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Abstract

Numerous changes in GABAergic neurons, receptors, and inhibitory mechanisms have been 

described in temporal lobe epilepsy (TLE), either in humans or in animal models. Nevertheless, 

there remains a common assumption that epilepsy can be explained by simply an insufficiency of 

GABAergic inhibition. Alternatively, investigators have suggested that there is hyperinhibition 

that masks an underlying hyperexcitability. Here we examine the status epilepticus (SE) models of 

TLE and focus on the dentate gyrus of the hippocampus, where a great deal of data have been 

collected. The types of GABAergic neurons and GABAA receptors are summarized under normal 

conditions and after SE. The role of GABA in development and in adult neurogenesis is discussed. 

We suggest that instead of “too little or too much” GABA there is a complexity of changes after 

SE that makes the emergence of chronic seizures (epileptogenesis) difficult to understand 

mechanistically, and difficult to treat. We also suggest that this complexity arises, at least in part, 

because of the remarkable plasticity of GABAergic neurons and GABAA receptors in response to 

insult or injury.
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11.1 Introduction

In the nineteenth century, the idea that epilepsy was a brain disorder arose as a consequence 

of the relatively new discipline of neurology. In the latter half of the twentieth century, many 

studies showed that chemicals such as penicillin, a GABAA receptor (GABAAR) antagonist, 

caused experimental seizures or epileptiform activity when applied to the neocortex of 

animals. Philip Schwartzkroin played a major role in the development and refinement of 

these ideas by the use of the hippocampal slice preparation [131, 132, 152]. One view that 

emerged was that epilepsy might be caused by defects in inhibition, which was supported by 

pharmacological experiments showing that several anticonvulsants, such as the barbiturates 

and benzodiazepines, exerted their actions by facilitating the actions of GABA at GABAARs 

[88, 109].

The idea that epilepsy is caused by insufficient GABAergic inhibition has developed more 

support as it has become clear that some types of GABAergic neurons are vulnerable in 

animal models of epilepsy, or lost in tissue resected surgically from patients with intractable 

epilepsy [78, 126, 127]. In addition, mutations in the subunits of the GABAA receptor have 

been identified as a basis of some genetic epilepsy syndromes, such as Genetic Epilepsy 

with Febrile Seizures+ (GEFS+) which can be caused by a point mutation in the GABRG2 

gene which normally encodes the γ subunit of the GABAAR [4, 159]. However, many 

arguments have also been made that epilepsy cannot be explained solely by a defect in 

GABAR-mediated inhibition. Some of the opposing views have come from studies of 

GABAergic agonists, which exacerbate some types of seizures instead of inhibiting them. 

For example, drugs that enhance GABAergic inhibition increase absence seizures instead of 

suppressing them. The explanation is related to the actions of GABA at GABAB receptors 

on thalamocortical relay cells. By enhancing the actions of GABA to hyperpolarize relay 

cells, T-type Ca2+ current in relay cells are strongly deinactivated, leading to more robust 

bursts of action potentials in relay cells when the hyperpolarizations end; these rebound 

bursts drive the thalamocortical oscillation [58, 141].

In the last 20 years, a wealth of new information about GABA and GABARs has been 

published using animal models of epilepsy and clinical research. One of the complexities 

that has emerged is the plasticity of GABAergic mechanisms. This plasticity is remarkable 

because it involves many aspects of GABAergic transmission: the numbers of GABAergic 

neurons and the locations of their axons; the synthesis, release and uptake of GABA; and 

alterations in GABA receptors. Although the contribution of GABAergic mechanisms, and 

their plasticity, to epilepsy is still an area of active research, it seems unlikely that there is 

simply too little GABA in epilepsy – or too much. Instead, GABAergic transmission is very 

different in epilepsy compared to the normal brain. This concept, that GABAergic inhibition 

is not simply deficient in epilepsy, is consistent with the relatively normal function of 

individuals with epilepsy during the interictal state.

We discuss below the basic characteristics of GABAergic transmission in the normal and 

epileptic condition to clarify this idea. For the epileptic condition, we focus on temporal lobe 

epilepsy (TLE) where this concept appears to be particularly relevant. We also focus on the 

dentate gyrus (DG) in animal models where status epilepticus (SE) is used to produce 
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spontaneous recurrent seizures and simulate acquired TLE. The reason for this focus is that 

the data that are available for this context are extensive. However, these models have been 

criticized because they do not simulate all aspects of TLE.

Most of the discussion below addresses the ways that GABAergic circuitry are changed by 

SE and alterations in GABAARs in DG granule cells (GCs). Presynaptic GABAARs and 

effects of GABAARs on other cell types are also important to consider in the context of the 

DG and epilepsy, and are reviewed elsewhere [70]. Regulation of GABAARs by 

phosphorylation also has implications for the dynamics of GABAergic transmission in 

epilepsy; effects relevant to the DG are discussed below and additional issues are described 

elsewhere [83, 155]. Finally, GABABRs clearly have a role in epilepsy, but are outside the 

scope of this discussion and readers are referred to excellent reviews published previously 

[14, 84].

11.2 GABAergic Transmission in the Normal Adult Dentate Gyrus (DG)

11.2.1 GABAergic Neurons in the DG of the Adult Rodent

Figure 11.1 illustrates the fundamental circuitry of the DG in the normal adult rodent [2]. 

The principal cell of the DG is the granule cell (GC), which uses glutamate as its primary 

neurotransmitter, but also has the capacity to synthesize GABA, especially after seizures 

(discussed further below). GCs also synthesize numerous peptides that are packaged in 

dense core vesicles and behave as co-transmitters [55]. The peptides are numerous: 

dynorphin [25], leu-enkephalin [153], brain-derived neurotrophic factor [125], and others. 

The major afferent input to the GCs is the perforant path projection from entorhinal cortical 

neurons in layer II [161]. The GCs form the major output from the DG, the “mossy fiber” 

pathway, which innervates neurons in the hilus and area CA3 [2]. There is another 

glutamatergic neuron in the DG, located in the hilus, which is called a mossy cell (for 

reviews see [53, 126]). The major afferent input to mossy cells comes from the GCs, and 

mossy cells project to GCs and GABAergic neurons within the DG [126].

There are many other types of neurons in the DG, and they use GABA as a neurotransmitter. 

Most of the GABAergic neurons have an axon that projects primarily in the area 

surrounding the cell body, similar to other cortical circuits where most of the GABAergic 

neurons are local interneurons. However, there are several subtypes of DG interneurons that 

also have axons that project to distant areas of the DG, such as the contralateral DG [34, 49]. 

Like GCs, GABAergic neurons of the DG also use peptides as co-transmitters [55, 138], and 

after seizures, some of the peptides in GCs are the same peptides as those in GABAergic 

neurons (e.g., neuropeptide Y; NPY; [120]).

The primary type of GABAergic neuron in the DG is the basket cell, which makes 

basketlike endings around GC somata. It initially was described as a pyramidal-shaped 

neuron with somata at the base of the GC layer (on the border of the GC layer and the hilus) 

but the location, somatic morphology and other characteristics are actually diverse [115]. 

Furthermore, some of the basket cells with pyramidal shaped somata have axons that project 

to the contralateral DG [49]. There also is variation in neuropeptide content in pyramidal-

shaped GABAergic neurons, ranging from paravalbumin, cholecystokinin, to substance P 
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[55, 81, 139]. Electrophysiologically, these cells also vary, although they fit the general 

characteristics of interneurons because they have a very large afterhyperpolarization 

following single action potentials [115]. They inhibit their postsynaptic targets by opening 

chloride channels of GABAARs at the soma. Because the resting potential of GCs is close to 

the reversal potential for chloride or hyperpolarized to it, chloride entry depolarizes the GC 

rather than hyperpolarizing it, shunting currents that would otherwise reach threshold for 

action potential (AP) generation; for this reason, “shunting inhibition” is probably the main 

inhibitory effect of basket cells, rather than hyperpolarization.

Another very important inhibitory cell type also inhibits AP generation of GCs, but is 

slightly different because it primarily innervates the axon hillock, rather than the somata of 

GCs. This cell type, the axo-axonic cell, is similar to chandelier cells in neocortex [142] in 

that chandelier-type endings envelope the axon hillock of GCs. The cell bodies of axo-

axonic cells are variable and many types of neuropeptides are co-localized with GABA. The 

intrinsic electrophysiology of axo-axonic cells is consistent with fast-spiking interneurons 

[22].

Another type of DG interneuron is the so-called HIPP cell, named because it has a Hilar cell 

body and projects to the outer 2/3 of the molecular layer, where the perforant path projection 

terminates. This neuronal subtype usually expresses somatostatin and NPY [145] and has 

axon collaterals primarily in the molecular layer [52], with a less dense projection in the 

hilus [35]. It has been suggested that it inhibits the EPSPs produced by the perforant path 

input, presumably by innervating GC dendrites and shunting EPSPs traveling to the GC 

soma. HIPP cells may also inhibit glutamate release from perforant path terminals because 

they make synapses on the terminals [80]. The electrophysiology of HIPP cells is 

characteristic of interneurons generally [44], but it has been noted that they are relatively 

slow spiking [2, 115] and have a pronounced ‘sag’ in response to hyperpolarizing current 

commands [89]. This cell type has attracted a lot of attention in epilepsy research because 

these cells are relatively vulnerable to insults or injury [116, 126]. Several mechanisms have 

been proposed for their vulnerability, such as STAT3 expression [29]. It has also been 

shown that p75 NTR receptors are present on the septocholinergic terminals that innervate 

the HIPP cells, and can cause their death when the septocholinergic pathway is lesioned [37, 

38].

Analysis of the numbers of GABAergic neurons using immunocytochemical markers and 

stereological techniques has led to estimations that the majority of DG interneurons are 

basket cells or axo-axonic cells, which express parvalbumin or CCK. The other major 

subtype of DG interneuron is hilar HIPP cells, which co-express GABA and NPY or 

somatostatin (for reviews see [55, 81]. However, many other types of DG inter-neurons 

exist: MOPP cells [28], ivy cells and neurogliaform cells [3] and hilar neurons that innervate 

the inner molecular layer (HICAP cells; [51, 52]).

The major afferents to DG interneurons are the perforant path, GCs, and mossy cells. In 

addition, there is extrinsic input from the ascending serotoninergic, cholinergic, and 

noradrenergic nuclei. The primary effects appear to be inhibitory [41]. In addition, there are 

additional inputs to the DG from areas outside the hippocampus that are not well understood 
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functionally, such as the supramammillary input [74]. Many neuromodulators, such as 

endocannabinoids, have been shown to exert striking effects in the DG [40], but how all the 

neuromodulators act in concert in the awake behaving animal is still unclear.

11.2.2 GABA Receptors in the Normal Adult GC

Post-synaptic GABAARs mediate most fast synaptic inhibition in the forebrain (Fig. 11.2). 

GABAARs are heteromeric protein complexes composed of multiple subunits that form 

ligand-gated, anion-selective channels whose properties are modulated by barbiturates, 

benzodiazepines, zinc, ethanol, anesthetics and neurosteroids. There are several different 

GABAAR subunit families and multiple subtypes exist within each of these subtypes (α1–6, 

β1–4, γ1–3, δ, ε, π, Φ). The most common GABAAR is the α1β2γ2 subtype, but multiple 

subtype combinations exist and they vary in different brain regions and cell types, and 

during different times in development [73, 111, 134]. Subunit composition of GABAARs 

plays a major role in determining the intrinsic properties of each channel, including affinity 

for GABA, kinetics, conductance, allosteric modulation, probability of channel opening, 

interaction with modulatory proteins, and subcellular distribution [77, 97, 134]. For 

example, alterations in the α-subtype results in differences in receptor kinetics, membrane 

localization and GABAAR modulation by benzodiazepines and zinc [87, 97, 140, 154]. In 

the GC, GABAARs that contain α1 subunits paired with γ2 subunits are sensitive to 

benzodiazepines and generally located at the synapse, contributing to phasic inhibition, a 

term that refers to the effects of GABA released at GABAergic synapses that binds to 

postsynaptic receptors located at the synaptic cleft. These effects are primarily related to 

increased conductance when chloride channels open, and hyperpolarization of postsynaptic 

membrane potential when chloride influx occurs. However, as mentioned above, when the 

postsynaptic membrane potential is hyperpolarized relative to ECl−, which may occur in 

GCs, there is a depolarization. GABAARs that contain α4 subunits have unique 

pharmacological properties, such as insensitivity to benzodiazepines and increased 

sensitivity to zinc blockade. Receptors containing α4 subunits are most often found with the 

δ rather than the γ subunit in combination with αβ. These α4βδ GABAARs are localized to 

extrasynaptic sites and contribute to tonic inhibition, which refers to the basal inhibitory 

current produced by low concentrations of extracellular GABA that are present outside of 

the synapse (resulting from diffusion from synaptic to extrasynaptic space). Under 

physiological conditions, only a minor population of α4βγ2GABAARs are found at synapses 

of GABAergic neurons on GCs, where they are proposed to affect both the rise time and 

decay of synaptic currents [71].

11.2.3 Regulation of [Cl]i in Early Development and Its Relevance to TLE

One of the characteristics of GABAergic inhibition at GABAARs that has implications for 

epilepsy – and has been studied extensively in the hippocampus in TLE – is the regulation of 

chloride flux through the GABAAR. The direction of chloride flux is regulated by many 

factors, and one source of regulation that has attracted a great deal of attention is the K+-Cl− 

cotransporters KCC2 and NKCC1. KCC2 extrudes chloride normally, and NKCC1 

transports chloride into the cell [7]. In early life, KCC2 expression is low and there is a 

relatively high concentration of intracellular chloride; chloride efflux occurs when GABA 

binds to the GABAAR, leading to a depolarization [8, 27]. After maturation, KCC2 
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expression increases and this leads to a lower [Cl−]i and chloride influx when GABA binds 

to GABAARs, leading to a hyperpolarization [106]. As mentioned above, an exception is the 

GC, which has a resting potential (−70 to −80 mV) that is usually negative to ECl−. 

Therefore, in early life, a strong depolarization of GCs by GABA is predicted, and a smaller 

depolarization in adulthood compared to adulthood.

The idea that GABA is depolarizing in early postnatal life has recently been contested 

because most data that led to the idea were collected in slices where truncation of neuronal 

processes leads to elevated [Cl−]i [15]. However, in vivo studies have been conducted that 

are consistent with a depolarizing action of GABA in pyramidal neurons in neonatal life [9]. 

It remains to be determined exactly at what age these depolarizing effects end; in rodents it 

seems likely to be the first or second postnatal week [9, 15].

In the DG, one might expect that the switch from depolarizing to hyperpolarizing effects of 

GABA would not be as important because GABA typically has a depolarizing effect on GCs 

regardless. However, the size of the depolarization will be substantially greater if KCC2 

expression is low, and moreover, there are many cells besides GCs in the DG that will be 

affected; only the GC has a very high resting potential. There are also many types of 

GABAergic inhibition, not only postsynaptic. If the GABAAR is presynaptic, for example, 

the net effect could very different if the terminal is depolarized or hyperpolarized by GABA.

There is also another process in the DG that is likely to be affected if the effects of GABA 

“switch” from depolarizing to hyperpolarizing – the maturation of GCs that are born 

postnatally, i.e., postnatal or “adult” neurogenesis [67]. GABA is a critical regulator of the 

maturation and migration of immature neurons in early life [24, 160]. GABA also influences 

maturation and migration of adult-born GCs [36]. In acquired TLE this is potentially 

important because animal models of TLE have shown that there is a large increase in 

proliferation of adult-born GCs after seizures [90], and the young GCs often mismigrate 

(discussed further below). It has been suggested that these mismigrated GCs contribute to 

chronic seizures (discussed further below).

11.3 Alterations in GABAergic Transmission in Animal Models of TLE

There are many types of TLE, and one of the ways to classify the types is based on whether 

the epilepsy appears to have been “acquired.” The term ‘acquired’ indicates that an insult or 

injury occurred prior to seizures and is likely to have caused the epilepsy. Acquired TLE has 

been simulated in laboratory animals by various insults or injuries that lead to a pattern of 

brain damage that is typical of TLE, called mesial temporal sclerosis (MTS; [127]). In 

general, MTS involves loss of a large number of CA1 and CA3 pyramidal cells, with sparing 

of CA2 and GCs. Many hilar neurons are lost, and these include both mossy cells and HIPP 

cells [116]. Notably, there are individuals with acquired TLE that do not have this classic 

description of MTS, and animal models vary in the extent they simulate MTS [127]. 

However, the pattern has been the focus of the most research in TLE, based on the 

assumption that this general pattern of neuropathology causes TLE or is very important to 

TLE.
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One method that leads to a MTS-like pattern of neuropathology in adult rodents is induction 

of SE, either by injection of a chemoconvulsant such as kainic acid or pilocarpine, or 

electrical stimulation of hippocampus [31, 85, 95]. Here we will focus primarily on the SE 

models to study TLE in adult rodents, and use the data from SE models to address changes 

in GABAergic inhibition. We suggest that these changes involve plasticity of GABAergic 

mechanisms rather than simply an erosion or increase in the effects of GABA.

11.3.1 Alterations in GABAergic Neurons After SE

Early observations that GABAergic neurons were decreased in neocortical epileptic foci 

produced by alumina gel in monkeys supported ideas that disinhibition may be the cause of 

epilepsy [100–102], particularly because the reduction in GABAergic neurons preceded 

epilepsy [56, 103]. Chandelier cells appeared to be one of the subtypes that was affected, 

and it was suggested that loss of the chandelier subtype of GABAergic neuron would be 

most likely to cause disinhibition of cortical pyramidal cells because loss of only a few axo-

axonic cells would substantially change the number of GABAergic terminals at the axon 

hillock [33].

However, as more animal models were examined, there was less enthusiasm for the idea that 

disinhibition was the fundamental cause of seizures. In seizure-sensitive gerbils [93], the 

audiogenic seizure model [110], and kainic acid model [32], GABAergic neurons were not 

always decreased [54]. In fact, some GABAergic neurons increased their axon arbors, 

exhibiting axon sprouting (discussed further below). When GABAAR-mediated inhibition 

was examined, it was often strong rather than weak [11]. Therefore, even if some changes in 

these animal models involve disinhibition acutely, GABAergic neurons and GABAAR-

dependent inhibition often show recovery and plasticity.

In the DG, an alternative hypothesis to disinhibition was suggested to address an animal 

model of TLE in which the perforant path of adult rats was stimulated electrically to 

simulate the precipitating insult in TLE. In this animal model, a 24 h period of intermittent 

perforant path stimulation in urethane-anesthetized rats led to a loss of ‘paired-pulse’ 

inhibition. Based on the results from these experiments, investigators suggested that the 

basket cells, (defined by parvalbumin expression) were spared but there was loss of HIPP 

cells (defined by somatostatin expression) and mossy cells [135]. Because mossy cells 

appeared to be decreased in numbers, and there were suggestions in the literature that they 

innervated basket cells, it was hypothesized that the parvalbumin-expressing basket cells 

lost afferent input from mossy cells and became ‘dormant’ and this led to disinhibition of 

GCs [136]. The hypothesis became known as ‘the dormant basket cell hypothesis.’ It was 

suggested that the hypothesis explained epileptogenesis in acquired TLE: if an early insult or 

injury led to loss of vulnerable mossy cells and HIPP cells, but GCs and basket cells were 

spared, the result would be disinhibition of GCs [6, 75].

However, later studies led to some doubt that this hypothesis could explain acquired TLE 

[12]. An alternative hypothesis – the ‘irritable mossy cell hypothesis’ – suggested that 

mossy cells could cause GC hyperexcitability because the mossy cells, which project 

directly to GCs, developed increased excitability. This hypothesis was developed on the 

basis of recordings from mossy cells in slices after post-traumatic injury [113, 114], another 
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type of precipitating insult that leads to TLE. In addition, mossy cell hyperexcitability was 

shown subsequently in slices from epileptic rats after SE [128].

A result that argued against these two hypotheses came from studies of animals with chronic 

epilepsy after kainic acid-induced SE. These experiments showed that there was an increase 

in paired-pulse inhibition of GCs, not a decrease [139]. In addition, slices from animals after 

SE did not exhibit spontaneous seizure-like activity, suggesting they had intact inhibition 

rather than weak inhibition. This was unlikely to be due to the differences in the SE model 

since ‘irritable mossy cells’ were observed, at least in one study of SE [128]. In slices, 

exposure of slices to GABAAR antagonists led to seizure-like activity that was more 

prolonged in slices from animals that had SE than slices from control rats. From these 

experiments, it was suggested that slices from animals with SE were hyperexcitable but it 

was normally masked by GABAAR-mediated inhibition [129, 147]. In slices from humans 

with intractable TLE, there was enhanced sensitivity to bicuculline [39]. These observations 

and others led to the idea that increased inhibition was present to compensate for underlying 

hyperexcitability [147, 162]. Although in some cases the studies of animals with SE and 

intractable TLE reflect differences in the models or the subtypes of TLE, here the data from 

different models and humans was consistent, making the observations compelling.

Although an attractive idea, GABAergic inhibition in the animal models of SE does not 

necessarily seem to be too strong, masking underlying hyperexcitability. For example, inter-

neurons exhibit axonal sprouting in the DG in animal models of TLE [5, 32, 151]. It is not 

clear that they simply extend their output, inhibiting more glutamatergic neurons than 

normal, because they innervate inhibitory neurons as well [137]. Interneurons develop 

abnormal glutamatergic input from sprouting of the GCs into the inner molecular layer 

(mossy fiber sprouting; for review see [19]). The evidence for this is based on staining of the 

mossy fibers with Timm stain [137]. Electron microscopy of the mossy fiber boutons in the 

inner molecular layer supported the idea that the sprouted mossy fibers activate GABAergic 

basket cells [43]. In further support of this idea, it was suggested that normal mossy fibers in 

the hilus and area CA3 primarily innervate GABAergic neurons and primarily have an 

inhibitory effect on CA3 [1]. Moreover, GCs express GABA as well as glutamate after SE 

[50] and GABA release from GCs can be inhibitory [158] although the latest studies suggest 

this may be limited to GCs at an early stage of development [23]. The vast majority of 

studies show that GCs in normal hippocampus excite their target cells [60, 122, 156]. In 

addition, when mossy fiber synapses in the epileptic rat were quantified in the inner 

molecular layer, the majority were located on GCs, not interneurons [19, 20].

One way to reconcile the different data is to suggest that mossy fibers have a large dynamic 

range, with filopodia that excite interneurons and massive boutons that excite principal cells. 

The outcome may depend on recent activity, which can potentially upregulate GABA 

expression, or alter the peptide content of the massive boutons so that they are more 

excitatory [123]. Other hypotheses suggest that mossy fibers can be inhibitory to area CA3 

pyramidal cells depending on the firing mode of GCs – after bursts of GC action potentials, 

excitation of pyramidal cells is transiently suppressed [82].
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As our experimental techniques improved, our understanding of the underlying changes 

became clearer. For example, initial assays to assess inhibition measured paired-pulse 

inhibition which uses extracellular recordings and is not an extremely reliable measurement, 

because small changes in the stimulating or recording sites can alter the extent of inhibition 

even in the same preparation [157]. As patch clamp recordings developed, more indices of 

pre- and postsynaptic GABAergic inhibition became possible, and the results have shown 

that the GABAergic system in the DG is changed in diverse ways after SE, not always 

consistent with disinhibition of GCs, and not always consistent with hyperinhibition (Fig. 

11.1b, c).

11.3.2 Alterations in GABA Receptors in GCs After SE

During SE, inhibitory GABAergic synaptic transmission in the DG becomes compromised, 

presumably due to the dramatic increase in activation of GABAergic neurons. Miniature 

inhibitory post-synaptic currents (mIPSCs) are reduced in GCs and the number of active 

GABAARs per GC decreases [26, 47, 86] via enhanced clathrin-dependent GABAAR 

internalization [48, 59]. In vitro studies using hippocampal neurons, stimulated with a buffer 

containing low magnesium to induce spontaneous recurrent epileptiform discharges, showed 

a large decrease in GABA-gated chloride currents that correlated with reduced cell surface 

expression and intracellular accumulation of GABAARs [13, 48]. In vivo studies using 

chemoconvulsants have shown that SE promotes a rapid reduction in the number of 

physiologically active GABAARs in GCs that correlated with a reduction in the level of 

β2/β3 and γ2 immunoreactivity present in the vicinity of a presynaptic marker [86]. In fact, 

SE appears to trigger subunit specific events to regulate the trafficking of GABAARs by 

promoting the dephosphorylation of β3 subunits [47, 150]. Decreased phosphorylation of β3 

increases the interaction of GABAARs with the clathrin-adaptor protein 2 (AP2), facilitating 

the recruitment of GABAARs into clathrin-coated pits and promoting their removal from the 

plasma membrane [47, 150]. In hippocampal slices obtained from mice after SE, increased 

GABAAR phosphorylation or blockade of normal AP2 function resulted in GABAAR 

accumulation at the plasma membrane and increased synaptic inhibition [150].

Alterations in GABAAR subunit composition occur subsequent to SE in a number of animal 

models, and there is evidence that these changes my contribute to epileptogenesis [18, 72, 

76, 92, 144,166]. SE results in changes in the expression and membrane localization (i.e., 

extrasynaptic vs. synaptic) of several GABAAR subunits (e.g., α1, α4, γ2, and δ) in GCs. 

Beginning soon after SE and continuing until and after the animals become epileptic, these 

alterations are associated with changes in phasic and tonic GABAAR-mediated inhibition, 

and in GABAAR pharmacology [21, 30, 45]. After pilocarpine-induced SE, GABAAR α1 

subunit mRNA expression decreases, and GABAAR α4 subunit mRNA expression increases 

[18]. Changes in GABAAR function and subunit expression have also been observed in 

neurons from surgically resected hippocampus of patients with intractable TLE; [17, 143]. 

These alterations are associated with an increase in α4γ2 containing receptors, a reduction in 

α1γ2 containing receptors in the DG [76], and shift of α4-containing receptors from 

extrasynaptic to synaptic and perisynaptic locations, which is likely to be related to the 

appearance of α4βγ2 receptors [146, 166]. Changes in expression and localization of α-

subunits associated with changes in synaptic GABAAR composition result in a number of 
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changes in synaptic inhibition in GCs, including diminished benzodiazepine sensitivity, 

enhanced zinc sensitivity, reduced neurosteroid modulation, and diminished phasic 

inhibition in dendrites [21, 30, 45, 146]. Preventing the reduction in GABAAR subunit α1 

expression after SE via viral-mediated transfer of an α1 subunit transgene in adult rodents 

reduced subsequent epilepsy development, resulting in a three-fold increase in the mean 

time to the first spontaneous seizure, and a decrease to 39 % of AAV-α1-injected rats 

developing spontaneous seizures in the first 4 weeks after SE compared to 100 % of rats 

receiving sham injections [99]. Together, these data support a role for GABAAR α-subunit 

changes in the process of epileptogenesis.

Receptors containing α4 subunits are most often found with the δ rather than the γ subunit in 

combination with αβ. These α4βδ GABAARs are localized to extrasynaptic sites and 

contribute to tonic inhibition. Under physiological conditions, only a minor population of 

α4βγ2 GABARs are found within GABAergic synapses on GCs, where they are proposed to 

affect both the rise time and decay of synaptic currents [71]. In parallel with the decrease in 

α1 subunit expression in GCs after SE, there is a marked increase in α4 subunit expression 

that results in an increase in the abundance of α4γ2-containing receptors in synaptic and 

perisynaptic locations [146, 166] (see Fig. 11.2), along with the reduction in α1γ2-

containing receptors [76]. The α4βγ2 receptors may contribute to epileptogenesis, as α4-

containing GABAARs have been shown to desensitize rapidly, especially when assembled 

with β3 subunits [71]. In addition, GABAARs containing the α4 subunit are very sensitive to 

zinc blockade, as are GABAARs on GCs in the epileptic brain [21, 30]. Zinc containing 

mossy fiber terminals sprout from the granule cell layer of the hippocampus onto other GCs 

and into CA3, likely depositing zinc onto the newly formed α4βγ2 receptors causing a 

decreased response to GABA. Collectively these alterations may contribute to epilepsy 

development, phar macoresistance and further epilepsy progression.

GABAAR subunit alterations after SE are regulated by increased synthesis of brain-derived 

neurotrophic factor (BDNF) and activation of its receptors (TrkB and p75) that control a 

number of down-stream pathways, including Janus kinase (JAK)/Signal Transducer and 

Activators of Transcription (STAT), protein kinase C, and mitogen activated protein kinase 

(MAPK; [76, 107, 108]). BDNF is known to enhance cAMP response element binding 

protein (CREB) phosphorylation through binding to TrkB receptors [105, 163], and is also a 

potent regulator of inducible cAMP response element repressor (ICER) synthesis [57]. 

Using chromatin immunoprecipitation (ChIP) and DNA pulldown studies, it has been 

determined that there is increased binding of pCREB and ICER to the GABARα1 gene 

promoter (GABRA1-p) in DG after SE [76]. BDNF regulation of ICER expression is 

mediated by JAK/STAT pathway activation, specifically activation of pJAK2 and pSTAT3 

[76]. pSTAT3 association with the STAT-recognition site on the ICER promoter is 

enhanced after SE in DG and inhibition of JAK/STAT signaling pathway with pyridone 6 

(P6) in primary hippocampal cultures and in vivo in DG prior to SE blocks both ICER 

induction and decreased transcription of GABRA1 [76]. These findings suggest a specific 

signaling cascade involving BDNF, JAK/STAT, and CREB that is critical to the reported 

decreases in α1 subunit levels following SE and may contribute to epileptogenesis. Increases 

in GABARα4 subunit are transcriptionally regulated by BDNF activation of the TrkB 
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receptor which leads to upregulation of the early growth response factor (Egr3) pathway via 

a PKC/MAPK-dependent pathway [107]. Egr3 association with the early-growth response-

recognition (ERE) site on the GABRA4 promoter is enhanced after SE in DG [107] (See Fig. 

11.3).

11.3.3 Regulation of GABA in Early Development and Its Relevance to TLE

One of the themes in studies of animal models of TLE is the idea that the myriad of changes 

in hippocampal structure and function that have been described are associated with a 

recapitulation of development that is caused by the epileptogenic insult. A robust example is 

the dramatic increase in the rate of adult neurogenesis in the DG after epileptogenic insults 

like SE. First noted by Bengzon et al [10] using stimulusevoked afterdischarges, and Parent 

et al. [90] after pilocarpine-induced SE, the increase in the rate of adult neurogenesis after 

seizures, and particularly SE (in adult rodents), has been reproduced by many laboratories in 

response to virtually all epileptogenic insults: kindling, kainic acid or electrically-induced 

SE, or traumatic brain injury [121, 124].

Initially it was suggested that many of the neurons that are born after SE do not survive 

long-term [90] which has also been shown by others [96] but a substantial fraction of 

newborn neurons can survive in some animal models, and these mismigrate into the hilar 

region, where they are called hilar ectopic GCs (hEGCs; [119]). Other adult-born GCs 

migrate correctly but develop abnormal dendrites in the hilus, called hilar basal dendrites 

[104, 133]. These neurons also appear to survive long-term and can be generated for a long-

time after SE [62]. Another subset of GC that develops after SE and is abnormal develops an 

enlarged cell body (hypertrophy; [98]). The abnormal GCs are potentially important because 

they contribute to mossy fiber sprouting, particularly hEGCs [69, 94, 119]. HEGCs 

participate in seizures in vivo [130] and their numbers are correlated with chronic seizure 

frequency [79]. Manipulations that reduce hEGC number reduce chronic seizure frequency 

after SE [63], although selective deletion of hEGCs is not yet possible. The hEGCs display a 

variety of electrophysiological characteristics [61, 118, 164, 165] which are unlike normal 

GCs. For these reasons, the neurons that hypertrophy, and the hEGCs, have been suggested 

to contribute to seizure generation [63, 68, 98, 117, 119].

The plasticity of GABAergic mechanisms in animal models of TLE plays a potentially 

important role in the development of abnormal GCs, and therefore the role these GCs play in 

seizure generation. In a study that used experimental febrile seizures to induce epilepsy later 

in life, febrile seizures caused mismigration of immature GCs into the hilus by changing the 

normal regulation of migration by GABA acting at GABAARs. This study was important in 

showing that altering the normal effect of GABA by febrile seizures could cause aberrant 

circuitry that would persist long-term, potentially contributing to seizure generation. 

Interestingly, the way that GABA was altered was in the expression of GABAARs; more 

GABAARs were found by western blot after febrile seizures. In response to increased 

depolarization by GABA, immature GCs migrated opposite to their normal direction, into 

the hilus instead of the GC layer. Knockdown of NKCC1 could block the formation of 

hEGCs and reduce the long-term effects [68]. The studies of Koyama and colleagues and 

Swijsen et al. [149], who also studied febrile seizures, both found increased β2/3subunits 
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occurred in newborn GCs after febrile seizures [149]. Changes in α3 subunits were also 

noted by Swijsen et al. [148]. The results suggest that febrile seizures lead to long-lasting 

changes in the expression of GABAARs in the DG, and in the GCs that were born after 

febrile seizures. These effects could lead to lifelong reduction in limbic seizure threshold. 

They also may contribute to the comorbidities in TLE, such as depression [16, 66], a 

psychiatric condition where adult neurogenesis in the DG has been shown to play a critical 

role [112].

Another study of adult rodents is also relevant to the formation of aberrant GCs in TLE. This 

study used pilocarpine-induced SE in adult rodents to ask how KCC2 is altered immediately 

after SE. The investigators showed that there was a downregulation of KCC2 in the DG after 

SE which would make GCs (both mature and immature GCs) depolarize more in response to 

GABA [91]. If the results of Koyama et al. [68] are correct, greater depolarization by GABA 

would be likely to foster mismigration of immature GCs. A similar phenomenon may 

explain why newborn neurons after SE, in the adult, mismigrate for long distances –it has 

been described that they migrate from the subgranular zone to the border of the hilus and 

area CA3 [118]. Together the new information about [Cl−]i regulation are providing 

potential mechanisms underlying acquired epileptogenesis in the immature and mature 

brain. Although a great deal more information will be necessary before new treatments can 

be developed based on the new hypotheses, NKCC1 antagonists are already in clinical trial 

[64, 65].

11.4 Summary

In the DG, the robust plasticity of GCs has been of avid interest because they upregulate 

numerous proteins and exhibit robust sprouting of their axons after seizures. Although 

extensive studies of GABA in the DG have been made in TLE, the remarkable plasticity of 

GABAergic mechanisms is often not considered as much as development of disinhibition or 

hyperinhibition. Here we suggest that there are numerous pre- and postsynaptic changes in 

GABAergic transmission, even if one only addresses GABAergic synapses on GCs and 

GABAA receptors. Taken together, this plasticity leads to more complexity of GABAergic 

transmission in the epileptic brain, not simply an increase or decrease. The idea that 

GABAergic inhibition is dramatically altered, rather than increased or decreased, is 

consistent with the diversity of results of past studies. Therefore, this perspective helps 

address some of the conflicts in the past. It also provides a different and potentially more 

accurate perspective that will facilitate antiseizure drug development.
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Fig. 11.1. DG circuitry in the normal adult rodent and following status epilepticus (SE)
(a ) Circuitry of the normal rodent DG is shown schematically. Cell bodies outlined in green 

are glutamatergic; those cells outlined in red are GABAergic. Black circles indicate the 

primary location of the somata; grey circles are secondary locations. Gray rectangles 

indicate the location of the axon terminals. Abbreviations of the lamina of the DG are as 

follows: OML outer molecular layer, MML middle molecular layer, IML inner molecular 

layer, GCL granule cell layer, SGZ subgranular zone. MOPP, molecular layer cell body, 

axon in the terminal field of the perforant path; HIPP, hilar cell body, axon in the terminal 
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field of the perforant path. HICAP, hilar cell body, axon in the terminal field of the 

commissural/associational projection (Adapted from Freund and Buzsaki [42]). ( b ) A 

summary of a. ( c ) Changes in the DG circuitry following SE are diagrammed. After SE, 

changes are as follows: GC axons sprout into the IML; newborn GCs are born and some 

migrate into the hilus and GCL; many mossy cells are lost (indicated by the arrow light cell 

body color and dotted line around the axon plexus); some GABAergic neurons are lost and 

others sprout into several layers (For references, see text)
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Fig. 11.2. GABAAreceptor subunits in dentate gyrus (DG) granule cells (GCs) in the normal 
adult rodent and following SE
(a ) Control conditions. (1) The subunits of the GABAAreceptor (GABAAR) are 

diagrammed, with sites of modulation noted. The location of the K+Cl− cotransporters 

NKCC1 and KCC2 are depicted schematically. (2) An overhead view of a typical GABAAR 

in a normal adult GC. It has α1, β2/3 and γ2 subunits with two sites for GABA and a 

benzodiazepine (BZD) site for modulation. (3) The prototypical GABAergic neuron in the 

DG is the basket cell (triangle) which has an axon that encircles GC somata, making 

periodic GABAergic synapses. (4) A schematic of the GABAergic synapse in control 

conditions has synaptic α1β2/3γ2 receptors and extrasynaptic receptors that contain different 

subunits (α4β2/3δ). (b) After SE, KCC2 expression decreases and the direction of chloride 

flux may change as a result. The expression of α1 subunits decrease and α4 subunits 

increase. Other changes are altered sensitivity to modulators. (2) One of the changes in the 

GABAARs in the DG after SE is loss of benzodiazepine sensitivity. (3) The pyramidal 

basket cell and its basket plexus appears to be similar after SE, although other GABAergic 

neurons are altered, and there may be changes in expression of various peptides. (4) The 

GABAergic synapse after SE has fewer α1 subunits and increased α4 subunits, which may 

become perisynaptic (indicated by a ?) (References are listed in the text. Parts 1–2 of this 

figures were adapted from Jacob et al. [59])
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Fig. 11.3. Regulation of GABAA receptor expression after SE
BDNF regulates the final composition of GABAARs by differentially altering the expression 

of α1 and α4 subunits. Both in vivo and in vitro evidence suggest that increased levels of 

BDNF following SE activate at least two different signaling pathways: JAK/STAT and 

PKC/MAPK, resulting in the down-regulation of α1 subunits and the up-regulation of α4 

subunits, respectively (Reproduced from Gonzalez and Brooks-Kayal [46] )
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