this cluster (Figure 6.3C). Cluster 2 and 3 were the 

two largest populations representing 25.27 and 32.00% of all SGCs, respectively. Both clusters 

had high expression of genes associated with mature astrocytes (Figure 6.3A and B)235–238. 

Consistent with this, functional pathways, such as cholesterol synthesis were enriched in clusters 

2 and 3 (Figure 6.3C). These clusters were therefore identified as mature SGCs.  

 

In contrast, clusters 4 and 5, containing 13.00 and 8.20% of the SGCs population, respectively, 

were characterized by downregulation of the functional pathways (Figure 6.3C) and showed 

activated stress response pathways. As such, both clusters were classified as aged SGCs since 
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cellular stress responses and downregulation of metabolism pathways are indicative of aging244. 

However, this upregulation of cellular stress response pathways was less clear in cluster 5 (Figure 

6.3C). Moreover, whereas the NRF2 -mediated stress response seemed to be slightly 

upregulated, the production of nitric oxide and reactive oxygen species was downregulated 

(Figure 6.3C). Therefore, we identified cluster 5 as a quiescent, aged group of SGCs.   

 

Supplementary file 5 lists the pathways associated with the DEGs of each cluster. DEGs of the 

different clusters were also compared to external transcriptomic datasets of astrocytes in the CNS 

(Figure 6.3B)235,236. Combined, these results led to the grouping of the clusters in different states 

of maturation and activation (Figure 6.3A).  

 

Maturation and activation trajectories revealed by pseudo-time analysis 

To test our hypothesis that the different clusters compose developmental and functional 

trajectories, we performed pseudo-time analysis on the SGC clusters. Using cluster 1 as the 

starting cluster, three different trajectories were obtained (Figure 6.4A-C; supplementary figure 

6.5). Similar to the aforementioned developmental progression, cluster 1 seemed to evolve to 

cluster 2 (and 3), which were identified as the mature SGCs. From there, SGC were observed to 

progress to cluster 4 or 5 which were identified as the (quiescent) aged SGCs (Figure 6.4A, B).  

Genes that trace these trajectories include Adamts5 which was progressively downregulated as 

SGCs matured to subsequent clusters. Adamts5 is a metalloproteinase involved in cellular 

development and cell migration245, causing it to be upregulated in developing astrocytes235, which 

corresponds to the developmental function associated with cluster 1. Moreover, Txnip and Hspb1, 

which are both involved in cellular stress responses246 247 and associated with aging astrocytes 

235, were traced in the trajectories leading up to the aged clusters 4 and 5. 

 

Signaling 
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Biochemical pathways associated with cell junction signaling, such as adherens and gap junctions 

signaling, were identified in all clusters, indicating the importance of direct cell-cell adhesion and 

communication pathways in fundamental functions of SGCs. In addition, the mature SGC in 

cluster 3 were enriched for genes involved in aldosterone, endothelial nitric oxide synthase 

(eNOS), purinergic and gap junction signaling (Figure 6.5A, B; bold). 

 

However, as the SGCs mature and age, distinct signaling pathways are employed. In general, 

signaling pathways associated with proliferation and metabolism, such as the aldosterone248 

(Figure 6.5A; blue) and mTOR signaling pathways249 (Figure 6.5A, B; blue), and pathways 

associated with cell proliferation and neuronal guidance, such as 14-3-3 mediated signaling250 

and Reelin signaling251, were decreased (Figure 6.5B; blue). Also, adherens junction signaling 

seemed most important in the immature SGCs (Figure 6.5B; bold). 

 

Moreover, aging (Figure 6.5A; arrows) was associated with the gradual upregulation of signaling 

pathways involved in cell death and cellular stress, e.g. androgen252 and BAG2 signaling 

pathways253. 

 

Furthermore, as the SGCs transitioned to a more quiescent state (Figure 6.5B; arrow), the Sirtuin 

signaling pathway was upregulated, which is involved in aging and stress resistance254. 

 

6.4 Discussion 

Major findings 

In the present study, we assessed the transcriptomic profiles of SGCs in the stellate ganglia at 

single cell resolution. We show that the SGCs in the murine stellate ganglia are 1) a fairly 

heterogenous population of cells, that can be separated into five subpopulations of SGCs based 

on their state of maturation or activation, and 2) that these subpopulations result from two 
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nonlinear trajectories. In addition, we show that 3) signaling pathways change as SGCs progress 

through the different trajectories, indicating different functions of the subclusters.  

 

SGC subpopulations in the murine stellate ganglia 

To our knowledge, this is first study to elucidate the complexity of SGCs in the stellate ganglia 

based on transcriptomic profiles. We observed that the population of SGCs comprised five 

subpopulations that shared many characteristics, including signaling and metabolism pathways 

(Figure 6.2A). However, in-depth evaluation of cluster-specific DEGs and pathways revealed that 

the clusters represented SGCs in different states of maturation and/or states of functionality. This 

corresponds with the CNS, where astrocytes are known to co-exist in different states of 

maturation255. Moreover, our results also corroborate studies by Pannese et al. (1960) and Zhang 

et al. (2019) which suggested subclustering within the SGCs based on microscopic imaging and 

immunohistochemical experiments, respectively. Using scRNAseq, we were able to validate the 

existence of SGC subpopulations and indicate that these cells can assume different states of 

activation that presumably change over time. We defined five subclusters and provided 

transcriptomic markers that allude to a functional identity.  

 

We found that SGCs go through developmental progression within the SG and identified cluster 

1 as the most immature cluster. As pluripotency markers such as Ptprz1 and Itgb8 were enriched 

in these cells (Figure 6.3A), we suspect that this subpopulation remains undifferentiated and 

serves to locally replenish the SGC population in the SG. Moreover, NG2 was upregulated in 

cluster 1. In the CNS, NG2 positive glia have been established to generate astrocytes as well as 

oligodendrocytes, strengthening the identification of cluster 1 as a pluripotent population of SGCs 

(Zhu et al. 2008).   
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As the SGCs progress to more mature states, represented by the progression from cluster 2 to 3 

in our data, metabolic functions such as cholesterol syntheses become increased (Figure 6.3C). 

Starting from cluster 3 and up, cells become increasingly enriched in cellular stress pathways, 

such as the unfolded protein response. Therefore, we established an aging trajectory as the 

cluster numbers go up. Moreover, though insignificant, the senescence pathway became 

upregulated as SGCs progress from cluster 2 to cluster 4 (Figure 3C). In addition, cholesterol-

associated pathways that were upregulated in the mature SGCs, became increasingly 

downregulated in the aged SGCs.  

 

With regard to the highest expressed genes, cluster 5 was highly similar to cluster 4 (Figure 6.2A) 

and was also classified as aged SGCs. However, the enrichment in cellular stress pathways in 

cluster 4 was one of the main characteristics that distinguished the two clusters. The lesser 

inflammatory response combined with the low activity of functional metabolic and cell division 

pathways, led to the identification of cluster 5 as quiescent, aged SGCs. However, it could also 

indicate that this cluster comprises recovering reactive SGCs and/or a mid-state in between the 

aging SGCs of cluster 3 and 4.  

 

Signaling 

As glia-glia and glia-neuron communication is of fundamental importance to the functioning of 

SGCs, we performed a more detailed evaluation of the signaling pathways that were active and 

evolving in the SGCs.  

 

We demonstrated that signaling pathways associated with the cell cycle and neuronal guidance 

seemed to be enriched in the immature SGCs in cluster 1, and progressively downregulated as 

SGCs progressed to a more mature or activated state (Figure 6.5; left columns). Moreover, 

compared to all other clusters, cell junction signaling seemed to be increased in these immature 
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SGCs (Figure 6.5B; Bold). As cell-cell adhesion and communication has been shown to be 

important in stem cell behavior, the increased correlation of these pathways and cluster 1 further 

corroborate its pluripotent identity256,257. 

 

With maturation, SGCs increased their aldosterone, eNOS, purinergic and gap junction signaling 

(Figure 6.5A; Bold). These pathways correspond with experimental data on SGC communication 

in the trigeminal and dorsal root ganglia217. Aldosterone signaling has been demonstrated to result 

in astrocyte proliferation248, but can also alter astrocyte function and activity258, which might cause 

neuronal death259. Comparison of these studies indicate a dose-dependent effect of aldosterone, 

the higher aldosterone levels causing neurotoxic effects. As aldosterone levels are also increased 

in HF, this could possibly indicate a (direct) connection between (neurohumoral) changes during 

the development and progression of HF and SGC function and activity173. 

 

As astrocytes aged, (oxidative) stress signaling pathways, such as through the BAG2 protein253 

pathway, became progressively enriched (Figure 6.5A). Androgen signaling, which has been 

demonstrated to promote death in primary cortical astrocytes252, and a-adrenergic signaling were 

also increased (Figure 6.5A). Although the exact meaning of the latter pathway remains to be 

elucidated, Paukert et al. (2014) showed that norepinephrine enhanced the reactivity of astrocytes 

to neuronal activity in the CNS. Surprisingly, melatonin signaling was also increased as SGCs 

aged (Figure 6.5A). Signaling through melatonin has been shown to protect astrocytes from 

oxidative-stress induced stress responses260, and might therefore reflect a compensatory reaction 

of aging SGCs.   

 

Clinical relevance 

SGCs have been demonstrated to modulate efferent sympathetic outflow to the heart and to be 

more activated in the stellate ganglia of cardiomyopathy patients173. Using scRNAseq, we offer 
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unique insights into SGC biology and diversity. Especially the knowledge on glial communication, 

its dynamic response to injury and how this injury-response translates to modulation of 

sympathetic outflow, might be an interesting target for future HF therapies.  

 

Future directions 

The present study is the first to identify the co-existence of SGC subtypes in murine stellate 

ganglia and to describe their (functional) characteristics. Hence, the field of SGC behavior in 

stellate ganglia is wide open. The change in SGC characteristics and populations over time 

remains to be fully disseminated. Understanding how SGC adapt to aging and changing 

conditions, would give more insight on the biological functions of SGCs and their modulatory and 

supportive roles in the stellate ganglia.  Moreover, the current study only included male mice to 

exclude the possible effects of female sex hormones. Nevertheless, the degree to which sex 

differences affect SGC behavior would be an interesting direction for future studies.  

 

Limitations 

While we have presented comprehensive transcriptomic analyses, we have not demonstrated 

physiological distinctions across the transcriptomes as this is beyond the scope of this report. The 

mice included in the study had received AAVs through paw and intracardiac injections, which 

were retrogradely transported to the stellate ganglia. Nevertheless, it is unlikely that these AAVs 

have disrupted normal SGC dynamics in the stellate ganglia as AAVs are known to trigger very 

low immune responses and to be rapidly cleared229,230. Moreover, the AAVs in this study were 

injected locally with minimal systemic exposure and studies were performed three weeks after 

injection, which is well beyond the half-life and functional clearance of the viruses261,262. Even 

though it is unlikely to have disturbed SGC dynamics by AAV exposure, the sixth cluster, which 

was characterized by increased expression of pro-inflammatory markers, was excluded from 

further analyses. 
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6.5 Conclusion 

SGCs are a heterogeneous population of neuronal modulatory cells in the SG. Their diversity is 

based on state of maturation or differentiation, which might be dynamically responding to 

environmental changes in health and disease. Functional studies in control and pathologic 

conditions are warranted to validate these findings.  
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6.6 Figures 

 

 

Figure 6.1. Single-cell RNA sequencing of murine stellate ganglia shows six 

subpopulations. 
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(A) Pipeline depicting the derivation of stellate ganglion cells which were used for single cell RNA 

sequencing. Cell types within the stellate ganglia were identified and satellite glial cells (SGCs) 

were identified by the expression of genetic markers S100B and Fabp7. SGCs were distinguished 

from other cell types and used for subclustering. (B) Unsupervised clustering of SGC resulted in 

the identification of six SGC subclusters (C) Heatmap of the most differentially expressed genes, 

displayed as scaled expression levels, of the different SGC clusters.  
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Figure 6.2. Average gene expression and highest expressed pathways show many 

similarities between the different subclusters of satellite glial cells.  

(A) Correlation map of the average gene expression of the five clusters. Extent of similarity is 

depicted by color; the blue and red colors corresponding with a continuous progression from lower 

to higher levels of similarities, respectively (B) Classification of the pathways corresponding to the 

500 highest expressed genes of the different clusters to different biological functions.  
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Figure 6.3. Satellite glial cell (SGC) subcluster identification.  

(A) The clusters were identified as SGCs in different stages of maturation or activation. As such, 

immature SGC are believed to either proliferate or progress to mature and aged SGC. The violin 

plots depict marker genes associated with the different states of SGC. B) Comparison of the 

differentially expressed genes (DEGs) of the different clusters with marker genes of astrocytes in 
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different stages of maturation. Extend of overlap between the different clusters of SGCs and 

developing astrocytes (red), mature astrocytes (orange) and aged astrocytes (yellow) 

corresponds with the thickness of the bands. C) Pathways associated with the DEGs of the 

different clusters. P-value correlates with dot size, a dashed line indicating insignificance. Colours 

of the dots represent the z-score of the pathway in the respective cluster, when white, z-score 

could not be established.  

  



 205 

 

 

Figure 6.4. Pseudotime analysis of satellite glial cells (SGCs) results in three separate 

trajectories.  

The first trajectory comprised the progression of SGCs from cluster 1 to 2, to 3 and finally to 5 

(A). The second trajectory described the progression from cluster 1, to 3 to 4 (B). Violin plots of 

the expression patterns of the genes associated with these trajectories across the clusters are 

depicted underneath their respective tSNE plots.  
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Figure 6.5. Active signalling pathways of the different trajectories in murine satellite glial 

cells (SGCs) in the stellate ganglia.  

A) Signalling pathways that are down- (left) or upregulated (right) as SGCs progress from 

immature SGCs (cluster 1; red) to mature (cluster 2; gold) to aged SGCs (Cluster 4; light blue). 

B) Signalling pathways that are down- (left) or upregulated (right) as SGCs progress from 

immature SGCs (cluster 1; red) to mature (cluster 2 (gold) and 3; green) to aged, quiescent SGCs 

(Cluster 5; pink).  
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Supplementary figure 6.1: Violin plots showing the expression of the known SGC markers 

S100B and Fabp7 in the different clusters. 
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Supplementary figure 6.2: Expression levels of astrocyte immaturity markers in the 

satellite glial cell clusters.  

Violin plots depicting the relative expression levels of genetic markers Slc12a2, Ptprz1 and Itgb8, 

which are highly expressed in astrocyte progenitor cells. As all three markers were highest 

expressed in cluster 1, this cluster was chosen as the root node for subsequent trajectory analysis.  
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Supplementary figure 6.3: t-SNE plots showing that all clusters were present and similarly 

represented in all eight mice.  
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Supplementary figure 6.4: t-SNE plot of the different clusters with their corresponding 

state of maturation or reactivity.  
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Supplementary figure 6.5: Pseudo-time analysis on the satellite glial cell (SGC) clusters 

resulted in three different trajectories.  

Cluster 1, identified as the immature SGC, initially matured to cluster 2. From there, SGC 

development branched, progressing to either cluster 3 or 4, which were identified as mature and 

aged SGCs, respectively. SGCs in cluster 3 subsequently progressed to aged SGC in cluster 5. 
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Chapter 7. Conclusions and Future Directions 

Single cell multi-omics technologies are rapidly evolving and data volume is growing 

exponentially, calling for new methodologies for efficient data analysis, integration, and 

interpretation. To this end, my dissertation focused on two major aims. (1) To develop robust 

computational approaches for single cell multi-omics integration and analysis. (2) To apply single 

cell multi-omics to understand the mechanisms of pathophysiology of complex disease as well as 

potential therapeutics. In aim 1 we developed JSTA to combine scRNAseq references with single 

molecular resolution spatial transcriptomics to segment cell boundaries, assign mRNA molecules 

to cells, and classify cell types in combinatorial FISH data, and SCING to construct cell-type 

specific GRNs from scRNAseq and spatial transcriptomics data. In aim 2 we applied scRNAseq 

to identify the mechanism underlying the ameliorative effects of IDOL knockdown in the 

hippocampus of APP/PS1 mice, to identify cardiac innervating neuronal subtypes from the stellate 

ganglion, and the satellite glial subpopulations of the stellate ganglion. These methodological 

approaches and biological findings are important steps in understanding and treating complex 

diseases such as Alzheimer’s disease and cardiovascular disease. 

 

The JSTA method was developed to address the lack of existing tools in the spatial 

transcriptomics space to simultaneously segment cell boundaries, generate gene expression 

counts in individual cells, and label each cell with cell type identity. Without accurately segmenting 

each mRNA molecule into each cell, single cell analysis of spatially resolved transcriptomics is 

much noisier and less powerful. JSTA is built on an expectation maximization and deep learning 

framework to segment and classify each cell based on a high quality scRNAseq reference20. We 

apply JSTA to the mouse hippocampus and show spatial distribution of 133 high resolution cell 

subtypes as well as spatial DEGs within each cell type. JSTA provides a tool for future studies 

identifying spatially resolved transcriptomic changes in complex disease. For instance, we are 

currently applying JSTA to compare MERFISH data between sham controls and mice with 
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traumatic brain injury to understand cell types and genes with spatial alterations in disease. 

Currently JSTA is designed for multiplexed FISH data. In the future we plan on applying JSTA to 

MERFISH datasets for understanding spatial consequences of traumatic brain injury, and to other 

publicly available FISH datasets to provide clean datasets for inferring cell-cell interaction GRNs. 

 

In parallel, we developed SCING for elucidating cell type specific GRNs. GRNs produced by 

SCING are more robust than existing methods and biologically interpretable through pathway 

enrichment analysis and regulator identification. Cell specific module expression provides a tool 

for identifying phenotype associated gene programs and key drivers of disease. Next, we will 

integrate the current SCING framework with spatial transcriptomics and RL interaction databases 

for infering cell-cell communication GRNs, and with ATACseq and transcription factor binding site 

databases for refining GRNs through epigenomic data.  

 

Building on the tools developed, we have carried out a series of collaborative application studies 

to identify key cell types and regulators in the neuronal system for physiology and disease. We 

first explored the cell types affected in a mouse AD model and how the inhibition of the IDOL gene 

in the brain rescues learning and memory by shifting the microglial subpopulation to DAM or 

phagocytic microglia that clear plaque. Next, we applied SCING to snRNAseq and 10x Visium 

spatial transcriptomics to identify gene network changes in various cell types including microglia 

and to resolve the network changes in spatial domains. Further, we utilized JSTA to identify and 

spatially localize high-resolution cell subtypes in the hippocampus, a key brain region involved in 

AD. Future investigation of phenotypes (morphological, electrophysiological, etc.) associated with 

these high-resolution cell subtypes will reveal how changes in their distribution and gene 

programs influences physiology and disease. Finally, we applied scRNAseq with AAV retrograde 

tracing to identify heart innervating neurons and the satellite glial subtypes surrounding them in 

the stellate ganglion. We show the proportions of these neuronal subpopulations are changed in 
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mice with dilated cardiomytopathy, providing a potential therapeutic avenue for heart failure. 

These application studies demonstrate the power of single cell multiomics methods in 

accelerating biological discoveries in diverse disease areas. We are systematically constructing 

human and mouse cell type specific GRNs using existing multiomics data from cell atlases to 

enable network studies across diseases at cell type resolution. 

 

In summary, we developed and applied methods for scRNAseq and spatial transcriptomics to 

understanding mechanisms underlying complex diseases and providing resources for the 

scientific community to further their research. These tools and the biological insights obtained will 

be impactful for many studies to follow.  
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