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Obstructive sleep apnea (OSA) is a common sleep-
related breathing disorder affecting up to 27% of 
women and 43% of men aged 50 to 70 years and 

9% of women and 26% of men in the 30- to 49-years-old 
category.1,2 OSA is associated with cardiovascular and cere-
brovascular diseases, metabolic disorders, and impaired 
neurocognitive function.3,4

Although surgical patients with OSA have a 2- to 
3-fold increased risk of cardiopulmonary adverse events, 
a majority of patients with OSA are not diagnosed when 
they present for surgery.5,6 OSA is recognized to be a het-
erogeneous disorder with both anatomical (upper airway) 
and nonanatomical traits.7 Several components includ-
ing the upper airway anatomy, effectiveness of the upper 
airway dilator muscles like the genioglossus, arousal 
threshold of the individual, and inherent stability of the 

respiratory control system determine the pathogenesis of 
OSA. The heterogeneity in pathophysiology is more evi-
dent in patients with mild-to-moderate OSA than in those 
with severe disease.8 A recent study found that 69% of 
patients with OSA have one or more predisposing physio-
logical traits.9 Although the apnea hypopnea index (AHI) 
is the most commonly used metric of OSA severity, it may 
not be the metric that best correlates with postoperative 
outcomes.

Although continuous positive airway pressure (CPAP) 
is the gold standard treatment for symptomatic moderate-
to-severe OSA, the acceptance rate is low, approximately 
50%.10 The outcomes of CPAP treatment may vary depend-
ing on the clinical phenotypes of OSA.11 It may be useful to 
understand the clinically important endotypes and pheno-
types of OSA to target treatment based on the mechanism. 
This knowledge can also guide the perioperative health 
care team in the optimal management of surgical patients 
with OSA.

PATHOPHYSIOLOGY OF OSA
The important 4 components that determine OSA pathogen-
esis include the following: (1) upper airway anatomy, (2) the 
ability of upper airway dilator muscles to respond to pha-
ryngeal collapse during sleep, (3) the propensity to wake up 
from respiratory stimulus during sleep, and (4) the inherent 
stability of the respiratory control system. The risk factors 
and specific pathophysiologic mechanisms predisposing to 
OSA along with their treatment are described in Figure 1.

A narrow upper airway is prone to collapse, but is 
prevented by a reflex-mediated increase in upper airway 
dilation when awake. Physiologic studies in rats have 
shown that sleep reduces serotonergic neural input to 
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motor neurons of upper airway dilator muscles, allow-
ing collapse of the upper airway and contributing to air-
way obstruction.12 In addition, pharyngeal patency is also 
dependent on lung volume, which exerts a mechanical 
traction on the upper airway. Sleep-induced decrements 
in lung volume lead to reduction in this longitudinal trac-
tion yielding a collapsible pharynx.13 The hypercapnic 
respiratory drive and diaphragmatically generated nega-
tive intrapharyngeal pressure during an episode of airway 
obstruction predisposes the OSA patient to arouse repeat-
edly from sleep. Each arousal is accompanied by a robust 
ventilatory response that decreases the carbon dioxide 
level perpetuating central apnea (cessation of airflow for at 
least 10 seconds with no respiratory effort), which further 
destabilizes breathing. Also, ventilatory control is inher-
ently less stable in OSA patients. Additionally, overnight 
rostral fluid shift from the legs to the neck may narrow the 
pharyngeal lumen in some patients with edema because of 
excess extracellular fluid volume.14

DEFINITION OF ENDOTYPES AND PHENOTYPES OF 
OSA
Phenotypes have been developed to address the complexi-
ties of a disease. A “phenotype” is defined as an observ-
able expression of an individual’s characteristics that result 
from the interaction between the individual’s genes (geno-
type) and the environment, without any implication of a 
mechanism.15

Phenotype is distinct from an “endotype,” which is the 
subtype of a disease defined by a unique or distinctive func-
tional or pathophysiologic mechanism. Pathogenic mecha-
nisms of OSA based on craniofacial morphology, obesity, 
arousal functions, upper airway muscle activity, ventilatory 
control stability, and nocturnal rostral fluid shift constitute 
potential endotypes of OSA. A specific phenotype may 
encompass several endotypes.16

Characterizing the heterogeneity of OSA into various 
well-defined phenotypes is challenging because there are 

sparse prospective data and long-term validation. Clinical 
examination and sleep studies can identify some endotypes; 
however, recognition of the others is in the experimental 
stage. High-quality research is underway to help develop 
clinical tools to identify and target interventions.

Presently, there is no consensus for classifying OSA into 
various phenotypes. We have suggested a classification of 
OSA phenotypes with a link to their corresponding pre-
dominant endotypes, based on the underlying mechanism 
(Table  1). The pathophysiologic endotypes are discussed 
below followed by a description of the various frequently 
encountered clinical OSA phenotypes. The characteristics 
of sleep-related breathing disorders similar to OSA and the 
perioperative management of OSA are also described in 
this review.

ENDOTYPES AND PHENOTYPES OF OSA
Pathophysiologic Endotypes of OSA
These subsets can be classified as anatomical and nonana-
tomical (physiologic) endotypes.

Based on Anatomy
Obesity and Craniofacial Morphology. Anatomy and upper 
airway collapsibility are important determinants of the 
presence or absence of OSA and its severity. Obesity and 
craniofacial abnormalities account for two-thirds of the 
variation in OSA severity measured by AHI.17 The relationship 
between the soft tissues and bony enclosure of the upper 
airway is depicted in Figure 2.

Patients with a structurally narrower and more collaps-
ible pharyngeal airway usually manifest severe OSA. They 
have a high critical closing pressure (Pcrit), which is defined 
as pressure inside the partial airway at which the airway col-
lapses. Obesity is a prominent feature in OSA patients with 
high closing pressures exclusively at the retropalatal airway, 
whereas craniofacial abnormalities such as small maxilla and 
mandible were predominant in OSA patients with high clos-
ing pressures at both retropalatal and retroglossal areas.18

Figure 1. Risk factors, pathogenic mech-
anisms, and treatments for obstructive 
sleep apnoea. Specific pathogenetic 
mechanisms of the various risk factors 
of OSA have recently been recognized. 
This paves the way for novel therapeu-
tic approaches targeting individual 
pathogenic mechanisms, as possible 
successful alternatives to CPAP, which 
is the current universal treatment of 
choice. Reprinted with permission from 
Jordan et al. Adult obstructive sleep 
apnoea. Lancet. 2014;383:736–747. 
CPAP, indicates continuous positive 
airway pressure; HGNS, hypoglossal 
nerve stimulation; MAD, mandibular 
advancement device; O2, oxygen; UPPP, 
uvulopalatopharyngoplasty.
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Obesity. Obesity is the most common and well-recognized 
risk factor for OSA. Moderate-to-severe sleep apnea, 
defined as an AHI of >30 events/h, is present in 65% of 
males and 23% of females with severe obesity.19 Although 
the increased overall body weight is clearly linked to OSA, 
the particular patterns of fat distribution over the neck 
and waist underlie the pathophysiologic mechanisms. 
The neck circumference is a strong predictor of sleep-
disordered breathing indicating that fat deposition in the 
parapharyngeal area is important for the development of 
sleep apnea.20 The android pattern of fat deposition in the 
abdomen, seen more commonly in men, reduces the lung 
volume and thereby the caudal traction on the pharynx, 
increasing pharyngeal collapsibility.21

Obesity, being a modifiable risk factor, is unique among 
the other risk factors of OSA. The strong relationship 
between obesity and OSA is strengthened by the evidence 
that weight loss measures through diet and bariatric surgery 
are associated with an improvement in the severity of OSA.22

Craniofacial Morphology. Although obesity is considered a 
major anatomical risk factor for OSA, craniofacial morphology 
also plays a role in OSA pathogenesis. The predominant 
craniofacial characteristics associated with OSA include an 
inferior positioning of the hyoid bone,23 retropositioning of 
the mandible,24 a smaller cranial base,23 an increase in the 
craniocervical extension angle23 as well as abnormal upper 
airway soft tissue morphology. Craniofacial skeletal enclosure 
and the amount of soft tissue within is termed as “anatomical 
balance.”21 Genetic and environmental-mediated imbalances 
between these anatomical factors are important in OSA 
pathogenesis.

Craniofacial characteristics are also relevant to target 
OSA treatment by altering upper airway bony and soft 
tissue anatomy. Oral appliances such as the mandibular 
advancement or tongue retaining splints hold the lower 
jaw or tongue, respectively, in a forward position during 
sleep, increasing the size of the retropalatal airway.21 They 
can be considered as alternatives to CPAP for some patients. 

Table 1.  OSA Phenotypes and Corresponding Endotypesa

OSA Phenotypes Predominant Endotypes
OSA in elderly patients Low arousal threshold

Rostral fluid shift
Hyporesponsive genioglossus Anatomical (abnormal fat 

distribution)
OSA in males Anatomical

(android obesity)
Rostral fluid shift (age >40 y)

OSA in fluid overloaded states Rostral fluid shift
OSA in menopausal women Anatomical

(abnormal fat distribution)
Ethnic OSA phenotypes
African Americans Anatomical (obesity)
Asians Anatomical (abnormal craniofacial morphology)
Caucasians Anatomical (both obesity and abnormal 

craniofacial morphology)
REM-related OSA phenotype Hyporesponsive

Genioglossus
Supine-related OSA phenotype Anatomical Hyporesponsive genioglossus
aLinking underlying pathologic mechanisms with phenotypes of OSA.
Abbreviations: OSA, obstructive sleep apnea; REM, rapid eye movement.

Figure 2. A schematic representation of the 
interaction between soft tissue and the upper 
airway bony enclosure and their combined effect 
on airway size. Reprinted with permission from 
Watanabe et al; Am J Respir Crit Care Med. 2002; 
165:260–265. Ptissue – pressure exerted by soft 
tissue on upper airway. Ptissue is determined by 
the balance between the amount of soft material 
inside the enclosure and the size of the surround-
ing rigid box. Obesity leads to an excess of soft 
material inside the rigid box. In contrast, a small 
bony enclosure reduces the size of the rigid box. 
Accordingly, an imbalance between body habi-
tus and craniofacial abnormalities may result in 
increased tissue pressure surrounding the pha-
ryngeal airway, leading to closure of this airway.
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Likewise, craniofacial morphology can be altered by surgi-
cal procedures such as maxillary-mandibular advancement 
and uvulopalatopharyngoplasty.21

Based on Physiology
OSA Endotype With Ineffective Upper Airway Dilator Muscles 
(eg, Genioglossus). The decreased tone of upper airway dilator 
muscles especially the genioglossus is a key contributor to OSA 
pathogenesis. The genioglossus is one of the largest extrinsic 
muscles of the tongue25 and is the main upper airway dilator. 
The contraction of the genioglossus directly dilates the upper 
airway by pulling the base of the tongue forward.26 It is highly 
reactive to chemical drive such as hypoxia and hypercapnia27 
and to increased negative intrapharyngeal pressure.28 The 
electromyographic activity of genioglossus is greater in OSA 
patients than in healthy individuals during wakefulness,29 but 
it is reduced at sleep onset in both of them.30 This may be due 
to inadequate increase in neural drive to the upper airway 
dilator muscles in response to negative pharyngeal collapsing 
pressure generated during tidal breathing.

The genioglossal muscle activity is demonstrated to be 
reduced in both phasic (with eye movements) and tonic 
(without eye movements) rapid eye movement (REM) 
sleep compared with nonrapid eye movement (NREM) 
sleep in OSA patients.31 Thus, obstructive events increase 

in frequency and duration, and are associated with more 
pronounced hypoxemia during REM vs NREM sleep.32

Although genioglossus activity can be measured by analyz-
ing the electromyogram obtained by using a surface electrode, 
it is not routine in the clinical evaluation of OSA patients. A 
segment of polysomnography (PSG) during an obstructive 
event is shown in Figure 3. It shows the progressive increase in 
electromyographic activity of genioglossus muscle throughout 
the obstructive event, although not sufficient to restore airflow. 
Hence, it is followed by arousal of the patient.

Hyporesponsiveness of upper airway muscles is amena-
ble to treatment with electrical stimulation of the hypoglos-
sal nerve or the genioglossus muscle directly. This approach 
has been shown to improve airway patency and reduce the 
pharyngeal critical closing pressure in several studies.33–35 
Serotonergic drugs such as paroxetine and mirtazapine can 
help in dilating upper airway muscles, but they do not have 
consistent effects on AHI.36,37

OSA Endotypes of High and Low Respiratory Arousal 
Threshold. The respiratory arousal threshold is defined as the 
ease at which a sleeping person can be awakened. Arousals 
are defined as 3 seconds of high-frequency activity on the 
electroencephalogram. They are scored in a PSG as respiratory 
arousal index, defined as the average hourly sleep arousals due 

Figure 3. PSG tracings of an obstructive sleep apnea event in a patient with severe OSA. There was increased EMG activity of the genioglossus 
muscle during the apneic event, although it was not significant enough to restore flow without arousal. The arousal threshold is characterized using 
Pepi, which is the epiglottic pressure immediately preceding arousal and there is a large ventilatory response following arousal. Reprinted with 
permission from Campana et al; Indian J Med Res. 2010;131:176–187. EEG indicates electroencephalogram (C3-A2); EMGgg, electromyogram of 
the genioglossus muscle (intramuscular); Pepi, pressure at the level of the epiglottis; Pmask, pressure measured via nasal mask; Vt, tidal volume.
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to respiratory events. Arousal threshold can be measured using 
a CPAP drop method via an epiglottic catheter during a PSG.9,38 
Figure 3 shows a PSG segment during an event of obstruction. 
The negative pharyngeal pressure generated during an event of 
obstruction is seen as negative pressure swings on the epiglottic 
pressure trace. The nadir epiglottic pressure immediately 
preceding arousal is quantified as the arousal threshold. To 
date, these are invasive experimental methods and are not 
measured during routine PSG.

Some OSA patients are found to have a high threshold 
for arousal, whereas others with low arousal threshold 
wake up frequently to minimal stimuli. The notable differ-
ences between the 2 categories are described in Table 2.

OSA and Low Arousal Threshold. Low arousal threshold 
contributes to OSA, in approximately one-third of patients, 
by disrupting continuity of sleep and limiting the sufficient 
accumulation of respiratory stimuli to restore upper 
airway patency and airflow during sleep.39 The sudden 
reintroduction of wakefulness that occurs with arousal from 
sleep may be associated with rapid recruitment of inspiratory 
upper airway motor neurons, augmenting the pharyngeal 
dilator muscle activity and reopening the upper airway. 
The ensuing hyperventilatory response can drive down the 
carbon dioxide levels below the chemical apnea threshold 
resulting in a central apnea. This hypocapnia may also reduce 
the activity of the upper airway dilators by decreasing the 
neural output to these muscles leading to airway collapse.40 
Thus, arousals have the potential to destabilize ventilatory 
control and perpetuate apnea in these patients.

Patients with a low arousal threshold may be identified 
from the standard clinically available variables such as AHI, 
nadir Spo2, and frequency of hypopneas. The criterion for 
each variable was AHI < 30 events/h, nadir Spo2 > 82.5%, fre-
quency of hypopneas > 58%.41 Individuals with a low arousal 
threshold would wake up before developing a very low oxy-
gen saturation and are more likely to have a mild-to-moder-
ate OSA rather than a severe OSA. They have an increased 
frequency of hypopneas rather than apneas due to milder 
airflow obstruction, possibly because of a favorable anatomy. 
Although this study describes a noninvasive method to mea-
sure the arousal threshold, it requires further validation.

Low respiratory arousal threshold may be a potential 
therapeutic target. Patients with low respiratory arousal 
threshold may benefit pharmacologically from certain seda-
tives to improve sleep quality and reduce OSA severity. 
Arousal threshold is proven to be increased by 28% and 48%, 
respectively, with eszopiclone42 and trazodone,43 concomi-
tantly reducing the AHI. Larger clinical trials evaluating 
long-term clinical outcomes are lacking and need to be done.

OSA and High Arousal Threshold. High arousal threshold 
means a lower propensity to arouse from sleep. OSA 

patients may be at a particular risk for developing acquired 
arousal failure as a function of neural plasticity due to 
repetitive exposures to brief periods of hypoxemia over 
many years.44 Respiratory arousal threshold is increased 
in patients with severe OSA despite regular use of CPAP.9 
Although chronic sleep fragmentation (interruption of a 
sleep stage due to frequent awakenings) and intermittent 
hypoxia have been suggested as causes for the increased 
respiratory arousal threshold, the reasons are not clear.45

Patients with a pre-existing high arousal threshold may 
be at increased risk of adverse respiratory events when opi-
oids are used.46 The opioid-induced reduced respiratory 
drive to hypoxia and hypercapnia could decrease the neural 
output to upper airway dilating muscles resulting in upper 
airway collapsibility. In addition, opioids may impair the 
arousal mechanisms that occur in response to hypoxia in the 
perioperative period.47 Thus, sedatives and narcotics can in 
theory precipitate a respiratory arrest leading to sudden 
unexpected death in patients with high arousal threshold as 
they are in a state of “arousal-dependent survival.”

At present, there is no conventional way to identify the 
patients with low or high arousal threshold preoperatively. 
Hence, continuous postoperative monitoring has been rec-
ommended with high-resolution pulse oximetry to detect 
early desaturation and initiate treatment.44 Monitoring 
end-tidal carbon dioxide by using capnography can detect 
hypoventilation earlier in these patients.48

OSA Endotypes Based on Ventilatory Control Stability. A 
characteristic feature of OSA patients is the propensity to 
develop a cyclical breathing pattern whereby the patient 
oscillates between obstructive breathing events (sleep) and 
arousal (wakefulness). An increase in ventilatory drive 
activates the upper airway muscles and promotes patency, 
whereas a decrease in ventilatory drive relaxes the upper 
airway muscles and facilitates closure. Thus, instability in 
ventilatory control is a critical contributor to sleep apnea.

Loop gain is a term used to describe stability or instability 
in a system controlled by feedback loops that modulate out-
put.49 It is the propensity of the ventilatory control system to 
develop fluctuations in ventilatory output. It is defined as the 
ratio of the ventilatory response to a ventilatory disturbance.50 
If the magnitude of the response, ie, hyperventilation is greater 
than or equal to the magnitude of the disturbance, ie, apnea, 
then the loop gain ratio will be ≥1 and the system is considered 
to have a high loop gain and is unstable. A system with a loop 
gain of <1 is stable with little or no fluctuation in breathing.50

High loop gain is characterized by an oversensitive 
ventilatory control system to hypoxia and hypercapnia. 
It may have a substantial impact on OSA severity in cer-
tain patients, particularly those who do not have a highly 
collapsible upper airway.51 There are 2 key potential 

Table 2.  OSA With Low and High Arousal Threshold
Low Arousal Threshold High Arousal Threshold
Higher propensity to wake up from sleep Lower propensity to wake up from sleep
More likely to have mild-to-moderate OSA Predominantly associated with severe OSA
Sedatives may be beneficial Sedatives may evoke a respiratory arrest
Associated with less hypoxia due to reduced apnea duration More prone to hypoxia due to prolonged apneas

Abbreviation: OSA, obstructive sleep apnea.
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mechanisms that are likely to be important, but neither 
is definitively proven. First, elevated loop gain would be 
expected to increase the oscillations from the central ven-
tilatory control in the brainstem, such that the activity of 
the upper airway dilator muscles which receive the neural 
output may vary accordingly. Thus, periods of low central 
respiratory drive may be associated with low upper air-
way dilator muscle activity, high airway resistance, and 
increased propensity to airway collapse. Second, elevated 
loop gain may increase the ventilatory response to arousal. 
This hyperventilation may culminate in central apnea as a 
result of hypocapnia and decreased respiratory drive. The 
central apnea subsequently leads to hypoxia or hypercap-
nia, perpetuating the cycle of instability leading to periodic 
breathing. The PSG segment during obstruction in Figure 3 
shows ventilatory overshoot following arousal, which may 
indicate a high loop gain.

Any intervention that effectively reduces loop gain 
should possibly benefit OSA.50,52 Oxygen is found to be 
effective in reducing loop gain by stabilizing ventilation 
through a reduction in peripheral chemoresponsiveness to 
hypoxia and hypercapnia.50 Likewise, acetazolamide is a 
carbonic anhydrase inhibitor that produces metabolic aci-
dosis and increases baseline ventilation. It can increase the 
respiratory drive to airway obstruction such that the patient 
can reach stable breathing without arousal.52 Hence, there is 
a potential for considering alternative treatment modalities 
to treat OSA patients with a high loop gain and noncompli-
ance to CPAP. It is difficult to measure loop gain in clinical 
practice53 because the methods are experimental and are not 
a current routine in sleep laboratories.38

OSA Due to Fluid Retention and Overnight Rostral Fluid 
Shift
The prevalence of sleep apnea is much higher in patients with 
fluid-retaining states such as congestive heart failure and 
end-stage renal disease than in the general population.54,55 
Fluid accumulates in the intravascular and interstitial spaces 
of the legs due to gravity during the day, and upon lying 
down at night redistributes rostrally, owing to gravity. This 
hypothesis is called “rostral fluid shift.”56 Some of this fluid 
may accumulate in the neck, theoretically leading to a nar-
row upper airway and predisposing to OSA. Spontaneous 
rostral fluid shift was described in healthy nonobese men, 
where the leg fluid volume decreased spontaneously over-
night, with an associated increase in the neck circumfer-
ence.57 Nocturnal fluid was associated with an increase in 
the neck circumference and correlated with the severity of 
OSA in patients with congestive heart failure.54 and end-
stage renal disease.55 Similarly, the lack of physical activity 
in sedentary older individuals increases fluid accumulation 
in the legs during the day and rostral shift during the night.

The rostral fluid shift could be a potential therapeutic 
target to treat OSA in some patients. Potential interventions 
include diuretics, sodium restriction, compression stock-
ings, elevating the head of the bed, exercise interventions, 
and ultrafiltration. Further work is needed to define the ros-
tral fluid shift in the perioperative period.

Clinical Phenotypes of OSA
Based on Sex, Age, and Ethnicity
Sex Differences in OSA
Males are 2 to 3 times more likely to have OSA than 
females58 with longer periods of apnea and more signifi-
cant oxygen desaturations, despite a lower body mass 
index (BMI).59,60 The male predisposition to OSA appears 
to be anatomically based with increased fat deposition 
around the pharyngeal airway.61 The length of the vulner-
able pharyngeal airway is greater in males compared with 
females.62 The android pattern of fat deposition around 
the abdomen contributes to reduced lung volume in males 
and increases the susceptibility to upper airway collaps-
ibility as a result of loss of longitudinal caudal traction on 
the trachea.62

OSA and Age
Elderly patients with OSA are a unique group with a dis-
tinct phenotype.63 The frequency of OSA increases with 
aging with a plateau after 65 years. Reduced airway cali-
ber due to preferential deposition of fat around the phar-
ynx makes the aging population anatomically susceptible to 
OSA.64 Overnight rostral shift of fluids to the neck,57 higher 
surface tension of the upper airway,65 and decreases in lung 
volume tethering effect66 also predispose the elderly popu-
lation to OSA.

The genioglossal responsiveness to negative intrapha-
ryngeal pressure appears to deteriorate with age.64 Older 
adults apparently have an increased frequency of sponta-
neous arousals suggestive of a lower arousal threshold.67 
However, the aging process desensitizes the ventilatory 
control system and lowers the loop gain. Hence, airway 
anatomy/collapsibility plays a greater role in older adults, 
whereas a sensitive ventilatory control system is a promi-
nent trait in younger adults with OSA.63 Table 3 illustrates 
the differences in manifestations of OSA between the 
young and elderly patients. Nasal CPAP has been shown 
to improve OSA and increase sleep effectiveness in elderly 
OSA patients.68

OSA in Menopausal Women
Menopause, pregnancy, and polycystic ovarian syndrome 
increase the risk for OSA in women. The odds ratio for 
OSA was 1.1 in perimenopausal and 3.5 in postmenopausal 
women.69 After menopause, the worsening severity of 

Table 3.  OSA Endophenotype in Different Age Groups
OSA in Young Patients OSA in Elderly Patients
Sensitive ventilatory control system and high loop gain Low loop gain and more stabilized breathing
Excessive daytime sleepiness: prominent symptom Excessive daytime sleepiness: rarely reported
Overnight rostral fluid shift: rare in nonobese Overnight rostral shift of fluid: more prevalent in males >40 y, with a higher BMI
Airway surface tension: decreased Airway surface tension: increased
Tethering effects of the lung on the upper airway is preserved Decreased lung volume tethering contributes to airway collapsibility

Abbreviation: BMI, body mass index; OSA, obstructive sleep apnea.
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OSA predominantly occurs during the NREM sleep versus 
younger women with a predominantly REM-associated 
OSA.8 The pharyngeal airway is longer in postmenopausal 
versus premenopausal women.64 Female sex hormones 
such as estrogen and progesterone have a protective effect 
on upper airway patency and ventilatory drive.59 The risk of 
menopausal OSA can be reduced by hormone replacement 
therapy.70

OSA in Various Ethnic Populations
The relative importance of the anatomical determinants 
of OSA varies between ethnicities. The Asian OSA popu-
lations are found to primarily display features of cranio-
facial skeletal restriction, the African Americans display 
more obesity and enlarged upper airway soft tissues, 
whereas the Caucasians show evidence of both bony and 
soft tissue abnormalities21 (Table 4). Craniofacial restric-
tion71 and central fat deposition72 favor a greater predis-
position to OSA in Asians, despite a lower overall BMI 
compared with other populations.73,74 Brachycephaly, 
which is a disproportionately short and broad head, is 
associated with a higher AHI in Caucasians but not in 
African Americans.75

The photographic craniofacial phenotyping, a technique 
where craniofacial measurements are obtained from com-
puterized photographic analysis, is useful in identifying 
OSA in various ethnic populations.76 Surgical treatment to 
alter the craniofacial anatomy carries a higher success rate 
in treating OSA in certain patients who refuse CPAP.77

OSA in REM Sleep
Hypopneas and apneas are known to be longer in duration 
and cause an increase in the severity of hypoxemia during 
REM compared with non-REM sleep in patients with OSA.78 
REM-related OSA can be categorized as REM-predominant 
and REM-isolated OSA. REM-predominant OSA is defined 
as a doubling of AHI in REM sleep versus the NREM sleep 
(AHIREM:AHINREM > 2 events/h).8 REM-isolated OSA is char-
acterized by a doubling of AHI in REM sleep in addition to 
an AHI of less than 5/h in NREM sleep (AHIREM:AHINREM 
> 2 events/h and AHINREM < 5 events/h).8 The prevalence 
of REM-related OSA ranges from 10% to 36% of the patient 
population with OSA undergoing PSG.79 The female pre-
ponderance of patients experiencing REM sleep-specific 
obstruction is well established.59,80 The REM-predominant 
OSA phenotype comprises older females with more severe 
OSA versus REM isolated OSA in young females with fewer 
events of apnea.8

The available data in the literature to identify the 
reason for worsening of apnea during REM sleep are 
limited. REM sleep is known to be associated with hypo-
tonia81 and reduced responsiveness of the genioglossus 

muscle to negative intrapharyngeal pressure.82,83 This is 
presumably due to withdrawal of excitatory neurochem-
ical inputs to pharyngeal motor neurons, predisposing 
to upper airway collapse. The critical closing pressure 
of the pharynx is similar during both REM and NREM 
sleep, implying that anatomy is not further impaired in 
REM sleep.

REM sleep is associated with greater sympathetic activ-
ity and cardiovascular instability in healthy individuals and 
OSA patients versus NREM sleep.84,85 REM-related OSA has 
been found to be associated with a risk of hypertension.86 
Treatment measures targeted to improve the genioglossus 
muscle tone may reduce obstructive events occurring in 
REM sleep. Transnasal insufflation could also help REM-
related OSA as it possibly stabilizes the hypotonic upper 
airway musculature by increasing the end-expiratory 
intrapharyngeal pressure.87

Supine Position-Related OSA
Supine position-related OSA is a dominant phenotype of 
OSA with a prevalence of 20% to 60% in the general popula-
tion.88 It may be attributable to unfavorable upper airway 
anatomy, reduced lung volume, and inability of airway 
dilator muscles to compensate for the airway collapse in the 
supine position.

Supine position-related OSA can be categorized as 
supine-predominant and supine-isolated OSA.8 On the 
one hand, supine-isolated OSA is characterized by a dou-
bling of AHI in a supine position in addition to an AHI of 
<5 events/h in a nonsupine position (AHISupine:AHINSupine 
> 2 events/h and AHINSupine < 5 events/h). On the other 
hand, supine-predominant OSA presents as a doubling 
of AHI in the supine position versus the nonsupine posi-
tion, where the nonsupine AHI may remain higher than 5 
events/h (AHISupine:AHINSupine > 2 events/h and AHINSupine ≥ 
5 events/h).8 The comparison between supine-related OSA 
and REM-related OSA is shown in Table 5. In the supine-
isolated OSA, the patients tend to be younger males (48 vs 
51 years, P < .05) with a lower BMI (28.6 vs 30 kg/m2, P 
< .05) versus supine predominant OSA.8 Patients with the 
supine position-related OSA were subjectively more sleepy 
versus other patients with OSA indicating that respiratory 
events occurring in the supine position may increase subjec-
tive sleepiness.8

Recognition of the supine position-related OSA may 
be therapeutically useful because these patients respond 
to oral appliances better than other types of nonpostural 
OSA.89 The avoidance of supine sleep with a positional 
device should improve AHI in these patients.90 Upper 
body elevation to 30º, and to a lesser extent lateral posi-
tioning, significantly improved upper airway stability 

Table 4.  Characteristics of Ethnic OSA Endophenotypes
African Americans Caucasians Asians
More obese Both bony and soft tissue abnormalities Craniofacial skeletal abnormalities
Enlarged upper airway
soft tissues
Prognathism
Macroglossia

Brachycephaly Smaller maxilla
Retropositioned mandible
Midfacial hypoplasia

Abbreviation: OSA, obstructive sleep apnea.
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during sleep.91 Hence, oral appliances and positional 
devices can be considered as alternate treatment modali-
ties in these patients if they are noncompliant to CPAP.

OTHER SLEEP-DISORDERED BREATHING SIMILAR 
TO OSA
Upper Airway Resistance Syndrome
The upper airway resistance syndrome is a recently 
described form of sleep-disordered breathing in which 
repetitive increases in resistance to airflow within the upper 
airway lead to brief arousals from 2 to 14 seconds termed 
as respiratory effort-related arousal (RERA) and daytime 
somnolence, followed immediately by decreased airway 
resistance.92 These events are brief and typically last for 1 to 
3 breaths, without meeting the criteria for hypopnea, in the 
absence of frank apnea or oxygen desaturation unlike OSA.

Contrary to OSA patients, patients with upper airway 
resistance syndrome are typically nonobese and younger, 
with a mean BMI of ≤25 kg/m2.93 Craniofacial abnormali-
ties include low soft palate, long uvula, increased over-
bites, and a high and narrow hard palate. Although there 
is controversy whether upper airway resistance syndrome 
constitutes a distinct phenotype versus a condition on the 
spectrum of sleep-disordered breathing, upper airway 
resistance syndrome is underrecognized in sleep centers 
and many patients remained untreated. Twenty-six percent 
of patients without preoperative sleep apnea develop post-
operative sleep apnea.94 This may be attributable to upper 
airway resistance syndrome. RERAs may have been con-
verted to apneas and hypopneas postoperatively because of 
increased upper airway collapsibility.94

Obesity Hypoventilation Syndrome
Obesity hypoventilation syndrome (OHS) patients manifest 
with obesity (BMI ≥ 30 kg/m2), daytime hypoventilation 
(Paco2 > 40 mm Hg), and sleep-disordered breathing in the 
absence of other causes of hypoventilation.95 The prevalence 
of OHS is estimated to be 0.15% to 0.3% in the general popu-
lation95 and 8% in patients undergoing bariatric surgery.96 In 
90% of patients with OHS, the sleep-disordered breathing 
is OSA and the remaining 10% have nonobstructive sleep 
hypoventilation. Patients with OHS present with severe 
upper airway obstruction, restrictive pulmonary physiology, 
blunted central respiratory drive, and pulmonary hyperten-
sion.97,98 Serum bicarbonate is considered to be a surrogate 
marker for daytime hypercapnia and levels ≥27 mmol/L 
may be indicative of OHS.99 The combination of serum 

HCO3
− ≥ 28 mmol/L and a STOP-Bang score ≥3 may help to 

distinguish patients with moderate-to-severe OSA or OHS.98

OHS can pose a higher risk of postoperative compli-
cations and is often unrecognized at the time of surgery, 
requiring better emphasis on preoperative recognition of 
hypercapnia among patients with OSA.100 Therapeutic inter-
ventions for OHS therapy include CPAP therapy, bilevel 
positive airway pressure therapy, supplemental oxygen and 
weight reduction surgery.101

OSA IN SURGICAL PATIENTS
What Can We Learn from PSG of Surgical 
Patients?
Information from PSG may help in the perioperative risk 
stratification of OSA patients. PSG quantifies the number 
of obstructive events, the resultant hypoxemia and arous-
als related to the respiratory events.102 A recent cohort study 
found that patients with a higher preoperative AHI had a 
higher postoperative AHI, and slow wave (NREM) sleep 
percentage was inversely associated with postoperative 
AHI.103 Although AHI is the most commonly used metric 
of OSA severity, it might not be the best metric to correlate 
with postoperative outcomes. The same AHI may have a 
different connotation for the severity of OSA depending on 
the severity of oxygen desaturation during each episode of 
apnea/hypopnea, the cumulated time of overnight oxy-
gen desaturation and the respiratory arousal threshold.104 
Supine respiratory disturbance had been proposed to be one 
of the measure of OSA severity.105 Other parameters such as 
oxygen desaturation index, cumulated duration of oxygen 
desaturation <90%, the lowest Spo2 and/or mean Spo2 may 
help in the prediction of postoperative complications.106

Perioperative Management of OSA
There has been a growing concern regarding the increased 
risk of postoperative complications in surgical patients with 
OSA.107 Preoperative preparation is key in patients with 
OSA.108 The guidelines by the Society of Anesthesia and Sleep 
Medicine recommended additional preoperative evaluation 
for suspected OSA patients with certain conditions such as 
hypoventilation syndromes, severe pulmonary hyperten-
sion, and resting hypoxemia not attributable to other cardio-
pulmonary disease.109 Surgical patients with OSA adherent 
to CPAP therapy should continue CPAP therapy at their pre-
viously prescribed setting perioperatively.110 A recent meta-
analysis indicated that the use of CPAP may have beneficial 
effects of reduction of AHI in the postoperative period.111 
Two large retrospective database studies provide incremen-
tal evidence that confirms the benefits of establishing the 
diagnosis of OSA preoperatively and provide a preliminary 
rationale for treating OSA with CPAP during the periop-
erative period.112,113 Consideration should be given to using 
CPAP or an oral appliance during sedation to patients pre-
viously treated with these modalities.108 Some patients may 
be nonadherent to CPAP therapy. Simple maneuvers such as 
refitting a mask, the addition of heated humidification, or the 
control of nasal congestion with nasal corticosteroid sprays 
may help patients to adhere to therapy.114,115 Automatically 
titrated positive airway pressure (APAP) may be suitable 
for postoperative patients with moderate-to-severe OSA, 

Table 5.  Differences Between REM-Related and 
Supine-Related OSA
REM-Related OSA Supine-Related OSA
Females Males
Older in age Younger in age
Higher mean BMI Lower mean BMI
Genioglossal 

hyporesponsiveness
Unfavorable airway geometry due to smaller 

craniofacial volume (midline obstruction 
such as thyroid, retroglossal thyroid, or 
tonsillar enlargement needs to be excluded)

Reduced lung volume

Abbreviations: BMI, body mass index; OSA, obstructive sleep apnea; REM, 
rapid eye movement.
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especially those with a diagnosis of OSA awaiting CPAP 
titration in a sleep laboratory.116 Adaptive servoventilation, 
which delivers servocontrolled inspiratory pressure sup-
port on top of expiratory positive airway pressure, may be 
more effective to treat opioid-induced respiratory depression 
and central sleep apnea that are not responsive to CPAP.117 
Similarly, overlap syndrome, which is a combination of OSA 
and chronic obstructive pulmonary disease, and OHS are 
effectively treated with BPAP because they require different 
levels of positive pressure during inspiration and expiration 
and a lower expiratory positive pressure.97,118

It may be useful for the perioperative team to have 
knowledge of the various endotypes and phenotypes of OSA 
to provide optimal perioperative management (Table  6). 
Obesity and abnormal craniofacial morphology can be 
associated with poor glottic visualization and unexpected 
difficult intubation in OSA patients. This is compounded by 
the use of sedatives and anesthetics, which worsen upper 
airway collapsibility. The sniffing and ramped up positions 
can facilitate intubation. Preparation for a difficult intuba-
tion should be done by ensuring the availability of airway 
adjuncts and rescue equipment.108

Although, in theory, postoperative use of oxygen ther-
apy in OSA patients may mask hypoxia that accompanies 
obstruction with a risk of significant carbon dioxide reten-
tion,119 it is often required. Oxygen therapy can be justified 
in OSA patients with hypoxemia in the early postoperative 
period until basal preoperative oxygen saturation level is 
reached.120 In addition, oxygen therapy has proven benefits 
in OSA patients with a high loop gain.50 When patient is on 
supplemental oxygen, pulse oximetry may not be reliable to 
detect a respiratory compromise. Respiratory rate and cap-
nography may have to be monitored.44

Certain surgical patients with OSA have a high arousal 
threshold and may be more sensitive to opioids and seda-
tives with a higher risk of respiratory arrest.46 Regional 
anesthesia, by an opioid-sparing effect, decreases airway 
collapsibility and respiratory depression and is beneficial 
in these patients.121 These patients may require prolonged 
continuous postoperative monitoring with high-resolution 
pulse oximetry44 and capnography.48

The supine position can worsen symptoms in patients 
with OSA. Anesthetizing and recovering patients with-
out OSA in the head position elevated up to 6 cm from 

Table 6.  Perioperative Management of OSA
General recommendations Preoperative CPAP

Preoperative mandibular advancement/oral appliances
Preoperative weight loss
Sniffing and ramped up positions for intubation
Preparation for a difficult intubation
Minimizing sedatives and opioids, plan for multimodal analgesia
Considering regional anesthesia techniques whenever possible
Recovery in the lateral, semiupright or other nonsupine positions
Postoperative use of CPAP therapy
Supplemental oxygen as required
Continuous monitoring with pulse oximetry and capnography
Incentive spirometry and early ambulation

Specific considerations for various OSA endophenotypes
Morbidly obese Preoperative weight loss

Preparation for a difficult mask ventilation and intubation
Ramped up position for intubation
PAP therapy postextubation
Screen for OHS, and continued use of special PAP therapy such as CPAP, BPAP, or ASV in 

preoperative and postoperative period
Craniofacial abnormalities involving  

maxilla and mandible
Preparation for a difficult mask ventilation and intubation
Airway adjuncts such as videolaryngoscopes or fiber optic bronchoscopes
Awake intubation may be considered
Possible use of dental devices (not tested in perioperative testing)
Craniofacial surgeries as a long-term therapy

High arousal threshold Proven in research studies. Feasible method of identification required in future
Regional anesthesia whenever possible
Multimodal analgesia
Short-acting anesthetic agents
Judicious use of opioids/sedatives
Continuous postoperative monitoring with high-resolution pulse oximetry

High loop gain Proven in research studies. Feasible method of identification required in future
Oxygen therapy beneficial in stabilizing breathing

Supine-related
OSA phenotype

Avoidance of supine position
Semiupright/lateral position for recovery

Fluid overloaded conditions and rostral fluid shift Potential interventions that may be of benefit:
Elevated body position
Diuretics
Avoidance of excessive fluid administration
Use of compression stockings to decrease leg fluid volume

Abbreviations: ASV, adaptive servo ventilation; BPAP, bilevel positive airway pressure; CPAP, continuous positive airway pressure; OHS, obesity hypoventilation 
syndrome; PAP, positive airway pressure.
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horizontal increases the stability of the airway.122 It is 
useful to have patients with supine-related OSA in lat-
eral or semiupright positions throughout the periopera-
tive period. Although the role of fluid shift in worsening 
of OSA is not studied in the perioperative period, it may 
be prudent to restrict perioperative fluid administration 
in the elderly OSA patients and those with fluid reten-
tion states. Aggressive incentive spirometry and early 
ambulation are found to optimize the pulmonary status in 
OSA patients undergoing laparoscopic Roux-en-Y gastric 
bypass.123 Breathing disturbances during sleep were found 
to be highest on the third postoperative night, while the 
disturbances in sleep architecture were greatest on first 
postoperative night with a significant decrease in sleep 
efficiency, slow-wave sleep, and REM sleep in both OSA 
and non-OSA patients.124 The cause of the breathing dis-
turbances may be partly due to recovery of REM sleep by 
the third postoperative night.124 Transnasal insufflation 
with a nasal cannula has been shown to relieve obstruc-
tion associated with REM-related OSA, by stabilizing the 
hypotonic upper airway dilators.87

Alternative therapies used to treat OSA, such as oral 
appliances, oral negative pressure devices, hypoglossal 
nerve stimulation, body positioners, nasal resistive valves, 
and other treatments, although proven to be effective, have 
not been systematically studied in the perioperative set-
ting. Patients using the alternative therapies as their pri-
mary treatment or due to noncompliance to CPAP should 
be encouraged to continue them in the perioperative period.

CONCLUSION
In conclusion, OSA has recently been recognized as a com-
plex multifactorial disease with distinct endotypes and 
phenotypes. This knowledge is of particular importance in 
providing the optimal perioperative care to OSA patients. 
In addition to empirical CPAP therapy, supplemental oxy-
gen can help to stabilize breathing in OSA patients with 
high loop gain. Avoidance of supine position can minimize 
airway obstruction in patients with a supine-related OSA. 
In the future, OSA patients with a high arousal threshold 
should be recognized because they are sensitive to sedatives 
and narcotics with a risk of respiratory arrest in the periop-
erative period. Hence, understanding the pathophysiologic 
mechanisms of OSA is critical to the success of individual-
ized therapeutic approaches. E
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