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11Equation Section 1Unsupervised Machine Learning for Detecting Soil
Layer Boundaries from Cone Penetration Test Data
By Kenneth S. Hudson1, Kristin J. Ulmer2, Paolo Zimmaro3, Steven L. Kramer4, Jonathan P. Stewart1, and Scott J. 
Brandenberg1

1. Civil and Environmental Engineering Department, University of California, Los Angeles.
2. Southwest Research Institute.
3. Environmental Engineering Department, University of Calabria, Italy and Civil and Environmental 

Engineering Department, University of California, Los Angeles.
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Abstract

Cone penetration test (CPT) data contains detailed stratigraphic information that is useful in a wide variety of applications.
Separating a CPT profile into discrete layers is an important part of many analyses such as critical layer selection in 
liquefaction triggering analysis, effective stress seismic ground response analysis, analysis of pile shaft and tip resistance, 
and soil-pile interaction analysis. The discretization of the profile into layers is often done manually, relying on the 
judgment of the analyst. This manual approach is cumbersome for datasets that include large numbers of CPT profiles 
[such as the Next Generation Liquefaction (NGL) database and the New Zealand Geotechnical Database] and it may not 
be consistent or repeatable because different analysts may discretize a given CPT log in different ways. To overcome these
difficulties, we present an approach to automatically divide a CPT profile into discrete layers. Automated layer detection is
performed using an unsupervised machine learning technique called agglomerative clustering in combination with two 
cost functions to identify an optimal number of layers. The algorithm is illustrated using CPT profiles from the NGL 
database, where the approach is being used in the development of liquefaction triggering and manifestation models. 
Although the algorithm shows promise for replicating our judgment regarding layering, we recommend visual review of 
the layering produced by the algorithm to check for reasonableness given the site geology and intended use of the CPT 
data.

Introduction

Cone penetration test (CPT) data is one of the most valuable resources for subsurface characterization by 
geotechnical engineers. CPT data is used in a large variety of applications from identifying soil types to estimating 
static and dynamic shear strength of soil. By typically sampling at 1 cm intervals, an individual CPT test may 
contain thousands of data points, which provide essentially continuous profiles of tip resistance (qc), sleeve friction 
(fs), and sometimes pore pressure (u2) over the length of the CPT profile. Most geotechnical engineering applications
require grouping the CPT data within the site’s stratigraphic profile into a discrete number of layers of consistent 
soil type and behavior. Examples include liquefaction triggering evaluation, including identification of a critical 
layer, ground response analysis to evaluate earthquake site response, evaluation of the axial and lateral capacity of 
deep foundations, and many others. 

Selection of layers is often based on the judgment of an engineer or geologist with the goal being to select layers 
that have similar geologic origin and soil properties but are distinct from the materials above and below them. The 
number and thickness of layers selected to represent the profile depends on the intended application. This process is 
subjective and hence unrepeatable when based entirely on analyst judgment because different analysts (or the same 
analyst at a different time) may choose different layer boundaries. Additionally, manual layer selection becomes 
inefficient when large numbers of profiles require interpretation. Therefore, the engineering community needs an 
algorithm that can efficiently assign layers to CPT profiles with repeatable, objective results, thereby removing bias 
that can be introduced by a sole analyst or small group of analysts. The aim of this paper is to describe and propose 
such an algorithm based on an unsupervised machine learning procedure that, along with a small number of existing 
alternate approaches (described in the remainder of this section), enables robust analysis of CPT profiles.

Existing Layering Algorithms
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A number of techniques have been developed to automate identification of simplified profiles from CPT data. For 
example, Wang et al.1,2,3 and Cao et al.4 developed a Bayesian approach to assign layer boundaries and assign a 
probability that soil within a particular layer falls within a soil behavior type category. Ching et al.5 developed a 
procedure that utilizes the wavelet transform method to distinguish sudden changes in CPT tip resistance from 
smaller amplitude changes due to within-layer soil variability. These methods are rather complicated, require a 
significant number of calculations, and only consider one parameter (soil behavior type or tip resistance). Cao et al.4 
proposed a Bayesian identification method based on the soil behavior type index, Ic

6. Ntritsos and Cubrinovski7 
developed an algorithm that minimizes the within-layer coefficient of variation of qc1Ncs and Ic for the purpose of 
developing finite element meshes for one-dimensional ground response analysis. Their method is conceptually and 
computationally simpler than many previous methods and was shown to produce similar results to analyzing the full
profile with respect to liquefaction potential. Ntritsos and Cubrinovski7 caution that the algorithm may result in 
fictitious layers at layer boundaries and indicate that their algorithm is not intended to replace engineering judgment.
Molina-Gómez et al.8 more recently utilized a multivariate hierarchical clustering approach to identify stratigraphic 
layers at a site in the Tagus River Valley where gel push sampling was performed in combination with CPT testing 
to confirm soil types. Layers need not be vertically continuous in their algorithm (e.g., a layer may have another 
layer within it). They suggest that their algorithm is well-suited to identifying layers at other experimental sites. In 
addition to identifying layers based on a vertical profile, some of the methods (e.g., Wang et al.2,3) assess the lateral 
spatial variation of stratigraphy within a site where multiple CPT soundings and/or boring logs are available. We 
recognize that automated lithology detection of rock strata based on geophysical data has been studied by statistical, 
wavelet, and, more recently, machine learning procedures in the petroleum exploration industry but will not be 
discussed here as it is a significantly different application compared to our method.

Motivation for Automated Layer Identification Algorithm

A motivation for the work described in this paper was the need to create discretized representations of individual 
CPT profiles at sites in the Next Generation Liquefaction (NGL) database9,10. Such profiles are required for the 
development of new liquefaction triggering and manifestation models. Our algorithm was developed independently 
from, and concurrently with, the methods by Ntritsos and Cubrinovski7 and Molina-Gómez et al.8 and bears some 
similarities to both methods, as well as having some advantages. It is similar to the method by Ntritsos and 
Cubrinovski7 in that it seeks a set of layers that reduces the within-layer variance. It differs from their method in that 
it uses unsupervised machine learning rather than prescribed rules for assigning layers, which is advantageous since 
the algorithms are widely available in Python packages. Our method is similar to that of Molina-Gómez et al.8 in 
that it utilizes an unsupervised machine learning technique, hierarchical clustering, to identify layers. However, it 
differs from their method in two important respects. First, our algorithm requires that layers be vertically contiguous,
whereas theirs allows for non-contiguous layers. Second, our algorithm selects the optimal number of layers based 
on a cost function that is unbiased with respect to the maximum penetration depth, whereas theirs utilizes an 
automated algorithm to select the number of layers. We show herein that the automated method they adopted results 
in bias wherein thicker layers are identified for deeper profiles, and thinner layers for shallower profiles, whereas our
algorithm is unbiased with respect to the total depth of the CPT sounding. Our proposed method only considers 
vertical layering and does not consider horizontal spatial variability because it is intended to be used at a single CPT 
location. A reduced dataset that contains only locations with multiple CPT soundings in proximity would be 
required to extend the method for horizontal interpretation, which is beyond the scope of this paper.

We consider the existence of multiple automated algorithms to provide a beneficial measure of epistemic 
uncertainty, which is important for quantification of overall uncertainty in engineering analyses. No single algorithm
will best suit the needs of all users and all applications; therefore, it is useful for different algorithms to utilize a 
range of different approaches to quantify uncertainties related to layer identification decisions. The following 
sections present some details about CPT measurements and data analyses and introduce, describe, and provide 
examples on how to apply our proposed layer detection algorithm.
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Cone Penetration Test

The CPT probe measures tip resistance, sleeve friction, and sometimes pore pressure (Fig. 1) (e.g., Robertson6, 
Lunne et al.11). A hydraulic press pushes the cone into the ground generally at a rate of 2 cm/s. The cone tip 
resistance, qc, is equal to the measured force on the cone tip divided by the cone area, Ac, and the sleeve friction, fs, is
the force acting on the friction sleeve divided by the surface area of the sleeve. Commonly Ac is 10 to 15 cm2, and 
the cone tip angle is α = 60°. The most common location for pore pressure measurement is between the cone tip and 
the friction sleeve, which is deemed the u2 location. When pore pressure is measured, the corrected tip resistance is 
computed as,

qt = qc + u2(1-a) (1)

where a is the net area ratio of tip, usually between 0.6 and 0.8 depending on cone design. Eq. 1 accounts for the 
influence of water pressure acting downward behind the cone tip on the measured tip resistance. Measurements are 
generally recorded at 1 cm intervals.

Figure 1. Cross-section schematic of cone penetration test probe.

Various quantities are often computed from CPT measurements, and utilized to identify soil characteristics. Cone tip
resistance and sleeve friction increase with depth in uniform soil due to increasing effective stress with tip resistance
generally being high relative to sleeve friction in coarse-grained soils and vice versa in fine-grained soils. To assess 
fundamental soil properties, the normalized cone resistance, Qtn, defined by Eq. 2 is typically used, where σvo is in-
situ vertical total stress, σvo’ is in-situ vertical effective stress, pa is atmospheric pressure (101.325 kPa), and n is an 
exponent that defines the soil-type-dependent relationship between σvo’ and qt. Furthermore, normalized sleeve 
friction, Fr, is defined by Eq. 3. These dimensionless quantities are combined to define the soil behavior type index, 
Ic

6, defined by Eq. 4. The exponent n depends on Ic as defined by Eq. 5, and Eqs. 3, 4, and 5 therefore form an 
implicit system of equations that is solved by iteration.

92

93
94
95
96
97
98
99

100

101
102
103

104

105

106

107

108
109
110
111
112
113
114
115
116



(2)

(3)

(4)

(5)

Soil Behavior Type

Robertson6 (1990) found that soil behavior type can be classified based on contours of Qtn vs. Fr shown in Fig. 2. 
Soils that cluster within SBTn zones 2 through 7 are separated by contours that approximately follow the range of Ic 
values in Fig. 2, and exhibit soil behavior type that increases in coarseness from SBTn=2 (Organic soils and clay) to 
SBTn = 7 (gravelly sand to dense sand). Sensitive fine-grained soils, very stiff sand to clayey sand, and stiff fine-
grained soils do not have a unique Ic range associated with their behavior type.

Figure 2. Soil behavior type based on CPT measurements.

Thin Layer and Transition Zone Effects 

Due to its physical dimensions, the CPT probe averages out soil properties within a zone of influence near the cone 
tip. As a result, the cone may render measurements near layer interfaces that imply incorrect soil behavior type. For 
example, as a cone transitions out of a stiff sand layer with SBTn = 6 into a soft underlying clay layer with SBTn = 3, 
there will likely be a transition zone in which SBTn = 4 and 5 will be measured even though silty soil does not exist 
in these zones. Furthermore, when a cone is advanced through a thin sand layer sandwiched between two softer clay 
layers, the tip resistance measured at the center of the sand may be lower than the resistance that would be measured
in a uniform profile of the same sand. 
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A number of algorithms have been developed to identify transition zones, where an interface between different types
of soil result in CPT measurements that may not accurately reflect the soil at that depth. For example, CPeT-IT12 
provides an algorithm for identifying interface zones, along with the SectionMaker software for assigning layers 
within a cross-section based on CPT measurements. Boulanger and DeJong13 developed an inverse-filtering 
algorithm to recover the “true” CPT soil properties from the measured properties by accounting for the influence of 
the layered profile on the CPT measurements. Their algorithm tends to increase the tip resistance in stiff layers near 
the boundaries with softer layers, and to a lesser degree it also decreases the tip resistance in soft layers near the 
boundaries with stiff layers. Other authors have pointed out the limitations of the Boulanger and DeJong13 
algorithm14 and have begun introducing refined algorithms15.

CPT Corrections

Although the layer identification algorithm presented here is general and could be used for many different CPT 
applications, our specific focus is the evaluation of liquefaction. CPT is a preferred tool for characterizing site 
conditions for liquefaction analysis due to its repeatability and the nearly continuous profile that it provides. Both 
corrected cone tip resistance and liquefaction resistance depend fundamentally on soil density and fines content. 
However, the dependencies are different, which requires adjustments to the measured cone tip resistance to render a 
quantity that relates more directly to liquefaction resistance. Namely, corrections are applied to account for the 
influence of σvo’ and fines content, FC. The overburden- and fines-corrected cone tip resistance, qc1Ncs, is defined in 
Eq. 6, where the overburden correction factor, CN, is defined by Eq. 716. The fines correction in Eq. 6 is intended to 
account both for the reduced stiffness and strength of sandy soils containing fines (which affect tip resistances) and 
the effects of fines on the cyclic resistance of the soil to liquefaction triggering. Liquefaction triggering relationships 
typically utilize qc1Ncs to define cyclic liquefaction resistance of sand-like soils (e.g., Moss et al.17, Boulanger and 
Idriss16). 

(6)

(7)

(8)

Example CPT Profile

An example CPT profile, UC-4, obtained at Moss Landing (California) near Sandholdt Road is shown in Fig. 3. This
site exhibited severe manifestations of liquefaction due to the 1989 M6.9 Loma Prieta earthquake18,19. The CPT 
profile shows that this site consists of alternating layers of fine-grained and coarse-grained materials. Note that 
coarser-grained materials with lower Ic tend to have higher qc and qc1Ncs. Furthermore, the averaging of cone 
penetration tip resistance near layer boundaries is evident, for example at a depth near 6m. The inverse-filtered CPT 
data13 have sharper edges due to being corrected for layer transition effects. We consider the inverse-filtered profiles 
to provide a more accurate representation of the true soil properties, and utilize the inverse-filtered profiles for the 
remainder of this paper.
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Figure 3. Cone penetration test data for UC-4 at the Moss Landing site near Sandholdt Road, which exhibited
liquefaction manifestations due to the 1989 M6.9 Loma Prieta earthquake18,19.

Layer Identification Algorithm

In this section, we first summarize main features of the theoretical framework behind the tools used to produce our 
layer identification algorithm. We then provide a description of how it was implemented and details on how it 
should be used. Clustering or cluster analysis is an unsupervised machine learning approach that categorizes data 
based on common attributes20. K-means clustering categorizes data based on the aggregate distance between the data
point and the centroid of each cluster, where distance is measured in the parameter space of the variables included in
the clustering algorithm21,22. Gaussian mixture models assign probabilities that each data point belongs within each 
cluster based on the cluster statistics, and may be thought of as an extension of K-means clustering that also 
considers covariance among variables. The number of clusters is provided as an input parameter, and the algorithm 
assigns data to clusters in a manner that minimizes the sum of within-cluster variance. We perform K-means and 
Gaussian mixture model clustering using standardized values for cone tip resistance and soil behavior type index 
defined by Eqs. 9 and 10, where μq, σq, μIc, and σIc are the mean and standard deviation of qc1Ncs and Ic for the entire 
profile, respectively.

(9)

 (10)
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Standardizing the data prior to clustering is important, particularly when the parameter space contains variables of 
different units and significantly different ranges. Without standardization, variables with higher numerical values 
may be inadvertently weighted more heavily than variables with smaller numerical values in the distance 
calculation. For example, qc1Ncs for liquefaction applications generally varies from about 50 to 300, while Ic varies 
only from about 1.0 to 3.5.

K-Means and Gaussian Mixture Model Results

Fig. 4 shows results for K-means and Gaussian mixture model clustering each with 16 clusters. Calculations were 
performed using the Python package Scikit-learn23 with default input parameters. Both algorithms group data into 
clusters that are close to each other in q̂c 1 Ncs− Î c space, thereby showing promise for grouping data based on 
similarities in soil composition. The algorithms exhibit subtle differences in their clustering of the data, with the 
Gaussian mixture model resulting in differently shaped clusters than K-means in some cases (Fig. 4). These 
approaches to clustering data are similar in concept to the soil behavior type assignments by Robertson6 in that soils 
in different regions in q̂c 1 Ncs− Î c space are expected to exhibit different soil behavior type. However, the SBTn 
regions defined by Robertson6 are fixed in Qtn-Fr space, whereas the clusters are determined simply by proximity to 
other data points. We selected q̂c 1 Ncs− Î c as the clustering parameters rather than Qtn and Fr because the former is 
more relevant for liquefaction assessments.

Figure 4. Clustering algorithm results for the UC-4 CPT profile using (a) K-means and (b) Gaussian mixture
modeling.

As shown in the profiles in Fig. 5 for the K-means clustering algorithm, these algorithms do not cluster the data into 
spatially contiguous layers (e.g., the green colored cluster occurs over the depth intervals 6.5-7.5 m, 7.9-9.0 m, and 
13.8-14.2 m). The reason is that these algorithms cluster data based only on their similarities in q̂c 1Ncs− Î c space, 
and do not consider the fact that the data are hierarchically ordered based on depth. The Gaussian mixture model, 
which is not shown in Fig. 5 for brevity, produces similar results in that the clusters are not vertically contiguous.
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Figure 5. CPT profiles for UC-4 based on K-means clustering. Common coloration indicates that depths are
associated with the same cluster, e.g. pink intervals at 1, 3, and 9.7 m depths. 

Agglomerative Clustering

We turn to agglomerative clustering, which is a form of hierarchical clustering that groups data based on a cascading
“tree” of clusters computed using distances between points20, to produce clusters that form vertically contiguous 
layers. A nearest-neighbor matrix is provided to the clustering algorithm to specify which points are permitted to be 
considered when assigning clusters. For sequentially ordered data such as CPT data, the nearest neighbor matrix is 
tri-diagonal with ones on the diagonal and the two adjacent diagonals, and zeros elsewhere. This differs from the 
approach of Molina-Gómez et al.8 that used a more fully populated nearest neighbor matrix. In our approach, a 
particular data point is constrained to belong to the same cluster as the point above and the point below (or both) or 
to constitute its own cluster, but it cannot belong to the same cluster as a distant neighbor unless all of the points in 
between are part of the same cluster. The algorithm then clusters data by minimizing the collective within-cluster 
variance for the total number of clusters specified. The resulting data are plotted in Figure 6 for the UC-4 CPT 
profile using a total of 16 clusters. In this case, the clusters are organized into vertically contiguous layers in a 
manner that reflects their depositional sequence and is similar to how layers might be assigned using human 
judgment. In this respect, our approach differs from that of Molina-Gómez et al.8 which permits clusters to be 
vertically non-contiguous. 
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Figure 6. CPT profiles for UC-4 using agglomerative clustering with tri-diagonal nearest neighbor matrix.

Number of Layers

A crucial consideration in the clustering algorithm is selection of an appropriate number of clusters (i.e., layers). In 
the preceding examples we have manually set the number of clusters as 16. Here we seek an algorithm capable of 
selecting the optimal number of clusters, which is expected to vary depending on profile depth and complexity. The 
goal is to separate the CPT data into contiguous layers with similar soil properties using the fewest clusters possible.
The optimal number of clusters is therefore subjective, and different analysts would likely select different numbers 
of layers for a given CPT profile. Our goal is therefore to identify a method for automatically assigning the number 
of layers in a manner that captures the stratigraphic details important for liquefaction evaluations.

Distortion Score

In agglomerative clustering, a distortion score, JD, is often utilized to identify the optimal number of clusters, and is 
defined for the two-standardized-variable case considered here in Eq. 11, 

(11)
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where  and are the mean values of  and , respectively, for the ith cluster (i.e., subscript i is the 
index for clusters and identifies values of these parameters for each individual cluster), and N is the total number of 
data points in the profile. Note that JD decreases as the number of clusters, K, increases, and by definition is equal to 
zero when K=N because every point would constitute its own cluster and the numerator would be zero. The optimal 
number of clusters therefore cannot be computed by minimizing the distortion score, but rather is a compromise 
between reducing the distortion score while retaining the smallest possible number of clusters that adequately 
categorizes the data. 

Thickness-Dependent Cost Function and Combined Cost Function

We define a cost function, JT, that penalizes the average layer thickness within a profile using Eq. 12. 

(12)

The average thickness is defined as tavg = zmax/K, where zmax is generally the total depth of the CPT profile. Note that 
predrilling is sometimes necessary for CPT profiles, in which case the first depth at which data is recorded is 
nonzero. In those cases, zmax is the difference between the deepest and shallowest CPT measurement. The purpose of 
Eq. 12 is to penalize selection of a high value of K if it results in average layer thicknesses that are too small to be 
considered geotechnically significant. Based on inspections and analyses of hundreds of CPT profiles in the NGL 
database, we believe that 0.5 m is a fairly thin stratum, and we set the coefficients in Eq. 12 such that JT = 0.2 for this
condition. The cubic form of Eq. 12 was adjusted until the achieved average layer thickness accorded well with our 
judgment. A combined cost function is then defined in Eq. 13, where wD and wT are weights assigned to the 
components of the cost function. We herein utilize wD = wT = 1.0, but these weights can be adjusted based on user 
judgment in a site- or region-specific manner.,

J = wD∙JD + wT∙JT (13)

Elbow and min(J) Methods

We consider two methods for utilizing the distortion score and the combined cost function to select the optimal 
number of layers. First, the “elbow” method graphically interprets a plot of JD vs. K, which has a negative curvature 
over the full range of K, but flattens as K increases (Figure 7). The optimum value of K (9 in the case of Figure 7) is 
identified on the basis of curvature having decreased to a sufficiently low level, which is subjective. As such, the 
elbow method is based only on JD and not on JT. We utilize the Yellowbrick24 Python package to implement the 
elbow method which identifies the point of maximum curvature of the JD vs. K curve and assigns that as the 
optimum number of layers. The silhouette method24 is also often utilized to identify the optimal number of clusters. 
This method is based on a so-called “silhouette” value that measures the similarity of data points within a cluster 
compared to other clusters. We found it to produce similar results to the elbow method. Thus, results from this 
method are not reported in Figure 7. Molina-Gómez et al.8 utilize the silhouette method to define the number of 
clusters in their algorithm.
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Figure 7. Cost functions and layer selection for CPT profile UC-4.

We also apply an alternative method in which K is selected as the point where J (from Eq. 13) is minimized. For this
reason, we call this the min(J) method. The combined cost function is minimized for K = 16 clusters for the example
of CPT UC-4 in Figure 7.

Profiles of 16 and 9 layers are shown in Fig. 8, where (a) and (b) have 16 layers by using the min(J) method, 
whereas (c) and (d) have 9 layers by using the elbow method. The primary differences between these two profiles 
are in layers number 3, 4, and 6 for the 9-layer profile. These layers clearly contain within-layer regions that are 
vertically contiguous with different qc1Ncs and Ic values (e.g., the layer for the 2.2-3.8 m depth range), yet they are 
clustered together in the 9-layer profile. By contrast, they are separated into different layers in the 16-layer profile. 
The 16-layer profile accords better with our judgment, and similar observations observed across diverse profiles with
a wide range of depths (as described in the next section) causes us to prefer use of the min(J) approach over the 
elbow method when selecting the number of layers. We recognize that a different curvature threshold in the 
application of the elbow method would have produced a different number of layers and, possibly, a solution that 
accords better with our judgment. However, the superiority of the min(J) method is related to the fact that it is based 
on layer thickness, which is a physically meaningful quantity, whereas the gradient of JT vs. K used in the elbow and
silhouette methods does not have a clear physical meaning.

Figure 8. Profiles of qc1Ncs and Ic with 16 layers by using the min(J) method (a and b) and 9 layers by using the
elbow method (c and d).
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Calculations for Many CPT Profiles

Calculations of the optimal numbers of layers were performed for a total of 272 CPT profiles contained in the NGL 
database9,10. Both the elbow method and the min(J) method were utilized to select the optimal number of layers. We 
expect that tavg should be independent of zmax because tavg depends upon vertical heterogeneity of the soil profile, 
which is controlled by the geological processes that formed the soil deposit, whereas zmax arises from a decision 
controlled by the objectives of the site investigation. For example, zmax may be higher for a site investigation for a 
pile-supported tall building with a corresponding deep zone of influence than for a single-story building supported 
by spread footings with a corresponding shallow zone of influence. 

Values of tavg vs. zmax are plotted in Fig. 9. The elbow method exhibits a strong positive correlation in which tavg 
increases essentially linearly with zmax. This is an undesirable outcome since we anticipate tavg to be independent of 
zmax. By contrast, values of tavg are essentially independent of zmax using the min(J) method, particularly for values of 
zmax > 12m. For liquefaction triggering evaluation, profiles shorter than about 15m may miss layers that could 
potentially liquefy and produce surface manifestation. In this regard, the slight bias in the min(J) method for shallow
profiles has little practical impact.

Figure 9. Average layer thickness, tavg, versus total CPT profile length, zmax for (a) elbow method and (b) min(J)
method

The influence of maximum depth on average layer thickness is further explored in Fig. 10, which illustrates 
normalized cost versus number of clusters for (a) a shallow profile with zmax = 5.1m from CPT_8933 at Site 76 in 
Edgecumbe, New Zealand, and (b) a deep profile with zmax = 31.3m from CPT001 at the Inage site in Urayasu City, 
Japan (CPT names are those reported in the NGL database). Note that the JT functions are significantly different for 
these two profiles because the same average thickness in Eq. 12 produces fewer layers for the shallow profile than 
for the deep profile. For the shallow profile, the elbow method indicates that 8 sublayers is ideal (tavg = 0.64m), while
the min(J) approach provides 7 layers (tavg = 0.73m). These results are very similar. By contrast, for the deep profile, 
the elbow method indicates that 8 layers is ideal (tavg = 3.9m), while min(J) provides 36 sublayers (tavg = 0.87m). 
These results are significantly different, and the average layer thickness using the elbow method is too large to 
capture potential critical layers of sand-like soil with low qc1Ncs. 
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Note that when K=8, JD is near 0.2 for the shallow profile and near 0.4 for the deep profile. A fundamental limitation
of the elbow method is that it considers only the curvature of the cost function, and not the value of the cost function
itself.

Figure 10. Normalized cost versus number of clusters for (a) a shallow profile with zmax=5.1m corresponding to
CPT_8933 at Site 76 in Edgecumbe, New Zealand, and (b) a deep profile with zmax=31.3m corresponding to CPT001

at the Inage site in Urayasu City, Japan.

The two profiles are illustrated in Fig. 11 with a common depth axis to illustrate the clear differences in the 
maximum penetration depth. The average layer thicknesses determined using the min(J) method are similar for these
two profiles despite the different total depths. Furthermore, it is clear that reducing the number of layers for the 
deeper site from 36 (using the min(J) method) to only 8 (using the elbow method) would result in significantly 
higher average layer thickness, and would miss much of the stratigraphic detail within that profile.

329
330
331

332

333
334
335

336
337
338
339
340



Figu
re 11. Profiles of qc1Ncs and Ic for (a) and (b) a shallow profile corresponding to CPT_8933 at Site 76 in Edgecumbe,

New Zealand, and (c) and (d) a deep profile corresponding to CPT001 at the Inage site in Urayasu City, Japan.
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Conclusions

This study developed an unsupervised machine learning approach for identifying layers from cone penetration test 
data and selecting the optimal number of layers (or clusters). The clustering parameter space consisted of q̂c 1Ncs and
Î c, which are standardized values of the overburden-corrected clean sand equivalent cone tip resistance, qc1Ncs, and 
the soil behavior type index, Ic. The clustering algorithm utilizes the Scikit learn Python package, which is widely 
available and easy to implement. We utilize agglomerative clustering with a tridiagonal nearest neighbor matrix to 
identify vertically contiguous soil layers.

A crucial aspect of the proposed algorithm is selecting the optimal number of clusters. The elbow method, a 
traditional approach commonly utilized in machine learning, did not perform well for our application because the 
resulting average thickness of the soil layers was strongly dependent on the maximum depth explored by the CPT. 
We posit that soil stratigraphy is independent of the maximum depth to which the CPT probe is advanced. To 
overcome this limitation, we introduced a supplemental cost function that penalizes small average layer thicknesses. 
The optimal number of clusters is selected at the minimum point of this cost function added to the normalized 
distortion score. This approach produced an average layer thickness that is essentially independent of maximum 
depth, which is a desired outcome. Compared with manual assignment of layer boundaries, our method is automated
and rapid, and shifts human judgment from a case-by-case basis (which is not repeatable) to selection of input 
parameters in the clustering algorithm (which is repeatable).

All calculations presented herein were performed on inverse-filtered CPT data rather than on raw recorded CPT 
data. We believe this is more appropriate because CPT measurements are influenced by soil layering, and the 
inverse filtering attempts to recover the “true” CPT profile. Although not shown in this paper, we found that the 
proposed algorithm often grouped transition layers into a single cluster. In this manner, the algorithm may be useful 
for application to raw measurements as well, provided that the analyst properly accounts for these transition zones 
for liquefaction evaluation or other applications.

The proposed algorithm provides a convenient means for rapidly developing a tentative layering profile for further 
engineering evaluation. Modeling parameters were adjusted to accord with our judgment regarding layer 
assignments. However, the algorithm may do a poor job identifying layers in some situations, and we urge users to 
review the layering that arises from the algorithm and to exercise their own judgment and available geological 
knowledge in assigning layers for their particular application before proceeding with calculations. For instance, 
users could calibrate the JT function by adjusting the tavg or the weights in Eq. 13 based on their dataset and intended 
application.
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