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ABSTRACT OF THE THESIS 

  

Evaluation of Smartphone-based Motion Capture System for Athletic Movement Screening  
  

  
by 

  

Rebecca Gow 

  

Master of Science in Bioengineering 

University of California San Diego, 2023 

Professor Andrew D. McCulloch, Chair 
  

Marker-based motion analysis is used to evaluate human movement and identify 

biomechanical features related to injury risk. However, these studies require extensive 

expertise, are labor intensive, time consuming, and high cost, making them impractical for 

routine use. Open-source smartphone-based motion capture systems such as OpenCap offer 

scalable, low cost, and automated alternatives to conventional motion capture systems. The 

goal of this study was to compare OpenCap to gold standard clinical marker-based motion 

capture for movement screening tasks. Sixty-two retroreflective markers were placed on ten 

healthy collegiate female athletes who completed a set of tasks commonly used to assess 

movement quality. A musculoskeletal model was used to estimate hip adduction, hip flexion, 

hip rotation, knee flexion, and ankle flexion with both OpenCap and marker-based inverse 

kinematics. OpenCap was approximately 12 times faster for data collection and processing, 
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with only 2% of trials deemed unusable. RMSEs ranged from 3.5 to 11.3° across all joints 

and movement tasks. Pearson’s correlation coefficients for peak joint angles for select 

movements ranged from moderate to very strong for hip, knee, and ankle flexion and weak to 

very strong for hip adduction and hip rotation. Bland Altman plots showed varying trends, 

bias, and limits of agreement depending on the movement and joint angle. This suggests that 

smartphone markerless motion capture offers a time and cost-effective alternative for 

capturing movement and should be further evaluated for suitability to specific clinical 

questions. Moreover, this platform can be further developed to increase accuracy with 

enhanced training of algorithms and become a standard tool for routine, high-throughput 

movement screening in athletes.  
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Chapter 1 INTRODUCTION  

1.1  Overview of Movement Screening  

Human biomechanics is the application of mechanical principles to understand the 

structure, function, and motion of the body on multiple scales, from the cell to whole 

organism level. At the whole organism level, biomechanics describes how the 

musculoskeletal system (muscles, bones, cartilage, ligaments, tendons, and connective 

tissues) responds to forces to generate movement (1). Voluntary movements create the 

adduction, abduction, flexion, extension, and rotation of joints relative to other joints. The 

quality of these movements is related to the subjective constructs of strength, flexibility, 

balance, and power. These constructs are pertinent to individual’s participation in daily 

activities as well as recreational and elite sports (2).   

Unsurprisingly, injuries such as ligament or muscle sprains, or suboptimal movement 

strategies, alter mechanical interactions between the components of the musculoskeletal 

system (1). These perturbations cause instability and changes to force distribution across 

tissues and joints, resulting in greater risk for injury or re-injury. Optimal movement 

strategies, thought to involve aligned joints, muscle coordination, and posture, reduce 

undesirable force on the musculoskeletal system and can help to prevent injury, speed up 

rehabilitation, and increase performance (3). It is therefore essential to evaluate 

musculoskeletal biomechanics during human movement and investigate how novel and 

previously identified features of movement relate to onset and progression of disease, injury 

prevention, and recovery (3–5). This project arose from the need for accessible and 

standardized measures of human movement screening, current state of the art tools for the 

study of movement and evaluates a subset of these tools for use in screening of previously 

identified fundamental movements patterns. Specifically, a scalable, open-source, and low-
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cost smartphone camera system (OpenCap) is compared with gold standard marker-based 

motion capture (mocap) to measure lower limb kinematics of athletes completing a series of 

movement tasks commonly used to evaluate injury risk, return to sport status, or 

performance.  

Assessing movement to understand disease status or to make clinical 

recommendations has existed in the medical field for decades and is now common practice 

(6–8). An early example of this application is the evaluation of walking patterns which has 

evolved into clinical gait analysis; a method routinely used to diagnose pathologies, improve 

rehabilitation, and aid clinical decision making following injury or neuromuscular insults 

such as stroke and cerebral palsy (9,10). Other standardized assessments of movement exist 

in the medical field to detect movement features associated with the severity of a disease or 

assess an individual’s ability to function safely such as the ‘timed up and go’ test or the 

Unified Parkinson's Disease Rating Scale (UPDRS) (6,11).  

In the past few decades, sports scientists and physiotherapists emulated the idea of 

movement screening to assess movement more objectively and systematically in an effort to 

draw conclusions or recommendations about readiness to compete or injury risk (2,12–17). 

Movement screens are also used to place athletes into appropriate training programs to 

mitigate injury risk and increase athletic performance. These movement assessments include 

isolated muscle or joint testing such as an isometric strength assessment, that capture specific 

information about the strength and mobility of focal regions (18). Athletic movement screens 

now also incorporate whole body testing to capture multi-segment or whole-body 

fundamental movement strategies that challenge the musculoskeletal system with more 

complex and higher load tasks (12). These movement screens are used to assess an 

individual’s movement system and challenge the constructs of strength, flexibility, balance, 
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and power in an attempt to identify features that may put an athlete at risk for injury. Some of 

these movements and features associated with injury are discussed in the following section. 

 

1.2  Clinical Relevance of Common Movements 

Common movements used to evaluate whole body movement strategies include squat, 

single leg (SL) squat, drop vertical jump (DVJ), single leg drop vertical jump (SL DVJ), 

lunge, and a cutting maneuver among many others (3,19–21). Visual, kinetic, and kinematic 

parameters of the lower limbs during key phases of these movements are evaluated in these 

tasks to determine the quality of an individual’s movements to either predict injury risk or 

help define return to sport. The scope of this work is to evaluate lower limb kinematics and 

therefore only relevant kinematic features of these movements are discussed. For example, a 

squat is a fundamental movement pattern in athletics. It has been proposed that the ability to 

perform a squat to 90° of knee flexion or more with proper symmetry and coordination is an 

indicator of optimal movement quality. This is because completing this movement requires 

stability and mobility from each of the major lower body joints: hip, knee, and ankle (2,3).   

In an attempt to predict risk of Anterior Cruciate Ligament (ACL) injury, the dual 

limb and single limb drop vertical jump movement screens are used as a clinical evaluation of 

how an individual responds to increased force during the landing phase of these tasks. 

Subjects are evaluated on their ability to perform these movements stably and correctly either 

according to literature-based features of injury, or as compared to a healthy or contralateral 

limb (21–24). For example, discrete points during drop vertical jump movements are 

evaluated in the sagittal plane to estimate joint angles such as peak hip flexion, peak knee 

flexion, and peak ankle flexion. Insufficient flexion in females in the sagittal plane, especially 

hip and knee flexion, results in a stiff landing. This has been associated with an increased risk 

of injury as joint flexion is used to control the forces experienced at the knee during a landing 
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maneuver (23,25). When there is insufficient hip and knee flexion, the passive joint restraints 

such as the ACL take up a greater joint load to stabilize the knee. Therefore, limited range of 

motion in the sagittal plane is a risk factor for lower limb injury and is often studied during 

single or dual limb drop vertical jumps (26). For example, Pollard et al classified fifty-eight 

female athletes completing a dual limb drop vertical jump into peak low and high flexion 

groups. The study found that the low flexion group (67.4 ± 8.1° peak hip flexion, 86.5 ± 8.5° 

peak knee flexion) demonstrated increased knee valgus, increased knee adduction moments, 

and decreased energy absorption at the hip and knee compared to the high flexion group (27). 

Female athletes with this lower flexion biomechanical profiles may therefore be at a higher 

risk of ACL injury. Peak knee adduction has also been studied during a single limb drop 

vertical jump with greater than 5° of adduction categorized as abnormal and potentially 

associated with an increased risk of ACL injury. Increased hip adduction is also indicative of 

limited core strength and weak hip adductors (26,28).  

Kinematic differences and asymmetries at discrete points are also observed in athletes 

returning to sport following an injury. These discrete points are assessed during a single leg 

squat, drop vertical jump, and single leg drop vertical jump in regards to functional disability 

in ACL-injured patients to help define return to sport and prevent re-injury as summarized in 

systematic reviews (24,29) and research studies (22,30). Examples of discrete points include 

peak knee flexion, peak hip flexion, and peak ankle flexion in addition to peak hip adduction 

for the single limb tasks. For example, Yamazaki et al evaluated the kinematics of female 

athletes returning to sport following an ACL injury with a single leg squat and found 

significant differences between the involved leg and both the uninjured leg and healthy 

controls (31). Restoring correct alignment of an ACL injured limb is expected to reduce ACL 

re-injury and assist in safe return to sport.  
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Kinematics have also been studied in relation to the development of patellofemoral 

pain (PFP), one of the most common lower extremity ailments (32). While little is known 

about the risk factors associated with the development of this disorder, it is postulated that 

excessive hip adduction and internal rotation are contributory to developing PFP (28). One 

prospective study also found that decreased knee flexion at initial contact and peak during a 

drop vertical jump was associated with increased risk of the development of PFP (33).  

Kinematic differences are also observed in athletes with and without PFP. For 

example, one study found a significant difference in peak hip internal rotation during a drop 

jump, running, and step-down task in females with PFP vs pain free females (34). Another 

study evaluated kinematics during a single leg squat between males and females with and 

without PFP. The study found that females with PFP had greater peak hip internal rotation 

compared to the control group (35). Other studies have evaluated different features or 

additional discrete points in these movements, and other movements, such as range of motion 

or initial contact for a jumping task. Peak points of the movement are just one example of a 

likely important feature for further evaluation.  

Movement screening of athletes is critical to identifying risk factors for injury as 

injuries can affect an athlete’s quality of life in the long term. Research has shown that 

adolescents following a sports-related knee injury are more prone to functional deficits and 

are at a greater risk of being overweight/obese 3-10 years post injury compared to uninjured 

controls (36). Other studies have found that PFP causes knee pain 4 to 18 years after initial 

presentation causing restricted physical activity in some and may be associated with the 

development of patellofemoral osteoarthritis (33). Identification of movement features that 

may predispose athletes to injury is essential, and there are various tools that exist to help 

capture and examine these movement features.  
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1.3  Tools for Studying Movement  

Various tools exist to assess athletes’ movement strategies. Common tools include 

visual evaluations, inertial-measurement-units-based motion capture (IMUs), markerless 

motion capture, and marker-based motion analysis. Various accuracy and cost tradeoffs exist 

for each of these methods, the main points of which are summarized in Figure 1.1. 

 

 

Figure 1.1: Comparison of common tools used to assess movement including visual, 
wearables, markerless, and mocap arranged according to relative cost and accuracy. The main 
limitations, besides cost, are also listed next to the technique. 

 

1.3.1 Visual Tools 

Visual evaluations are routinely used by strength and conditioning coaches to assess 

athletes’ movements. These visual assessments can include singular tasks such as a drop 

vertical jump, or multicomponent movement screens such as the Functional Movement 
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Screen (FMS) or Movement Competency Screen (MCS) (2,3,37). The FMS consists of a 

series of tasks common to daily life that place individuals in extreme joint positions that 

highlight asymmetries and movement deficiencies and can easily be recognized by the 

assessor (2). Individuals are given a score from 0 to 3 based on the execution of each task. 

The MCS is a visual movement screen requiring no specialized equipment and consisting of a 

battery of tests common to sports. Athletes are given a score for each movement based on a 

number of criteria related to shoulder, lumbar, and knee movement (38). Points are deducted 

if the subject has rounded or elevated shoulders, rotated, hyperextended or hyper-flexed back 

or collapsed knees. The score on the movement screen aim to inform tailoring of training 

programs for reduction of injury risk (2,3,37).   

Visual assessments are low cost and easy to implement; however, they are subjective 

due to their visual nature. The quality of the assessment is dependent on the training and 

previous knowledge of the practitioner, which is commonly the coach or trainer. As a result, 

test scores show weak interrater reliability (5,39). Other limitations of visual assessments 

include that differences between scores need to be large enough for a human eye to detect and 

scoring may not be specific enough to capture variability between individuals (40). 

Furthermore, the research correlating the outcome of visual movement assessments, primarily 

the FMS, to injury is variable due in part to the lack of objective and quantitative metrics 

such as kinematics and kinetics (15,39,41). 

1.3.2 Gold Standard Marker-based Motion Capture  

In a research setting, more quantitative and objective tools involving the measurement 

of biomechanical variables such as joint angles and muscle forces exist to study human 

motion. Mocap is considered the gold standard among these tools and, when combined with 

force plates and musculoskeletal models, it allows for more in-depth investigations into the 
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relationship between movement and injury. Additionally, mocap is able to detect much 

smaller differences in movement than what a human observer could perceive (21).  

For example, a drop vertical jump can be evaluated in a motion capture lab to better 

define metrics such as a threshold of knee valgus, a value that may indicate an athlete’s risk 

for ACL injury (43). However, while objective and accurate, traditional marker-based motion 

analysis is expensive, time consuming, labor intensive, requires expertise, and is effectively 

non-portable. A motion capture lab usually requires a fixed space and includes equipment 

costing more than $150,000 (44). Subject preparation for a capture session with 

retroreflective markers takes a trained clinician upwards of an hour and markers may impede 

athletes’ natural motion (45). In addition, data processing can take several days for a trained 

expert such as a kinesiologist or engineer to complete. Therefore, mocap is largely limited to 

a research setting, with restricted scalability for conducting large scale studies to explore the 

relationship between movement and injury. 

1.3.3 Wearables and Markerless 

There has been a shift in the field of biomechanics to use more mobile and accessible 

tools to conduct larger scale studies due to the aforementioned limitations of traditional 

capture systems. Prospective large-scale studies are necessary for relating movement 

mechanics with injury risk factors. An example of portable, wearable technology are IMUs. 

These sensors contain an accelerometer, gyroscope, and often a magnetometer to enable on 

field capture of human movement over long periods of time (hours) (42). They are 

lightweight and unobtrusive enough to be worn during high intensity sport. One IMU each on 

adjacent segments is required to capture a joint angle, and only relative joint angles are 

obtained using IMUs. The accuracy of IMUs is varied and depends on signal processing 

characteristics and the application of interest (46,47). Furthermore, commercially available 

IMUs are expensive (~$2000/IMU) and utilize proprietary algorithms for sensor fusion which 
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limits the adaptability for unique studies. Currently, IMUs are primarily used to estimate 

kinematics; the algorithms to estimate kinetics using IMUs are still being explored and 

require high level expertise. OpenSense, an open-source toolbox for measuring joint angles 

with IMUs, may help to overcome some of these limitations surrounding cost and proprietary 

algorithms, but the validity of this with a wide range of movements and applications has not 

yet been explored (46).  

Markerless motion capture systems including Kinect (Microsoft Corporation, WA, 

USA) and Theia3D (Theia Markerless Inc., Kingston, ON, Canada) have also gained 

popularity as more accessible and flexible systems. The Microsoft Kinect is a low-cost 

system that incorporates infra-red light and a video camera to track the position of the limbs. 

It also uses a depth sensor to create a 3D map and capture 3D movement patterns (47,48). 

The key limitations of the Microsoft Kinect relate to accuracy compared to mocap, 

scalability, and use outside of the lab. Inaccurate body tracking results when the Kinect is 

unable to distinguish between similar body parts or movements. Additionally, the system 

cannot easily be used outside of the lab due to poor performance in low light conditions and 

portability challenges (49).  

Theia3D is a commercially available markerless motion capture system that uses 

machine learning to identify key points and automatically outputs a pose estimation of each 

joint. This system has been shown to accurately measure kinematics and shows promise for 

gait analysis. However, it requires a minimum of six synchronized cameras alongside high 

cost and proprietary software (50,51). Furthermore, while automated, this system is still yet 

to be streamlined or widely adopted, and, therefore, requires expertise to troubleshoot. There 

exists a need for a tool that bridges the gap between qualitative visual and quantitative 

traditional mocap assessments. The tool should remove the subjective nature of visual 

assessments, and the high cost associated with specialized equipment, proprietary software, 
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and extensive expertise for mocap. Furthermore, it should be able to capture larger 

differences in movement than a human eye. This tool would allow for large scale studies and 

aid coaches in obtaining more objective measurements in an athletic unconfined setting (i.e., 

out of the lab). 

1.3.4 Smartphone-based Motion Capture System  

OpenCap is a markerless smartphone-based motion capture system newly developed 

by Human Performance Lab at Stanford University. This system is a low cost, automated, 

and scalable platform for studying human movement. It utilizes between two and five iPhone 

cameras to collect synchronous data and provide kinematic, kinetic, and muscle activation 

outputs. These outputs are then processed and analyzed to provide a more objective and 

robust analysis of human motion as compared to a visual assessment. The system is also low 

cost compared to mocap, with data collection and processing feasible without a trained 

professional present (50). The accessibility of OpenCap is a critical consideration if it is to be 

clinically translatable, as many of the aforementioned biomechanical tools for studying 

human movement are prohibitively expensive, time-consuming, and require a higher level of 

expertise than many coaches and trainers have. For validation of OpenCap, Uhlrich et al. 

conducted multiple small-scale studies (n=10) of Opencap for sit to stand, gait, squat, and 

drop vertical jump movements. A larger scale study was also conducted to identify 

asymmetries in squats in a population of 100 subjects to demonstrate the scalability and ease 

of use of the technology. OpenCap development and function has been summarized in (50). 

 

1.4  Study Introduction  

The overall aim of this study was to compare motion capture using OpenCap with gold 

standard clinical maker-based motion capture for quantitative study of human movement 
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(kinematics) in female athletes. First, the usability of OpenCap was assessed. This was 

evaluated based on the data collection time including setup, subject instrumentation, and data 

processing time. Usability was also evaluated based on the percentage of failed OpenCap 

trials detected during data analysis. Next, a Root Mean Square Error (RMSE) across the 

movement cycle for common movement screening tasks was used to assess how accurately 

OpenCap was able to reproduce the gold standard measurement of kinematics. A generalized 

linear mixed effect model was constructed for each movement to identify sources of variation 

in the joint angle measures across technologies, joints, movement phase, replicate, and 

subjects. Next, a more detailed analysis of the differences across the movement phase was 

analyzed for representative movements. Finally, between-system correlation and agreement 

at discrete points was evaluated for movements that ranged in accuracies as described by the 

RMSEs and differences along the movement cycle. These movements included squat, single 

leg squat, drop vertical jump, single leg drop vertical jump, and lunge and twist. Data 

collection consisted of concurrent OpenCap and mocap of ten female athletes completing a 

series of common movement screening tasks described in Table 2.3.  
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Chapter 2 METHODS 

2.1  Experimental Setup  

Subjects   

Ten female collegiate ground-based athletes from soccer (seven) and volleyball 

(three) who were free from injury volunteered to participate over an eight-month period. 

Anthropometrics are summarized in Table 2.1. Subjects were instructed to wear a sports bra 

or tight-fitting tank top, fitted high traction sneakers and shorts or compression shorts. All 

subjects read and signed informed consent approved by University of California San Diego 

Institutional Review Board (#804157).  

 
Table 2.1: Summary of participants’ anthropometrics. 

Height Mass Age  

1.72 ± 0.07 m 66.5 ± 12.9 kg  20 ± 1.2 

  

Marker-based Motion Capture  

62 retroreflective markers were placed on anatomical landmarks as shown in Figure 

2.1. Acronyms are summarized in Table 2.2. The markers were affixed bilaterally on the 

scapula acromial edge, humerus, medial/lateral humeral epicondyle, radius styloid process, 

ulna styloid process, scapula inferior edge, anterior superior iliac spine, medial/lateral 

femoral epicondyle, medial/lateral prominence of the medial/lateral malleolus, calcaneus, 

first, second, and fifth metatarsal, and base of the first metatarsal. Markers were also affixed 

to C7, T10, and the suprasternal notch and a headband with four markers was worn. Rigid 

tracking clusters containing four markers each were affixed on the lateral part of the thighs 

and shanks about midway between the joint centers. One rigid tracking cluster containing 

three markers was placed on the lower back at the posterior superior iliac spine.  
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Table 2.2: Description of marker names and locations. 

Marker Acronym Marker Name/Location 

R/L FHD Right/Left Front Head 

R/L SHO Right/Left Shoulder 

CLAV Clavicle 

R/L HLE  Right/Left Humerus Lateral Epicondyle  

R/L UPA Right/Left Upper Arm  

R/L WRR Right/Left Wrist Radius  

R/L WRU Right/Left Ulna  

R/L FIN Right/Left Finger  

C7  C7 

R/L SIA Right/Left Scapula Inferior Angle  

T10 T10  

R/L ASI Right/Left Anterior Superior Iliac  

R/L PSI Right/Left Posterior Superior Iliac  

PELS Pelvis Superior  

R/L TH 1-4 Right/Left Thigh 1-4 

R/L MFC Right/Left Medial Femoral Condyle  

R/L LFC Right/Left Lateral Femoral Condyle  

R/L SH 1-4 Right/Left Shank 1-4 

R/L MMAL Right/Left Medial Malleoli  

R/L LMAL Right/Left Lateral Malleoli  

R/L HEE Right/Left Heel 

R/L SFOOT Right/Left Superior Foot  

R/L MTP5 Right/Left Metatarsal 5  

R/L MTP2 Right/Left Metatarsal 2  

R/L MTP1 Right/Left Metatarsal 1  
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Figure 2.1A 

          

Figure 2.1B 
 

Figure 2.1: 2.1A lists the marker acronyms on a OpenSim model and 2.1B shows the marker 
positioning on a subject.  

 
OpenCap  

Two Opencap setups, each with three iPhone (model X, Apple, Cupertino, CA) 

cameras, were utilized depending on the tasks. The iPhones were connected to the OpenCap 

web application via a QR code, and then calibrated with a 210x175 mm, five rows, six 

columns, 35 mm square size checkerboard printed on A4 paper. The checkerboard was 
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affixed to a plexiglass surface and placed in a custom printed plastic stand that was 

orthogonal to the floor.  

 Setup one included three iPhones attached to hanging phone mounts about two feet 

apart from each other (Figure 2.2, left). The center camera was placed frontal to the subject 

and the two sides cameras were placed at approximately a 30-degree angle from the center 

camera. Setup two included two iPhones attached to hanging phone mounts and one center 

iPhone on a three-foot tripod each about two feet apart from each other (Figure 2.2, right). 

The center camera was placed frontal to the subject and the two sides cameras were placed at 

about a 30-degree angle from the center camera. The tasks that involved vertical movement 

were captured during session one with setup one and the tasks that involved forward motion 

(i.e., broad jump and lunge) were captured during session two with setup two.  

   

Figure 2.2: OpenCap setups. Setup one is shown on the left and setup two is shown on the 
right.  

 
 

2.2  Experimental Data Collection 

The prescribed subject warmup was jogging, skipping, high knees, and buttkicks 

across the length of the lab back and forth 1 time, in addition to 3 squats, 3 countermovement 

jumps, 3 lateral shuffles, 3 broad jumps, 3 45-degree cuts, and 3 decelerations. Following 

subject marker placement and preparation, the subjects completed the prescribed warmup.  
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Three-dimensional (3D) kinematic data was collected using a 10-camera (Miqus, 

Qualisys AB, Göteborg Sweden) motion capture system at 120 Hz. Cameras were arranged in 

an approximately 35 feet x 25 feet rectangular space. Qualisys track manager (QTM) was 

used to synchronously collect data with all ten cameras. A static pose with the subject in a 

motorbike position (Figure 2.3, left) and a trial capturing range of motion was collected from 

each subject. OpenCap data was collected at 60 Hz and a static pose with the subject in an A 

frame (Figure 2.3, right) was collected to calibrate the OpenCap system. 

 

    

Figure 2.3: Mocap static pose and OpenCap static pose. 

 
Subjects practiced each of the movement tasks three times at 60%, 75%, and 100% 

effort. A description of each movement task can be found in Table 2.3.   
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Table 2.3: Summary of movement tasks. 

Movement  Uni- or Bilateral Description  

Squat Bilateral  Hands on side of head, squat as low as possible 
then come right back up.  

Single Leg Squat Unilateral Hands on side of hips, squat as low as possible 
with one leg back, and then come right back up. 

Countermovement 
Jump 

Bilateral Hands on hips, go down, and then jump as high 
as possible in one smooth motion.  

Single Leg 
Countermovement 
Jump  

Unilateral Hands on hips, with one leg back, go down, and 
then jump as high as possible in one smooth 
motion  

Heel Touch  Unilateral  Stand on an 8-inch box with hands on hips, squat 
down with one leg and lightly tap the floor with 
the heel of the contralateral limb then come back 
up to standing.  

Drop Vertical 
Jump 

Bilateral  Stand on a 30-cm box, hop forward and land on 
both feet at the same time. Then, immediately 
jump as high as possible, using arms for 
momentum.  

Single Leg Drop 
Vertical Jump 

Unilateral Stand on a 30-cm box, hop forward and land on 
one foot. Then, immediately jump as high as 
possible, using arms for momentum.  

Lateral Shuffle Unilateral Shuffle to the side 4 meters without crossing the 
feet until the lead foot hits the marked square, 
then shuffle back to the starting point as fast as 
possible.   

Lunge and Twist Unilateral Cross arms and place hands on shoulders with 
elbows pointing out. Perform a forward lunge 
and rotate into the lead leg. Return to center and 
then push back to return to starting position.  

Single Leg Broad 
Jump 

Unilateral Jump horizontally on one leg as far as possible 
and stick the landing  

45 Degree Cut Unilateral Run forward 4 meters and then plant and turn 45 
degrees 

Deceleration Unilateral Run forward 4 meters and then plant and 
backpedal 4 meters  

Y-Balance Test  Unilateral Stand on one leg and reach anteriorly, 
posteromedially, and posterolaterally  
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Following practice, each movement task was captured with both mocap and 

OpenCap. Data collection procedures are shown in Figure 2.4. Refer to the Appendix for the 

full data collection protocol. 

 

 

Figure 2.4: OpenCap and mocap setup, subject instrumentation and warmup, trial collection. 

 
2.3  Data Processing  

Marker-based Motion Capture  

 The mocap data was labeled and gap filled. The start and end of each trial was then 

identified and the data was processed through Addbiomechanics software to obtain 

kinematics (52). This process is summarized in Figure 2.5 and described in more detail in the 

following subsections.  
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Figure 2.5: Marker-based motion capture processing steps include marker labeling of the raw 
data, gap filling of missing marker trajectories, identification of start and stop events for each 
movement, and finally modeling using Addbiomechanics to obtain kinematics. 

 
Qualisys Track Manager  

Three-dimensional kinematic data was first processed in QTM to associate 

retroreflective markers with anatomical locations and remove false markers created during 

data reconstruction that do not represent actual marker trajectories. Data was reconstructed 

with two infrared cameras that triangulated the 3D position of a marker to provide the 

location and trajectory. A label list was created to identify and name the markers on the 

subject. The trial capturing range of motion for each subject was then manually labeled and 

added to an Automatic Identification of Markers (AIM) model. An AIM model is used to 

automatically identify and label markers and track all types of motion. The AIM model is a 

learning model that is improved each time a new subject is added to it with different 

dimensions. The AIM model was then used to automatically label markers for the movement 

trials. Each trial was checked for accuracy in labeling by overlaying the markers on the video 

data and ensuring the labels were associated with the correct anatomical segment. All ghost 

markers created during reconstruction were deleted by overlaying the marker trajectories on 
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the video data and visually comparing the locations. Trials were exported in a .C3D format 

for processing in Vicon Nexus (Vicon, Oxford, UK).  

 

Vicon Nexus  

Trial .C3D files were imported into Vicon Nexus where markers were relabeled using 

a custom automated labeling skeleton. Gaps in marker trajectories were then filled using a 

combination of methods: spline fill, pattern fill, and rigid body fill. Spline fill is a cubic 

spline interpolation and was used for gaps less than five frames. Pattern fill uses the shape of 

another similar trajectory to fill a gap. This type of fill was often used for the hand, wrist, and 

feet markers. A rigid body fill can be used when a rigid or semi-rigid relationship exists 

between four or more markers. This was the primary type of gap fill used.  

 Following gap filling, a conventional gait model was implemented to obtain lower 

limb joint angles (hip, knee, ankle) and events (start/stop) were identified using certain 

features of each movement (53). The features used for events for each movement are 

summarized in Table 2.4 and further description can be found in the Appendix. 

 After events were identified, the data was filtered using a 4th order, zero lag, 

Butterworth filter at 4 Hz for squat, single leg squat, heel touch, lunge and twist, and Y 

balance test and 30 Hz for the remaining movements (43,54). The data was exported as a .trc 

which contains the time series trajectory data (x, y, and z) for each marker.  
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Table 2.4: Description of the features used to identify the start and end of each movement. 

Movement  Start  End 

Squat Largest increase in slope of knee 
flexion before ascent  

Largest decrease in slope of 
knee flexion following descent  

Single Leg Squat Largest increase in slope of knee 
flexion before ascent  

Largest decrease in slope of 
knee flexion following descent  

Countermovement 
Jump 

Point before angular velocity of 
PELS marker crosses z axis into 
negative before ascent 

Point after angular velocity of 
PELs marker crosses z axis into 
positive following absorption  

Single Leg 
Countermovement 
Jump  

Point before angular velocity of 
PELS marker crosses z axis into 
negative before ascent 

Point after angular velocity of 
PELs marker crosses z axis into 
positive following absorption  

Heel Touch  Point before angular velocity of 
PELS marker crosses z axis into 
negative before ascent 

Termination of contact with 
force plate (10N threshold) 

Drop Vertical Jump Initial contact with force plate 
(10N threshold) 

Point after angular velocity of 
PELs marker crosses z axis into 
positive following absorption  

Single Leg Drop 
Vertical Jump 

Initial contact with force plate 
(10N threshold) 

Point after angular velocity of 
PELs marker crosses z axis into 
positive following absorption  

Lateral Shuffle Initial contact with force plate of 
lead leg (10N threshold) 

Termination of contact with 
force plate (10N threshold) 

Lunge and Twist Initial contact with force plate of 
lead leg (10N threshold) 

Termination of contact with 
force plate (10N threshold) 

Single Leg Broad 
Jump 

Largest increase in slope of knee 
flexion before ascent  

Minimum vertical position of 
PELS marker following landing  

45 Degree Cut Initial contact with force plate of 
lead leg (10N threshold) 

Termination of contact with 
force plate (10N threshold) 

Deceleration Initial contact with force plate of 
lead leg (10N threshold) 

Termination of contact with 
force plate (10N threshold) 

Y-Balance Test  Point before angular velocity of 
PELS marker crosses z axis into 
negative before first reach 

Point after angular velocity of 
PELs marker crosses z axis into 
positive after final reach 
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Addbiomechanics  

Addbiomechanics, an optimizer hosted by Stanford University, was used to process 

the marker-based motion capture data (52). Addbiomechanics optimally scales an OpenSim 

model and then estimates inverse kinematics. A Lai Arnold Opensim model with 

approximate marker locations was uploaded to Addbiomechanics. Markers on anatomical 

locations such as the anterior superior iliac spine were fixed, but tracking markers such as the 

upper arm marker were not fixed, and the position of these markers was optimized in 

Addbiomechanics. The .trc data for each trial was also uploaded along with subjects’ height 

(with shoes), mass, and sex.  

Using the input marker data, Addbiomechanics finds the functional joint centers, and 

then uses this to estimate an initial body segment scaling and marker location. Then, 

anthropometric covariance statistics (height, weight, sex) are used as a prior for helping to 

choose likely scaling of bones. The statistics come from the ANSUR II dataset which 

includes 93 measures for over 6,000 US military personnel (4,082 men and 1,986 women). 

Finally, a bilevel optimization problem is solved to match the model position to the 

experimental data as closely as possible. The final output from Addbiomechanics is a scaled 

model with registered markers and kinematics over the time course of each uploaded trial 

(52). This automatic processing of the data achieved a marker error (RMSE) range of 1.38 to 

3.42 cm across the evaluated tasks and ten subjects. The largest errors were not specific to 

one task or one subject.  

 

OpenCap  

The OpenCap data processing workflow is shown in Figure 2.6. The steps include 

camera calibration, pose detection, synchronization, triangulation, marker augmentation, and 

OpenSim pipeline. Camera calibration requires setup and input from the user, but the 
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remaining processing steps all take place automatically in the cloud and therefore do not add 

any hands-on time for the user.  

 
Figure 2.6: Steps for OpenCap data processing. The user calibrates the cameras during data 
collection and then the remaining steps take place in the cloud and include pose detection, 
synchronization, triangulation, marker augmentation, and modeling in OpenSim. 

 
For calibration, the intrinsic parameters (principal point, focal length, and distortion 

parameters) of the three iPhones used were loaded from a database of pre-computed 

parameters related to the latest iPhone models by scanning a QR code. The three iPhones then 

took a still image of a checkerboard of known size. The intrinsic parameters and OpenCV, an 

open-source computer vision library used for extracting and processing data from images, 

was then used to automatically compute the extrinsic parameters from the image of the 

checkerboard. The extrinsic parameters indicated where the cameras were in space relative to 

each other and the checkerboard, specifically the camera transformation relative to the global 

frame where the origin was the bottom left corner of the checkerboard.  

The pose detection algorithm, OpenPose, was used to identify 2D key points on the 

subject. OpenPose was trained on a set of annotated publicly available still images covering 

over 400 human activities including sports, walking, hiking, and bicycling. To help increase 
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the accuracy of the pose detection algorithm, OpenCap implements a bounding box to track 

the person of interest. Last, full body poses are assembled and output with 135 possible key 

points on the human body, foot, hand, and face. The pose detection algorithm also returned a 

relative confidence between 0 and 1 for each key point position (55). OpenCap uses these 

confidence scores to help identify occlusions and then uses cubic splines to replace the 

occluded key point positions. From the 135 key points identified with OpenPose, OpenCap 

uses 20 for further analysis which include the neck, mid-thigh, left/right shoulders, hips, 

knees, ankles, heels, small and big toes, elbows, and wrists.  

Video recording on the three iPhones was not precisely synchronized because the 

connection between the iPhones and the web application was internet based. Therefore, 

additional steps were taken to ensure synchronization between cameras. First, the activity was 

detected to determine which synchronization function to use. Gait was identified by a large 

maximum cross correlation between the right and left ankle key points and a time delay of 

0.1-1s. Specifically, a Gaussian curve dependent on the framerate is multiplied by the 

correlation plot helping to choose the smallest shift value for periodic motions. Gait trials 

were then synchronized by finding the delay that results in the lowest error between 

reprojected 3D key points and 2D video key points of the right and left ankle. Trials where a 

hand punch was identified, meaning one hand was quickly moved above the shoulders and 

brought down, were synchronized using the time delay that corresponded to the maximum 

cross correlation of the summed vertical speeds of the wrist and shoulder key points from all 

the cameras. Non-gait trials with no hand punch were synchronized using the time delay that 

corresponded to the maximum cross correlation of the summed vertical speeds of all the key 

points from all the cameras.   

The 2D positions of the markers were then triangulated to get 3D positions using a 

direct linear transformation algorithm. Two long short-term memory networks (LSTM) were 
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used to augment a marker set from the 3D key points to define rotational planes of kinematic 

motion. An arm model was trained to predict the position of eight arm markers from nine arm 

and torso key points. A body model was trained to predict the position of 35 body makers 

from 13 lower-limb and torso key points. The total marker set includes 43 markers on upper 

and lower extremity bony landmarks and tracking markers on the thighs and shanks. The 

LSTM networks were trained on 108 hours of motion capture data which included running, 

walking, cutting, and jumping tasks (54).  

The marker data was then fed through a traditional OpenSim pipeline to estimate 

kinematics. First the subjects’ segments were scaled to minimize the distance between the 

experimental (augmented) markers and the model markers. For example, the tibia was scaled 

in the X (anterior/posterior), Y (superior/inferior), and Z (medial/lateral) direction using a 

scaling factor computed from the distance between the experimental and model marker at the 

knee joint center and the marker at the ankle joint center. All segments were scaled in one 

direction except for the pelvis and torso which were scaled in two directions, meaning one or 

two scaling factors were computed and applied to the remaining directions.  

The OpenSim inverse kinematics tool was then used to estimate the joint angles. This 

process stepped through each time point and positioned the model in a pose that best matched 

the experimental marker locations. The tool uses a weighted least squares problem to 

mathematically determine the pose that minimizes both marker and coordinate error. During 

data collection, OpenCap used OpenPose at default resolution (308 x 368 pixels). To increase 

accuracy, the data was reprocessed with a higher resolution OpenPose (567 x 1008 pixels). 

This was implemented from a local instance of OpenCap and initiating a reprocess in the 

cloud with the higher resolution. Data was reprocessed as it was collected between January 

17, 2023 and March 15, 2023 using the Opencap-core repository (56). Differences between 

subjects may exist due to continuous updating of the repository.  



 

26 

Biomechanical Model  

 The same constrained musculoskeletal model (Lai Arnold model) was used to obtain 

kinematics for both mocap and OpenCap. The model had 33 degrees of freedom (pelvis in the 

ground frame [6], hips [2x3], knees [2x1], ankles [2x2],  

metatarsophalangeal joints [2x1], lumbar [3], shoulders [2x3], and elbows [2x2]). Table 2.5 

summarizes the model joint excursions for the lower limb extremity angles that were analyzed. 

This model is driven by 80 muscles that actuate the lower limb coordinates, 13 ideal torque 

motors that actuate the lumber, shoulder, and elbow coordinates, and six contact spheres per 

foot that model the foot ground contacts (43,57) . 

 

Table 2.5: OpenSim Lai Arnold model lower limb joint excursions. 

 Ankle 
Flexion 

Knee Flexion Hip Flexion  Hip 
Adduction  

Hip Rotation 

Lower (॰) -50 0 -30 -50 -40 

Upper (॰) 50 140 120 30 40 

 

Data synchronization 

 The OpenCap and mocap data were synchronized using MATLAB signal processing 

toolbox (The MathWorks Inc., Natick, MA) to identify signatures in the data. First, the 

OpenCap data was up sampled from 60 Hz to 120Hz to match the frequency of the motion 

capture data. A delay was then calculated between the two signals using cross-correlation of 

knee flexion. The delay was then used to time-synchronize the OpenCap data with the mocap 

data and then the OpenCap data was cropped to the event cycles identified with mocap. Data 

from both systems was then interpolated to 101 data points (0-100%).  
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Generalized Linear Mixed Model  

  A generalized linear mixed effect model was fit to the data for each movement to 

understand what factors contributed the most variability. All analyses were conducted using 

SAS studio (SAS Institute Inc.) This model was used to account for fixed and random effects 

and was able to handle missing replicates. The response was continuous, and the residuals 

followed a univariate gaussian distribution for every movement, so therefore the general 

equation for the model is:  

 

                                                             𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜀                                                     (2.1) 
 

where:  

y is the n x 1 vector of observations, 

β is a p x 1 vector of fixed effects, 

γ is a q x 1 vector of random effects,  

ε is a n x 1 vector of random error terms,  

X is the n x p design matrix for the fixed effects relating observations y to β,  

Z is the n x q design matrix for the random effects relating observations y to γ. 

 

In the model, the joint angle value at each time point for each technology was the 

dependent response variable (y), time, joint, replicate, and technology were fixed effects and 

subject was a random effect. All two-way interactions and the three-way interactions of 

technology, time and replicate and technology, joint and replicate were considered. The 

three-way interaction of technology, time and joint was not considered due to lack of 

computational power to converge on a solution with the relatively large size data set. 

Therefore, the specific equation for the model is:  
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𝐽𝑜𝑖𝑛𝑡	𝐴𝑛𝑔𝑙𝑒 = 𝛽! ∗ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 +	𝛽" ∗ 𝑇𝑖𝑚𝑒 +	𝛽# ∗ 𝐽𝑜𝑖𝑛𝑡 +	𝛽$ ∗ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 +	𝛽%

∗ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 ∗ 𝑇𝑖𝑚𝑒 +	𝛽& ∗ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 ∗ 𝐽𝑜𝑖𝑛𝑡 +	𝛽' ∗ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦

∗ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒	 +	𝛽( ∗ 𝑇𝑖𝑚𝑒 ∗ 𝐽𝑜𝑖𝑛𝑡 +		𝛽) ∗ 𝐽𝑜𝑖𝑛𝑡 ∗ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 + 𝛽!* ∗ 𝑇𝑖𝑚𝑒

∗ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 +	𝛽!! ∗ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 ∗ 	𝐽𝑜𝑖𝑛𝑡 ∗ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒

+	𝛽!" ∗ 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 ∗ 	𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒 ∗ 𝑇𝑖𝑚𝑒 + 	𝛾! ∗ 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 + 	𝜀	 

 

Time refers to the normalized phase of the movement and included values from 1-

100, joint was a categorical variable and included left and right hip flexion, hip adduction, hip 

rotation, knee flexion, and angle flexion, replicate was either 1, 2 or 3 except in the cases 

where a replicate was missing, and technology was a categorical variable and included either 

OpenCap or mocap. Left and right joint angles for single limb tasks were combined. Subject 

(A15-A24) was a random effect because there may be a different outcome if a different group 

of people were selected for the study. The significance level, alpha, is equal to 0.05.   

 

2.4  Data Analysis  

The accessibility and usability of OpenCap was evaluated using four metrics: time, 

cost, expertise, and flexibility. Time was defined as the total time it took to collect and 

process data. Cost was defined as the total cost of materials to collect and process data. 

Expertise was defined as the skill level needed to collect and process data. Flexibility was 

defined as the ability to collect data in different spaces (i.e., out of the lab, capture volume, 

etc.) and data storage. The reliability of OpenCap was also evaluated based on the number of 

failed trials identified during data processing.  

 To assess the accuracy of OpenCap, Root Mean Squared Error (RMSE) was 

calculated. RMSE measures the average difference between values predicted by a model 

(OpenCap) and the actual values (gold standard motion capture). The variability between 

(2.2) 



 

29 

OpenCap and mocap was also explored along with the average differences measured between 

the technologies across the movement cycle. 

Kinematics at discrete points were evaluated using a Pearson's correlation coefficient 

(r) as a measure of the strength of the correlation between the two measurement technologies 

at the discrete points. The strength of the correlation as assessed by Pearson's correlation 

coefficient (r) was classified as very strong (0.90–1.00), strong (0.70–0.89), moderate (0.40–

0.69), weak (0.10–0.39) or negligible (0.00–0.10) (58,59). The Bland-Altman method was 

also used to evaluate the mean bias and limits of agreement between OpenCap and mocap at 

the discrete points (60). Peak knee flexion, hip flexion, ankle dorsiflexion, hip 

adduction/abduction, and hip rotation were evaluated for a single leg squat, squat, drop 

vertical jump, single leg drop vertical jump, and lunge. These points were identified during 

the descent phase of the squat and single leg squat, initial contact to takeoff for the drop 

vertical jump and single leg drop vertical jump, and throughout the movement cycle for the 

lunge for the leading leg (61–63).  

 

  



 

30 

Chapter 3 RESULTS  

3.1 Usability  

The accessibility of Opencap was compared with the Qualysis mocap system used in 

this study. It required approximately 2.0 hours to collect and process OpenCap data per 

subject for a trained operator vs. 23 hours for mocap with a kinesiologist and engineer. 

OpenCap cost approximately $925 and can be used anywhere with wifi vs over $350,000 for 

mocap in a fixed lab space (Table 3.1). In terms of dependability, only 2% of OpenCap trials 

were unusable as identified during data analysis.  

 

Table 3.1: Summary of the accessibility of mocap vs. Opencap. OpenCap takes less time, 
costs less, and does not require extensive training to obtain kinematics. OpenCap can be used 
anywhere with wifi. 

 Qualisys Motion Capture   OpenCap  

Cost Upfront: $350,000 
Yearly: $7000 

$925 
Optional: $5000  

Expertise Kinesiologist and/or engineer   Trained operator for kinematics  
(Engineer for kinetics)  

Flexibility  Dedicated lab space  
 

Anywhere with wifi  

Time/subject  23 hours  2 hours  

 
 
Cost  

The Qualysis mocap system used in this study included ten Arqus infrared cameras, 

four AMTI in-ground force plates, a Qualisys track manager (QTM) software license, and a 

set of 62 retroreflective markers. The total estimated upfront cost for the system and software 

was $350,000. In addition, a service contract for QTM must be purchased to continue 

receiving software updates, which costs $4000 per year and there are Qualisys camera 
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warranties that cost an estimated $300 per camera per year (e.g., $3000/year for 10 cameras). 

The retroreflective markers must be secured to the subjects with disposable adhesive tape for 

each data collection, with estimated yearly replacement depending on the frequency of use. 

Retroreflective markers cost $70 for a set of ten markers (B&L Engineering).   

The OpenCap system included a set of six tripods (2 setups), phone mounts, and three 

iPhones. The calibration checkerboard was printed on regular computer paper and taped to a 

piece of plexiglass which was put into a custom designed and 3D printed stand for a nominal 

cost. The OpenCap collection software was free to use and could be run on any operating 

system with no special requirements such as a graphics processing unit (GPU). The iPhones, 

tripods and phone mounts combined for a total cost of $925. The data was also reprocessed at 

a higher resolution to help increase accuracy which required a 3090 GPU (approximately 

$5000); however, this additional cost is not required to use OpenCap. There are no service 

contracts or disposables required to collect or process data.  

 

Expertise  

 The motion capture system required extensive expertise for data collection and 

processing. Correct marker placement is critical as the accuracy of mocap directly relates to 

this. A kinesiologist was required to place markers on anatomically correct positions of each 

subject. A clinician or engineer is then required to set up, calibrate, and run the software 

during data collection to ensure high quality data. Similar expertise is also required to process 

the data.  

 OpenCap data collection can be set up and run by a trained operator. Kinematics are 

automatically processed and stored in the cloud and are easily downloaded for local analysis. 

However, while no expertise is required to obtain kinematics, prior knowledge of muscle 

driven simulations is required for simulating kinetics, which is a future direction of this study. 
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The settings (e.g., weights of the different terms in the optimal control problem), constraints, 

and cost function terms must be optimized to generate meaningful simulation results. The 

optimal solution will drive the model to closely match the measured kinematics while 

satisfying the dynamic equations and minimizing muscle effort. For example, different mesh 

densities and convergence tolerances must be tested to determine the influence on the results.  

 

Flexibility  

The marker-based motion capture system was not portable and required a dedicated 

lab space. The ten-camera system used for this study was set up in an approximately 800 ft2 

space. The OpenCap system can be set up anywhere, for example, an athletic setting, 

however wifi is required to collect data. The OpenCap capture volume for this study ranged 

from approximately 200-500 ft2 depending on the setup and not all movements could be 

captured due to the constraints of the lab space. For example, a lateral shuffle was included in 

this study, but the capture was unsuccessful because this movement required the subject to 

move in and out of the capture volume. In terms of data size, each subject required about 100 

GB of local storage for the raw mocap data, including the video data, which is necessary to 

accurately label markers. Whereas all the OpenCap data was stored in the cloud for easy data 

sharing and when downloaded locally, each subject required approximately one to two GB of 

storage.  

 

Time  

 The time required to use each system can be divided up into setup, collection, and 

processing time. The setup time for Qualysis was approximately 90 minutes and included 

turning on cameras, calibrating cameras, and adhering markers to a subject in anatomically 

correct locations. Data collection took approximately one minute per trial, but varied 
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depending on the length of the movement for a total time of 1.5 hours per subject. Each data 

collection included approximately 72 trials (23 movements, three trials each plus functional 

range of motion and static calibration poses) that required processing. Processing time took 

between 16 - 20 hours to label and gap fill the markers and 3 - 4 hours to identify events and 

export data per subject (~72 trials). Addbiomechanics was used to scale and estimate 

kinematics, which reduced processing time by days. The estimated total time for setup, data 

collection, and data processing per subject was 23 hours of hands-on time. This could be 

reduced in future with more automated methods.  

 In contrast, the setup time for OpenCap was approximately 30 minutes. There was no 

subject preparation for this system. Data collection took the same amount of time as for 

mocap; about one minute per trial but varied depending on the length of the movement for a 

total time of about 1.5 hours per subject. Data processing for kinematics was automated in the 

cloud. The estimated total time for setup, data collection, and data processing was two hours 

per subject.  

 

Reliability 
 
 All subjects completed at least three repetitions of each movement during data 

collection. Twenty-two extra mocap trials across the ten subjects and 15 analyzed movements 

(6 unilateral) were collected to obtain three successful mocap trials. During data analysis, 

OpenCap trials were marked as a failure if there were spikes in the data or if part of the trial 

was not captured. This resulted in fewer than three trials for some movements. One subject 

for right single leg squat was omitted entirely, and only two successful trials were included 

for the following: one subject for right single leg squat, two subjects for left drop vertical 

jump, one subject for right countermovement jump, and one subject for countermovement 
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jump due to poor capture quality for these specific trials. In total, eight of the 450 successful 

mocap trials were not usable for OpenCap, which is approximately 2% of trials.  

 

3.2 Accuracy  

Qualitative Comparison  

Figure 3.1 shows representative mean ± standard deviation (SD) waveforms from ten 

subjects for the right lower limb joint angles (hip flexion, knee flexion, ankle flexion, hip 

abduction/adduction, and hip rotation) across the cycle of a squat for both mocap and 

OpenCap. These waveforms show that the OpenCap data demonstrated similar shape, trend, 

and magnitude of the joint angles as mocap data. Synchronicity of the waveforms was 

evaluated by the alignment of the peaks for knee flexion across the cycle of the movement for 

OpenCap and mocap.  

 

 

Figure 3.1: Mean ± SD waveforms (n=10 subjects) from mocap (blue), and OpenCap (red) 
for right lower limb joint angles. 

 
Quantitative Comparison  
 
 RMSE of the lower limb joint angles between marker-based mocap and OpenCap was 

used to evaluate the accuracy of OpenCap across the cycle of each movement and assess how 
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well OpenCap was able to reproduce the gold standard mocap results. The metric provides an 

estimate of accuracy and indicates how well OpenCap predicted the true value (motion 

capture). Table 3.2 summarizes the average RMSE across the cycle of selected movements 

averaged across ten subjects and right and left limbs. Three trials are included for each 

movement except the ones mentioned previously and an additional missing right single leg 

squat trial due to operator error collecting the wrong limb.  

 

Table 3.2: Summary of RMSEs for lower limb kinematics of each movement task between 
mocap and OpenCap. Note the RMSE for each limb are averaged. The percentage shown is 
the error as a percentage of the total range of motion for the specific task (joint excursion). 

  Ankle 
Flexion 

[°] 

Knee 
Flexion 

[°] 

Hip 
Flexion 

[°] 

Hip 
Adduction 

[°] 

Hip 
Rotation 

[°] 

OpenCap 
Setup 1 

Squat 
5.1 (14%) 7.3 (6%) 5.7 (5%) 3.5 (35%) 4.4 (27%) 

Single Leg Squat 8.1 (27%) 5.3 (8%) 10.6 (14%) 4.3 (29%) 5.4 (45%) 

Counter-
movement Jump 10.4 (15%) 6.6 (7%) 7.4 (11%) 3.6 (17%) 5.1 (42%) 

Single Leg 
Counter-
movement Jump  11.0 (18%) 7.0 (17%) 8.4 (14%) 4.7 (18%) 5.0 (45%) 

Heel Touch  9.0 (33%) 9.4 (14%) 7.6 (15%) 8.4 (29%) 6.2 (82%) 

Drop Vertical 
Jump 11.3 (17%) 6.6 (7%) 5.7 (7%) 3.6 (20%) 4.7 (29%) 

Single Leg Drop 
Vertical Jump 11.0 (19%) 8.1 (13%) 7.1 (19%) 5.1 (34%) 5.9 (60%) 

OpenCap 
Setup 2 

Lunge and Twist 9.3 (27%) 10.0 (13%) 10.8 (19%) 7.6 (33%) 5.4 (39%) 

Broad Jump 9.1 (21%) 7.6 (14%) 7.3 (13%) 5.6 (28%) 7.9 (100%) 

 

 



 

36 

Overall  

The RMSE ranged from 3.5 - 11.3° for all lower limb joints and tasks between mocap 

and OpenCap. Ankle flexion RMSE ranged from 5.1 to 11.3° for all the movements and was 

the largest for jumping tasks (countermovement jump, drop vertical jump, and broad jump), 

ranging from 9.1 to 11.3°. Knee flexion RMSE ranged from 5.3 to 10° with the largest RMSE 

for lunge and twist and the smallest for single leg squat. Hip flexion RMSE ranged from 5.7 

to 10.8° with the largest RMSE for lunge and twist and the smallest for drop vertical jump 

and squat. Hip adduction RMSE ranged from 3.5 to 8.4° with the largest for heel touch and 

the smallest for squat. Hip rotation RMSE ranged from 4.4 to 7.9° with the largest for single 

leg broad jump and the smallest for squat. The average RMSE in the frontal and transverse 

plane were smaller than the average RMSE in the sagittal plane.  

In terms of the percent joint excursion, the RMSE ranged from 6 to 100%. The joint 

excursion was the average total range of motion for each movement in each plane as 

measured with mocap. For ankle flexion, percentage joint excursion RMSE ranged from 15% 

to 33% with the greatest percentage for heel touch and the smallest percentage for squat. For 

knee flexion, percentage joint excursion RMSE ranged from 6% to 17% with the greatest 

percentage for single leg countermovement and the smallest percentage for squat. For hip 

flexion, percentage joint excursion RMSE ranged from 5% to 19% with the greatest 

percentage for single leg drop vertical jump and lunge and twist and the smallest percentage 

for squat. For hip adduction, percentage joint excursion RMSE ranged from 17% to 35% with 

the greatest percentage for squat and the smallest for countermovement jump. For hip 

rotation, percentage joint excursion RMSE ranged from 27% to 100% with the greatest for 

broad jump and the smallest for squat.  
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3.3 Generalized Linear Mixed Model  

 The first few rows of an Analysis of Variance (ANOVA) table for the squat are 

shown in Table 3.3 as an example of how the data was set up for the analysis. This ANOVA 

table was repeated for each movement task and consisted of about 60,000 data points per 

movement.  

 

Table 3.3: Example setup of the ANOVA table for a squat. 

Technology Joint Subject Time Replicate Value 

'Mocap' 'hip_flexion_r' 'A15' 1 1 -4.87648 

'Mocap' 'hip_flexion_r' 'A15' 1 2 -5.7044 

'Mocap' 'hip_flexion_r' 'A15' 1 3 -6.41008 

'Mocap' 'hip_flexion_r' 'A15' 2 1 -1.99433 
 

The null hypothesis is that the factors do not significantly affect the joint angle values. 

Fixed effects where there were no significant differences (p > 0.05) include technology for 

broad jump and countermovement jump, replicate for single leg squat, the two-way 

interaction between technology and replicate for all movements except heel touch, the two-

way interaction between replicate and time for broad jump, lunge, single leg drop vertical 

jump, and heel touch, the two-way interaction between technology and time for the single leg 

squat, the three-way interaction between technology, time and replicate for all movements, 

and the three-way interaction between technology, joint, and replicate for squat, 

countermovement jump, single leg countermovement jump, drop vertical jump, and broad 

jump. The remaining fixed effects and multi-way interaction effects were found to have a 

significant effect on the joint angle value (p < 0.05).  

For all the movements, the most variability as indicated by the largest F-values, and p 

less than 0.05, can be attributed to joint, time, and the two-way interaction between 
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technology and joint. The F-value is a measure of the ratio of variance described by the 

model to the variance not described by the model, which is the ratio of the mean sum of 

squares for the model to the mean sum of squares error. A large F value indicates that the 

between group variation is larger than the within group variation. In all cases the covariance 

estimate for the random subject effect is non-zero and there are multiple subjects per 

movement with a significant p value. The results for each movement are shown in the 

Appendix. 

 

3.4 Differences across Movement Cycle  

Figure 3.2 shows the mean ± SD for hip flexion, hip abduction/adduction, hip 

rotation, knee flexion, and ankle flexion across the cycle of representative movements: squat, 

single leg squat, drop vertical jump and single leg drop vertical jump. The black line shows 

the mean ± SD difference between mocap and OpenCap across the cycle of each movement. 

Positive indicates hip adduction and internal rotation and negative indicates hip abduction 

and external rotation. Only the right limb is shown for the tasks for simplicity except for the 

single leg squat where the left limb is shown due to missing trials with the right single leg 

squat. The plots for the remaining movements are shown in the Appendix.  
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Figure 3.2: Mean ± SD waveforms (n=10 subjects) from mocap (blue), and OpenCap (red) 
for hip flexion, hip abduction/adduction, hip rotation, knee flexion, and ankle flexion across 
the movement cycle of a squat (A), single leg squat (B), single leg drop vertical jump (D), 
and drop vertical jump (C). The black line with shading indicates the mean ± SD between-
system difference across the cycle of the movement.  
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Figure 3.2, Continued. 
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Dual Limb Squat  

 Figure 3.2A shows the dual limb squat waveforms for OpenCap and mocap and the 

average between-system differences across the movement cycle. The mean difference in hip 

flexion between the two systems ranged from -4.5 ± 6.3° to 4.2 ± 5.5° with the largest 

difference at approximately 25% of the cycle. For knee flexion, the mean differences ranged 

from -9.2 ± 2.2° to -0.6 ± 2.5° with larger differences present in the middle of the cycle (i.e., 

at deeper flexion). For ankle flexion, the mean differences ranged from 1.2 ± 2.8° to 7.2 ± 

2.5°. For hip abduction, mean differences ranged from -0.1 ± 4.3° to 2.9 ± 3.6°. For hip 

rotation, mean differences ranged from approximately -6.2 ± 3.1° to 1.3 ± 4.7° with larger 

differences present with increasing external hip rotation (more negative). Hip flexion had the 

most variation in average differences indicated by the larger standard deviation reported and 

shown by the shading in Figure 3.2A. Knee flexion had the largest between-system 

differences.  

 

Single Leg Squat  

 Figure 3.2 B shows the single leg squat waveforms for OpenCap and mocap and the 

average between-system differences across the movement cycle. The mean difference in hip 

flexion between the two systems ranged from -12.5 ± 7.2° to 1.6 ± 7.2° and the magnitude of 

the difference increased with increasing hip flexion. For knee flexion, the mean differences 

ranged from -6.5 ± 4.0° to 2.2 ± 4.8° and the magnitude of differences increases with 

increasing knee flexion. For ankle flexion, the mean differences ranged from 1.4 ± 6.0° to 8.7 

± 2.8° with larger differences at increased dorsiflexion. For hip adduction, the mean 

differences ranged from -2.3 ± 2.7° to 2.4 ± 5.2° with the largest differences during the 

descent phase of the movement (0 to 50%). For hip rotation, mean differences ranged from -

1.2 ± 4.2° to 6.8 ± 7.5° with larger differences with increasing hip internal rotation. Hip 
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flexion had the most variation in the average between-system difference indicated by the 

larger standard deviation reported and shown by the shading in Figure 3.2B. Hip flexion also 

had the largest between-system differences.  

 

Drop Vertical Jump  

 Figure 3.2C shows the drop vertical jump waveforms for OpenCap and mocap and the 

average between-system differences across the movement cycle. The mean difference in hip 

flexion between the two systems ranged from -7.0 ± 4.4° to 0.4 ± 4.7° with the greatest 

differences at initial and secondary contact with the ground which occur at 0% and 

approximately 80% of the movement phase, respectively. For knee flexion, the mean 

differences ranged from -16.2 ± 4.2° to -2.1 ± 4.5° with the largest differences around initial 

contact which occurs at the beginning of the movement phase. For ankle flexion, the mean 

differences ranged from -6.8 ± 4.2° to 20.0 ± 6.1° with the largest differences during initial 

contact and takeoff which occur at about 0% and 50% of the movement phase, respectively. 

For hip rotation, the mean differences ranged from -5.1 ± 4.5° to 0.5 ± 4.6° with the largest 

differences at initial contact. All the joints had larger between-system differences at initial 

contact. Ankle flexion had the largest between-system differences.  

 

Single Leg Drop Vertical Jump  

 Figure 3.2D shows the single leg drop vertical jump waveforms for OpenCap and 

mocap and the average between-system differences across the movement cycle. The mean 

difference in hip flexion between the two systems ranged from -10.0 ± 5.1° to -2.0 ± 6.6° 

with the largest differences around initial contact which occurs at the beginning of the 

movement phase, around 0-5%. For knee flexion, the mean differences ranged from -12.4 ± 

3.1° to -3.9 ± 6.3° with the largest differences around initial contact. For ankle flexion, the 
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mean differences ranged from approximately -4.1 ± 4.9° to 20.0 ± 6.6° with the largest 

differences at initial contact and during flight which occurs from about 50 to 70% of the 

movement cycle. For hip adduction, the mean differences ranged from approximately -0.7 ± 

5.8° to 6.6 ± 3.7° with the largest differences at initial contact. For hip rotation, the mean 

differences ranged from approximately -3.2 ± 4.2° to 1.1 ± 6.4° with the largest differences at 

initial contact. Ankle flexion had the largest between-system differences.  

 

3.5 Discrete Points  

Discrete points of movement tasks were evaluated for a squat, single leg squat, drop 

vertical jump, single leg drop vertical jump, and a lunge. The discrete points evaluated 

include peak knee flexion, hip flexion, hip adduction, hip rotation, and ankle flexion at 

various points in the movement cycle depending on the task.  

 A summary of Pearson's correlation coefficients of the peak points between the two 

measurement systems are shown in Table 3.4. There was a very strong correlation at peak 

knee flexion for all movement tasks ranging from 0.9 to 0.98 except the lunge where the 

correlation is strong (0.88). There was very strong correlation at peak hip flexion for the 

jumping tasks (drop vertical jump and single leg drop vertical jump) ranging from 0.94 to 

0.95, while there was strong correlation for the single leg squat (0.76) and lunge (0.85) and 

moderate correlation for the dual limb squat (0.57). There was a strong correlation for ankle 

dorsiflexion for all tasks ranging from 0.73 to 0.82 except the single leg drop vertical jump 

where the correlation is moderate (0.67). There was varying correlation for hip adduction for 

all tasks: moderate for single leg squat (0.41), strong for single leg drop vertical jump (0.74), 

and negligible for lunge (0.05) and varying correlation for hip abduction: moderate for squat 

(0.6) and weak for drop vertical jump (0.26). There was also varying correlation for hip 



 

45 

rotation: very strong for squat (0.92), strong for drop vertical jump (0.77), moderate for single 

leg drop vertical jump (0.42) and lunge (0.68) and weak for single leg squat (0.34).  

 
Table 3.4: A summary of Pearson's correlation coefficients of discrete variables for knee 
flexion, hip flexion, ankle flexion, and hip adduction captured with mocap and OpenCap. The 
correlations are shown for squat, single leg squat, drop vertical jump, and single leg drop 
vertical jump. The strength of the correlation as assessed by Pearson's correlation coefficient 
(r) was classified as very strong (0.90–1.00), strong (0.70–0.89), moderate (0.40–0.69), weak 
(0.10–0.39) or negligible (0.00–0.10). 

 Knee flexion Hip flexion Ankle flexion Hip adduction  Hip rotation 

Squat 0.98 0.57 0.79 0.6 (abduction) 0.92 

SL Squat 0.9 0.76 0.79 0.41 0.34 

DVJ 0.95 0.98 0.82 0.26 (abduction) 0.77 

SL DVJ  0.93 0.93 0.67 0.74 0.42 

Lunge  0.88 0.85 0.73 0.05 0.68 

 

Bland Altman plots for each of the movements and discrete variables are shown 

below. This graphical representation describes the agreement of mocap and OpenCap for 

measuring a variable through the mean difference between both systems (bias), and the upper 

and lower 95% limits of agreement (64). A positive bias is present when OpenCap 

overestimated a joint angle compared to mocap and negative bias is present when OpenCap 

underestimated a joint angle compared to mocap. Limits that are closer to the bias suggest 

greater agreement between the two systems.  

Figure 3.3 shows the Bland Altman plots of the discrete variables for the various 

movement tasks. Table 3.5 summarizes the bias and limits of agreement that correspond with 

Figure 3.3. Each set of colored dots represents a subject. There was clustering of each 

subject. For all movements, knee flexion was underestimated ranging from -2.6 to -11.1°. For 

squat, single leg squat, and single leg drop vertical jump, the bias was approximately -6.5°. 

OpenCap estimated a greater angle of dorsiflexion compared to a smaller angle captured by 
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mocap. The mean bias ranged from 4.5 to 9.7°. The single leg drop vertical jump, drop 

vertical jump, and lunge all had a mean bias of approximately 9.5°. Hip flexion was 

underestimated in all cases except for a dual limb squat. The bias ranged from -3.6 to -12.5° 

in cases where hip flexion was underestimated whereas the bias is 0.6° for the squat. Hip 

adduction bias ranged from -0.1 to 2.3° for the single limb tasks whereas hip abduction 

ranged from -1.0 to 1.1° for the dual limb tasks. Hip rotation bias ranged from -0.5 to 7.2° 

and was always underestimated for internal hip rotation: -2.6 to -6.2° for drop vertical jump 

and squat. The LOA were the largest for the single leg squat and the smallest for the drop 

vertical jump across all the movements.  
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Figure 3.3: Bland-Altman representations comparing the differences between OpenCap and 
mocap at discrete points. The x axis of these plots is the peak value for mocap joint angle and 
the y axis shows the difference in peak joint angle in degrees between OpenCap and mocap. 
The dashed-dotted line represents the mean bias between the measurements made between 
both systems. The red dashed horizontal lines represent the 95% limits of agreement. 
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Figure 3.3, Continued 
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Figure 3.3, Continued  
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Table 3.5: Summary of the bias and 95% limits of agreement between mocap and OpenCap at 
discrete points for selected movements. 

 Peak Knee 
Flexion 

Peak Hip 
Flexion 

Peak Ankle 
Dorsiflexion 

Peak Hip 
Ab/Adduction 

Peak Hip 
Rotation 

Squat -6.6° 
-11.5 to -1.7° 

0.6° 
-10.1 to 11.2°  

4.5° 
-2.6 to 11.6° 

1.1° 
-6.3 to 8.5°  

-6.2°  
-12.8 to 0.3° 

SL Squat -6.5° 
-14.9 to 1.8° 

-12.5° 
-26.4 to 1.4°  

8.4° 
2.4 to 14.3° 

2.3° 
-7.3 to 11.9° 

7.2° 
-5.3 to 19.7° 

Drop 
Vertical 

Jump 

-2.6° 
-9.8 to 4.6° 

-3.6  
-11.1 to 4.0° 

9.7° 
3.7 to 15.6° 

-1.0° 
-9.6 to 7.6° 

 

-2.6° 
-7.1 to 2.0°  

SL Drop 
Vertical 

Jump 

-6.5° 
-14.1 to 1.1° 

-5.9°  
-16.3 to 4.6° 

9.5° 
-0.3 to 19.2° 

-0.1° 
-8.6 to 8.5° 

-1.9° 
-10.3 to 6.6° 

Lunge and 
Twist 

-11.1° 
-15.7 to -6.5° 

-11.8° 
-20.1 to -3.5° 

9.5° 
2.8 to 16.1° 

1.1° 
-16.7 to 18.9° 

-0.5° 
-8.9 to 7.8° 
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Chapter 4 DISCUSSION 

This study evaluated the accessibility and accuracy of a smartphone-based motion 

capture system against the current gold standard marker-based motion capture. In a 

qualitative comparison of accessibility between the two technologies, OpenCap had reduced 

time, cost, and expertise requirements to analyze human motion and was therefore more user-

friendly. The system also required considerably less storage space and had few failed trials. 

The results captured across movements were then presented for lower extremity kinematics 

for nine exercise movements compared between OpenCap and gold standard mocap. Overall, 

accuracy varied across tasks and joints, and may be dependent on factors such as the speed of 

the movement, joint range of motion, and whether the task is single or dual limb. The 

analysis of discrete points showed there are the least systematic differences for hip flexion 

and more systematic differences for the remaining joint angles.  

 

4.1 Usability  

Data collection and processing was approximately 12 times faster for OpenCap. This 

is because setup does not involve instrumentation of subjects, and calibration is faster. 

Processing was also faster because kinematics were automatically estimated using cloud 

computing. The OpenCap system used in this study was approximately 400 times cheaper 

than the mocap system used in the study because it only includes smartphone cameras and 

tripods. Furthermore, OpenCap does not require a dedicated lab space and data can be 

collected anywhere with wifi. This decreased cost, data collection and processing time along 

with portability makes OpenCap a more accessible platform. This will allow for research 

studies with larger sample sizes to help elucidate more biomechanical markers associated 

with injury.    
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 There were minimal challenges with trial failure for OpenCap (2% of trials), which 

operators should be aware of when collecting data. It is more apparent when mocap trials 

need to be recaptured to obtain three successful trials during data collection. For example, 

motion capture issues that warranted an immediate redo with an additional trial included 

force plate errors, markers falling off or covered markers resulting in large gaps in the marker 

trajectories. However, it was less apparent when OpenCap trials failed because it took time 

for the videos to be processed in the cloud and this did not always happen during data 

collection or the video data did process and looked usable in the cloud, but upon further 

analysis was unusable. However, collecting additional trials adds minimal time to data 

collection and would not increase data processing time because all the OpenCap kinematic 

data is processed automatically in the cloud. Furthermore, with additional algorithm training, 

this problem could be reduced.  

The failed trials were also from different subjects and different tasks therefore 

suggesting there was not a setup issue with one subject or a systematic problem with 

OpenCap not being able to capture one movement type. However, most of the failed trials 

were from single limb tasks. This may be because it is more difficult for the OpenPose 

estimation algorithm to differentiate between limbs during single limb tasks, leading to 

crossing over of segments.  

 

4.2 Accuracy  

The accuracy of OpenCap’s kinematics fall in the range reported in the literature for 

OpenCap validation (64) and other mobile movement assessment tools including IMUs, 

Theia3D, and Microsoft Kinect. Uhlrich et al reported 2.0 - 10.2° kinematic error across 

lower-extremity degrees of freedom for squat, drop vertical jump, gait, and sit to stand tasks 

(56,63,64). RMSE for Theia3D range from 2.6 - 11.2° for gait and 1.9 - 15.9° across twenty-
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eight different movement tasks (cutting, step down, countermovement jump, squat, etc.) with 

the highest RMSEs for hip rotation (50,65). Errors reported for IMUs range from 2.0 - 12° 

across all lower-extremity angles for athletic tasks including single leg drop jump, double leg 

drop jump, cutting, single leg squat, and crossover (58,66,67). This suggests that OpenCap 

could be a suitable alternative to marker-based motion capture especially in cases where the 

practical benefits of smartphone markerless motion capture are necessary.  

 The movements collected with OpenCap setup two, lunge and twist and broad jump, 

required the subject to be further away from the cameras as compared to OpenCap setup one. 

Subjects were at a maximum approximate distance of six feet away from the center camera in 

OpenCap setup one. For single leg broad jump and lunge and twist, subjects started 

approximately 16 feet away from the center camera in OpenCap setup two. The extended 

distance of the subject from the camera may have affected the accuracy of OpenCap in setup 

two reflected in the larger RMSEs observed for these movements shown in Table 3.2, and 

sensitivity analysis of OpenCap accuracy based on distance is warranted.  

The largest relative differences were observed in the transverse plane, hip rotation, 

where the percentage joint excursion RMSE ranged from 27% to 100%.  However, these 

differences are challenging to interpret due to the likely presence of error from both systems 

and the lack of ground truth measurements. Larger between system differences during faster, 

jumping movements can also be explained by limitations from both systems. Marker errors 

induced by skin tissue artifacts are more apparent in faster movements [68]. Skin tissue 

artifacts describe the relative movement between surface markers and underlying bone. This 

phenomenon is both movement and subject dependent and may cause the most 

misrepresentation of internal/external and abduction/adduction movements (68). For 

example, it has been shown that skin mounted marker clusters move relative to the 

underlying bone during various tasks introducing errors up to 40mm at the thigh and 15mm at 
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the shank (69). Between system differences for faster movements could also be due to 

OpenCap parameters such as capture rate (60Hz) or challenges in differentiating segments 

with the OpenPose estimation algorithm. The smallest relative differences were observed for 

knee and hip flexion where the percentage joint excursion RMSE ranged from 6% to 17% 

and 5% to 19%, respectively. These joints undergo the largest ranges of motion for the 

movements presented here which may minimize between-system differences. In both cases, 

the smallest relative difference was for the squat suggesting higher accuracy in these joint 

angles for this task.  

The magnitude of between-system differences was most apparent at the ankle with 

RMSEs ranging from 5.1 to 11.3° for all of the movements. This may be because of the 

machine learning algorithms, OpenPose and LSTM, used in the processing of video data to 

obtain joint kinematics. OpenPose, the key point detection algorithm, includes a specifically 

trained foot model, however the largest errors in key point identification are reported for the 

ankle in the original validation of the algorithm (67,68). After key points are identified, the 

neural network, LSTM, is used to augment the marker set. As previously mentioned, an arm 

and body model were trained to predict the position of markers, but no specific foot model. 

The majority of the training data for the LSTM model included walking and running (seven 

of the ten data sets) (66,67). The remaining three data sets included functional tasks such as 

cutting, double- and single-legged jump, squat, squat jump, and sit-to-stand. More data from 

a variety of tasks may overall help to improve the accuracy of OpenCap. Specifically, further 

training of the LSTM model is underway to improve the accuracy at the ankle and this should 

be evaluated in the future. 
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4.3 Generalized Linear Mixed Model  

 The generalized linear mixed model showed that for all movements, the factors that 

contributed the most variability to the response were joint, time, and the two-way interaction 

between technology and joint as shown in the Appendix. The significant effect of the two-

way interaction between technology and joint suggests the differences between OpenCap and 

mocap depend on the joint for all the movements where there is a significant difference 

between the technologies. Most of the variance is due to these factors as joints are inherently 

different and undergo different ranges of motion and the joint angle value changes over the 

phase of the movement (time).  

 The model also showed that in most cases the differences between OpenCap and 

mocap depend on time as shown by the significant effect of the two-way interaction between 

technology and time, except for single leg squat. The replicate factor also significantly 

affected the response for all movements except the countermovement jump, single leg 

countermovement jump, and the lunge and twist. Both the two-way interaction between 

technology and time and the replicate factor did not contribute as large of a source of 

variability as the aforementioned fixed effects. Replicate could be further explored in the 

future to understand how the replicate number influences the response. For example, there 

may be a training effect resulting in a better quality second repetition of a movement than the 

first.  

Furthermore, the model also showed there was not a significant effect of the two-way 

interaction between replicate and technology for all the movements, except heel touch, 

suggesting that in most cases, the differences between OpenCap and mocap do not depend on 

replicate. This makes sense because less variability is expected between replicates of each 

movement. Furthermore, the variation between replicates could be considered acceptable as 

humans inherently cannot do a movement the same exact way multiple times and in clinical 
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practice replicates are often averaged to account for this inherent variability. Therefore, the 

variability between technologies may be acceptable if it is less than or close to the magnitude 

of the variability for replicate as described by the sum of squares. Thus, the ratio of the sum 

of squares between technology and replicate suggests that the differences between technology 

may be acceptable for squat, single leg squat, countermovement jump, drop vertical jump, 

and single leg broad jump, but not acceptable for single leg countermovement jump, single 

leg drop vertical jump, heel touch, and lunge and twist. This ratio is the greatest for the lunge 

due to relatively low replicate variability, but relatively high technology variability 

suggesting that the differences in technology may be very important for this movement. The 

ratio is the smallest for the broad jump, however this may be due to the relatively large 

variability in replicates as subjects appear to execute this movement with low repeatability. 

This may suggest the broad jump is not an appropriate task to use for movement screening.  

The significant effect of the three-way interaction of technology, joint and replicate 

for several of the movements suggests that in most cases the differences between 

technologies depend on multiple factors and all of the variability has not been accounted for. 

This is a limitation of the model. Furthermore, omitting the three-way interaction of 

technology time, and joint is a limitation and should be evaluated in the future using a more 

powerful statistical software package. This mixed effect model serves as a framework for 

future experimental design and studies that evaluate questions such as which joint is most 

variable or where in the movement cycle is there the most variation.  

 

4.4 Differences across Movement Cycle  

 Squat, single leg squat, drop vertical jump, and single leg drop vertical jump were 

further analyzed as representative tasks. These tasks were chosen because they include a mix 

of single and double limb jumping and non-jumping.  In all these movements, OpenCap 
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indicated more dorsiflexion in the ankle at each discrete point than mocap did as shown in 

Figure 3.3. Additionally, knee flexion was underestimated which was especially apparent in 

the squat and single leg squat. The squat challenges flexibility or range of motion as athletes 

were instructed to squat as deep as possible. The average total range of motion (joint 

excursion) for knee flexion for the squat pattern in the 10 subjects was 123° and ranged from 

95 to 140°, whereas for all other movements, the average total knee joint excursion was less 

than 100°. Hip flexion was also underestimated in the tasks and most apparent for the single 

leg squat. During this motion, the thigh or the subject’s hands on their hips may have partially 

or fully occluded the hip joint making it difficult for OpenPose to accurately track the 

position of the hip key points especially at deeper ranges of flexion. Similar reasons may 

have resulted in the larger differences seen for hip adduction in the single leg squat.  

The between-system differences were less apparent for hip and knee flexion for the 

drop vertical jump and single leg drop vertical jump at greater joint excursion as compared to 

the squat and single leg squat, which may be because of decreased joint excursion during 

these jumping tasks. Furthermore, larger between-system differences were apparent at points 

of contact with the ground during the single leg drop vertical jump and the drop vertical 

jump. This may be because of skin tissue artifact with the marker-based system suggesting 

that OpenCap could be a better solution for dynamic movements where marker movement is 

an issue. OpenCap may be more problematic with motions that have a large joint excursion or 

single limb tasks as there may be less spatial differentiation of segments leading to 

differences. Accuracy and differences between OpenCap and mocap seem to vary across task 

and joint and may depend on features such as speed of task, joint excursion, single or dual 

limb, and distance from the cameras.  
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4.5 Discrete Points  

Discrete peak points of selected movement tasks were evaluated in this study to 

determine the extent to which systematic or random differences between OpenCap and 

mocap could affect clinical interpretations or decision making. Peak points are used to assess 

movement quality, predict injury risk, or evaluate athletes returning to sport. The tasks 

considered most clinically relevant are included along with tasks where accuracy was the best 

and worst across the movement cycle for all joint angles as described in previous sections. 

Specifically, the squat was evaluated because it had the highest accuracy in the most joints 

(Table 3.2). To compare single limb and dual limb movements, the single limb squat was 

evaluated. The single limb squat also seemed to have larger between-system differences at 

greater joint excursions which was of interest. The lunge and twist was evaluated because it 

had the lowest accuracy in many of the joints (Table 3.2) and the difference plot (Appendix) 

seemed to show a consistent offset in the sagittal plane, which warranted further evaluation. 

The drop vertical jump and single leg drop vertical jump are clinically relevant movements 

and it was of interest to compare peak points in single limb vs dual limb jumping movements 

(68,69). Therefore, a more in-depth analysis of these movements is presented. 

For all movements, there was a moderate to very strong correlation for peak knee 

flexion and peak hip flexion and moderate to strong correlation for peak ankle flexion 

between OpenCap and mocap, which was expected as generally motion capture is most 

accurate for sagittal plane motion. The correlations were lower for hip adduction especially 

for the lunge and twist, which could have been caused by occlusion of the hip by the thigh 

during this motion. There was a low to very strong correlation for peak hip rotation. The wide 

range suggests that peak hip rotation measures may be movement dependent and subject to 

previously mentioned challenges of capturing transverse plane motion. Pearson’s correlation 

coefficient gives information about the strength of the relationship between two variables, but 
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it does assess the agreement. High correlation does not automatically imply good agreement 

and therefore the Bland Altman method was used to represent the data and assess the 

agreement.   

The Bland Altman plots, Figure 3.3, show less variability within a subject's trials than 

between subjects, as demonstrated by the clustering between each set of colored dots. This 

indicates there is a greater level of repeatability within a subject and a session. The 

accessibility of OpenCap allows for frequent capture of athletes, however these repeated 

movement assessments are most informative if OpenCap is reliable and able to detect 

changes in athletes over time. Further inter-session repeatability analysis should be conducted 

in the future to bolster the reliability of OpenCap. 

Figure 3.3 shows similar trends with certain subjects having lower or higher bias 

across all joint angles. For example, subject 8 (black) visually appears to have lower mean 

bias for peak hip flexion, knee flexion, hip rotation, and hip adduction for all movements 

whereas subject 7 (dark red) or subject 3 (cyan) appear to have a greater mean bias. This 

suggests that accuracy might be subject-dependent. Subject anthropometrics, anatomy, or 

even clothing could affect the accuracy of the OpenPose estimation algorithm, marker 

placement, skin tissue artifacts, and/or scaling of the model and therefore the kinematics 

(69,70). This is an important factor for consideration by researchers, coaches, and clinicians, 

when using motion capture technology as the assessment tool accuracy may vary with 

subjects. 

The Bland Altman plots, Figure 3.3, show varying trends depending on the joint and 

the movement. Systematic differences include either fixed or proportional bias where fixed 

bias gives values that are higher or lower than those from the other method by a constant 

amount whereas proportional bias gives values that are higher or lower than those from the 

other method by an amount that is proportional to the magnitude of the measured value 
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(71,72). Fixed or proportional bias provides an opportunity to calculate the joint angle that 

mocap would have estimated when provided with OpenCap data whereas a bias with no trend 

does not. 

For example, for the drop vertical jump movement, there appears to be a variable 

trend in bias for hip flexion, a fixed bias for ankle dorsiflexion, and a proportional bias for 

knee flexion, hip rotation, and hip abduction as shown in Figure 3.3C. More specifically, for 

peak hip flexion there appears to be a random scatter and no consistent trend. For ankle 

dorsiflexion, OpenCap appears to give values that are higher than mocap by a constant 

amount indicated by the consistent spread around the mean bias of 9.7°, suggesting a 

systematic fixed bias. Finally, for peak knee flexion, peak hip rotation, and peak hip 

abduction, the bias changes with increasing peak joint angle suggesting a systematic 

proportional bias. Similar patterns are observed for the single limb drop jump task suggesting 

that capture at peak points may be similar for jumping tasks.  

 Across all movements, the smallest mean bias is seen for hip adduction/abduction 

ranging from -0.1 to 2.3°. However, this joint also has the largest LOA and trends of the bias 

seem to vary depending on movement. For example, when adduction is observed, the bias is 

inconsistent for a single leg squat and proportional for the single leg drop vertical jump and 

the lunge and twist. A larger mean bias is observed for peak ankle dorsiflexion. However, this 

bias is approximately 9.5° for the drop vertical jump, single leg drop vertical jump, and 

lunge. This would suggest that there is a systematic offset of approximately 9.5° at peak 

ankle dorsiflexion for these movements. The largest variability in the mean bias is seen for 

hip flexion and hip rotation. The bias does not follow a trend in most cases for hip flexion, 

whereas it is proportional for hip rotation.  

The mean bias for knee flexion is approximately -6.5° for squat, single leg squat, and 

single leg drop vertical jump and the LOA are within 6° for all the movements. This suggests 
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that knee flexion is primarily underestimated by OpenCap, however the bias does not appear 

to be a systematic fixed offset. There is a proportional offset for each movement, except the 

lunge and the direction of the trend is different between the jumping movements and the 

squatting movements. Furthermore, there appears to be a proportional bias for peak knee 

flexion for the squat until about 140°. At these extreme ranges of motion, the musculoskeletal 

model limits are reached, which suggests that model used may not be a good representation 

of the range of motion for collegiate athletes. Constrained models (i.e., models with limits on 

range of motion) help to increase accuracy but may not capture extreme ranges of motion for 

all tasks.  

The evaluation of peak points with the Bland Altman method shows that OpenCap 

may have the most systematic offsets for peak knee flexion, ankle dorsiflexion, and hip 

rotation and the most random offsets for peak hip flexion and adduction when compared to 

marker-based motion capture. However, this small sample size makes it challenging to 

interpret the data; a larger n would help to increase the confidence in the data trends and 

decrease the LOAs. Despite this, the varying bias, LOAs, and trends for each movement 

suggests that OpenCap may be better at capturing some movements vs others, but broad 

conclusions cannot be drawn that pertain to all movements and joints.  

Between-system differences were apparent across the movement cycle as seen in 

Figure 3.2. However, in cases where the differences were systematic, interchangeable use of 

OpenCap is still viable if clinicians are made aware of these consistent differences. Clinicians 

should be aware of this when deciding to use smartphone-based motion capture as an 

alternative to marker-based motion capture as the magnitude of bias and whether it is 

systematic or not may influence the conclusions that are drawn from a movement screen. For 

example, if a coach is screening athletes to determine if they can dual limb squat to at least 

90° of knee flexion following an injury, OpenCap may be appropriate to use. OpenCap 
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underestimates knee flexion and this underestimation appears to be less at lower ranges of 

motion. At greater ranges of motion, the bias is greater, however this data suggests that 

OpenCap should still be able to indicate that 90° was achieved even with the underestimation. 

However, if the question is related to hip flexion for a drop vertical jump, such as does the 

athlete reach a peak hip flexion of at least 70° to evaluate risk of ACL injury, a coach may be 

less confident in OpenCap due to the varying trends seen in the Bland Altman plot. These 

factors should be taken into consideration for experimental design that seeks to evaluate if 

OpenCap is an appropriate tool for assessing movement. 

 

4.6 Limitations 

There are some limitations that affect the interpretation of the findings. First, the data 

presented is only from 10 subjects. This small sample size also results in the relatively large 

LOA observed in the Bland Altman plots. In addition, the sample size includes only healthy 

female collegiate athletes from ground-based sports. This sample size and relatively 

homogenous population may limit the generalizability of the results. Furthermore, mocap was 

considered the gold standard to compare OpenCap to; however, mocap has its own 

limitations including soft tissue artifacts and marker occlusion that affect the accuracy of the 

results.  

The event identification process for this study for the beginning and end point of each 

movement was systematic, but manual, which may have resulted in more variability between 

trials. In the future, more repeatable and accurate methods should be used to identify these 

events to reduce the variability between trials. The lab space also constrained the OpenCap 

capture volume which created challenges collecting movements such as the lateral shuffle 

and cutting maneuver.  However, up to five iPhones can be used in either a vertical or 
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horizontal orientation, which has the potential to drastically increase the capture volume. The 

limits of this would need to be tested.  

 

4.7 Future Work  

Some OpenCap trials were excluded from the analysis due to poor data quality 

resulting in only two trials for some movements and subjects. One reason for this poor data 

quality was the misidentification of landmarks and crossing over of limbs. For example, 

Figure 4.1, left shows the right limb being identified as the left limb. This occurred in 

multiple frames of the video and resulted in the knee angles shown in Figure 4.1 right. 

OpenCap supports a secondary pose estimation algorithm, HRNet (73). Further analysis 

should evaluate the ability of this pose estimation algorithm and the updated OpenPose 

estimation algorithm to correctly identify landmarks with no crossing over of segments. In 

addition, more than three trials should have been collected to ensure the three best trials could 

be selected for analysis. 

 

 
Figure 4.1: Subject completing a single leg squat. The colored keypoints on the left image 
correctly identify the left and right limbs. The right and left limbs are crossed over in the 
center image and result in the knee flexion plot shown on the right. 
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For each task, a longer movement cycle was evaluated than what is currently 

considered clinically relevant. Some features of these movements have yet to be associated 

with injury risk or return to play following injury. For example, to date, there has been no 

research correlating ankle plantar flexion angle during the jumping portion of the jumping 

tasks to injury risk or to evaluate return to sport. However, it is possible that movement 

features yet to be associated with injury are identified in this analysis, which is the reason for 

including the longer movement cycle. Furthermore, a longer movement cycle was included 

for the purpose of conducting principal component analysis (PCA) and clustering in future 

studies to identify patterns of motion in the dataset that explain the largest amount of 

variance. This analysis would help to determine the most important variables (e.g., kinematic 

features) that contribute to the observed movement patterns. These clusters could then be 

related to a priori ideas of injury mechanics. This analysis would also help to reveal 

redundancy in movement tasks; movement tasks that target the same constructs. Removing 

redundancy would help to form an optimal set of movement tasks that challenge all 

movement constructs.   

Newer versions of OpenCap and Addbiomechanics have recently been released. 

OpenCap updates include changes to syncing and machine learning algorithms and updates to 

Addbiomechanics include changes to algorithms and fixing issues with estimation of ankle 

angles. Data analysis should be repeated to incorporate these updates and the remaining 

movements that were collected, but not included in this analysis. OpenCap estimated kinetics 

should then be evaluated as muscle dynamics may be more valuable in terms of injury 

prediction. For example, there may be more apparent differences in kinetics such as peak 

ground reaction force and knee extension moment in injured vs non-injured limbs and more 

research positively correlating joint moments to injury risk (73), however this was out of the 

scope of this work. An evaluation of OpenCap kinematics was critical before evaluating 
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kinetics because reliable joint kinetics depend on accurate kinematics and any inaccuracies in 

kinematics will propagate to even larger errors in joint kinetics (74).  



 

67 

Chapter 5 CONCLUSIONS 

This project originated from the need for accessible and standardized measures of 

athletic movement. Evaluation of movement is important for identifying suboptimal 

movement that may increase athletes’ risk of injury and identifying optimal movement 

strategies that may help to increase performance. OpenCap’s affordability, quick 

implementation, accessibility to non-experts, and portability makes it suitable for widespread 

implementation across diverse athlete populations. We demonstrated that more detailed and 

objective data can be obtained with OpenCap as compared to a visual assessment, which may 

help highlight potential movement abnormalities in athletes that cannot be detected by the 

human eye. The analysis of the accuracy and between-system agreement lent insight into 

which type of movements this platform may be most applicable for and where between-

system differences arise. The generalized linear mixed model helped identify movement tasks 

where the variability between technologies may be acceptable. This work is a foundation for 

future studies to evaluate OpenCap for more specific clinical questions to better understand 

the underlying mechanisms contributing to specific injuries. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

68 

Chapter 6 REFERENCES 

1.  Lu T-W, Chang C-F. Biomechanics of human movement and its clinical applications. 
Kaohsiung J Med Sci. 2012 Feb;28(2 Suppl):S13-25. 

2.  Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental 
movements as an assessment of function - part 1. N Am J Sports Phys Ther. 2006 
May;1(2):62–72. 

3.  Kritz M, Cronin J, Hume P. The Bodyweight Squat: A Movement Screen for the Squat 
Pattern. Strength & Conditioning Journal. 2009 Feb;31(1):76. 

4.  López-Nava IH, Muñoz-Meléndez A. Wearable Inertial Sensors for Human Motion 
Analysis: A Review. IEEE Sens J. 2016 Nov;16(22):7821–34. 

5.  Islam R, Bennasar M, Nicholas K, Button K, Holland S, Mulholland P, Price B, Al-
Amri M. A Nonproprietary Movement Analysis System (MoJoXlab) Based on Wearable 
Inertial Measurement Units Applicable to Healthy Participants and Those With Anterior 
Cruciate Ligament Reconstruction Across a Range of Complex Tasks: Validation Study. 
JMIR Mhealth Uhealth. 2020 Jun 16;8(6):e17872. 

6.  Herman T, Giladi N, Hausdorff JM. Properties of the “timed up and go” test: more than 
meets the eye. Gerontology. 2011;57(3):203–10. 

7.  Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor DW, Berman 
LB. The 6-minute walk: a new measure of exercise capacity in patients with chronic 
heart failure. Can Med Assoc J. 1985 Apr 15;132(8):919–23. 

8.  Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for 
frail elderly persons. J Am Geriatr Soc. 1991 Feb;39(2):142–8. 

9.  Baker R. The history of gait analysis before the advent of modern computers. Gait 
Posture. 2007 Sep;26(3):331–42. 

10.  Sutherland DH, Hagy JL. Measurement of gait movements from motion picture film. J 
Bone Joint Surg Am. 1972 Jun;54(4):787–97. 

11.  Hendricks RM, Khasawneh MT. An Investigation into the Use and Meaning of 
Parkinson’s Disease Clinical Scale Scores [Internet]. Vol. 2021, Parkinson’s Disease. 
2021. p. 1–7. Available from: http://dx.doi.org/10.1155/2021/1765220 

12.  Cook G, Burton L, Hoogenboom BJ, Voight M. Functional movement screening: the use 
of fundamental movements as an assessment of function - part 1. Int J Sports Phys Ther. 
2014 May;9(3):396–409. 

13.  Chorba RS, Chorba DJ, Bouillon LE, Overmyer CA, Landis JA. Use of a functional 
movement screening tool to determine injury risk in female collegiate athletes. N Am J 
Sports Phys Ther. 2010 Jun;5(2):47–54. 

14.  Frost DM, Beach TAC, Callaghan JP, McGill SM. Using the Functional Movement 



 

69 

ScreenTM to evaluate the effectiveness of training. J Strength Cond Res. 2012 
Jun;26(6):1620–30. 

15.  Chimera NJ, Warren M. Use of clinical movement screening tests to predict injury in 
sport. World J Orthop. 2016 Apr 18;7(4):202–17. 

16.  Lally EM, Ericksen H, Earl-Boehm J. Measurement Properties of Clinically Accessible 
Movement Assessment Tools for Analyzing Single-Leg Squats and Step-Downs: A 
Systematic Review. J Sport Rehabil. 2022 May 1;31(4):476–89. 

17.  Bennett H, Davison K, Arnold J, Slattery F, Martin M, Norton K. Multicomponent 
Musculoskeletal Movement Assessment Tools: A Systematic Review and Critical 
Appraisal of Their Development and Applicability to Professional Practice. J Strength 
Cond Res. 2017 Oct;31(10):2903–19. 

18.  McGuigan MR, Winchester JB. The relationship between isometric and dynamic 
strength in college football players. J Sports Sci Med. 2008 Mar 1;7(1):101–5. 

19.  Mandic R, Jakovljevic S, Jaric S. Effects of countermovement depth on kinematic and 
kinetic patterns of maximum vertical jumps. J Electromyogr Kinesiol. 2015 
Apr;25(2):265–72. 

20.  Tan T, Gatti AA, Fan B, Shea KG, Sherman SL, Uhlrich SD, Hicks JL, Delp SL, Shull 
PB, Chaudhari AS. A scoping review of portable sensing for out-of-lab anterior cruciate 
ligament injury prevention and rehabilitation. NPJ Digit Med. 2023 Mar 18;6(1):46. 

21.  Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, van den 
Bogert AJ, Paterno MV, Succop P. Biomechanical measures of neuromuscular control 
and valgus loading of the knee predict anterior cruciate ligament injury risk in female 
athletes: a prospective study. Am J Sports Med. 2005 Apr;33(4):492–501. 

22.  Kotsifaki A, Van Rossom S, Whiteley R, Korakakis V, Bahr R, Sideris V, Jonkers I. 
Single leg vertical jump performance identifies knee function deficits at return to sport 
after ACL reconstruction in male athletes. Br J Sports Med. 2022 May 1;56(9):490–8. 

23.  Leppänen M, Pasanen K, Kujala UM, Vasankari T, Kannus P, Äyrämö S, Krosshaug T, 
Bahr R, Avela J, Pertunnen J, Parkakari J. Stiff Landings Are Associated With Increased 
ACL Injury Risk in Young Female Basketball and Floorball Players. Am J Sports Med. 
2017 Feb;45(2):386–93. 

24.  Hughes G, Musco P, Caine S, Howe L. Lower Limb Asymmetry After Anterior Cruciate 
Ligament Reconstruction in Adolescent Athletes: A Systematic Review and Meta-
Analysis. J Athl Train. 2020 Aug 1;55(8):811–25. 

25.  Decker MJ, Torry MR, Wyland DJ, Sterett WI, Richard Steadman J. Gender differences 
in lower extremity kinematics, kinetics and energy absorption during landing. Clin 
Biomech . 2003 Aug;18(7):662–9. 

26.  Fox AS, Bonacci J, McLean SG, Spittle M, Saunders N. What is normal? Female lower 
limb kinematic profiles during athletic tasks used to examine anterior cruciate ligament 
injury risk: a systematic review. Sports Med. 2014 Jun;44(6):815–32. 



 

70 

27.  Pollard CD, Sigward SM, Powers CM. Limited hip and knee flexion during landing is 
associated with increased frontal plane knee motion and moments. Clin Biomech . 2010 
Feb;25(2):142–6. 

28.  Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint 
dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003 
Nov;33(11):639–46. 

29.  Lepley AS, Kuenze CM. Hip and Knee Kinematics and Kinetics During Landing Tasks 
After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-
Analysis. J Athl Train. 2018 Feb;53(2):144–59. 

30.  Yamazaki J, Muneta T, Ju YJ, Sekiya I. Differences in kinematics of single leg squatting 
between anterior cruciate ligament-injured patients and healthy controls. Knee Surg 
Sports Traumatol Arthrosc. 2010 Jan;18(1):56–63. 

31.  Yamazaki J, Muneta T, Ju Y-J, Koga H, Morito T, Sekiya I. The kinematic analysis of 
female subjects after double-bundle anterior cruciate ligament reconstruction during 
single-leg squatting. J Orthop Sci. 2013 Mar;18(2):284–9. 

32.  DeHaven KE, Lintner DM. Athletic injuries: comparison by age, sport, and gender. Am 
J Sports Med. 1986 May-Jun;14(3):218–24. 

33.  Boling MC, Padua DA, Marshall SW, Guskiewicz K, Pyne S, Beutler A. A prospective 
investigation of biomechanical risk factors for patellofemoral pain syndrome: the Joint 
Undertaking to Monitor and Prevent ACL Injury (JUMP-ACL) cohort. Am J Sports 
Med. 2009 Nov;37(11):2108–16. 

34.  Souza RB, Powers CM. Differences in hip kinematics, muscle strength, and muscle 
activation between subjects with and without patellofemoral pain. J Orthop Sports Phys 
Ther. 2009 Jan;39(1):12–9. 

35.  Nakagawa TH, Moriya ETU, Maciel CD, Serrão FV. Trunk, pelvis, hip, and knee 
kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males 
and females with and without patellofemoral pain syndrome. J Orthop Sports Phys Ther. 
2012 Jun;42(6):491–501. 

36.  Whittaker JL, Woodhouse LJ, Nettel-Aguirre A, Emery CA. Outcomes associated with 
early post-traumatic osteoarthritis and other negative health consequences 3-10 years 
following knee joint injury in youth sport. Osteoarthritis Cartilage. 2015 Jul;23(7):1122–
9. 

37.  Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J. The drop-jump 
screening test: difference in lower limb control by gender and effect of neuromuscular 
training in female athletes. Am J Sports Med. 2005 Feb;33(2):197–207. 

38.  Kritz M. Development, reliability and effectiveness of the Movement Competency 
Screen (MCS). 

39.  Kraus K, Schutz E, Taylor WR, Doyscher R. EFFICACY OF THE FUNCTIONAL 
MOVEMENT SCREEN: AREVIEW. Journal of Strength and Conditioning Research 
[Internet]. 2014 Dec; Available from: http://journals.lww.com/nsca-jscr 



 

71 

40.  Zhao X, Ross G, Dowling B, Graham RB. Three-Dimensional Motion Capture Data of a 
Movement Screen from 183 Athletes. Sci Data. 2023 Apr 24;10(1):235. 

41.  Moran RW, Schneiders AG, Mason J, Sullivan SJ. Do Functional Movement Screen 
(FMS) composite scores predict subsequent injury? A systematic review with meta-
analysis. Br J Sports Med. 2017 Dec;51(23):1661–9. 

42.  Weygers I, Kok M, Konings M, Hallez H, De Vroey H, Claeys K. Inertial Sensor-Based 
Lower Limb Joint Kinematics: A Methodological Systematic Review. Sensors 
[Internet]. 2020 Jan 26;20(3). Available from: http://dx.doi.org/10.3390/s20030673 

43.  Uhlrich SD, Falisse A, Kidziński Ł, Muccini J, Ko M, Chaudhari AS, Hicks JL, Delp 
SL. OpenCap: 3D human movement dynamics from smartphone videos [Internet]. 
bioRxiv. 2022 [cited 2022 Jul 12]. p. 2022.07.07.499061. Available from: 
https://www.biorxiv.org/content/10.1101/2022.07.07.499061v1 

44.  Camomilla V, Cappozzo A, Vannozzi G. Three-dimensional reconstruction of the 
human skeleton in motion. Handbook of human motion. 2018;17–45. 

45.  Slade P, Habib A, Hicks JL, Delp SL. An Open-Source and Wearable System for 
Measuring 3D Human Motion in Real-Time. IEEE Trans Biomed Eng. 2022 
Feb;69(2):678–88. 

46.  Al Borno M, O’Day J, Ibarra V, Dunne J, Seth A, Habib A, Ong C, Hicks J, Uhlrich S, 
Delp S. OpenSense: An open-source toolbox for inertial-measurement-unit-based 
measurement of lower extremity kinematics over long durations. J Neuroeng Rehabil. 
2022 Feb 20;19(1):22. 

47.  Clark RA, Pua Y-H, Fortin K, Ritchie C, Webster KE, Denehy L, Bryant AL. Validity 
of the Microsoft Kinect for assessment of postural control. Gait Posture. 2012 
Jul;36(3):372–7. 

48.  Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L. Accuracy of the 
Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. 
Gait Posture. 2014 Apr;39(4):1062–8. 

49.  O’Reilly M, Caulfield B, Ward T, Johnston W, Doherty C. Wearable Inertial Sensor 
Systems for Lower Limb Exercise Detection and Evaluation: A Systematic Review. 
Sports Med. 2018 May;48(5):1221–46. 

50.  Kanko RM, Laende EK, Davis EM, Selbie WS, Deluzio KJ. Concurrent assessment of 
gait kinematics using marker-based and markerless motion capture. J Biomech. 2021 
Oct 11;127:110665. 

51.  Kanko RM, Laende EK, Strutzenberger G, Brown M, Selbie WS, DePaul V, Scott SH, 
Deluzio KJ. Assessment of spatiotemporal gait parameters using a deep learning 
algorithm-based markerless motion capture system. J Biomech. 2021 Jun 9;122:110414. 

52.  Werling K, Raitor M, Stingel J, Hicks JL, Collins S, Delp SL, Karen Liu C. Rapid 
bilevel optimization to concurrently solve musculoskeletal scaling, marker registration, 
and inverse kinematic problems for human motion reconstruction [Internet]. bioRxiv. 
2022 [cited 2023 Mar 15]. p. 2022.08.22.504896. Available from: 



 

72 

https://www.biorxiv.org/content/10.1101/2022.08.22.504896v1 

53.  Leboeuf F, Baker R, Barré A, Reay J, Jones R, Sangeux M. The conventional gait 
model, an open-source implementation that reproduces the past but prepares for the 
future. Gait Posture. 2019 Mar;69:235–41. 

54.  Schreven S, Beek PJ, Smeets JBJ. Optimising filtering parameters for a 3D motion 
analysis system. J Electromyogr Kinesiol. 2015 Oct 1;25(5):808–14. 

55.  Cao Z, Hidalgo G, Simon T, Wei S-E, Sheikh Y. OpenPose: Realtime Multi-Person 2D 
Pose Estimation Using Part Affinity Fields [Internet]. Vol. 43, IEEE Transactions on 
Pattern Analysis and Machine Intelligence. 2021. p. 172–86. Available from: 
http://dx.doi.org/10.1109/tpami.2019.2929257 

56.  opencap-core: Main OpenCap processing pipeline [Internet]. Github; [cited 2023 May 
2]. Available from: https://github.com/stanfordnmbl/opencap-core 

57.  Lai AKM, Arnold AS, Wakeling JM. Why are Antagonist Muscles Co-activated in My 
Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks. Ann 
Biomed Eng. 2017 Dec;45(12):2762–74. 

58.  Chia L, Andersen JT, McKay MJ, Sullivan J, Megalaa T, Pappas E. Evaluating the 
validity and reliability of inertial measurement units for determining knee and trunk 
kinematics during athletic landing and cutting movements. J Electromyogr Kinesiol. 
2021 Oct;60:102589. 

59.  Schober P, Boer C, Schwarte LA. Correlation Coefficients: Appropriate Use and 
Interpretation. Anesth Analg. 2018 May;126(5):1763–8. 

60.  Bland JM, Altman DG. Statistical methods for assessing agreement between two 
methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–10. 

61.  Macrum E, Bell DR, Boling M, Lewek M, Padua D. Effect of limiting ankle-
dorsiflexion range of motion on lower extremity kinematics and muscle-activation 
patterns during a squat. J Sport Rehabil. 2012 May;21(2):144–50. 

62.  Wren TAL, Mueske NM, Brophy CH, Pace JL, Katzel MJ, Edison BR, Vandenberg CD, 
Zaslow TL. Hop Distance Symmetry Does Not Indicate Normal Landing Biomechanics 
in Adolescent Athletes With Recent Anterior Cruciate Ligament Reconstruction. J 
Orthop Sports Phys Ther. 2018 Aug;48(8):622–9. 

63.  Comfort P, Jones PA, Smith LC, Herrington L. Joint Kinetics and Kinematics During 
Common Lower Limb Rehabilitation Exercises. J Athl Train. 2015 Oct;50(10):1011–8. 

64.  Giavarina D. Understanding Bland Altman analysis. Biochem Med . 2015 Jun 
5;25(2):141–51. 

65.  Song K, Hullfish TJ, Silva RS, Silbernagel KG, Baxter JR. Markerless motion capture 
estimates of lower extremity kinematics and kinetics are comparable to marker-based 
across 8 movements. bioRxiv [Internet]. 2023 Feb 22; Available from: 
http://dx.doi.org/10.1101/2023.02.21.526496 



 

73 

66.  Fan B, Xia H, Xu J, Li Q, Shull PB. IMU-based knee flexion, abduction and internal 
rotation estimation during drop landing and cutting tasks. J Biomech. 2021 Jul 
19;124:110549. 

67.  Dahl KD, Dunford KM, Wilson SA, Turnbull TL, Tashman S. Wearable sensor 
validation of sports-related movements for the lower extremity and trunk. Med Eng 
Phys. 2020 Oct;84:144–50. 

68.  Andersen MS, Benoit DL, Damsgaard M, Ramsey DK, Rasmussen J. Do kinematic 
models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? 
An in vivo study of knee kinematics. J Biomech. 2010 Jan 19;43(2):268–73. 

69.  Benoit DL, Damsgaard M, Andersen MS. Surface marker cluster translation, rotation, 
scaling and deformation: Their contribution to soft tissue artefact and impact on knee 
joint kinematics. J Biomech. 2015 Jul 16;48(10):2124–9. 

70.  Ito N, Sigurðsson HB, Seymore KD, Arhos EK, Buchanan TS, Snyder-Mackler L, 
Silbernagel KG. Markerless motion capture: What clinician-scientists need to know 
right now. JSAMS Plus [Internet]. 2022 Oct;1. Available from: 
http://dx.doi.org/10.1016/j.jsampl.2022.100001 

71.  Liao JJZ, Capen R. An Improved Bland-Altman Method for Concordance Assessment. 
Int J Biostat [Internet]. 2011 Jan 6 [cited 2023 Apr 27];7(1). Available from: 
https://www.degruyter.com/document/doi/10.2202/1557-4679.1295/html 

72.  Ludbrook J. Confidence in Altman-Bland plots: a critical review of the method of 
differences. Clin Exp Pharmacol Physiol. 2010 Feb;37(2):143–9. 

73.  Sun K, Xiao B, Liu D, Wang J. Deep high-resolution representation learning for human 
pose estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR). IEEE; 2019. p. 5693–703. 

74.  Colyer SL, Evans M, Cosker DP, Salo AIT. A Review of the Evolution of Vision-Based 
Motion Analysis and the Integration of Advanced Computer Vision Methods Towards 
Developing a Markerless System [Internet]. Vol. 4, Sports Medicine - Open. 2018. 
Available from: http://dx.doi.org/10.1186/s40798-018-0139-y 

75.  Bates NA, Ford KR, Myer GD, Hewett TE. Timing differences in the generation of 
ground reaction forces between the initial and secondary landing phases of the drop 
vertical jump. Clin Biomech . 2013 Aug;28(7):796–9. 

76.  Orishimo KF, Kremenic IJ, Mullaney MJ, McHugh MP, Nicholas SJ. Adaptations in 
single-leg hop biomechanics following anterior cruciate ligament reconstruction. Knee 
Surg Sports Traumatol Arthrosc. 2010 Nov;18(11):1587–93. 

77.  Farrokhi S, Pollard CD, Souza RB, Chen Y-J, Reischl S, Powers CM. Trunk position 
influences the kinematics, kinetics, and muscle activity of the lead lower extremity 
during the forward lunge exercise. J Orthop Sports Phys Ther. 2008 Jul;38(7):403–9. 

 
  



 

74 

Chapter 7 APPENDIX 

7.1 Event Identification  

For the squat, the start of the movement was defined as the largest increase in slope of 
either the right or left (whichever occurred first) knee flexion just before the subject began 
the ascent phase of the squat. This change in slope was approximated by an inflection point 
on the acceleration graph. The end of movement was defined as the largest decrease in slope 
of either the right or left (whichever occurred last) knee flexion approaching 0 degrees at the 
end of the descent phase. This change in slope was also approximated by an inflection point 
on the acceleration graph. The same approach was used for single leg squat, however the 
slope change of the leg of interest was used (e.g., right knee flexion for a right single leg 
squat). For heel touch, the start of the movement was also defined as the largest increase in 
slope of knee flexion of the limb that remained on the box. The end of movement was defined 
as the point at which contact with the force plate terminated.  

For countermovement jump and single leg countermovement jump, the angular 
velocity of PELS marker, located superior to the posterior superior iliac spines, was used to 
identify the start and stop cycle. This marker was used as a surrogate to the center of mass 
(COM) as it is located at a similar height. The start of the movement cycle was defined as 
when the angular velocity of the PELS marker crossed the z axis indicating a directional 
change in the motion of the subject. The end of the movement was defined as when the PELS 
marker crossed the z axis following landing indicating the subject was beginning the return 
back to standing. For drop vertical jump and single leg drop vertical jump, the start of the 
movement was defined as the point of initial contact with the force plates of the left or right 
foot (whichever occurred first). Initial contact was defined as the first point the vertical 
ground reaction force exceeded 10 N (75). The end of the movement was defined as the 
PELS angular velocity crossing the z axis following the second landing signaling the end of 
the impact phase of landing.  

For the broad jump, the start of the movement was defined as the largest increase in 
slope of knee flexion before ascent. The PELS marker was then used as an approximation for 
the subject’s COM. The end of the movement was defined as the minimum vertical position 
of the PELS marker following impact which indicated the lowest point of the COM (76). For 
lunge and twist, the start of the movement was defined as the point of initial contact with the 
force plate of the leading leg. The end of movement was defined as the point contact with the 
force plate terminated (e.g., toe off) (77).  

For a 45-degree cut, the start of the movement was defined as the point of initial 
contact with the force plate of the leg of interest to the point at which contact with the force 
plate terminated. The deceleration and lateral shuffle movements were broken up into three 
sections as the subjects completed the movement three consecutive times. The start of each 
was defined as the point of initial contact of the leg of interest and the end of each was the 
point at which contact with the force plate terminated. For Y Balance Test, the start of 
movement was defined when the PELS marker crossed the z axis into negative before the 
first reach direction (forward) and the end of the movement was defined as the point after the 
angular velocity of the PELS marker crossed the z axis into positive following the final reach 
(posteromedially).  
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7.2 Generalized Linear Mixed Model Results  
 

The results from the generalized linear mixed model for each movement task are 
described in Figure 7.1.  
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Figure 7.1: Results from the generalized linear mixed model for each movement. The F value 
indicates the variability contributed by the factor. The covariance parameter estimates 
describe the variation due to the random effect of the subject and the residual is the variation 
that is not accounted for by the fixed and random effects in the model.  
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Figure 7.1, Continued 
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Figure 7.1, Continued 
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Figure 7.1, Continued 
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7.3 Analysis of Missing Trials  
 
 Some of the movements included subjects with two replicates instead of three 
replicates due to failed trials identified during data analysis. To justify this, a subset of these 
movements was re-run all with two replicates instead of a mixture of two and three replicates 
to see if the results changed. Shown below (Table 7.1) is a summary of the Pearson 
correlation coefficient and Bland Altman parameters between the two methods for a left drop 
vertical jump as a representative task. Two subjects for the left drop vertical jump included 
only two replicates instead of three.  
 
Table 7.1: Summary of the Pearson Correlation coefficients and Bland Altman parameters for 
the left drop vertical jump for all trials which includes two out of 10 subjects with two 
replicates compared to only two replicates from each of the 10 subjects. 

 Knee flexion Hip flexion Ankle flexion Hip adduction  Hip rotation  

All trials  r = 0.94 
Bias: -7.6°  

LOA: -0.4 to 
-14.8°   

r = 0.95  
Bias: -4.9°   
LOA: -14.9 

to 5.1°   

r = 0.66 
Bias: 6.4°  

LOA: -2.5 to 
15.3°  

r = 0.65 
Bias: 1.3°  

LOA: -9.7 to 
12.4°  

r = 0.65 
Bias: -2.0°  

LOA: -18.3 to 
14.3°  

Two 
replicates 
per 
subject  

r = 0.94 
Bias: -8.3°  
LOA: -15.5 

to -1.1°  

r = 0.95  
Bias: -6.5°  
LOA: -16.7 

to 3.7°  

r = 0.59 
Bias: 6.2°   

LOA: -3.8 to 
16.2  

r = 0.65 
Bias: 1.9°   

LOA: -9.7 to 
13.6°  

r = 0.65 
Bias: -2.3°  

LOA: -19.7 to 
15°   

 
The Pearson correlation coefficients for each joint angle have the same classification 
regardless of if the two or three replicates were included for the analysis. Peak knee flexion 
and hip flexion are very strongly correlated, ankle flexion, hip adduction, and hip rotation are 
moderately correlated. The Bland Altman plots show similar trends in the data and the 
parameters shown in the table are similar.  
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7.4 Between-system Differences Across Each Movement Task 
 
 The mean ± SD for hip flexion, hip abduction/adduction, hip rotation, knee flexion, 
and ankle flexion across each movement task and the mean ± SD of the between-system 
differences across each joint angle of each movement task are shown in Figure 7.2. Positive 
indicates hip adduction and negative indicates hip abduction. Positive indicates internal 
rotation and negative indicates external rotation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

83 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2: Mean ± SD waveforms (n=10 subjects) from mocap (blue), and OpenCap (red) 
for hip flexion, hip abduction/adduction, hip rotation, knee flexion, and ankle flexion across 
the movement cycle of each movement task. The black line with shading indicates the mean 
± SD between-system difference across the cycle of the movement.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

84 

Squat 

 

 

 

Single Leg 
Squat 

 

 

 
 
 



 

85 

Figure 7.2, Continued  
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Figure 7.2, Continued  
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Figure 7.2, Continued  
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