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Abstract

This dissertation explores various aspects of sampling algorithms and stochastic optimization algo-

rithms. We investigate the efficiency and behavior of various sampling methods for target distribu-

tions, particularly those with heavy-tails, through the analysis of different discretization techniques,

functional inequalities, and asymptotic limits. In Chapter 2, we study specific diffusion-based

sampling algorithms, the randomized midpoint method, for simulating continuous-time Langevin

diffusions, establishing its asymptotic normality and providing insights into its behavior. In Chap-

ter 3, we introduce two algorithms to sample heavy-tail targets. In Section 3.2, we study the

oracle complexity of sampling from polynomially decaying heavy-tailed target densities using the

Transformed Unadjusted Langevin Algorithm (TULA), highlighting connections to functional in-

equalities. In Section 3.3, by discretizing a class of Itô diffusions associated with weighted Poincaré

inequalities, we examine the complexity of sampling from heavy-tailed distributions and provide

iteration complexity estimates in terms of the Wasserstein-2 distance. In Chapter 4, we propose

the Regularized Stein Variational Gradient Flow, which interpolates between the Stein Variational

Gradient Flow and the Wasserstein Gradient Flow, and establish its theoretical properties. We

also introduce a particle-based algorithm based the Regularized Stein Variational Gradient Flow

and provide preliminary numerical evidence on its improved performance. In Chapter 5, we de-

rive high-dimensional scaling limits and fluctuations for online least-squares Stochastic Gradient

Descent (SGD) algorithm by treating the iterates as an interacting particle system, characterizing

the limiting mean-square estimation or prediction errors and their fluctuations.
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CHAPTER 1

Introduction

Sampling and optimization problems are two prevalent and intertwined challenges faced in various

scientific, engineering, and computational disciplines. Both problem classes deal with the essential

tasks of exploring and exploiting complex spaces to make informed decisions. Sampling problems

focus on generating representative samples from a given target density, while optimization problems

revolve around finding the best possible solution within a specific problem domain. The study of

these problems has led to the development of a rich tapestry of methods and algorithms, such as

Markov Chain Monte Carlo, linear programming, and evolutionary algorithms. In recent years,

the intersection of these fields has given rise to innovative approaches that leverage the strengths

of both sampling and optimization techniques, enabling researchers and practitioners to tackle a

diverse range of real-world challenges, such as resource allocation, machine learning, and network

design. By understanding the underlying principles and strategies, we can continue to refine our

methods and develop new insights to drive progress in these critical areas.

Sampling Problem. The problem of sampling from a given target density

π(x) :=
1

Z
e−f(x), ∀x ∈ Rd(1.1)

where f : Rd → R is the potential function and Z =
∫
Rd e

−f(x)dx is an unknown normaliza-

tion constant. This problem frequently arises in statistics and machine learning with numerous

applications to high-dimensional Bayesian inference [WT11, LCCC16, MHB17, DM19], numeri-

cal integration [LP02, HLW06], volume computation [Vem10], optimization and learning [RRT17,

EMS18, MPM+20], graphical models [KF09], and molecular dynamics [MT13, LM16].

There are two widely-used approaches for sampling:
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(1) diffusion-based randomized algorithms, which are based on discretizations of certain dif-

fusion processes.

(2) particle-based deterministic algorithms, which are discretizations of certain approximate

gradient flows.

The diffusion-based randomized algorithms are MCMC algorithms and they have received a lot

of attention recently. The fundamental idea behind such algorithms is that a continuous-time

diffusion with its invariant measure as the target π is approximately simulated via a numerical

sampler. The intuition behind the success of these methods is that by appropriately selecting the

step-size parameter, the discrete approximation resulting from the numerical sampler tracks the

continuous-time diffusion. Thus, rapid convergence properties of the diffusion process (see, for

example, [RT96, LS16, Ebe16, EGZ19, LBBG19, DMS19]) is inherited by the discrete algorithm

with an invariant measure that is close to that of the diffusion, which is the target π. While a

variety of diffusion processes can lead to a rich class of MCMC samplers, algorithms that are based

on discretizing Langevin dynamics have been the primary focus of research due to their simplicity,

accuracy, and well-understood theoretical guarantees in high-dimensional settings [Dal17a, CB18a,

CCAY+18, DMM19, VW19, MCC+19, CB18a, DMP18, DM17, EH20].

The particle-based sampling algorithms use a set of interacting particles to approximate the tar-

get distribution. A canonical particle-based sampling algorithm is the Stein Variational Gradient

Descent (SVGD) introduced in [LW16]. However, unlike the diffusion-based sampling algorithms,

SVGD introduces a complicated particle system and how to characterize the computation complex-

ity of SVGD remains to be an open question.

Optimization Problem. Optimization lies at the heart of many problems in machine learning,

operations research, and engineering. In this rapidly evolving field, stochastic optimization has

emerged as a powerful and versatile technique for solving complex problems. We provide a gentle yet

comprehensive overview of stochastic optimization and one of its most popular methods: stochastic

gradient descent (SGD).

Stochastic optimization is a class of optimization algorithms designed to handle uncertainties in the

objective function and/or constraints. The word “stochastic” refers to the presence of randomness
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or probabilistic behavior in these problems. In many real-world scenarios, the objective function

and/or constraints are affected by noise or uncertainty, making traditional optimization methods

less effective or even inapplicable. Stochastic optimization provides a framework for tackling such

problems, enabling efficient solutions even in the presence of uncertainty.

SGD is a particular instance of stochastic optimization that has gained widespread use in machine

learning, especially for training large-scale models such as neural networks. The main idea behind

SGD is to update the model parameters iteratively based on random samples or “mini-batches”

of data, rather than the entire dataset. This enables the algorithm to converge more quickly

and reduce the computational burden, which is essential when dealing with massive datasets or

high-dimensional models. One of the main challenges in understanding SGD is comprehending

its convergence properties. In the case of fixed-dimensional problems, the learning theory and

optimization communities have focused on providing non-asymptotic bounds, either in expectation

or with high-probability, over the past two decades. However, such bounds often tend to be overly

conservative in predicting the actual behaviour of the SGD algorithm on large-scale statistical

problems occurring in practice that are invariably based on specific data generating models.

Sampling as Optimization over measures. The viewpoint of sampling as optimization can

explain both the diffusion-based sampling algorithms and the particle-based sampling algorithms.

The seminal work [JKO98] provides a variational interpretation of the Langevin diffusion as the

gradient flow of a Kullback-Leibler (KL) divergence over the Wasserstein space of probability mea-

sures. From this optimization viewpoint, the diffusion-based sampling algorithms, the ULA, can be

viewed as a discretization of the Wasserstein gradient flow (WGF). While for particle-based sam-

pling algorithm, SVGD, can’t be viewed as a discretization of the WGF as all the discretizations of

the WGF have to be random. In fact, SVGD is a deterministic discretization of a constant-order

approximation to the WGF due to the kernel integral operator.

Inspired by the above observations, in [HBSL22], I propose a regularized version of SVGD that

provides a deterministic discretization of ϵ-approximate WGF for any ϵ ∈ (0, 1]. When ϵ = 1, the

regularized SVGD is exactly the SVGD. When ϵ ∈ (0, 1), the regularized SVGD admits similar

convergence properties as the SVGD. As we decrease ϵ to zero, the regularized SVGD will behave
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optimization

sampling

optimization

over measures

Figure 1.1. Venn Diagram

more and more likely to the discretization to the WGF, i.e. the ULA. I derive the mean-field partial

differential equation (PDE) that describes the mean-field limit of the interacting particle system

and characterize the uniqueness and existence of the solution to the mean-field PDE. Furthermore,

in the population limit of the regularized version of SVGD, I provide rates of convergence to

the equilibrium density in two cases: under log-Sobolev inequality (LSI) assumption in the KL

divergence metric and under no assumptions in the Fisher information metric.

Organizations. As summarized in the figure 1.1, we explore various aspects of sampling and opti-

mization problems in this dissertation. For sampling problems, we study the computational and sta-

tistical properties of existing sampling algorithms, such as the randomized midpoint method [SL19],

in Chapter 2. We also develop and analyze new sampling methods, the Transformed Unadjusted

Langevin Algorithm (TULA) and the Itô discretization, when the target density is heavy-tailed in

Chapter 3. Regarding the optimization problems, we provide a fine-grained analysis on the high-

dimensional scaling limits and fluctuations of the online least-squares SGD in Chapter 5. Motivated

by the viewpoint of understanding sampling problem as optimization in the space of probability

measures, in Chapter 5, we introduce and analyze the Regularized Stein Variational Gradient Flow

(RSVGF), which can interpolate between the particle-based sampling algorithm, SVGD, and the

diffusion based sampling algorithm, ULA.
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CHAPTER 2

Randomized Midpoint Method

We consider the problem of computing the following expectation

Eπ[φ(x)] where π(x) = 1
Zf
e−f(x),(2.1)

for a potential function f : Rd → R and a test function φ : Rd → R, when the normalization constant

Zf =
∫
e−f(x)dx is unknown. This problem frequently arises in statistics and machine learning

with numerous applications to high-dimensional Bayesian inference [WT11, LCCC16, MHB17,

DM19], numerical integration [LP02, HLW06], volume computation [Vem10], optimization and

learning [RRT17, EMS18, MPM+20], graphical models [KF09], and molecular dynamics [MT13,

LM16]. Markov chain Monte Carlo (MCMC) methods provide a powerful framework for computing

the integral in (2.1), and have been successfully deployed in various scientific fields [Liu08].

In particular, MCMC algorithms that are based on diffusion processes have received a lot of at-

tention recently. The fundamental idea behind such algorithms is that a continuous-time dif-

fusion with its invariant measure as the target π is approximately simulated via a numerical

sampler. The intuition behind the success of these methods is that by appropriately selecting

the step-size parameter, the discrete approximation resulting from the numerical sampler tracks

the continuous-time diffusion. Thus, rapid convergence properties of the diffusion process (see,

for example, [RT96, LS16, Ebe16, EGZ19, LBBG19, DMS19]) is inherited by the discrete algo-

rithm with an invariant measure that is close to that of the diffusion, which is the target π.

While a variety of diffusion processes can lead to a rich class of MCMC samplers, algorithms

that are based on discretizing Langevin dynamics have been the primary focus of research due

to their simplicity, accuracy, and well-understood theoretical guarantees in high-dimensional set-

tings [Dal17a, CB18a, CCAY+18, DMM19, VW19, MCC+19, CB18a, DMP18, DM17, EH20].
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Although motivated by the problem of computing the integral in (2.1), much of the theoretical

focus on analyzing sampling methods in the recent literature has been on providing guarantees for

the sampling problem itself (see [TTV16] for an exception), i.e., the number of iterations needed to

reach ϵ-neighborhood of a d-dimensional target distribution in some probability metric. The choice

of step-size of the sampler is crucial to obtain such theoretical guarantees. While the problem

of estimating expectations such as in (2.1) is based on sampling from the target π itself, the

theoretical guarantees established for the sampling problem can provide very little to no information

on computing the expectation in (2.1) based on the sampler. The main reason for this is, the

step-size choice of the sampler required to obtain optimal theoretical guarantees for numerical

integration of (2.1) turns out to be different from that of sampling. Furthermore, if the ultimate

task is to perform inference on the quantity Eπ[φ(x)], confidence intervals are required. Thus, one

needs central limit theorems (CLT) to quantify the fluctuations of the estimator of the expectation

in (2.1), depending on a specific numerical integrator being used.

The randomized midpoint method, a numerical sampler proposed by [SL19], has emerged as an opti-

mal algorithm for sampling from strongly log-concave densities, achieving the information theoreti-

cal lower bound for this problem in terms of both dimension and tolerance dependency [CLW20]. In

lieu of this optimality result, one anticipates a superior performance from the randomized midpoint

method in other fundamental problems that relies on a MCMC sampler as the main computation

tool, e.g. estimating expectations of the form (2.1). However, properties of this sampler for the

purpose of numerical integration, in particular its inferential properties, are not well-studied. In

this chapter, we explore various probabilistic properties of the randomized midpoint discretization

method, when used as a numerical integrator. Towards that, we examine several results for the

randomized midpoint method considering both the overdamped and underdamped Langevin diffu-

sions. Our first contribution is the explicit characterization of the bias of the randomized midpoint

numerical scheme, namely the difference between its stationary distribution and the target distri-

bution π. We show that asymptotic unbiasedness, a desired property in general, can be achieved

under a decreasing step-size sequence. As our principal contribution, we establish the ergodicity

of the randomized midpoint method and prove a central limit theorem which can be leveraged for

inference on the expectation (2.1). We compute the bias and the variance of the asymptotic normal
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distribution for various step size choices, and show that different step-size sequences are suitable

for making inference in different settings.

Our Contributions. We summarize our contributions as follows:

(1) We show the ergodicity of constant step-size (denoted as h) randomized midpoint dis-

cretization of the overdamped and underdamped Langevin diffusions in Theorems 1 and 3,

respectively. For both cases, the stationary distribution πh of the resulting discretized

Markov chain is unique and is biased away from the target distribution π.

(2) The choice of a constant step-size for the randomized midpoint discretization causes bias in

sampling. We characterize this bias explicitly in Propositions 2 and 4 for the overdamped

and underdamped Langevin diffusions, respectively. We show that Wasserstein-2 distance

between πh and π is of order O(h0.5) and O(h1.5) respectively for the overdamped and

underdamped Langevin diffusions.

(3) The established order of bias points toward using particular choices of decreasing step-size

sequence for the sake of inference. Specifically, we prove a CLT for numerical integra-

tion using the randomized midpoint discretization of the overdamped and underdamped

Langevin diffusions in Theorems 2 and 4 respectively, for various choices of decreasing

step-size. Depending on the specific choice of step-size sequence, the CLT is either unbi-

ased or biased. When discretizing the overdamped Langevin diffusion with polynomially

decreasing step-size choices, the rate of unbiased CLT turns out to be O(n(1/3)−ϵ) for any

ϵ > 0. But the optimal rate turns out to be O(n1/3) for which one can only obtain a biased

CLT. When discretizing underdamped Langevin diffusions with polynomially decreasing

step-size choices, we show that the optimal rate can be improved to O(n5/8) under a

certain condition, which is satisfied only by the class of constant test functions.

2.1. Notations and Preliminaries

We denote an ℓ-th order symmetric tensor of dimension d by A ∈ Rd⊗ℓ. For a given vector u ∈ Rd,

we use ∥u∥ to denote the Euclidean-norm of the vector. We define the ℓ-th order rank-1 tensor

formed from u ∈ Rd as u⊗ℓ. In addition, let A and B be two ℓ-th order tensors, we define the
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inner product between A and B as ⟨A,B⟩ =
∑d

j1=1 · · ·
∑d

jℓ=1Aj1j2...jℓ · Bj1j2...jk . For a function

f : Rd → R, ∇f ∈ Rd and Dℓ ∈ Rd⊗ℓ represents the gradient, and ℓ-th order derivative tensor (for

ℓ > 1). We let (Ω,F , P ) represent a probability space, and denote by B(Rd), the Borel σ-field of

Rd. We use
d→ and

p→ to denote convergence in distribution and probability respectively. The set

of all twice continuously differentiable functions f : Rd → R is denoted as C2(Rd). We use Id to

represent the d×d identity matrix. Let x0, x1, . . . be a d-dimensional Markov chain. The transition

probability of the chain, at the k-th step is defined as P k(x,A) := P (xk ∈ A|x0 = x), for some

x ∈ Rd and represents the probability that the chain is in set A at time n given the starting point

was x ∈ Rd. We use Õ to hide log factors. Finally, for a sequence γk and positive integer ℓ, we

define Γ
(ℓ)
n :=

∑n
k=1 γ

ℓ
k. We also make the following assumption on the potential function.

Assumption 2.1.1. The potential function f ∈ C2(Rd) satisfies the following properties. For some

0 < m ≤M <∞: (a) f has a M -Lipschitz gradient; that is, D2f ⪯MId, and (b) f is m-strongly

convex; that is, mId ⪯ D2f . We also define the condition number as κ := M/m.

2.2. Results for the Overdamped Langevin Diffusion

The overdamped Langevin diffusion is described by the following stochastic differential equa-

tion:

dx(t) = −∇f(x(t))dt+
√

2dW (t),(2.2)

where W (t) is a d-dimensional Brownian motion. It is well-known that this diffusion has π(x) ∝

e−f(x) as its stationary distribution under mild regularity conditions [MT12]. In general, simulating

a continuous-time diffusion such as (2.2) is impractical; thus, a numerical integration scheme is

needed.

We now describe the randomized midpoint discretization of the above diffusion in (2.2), which we

denote as RLMC. Denoting the n-th iteration of the algorithm with xn, the integral formulation

of the diffusion with xn as the initial value would then be x∗n(t) = xn −
∫ t
0 ∇f(x∗n(s))ds+

√
2W (t).

Let h > 0 be the choice of step size for the discretization and, let (αn) be an i.i.d. sequence of

random variables following uniform distribution on [0, 1], i.e. αn ∼ U [0, 1]. The fundamental idea

8



behind the randomized midpoint technique is to use h∇f(x∗n(αn+1h)) to approximate the integral∫ h
0 ∇f(x∗n(s))ds. Indeed, notice that E[h∇f(x∗n(αn+1h))] = h

∫ 1
0 ∇f(x∗n(αh))dα =

∫ h
0 ∇f(x∗n(s))ds.

RLMC proceeds by approximating x∗n(αn+1h) with the Euler discretization, which ultimately yields

an explicit numerical integration step. Although [SL19] considered this discretization only for the

constant step-size choice and the underdamped Langevin diffusion (which we discuss in Section 2.3),

below we present a single iteration of the RLMC algorithm with the choice of variable step-size

γn+1 for the overdamped diffusion in (2.2):

(RLMC)
xn+ 1

2
= xn − αn+1γn+1∇f(xn) +

√
2αn+1γn+1U

′
n+1,

xn+1 = xn − γn+1∇f(xn+ 1
2
) +

√
2γn+1Un+1,

where (Un) and (U ′
n) are sequences of i.i.d d-dimensional standard Gaussian vectors with cross-

covariance matrix
√
αnId for each n and the initial point x0. We briefly digress now to make the

following remark. If instead of αn ∼ U [0, 1], one uses αn = 1 for all n deterministically, then

the iterates of (RLMC) algorithm is reminiscent of the extra-gradient descent algorithm from

the optimization literature [LT93], perturbed by Gaussian noise in each step. Furthermore, its

noteworthy that with the deterministic choice of αn = 1, one cannot obtain the improved rates that

the uniformly random αn provides. Lastly, the filtration (Fn) is defined by Fn := σ(αk, Uk, U
′
k; 1 ≤

k ≤ n), the smallest σ-algebra generated by the noise sequence and uniform random variables that

are used in the first n iterations.

2.2.1. Wasserstein-2 Rates for Constant Step-size RLMC. Before, we state our main

result, we investigate a few important characteristics of the (RLMC) algorithm that are not ex-

plored yet. We start with its rate of convergence in Wasserstein-2 distance (see [Vil09] for definition)

for the (RLMC) algorithm. The proof of the proposition below essentially follows from a similar

idea of the more general result for the underdamped Langevin dynamics in [SL19]. We include the

result with its proof for the sake of completeness.

Proposition 1. Suppose f satisfies Assumption 2.1.1. Set x0 = arg minx f(x), γn := h =

O(ϵ2/3/κ1/3M) when κhM > 1, and γn := h = O(ϵ/M) when κhM ≤ 1 with Mh < 1
4 . After

9



running the (RLMC) algorithm for

K = Õ

(
κ4/3

ϵ2/3
+
κ

ϵ

)
steps,

we have W2(νK , π) ≤ ϵ
√
d/m, where νK is the probability distribution of xK .

When κ is of constant order, we see that W2 rate is of order Õ(1/ϵ). Notably, with the randomized

midpoint technique, we obtain this particular ϵ-dependency by discretizing just the overdamped

Langevin diffusion with only the Lipschitz gradient condition on the potential function f . Prior

works require Euler-discretization of higher-order Langevin diffusions to obtain a W2 rate of or-

der Õ(1/ϵ) [DK19, MMW+19] or require higher-order smoothness assumption along with other

specialized discretization methods [SZ19, LWME19, DM19, DK19].

2.2.2. Analysis of the Markov Chain Generated by Constant Step-size RLMC.

Using the randomized midpoint technique, we obtain an improved dependency on ϵ for the W2 rate

under weaker assumptions while discretizing the Langevin diffusion in (2.2). Although not explicit

from the proof of Proposition 1, the rate improvement is obtained by a careful balancing of bias and

variance through the choice of step-size parameter h. In this section, in Theorem 1, we first show

that the (RLMC) Markov chain is ergodic and has a unique stationary distribution, denoted by

πh. Due to the choice of constant step-size h, it is not hard to see that the stationary distribution

of the (RLMC) is different from the stationary distribution π of the Lanvegin diffusion in (2.2),

i.e πh ̸= π. Hence, in Proposition 2, we characterize the Wasserstein-2 distance between π and

πh.

Firstly, if f ∈ C2(Rd) and f has a Lipschitz gradient with parameter M , then we can immediately

see that the transition kernel of chain (xn), P (x, y) ∈ C(Rd×Rd) is positive everywhere. Therefore,

it’s easy to obtain that the chain (xn) is µLeb-irreducible and aperiodic. Given all this information,

we can give a sufficient condition to make sure that the chain has a unique invariant probability

measure, and it is ergodic.

Theorem 1. Let the potential function f satisfy part (a) of Assumption 2.1.1, and let γn := h be

small enough. Then the (RLMC) Markov chain (xn) has a unique stationary probability measure

10



πh, and for every x ∈ Rd, we have

sup
A∈B(Rd)

|Pn(x,A) − πh(A)| → 0 as n→ ∞.

We next address the question: how far is πh from π? This question can be typically answered by

a careful inspection on the proof of Proposition 1. However, for (RLMC), this is not the case,

and requires using a different technique. Towards that, we derive an upper bound of W2(π, πh)

under the same assumptions in the previous theorem and the additional assumption that f is also

strongly convex with parameter m.

Proposition 2. Let the potential function satisfy Assumption 2.1.1, and let γn := h ∈ (0, 2
m+M )

in the (RLMC) algorithm. Then, we have

W2(π, πh) ≤ 3
√
dh

(1 + 2Mh)2

κ−1 −Mh/
√

3
.(2.3)

Remark 1. The above proposition shows that the order of the bias between the stationary distri-

bution of the Langevin diffusion and that of the (RLMC) chain is of the order O(
√
h).

2.2.3. Wasserstein-2 rates and CLT with Decreasing Step-size. In this part, we con-

sider the (RLMC) algorithm with a fast decreasing time step sequence (γn) and establish a con-

vergence rate in W2 distance as well as a CLT for the numerical integration (2.1).

Proposition 3. Suppose f satisfies Assumption 2.1.1. Let x0 := arg minx f(x) and γn+1 ≤
m

m2+M2(33+n)
. After running (RLMC) algorithm for K = O

(
κ1.5/ϵ

)
steps, we obtain W2(νK , π) ≤

ϵ
√
d/m, where νK is the probability distribution of xK .

Remark 2. There are two aspects of this result. The first aspect is rather standard; there is no

logarithmic factor in 1/ϵ compared to the result in Proposition 1. Similar phenomenon has been

previously observed for the LMC algorithm [DK19]. The second aspect is that we never obtain the

O(1/ϵ2/3) term as in Proposition 1, with the constant step-size choice. This is not an artifact of

our analysis. This is due to the fact that with this choice of decreasing step-size, we reduce the bias

11



much more at the expense of slightly increased variance. However, as we demonstrate next, this

choice of decreasing step-size is crucial for obtaining an unbiased CLT for numerical integration.

As the main contribution of this section, we characterize the fluctuations of (RLMC) when it is

used for computing the integral
∫
Rd φdπ for a π-integrable function φ. Choosing the Langevin

diffusion in (2.2) with the stationary distribution π, we have by Theorem 1 that it is ergodic, and

limt→+∞
1
t

∫ t
0 φ(X(s))ds =

∫
Rd φdπ := π(φ), almost surely. Motivated by this, we first discretize

the diffusion using (RLMC) and then compute a discrete analogue of the average. The procedure

consists of two successive phases:

(a) Discretization: The (RLMC) algorithm is run with a step size sequence (γn) satisfying

for all n, γn > 0, limn→+∞ γn = 0, and limn→+∞ Γn = +∞, where Γn :=
∑n

k=1 γk.

(b) Averaging: Using the (RLMC) iterates (xn), construct a weighted empirical measure

via the same weight sequence γ := (γn): For every n ≥ 1 and every ω ∈ Ω, set

πγn(ω, dx) :=
γ1δx0(ω) + · · · + γk+1δxk(ω) + · · · + γnδxn−1(ω)

γ1 + · · · + γn
,

and use πγn(ω, φ) :=
∫
Rd φπ

γ
n(ω, dx) = 1

Γn

∑n
k=1 γkφ(xk−1(ω)) to estimate the expecta-

tion (2.1).

For numerical purposes, for a fixed function φ, πγn(ω, φ) can be recursively computed as fol-

lows:

πγn+1(ω, φ) = πγn(ω, φ) + γ̃n+1 (φ(xn(ω)) − πγn(ω, φ)) with γ̃n+1 :=
γn+1

Γn+1
.

We now provide the main result of this section, a central limit theorem for the algorithm (RLMC)

when it is used to compute integrals of the form in (2.1).

Theorem 2. Let π be such that its potential f satisfies Assumption 2.1.1. Consider a test function

φ : Rd → R of the form φ = Aϕ for some function ϕ : Rd → R, where A denotes the generator of the

diffusion (2.2), i.e., Aϕ := −⟨∇f,∇ϕ⟩ + ∆ϕ. Define γ̂n := 1√
Γn

∑n
k=1 γ

2
k and let γ̂∞ = limn→∞ γ̂n.

Then for all ϕ ∈ C4(Rd) with D2ϕ, D3ϕ being bounded, and D4ϕ being bounded and Lipschitz, and

12



supx∈Rd ∥∇ϕ(x)∥2/(1 + ∥x∥2) < +∞, we have the following central limit theorem for the numerical

integration computed via (RLMC):

(i) If γ̂∞ = 0, then
√

Γnπ
γ
n(φ)

d→ N (0, 2
∫
Rd ∥∇ϕ(x)∥2π(dx)),

(ii) If γ̂∞ ∈ (0,+∞), then
√

Γnπ
γ
n(φ)

d→ N (ϱ γ̂∞, 2
∫
Rd ∥∇ϕ(x)∥2π(dx)),

(iii) If γ̂∞ = +∞, then
√
Γn

γ̂n
πγn(φ)

p→ ϱ,

where the mean ϱ is given as

ϱ = ∫ ∫⟨D3ϕ(x),∇f(x) ⊗ u⊗ u⟩µ(du)π(dx) − 1
2 ∫⟨D

2f(x),∇ϕ(x) ⊗∇f(x)⟩π(dx)

+ 1
2 ∫ ∫⟨D

3f(x),∇ϕ(x) ⊗ u⊗ u⟩µ(du)π(dx) − 1
2 ∫⟨D

2ϕ(x),∇f(x) ⊗∇f(x)⟩π(dx)

+

∫
Rd

trace(D2ϕ(x)2)π(dx) − 1
6 ∫ ∫⟨D

4ϕ(x), u⊗4⟩µ(du)π(dx),

and µ is the distribution for a d-dimensional standard Gaussian measure.

Remark 3. First note that a CLT for the Euler discretization of Langevin diffusion follows

from [LP02, Thm. 10]. The rates of the CLT established in Theorem 2 are similar to that case,

with only the bias term ρ being different. Specifically, following the same computation in [LP02],

we see that the optimal rate with polynomially decaying step-size choice γk = k−α, for some α > 0,

is O(n1/3). But in this case, the established CLT is biased. However, for any 0 < α < 1/3, we

obtain an unbiased CLT as well. Hence, although the (RLMC) chain provides rate improvements

for sampling (with respect to W2 distance), as demonstrated in [SL19] and in Proposition 1, it

does not seem to provide any improvements for CLT. In retrospect, this is expected as the rate

improvements for sampling is achieved by the choice of constant step-size for which it is not possible

to establish even a nearly unbiased CLT.

The class of test functions that the above CLT can cover is intimately related to the solution of the

Stein equation (or Poisson equation) φ = Aϕ. Given φ, there is an explicit characterization of ϕ that

solves the Stein’s equation, and various properties of φ are translated to ϕ [GDVM16, EMS18].
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2.3. Results for the Underdamped Langevin Diffusion

The underdamped Langevin diffusion is given by

d

x(t)

v(t)

 =

 v(t)

−(βv(t) + u∇f(x(t)))

 dt+
√

2βu

0d

Id

 dW (t),(2.4)

where β > 0 is the friction coefficient and u > 0 is the inverse mass. For simplicity, we will

consider β = 2 in the later text. Under mild conditions, it is well-known that the continuous-time

Markov process (x(t), v(t)) is positive recurrent, and its invariant distribution is given by ν(x, v) ∝

exp
{
−f(x)− 1

2u ∥v∥2
}
, x ∈ Rd, v ∈ Rd. This diffusion, with an additional Hamiltonian component,

has gathered a lot of attention recently due to its improved convergence properties [DRD20a,

CCBJ17, SL19, LBBG19, DMS19] and empirical performance [Nea11, CFG14].

The randomized midpoint discretization of the underdamped Langevin diffusion (2.4) is given

as:

xn+ 1
2

= xn + 1
2 (1−e−2αn+1γn+1 )vn − u

2

(
αn+1γn+1− 1

2 (1−e−2αn+1γn+1 )
)
∇f(xn) +

√
uσ

(1)
n+1U

(1)
n+1,

xn+1 = xn + 1
2 (1−e−2γn+1 )vn − u

2 γn+1(1−e−2(1−αn+1)γn+1 )∇f(xn+ 1
2
) +

√
uσ

(2)
n+1U

(2)
n+1,(RULMC)

vn+1 = vne−2γn+1 − uγn+1e
−2(1−αn+1)γn+1∇f(xn+ 1

2
) + 2

√
uσ

(3)
n+1U

(3)
n+1,

where (γn) is the sequence of time steps, σ
(1)
n , σ

(2)
n and σ

(3)
n are positive with (σ

(1)
n )2 = αnγn +

1−e−4αnγn

4 − (1 − e−2αnγn), (σ
(2)
n )2 = γn + 1−e−4γn

4 − (1 − e−2γn) and (σ
(3)
n )2 = 1−e−4γn

4 , and (αn)

is a sequence of identically distributed random variables following the distribution αn ∼ U [0, 1].

(U
(1)
n , U

(2)
n , U

(3)
n ) are independent centered Gaussian random vectors in R3d, also independent of

(αn) and initial point (x0, v0), having the following pairwise covariances:

cov(σ(1)n U (1)
n , σ(2)n U (2)

n ) =
(
αnγn −

(
e−αnγn + e−2γn sinh(αnγn)

)
sinh(αnγn)

)
Id×d,

cov(σ(2)n U (2)
n , σ(3)n U (3)

n ) =
(
e−2γn sinh(γn)2

)
Id×d,

cov(σ(1)n U (1)
n , σ(3)n U (3)

n ) =
(
e−2γn sinh(αnγn)2

)
Id×d.
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The (RULMC) algorithm has emerged as an optimal sampling algorithm in the sense that it

achieves the information theoretical lower bound in both tolerance ϵ and dimension d for sam-

pling from a strongly log-concave densities [CLW20, SL19]. Therefore, it is interesting to examine

if (RULMC) based numerical integrator have any benefits in other MCMC-based tasks such as

(2.1). Towards that, we characterize the order of bias with a constant step-size choice for (RULMC)

iterates as proposed in [SL19]. Compared to the bias result in Proposition 2 for the (RLMC) dis-

cretization, we note that order of bias is increased (i.e. smaller bias). Next, in Theorem 4 we

provide a CLT for numerical integration with (RULMC). Our results show that when it comes to

computing expectations of the form in (2.1) using (RULMC) and characterizing its fluctuations,

the (RULMC) discretization obtains rate improvements only for a class of constant test functions

(as described in Remark 6).

2.3.1. Analysis of the Markov Chain generated by Constant Step-size RULMC.

Recall that π(x) is the marginal density function of ν(x, v) with respect to x. Similarly νh(x, v)

be the stationary density function of the Markov chain generated by (RULMC) chain and πh(x)

be the marginal density function of νh(x, v), with respect to x. Furthermore, the filtration (Fn)

is defined as Fn := σ(αk, U
(i)
k ; 1 ≤ k ≤ n, i = 1, 2, 3). When f ∈ C2(Rd) and is gradient Lips-

chitz with parameter M , then we can immediately see that the transition kernel of chain (xn, vn):

P ((x, v), (x′, v′)) ∈ C(R2d × R2d) is positive everywhere. Therefore, it’s easy to obtain that the

chain (xn, vn) is µLeb-irreducible and aperiodic. Given all this information, we can give a suf-

ficient condition to make sure that the chain has a unique invariant probability measure and is

ergodic.

Theorem 3. Let the potential function f satisfy part (a) of Assumption 2.1.1, and let γn := h be

small enough. Then if u ∈ (0, 4
2M−m), the (RULMC) Markov chain (xn, vn) has a unique stationary

probability measure νh and for every (x, v) ∈ R2d, we have

sup
A∈B(R2d)

|Pn((x, v), A) − νh(A)| → 0 as n→ ∞.

We next derive an upper bound on the bias W2(π, πh) of (RULMC) algorithm, under the additional

strong convexity assumption on the potential function f .
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Proposition 4. Suppose that f satisfies Assumption 2.1.1. If we run the (RULMC) algorithm

with u = 1/M and γn := h, for universal constants C1, C2 > 0, we have

W 2
2 (π, πh) ≤ C1h

3(κh3 + 1)d

1 − h
4κ − C2h3κ(1 + κh3)

.

Remark 4. Note that we have W2(π, πh) → 0 as h → 0. Furthermore, as h → 0, W2(π, πh) <

O(h
3
2 ). Hence, the bias order is increased for the underdamped Langevin diffusion compared to

the overdamped case (cf. Proposition 2), providing a smaller bias for the same step-size.

2.3.2. Wasserstein-2 rates and CLT with Decreasing Step-size. We now provide the

rate of convergence in Wasserstein-2 metric with decreasing step-size for (RULMC). The specific

choice for the decreasing step-size that we consider below, also is satisfied for our CLT result in

Remark 6.

Proposition 5. Suppose f satisfies Assumption 2.1.1. Fix u = 1/M . Let x0 := arg minx f(x) and

choose γn = 16κ

32κ
5
3+(n−K1)+

, for a K1 ∈ (0,∞) (where (a)+ := max(0, a)). After running (RULMC)

for K = Õ
(
κ3/2/ϵ2/3

)
steps, we obtain W2(νK , π) ≤ ϵ

√
d/m, where νK is the probability distribu-

tion of xK .

Remark 5. Similar to the result in Proposition 3, there are two aspects of this result. The first

aspect is again removing the logarithmic factor in 1/ϵ compared to the result in Theorem 3 in [SL19],

which is quite standard in the literature. The second aspect is that we never obtain the O(1/ϵ1/3)

part, as in Theorem 3 in [SL19] with the constant step-size choice.

Similar to the previous case, we now describe the numerical integration procedure using the (RULMC)

discretization. We denote the n-th iterate as (xn, vn). The time-step we use is (γn) such that

∀n ∈ N∗, γn ≥ 0, limn γn = 0 and limn Γ
(1)
n = +∞, where Γ

(ℓ)
n :=

∑n
i=1 γ

ℓ
i . Our averaging is

a weighted empirical measure with Yn = (xn, vn) using the step size sequence γ := (γn) as the

weights. Let δx denote the Dirac mass at x. Then for every n ≥ 1, set

νγn(ω, dx) :=
γ1δY0(ω) + · · · + γk+1δYk(ω) + · · · + γnδYn−1(ω)

γ1 + · · · + γn
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and we can use νγn(ω, φ) to approximate ν(φ) = Eν [φ′(Y )], where φ′ : R2d → R.

If we assume g : R2d → R such that Lg = φ′, we can establish the following theorem, in which we

state only the unbiased CLT result for simplicity.

Theorem 4. Let π be such that its potential function f satisfies Assumption 2.1.1. Assume

u ∈ (0, 4
2M−m). Consider a test function φ′ = Lg, for some function g : R2d → R, where L = 2u∆v−

2⟨v,∇v⟩−u⟨∇f(x),∇v⟩+⟨v,∇x⟩ denotes the generator of the diffusion (2.4). Suppose the step-size

(γk) is non-increasing, limn→+∞(1/
√

Γn)
∑n

k=1 γ
3/2
k = +∞. Then, if limn→+∞(1/

√
Γn)

∑n
k=1 γ

2
k =

0, for every g ∈ C4(R2d) function with D2g bounded, D3g bounded and Lipschitz, and if the

condition sup(x,v)∈R2d ∥∇g(x, v)∥/(1 + ∥x∥2 + ∥v∥2) < +∞ holds, we have the following central

limit theorem for the numerical integration computed using the (RULMC) iterates:

√
Γnν

γ
n(Lg)

d→ N
(
0, 4u ∫ ∥∇vg(x, v)∥2ν(dx, dv)

)
.

The rate of convergence of the CLT in Theorem 4 follows exactly the same behavior in Theorem 2.

Hence, for the class of general test functions, Theorem 4 does not exhibit a rate improvement.

Towards that, we make the following remarks under a carefully constructed condition for the class

of test functions.

Remark 6. Let π be such that its potential function f satisfies Assumption 2.1.1. Assume

u ∈ (0, 4
2M−m). Consider a test function φ = Lg which could be written as Lg(v, ϕ(x)) = ⟨v,∇ϕ(x)⟩,

for some function ϕ : Rd → R, where L = 2u∆v − 2⟨v,∇v⟩ − u⟨∇f(x),∇v⟩ + ⟨v,∇x⟩ denotes

the generator of the diffusion (2.4). Suppose the time step-size (γk) is non-increasing, and sat-

isfies limn→∞(γn−1 − γn)/γ4n = 0 and limn→∞ Γ
(4)
n = +∞. Define γ̂n := Γ

(4)
n /
√

Γ
(3)
n and let

γ̂∞ = limn→∞ γ̂n. Then, for all ϕ ∈ C4(Rd) with D2ϕ, D3ϕ and D4ϕ bounded and Lipschitz and

sup(x,v)∈R2d ∥∇ϕ(x)∥2/(1 + ∥x∥2 + ∥v∥2) < +∞, we obtain the following central limit theorem for

numerical integration computed using the (RULMC) algorithm:

(i) If γ̂∞ = 0, we have Γn√
Γ
(3)
n

νγn(Lϕ)
d→ N (0, 103 u

∫
Rd ∥∇ϕ(x)∥π(dx)),

(ii) If γ̂∞ ∈ (0,+∞), we have Γn

Γ
(4)
n

νγn(Lϕ)
d→ N (ρ, 103 uγ̂

−2
∞
∫
Rd ∥∇ϕ(x)∥π(dx)),
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(iii) If γ̂∞ = +∞, we have Γn

Γ
(4)
n

νγn(Lϕ)
p→ ρ,

where,

ρ = 5u
12 ∫ ∫⟨D

3ϕ(x),∇f(x) ⊗ v ⊗ v⟩ν(dx, dv) + u
24 ∫ ∫⟨D

3f(x),∇ϕ(x) ⊗ v ⊗ v⟩ν(dx, dv)

+ 7u
12 ∫ ∫(D2ϕD2f)(x)v⊗2ν(dx, dv) − u2

4 ∫⟨D2ϕ(x),∇f(x)⊗2⟩π(dx)

− u2

24 ∫⟨D
2f(x),∇ϕ(x) ⊗∇f(x)⟩π(dx).

Remark 7. For polynomial time steps γk := k−α, since we require that Γ
(4)
n → +∞ as n → +∞,

we need 0 < α ≤ 1
4 . Using L’Hospitals rule, it is straightforward to check that the condition

limn→+∞
γn−1−γn

γ4
n

= 0 is satisfied when α ∈ (0, 14 ]. We then have the following order estimates:

Γn ∼ n1−α

1 − α
,

√
Γ
(3)
n ∼ n

1
2
− 3

2
α

√
1 − 3α

, Γ(4)
n ∼


n1−4α

1 − 4α
, if α ∈ (0, 14),

√
lnn, if α = 1

4 .

Hence, as n→ +∞,

Γ
(4)
n√
Γ
(3)
n

→ γ̂∞ =


0 if α ∈ (15 ,

1
4 ],

√
10 if α = 1

5 ,

+ ∞ if α ∈ (0, 15).

If α ∈ (15 ,
1
4 ], the unbiased CLT holds at rate Γn/

√
Γ
(3)
n = O(n

1
2
(1+α)) ≤ O(n

5
8 ). The optimal rate

is achieved when α = 1
4 . If α = 1

5 , the biased CLT holds at rate Γn/
√

Γ
(3)
n = O(n3α) = O(n

3
5 ). If

α ∈ (0, 15), the rate of the convergence in probability is Γn/
√

Γ
(3)
n = O(n3α) < O(n

3
5 ). Therefore

the optimal convergence rate O(n
5
8 ) is obtained when an unbiased CLT holds. While the rate of

this CLT is faster than the one obtained in Theorem 2, the test functions that satisfy this condition

is severely restricted.

2.3.3. Discussion. In this work, we present several probabilistic properties of the random-

ized midpoint discretization technique, focussing our attention on overdamped and underdamped
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Langevin diffusion. Our results could be biased as follows: To obtain optimal rates for sampling

(in W2 distance), one needs to have a constant choice of step-size. With such a constant step-size

choice, the Markov chain generated by the discretization process is biased. This suggest that a

decreasing step-size choice is required for using the randomized midpoint method for sampling and

the related task of numerical integration. For several decreasing choices of step-sizes, we establish

CLTs and highlight the relative merits and disadvantages of using randomized midpoint technique

for numerical integration. In particular, our results have interesting consequence for computing

confidence interval for numerical integration.

2.4. Additional Notations

We also use the following notations for the proofs. Due to the ease of presentation, whenever it

is clear in the proof, we refer to the inner product between two compatible vectors ⟨a, b⟩ simply

by a · b. For any random variable X, ∥X∥L2 := E[∥X∥2]
1
2 where the expectation is taken over all

randomness of X.

2.5. Proofs for Section 2.2

We now define the following condition, which is a consequence of Assumption 2.1.1

Assumption 2.5.1. There exists a twice differentiable function V : Rd → [1,∞) such that:

(i) lim∥x∥→∞ V (x) = +∞, (ii) there exists α > 0 and β > 0: ⟨∇V (x),∇f(x)⟩ ≥ αV (x) − β

for every x, (iii) there exists cV > 0: ∥∇V (x)∥2 + ∥∇f(x)∥2 ≤ cV V (x) for every x, and (iv)∥∥D2V
∥∥
∞ := supx∈Rd ∥D2V ∥op <∞ (where ∥ · ∥op denotes the operator norm).

Lemma 2.5.1. Assumption 2.1.1 implies Assumption 2.5.1.

Proof. Since f ∈ C2(Rd) is strongly convex, lim|x|→+∞ f(x) = +∞ and f has a unique global

minimizer x∗ ∈ Rd. It’s easy to observe that ∇f(x∗) = 0. We consider our V (x) = f(x)−f(x∗)+1.

Then it’s easy to see (i) is satisfied. (iv) is also satisfied because f is gradient Lipschitz. (iii) is

equivalent to that there exists a C > 0 such that

|∇f(x)|2

f(x) − f(x∗) + 1
≤ C for ∀x ∈ Rd.
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We Taylor expand the numerator and denominator:

|∇f(x)|2 =
d∑

i=1

(
fi(x

∗) + ∇fi(ξ)T (x− x∗)
)2

≤
d∑

i,j=1

|fij(ξ)|2|x− x∗|2 =
∥∥D2f(ξ)

∥∥2
F
|x− x∗|2

≤ d2M2|x− x∗|2,

and

f(x) − f(x∗) + 1 = ∇f(x∗)T (x− x∗) +
1

2
D2f(ξ)(x− x∗)⊗2 + 1

=
1

2
D2f(ξ)(x− x∗)⊗2 + 1

≥ m

2
|x− x∗|2.

Then
|∇f(x)|2

f(x) − f(x∗) + 1
≤ 2d2M2

m
for ∀x ∈ Rd.

(ii) is equivalent to that there exists α, β > 0 such that

|∇f(x)|2 ≥ α(f(x) − f(x∗) + 1) − β for ∀x ∈ Rd.

According to the strongly convexity of f , we have

f(x∗) − f(x) ≥ ∇f(x)T (x∗ − x) +
m

2
|x∗ − x|2

=
m

2
|x∗ − x+

1

m
∇f(x)|2 − 1

2m
|∇f(x)|2,

which then implies

|∇f(x)|2 ≥ 2m (f(x) − f(x∗) + 1) − 2m for ∀x ∈ Rd.

(ii) is satisfied by choosing α = β = 2m > 0. ■

Remark 8. For the V (x) we choose in the proof, under assumption 2.1.1, we can verify that:

V (x) = O(|x|2) when |x| → +∞. We will use this fact later in the proof when we establish the

CLT statement.

20



2.5.1. Proofs for Section 2.2.1.

Lemma 2.5.2. Let x(t) be the solution to Langevin dynamics SDE with initial condition x0 and y(t)

be the solution to Langevin dynamics SDE with initial condition y0. Then we have the following

estimates for Langevin dynamics when f satisfies Assumption 2.1.1 and Mh < 1
2 :

E[ sup
t∈[0,h]

∥∇f(x(t))∥2] ≤ 4 ∥∇f(x0)∥2 + 8M2dh,

E[ sup
t∈[0,h]

∥x(t) − x0∥2] ≤ O(h2 ∥∇f(x0)∥2 +M2h3d+ 2dh),

E[∥x(t) − y(t)∥2] ≤ e−2mt ∥x0 − y0∥2 .

Proof. By triangle inequality we have

E[ sup
t∈[0,h]

∥∇f(x(t))∥2] ≤ 2 ∥∇f(x0))∥2 + 2M2E[ sup
t∈[0,h]

∥x(t) − x0∥2].

Furthermore, we have

E[ sup
t∈[0,h]

∥x(t) − x0∥2] = E[ sup
t∈[0,h]

∥∥∥∥−∫ t

0
∇f(x(s))ds+

√
2Wt

∥∥∥∥2]
≤ h2E[ sup

t∈[0,h]
∥∇f(x(t))∥2] + 2dh.

Combining the two inequalities and Mh < 1
2 , we can obtain the first two estimates. The last

estimate could be easily obtained by energy method. ■

Proof of Propositon 1. We denote xn = xn(0) to be the algorithm iterate points, yn to be

the n-th step of Langevin diffusion with y0 ∼ exp(−f(y)), x∗n+1 = xn(h) to be one step solution of

Langevin dynamics with initial values xn. When Mh < 1
2 , apply lemma 2.5.2 and we get:

E[ sup
t∈[0,h]

∥xn−1(αnh) − xn−1(t)∥2] ≤ O(h2 ∥∇f(xn−1)∥2L2 +M2h3d+ 2dh),

E[
∥∥∥∇f(xn− 1

2
) −∇f(xn−1(αnh))

∥∥∥2] ≤M2E
∥∥∥∥∫ αnh

0
∇f(xn−1(s)) −∇f(xn−1(0))ds

∥∥∥∥2
≤M4h2E[α2

n sup
t∈[0,αnh]

∥xn−1(t) − xn−1(0)∥2]

≤ O(M4h4 ∥∇f(xn−1)∥2L2 + dM4h3 + dM6h5).
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Consider the distance between our iterates and the continuous process:

EαK [∥xK − yK∥2] = EαK [∥xK − x∗K + x∗K − yK∥2]

≤ ∥yK − x∗K∥2 + EαK [∥xK − x∗K∥2] − 2(yK − x∗K)T (EαKxK − x∗K)

≤ (1 + hm) ∥yK − x∗K∥2 +
1

hm
∥EαKxK − x∗K∥2 + EαK [∥xK − x∗K∥2].

Taking expectations over {αk, Ul, U
′
l ; 1 ≤ k ≤ K − 1, 1 ≤ l ≤ K}, applying lemma 2.5.2 again and

using induction, we have

∥xK − yK∥2L2 ≤ (1 + hm) ∥yK − x∗K∥2L2 +
1

hm
E ∥EαKxK − x∗K∥2 + ∥xK − x∗K∥2L2

≤ (1 + hm)e−2mh ∥xK−1 − yK−1∥2L2 +
1

hm
E ∥EαKxK − x∗K∥2 + ∥xK − x∗K∥2L2

≤ (1 + hm)e−2mKh ∥x0 − y0∥2L2 +
K∑

n=1

1

hm
E ∥Eαnxn − x∗n∥

2 +
K∑

n=1

∥xn − x∗n∥
2
L2

≤ e−mKh ∥x0 − y0∥2L2 +A+B.

Next we bound part A and part B. For part A:

∥Eαnxn − x∗n∥
2 =

∥∥∥∥Eαn [h∇f(xn− 1
2
)] −

∫ h

0
∇f(xn−1(s))ds

∥∥∥∥2
≤ 2Eαn

∥∥∥h∇f(xn− 1
2
) − h∇f(xn−1(αnh))

∥∥∥2 + 2

∥∥∥∥Eαn [h∇f(xn−1(αnh))] −
∫ h

0
∇f(xn−1(s))ds

∥∥∥∥2
≤ 2h2Eαn

∥∥∥∇f(xn− 1
2
) −∇f(xn−1(αnh))

∥∥∥2 + 0.

Therefore

E ∥Eαnxn − x∗n∥
2 ≤ 2h2E[

∥∥∥∇f(xn− 1
2
) −∇f(xn−1(αnh))

∥∥∥2]
≤ O(M4h6 ∥∇f(xn−1)∥2L2 + dM4h5).
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For part B, use our previous estimates:

∥xn − x∗n∥
2
L2 =

∥∥∥∥h∇f(xn− 1
2
) −

∫ h

0
∇f(xn−1(s))ds

∥∥∥∥2
L2

≤ 2
∥∥∥h∇f(xn− 1

2
) − h∇f(xn−1(αnh))

∥∥∥2
L2

+ 2

∥∥∥∥∫ h

0
∇f(xn−1(s)) −∇f(xn−1(αnh))ds

∥∥∥∥2
L2

≤ 2h2
∥∥∥∇f(xn− 1

2
) −∇f(xn−1(αnh))

∥∥∥2
L2

+ 2M2h2E[ sup
t∈[0,h]

∥xn−1(αnh) − xn−1(t)∥2]

≤ O(M2h4 ∥∇f(xn−1)∥2L2 + dM2h3).

Plug the estimates on A and B into the inequality we have

∥xK − yK∥2L2 ≤ e−mKh ∥x0 − y0∥2L2 +O(m−1M4h5
K−1∑
n=0

∥∇f(xn)∥2L2 + dm−1M4Kh4)

+O(M2h4
K−1∑
n=0

∥∇f(xn)∥2L2 + dM2Kh3).

Next we need to estimate
∑K−1

n=0 ∥∇f(xn)∥2L2 . Since

f(xn(h)) = f(xn(0)) +

∫ h

0
df(xn(t))

= f(xn(0)) −
∫ h

0
|∇f(xn(t))|2dt+

√
2

∫ h

0
∇f(xn(t))dW (t) +

∫ h

0
∆f(xn(t))dt.

we have

E[f(xn+1(0))] − E[f(xn(h))] = E[f(xn+1(0)) − f(xn(0))] + E[

∫ h

0
|∇f(xn(t))|2dt] − E[

∫ t

0
∆f(xn(t))dt].

When Mh < 1
4 ,

E[ inf
t∈[0,h]

∥∇f(x(t))∥2] ≥ 1

2
∥∇f(x(0))∥2L2 − E[ sup

t∈[0,h]
∥∇f(x(t)) −∇f(x(0))∥2]

≥ 1

2
∥∇f(x(0))∥2L2 −M2E[ sup

t∈[0,h]
∥x(t) − x(0)∥2]

≥ 1

4
∥∇f(x(0))∥2L2 +O(dM2h)

and |∆f(xn(t))| ≤ d
∥∥∇2f(xn(t))

∥∥ ≤Md.
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Plug these two estimates into our previous identity and we obtain,

E[f(xn+1(0)) − f(xn(h))] ≥ E[f(xn+1) − f(xn)] +
h

4
∥∇f(xn)∥2L2 − dMh+O(dM2h2).

Next we consider that

Eαn+1 [f(xn+1(0))] ≤ f(xn(h)) + ∇f(xn(h))T (Eαn+1 [xn+1(0)] − xn(h)) +
M

2
Eαn+1 [∥xn+1(0) − xn(h)∥2]

≤ f(xn(h)) +Mh2 ∥∇f(xn(h))∥2L2 +M−1h−2
∥∥Eαn+1 [xn+1(0)] − xn(h)

∥∥2
+
M

2
Eαn+1 [∥xn+1(0) − xn(h)∥2],

where

Mh2E[∥∇f(xn(h))∥2] ≤ O(Mh4 ∥∇f(xn)∥2L2 + dMh3),

M−1h−2
∥∥Eαn+1 [xn+1(0)] − xn(h)

∥∥2 ≤ O(M3h4 ∥∇f(xn)∥2L2 + dM3h3),

M

2
E[∥xn+1 − xn(h)∥2] ≤ O(M3h4 ∥∇f(xn)∥2L2 + dM3h3).

Hence we have

E[f(xn+1(0)) − f(xn(h))] ≤ O(M3h4 ∥∇f(xn)∥2L2 + dM3h3)

and

O(M3h4 ∥∇f(xn)∥2L2 + dM3h3) ≥ E[f(xn+1) − f(xn)] +
h

4
∥∇f(xn)∥2L2 +O(dM2h2) − dMh.

Sum up over k from 0 to K − 1:

O(M3h4
K−1∑
k=0

∥∇f(xn)∥2L2 + dM3Kh3) ≥ E[f(xK) − f(x0)] +
h

4

K−1∑
k=1

∥∇f(xn)∥2L2 +O(dM2Nh2) − dMKh.

Picking x0 = argminf(x), we can ensure E[f(xK) − f(x0)] ≥ 0, when Mh < 1
2 , we have

h

8

K−1∑
k=0

∥∇f(xn)∥2L2 ≤ dKMh−O(dKM2h2) +O(dKM3h3)

=⇒
K−1∑
k=0

∥∇f(xn)∥2L2 ≤ O(dKM).
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Therefore

∥xK − yK∥2L2 ≤ e−mKh ∥x0 − y0∥2L2 +O(m−1M5h5Kd+m−1M4h4Kd) +O(M3h4Kd+M2h3Kd)

≤ e−mKh ∥x0 − y0∥2L2 +O(κM3h4Kd) +O(M2h3Kd).

Hence we have

W2(νK , π)2 ≤ e−mKh ∥x0 − y0∥2L2 +O(M3h4Kd) max{κ, 1

Mh
}

a) When κ > 1
Mh , by choosing h ∼ O( ϵ2/3

κ1/3M
), we can ensure W2(νK , π)2 ≤ ϵ2d/m after K

steps when K ∼ Õ(κ
4/3

ϵ2/3
).

b) When κ ≤ 1
Mh , by choosing h ∼ O( ϵ

M ), we can ensure W2(νK , π)2 ≤ ϵ2d/m after K steps

when K ∼ Õ(κϵ ).

■

2.5.2. Proofs for Section 2.2.2.

Proof of Theorem 1. Under the assumption 2.5.1, we can show that the following Lyapunov

condition is satisfied for small h.

(Lyapunov Condition): There exists a function V : Rd → [1,∞) such that:

0) lim|x|→∞ V (x) = +∞,

1) There exists α̂ ∈ (0, 1) and β̂ ≥ 0: E[V (xn+1)|Fn] ≤ α̂V (xn) + β̂.

Proof: To show that Assumption 2.5.1 implies Lyapunov condition, we first do Taylor expansion

of V (xn+1) at xn:

V (xn+1) = V (xn) − h⟨∇V (xn),∇f(xn)⟩ + αn+1h
2⟨D2f(xn);∇f(xn),∇V (xn)⟩

−
√

2αn+1h
3
2 ⟨D2f(xn);∇V (xn), U ′

n+1⟩ +
√

2h∇V (xn) · Un+1

+
1

2
D2V (θn)(−h∇f(xn) + αn+1h

2D2f(xn)∇f(xn) −
√

2αn+1h
3
2U ′

n+1 +
√

2hUn+1)
⊗2,
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where θn is a random point on the line segment joining xn and xn+1. Using the fact that f is

M -gradient Lipschitz, we have:

E[V (xn+1)|Fn] ≤ V (xn) − h⟨∇V (xn),∇f(xn)⟩ +
1

4
Mh2(|∇f(xn)|2 + |∇V (xn)|2)

+ 2
∥∥D2V

∥∥
∞ (h2|∇f(xn)|2 +

1

3
M2h4|∇f(xn)|2 + h3d+ 2hd)

≤ (1 − αh+
1

4
Mh2cV + 2

∥∥D2V
∥∥
∞ h2cV +

2

3
cV
∥∥D2V

∥∥
∞M2h4cV )V (xn)

+ βh+ 2d
∥∥D2V

∥∥
∞ h3 + 4d

∥∥D2V
∥∥
∞ h

≤ α̂V (xn) + β̂,

for some α̂ ∈ (0, 1) and β̂ ≥ 0 when h is small. ■

Once we have the Lyapunov condition, we can define the stopping time τC = inf{n > 0 : xn ∈ C}

and show that supx∈C Ex[τC ] ≤ MC < ∞ for all small set C. Then uniqueness of stationary

probability measure and ergodicity all follow by Theorem 1.3.1 in [MT12]. Next we prove that

supx∈C Ex[τC ] ≤MC <∞ given Lyapunov condition. To do so, note that we have

Ex[τC ] =
∞∑
k=1

kP(τC = k) =
∑
k≥1

P(τC > k − 1).

Under Lyapunov condition, for any stopping time N , according to Lemma A.3 and Corollary A.4

in [MSH02], we have

P(τC > k − 1) ≤ E[V (xn)1τC>k−1] ≤
κ[γk−1V (x0) + 1]

1 − γ
≤ κγn−1[V (x0) + 1],

for some γ ∈ (α̂, 1) and constant κ. Therefore we have

Ex[τC ] ≤
∑
k≥1

κγn−1[V (x0) + 1] =
κ[V (x) + 1]

1 − γ

and

sup
x∈C

Ex[τC ] ≤ κ

1 − γ
sup
x∈C

V (x) +
κ

1 − γ
≤MC <∞.

So as a conclusion, the statement of the theorem follows. ■
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Proof of Proposition 2. Consider that xn ∼ πh and x∗n ∼ π are two independent random

variables. Define xn+1 to be the one step RLMC result starting from xn and x∗n(h) to be the

solution of Langevin dynamics with initial value x∗n. Therefore, xn+1 ∼ πh and x∗n(h) ∼ π are also

independent and ∥x∗n − xn∥L2 = ∥x∗n(h) − xn+1∥L2 . We can compute the diffenrence between xn+1

and x∗n(h):

x∗n(h) − xn+1 = (x∗n − xn) −
∫ h

0
∇f(x∗n(s))ds+ h∇f(x∗n(αn+1h)) − h(−∇f(xn+ 1

2
) + ∇f(x∗n(αn+1h))).

It’s easy to see that Eαn+1 [
∫ h
0 ∇f(x∗n(s))ds − h∇f(x∗n(αn+1h))] = 0. And we can rewrite the last

term as

h(−∇f(xn+ 1
2
) + ∇f(x∗n(αn+1h))) = h(∇f(xn+ 1

2
+ x∗n − xn) −∇f(xn+ 1

2
))

+ h∇f(x∗n −
∫ αn+1h

0
∇f(x∗n(s))ds+

√
2Wαn+1h)

− h∇f(x∗n − αn+1h∇f(xn) +
√

2αn+1hU
′
n+1).

Take L2-norm on other randomness, we have

∥x∗n(h) − xn+1∥L2

≤
∥∥∥(x∗n − xn) − h(∇f(xn+ 1

2
+ x∗n − xn) −∇f(xn+ 1

2
))
∥∥∥
L2

+ h

∥∥∥∥∇f(x∗n −
∫ αn+1h

0
∇f(x∗n(s))ds+

√
2Wαn+1h) −∇f(x∗n − αn+1h∇f(xn) +

√
2αn+1hU

′
n+1)

∥∥∥∥
L2

+

∥∥∥∥∫ h

0
∇f(x∗n(s))ds− h∇f(x∗n(αn+1h))

∥∥∥∥
L2

.

Since f is twice differentiable and f is alsoM -gradient Lipschitz and strongly convex with parameter

m, ∥∥∥(x∗n − xn) − h(∇f(xn+ 1
2

+ x∗n − xn) −∇f(xn+ 1
2
))
∥∥∥
L2

≤ ρ ∥x∗n − xn∥L2 ,
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where ρ = max(1 −mh,Mh− 1) = 1 −mh.

For the second term:

h

∥∥∥∥∇f(x∗n −
∫ αn+1h

0
∇f(x∗n(s))ds+

√
2Wαn+1h) −∇f(x∗n − αn+1h∇f(xn) +

√
2αn+1hU

′
n+1)

∥∥∥∥
L2

≤Mh

∥∥∥∥∫ αn+1h

0
∇f(x∗n(s)) −∇f(xn)ds

∥∥∥∥
L2

≤
√

3

3
M2h2 ∥x∗n − xn∥L2 +

√
3

3
M2h2 sup

0<s<h
∥x∗n(s) − x∗n∥L2

≤
√

3

3
M2h2 ∥x∗n − xn∥L2 +

√
3

3
M2h2(4h2 ∥∇f(x∗n)∥2 + 8M2dh3 + 2dh)

1
2

≤
√

3

3
M2h2 ∥x∗n − xn∥L2 +

√
3

3
M2h2(2dh+ 4Mdh2 + 8M2dh3)

1
2 .

For the third term:∥∥∥∥∫ h

0
∇f(x∗n(s))ds− h∇f(x∗n(αn+1h))

∥∥∥∥
L2

= {EEαn+1 [(

∫ h

0
∇f(x∗n(s))ds− h∇f(x∗n(αn+1h)))2]}

1
2

= {E[h

∫ h

0
|∇f(x∗n(s))|2ds− (

∫ h

0
∇f(x∗n(s))ds)]}

1
2

= {E[h

∫ h

0
|∇f(x∗n(s)) − 1

h

∫ h

0
∇f(x∗n(s′))ds′|2ds]}1/2

≤ {E[h

∫ h

0

1

h

∫ h

0

∥∥∇f(x∗n(s)) −∇f(x∗n(s′))
∥∥2 ds′ds]}1/2

≤ 2Mh{ sup
s∈(0,h)

∥x∗n(s) − x∗n∥
2}1/2

≤ 2Mh(4h2 ∥∇f(x∗n)∥2 + 8M2dh3 + 2dh)1/2

≤ 2Mh(2dh+ 4Mdh2 + 8M2dh3)
1
2 .

Combine all the bounds:

∥x∗n − xn∥L2 ≤

√
3
3 M

2h2(2dh+ 4Mdh2 + 8M2dh3)
1
2 + 2Mh(2dh+ 4Mdh2 + 8M2dh3)

1
2

mh−
√
3
3 M

2h2
.

The final statement follows by the fact that W2(π, πh) ≤ ∥xn − x∗n∥L2 . ■

2.5.3. Proofs for Section 2.2.3.
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Proof of Proposition 3. From previous analysis, if we keep track of the coefficients in all

those bounds and assume that Mγn ≤ 1
2 for all n, we have:

E[∥xn+1 − yn+1∥2]

≤ (1 +mγn+1)E[
∥∥yn+1 − x∗n+1

∥∥2] +
1

mγn+1
E
∥∥Eαn+1xn+1 − x∗n+1

∥∥2 + E
∥∥xn+1 − x∗n+1

∥∥2
≤ (1 +mγn+1)e

−2mγn+1E ∥xn − yn∥2 +
1

mγn+1
E
∥∥Eαn+1xn+1 − x∗n+1

∥∥2 + E
∥∥xn+1 − x∗n+1

∥∥2
≤ (1 +mγn+1)e

−2mγn+1E ∥xn − yn∥2 +
2γ2n+1

mγn+1
E
∥∥∥∇f(xn+ 1

2
) −∇f(xn(αn+1γn+1))

∥∥∥2
+ 2γ2n+1E

∥∥∥∇f(xn+ 1
2
) −∇f(xn(αn+1γn+1))

∥∥∥2 + 2M2γ2n+1E sup
t∈[0,γn+1]

∥xn(αn+1γn+1) − xn(t)∥2

≤ (1 +mγn+1)e
−2mγn+1E ∥xn − yn∥2

+ 2γ4n+1(1 +
1

mγn+1
)M4(

1

5
γ2n+1 ∥∇f(xn)∥2L2 +

1

6
M2dγ3n+1 +

2

3
dγn+1)

+ 4M2γ2n+1

(
4γ2n+1

1 − 2M2γn+1
∥∇f(xn)∥2L2 +

8M2dγ3n+1

1 − 2M2γ2n+1

+ 4dγn+1

)
≤ (1 +mγn+1)e

−2mγn+1E ∥xn − yn∥2 + (33 + κ)M2γ4n+1 ∥∇f(xn)∥2L2 + (33 + κ)M2dγ3n+1.

We can further bound ∥∇f(xn)∥2L2 :

∥∇f(xn)∥2L2 ≤ 2 ∥∇f(yn)∥2L2 + 2 ∥∇f(yn) −∇f(xn)∥2L2

≤ 2 ∥∇f(yn)∥2L2 + 2M2 ∥xn − yn∥2L2

≤ 2Md+ 2M2 ∥xn − yn∥2L2 .

Therefore we have the following iterative inequality:

E[∥xn+1 − yn+1∥2] ≤ (1 +mγn+1)e
−2mγn+1E ∥xn − yn∥2 + 2(33 + κ)M2dγ3n+1 + 2(33 + κ)M4γ4n+1E ∥xn − yn∥2

≤
[
1 −mγn+1 + (

m2

2
+
M2(33 + κ)

2
)γ2n+1

]
E ∥xn − yn∥2 + 2(33 + κ)M2dγ3n+1.

Since (γn) is fast decreasing, we can assume that γn+1 ≤ m
m2+M2(33+κ)

≤ 1
m+34M for large n, and

for those n we have

E[∥xn+1 − yn+1∥2] ≤ (1 − 1

2
mγn+1)E ∥xn − yn∥2 + 2(33 + κ)M2dγ3n+1.
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Our strategy of choosing (γn): for the first K1 steps, we choose constant step size h = 1
m+34M , K1

is the first time so that E[∥xK1 − yK1∥
2] ≤ 5κ(κ+ 33)M( d

1
2

m+34M )2. such K1 exists because

E[∥xK1 − yK1∥
2] ≤ (1 − m

2m+ 68M
)K1E[∥x0 − y0∥2] +

2M2(κ+ 33)d

(m+ 34M)3
2(m+ 34M)

m

= (1 − m

2m+ 68M
)K1E[∥x0 − y0∥2] + 4κ(κ+ 33)M(

d
1
2

m+ 34M
)2.

Claim: There exists λ > 0 such that if we choose γn+1 = 1
m+34M+λ(n−K1)

for all n ≥ K1, we can

ensure that E[∥xk − yk∥2] ≤ 5κ(κ+ 33)M( d
1
2

m+34M+λ(n−K1)
)2 for all n ≥ K1.

Proof of Claim: Simply use induction:

E[∥xn+1 − yn+1∥2] ≤ (1 − 1

2
mγn+1)5κ(κ+ 33)Mdγ2n+1 + 2M2(κ+ 33)dγ3n+1

= 5κ(κ+ 33)Mdγ2n+1(1 − m

10
γn+1).

Our goal is to ensure 5κ(κ+ 33)Mdγ2n+1(1− m
10γn+1) < 5κ(κ+ 33)M( d

1
2

m+34M+λ(n+1−K1)
)2. It boils

down to discuss the following polynomial inequality relates to λ:

G(λ) = (K − 1

10
m(K + 1)2)λ2 + (X − 1

5
mX(K + 1))λ− 1

10
mX2 ≤ 0,

where X = m + 34M and K = n − K1 > 0. It’s not hard to see that there’s always positive λ

satisfying the inequality.

At last to get small error, we require E ∥xn − yn∥2 ≤ dϵ2

m , i.e

5κ(κ+ 33)M
d

(m+ 34M + λ(n−K1))2
≤ dϵ2

m
.

Then we have

n ≥ K1 + λ−1m
1
2M

1
2κ

1
2 (κ+ 33)

1
2 /ϵ− λ−1(m+ 34M) ∼ O(κ

3
2 /ϵ).

■

2.5.4. Proof of Theorem 2. Before we prove Theorem 2, we need several intermediate results

on the tightness of the (RLMC) chain.
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Lemma 2.5.3. Under Assumption 2.5.1, for every continuous function φ satisfying φ(x) = o(V k(x))

for some k ∈ N, limn π
γ
n(φ) = π(φ).

Proof of Lemma 2.5.3. The proof is divided into three step:

1) For all p ≥ 1, there exists α̃ ∈ (0, 1) and β̃, n0 ∈ N such that E[V p(xn+1)|Fn] ≤ V p(xn) +

γn+1V
p−1(xn)(β̃ − α̃V (xn)) for all n ≥ n0.

When p = 1, the statement follows from Assumption 2.5.1.

When p > 1, first we Taylor expand V p(xn+1) at xn:

V p(xn+1) = V p(xn) + pV p−1(xn)∇V (xn) · (xn+1 − xn) +
1

2
D2(V p)(ξn+1)(xn+1 − xn)⊗2

= V p(xn) − γn+1pV
p−1(xn)∇V (xn) · ∇f(xn+ 1

2
) +

√
2γn+1pV

p−1∇V (xn) · Un+1

+
1

2
D2(V p)(ξn+1)

(
−γn+1∇f(xn+ 1

2
) +

√
2γn+1Un+1

)⊗2

≤ V p(xn) − γn+1pV
p−1(xn)∇V (xn) · ∇f(xn+ 1

2
) +

√
2γn+1pV

p−1(xn)∇V (xn) · Un+1

+ pλpV
p−1(ξn+1)| − γn+1∇f(xn+ 1

2
) +

√
2γn+1Un+1|2,

where ξn+1 is a point on the line segment joining xn and xn+1 and λp := 1
2λD2V+(p−1)(∇V⊗∇V )/V <

+∞. Due to ∇(
√
V ) = ∇V

2V and |∇V |2 ≤ cV V , we have
√
V is Lipschitz continuous and the

Lipschitz constant [
√
V ]1 = 1

4cV < +∞. Hence for a point ξn+1 on the line segment between xn

and xn+1,

V p−1(ξn+1) = (
√
V )2(p−1)(ξn+1) ≤

(√
V (xn) + [

√
V ]1|xn+1 − xn|

)2(p−1)

≤


V p−1(xn) + [

√
V ]

2(p−1)
1 |xn+1 − xn|2(p−1), 2(p− 1) ≤ 1

V p−1(xn) + c
(
V (2p−3)/2(xn)|xn+1 − xn| + |xn+1 − xn|2(p−1)

)
, 2(p− 1) > 1

We can further bound

|xn+1 − xn| = | − γn+1∇f(xn) +
√

2γn+1Un+1 − γn+1

(
∇f(xn+ 1

2
) −∇f(xn)

)
|

≤ γn+1|∇f(xn)| +
√

2γn+1|Un+1| +Mγn+1| − γ̃n+1∇f(xn) +
√

2αn+1γn+1U
′
n+1|

≤ γn+1(1 +Mαn+1γn+1)|∇f(xn)| +
√

2γn+1|Un+1| +
√

2Mγn+1α
1
2
n+1γ

1
2
n+1|U

′
n+1|

≤ C
√
V (xn)γ

1
2
n+1(1 + |Un+1| + |U ′

n+1|).
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Plug these results into the last term in the first inequality we obtained from Taylor expansion:

pλpV
p−1(ξn+1)|xn+1 − xn|2 ≤ pλpV

p−1(xn)|xn+1 − xn|2

+ Cpλp


|xn+1 − xn|2p, 2p ≤ 3

V (2p−3)/2(xn)|xn+1 − xn|3 + |xn+1 − xn|2p, 2p > 3

≤ pλpV
p−1(xn)|xn+1 − xn|2 + Cγ

p∧ 3
2

n+1V
p(xn)(1 + |Un+1|2p + |U ′

n+1|2p).

We then take conditional expectation, there exists α > 0 and β ≥ 0 such that for all n ≥ n0:

E[V p(xn+1)|Fn] ≤ V p(xn) − pV p−1(xn)(αV (xn) − β)

− pγn+1V
p−1(xn)E[∇V (xn) ·

(
∇f(xn+ 1

2
) −∇f(xn)

)
|Fn]

+ 2pλpV
p−1(xn)E[γ2n+1|∇f(xn+ 1

2
)|2 + 2γn+1|Un+1|2|Fn]

+ CV p(xn)(1 + E|Un+1|2p + E|U ′
n+1|2p)γ

p∧ 3
2

n+1

≤ V p(xn) − pV p−1(xn)(αV (xn) − β) + 2pλpE|Un+1|2γn+1V
p−1(xn)

+ CV p(xn)(1 + E|Un+1|2p + E|U ′
n+1|2p)γ

p∧ 3
2

n+1

+ cVMpγ2n+1V
p(Xn) +

√
2cVMpγ

3
2
n+1E|U

′
n+1|V p−1/2(xn)

+ cV pλpγ
2
n+1V

p−1(xn)E[V (xn+ 1
2
)|Fn].

From xn to xn+ 1
2
, it’s simply the Euler discretization with time step αn+1γn+1, we could use the

result in [LP02]: there exists a ᾱ > 0 and β̄ ∈ R such that for all n ≥ n0:

E[V (xn+ 1
2
)|Fn] ≤ V (xn)(1 − ᾱγ̃n+1) + β̄γ̃n+1.

Therefore we have

E[V xn+1 |Fn] ≤ (1−αpγn+1+o(γn+1))V
p(xn)+γn+1V

p−1(xn)(pβ+2pλpE|Un+1|2+cVMpE|U ′
n+1|2).

There exists α̂ > 0 and β̂ ∈ R such that for all n ≥ n0:

E[V p(xn+1)|Fn] ≤ V p(xn) + γn+1V
p−1(xn)

(
β̂ − α̂V (xn)

)
.
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2) From step 1), we derive

sup
n≥n0

E[V p(xn)] ≤ (
β̂

α̂
)p ∨ E[V p(xn0)].

Hence supn E[V p(xn)] < +∞ for all p ≥ 1. Therefore supn π
γ
n(ω, V p) < +∞ P-a.s. for all p ≥ 1.

3) Identification of the weak limit: To identify the limit, we essentially follow the same steps

in [LP02] and hence we omit the proof.

(1) (Echeverŕıa-Weiss Theorem) Let E be a locally compact Polish space and A a linear

operator satisfying the positive maximum principle. Assume that its domain D(A) is an

algebra everywhere dense in (C0(E), ∥ ∥∞) containing a sequence (fn)n∈N satisfying

sup
n∈N

(∥fn∥∞ + ∥Lfn∥∞) < +∞, ∀x ∈ E, fn(x) → 1 and Afn(x) → 0.

If a distribution on (E,B(E)) satisfies
∫
E Afdν = 0 for every f ∈ D(A), then there exists

a stationary solution for the martingale problem (A, ν) (this means that there exists a

stationary continuous-time homogeneous Markov process with infinitesimal generator A

and invariant distribution ν).

(2) The generator of the Langevin dynamics, A, satisfies the assumptions of the Echeverŕıa-

Weiss theorem.

(3) Under assumption 2.5.1, for every bounded Lipschitz continuous function φ : Rd → R,

limn
1
Γn

∑n
k=1 E[φ(xk) − φ(xk−1)|Fk−1] = 0 P-a.s.

(4) Under assumption 2.5.1, for every twice continuously differentiable function φ with com-

pact support, limn

(
1
Γn

∑n
k=1 E[φ(xk) − φ(xk−1)|Fk−1] − πγn(Aφ)

)
= 0 P-a.s.

a), b), c), d) together imply that the weak limit of the empirical distribution πγn is π, i.e the stationary

distribution of the Langevin dynamics. ■

Proof of Theorem 2. Since f satisfies Assumption 2.1.1, we can show that the Langevin

dynamics satisfies Assumption 2.5.1. Therefore lemma 2.5.3 is true. Then we may use the following
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method to discuss the CLT of (RLMC).

xk − xk−1 = −γk
(
∇f(xk−1) +D2f(xk−1)(xk− 1

2
− xk−1) + r2(xk− 1

2
, xk−1)

)
+
√

2γkUk

= −γk∇f(xk−1) +
√

2γkUk − γkD
2f(xk−1)(xk− 1

2
− xk−1) − γkr2(xk− 1

2
, xk−1)

= −γk∇f(xk−1) +
√

2γkUk + αkγ
2
kD

2f(xk−1)∇f(xk−1) −
√

2αkγ
3
2
k ∇

2f(xk−1)U
′
k − γkr2(xk− 1

2
, xk−1)

where

r2(xk− 1
2
, xk−1) = ∇f(xk− 1

2
) −∇f(xk−1) −D2f(xk−1)(xk−1 − xk− 1

2
)

=
1

2
D3f(xk−1)(xk− 1

2
− xk−1)

⊗2 +
1

6
D4f(xk−1)(xk− 1

2
− xk−1)

⊗3 +O(γ2k)

= αkγkD
3f(xk−1)U

′⊗2
k −

√
2α

3
2
k γ

3
2
k ⟨D

3f(xk−1);∇f(xk−1), U
′
k⟩

+

√
2

3
α

3
2
kD

4f(xk−1)U
′⊗4
k +O(γ2k).

Then

xk − xk−1 = −γk∇f(xk−1) +
√

2γkUk −
√

2αkγ
3
2
k ∇

2f(xk−1)U
′
k

+ αkγ
2
kD

2f(xk−1)∇f(xk−1) − αkγ
2
kD

3f(xk−1)U
′⊗2
k +O(γ

5
2
k ).

We can decompose ϕ(xk):

ϕ(xk) − ϕ(xk−1) = ∇ϕ(xk−1)(xk − xk−1) +
1

2
D2ϕ(xk−1)(xk − xk−1)

⊗2 +
1

6
D3ϕ(xk−1)(xk − xk−1)

⊗3

+
1

24
D4ϕ(xk−1)(xk − xk−1)

⊗4 +O(γ
5
2
k )

= ∇ϕ(xk−1)(
√

2γ
1
2
k Uk − γk∇f(xk−1) −

√
2αkγ

3
2
k D

2f(xk−1)U
′
k

+ αkγ
2
kD

2f(xk−1)∇f(xk−1) − αkγ
2
kD

3f(xk−1)U
′⊗2
k )

+
1

2
D2ϕ(xk−1)

(√
2γ

1
2
k Uk − γk∇f(xk−1) −

√
2αkγ

3
2
k D

2f(xk−1)U
′
k

)⊗2

+
1

6
D3ϕ(xk−1)

(√
2γ

1
2
k Uk − γk∇f(xk−1)

)⊗3

+
1

24
D4ϕ(xk−1)(

√
2γ

1
2
k Uk)⊗4 +O(γ

5
2
k ).
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If A is the generator of Langevin dynamics and summing up over k:

n∑
k=1

γkAϕ(xk−1) = ϕ(xn) − ϕ(x0) −
√

2
n∑

k=1

γ
1
2
k ∇ϕ(xk−1)Uk −

n∑
k=1

γk
(
D2ϕ(xk−1)U

⊗2
k − E[D2ϕ(xk−1)U

⊗2
k |Fk−1]

)
+
√

2

n∑
k=1

γ
3
2
k ⟨D

2ϕ(xk−1);∇f(xk−1), Uk⟩ −
√

2

3

n∑
k=1

γ
3
2
k D

3ϕ(xk−1)U
⊗3
k

+

n∑
k=1

√
2αkγ

3
2
k ⟨D

2f(xk−1);∇ϕ(xk−1), U
′
k⟩ +

n∑
k=1

γ2k⟨D3ϕ(xk−1);∇f(xk−1), U
⊗2
k ⟩

−
n∑

k=1

αkγ
2
k⟨D2f(xk−1);∇ϕ(xk−1),∇f(xk−1)⟩ +

n∑
k=1

αkγ
2
k⟨D3f(xk−1);∇ϕ(xk−1), U

′⊗2
k ⟩

− 1

2

n∑
k=1

γ2kD
2ϕ(xk−1)∇f(xk−1)

⊗2 +

n∑
k=1

2α
1
2
k γ

2
k⟨D2ϕ(xk−1);D

2ϕ(xk−1)U
′
k, Uk⟩

− 1

6

n∑
k=1

γ2kD
4ϕ(xk−1)U

⊗4
k +

n∑
k=1

O(γ
5
2
k )

:= N (0)
n +N

( 1
2
)

n +N (1)
n +N

( 3
2
)

n +N (2)
n +N

( 5
2
)

n .

In the fast decreasing time step situation(
∑n

k=1 γ
2
k/
√

Γn → 0), the CLT for (RLMC) is the same

as that of LMC. In the slowly decreasing time step situation, when
∑n

k=1 γ
2
k/
√

Γn → γ̂ ∈ (0,+∞]:

a) ϕ(xn)−ϕ(x0)

Γ
(2)
n

→ 0 because (xn) is tight and ϕ is continuous.

b)
−
√
2
∑n

k=1 γ
1
2
k ∇ϕ(xk−1)Uk√
Γn

=⇒ N (0, 2
∫
Rd |∇ϕ(x)|2π(dx)). Therefore,

−
√

2
∑n

k=1 γ
1
2
k ∇ϕ(xk−1)Uk

Γ
(2)
n

=⇒


N (0, 2γ̂−2

∫
Rd

|∇ϕ(x)|2π(dx)), when γ̂ < +∞

0 , when γ̂ = +∞

c)
−

∑n
k=1 γk(D2ϕ(xk−1)U

⊗2
k −E[D2ϕ(xk−1)U

⊗2
k |Fk−1])√

Γn
→ 0 in L2.

d)
√
2
∑n

k=1 γ
3
2
k ⟨D2ϕ(xk−1);∇f(xk−1),Uk⟩√

Γn
→ 0 in L2.

−
√
2

3

∑n
k=1 γ

3
2
k D3ϕ(xk−1)U

⊗3
k√

Γn
→ 0 in probability because E[U⊗3

k ] = 0.∑n
k=1

√
2αkγ

3
2
k ⟨D2f(xk−1);∇ϕ(xk−1),U

′
k⟩√

Γn
→ 0 in L2.

Therefore N
( 32 )
n

Γ
(2)
n

→ 0 in probability.
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e)
∑n

k=1 γ
2
k⟨D

3ϕ(xk−1);∇f(xk−1),U
⊗2
k ⟩

Γ
(2)
n

→
∫
Rd

∫
Rd⟨D3ϕ(x);∇f(x), u⊗2⟩µ(du)π(dx) in probability.

−
∑n

k=1 αkγ
2
k⟨D

2f(xk−1);∇ϕ(xk−1),∇f(xk−1)⟩
Γ
(2)
n

→ −1
2

∫
Rd⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx) in proba-

bility.∑n
k=1 αkγ

2
k⟨D

3f(xk−1);∇ϕ(xk−1),U
′⊗2
k ⟩

Γ
(2)
n

→ 1
2

∫
Rd

∫
Rd⟨D3f(x);∇ϕ(x), u⊗2⟩µ(du)π(dx) in probabil-

ity.

− 1
2

∑n
k=1 γ

2
kD

2ϕ(xk−1)∇f(xk−1)
⊗2

Γ
(2)
n

→ −1
2

∫
Rd D

2ϕ(x)∇f(x)⊗2π(dx) in probability.∑n
k=1 2α

1
2
k γ2

k⟨D
2ϕ(xk−1);D

2ϕ(xk−1)U
′
k,Uk⟩

Γ
(2)
n

→
∫
Rd

∫ 1
0

∫
R2d 2α

1
2 ⟨D2ϕ(x), D2ϕ(x)u′, u⟩µα(du, du′)dαπ(dx)

in probability, where µα(du, du′) is the joint measure of (Un, U
′
n) for all n conditioned on

αn = α. With some calculation, we can simplify the limit as
∫
Rd trace(D

2ϕ(x)2)π(dx).

Note that in deriving the above limit, we used the fact that the cross-covariance matrix

between (Un) and (U ′
n) is

√
αnId.

− 1
6

∑n
k=1 γ

2
kD

4ϕ(xk−1)U
⊗4
k

Γ
(2)
n

→ −1
6

∫
Rd

∫
Rd D

4ϕ(x)u⊗4µ(du)π(dx) in probability.

Therefore
N

(2)
n

Γ
(2)
n

→ ϱ in probability,

where

ϱ =

∫
Rd

∫
Rd

⟨D3ϕ(x);∇f(x), u⊗2⟩µ(du)π(dx) − 1

2

∫
Rd

⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx)

+
1

2

∫
Rd

∫
R2

⟨D3f(x);∇ϕ(x), u⊗2⟩µ(du)π(dx) − 1

2

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

+

∫
Rd

trace(D2ϕ(x)2)π(dx) − 1

6

∫
Rd

∫
Rd

D4ϕ(x)u⊗4µ(du)π(dx)

and µ is the distribution for a d-dimensional standard Gaussian random variable.

f) N
5
2
n

Γ
(2)
n

→ 0 in L1.

As a conclusion, we obtain the proof of part (1) of the theorem:

∑n
k=1 γkAϕ(xk−1)

Γ
(2)
n

→


N (ϱ, 2γ̂−2

∫
Rd

|∇ϕ(x)|2π(dx)), when γ̂ < +∞

ϱ , when γ̂ = +∞
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For the fast decreasing step, i.e., part (2) of the theorem, the proof follows by the same arguments

in the corresponding part of Theorem 10 in [LP02] and hence we omit it. ■

2.6. Proofs for Section 2.3

In this section, we would denote the drift function that appears in 2.4 as b(x, v), i.e.

b(x, v) =

 v

−2v − u∇f(x)

 .
Assumption 2.6.1. There exists a twice differentiable function V : R2d → [1,∞) such that: (0)

lim∥(x,v)∥→∞ V (x, v) = +∞, (1) there exists α > 0 and β > 0: ⟨∇V (x, v), b(x, v)⟩ ≤ −αV (x, v) + β

for every (x, v), (2) there exists cV > 0: ∥∇V (x, v)∥2 + ∥b(x, v)∥2 ≤ cV V (x, v) for every (x, v), and

(3)
∥∥D2V

∥∥
∞ := sup(x,v)∈R2d ∥D2V ∥op <∞.

Lemma 2.6.1. Assumption 2.1.1 implies Assumption 2.6.1 when u ∈ (0, 4
2M−m).

Proof of Lemma 2.6.1. For simplicity, We choose V (x, v) = ∥x− x∗∥2 + ∥x− x∗ + v∥1 + 1

with f(x∗) = min f(x). Now we check conditions 0), 1), 2), 3) in (LV,∞) are satisfied.

0) It’s obvious that lim|(x,v)|→+∞ V (x, v) = +∞ and V (x, v) ≥ 1 for all (x, v) ∈ Rd.

3) The Hessian of V we choose is

D2V (x, v) =

4Id 2Id

2Id 2Id

 .
For arbitrary (x, v)T , (y, w)T ∈ R2d:

∥∥D2V (x, v)(y, w)T
∥∥2 =

∥∥∥∥∥∥
4y + 2w

2y + 2w

∥∥∥∥∥∥
2

≤ 40
∥∥(y, w)T

∥∥2 .
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Therefore
∥∥D2V

∥∥
∞ <∞.

2) Take gradient of the V we choose:

∇V (x, v) =

2(x− x∗) + 2(x− x∗ + v)

2(x− x∗ + v)

 .
Then for all (x, v) ∈ R2d,

|∇V (x, v)|2 + |b(x, v)|2 ≤ 2(4 ∥x− x∗∥2 + 4 ∥x− x∗ + v∥2) + 4 ∥x− x∗ + v∥2

+ ∥v∥2 + 2(4 ∥v∥2 + u2 ∥∇f(x)∥2)

≤ 8 ∥x− x∗∥2 + 12 ∥x− x∗ + v∥2 + 9 ∥v∥2 + 2u2M2 ∥x− x∗∥2

≤ max{26 + 2u2M2, 30}V (x, v).

1) Last we consider

⟨∇V (x, v), b(x, v)⟩ = 2(x− x∗) · v + 2(x− x∗ + v) · v − 4(x− x∗ + v) · v

− 2u(x− x∗ + v) · ∇f(x)

≤ −2 ∥v∥2 − 2u
[
f(x) − f(x∗ − v) +

m

2
∥x− x∗ + v∥2

]
≤ −2 ∥v∥2 − um ∥x− x∗ + v∥2 − 2u

(
f(x∗) +

m

2
∥x− x∗∥2

)
+ 2u

(
f(x∗) +

M

2
∥v∥2

)
= −um ∥x− x∗ + v∥2 − um ∥x− x∗∥2 − (2 − uM) ∥v∥2 .

The second inequality follows from the fact that f is m-strongly convex.

When u ∈ (0, 2
M ], ⟨∇V (x, v), b(x, v)⟩ ≤ −umV (x, v) + um for all (x, v) ∈ R2d. Therefore 1) is

satisfied.
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When u > 2
M , we can use triangle inequality to further bound our result:

⟨∇V (x, v), b(x, v)⟩ ≤ −um ∥x− x∗ + v∥2 − um ∥x− x∗∥2 + (uM − 2) ∥v∥2

≤ [−um+ 2(uM − 2)](∥x− x∗ + v∥2 + ∥x− x∗∥2)

≤ −[4 − u(2M −m)]V (x, v) − [4 − u(2M −m)].

When u ∈ ( 2
M , 4

2M−m), 1) is satisfied because 4 − u(2M − m) > 0. Therefore, 1) holds when

u ∈ (0, 4
2M−m). ■

Remark 9. For the V (x, v) we choose in the proof, under assumption 2.1.1, we can verify that:

V (x, v) = O(|x|2 + |v|2) when |(x, v)| → +∞. We will use this fact later in the proof when we

establish the CLT statement.

2.6.1. Proofs for Section 2.3.1.

Proof of Theorem 3. Under the assumption 2.6.1, we can show that the following Lyapunov

condition is satisfied for small h.

(Lyapunov Condition): There exists a function V : R2d → [1,∞) such that:

0) lim|(x,v)|→∞ V (x, v) = +∞,

1) There exists α̂ ∈ (0, 1) and β̂ ≥ 0: E[V (xn+1, vn+1)|Fn] ≤ α̂V (xn, vn) + β̂.

Proof: To show that assumption 2.6.1 implies Lyapunov condition, we first do Taylor expansion

of V (xn+1, vn+1) at (xn, vn):

V (xn+1, vn+1) = V (xn, vn) + ∇V (xn, vn) · (xn+1 − xn, vn+1 − vn)T +
1

2
D2V (θn)[(xn+1 − xn, vn+1 − vn)T ]⊗2
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where θn is a random point on the line segment joining (xn, vn) and (xn+1, vn+1). Use the RULMC

algorithm and part (a) of Assumption 2.1.1:

E[V (xn+1, vn+1)|Fn] ≤ V (xn, vn) + ∇V (xn, vn) ·

1−e−2h

2 vn − u
2 (h− 1−e−2h

2 )∇f(xn)

−21−e−2h

2 vn − u1−e−2h

2 ∇f(xn)


−∇V (xn.vn) ·

u
2 (h− 1−e−2h

2 )E[∇f(xn+ 1
2
) −∇f(xn)|Fn]

u1−e−2h

2 E[∇f(xn+ 1
2
) −∇f(xn)|Fn]


+

3M

2

[
5(

1 − e−2h

2
)2|vn|2 + u2h2|∇f(xn)2| + (σ

(2)
n+1

2
+ 4σ

(3)
n+1

2
)ud

]
+

3M

2
u2h2E[|∇f(xn+ 1

2
)|2 − |∇f(xn)|2|Fn],

where we can further estimate

E[∇f(xn+ 1
2
) −∇f(xn)|Fn] ≤ME[xn+ 1

2
− xn|Fn]

≤M
1

2h
(h− 1 − e−2h

2
)|vn| +

√
udMσ

(1)
n+1

+
u

2
(
h

2
−
h− 1−e−2h

2

2h
)|∇f(xn)|,

and there exists ξn such that |∇f(xn+ 1
2
)|2 − |∇f(xn)|2 = 2(xn+ 1

2
− xn)TD2f(ξn)∇f(ξn) and ξn is

on the line segment joining xn and xn+ 1
2
. Therefore |ξn − xn| ≤ |xn+ 1

2
− xn|. then we have

E[|∇f(xn+ 1
2
)|2 − |∇f(xn)|2|Fn] ≤ 2ME[|∇f(ξn)||xn+ 1

2
− xn||Fn]

≤ 2M |∇f(xn)|E[|xn+ 1
2
− xn||Fn] + 2M2E[|xn+ 1

2
− xn|2|Fn]

≤ |∇f(xn)|2 + 3M2E[|xn+ 1
2
− xn|2|Fn]

≤ |∇f(xn)|2 + 6M2(
h2

3
|vn|2 +

u2h4

20
|∇f(xn)|2 + udσ

(1)
n+1

2
).

When h is small, we can use polynomials of h to bound those exponential coefficients. We can

obtain that there exists C > 0:

E[V (xn+1, vn+1)|Fn] ≤ V (xn, vn) + h∇V (xn, vn) · b(xn, vn)T + Ch2(d+ |vn|2 + |∇f(xn)|2).
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then assumption 2.6.1 implies that there exists α > 0, β > 0 such that

E[V (xn+1, vn+1)|Fn] ≤ (1 − αh+ CcV h
2)V (xn, vn) + Ch2d+ β.

When h is small, there exists α̂ = 1 − αh + CcV h
2 ∈ (0, 1) and β̂ = Ch2d + β > 0 such that

E[V (xn+1, vn+1)|Fn] ≤ α̂V (xn, vn) + β̂. ■

Once we have the Lyapunov condition, we can define the stopping time τC = inf{n > 0 : (xn, vn) ∈

C} and show that sup(x,v)∈C E(x,v)[τC ] ≤MC <∞ for all small set C. Then uniqueness of stationary

probability measure and ergodicity all follow by Theorem 1.3.1 in [MT12]. Next we prove that

sup(x,v)∈C E(x,v)[τC ] ≤MC <∞ given Lyapunov condition. To do so, note that we have

E(x,v)[τC ] =
∞∑
n=1

nP(τC = n) =
∑
n≥1

P(τC > n− 1).

Under Lyapunov condition, for any stopping time N , according to Lemma A.3 and Corollary A.4

in [MSH02], we have

P(τC > n− 1) ≤ E[V (xn, vn)1τC>n−1] ≤
κ[γn−1V (x0, v0) + 1]

1 − γ
≤ κγn−1[V (x0, v0) + 1]

for some γ ∈ (α̂, 1) and constant κ. Therefore, we have

E(x,v)[τC ] ≤
∑
k≥1

κγn−1[V (x0, v0) + 1] =
κ[V (x, v) + 1]

1 − γ
,

and

sup
(x,v)∈C

E(x,v)[τC ] ≤ κ

1 − γ
sup

(x,v)∈C
V (x, v) +

κ

1 − γ
≤MC <∞.

So as a conclusion, the statement of the theorem follows. ■

Before proving Proposition 4, we require some preliminary estimtes from [SL19], that we present

below. First, let (yn, wn) be the solution of Underdamped Langevin dynamics evaluated at t =∑n
k=1 γk with initial value (y0, w0). (xn, vn) is the nth iterates in the (RULMC) algorithm with

initial value (x0, v0). (x∗n(t), v∗n(t)) is the solution of Underdamped Langevin dynamics with initial

value (xn−1, vn−1) and (x∗n, v
∗
n) = (x∗n−1(γn), v∗n−1(γn)). Then, we have the following results from
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Lemma 2 in [SL19]. When γn+1 <
1
2 and u = 1

M , we have:

E
∥∥Eαxn+1 − x∗n+1

∥∥2 ≤ 45(γ10n+1E ∥vn∥2 +M−2γ12n+1E ∥∇f(xn)∥2 +M−1dγ11n+1),

E
∥∥xn+1 − x∗n+1

∥∥2 ≤ 1800(γ6n+1E ∥vn∥2 +M−2γ4n+1E ∥∇f(xn)∥2 +M−1dγ7n+1),

E
∥∥Eαvn+1 − v∗n+1

∥∥2 ≤ 45(γ8n+1E ∥vn∥2 +M−2γ10n+1E ∥∇f(xn)∥2 +M−1dγ9n+1),

E
∥∥vn+1 − v∗n+1

∥∥2 ≤ 1300(γ4n+1E ∥vn∥2 +M−2γ4n+1E ∥∇f(xn)∥2 +M−1dγ5n+1).

Proof of Proposition 4 . Denote A2
n = E[∥xn − yn∥2 + ∥(xn + vn) − (yn + wn)∥2]. Using

triangle inequality we have

Eα[∥xn − yn∥2 + ∥(xn + vn) − (yn + wn)∥2] ≤ (1 +
h

2κ
)(∥x∗k − yn∥2 + ∥(x∗k + v∗k) − (yn + wn)∥2)

+
2κ

h
(∥Eα[xn] − x∗k∥

2 + ∥Eα[xn + vn] − (x∗n + v∗n)∥2)

+ Eα ∥xn − x∗n∥
2 + Eα ∥(xn + vn) − (x∗n + v∗n)∥2 .

Furthermore, we can take expectation on ω and use the contraction of Underdamped Langevin

dynamics:

A2
n ≤ (1 +

h

2κ
)e−

h
κA2

n−1 +
2κ

h
(E ∥Eαxn − x∗n∥

2 + E ∥Eα[xn + vn] − (x∗n + v∗n)∥2)

+ E ∥x∗n − xn∥2 + E ∥(xn + vn) − (x∗n + v∗n)∥2

≤ e−
h
2κA2

n−1 +
2κ

h
(3E ∥Eαxn − x∗n∥

2 + 2E ∥Eαvn − v∗n∥
2)

+ 3E ∥xn − x∗n∥
2 + 2E ∥vn − v∗n∥

2 .

When h < 1
2 , u = 1

M and m = 1:

A2
n ≤ e−

h
2κA2

n−1 + 8250
[
(κh7 + h4)E ∥vn−1∥2 + (κ−1h8 + κ−2h4)E ∥∇f(xn−1)∥2 + (κ−1h5 + h7)

]
.
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Our next step is to bound E ∥vn−1∥2 and E ∥∇f(xn−1)∥2. First for Underdamped Langevin dy-

namics with f satisfying Assumption 2.1.1, it’s easy to compute that:

E ∥wn−1∥2 = d/M,

E ∥∇f(yn−1)∥2 =
1∫

e−f(x)dx

∫
|∇f(x)|2e−f(x)dx

= − 1∫
e−f(x)dx

∫
(∇f(x))T∇e−f(x)dx

=
1∫

e−f(x)dx

∫
∆f(x)e−f(x)dx

≤ ∥∆f(x)∥∞ ≤Md.

Therefore, we have

E ∥vn−1∥2 ≤ 2d/M + 2E ∥vn−1 − wn−1∥2 ≤ 2d/M + 4A2
n−1,

E ∥∇f(xn−1)∥2 ≤ 2Md+ 2M2E ∥xn−1 − yn−1∥2 ≤ 2Md+ 2M2A2
n−1.

Plug the upper bounds into our previous result:

A2
n ≤ e−

h
2κA2

n−1 + 8250
[
(κh7 + h4)(2d/M + 4A2

n−1) + (κ−1h8 + κ−2h4)(2Md+ 2M2A2
n−1) + (κ−1h5 + h7)

]
≤
[
1 − h

2κ
+

h2

8κ2
+ 49500(h4 + κh7)

]
A2

n−1 + 41250d(h7 + κ−1h4).

If we choose (xn−1, vn−1) ∼ π∗h(x, v) and (yn−1, wn−1) ∼ π∗(x, v) such that

A2
n−1 = min

X∼π∗
h, Y∼π∗

E ∥X − Y ∥2 ,

then we have

W2(π, πh)2 ≤ A2
n−1 ≤

82500h3(κh3 + 1)d

1 − h
4κ − 99000h3κ(1 + κh3)

.

We can see that W2(π, πh) → 0 as h→ 0. Furthermore, as h→ 0, W2(π, πh) < O(h
3
2 ). ■

2.6.2. Proofs for Section 2.3.2.
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Proof of Theorem 5. Define A2
n = E[∥xn − yn∥2 + ∥(xn + vn) − (yn + wn)∥2]. From the

proof of proposition 4, we know that

A2
n ≤

[
1 − γn

2κ
+

γ2n
8κ2

+ 49500(γ4n + κγ7n)

]
A2

n−1 + 41250d(γ7n + κ−1γ4n).

When time step h is a constant, apply the inequality repeatedly to get

A2
n ≤

[
1 − h

2κ
+

h2

8κ2
+ 49500(h4 + κh7)

]k
A2

0 +
82500h3(κh3 + 1)d

1 − h
4κ − 99000h3κ(1 + κh3)

.

Denote νn to be the density function of xn, then W2(νn, π) ≤ An. By choosing γn = h ∼ O(ϵ
2
3 ),

we can guarantee that W2(νn, π) < ϵ
√

d
m for all n > K ∼ Õ(ϵ−

2
3 ).

When the time step γn is variant, the inequality we correspondingly have

A2
n ≤

[
1 − γn

2κ
+

γ2n
8κ2

+ 49500(γ4n + κγ7n)

]
A2

n−1 + 41250d(γ7n + κ−1γ4n).

When γn < 1, γ2
n

8κ2 <
γn
8κ . When γn < (99000

8κ2 ) < 24κ−
2
3 , we have 49500(γ4n + κγ7n) < γn

8κ . Similarly,

when γn < 1, we have 41250d(γ7n + κ−1γ4n) < 82500dγ4n. Therefore, when γn < min{1/2, 24κ−
2
3 },

we have

A2
n < (1 − γn

4κ
)A2

n−1 + 82500dγ4n.

If we choose γn = 16κ

32κ
5
3+(n−K1)+

, where K1 is the smallest integer such that

A2
K1

< (1 − 4

κ
5
3

)K1A2
0 + (82500)d

1

2κ
< 2

82500d

κ
,

then we claim that for all n ≥ K1, we have

A2
n <

82500(16)4dκ4

(32κ
5
3 + n−K1)3

.
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The claim can be proved by induction: Assume that the claim hold for A2
n and denote b = 32κ

5
3 +

n−K1, then

A2
n+1 < (1 − 4

1 + b
)
82500(16)4dκ4

b3
+

82500d(16)4κ4

(b+ 1)4

=
82500(16)4dκ4

(b+ 1)3

[
(b− 3)(b+ 1)2

b3
+

1

b+ 1

]
<

82500(16)4dκ4

(b+ 1)3

=
82500(16)4dκ4

(32κ
5
3 + n+ 1 −K1)3

.

Therefore, under our choice of time step (γn), we can guarantee W2(νn, π) < ϵ
√

d
m for all n > K ∼

O(ϵ−
2
3 ). Compared to the running time of constant step size RULMC, vanishing step size help

reduce the factor log(1ϵ ) in the guarantees. ■

Now we introduce the CLT statement for another sampling algorithm related to (RULMC) and

give a complete proof of the statement. The proof of Remark 6 can be done in the same way. In

the following theorem, we give a central limit result with specific choice of weights and time step-

size. The Euler-discretization of the underdamped Langevin diffusion (which we call as KLMC,

following [DRD20a]) is given by the following algorithm:

(KLMC)
xn+1 = xn +

1 − e−2γn+1

2
vn − u

2
(γn+1 −

1 − e−2γn+1

2
)∇f(xn) +

√
uσ

(1)
n+1U

(1)
n+1,

vn+1 = vne
−2γn+1 − u

1 − e−2γn+1

2
∇f(xn) + 2

√
uσ

(2)
n+1U

(2)
n+1.

where {γn} are the time steps. σ
(1)
n and σ

(2)
n are positive with σ

(1)
n

2
= γn + 1−e−4γn

4 − (1 − e−2γn),

σ
(2)
n

2
= 1−e−4γn

4 . {(U
(1)
n , U

(2)
n )}n are independent Centered Gaussian random vectors in R2d with

(U
(1)
n , U

(2)
n ) ∼ N (0, σ2nId) and σ2n = 1+e−4γn−2e−2γn

4σ
(1)
n σ

(2)
n

. Numerical integration with the above sampler

follows the same steps as described in Section 2.3.2. We now provide the following CLT.

Theorem 5. Assume potential function f satisfies Assumption 2.1.1. Let {(xk, vk)} and {(U
(1)
k , U

(2)
k )}

be the same as what we have in the (KLMC) algorithm and the time step-size {γk} is non-increasing

and limk(γk−1−γk)/γ4k = 0. If limn(1/

√
Γ
(3)
n )

∑n
k=1 γ

4
k = γ̂ ∈ (0,+∞] and limn Γ

(4)
n = +∞, then for

all ϕ ∈ C3 with D2ϕ, D3ϕ and D4ϕ bounded and Lipschitz and sup(x,v)∈R2d |∇ϕ(x)|2/V (x, v) < +∞,
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we have

Γn

Γ
(4)
n

νγn(Lϕ) → N (ρ,
10

3
uγ̂−2

∫
Rd

|∇ϕ(x)|π(dx)) if γ̂ < +∞,

Γn

Γ
(4)
n

νγn(Lϕ) → ρ if γ̂ = +∞,

where

ρ = u
6 ∫ ∫⟨D

3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv) + u
24 ∫ ∫⟨D

3f(x);∇ϕ(x), v⊗2⟩ν(dx, dv)

+ u
12 ∫ ∫(D2ϕD2f)(x)v⊗2ν(dx, dv) − 1

12 ∫ ∫ D
4ϕ(x)v⊗4ν(dx, dv)

− u2

24 ∫⟨D
2f(x);∇ϕ(x),∇f(x)⟩π(dx).

In the following context we’ll discuss the weak convergence of empirical measure νηn and build a

central limit theorem under certain assumptions.

1) (Lyapunov Conditions) The underdamped Langevin dynamics can be rewritten as

dYt = b(Yt)dt+ σ(Yt)dWt

where Yt = [Xt, Vt]
T , b(y) = b(x, v) = [v,−2v − u∇f(x)]T , σ(y) = 2

√
u[0d, Id]T for all x, v ∈ Rd.

{Wt} is a 2d-dimensional Brownian motion.

The Lyapunov condition is similar to the one that’s introduced in[LP02].

Assumption (LV,∞): There’s a C2 function V : R2d → [v∗,+∞) for some v∗ > 0 satisfying the

following conditions:

a)
∥∥D2V

∥∥
∞ = sup(x,v)T∈R2d

∥∥D2V (x, v)
∥∥
op
< +∞ and lim|(x,v)|→+∞ V (x, v) = +∞;

b) |∇V (x, v)|2 + |b(x, v)|2 ≤ cV V (x, v) for all (x, v)T ∈ R2d and some cV > 0;

c) ⟨∇V (x, v), b(x, v)⟩ ≤ −αV (x, v) + β for some α > 0 and β ∈ R.

Assumption (LV,p): There’s a C2 function V : R2d → [v∗,+∞) for some v∗ > 0 satisfying for some

p ≥ 1:

a)
∥∥D2V

∥∥
∞ = sup(x,v)T∈R2d

∥∥D2V (x, v)
∥∥
op
< +∞ and lim|(x,v)|→+∞ V (x, v) = +∞;
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b) |∇V (x, v)|2 + |b(x, v)|2 + Tr(σ(x, v)σ(x, v)T ) ≤ cV V (x, v) for all (x, v)T ∈ R2d and

some cV > 0;

c) ⟨∇V (x, v), b(x, v)⟩+λpTr(σ(x, v)σ(x, v)T ) ≤ −αV (x, v)+β for some α > 0 and β ∈ R,

where λp = 1
2λD2V+(p−1)(∇V⊗∇V )/V .

Remark 10. (1) We can show that: (LV,p′) =⇒ (LV,p) if p′ ≥ p ≥ 1. Especially

(LV,∞) =⇒ (LV,p) for all p ≥ 1.

(2) If we choose b and σ the same as those in the Underdamped Langevin dynamics, then

(LV,∞) is almost the same as assumption 2.6.1. We can instantly obtain that as-

sumption 2.6.1 implies (LV,∞). Therefore, according to lemma 2.6.1, assumption 2.1.1

implies (LV,∞).

2) (Tightness Result) We now establish the almost sure tightness of the weighted empirical mea-

sures. The filtration {Fn} we consider is Fn = σ(Y0, (U
(1)
1 , U

(2)
1 ), · · · , (U (1)

n , U
(2)
n )).

Lemma 2.6.2. (a) If (LV,1) holds, then for every a ≥ 1
2 ,

|V a(Yn+1) − V a(Yn)| ≤ ca
√
γn+1V

a(Yn)(1 + |U (1)
n+1|

2a + |U (2)
n+1|

2a).

(b) If (LV,p) holds for some p ≥ 1, then there exists real numbers α̃ > 0 and β̃ and n0 ∈ N

such that

E[V p(Yn+1)|Fn] ≤ V (Yn) + γn+1V
p−1(Yn)(β̃ − α̃V (Yn)), ∀ n ≥ n0

and furthermore

sup
n∈N

E[V p(Yn)] < +∞.
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Proof of Lemma 2.6.2. (a) Using mean value theorem and (LV,1):

|V a(Yn+1) − V a(Yn)| = a|V a−1(ξn+1)⟨∇V (ξn+1), Yn+1 − Yn⟩|

≤ CV a− 1
2 (ξn+1)|Yn+1 − Yn|.

From (LV,1)-b) we get that ∇
√
V is bounded, i.e

√
V is Lipschitz with parameter [

√
V ]1. Hence

V a− 1
2 (ξn+1) ≤ (

√
V (Yn) + [

√
V ]1|Yn+1 − Yn|)2a−1

≤ 22a−1
(
V a− 1

2 (Yn) + [
√
V ]2a−1

1 |Yn+1 − Yn|2a−1
)
.

Meanwhile,

|Yn+1 − Yn|2 =

∣∣∣∣
1−e−2γn+1

2 vn − u
2 (γn+1 − 1−e−2γn+1

2 )∇f(xn) +
√
uσ

(1)
n+1U

(1)
n+1

−21−e−2γn+1

2 vn − u1−e−2γn+1

2 ∇f(xn) + 2
√
uσ

(2)
n+1U

(2)
n+1

 ∣∣∣∣2

≤ 15(
1 − e−2γn+1

2
)2|v2n| + [

3u2

4
(γn+1 −

1 − e−2γn+1

2
)2 + 3u2(

1 − e−2γn+1

2
)2]|∇f(xn)|2

+ 3uσ
(1)
n+1

2
|U (1)

n+1|
2 + 12uσ

(2)
n+1

2
|U (2)

n+1|
2.

Since γn → 0 as n → ∞ and 1−e−2γn

2 ∼ O(γn), γn − 1−e−2γn

2 ∼ O(γ2n), σ
(1)
n ∼ O(γ

3
2
n ) and σ

(2)
n ∼

O(γ
1
2
n ), there exist C1, C2, C3 > 0 such that

|Yn+1 − Yn|2 ≤ C1

[
γ2n+1(|vn|2 + |∇f(xn)|2) + γn+1(|U (1)

n+1|
2 + |U (2)

n+1|
2)
]

≤ C2

[
γ2n+1V (Yn) + γn+1(|U (1)

n+1|
2 + |U (2)

n+1|
2 + 1)

]
=⇒ |Yn+1 − Yn| ≤ C3

√
γn+1

√
V (Yn)(|U (1)

n+1| + |U (2)
n+1| + 1).

Combining our estimations, since a ≥ 1/2. we get

|V a(Yn+1) − V a(Yn)| ≤ C22a−1
(
V a− 1

2 (Yn) + [
√
V ]2a−1

1 |Yn+1 − Yn|2a−1
)
|Yn+1 − Yn|

≤ c′a

(√
γn+1V

a(Yn)(|U (1)
n+1| + |U (2)

n+1| + 1) + γan+1V
a(Yn)(|U (1)

n+1| + |U (2)
n+1| + 1)2a

)
≤ ca

√
γn+1V

a(Yn)(|U (1)
n+1|

2a + |U (2)
n+1|

2a + 1).
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(b) We Taylor expand V p(Yn+1) at Yn:

V p(Yn+1) = V p(Yn) + pV p−1(Yn)⟨∇V (Yn), Yn+1 − Yn⟩ +
1

2
D2(V p)(ξn+1)(Yn+1 − Yn)⊗2.

Since D2(V p) = pV p−1D2V + p(p− 1)V p−1∇V∇V T , by the definition of λp:

D2(V p)(ξn+1)(Yn+1 − Yn)⊗2 ≤ 2pλpV
p−1(ξn+1)|Yn+1 − Yn|2.

Therefore

V p(Yn+1) ≤ V p(Yn) + pV p−1(Yn)⟨∇V (Yn), Yn+1 − Yn⟩ + pλpV
p−1(ξn+1)|Yn+1 − Yn|.

When p = 1, take conditional expectation on Fn:

E[V (Yn+1)|Fn] ≤ V (Yn) +
1 − e−2γn+1

2
⟨∇V (xn, vn), b(xn, vn)⟩

− u

2
(γn+1 −

1 − e−2γn+1

2
)∇xV (xn, vn) · ∇f(xn)

+ λ1(
1 − e−2γn+1

2
)2[5|vn|2 + u2|∇f(xn)|2 + 4u∇f(xn) · vn]

− u

2

1 − e−2γn+1

2
(γn+1 −

1 − e−2γn+1

2
)∇f(xn) · vn

+
u2

4
(γn+1 −

1 − e−2γn+1

2
)2|∇f(xn)|2 + u(σ

(1)
n+1

2
+ 4σ

(2)
n+1

2
)d.

There exists n0 ∈ N such that for all n ≥ n0

1 − e−2γn+1

2
⟨∇V (xn, vn), b(xn, vn)⟩ ≤ γn+1(−αV (Yn) + β), for some α > 0, β ∈ R;

− u

2
(γn+1 −

1 − e−2γn+1

2
)∇xV (xn, vn) · ∇f(xn) ≤ Cγ2n+1(|∇V (Yn)|2 + |b(Yn)|2) ≤ Cγ2n+1V (Yn);

λ1(
1 − e−2γn+1

2
)2[5|vn|2 + u2|∇f(xn)|2 + 4u∇f(xn) · vn] ≤ Cγ2n+1|b(Yn)|2 ≤ Cγ2n+1V (Yn);

− u

2

1 − e−2γn+1

2
(γn+1 −

1 − e−2γn+1

2
)∇f(xn) · vn ≤ Cγ3n+1|b(Yn)|2 ≤ Cγ3n+1V (Yn);

u2

4
(γn+1 −

1 − e−2γn+1

2
)2|∇f(xn)|2 ≤ Cγ4n+1|b(Yn)|2 ≤ Cγ4n+1V (Yn);

u(σ
(1)
n+1

2
+ 4σ

(2)
n+1

2
)d ≤ Cγn+1.
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Therefore, for all n ≥ n0, there exist α̃ > 0, β̃ ∈ R such that

E[V (Yn+1)|Fn] ≤ V (Yn)(1 − αγn+1 + C(2γ2n+1 + γ3n+1 + γ4n+1)) + γn+1(β + C)

≤ V (Yn)(1 − α̃γn+1) + β̃γn+1,

and 1 − α̃γn+1 > 0. This leads to

E[V (Yn+1)] ≤ E[V (Yn)](1 − α̃γn+1) + β̃γn+1.

We could use induction to prove:

sup
n≥n0

E[V (Yn)] ≤ β̃

α̃
∨ E[V (Yn0)].

Assume now p > 1. Due to (LV,p)-b), we derive that
√
V is Lipschitz with parameter [

√
V ]1.

Consequently,

V p−1(ξn+1) =
√
V

2(p−1)
(ξn+1) ≤

(√
V (Yn) + [

√
V ]1|Yn+1 − Yn|

)2(p−1)

≤


V p−1(Yn) + ([

√
V ]1|Yn+1 − Yn|)2(p−1) if 2(p− 1) ≤ 1,

V p−1(Yn) + C
(
V (2p−3)/2(Yn)|Yn+1 − Yn| + |Yn+1 − Yn|2(p−1)

)
if 2(p− 1) > 1.

Using the fact we’ve proved in part a):

|Yn+1 − Yn|2 ≤ C2

[
γ2n+1V (Yn) + γn+1(|U (1)

n+1|
2 + |U (2)

n+1|
2 + 1)

]
.

We derive

V p−1(ξn+1)|Yn+1 − Yn|2 ≤ V p−1(Yn)|Yn+1 − Yn|2 + Cγ
p∧ 3

2
n+1V

p(Yn)(1 + |U (1)
n+1|

2p + |U (2)
n+1|

2p).
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Then we take conditional expectation:

E[V p(Yn+1)|Fn] ≤ V p(Yn) + pV p−1 1 − e−2γn+1

2
⟨∇V (xn, vn), b(xn, vn)⟩

− pV p−1(Yn)
u

2
(γn+1 −

1 − e−2γn+1

2
)∇xV (xn, vn) · ∇f(xn)

+ CV p−1(Yn)
[
γ2n+1V (Yn) + γn+1(|U (1)

n+1|
2 + |U (2)

n+1|
2 + 1)

]
+ Cγ

p∧ 3
2

n+1V
p(Yn)(1 + |U (1)

n+1|
2p + |U (2)

n+1|
2p).

There exists n0 ∈ N such that for all n ≥ n0

1 − e−2γn+1

2
⟨∇V (xn, vn), b(xn, vn)⟩ ≤ γn+1(−αV (Yn) + β), for some α > 0, β ∈ R;

− u

2
(γn+1 −

1 − e−2γn+1

2
)∇xV (xn, vn) · ∇f(xn) ≤ Cγ2n+1(|∇V (Yn)|2 + |b(Yn)|2) ≤ Cγ2n+1V (Yn).

Since γ
p∧ 3

2
n , γ2n ∼ o(γn), there exists α̃ > 0, β̃ ∈ R, such that for all n ≥ n0:

E[V p(Yn)|Fn] ≤ V p(Yn) + γn+1V
p−1(Yn)(β̃ − α̃V (Yn)).

Same as the proof for p = 1, we can show

sup
n∈N

E[V p(Yn)] < +∞.

■

Theorem 6. Let p ∈ [0,+∞). Assume (LV,p), If there exists s ∈ (0, 1] such that

∑
n≥1

1

Hn
(∆

ηn
γn

)+ < +∞ and
∑
n≥1

(
ηn

Hn
√
γn

)1+s < +∞,

then

P(dω)-a.s. sup
n∈N

νηn(ω, V p/(1+s)) < +∞.

Based on Lemma 2.6.2, the proof of Theorem 6 immediately follows, by using the same steps in

the proof of Theorem 4 in [LP02]. Hence we don’t replicate the proof here.

3) (Identification of the limit)
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Theorem 7 (Echeverŕıa-Weiss Theorem). Let E be a locally compact Polish space and L a linear

operator satisfying the positive maximum principle. Assume that its domain D(A) is an algebra

everywhere dense in (C0(E), ∥ ∥∞) containing a sequence (fn)n∈N satisfying

sup
n∈N

(∥fn∥∞ + ∥Lfn∥∞) < +∞, ∀x ∈ E, fn(x) → 1 and Lfn(x) → 0.

If a distribution on (E,B(E)) satisfies
∫
E Lfdν = 0 for every f ∈ D(A), then there exists a

stationary solution for the martingale problem (L, ν) (this means that there exists a stationary

continuous-time homogeneous Markov process with infinitesimal generator L and invariant distri-

bution ν).

Lemma 2.6.3. If the potential function f is Gradient Lipschitz and strongly convex, then the gen-

erator of kinetic, L, satisfies the assumptions of the Echeverŕıa-Weiss theorem.

Proof of lemma 2.6.3. First it’s well-known that the infinitesimal generator of a Fellerian

semigroup satisfies the maximum principle. We can choose our fn(y) = ϕ(y/n) for any y ∈ R2d

where ϕ is C2 with compact support and ϕ(0) = 1. It’s easy to check that ∀y ∈ R2d, fn(y) → 0

and Lfn(y) → 0. It’s also straightforward that supn∈N ∥fn∥∞ < +∞. The last thing to check is

supn∈N ∥Lfn∥∞ < +∞. Since L can also be written as b(x, v) · [∇x, ∇v]T + 2u∆v and we’ve shown

that under our assumptions on f , (LV,∞) is satisfied, we have the Lyapunov function V (y) = O(|y|2)

and |b(x, v)| ≤ C(1 + |(x, v)|). Therefore we get supn∈N ∥Lfn∥∞ < +∞. ■

Theorem 8. Assume that f is gradient Lipschitz and strongly convex. Assume also

lim
n

1

Hn

n∑
k=1

|∆ηn
γn

| = 0 and
∑
n≥1

(
ηn√
γnHn

)2 < +∞.

Let a ≥ 1
2 . Assume supn ν

η
n(V a) < +∞ P-a.s. If a < 1, assume also that

∑
n≥1 ηnγn/Hn <

+∞. Then P-a.s, every limiting distribution ν∞(ω, dx) of the sequence (νηn(ω, dx)) is an invariant

distribution of the underdamped Langevin dynamics introduced in the previous section.

The proof of Theorem 8 follows immediately from Theorem 7, Lemma 2.6.3, Lemma 2.6.4 and

Lemma 2.6.5.
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Lemma 2.6.4. Under the assumptions in Theorem 8, then for every bounded Lipschitz continuous

function g : R2d → R,

P-a.s. lim
n

1

Hn

n∑
k=1

ηk
γk

E[g(Yk) − g(Yk−1)|Fk−1] = 0.

Proof of lemma 2.6.4. Setting η0/γ0 = 0 gives

1

Hn

n∑
k=1

E[g(Yk) − g(Yk−1)|Fk−1] =
1

Hn

n∑
k=1

ηk
γk

(g(Yk) − g(Yk−1)) −
1

Hn

n∑
k=1

ηk
γk

(g(Yk) − E[g(Yk)|Fk−1]) .

As g is bounded, it follows by lemma 3-b) in[LP02] that

P-a.s. lim
n

1

Hn

n∑
k=1

(g(Yk) − g(Yk−1)) = 0.

Then
1

Hn

n∑
k=1

ηk
γk

(g(Yk) − E[g(Yk)|Fk−1])

will converge to 0 once the martingale

Mg
n :=

n∑
k=1

ηk
γkHk

(g(Yk) − E[g(Yk)|Fk−1])

converge a.s. in R.

E⟨Mg
n⟩∞ =

∑
n≥1

(
ηn

γnHn
)2 ∥g(Yn) − E[g(Yn)|Fn−1]∥22 ≤

∑
n≥1

(
ηn

γnHn
)2 ∥g(Yn) − g(Yn−1)∥22

≤ [f ]21
∑
n≥1

(
ηn

γnHn
)2 ∥Yn − Yn−1∥22 .

Since (LV,1) holds under our assumptions on f and by Lemma 2-b)

∥Yn − Yn−1∥22 ≤ C ′E[γ2nV (Yn−1) + (2d+ 1)γn] ≤ Cγn.

Therefore

E⟨Mg
n⟩∞ ≤ C

∑
n≥1

(
ηn√
γnHn

)2 < +∞.

■
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Lemma 2.6.5. Under the assumptions in Theorem 8, then for every g ∈ C2(R2d) with compact

support,

lim
n

(
1

Hn

n∑
k=1

ηk
γk

E[g(Yk) − g(Yk−1)|Fk−1] − νηn(Lg)

)
= 0 a.s.

Proof of lemma 2.6.5. Setting R2(y1, y2) := g(y2)−g(y1)−⟨∇g(y1), y2−y1⟩− 1
2D

2g(y1)(y2−

y1)
⊗2, we obtain for every k ∈ N,

g(Yk) − g(Yk−1)

= ⟨∇g(Yk−1), Yk − Yk−1⟩ +
1

2
D2g(Yk−1)(Yk − Yk−1)⊗2 +R2(Yk−1, Yk)

= ∇xg(xk−1, vk−1) · [
1 − e−2γk

2
vk−1 −

u

2
(γk − 1 − e−2γk

2
)∇f(xk−1) +

√
uσ

(1)
k U

(1)
k ]

+ ∇vg(xk−1, vk−1) · [−2
1 − e−2γk

2
vk−1 − u

1 − e−2γk

2
∇f(xk−1) + 2

√
uσ

(2)
k U

(2)
k ]

+
1

2
D2

xg(xk−1, vk−1)[
1 − e−2γk

2
vk−1 −

u

2
(γk − 1 − e−2γk

2
)∇f(xk−1) +

√
uσ

(1)
k U

(1)
k ]⊗2

+
1

2
D2

vg(xk−1, vk−1)[−2
1 − e−2γk

2
vk−1 − u

1 − e−2γk

2
∇f(xk−1) + 2

√
uσ

(2)
k U

(2)
k ]⊗2

+ ⟨Dxvg(xk−1, vk−1);
1 − e−2γk

2
vk−1 −

u

2
(γk − 1 − e−2γk

2
)∇f(xk−1) +

√
uσ

(1)
k U

(1)
k ,

− 2
1 − e−2γk

2
vk−1 − u

1 − e−2γk

2
∇f(xk−1) + 2

√
uσ

(2)
k U

(2)
k ⟩ +R2(Yk−1, Yk)

= γkLg(Yk−1) − (γk − 1 − e−2γk

2
)∇xg(Yk−1) · vk−1 −

u

2
(γk − 1 − e−2γk

2
)∇xg(Yk−1) · ∇f(xk−1)

+ 2(γk − 1 − e−2γk

2
)∇vg(Yk−1) · vk−1 + u(γk − 1 − e−2γk

2
)∇vg(Yk−1) · ∇f(xk−1)

+
√
uσ

(1)
k ∇g(Yk−1) · U (1)

k + 2
√
uσ

(2)
k ∇g(Yk−1) · U (2)

k

+
1

2
(
1 − e−2γk

2
)2D2

xg(Yk−1)v⊗2
k−1 +

u2

8
(γk − 1 − e−2γk

2
)2D2

xg(Yk−1)∇f(xk−1)⊗2

+
u

2
σ
(1)
k

2
D2

xg(Yk−1)U
(1)
k

⊗2
− u

2

1 − e−2γk

2
(γk − 1 − e−2γk

2
)⟨D2

xg(Yk−1); vk−1,∇f(xk−1)⟩

+
√
u

1 − e−2γk

2
σ
(1)
k ⟨D2

xg(Yk−1); vk−1, U
(1)
k ⟩ − u3/2

2
(γk − 1 − e−2γk

2
)σ

(1)
k ⟨D2

xg(Yk−1);∇f(xk−1), U
(1)
k ⟩

+ 2(
1 − e−2γk

2
)2D2

vg(Yk−1)v⊗2
k−1 +

u2

2
(
1 − e−2γk

2
)2D2

vg(Yk−1)∇f(xk−1)⊗2

+ 2u
(
σ
(2)
k

2
D2

vg(Yk−1)U
(2)
k

⊗2
− γkE[D2

vg(Yk−1)U
(2)
k

⊗2
|Fk−1]

)
+ 2u(

1 − e−2γk

2
)2⟨D2

vg(Yk−1); vk−1,∇f(xk−1)⟩ − 4
√
u

1 − e−2γk

2
σ
(2)
k ⟨D2

vg(Yk−1); vk−1, U
(2)
k ⟩

− 2u3/2
1 − e−2γk

2
σ
(2)
k ⟨D2

vg(Yk−1);∇f(xk−1), U
(2)
k ⟩ +R2(Yk−1, Yk).
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Take conditional expectation:

E[g(Yk) − g(Yk−1)|Fk−1] − γkLg(Yk−1)

= −(γk −
1 − e−2γk

2
)∇xg(Yk−1) · vk−1 −

u

2
(γk −

1 − e−2γk

2
)∇xg(Yk−1) · ∇f(xk−1)

+ 2(γk −
1 − e−2γk

2
)∇vg(Yk−1) · vk−1 + u(γk −

1 − e−2γk

2
)∇vg(Yk−1) · ∇f(xk−1)

+
1

2
(
1 − e−2γk

2
)2D2

xg(Yk−1)v
⊗2
k−1 +

u2

8
(γk −

1 − e−2γk

2
)2D2

xg(Yk−1)∇f(xk−1)
⊗2

+
u

2
σ
(1)
k

2
∆xg(Yk−1) −

u

2

1 − e−2γk

2
(γk −

1 − e−2γk

2
)⟨D2

xg(Yk−1); vk−1,∇f(xk−1)⟩

+ 2(
1 − e−2γk

2
)2D2

vg(Yk−1)v
⊗2
k−1 +

u2

2
(
1 − e−2γk

2
)2D2

vg(Yk−1)∇f(xk−1)
⊗2

+ 2u

(
σ
(2)
k

2
− γk

)
∆vg(Yk−1) + 2u(

1 − e−2γk

2
)2⟨D2

vg(Yk−1); vk−1,∇f(xk−1)⟩

+ E[R2(Yk−1, Yk)|Fk−1].

Observe that for all the terms, except for R2(Yk−1, Yk), on the right hand side of the equation, their

coefficients are of order O(γ2k) or o(γ2k). Furthermore, ∇g and D2g are bounded because g is C2 and

compact supported. Since (LV,∞) is satisfied under our assumptions, supn∈N E[|vn|2 + |∇f(xn)|2] <

C supn∈N E[V (Yn))] < +∞. Therefore, we obtain that as n→ 0,

1

Hn

n∑
k=1

ηk
γk

E[g(Yk) − g(Yk−1)|Fk−1] − ηkLg(Yk−1) −
ηk
γk

E[R2(Yk−1, Yk)|Fk−1] → 0

because 1
Hn

∑n
k=1 ηkγk → 0 as n→ 0. Now we deal with E[R2(Yk−1, Yk)|Fk−1]. For any x, y ∈ R2d,

define

r2(x, y) :=
1

2
sup

t∈(0,1)

∥∥D2g(x+ t(y − x)) −D2g(x)
∥∥ .

It’s easy to see that r2 is a bounded continuous function on Rd × Rd, r2(x, x) = 0 and

|R2(x, y)| ≤ r2(x, y)|x− y|2.

Therefore we obtain

ηk
γk

|E[R2(Yk−1, Yk)|Fk−1]| ≤ C
(
ηkγk ∥r2∥∞ V (Yk−1) + (2d+ 1)ηkE[r2(Yk−1, Yk)(|U (1)

k |2 + |U (2)
k |2)|Fk−1]

)
.
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If a ≥ 1, P-a.s.

1

Hn

n∑
k=1

Cηkγk ∥r2∥∞ V (Yk−1) ≤ C ′ 1

Hn

n∑
k=1

ηkγkV (Yk−1) → 0 as sup
n∈N

νηn(V ) < +∞ and γn → 0.

If a ∈ [1/2, 1), the same limit follows from the Kronecker lemma mentioned in[LP02] and

∑
n≥1

ηnγn/Hn < +∞.

Meanwhile, we also have

J(γ, x, v) =

∫
Rd×Rd

r2((x, v), (x′, v′))(|r1|2 + |r2|2)µ(dr1, dr2)

where

(x′, v′) = (x+
1 − e−2γ

2
v − u

2
(γ − 1 − e−2γ

2
)∇f(x) +

√
uσ(1)r1, e

−2γv − u
1 − e−2γ

2
∇f(x) + 2

√
uσ(2)r2)

σ(1) =

(
γ +

1 − e−4γ

4
− (1 − e−2γ)

)1/2

, σ(2) =

(
1 − e−4γ

4

)1/2

,

(U (1),U (2)) ∼ µ = N (0,
1 + e−4γ − 2e−2γ

4σ(1)σ(2)
I2d).

We can see that J is a bounded continuous function on R+ × Rd × Rd and J(0, x, v) = 0. Since

lim|y|→∞ V (y) = +∞. We can also write

(2d+ 1)ηkE[r2(Yk−1, Yk)(|U (1)
k |2 + |U (2)

k |2)|Fk−1] = ηkV
a((xk−1, vk−1))θ((xk−1, vk−1))J(γk, xk−1, vk−1)

where lim|(xk−1,vk−1)|→∞ θ((xk−1, vk−1)) = 0. It remains to show that

P-a.s. lim
n

1

Hn

n∑
k=1

ηkV
a((xk−1, vk−1))θ((xk−1, vk−1))J(γk, xk−1, vk−1) = 0.

For a fixed number A > 0, J is uniformly continuous on [0, supn γn] × B̄2d(0, A), then

J(γk, xk−1, vk−1)1|(xk−1,vk−1)|≤A → 0 P-a.s.
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and V a((xk−1, vk−1))θ((xk−1, vk−1)) is bounded on B̄2d(0, A). Therefore

P− a, s lim
n

1

Hn

n∑
k=1

ηkV
a((xk−1, vk−1))θ((xk−1, vk−1))J(γk, xk−1, vk−1)1|(xk−1,vk−1)|≤A = 0.

On the other hand side

lim sup
n

1

Hn

n∑
k=1

ηkV
a((xk−1, vk−1))θ((xk−1, vk−1))J(γk, xk−1, vk−1)1|(xk−1,vk−1)|>A

≤ sup
|(x,v)|>A

|θ(x, v)| ∥J∥∞ sup
n
νηn(V a) → 0 as A→ +∞.

So taking A→ +∞ completes the proof. ■

Theorem 9. Let p ∈ [1,+∞). Assume (LV,p). Let s ∈ (0, 1]. Assume that

∑
n≥1

1

Hn

(
∆
ηn
γn

)
+

< +∞. lim
n

1

Hn

n∑
k=1

|∆ηk
γk

| = 0 and
∑
n≥1

(
ηn

Hn
√
γn

)1+s

< +∞

(a) Then

P-a.s. sup
n∈N

νηn(ω, V p/(1+s)) < +∞.

(b) When p ≤ 1 + s, assume also
∑

n≥1 ηnγn/Hn < +∞. Then with probability 1, any weak limit

of the sequence (νηm) is an invariant distribution of the underdamped Langevin dynamics.

Theorem 9 follows directly from theorem 6 and theorem 8.

Proof of Theorem 5. First we try to decompose
∑n

k=1 γkLϕ(xk−1) using Taylor expansion.

ϕ(xk) = ϕ(xk−1) + ∇ϕ(xk−1) · (xk − xk−1) +
1

2
D2ϕ(xk−1)(xk − xk−1)

⊗2 +R
(k)
2
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where R
(k)
2 = ϕ(xk) − ϕ(xk−1) −∇ϕ(xk−1) · (xk − xk−1) − 1

2D
2ϕ(xk−1)(xk − xk−1)

⊗2. We can plug

our discretization into the equation and obtain:

ϕ(xk) − ϕ(xk−1) = γkLϕ(xk−1) − (γk −
1 − e−2γk

2
)vk−1 · ∇ϕ(xk−1)

− u

2
(γk −

1 − e−2γk

2
)∇f(xk−1) · ∇ϕ(xk−1) +

√
uσ

(1)
k ∇ϕ(xk−1) · U

(1)
k

+
1

2
(
1 − e−2γk

2
)2D2ϕ(xk−1)v

⊗2
k−1 +

u

2
σ
(1)
k

2
D2ϕ(xk−1)U

(1)
k

⊗2

+
u2

8
(γk −

1 − e−2γk

2
)2D2ϕ(xk−1)∇f(xk−1)

⊗2

− u

2

1 − e−2γk

2
(γk −

1 − e−2γk

2
)⟨D2ϕ(xk−1); vk−1,∇f(xk−1)⟩

+
√
uσ

(1)
k

1 − e−2γk

2
⟨D2ϕ(xk−1); vk−1, U

(1)
k ⟩

− u3/2

2
σ
(1)
k (γk −

1 − e−2γk

2
)⟨D2ϕ(xk−1);∇f(xk−1), U

(1)
k ⟩

+R
(k)
2

where

R
(k)
2 =

1

6
(
1 − e−2γk

2
)3D3ϕ(xk−1)v

⊗3
k−1 −

u

4
(
1 − e−2γk

2
)2(γk −

1 − e−2γk

2
)⟨D3ϕ(xk−1); v

⊗2
k−1,∇f(xk−1)⟩

+

√
u

2
σ
(1)
k (

1 − e−2γk

2
)2⟨D3ϕ(xk−1); v

⊗2
k−1, U

(1)
k ⟩ +

u

2
σ
(1)
k

2 1 − e−2γk

2
⟨D3ϕ(xk−1); vk−1, U

(1)
k

⊗2
⟩

+
1

24
(
1 − e−2γk

2
)4D4ϕ(xk−1)v

⊗4
k−1 + r(k).

Since f is gradient Lipschitz and strongly convex, we’ve shown (LV,∞) holds. Using (LV,∞) the

fact that D4ϕ is bounded and Lipschitz, we can show there exists a constant C > 0 such that

|rk| ≤ Cγ
9/2
k V 2(xk−1, vk−1).

Apply theorem 6 for p = 4 and s = 1, we have supn ν
γ
n(V 2) < +∞ P-a.s. Therefore

1

Γ
(4)
n

n∑
k=1

r(k) → 0 in L1.
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In the following proof, we will use o(γ4k) to denote the sum of those terms bk such that 1

Γ
(4)
n

∑n
k=1 bk →

0 P-a.s. According to our decomposition, we can pull out polynomials of γk from factors 1−e−2γk

2 ,

γk − 1−e−2γk

2 and σ
(1)
k so that the terms left could be included in o(γ4k). Then we obtain

n∑
k=1

γkLϕ(xk−1) =
n∑

k=1

{
[ϕ(xk) − ϕ(xk−1)] + (γ2k −

2

3
γ3k +

1

3
γ4k)vk−1 · ∇ϕ(xk−1)

+
u

2
(γ2k −

2

3
γ3k +

1

3
γ4k)∇f(xk−1) · ∇ϕ(xk−1)

− 2
√

3u

3
γ

3
2
k ∇ϕ(xk−1) · U

(1)
k

− 1

2
(γ2k − 2γ3k +

7

3
γ4k)D2ϕ(xk−1)v

⊗2
k−1

− u2

8
γ4kD

2ϕ(xk−1)∇f(xk−1)
⊗2

− u

2
(
4

3
γ3k − 2γ4k)D2ϕ(xk−1)U

(1)
k

⊗2

+
u

2
(γ3k −

5

3
γ4k)⟨D2ϕ(xk−1); vk−1,∇f(xk−1)⟩

− 1

6
(γ3k − 3γ4k)D3ϕ(xk−1)v

⊗3
k−1

+
u

4
γ4k⟨D3ϕ(xk−1); v

⊗2
k−1,∇f(xk−1)⟩

− 2u

3
γ4k⟨D3ϕ(xk−1); vk−1, U

(1)
k

⊗2
⟩

− 1

24
γ4kD

4ϕ(xk−1)v
⊗4
k−1 + o(γ4k)

}
:= Z(0)

n + Z(2)
n + Z(3)

n + Z(4)
n +Nn + rn
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where

Z(0)
n = ϕ(xn) − ϕ(x0),

Z(2)
n =

n∑
k=1

γ2k

[
vk−1 · ∇ϕ(xk−1) +

u

2
∇f(xk−1) · ∇ϕ(xk−1) −

1

2
D2ϕ(xk−1)v

⊗2
k−1

]

=

n∑
k=1

γ2kz
(2)
k−1,

Z(3)
n =

n∑
k=1

γ3k

[
−2

3
vk−1 · ∇ϕ(xk−1) −

u

3
∇f(xk−1) · ∇ϕ(xk−1) +D2ϕ(xk−1)v

2
k−1

−2u

3
D2ϕ(xk−1)U

(1)
k

⊗2
+
u

2
⟨D2ϕ(xk−1); vk−1,∇f(xk−1)⟩ −

1

6
D3ϕ(xk−1)v

⊗3
k−1

]
= −

n∑
k=1

γ3kz
(3)
k−1,

Z(4)
n =

n∑
k=1

γ4k

[
1

3
vk−1 · ∇ϕ(xk−1) +

u

6
∇f(xk−1) · ∇ϕ(xk−1) −

7

6
D2ϕ(xk−1)v

⊗2
k−1

−u
2

8
D2ϕ(xk−1)∇f(xk−1)

⊗2 + uD2ϕ(xk−1)U
(1)
k

⊗2
− 5u

6
⟨D2ϕ(xk−1); vk−1,∇f(xk−1)⟩

+
1

2
D3ϕ(xk−1)v

⊗3
k−1 + +

u

4
⟨D3ϕ(xk−1); v

⊗2
k−1,∇f(xk−1)⟩ −

2u

3
⟨D3ϕ(xk−1); vk−1, U

(1)
k

⊗2

− 1

24
D4ϕ(xk−1)v

⊗4
k−1

]
=

n∑
k=1

γ4kz
(4)
k−1,

Nn =

n∑
k=1

2
√

3u

3
γ

3
2
k ∇ϕ(xk−1) · U

(1)
k ,

rn =

n∑
k=1

o(γ4k).

First, it’s easy to see that rn/Γ
(4)
n → 0 P-a.s. as n → +∞. Apply lemma 2.6.2 and we obtain

supn E[V (xn, vn)] < +∞. Therefore we can further obtain the tightness of sequence {xn} and it

follows from the continuity of ϕ that {ϕ(xn)} is also tight. According to the tightness, Z
(0)
n /Γ

(4)
n → 0

P-a.s. For Z
(4)
n , under our assumptions on ϕ and f , we can show that

lim
|(xn,vn)|→+∞

z(4)n /V 4(xn, vn) = 0.
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Therefor apply theorem 9 with p = 8, s = 1 and we obtain:

P− a.s Z(4)
n /Γ(4)

n →u

4

∫
R2d

⟨D3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv) − u2

8

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

− 1

24

∫
R2d

D4ϕ(x)v⊗4ν(dx, dv).

To consider the limit of Z
(i)
n /Γ

(4)
n for i = 2, 3, We first Taylor expand Lϕ(xk−1) at xk−2:

Lϕ(xk−1) = vk−2 · ∇ϕ(xk−2) + ⟨D2ϕ(xk−2); vk−2, xk−1 − xk−2⟩ + ∇ϕ(xk−2) · (vk−1 − vk−2)

+
1

2
⟨D3ϕ(xk−2); vk−2, (xk−1 − xk−2)

⊗2⟩ + ⟨D2ϕ(xk−2); vk−1 − vk−2, xk−1 − xk−2⟩

+
1

6
⟨D4ϕ(xk−2); vk−2, (xk−1 − xk−2)

⊗3⟩

+
1

2
⟨D3ϕ(xk−2); vk−1 − vk−2, (xk−1 − xk−2)

⊗2⟩

+ o(γ3k).

Plug the discretization into the Taylor expansions and preserve the “large” terms, then we obtain:

Lϕ(xk−1) = Lϕ(xk−2) + (γk−1 − γ2k−1 +
2

3
γ3k−1)D

2ϕ(xk−2)v
⊗2
k−2

− u

2
(γ2k−1 −

2

3
γ3k−1)⟨D2ϕ(xk−2); vk−2,∇f(xk−2)⟩

+
2
√

3u

3
γ

3
2
k−1⟨D

2ϕ(xk−2); vk−2, U
(1)
k−1⟩

− (2γk−1 − 2γ2k−1 +
4

3
γ3k−1)vk−2 · ∇ϕ(xk−2)

− u(γk−1 − γ2k−1 +
2

3
γ3k−1)∇f(xk−2) · ∇ϕ(xk−2)

+ 2
√
uγ

1
2
k−1∇ϕ(xk−2) · U

(2)
k−1

+
1

2
(γ2k−1 − 2γ3k−1)D

3ϕ(xk−2)v
⊗3
k−2

+
2u

3
γ3k−1⟨D3ϕ(xk−2); vk−2, U

(1)
k−1

⊗2
⟩

+
√
uγ

5
2
k−1⟨D

3ϕ(xk−2); v
⊗2
k−2, U

(1)
k−1⟩

− u

2
γ3k−1⟨D3ϕ(xk−2); v

⊗2
k−2,∇f(xk−2)⟩

− 2(γ2k−2 − 2γ3k−1)D
2ϕ(xk−2)v

⊗2
k−2
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− u(γ2k−1 − 2γ3k−1)⟨D2ϕ(xk−2); vk−2,∇f(xk−2)⟩

+ 2
√
uγ

3
2
k−1⟨D

2ϕ(xk−2); vk−2, U
(2)
k−1⟩

+ uγ3k−1⟨D2ϕ(xk−2); vk−2,∇f(xk−2)⟩

+
u2

2
γ3k−1D

2ϕ(xk−2)∇f(xk−2)
⊗2

− u
3
2γ

5
2
k−1⟨D

2ϕ(xk−2);∇f(xk−2), U
(2)
k−1⟩

− 2
√
uγ

5
2
k−1⟨D

2ϕ(xk−2); vk−2, U
(1)
k−1⟩

− u
3
2γ

5
2
k−1⟨D

2ϕ(xk−2);∇f(xk−2), U
(1)
k−1⟩

+ ⟨D2ϕ(xk−2);
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1⟩ + o(γ3k−1).

Apply theorem 9 with p = 4, s = 1 to the terms of order o(V 2(xk−2, vk−2)) in the decomposition.

We obtain

lim
n

∑n
k=2 γkLϕ(xk−1)

Γ
(4)
n

= lim
n

1

Γ
(4)
n

[
n∑

k=2

γkLϕ(xk−2) +
n∑

k=2

γk(γk−1 − 3γ2k−1)D
2ϕ(xk−2)v

⊗2
k−2

−
n∑

k=2

3u

2
γkγ

2
k−1⟨D2ϕ(xk−2);∇f(xk−2), vk−2⟩

−
n∑

k=2

γk(2γk−1 − 2γ2k−1)∇ϕ(xk−2) · vk−2

−
n∑

k=2

uγk(γk−1 − γ2k−1)∇f(xk−2) · ∇ϕ(xk−2)

+
n∑

k=2

1

2
γkγ

2
k−1D

3ϕ(xk−2)v
⊗3
k−2

+

n∑
k=2

2
√
uγkγ

1
2
k−1∇ϕ(xk−2) · U

(2)
k−1

+

n∑
k=2

γk⟨D2ϕ(xk−2);
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1⟩

]

+ 4u

∫
Rd

∆ϕ(x)π(dx) − u

2

∫
R2d

⟨D3ϕ(x); v⊗2,∇f(x)⟩ν(dx, dv)

+
u2

2

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx).
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Since γk−1 − γk = o(γ4k), we can substitute all the γk on the right hand side with γk−1 and it won’t

change the limits. For the last term inside the square bracket, notice that Var(
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1) =

u
2 (1 + e−4γk−1 − 2e−2γk−1)Id ∼ u(2γ2k−1 − 4γ3k−1)Id. Therefore

lim
n

1

Γ
(4)
n

n∑
k=2

γk⟨D2ϕ(xk−2);
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1⟩

= lim
n

1

Γ
(4)
n

n∑
k=2

2uγ3k−1∆ϕ(xk−2) − 4u

∫
Rd

∆ϕ(x)π(dx).

We can rewrite the equation as

lim
n

∑n
k=2 γkLϕ(xk−1)

Γ
(4)
n

= lim
n

1

Γ
(4)
n

n∑
k=2

γkLϕ(xk−2) + lim
n

1

Γ
(4)
n

n∑
k=2

2
√
uγ

3
2
k−1∇ϕ(xk−2) · U

(2)
k−1

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ2k−1[D
2ϕ(xk−2)v

⊗2
k−2 − 2∇ϕ(xk−2) · vk−2 − u∇f(xk−2) · ∇ϕ(xk−2)]

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ3k−1[−3Dϕ(xk−2)v
⊗2
k−2 −

3u

2
⟨D2ϕ(xk−2);∇f(xk−2), vk−2⟩

+ 2∇ϕ(xk−2) · vk−2 + u∇f(xk−2) · ∇ϕ(xk−2) +
1

2
D3ϕ(xk−2)v

⊗3
k−2 + 2u∆ϕ(xk−2)]

− u

2

∫
R2d

⟨D3ϕ(x); v⊗2,∇f(x)⟩ν(dx, dv) +
u2

2

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

= lim
n

1

Γ
(4)
n

n∑
k=2

γkLϕ(xk−2) + lim
n

1

Γ
(4)
n

n∑
k=2

2
√
uγ

3
2
k−1∇ϕ(xk−2) · U

(2)
k−1

+ lim
n

1

Γ
(4)
n

(−2Z(2)
n − 3Z(3)

n )

− u

2

∫
R2d

⟨D3ϕ(x); v⊗2,∇f(x)⟩ν(dx, dv) +
u2

2

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx).

We can instantly get that

lim
n

1

Γ
(4)
n

(2Z
(n)
2 + 3Z(3)

n ) = lim
n

1

Γ
(4)
n

n∑
k=2

2
√
uγ

3
2
k−1∇ϕ(xk−2) · U

(2)
k−1

+
u2

2

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

− u

2

∫
R2d

⟨D3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv).
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Similarly, apply Taylor expansion to z
(2)
k−1 at xk−2, we achieve:

∇f(xk−1) · ∇ϕ(xk−1) = ∇f(xk−2) · ∇ϕ(xk−2) + ⟨D2f(xk−2);∇ϕ(xk−2), xk−1 − xk−2⟩

+ ⟨D2ϕ(xk−2);∇f(xk−2), xk−1 − xk−2⟩

+
1

2
D3(∇f · ∇ϕ)(xk−2)(xk−1 − xk−2)

⊗2 + o(γ2k),

and

1

2
D2ϕ(xk−1)v

⊗2
k−1 =

1

2
D2ϕ(xk−2)v

⊗2
k−2 +

1

2
⟨D3ϕ(xk−1); v

⊗2
k−2, xk−1 − xk−2⟩

+ ⟨D2ϕ(xk−2); vk−2, vk−1 − vk−2⟩ +
1

2
D2ϕ(xk−2)(vk−1 − vk−2)

⊗2

+
1

4
(
1 − e−2γk−1

2
)2D4ϕ(xk−2)v

⊗4
k−2

+
1

2
⟨D3ϕ(xk−2); vk−2, xk−1 − xk−2, vk−1 − vk−2⟩

+
1

6
⟨D3ϕ(xk−2);xk−1 − xk−2, (vk−1 − vk−2)

⊗2⟩ + o(γ2k).

Simplifying the coefficients lead us to

∇f(xk−1) · ∇ϕ(xk−1) = ∇f(xk−2) · ∇ϕ(xk−2) + (γk−1 − γ2k−1)⟨D2f(xk−2);∇ϕ(xk−2), vk−2⟩

− u

2
γ2k−1⟨D2f(xk−2);∇ϕ(xk−2),∇f(xk−2)⟩

+
2
√

3u

3
γ

3
2
k−1⟨D

2f(xk−2);∇ϕ(xk−2), U
(1)
k−1⟩

+ (γk−1 − γ2k−1)⟨D2ϕ(xk−2);∇f(xk−2), vk−2⟩

− u

2
γ2k−1D

2ϕ(xk−2)∇f(xk−2)
⊗2 +

√
uγ

3
2
k−1⟨D

2ϕ(xk−2);∇f(xk−2), U
(1)
k−1⟩

+
1

2
γ2k−1(D

3f∇ϕ+ 2D2ϕD2f +D3ϕ∇f)(xk−2)v
⊗2
k−2 + o(γ2k−1),
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and

1

2
D2ϕ(xk−1)v

⊗2
k−1 =

1

2
D2ϕ(xk−2)v

⊗2
k−2 +

1

2
(γk−1 − γ2k−1)D

3ϕ(xk−2)v
⊗3
k−2

− u

4
γ2k−1⟨D3ϕ(xk−2); v

⊗2
k−2,∇f(xk−2)⟩ +

√
u

2
γ

3
2
k−1⟨D

3ϕ(xk−2); v
⊗2
k−2, U

(1)
k−1⟩

− 2(γk−1 − γ2k−1)D
2ϕ(xk−2)v

⊗2
k−2 − u(γk−1 − γ2k−1)⟨D2ϕ(xk−2);∇f(xk−2), vk−2⟩

+ 2
√
uγ

1
2
k−1⟨D

2ϕ(xk−2); vk−2, U
(2)
k−1⟩ + 2γ2k−1D

2ϕ(xk−2)v
⊗2
k−2

+
u2

2
γ2k−1D

2ϕ(xk−2)∇f(xk−2)
⊗2 + 2u(γk−1 − 2γ2k−1)D

2ϕ(xk−2)U
(2)
k−1

⊗2

+ 2uγ2k−1⟨D2ϕ(xk−2);∇f(xk−2), vk−2⟩ − 4
√
uγ

3
2
k−1⟨D

2ϕ(xk−2); vk−2, U
(2)
k−1⟩

− 2u
3
2γ

3
2
k−1⟨D

2ϕ(xk−2);∇f(xk−2), U
(2)
k−1⟩ +

1

4
γ2k−1D

4ϕ(xk−2)v
⊗4
k−2

− γ2k−1D
3ϕ(xk−2)v

⊗3
k−2 −

u

2
γ2k−1⟨D3ϕ(xk−2); v

⊗2
k−2,∇f(xk−2)⟩

+
1

2
⟨D3ϕ(xk−2); vk−2,

√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(12
k−1⟩

+
2u

3
γ2k−1⟨D3ϕ(xk−1); vk−2;U

(2)
k−1

⊗2
⟩ + o(γ2k).

Take the limits and we obtain:

lim
n

∑n
k=2 γ

2
k∇f(xk−1) · ∇ϕ(xk−1)

Γ
(4)
n

= lim
n

1

Γ
(4)
n

[
n∑

k=2

γ2k−1∇f(xk−2) · ∇ϕ(xk−2)

+
n∑

k=2

γ3k−1⟨D2f(xk−2);∇ϕ(xk−2), vk−2⟩

+
n∑

k=2

γ3k−1⟨D2ϕ(xk−2);∇f(xk−2), vk−2⟩

]

− u

2

∫
Rd

⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx)

− u

2

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

+
1

2

∫
Rd

(
D3f(x)∇ϕ(x) + 2D2f(x)D2ϕ(x) +D3ϕ(x)∇f(x)

)
v⊗2ν(dx, dv),
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and

lim
n

1

2

∑n
k=2 γ

2
kD

2ϕ(xk−1)v
⊗2
k−1

Γ
(4)
n

= lim
n

{
1

Γ
(4)
n

n∑
k=2

1

2
γ2k−1D

2ϕ(xk−2)v
⊗2
k−2

+
1

Γ
(4)
n

n∑
k=2

γ3k−1

[
1

2
D3ϕ(xk−2)v

⊗3
k−2 − 2D2ϕ(xk−2)v

⊗2
k−2

−u⟨D2ϕ(xk−2);∇f(xk−2), vk−2⟩ + 2uD2ϕ(xk−2)U
(2)
k−1

⊗2
]}

− 3u

4

∫
R2d

⟨D3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv) +
1

4

∫
R2d

D4ϕ(x)v⊗4π(dx)

+
u2

2

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx).

Claim:

a) lim
n

1

Γ
(4)
n

n∑
k=1

γ2k∇ϕ(xk−1) · vk−1 = 0.

b) lim
n

1

Γ
(4)
n

n∑
k=1

γ3k(
u

2
∇ϕ(xk−1) · ∇f(xk−1) −

1

2
D2ϕ(xk−1)v

⊗2
k−1) = 0.

c) lim
n

1

Γ
(4)
n

n∑
k=1

γ3k∇ϕ(xk−1) · vk−1 = 0.

We’ll prove the Claim at the end of our proof. We can use the Claim and our expansion of Z
(2)
n

to find the following relation:

lim
n

1

Γ
(4)
n

Z(2)
n = lim

n

1

Γ
(4)
n

n∑
k=2

γ2k∇ϕ(xk−1) · vk−1

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ2k

[
u

2
∇f(xk−1) · ∇ϕ(xk−1) −

1

2
D2ϕ(xk−1)v

⊗2
k−1

]

= lim
n

1

Γ
(4)
n

n∑
k=2

γ2k−1

[
u

2
∇f(xk−2) · ∇ϕ(xk−2) −

1

2
D2ϕ(xk−2)v

⊗2
k−2

]

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ3k−1

[
u

2
⟨D2f(xk−2);∇ϕ(xk−2), vk−2⟩ +

3u

2
⟨D2ϕ(xk−2);∇f(xk−2), vk−2⟩

−1

2
D3ϕ(xk−2)v

⊗3
k−2 + 2D2ϕ(xk−2)v

⊗2
k−2 − 2u∆ϕ(xk−2)

]
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− u2

4

∫
Rd

⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx) − u2

4

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

+
u

4

∫
Rd

(
D3f(x)∇ϕ(x) + 2D2f(x)D2ϕ(x) +D3ϕ(x)∇f(x)

)
v⊗2ν(dx, dv)

+
3u

4

∫
R2d

⟨D3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv) − 1

4

∫
R2d

D4ϕ(x)v⊗4π(dx)

− u2

2

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

= lim
n

1

Γ
(4)
n

[Z(2)
n + 3Z(3)

n ] − u2

4

∫
Rd

⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx)

− 3u2

4

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx) − 1

4

∫
R2d

D4ϕ(x)v⊗4π(dx)

+
u

4

∫
Rd

(
D3f(x)∇ϕ(x) + 2D2f(x)D2ϕ(x) + 4D3ϕ(x)∇f(x)

)
v⊗2ν(dx, dv).

The last identity follows from Claim-a),b) and the fact that limn
1

Γ
(4)
n

∑n
k=1 γ

3
k⟨D2f(xk−1);∇ϕ(xk−1), vk−1⟩ =

0. To prove limn
1

Γ
(4)
n

∑n
k=1 γ

3
k⟨D2f(xk−1);∇ϕ(xk−1), vk−1⟩ = 0, we can assume ψ is a new test func-

tion satisfying ∇ψ(x) = D2f(x)∇ϕ(x). Then the statement follows from Claim-c). This could be

done because ψ satisfies the all assumptions on ϕ stated in the theorem. Therefore we obtain

lim
n

1

Γ
(4)
n

Z(3)
n =

u2

12

∫
Rd

⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx) +
u2

4

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

− u

12

∫
Rd

(
D3f(x)∇ϕ(x) + 2D2f(x)D2ϕ(x) + 4D3ϕ(x)∇f(x)

)
v⊗2ν(dx, dv)

+
1

12

∫
R2d

D4ϕ(x)v⊗4π(dx).

Combine with our previous results on 2Z
(2)
n + 3Z

(3)
n and we obtain

lim
n

1

Γ
(4)
n

[Z(2)
n + Z(3)

n ] = lim
n

1

Γ
(4)
n

n∑
k=1

√
uγ

3
2
k ∇ϕ(xk−1) · U

(2)
k +

u2

8

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

− u

12

∫
R2d

⟨D3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv) +
u

24

∫
R2d

⟨D3f(x);∇ϕ(x), v⊗2⟩ν(dx, dv)

+
u

12

∫
R2d

(D2fD2ϕ)(x)v⊗2ν(dx, dv) − u2

24

∫
Rd

⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx)

− 1

24

∫
R2d

D4ϕ(x)v⊗4π(dx).
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Then we plug this result in our original decomposition:

lim
n

1

Γ
(4)
n

n∑
k=1

γkLϕ(xk−1) = lim
n

1

Γ
(4)
n

n∑
k=1

γ
3
2
k

2
√

3

3
∇ϕ(xk−1) · (

√
uU

(1)
k )

+ lim
n

1

Γ
(4)
n

n∑
k=1

√
uγ

3
2
k ∇ϕ(xk−1) · U

(2)
k +

u2

8

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx)

− u

12

∫
R2d

⟨D3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv) +
u

24

∫
R2d

⟨D3f(x);∇ϕ(x), v⊗2⟩ν(dx, dv)

+
u

12

∫
R2d

(D2fD2ϕ)(x)v⊗2ν(dx, dv) − u2

24

∫
Rd

⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx)

− 1

24

∫
R2d

D4ϕ(x)v⊗4π(dx) +
u

4

∫
R2d

⟨D3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv)

− u2

8

∫
Rd

D2ϕ(x)∇f(x)⊗2π(dx) − 1

24

∫
R2d

D4ϕ(x)v⊗4ν(dx, dv)

= lim
n

1

Γ
(4)
n

n∑
k=1

γ
3
2
k ∇ϕ(xk−1) · (

2
√

3

3

√
uU

(1)
k +

1

2
2
√
uU

(2)
k )

+
u

6

∫
R2d

⟨D3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv) +
u

24

∫
R2d

⟨D3f(x);∇ϕ(x), v⊗2⟩ν(dx, dv)

+
u

12

∫
R2d

(D2ϕD2f)(x)v⊗2ν(dx, dv) − 1

12

∫
R2d

D4ϕ(x)v⊗4ν(dx, dv)

− u2

24

∫
Rd

⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx).

It remains to determine the normal limit. Since (U
(1)
k , U

(2)
k ) is Gaussian in R2d with mean zero and

covariance matrix 1+e−4γk−2e−2γk

4σ
(1)
k σ

(2)
k

Id, we can find the distribution of Uk := (2
√
3

3

√
uU

(1)
k + 1

22
√
uU

(2)
k ).

{Uk} are independent 2d-Gaussian Random vectors with Uk ∼ N (0,Σk), where

Σk = E[(
2
√

3

3

√
uU

(1)
k +

1

2
2
√
uU

(2)
k )T (

2
√

3

3

√
uU

(1)
k +

1

2
2
√
uU

(2)
k )]

=
4u

3
Id +

4u
√

3

3

1 + e−4γk − 2e−2γk

4σ
(1)
k σ

(2)
k

Id + uId

∼ 10

3
uId +O(γk)Id.
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Apply our weak convergence result and CLT for arrays of square-integrable martingale increments,

we have that when 0 < γ̂ < +∞:

1

Γ
(4)
n

n∑
k=1

γ
3
2
k ∇ϕ(xk−1) · Uk =⇒ N (0, σ2)

where

σ2 = lim
n

1

Γ
(4)
n

2

n∑
k=1

γ3k |∇ϕ(xk−1)|2(
10

3
u+O(γk)) =

10

3
uγ̂−2

∫
Rd

|∇ϕ(x)|2π(dx).

In conclusion, when γ̂ ∈ (0,+∞):

Γn

Γ
(4)
n

νγn(Lϕ) =⇒ N (ρ,
10

3
uγ̂−2

∫
Rd

|∇ϕ(x)|2π(dx))

where

ρ =
u

6

∫
R2d

⟨D3ϕ(x);∇f(x), v⊗2⟩ν(dx, dv) +
u

24

∫
R2d

⟨D3f(x);∇ϕ(x), v⊗2⟩ν(dx, dv)

+
u

12

∫
R2d

(D2ϕD2f)(x)v⊗2ν(dx, dv) − 1

12

∫
R2d

D4ϕ(x)v⊗4ν(dx, dv)

− u2

24

∫
Rd

⟨D2f(x);∇ϕ(x),∇f(x)⟩π(dx).

When γ̂ = 0,

Γn√
Γ
(3)
n

νγn(Lϕ) =⇒ N (0,
10

3
u

∫
Rd

|∇ϕ(x)|2π(dx)).

When γ̂ = +∞,

1

Γ
(4)
n

n∑
k=1

γ
3
2
k ∇ϕ(xk−1) · (

2
√

3

3

√
uU

(1)
k +

1

2
2
√
uU

(2)
k ) → 0 in probability.

Therefore when γ̂ = +∞,

Γn

Γ
(4)
n

νγn(Lϕ) → ρ in probability.
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Proof of the claim: First we’ll show that 1

Γ
(3)
n

∑n
k=1 γ

2
kLϕ(xk−1) → 0. We can use our decompo-

sition of Lϕ(xk−1) and obtain:

n∑
k=1

γ2kLϕ(xk−1) =
n∑

k=1

{
γk (ϕ(xk) − ϕ(xk−1)) + γ3kvk−1 · ∇ϕ(xk−1)

+
u

2
γ3k∇f(xk−1) · ∇ϕ(xk−1) −

1

2
γ3kD

2ϕ(xk−1)v
⊗2
k−1

}
.

Since γk−1 − γk ∼ o(γ4k) and {ϕ(xn)} is tight, 1

Γ
(3)
n

∑n
k=1 γk (ϕ(xk) − ϕ(xk−1)) → 0. Then we can

apply theorem 9 with p = 6, s = 1 and obtain

1

Γ
(3)
n

n∑
k=1

γ2kLϕ(xk−1) →
∫
R2d

v · ∇ϕ(x)ν(dx, dv) +
u

2

∫
Rd

∇ϕ(x) · ∇f(x)π(dx)

− 1

2

∫
R2d

D2ϕ(x)v⊗2ν(dx, dv)

= 0.

The last identity follows from integration by parts and Fubini theorem. In the same way, we can

also prove 1

Γ
(4)
n

∑n
k=1 γ

3
kLϕ(xk−1) → 0. Next, we’ll show limn

1

Γ
(3)
n

∑n
k=1 γ

2
k(u2∇ϕ(xk−1) ·∇f(xk−1)−

1
2D

2ϕ(xk−1)v
⊗2
k−1) = 0, we’ll use the same trick as we did in the proof of theorem 5. We Taylor

expand Lϕ(xk−1) at (xk−2, vk−2):

γ2kLϕ(xk−1) = γ2kLϕ(xk−2) + γ2k(γk−1 − γ2k−1)D
2ϕ(xk−2)v

⊗2
k−2

− u

2
γ2kγ

2
k−1⟨D2ϕ(xk−2); vk−2,∇f(xk−2)⟩

− γ2k(2γk−1 − 2γ2k−1)vk−2 · ∇ϕ(xk−2)

− uγ2k(γk−1 − γ2k−1)∇f(xk−2) · ∇ϕ(xk−2)

+
1

2
γ2kγ

2
k−1D

3ϕ(xk−2)v
⊗3
k−2 − 2γ2kγ

2
k−2D

2ϕ(xk−2)v
⊗2
k−2

− uγ2kγ
2
k−1⟨D2ϕ(xk−2); vk−2,∇f(xk−2)⟩

+ γ2k⟨D2ϕ(xk−2);
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1⟩ + o(γ3k−1).
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Since γk−1 − γk = o(γ4k), we can change γk on the left hand side to γk−1 when we take limits with

scale Γ
(4)
n . Apply theorem 9 with p = 8, s = 1 to terms with order o(γ3k)-coefficients.

lim
n

1

Γ
(4)
n

n∑
k=2

γ2kLϕ(xk−1) = lim
n

1

Γ
(4)
n

n∑
k=2

γ2k−1Lϕ(xk−2) − 2 lim
n

1

Γ
(4)
n

n∑
k=2

γ3k−1Lϕ(xk−2)

− 2 lim
n

1

Γ
(4)
n

n∑
k=2

γ3k−1(
u

2
∇ϕ(xk−2) · ∇f(xk−2) −

1

2
D2ϕ(xk−2)v

⊗2
k−2)

− 3

∫
R2d

D2ϕ(x)v⊗2ν(dx, dv) + u

∫
Rd

∇ϕ(x) · ∇f(x)π(dx)

+ lim
n

1

Γ
(4)
n

n∑
k=2

γ2k−1⟨D2ϕ(xk−2);
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1⟩.

Since we proved 1

Γ
(4)
n

∑n
k=1 γ

3
kLϕ(xk−1) → 0 and from Theorem 5, we’ve shown that

lim
n

1

Γ
(4)
n

n∑
k=2

γ2k−1⟨D2ϕ(xk−2);
√
uσ

(1)
k−1U

(1)
k−1, 2

√
uσ

(2)
k−1U

(2)
k−1⟩ = 2u

∫
Rd

∆ϕ(x)π(dx).

We obtain

lim
n

1

Γ
(4)
n

n∑
k=2

γ2k−1(
u

2
∇ϕ(xk−2) · ∇f(xk−2) −

1

2
D2ϕ(xk−2)v

⊗2
k−2)

=
1

2

[
lim
n

1

Γ
(4)
n

n∑
k=2

γ2kLϕ(xk−1) − lim
n

1

Γ
(4)
n

n∑
k=2

γ2k−1Lϕ(xk−2)

]

= 0.

Therefore, limn
1

Γ
(4)
n

∑n
k=1 γ

3
k(u2∇ϕ(xk−1) · ∇f(xk−1) − 1

2D
2ϕ(xk−1)v

⊗2
k−1) = 0.

To prove the Claim, we need to use the decomposition again:

n∑
k=1

γ2kLϕ(xk−1) =

n∑
k=1

{
γk[ϕ(xk) − ϕ(xk−1)] + (γ3k −

2

3
γ4k)vk−1 · ∇ϕ(xk−1)

+
u

2
(γ3k −

2

3
γ4k)∇f(xk−1) · ∇ϕ(xk−1) −

1

2
(γ3k − 2γ4k)D2ϕ(xk−1)v

⊗2
k−1

− 2u

3
γ4kD

2ϕ(xk−1)U
(1)
k

⊗2
+
u

2
γ4k⟨D2ϕ(xk−1); vk−1,∇f(xk−1)⟩

−1

6
γ4kD

3ϕ(xk−1)v
⊗3
k−1 + o(γ4k)

}
.
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Since {ϕ(xn)} is tight and γk−1 − γk = o(γ4k), we have 1

Γ
(4)
n

∑n
k=1 γk(ϕ(xk)− ϕ(xk−1)) → 0. For the

terms with coefficients of order γ3k , we can apply theorem 9 with p = 8, s = 1. Then we obtain:

lim
n

1

Γ
(4)
n

n∑
k=1

γ2kLϕ(xk−1) = lim
n

1

Γ
(4)
n

n∑
k=1

γ3k(Lϕ(xk−1) +
u

2
∇ϕ(xk−1) · ∇f(xk−1) −

1

2
D2ϕ(xk−1)v

⊗2
k−1)

− u

3

∫
Rd

∇ϕ(x) · ∇f(x)π(dx) +

∫
R2d

D2ϕ(x)v⊗2ν(dx, dv)

− 2u

3

∫
Rd

∫
Rd

D2ϕ(x)z⊗2µ(dz)π(dx)

= lim
n

1

Γ
(4)
n

n∑
k=1

γ3k(Lϕ(xk−1) +
u

2
∇ϕ(xk−1) · ∇f(xk−1) −

1

2
D2ϕ(xk−1)v

⊗2
k−1)

= 0.

The second identity follows from integration by parts and Fubini theorem. The last identity follows

from the two statements we just proved. ■
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CHAPTER 3

Heavy-tailed Sampling

The problem of sampling from a given target density π : Rd → R arises in a wide variety of

problems in statistics, machine learning, operations research and applied mathematics. Markov

chain Monte Carlo (MCMC) algorithms are a popular class of algorithms for sampling [RC99,

ADFDJ03, HLW06, BGJM11, MT12, LM16, DMPS18]; a widely used approach in this domain

is to discretize an Itô diffusion that has the target as its stationary density. A popular choice of

diffusion is the overdamped Langevin diffusion,

dXt = ∇ log π(Xt)dt+
√

2dBt,(3.1)

where Bt is a d-dimensional Brownian motion. For example, the Unadjusted Langevin Algo-

rithm [RDF78], the Metropolis Adjusted Langevin Algorithm [RT96, RR98] and the proximal

sampler [TP18, LST21, VPD22] arise as different discretizations of (3.1). Under light-tailed as-

sumptions, i.e. when the density π has exponentially fast decaying tails, the diffusion Xt in (3.1)

converges exponentially fast to π as its stationary density, which motivates the use of discretiza-

tions of (3.1) as practical algorithms for sampling. In the last decade, the non-asymptotic iteration

complexity of various discretizations have been well-explored, thereby providing a relatively com-

prehensive story of sampling from light-tailed densities.

Motivated by applications in robust statistics [KN04, JR07, Kam18], multiple comparison pro-

cedures [GBH04, GB09], Bayesian statistics [GJPS08, GLM18], and statistical machine learn-

ing [BZ17, NŞR19, ŞZTG20, DKTZ20], in this chapter, we are interested in sampling from densities

that have heavy-tails, for example, those with tails that are polynomially decaying. When the tar-

get density π is heavy-tailed, the solution to (3.1) does not converge exponentially to its stationary

density in various metrics of interest. In the following sections, we first give an overview of related

73



work. Then we introduce and analyze two new methods, the transformed Langevin Monte Carlo

and the Itô discretization, to sample from heavy-tail target densities.

3.1. Related Work

Non-asymptotic iteration complexity of different discretizations of (3.1) have been analyzed exten-

sively in the last decade. The analysis of the Unadjusted Langevin Algorithm (ULA) under various

light-tailed assumptions was carried out, for example, in [Dal17b, DM17, DK19, DMM19, LST20,

SL19, HBE20, CDWY20, DMM19, DKRD19, LE20, CDWY20, CEL+21] and references therein.

In particular, [VW19, EH21, CEL+21] analyzed the performance of ULA under various functional

inequalities suited to light-tailed densities. Furthermore, the recent work of [BCE+22] analyzed the

performance of (averaged) ULA for target densities that are only Hölder continuous, albeit in the

weaker Fisher information metric.

Several works, for example, [DCWY19, CLA+21, WSC22], analyzed the Metropolis-Adjusted Langevin

Algorithm (MALA) in light-tailed settings. The proximal sampler algorithm was analyzed under

various light-tailed assumptions in [LST21, CCSW22]. The iteration complexity of the widely used

Hamiltonian Monte Carlo algorithm and discretizations of underdamped Langevin diffusions were

analyzed, for example, in [DRD20b, BREZ20, CDWY20, MCC+21, Mon21, CLW21, WW22, CV22].

We also refer interested readers to [LW22, DL21] for non-asymptotic analyses of other MCMC al-

gorithms used in practice in light-tailed settings.

In the context of heavy-tailed sampling, [Kam18] considered the scaling limits of appropriately mod-

ified Metropolis random walk in an asymptotic setting. [JG12] proposed a variable transformation

method in the context of Metropolis Random Walk algorithms. Here, the heavy-tailed density is

converted into a light-tailed one based on certain invertible transformations so that one can leverage

the rich literature on light-tailed sampling algorithms. Similar ideas were also examined recently

in [Y LR22]. It is also worth highlighting that [DBCD19, DGM20] and [BRZ19] used the trans-

formation approach for proving asymptotic exponential ergodicity of bouncy particle and zig-zag

samplers respectively, in the heavy-tailed setting. We also point out the recent works of [ADW21]
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and [ALPW21] that establish similar sub-exponential ergodicity results for other sampling meth-

ods such as the piecewise deterministic Markov process Monte Carlo, independent Metropolis-

Hastings sampler and pseudo-marginal methods in the polynomially heavy-tailed setting. The

works of [ŞZTG20, HMW21] and [ZZ22] established exponential ergodicity results for diffusions

driven by α-stable processes with heavy-tailed densities as its equilibrium in the continuous-time

setting. However, the problem of obtaining convergence results for practical discretizations of these

diffusions is still largely open.

The literature on non-asymptotic oracle complexity analysis of heavy-tailed sampling is extremely

limited. [CDV09] considered the iteration complexity of Metropolis random walk algorithm for

sampling from s-concave distributions. [LWME19] analyzed a class of discretizations of general

Itô diffusions that admit heavy-tailed equilibrium densities. A detailed comparison to [LWME19]

is provided in Section 3.3.7. Recently, [MHFH+23] established non-asymptotic convergence guar-

antees for LMC(AKa ULA) and the Langevin diffusion (3.1) in Rényi divergence for sufficiently

smooth targets that satisfy a weak Poincaré inequality, including heavy-tail targets.

The recent works by [HKRC18, ZPFP20, CLGL+20b, AC21, Jia21, LTVW22] also considered

sampling based on discretizations of the Mirror Langevin diffusions. The above-mentioned works

mainly focus on sampling from constrained densities. The continuous-time convergence is analyzed

typically under the so-called mirror Poincaré inequalities which are generalizations of the Brascamp-

Lieb inequalities in a different direction compared to the Weighted Poincaré inequalities. The

discretization analysis by [LTVW22] is based on mean-squared analysis.

3.2. Transformed Langevin Monte Carlo

3.2.1. Motivations. Given a potential function f : Rd → R, we consider the problem of

sampling from the density

π(x) := Z−1e−f(x),(3.2)

where Z := ∫ e−f(x)dx is an (unknown) normalization constant. When the target density π is heavy-

tailed, the solution to (3.1) is not exponentially ergodic, that is, the solution does not converge to the

stationary density rapidly. Indeed [RT96, Theorem 2.4] shows that if |∇f(x)| → 0 when |x| → ∞,
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then the solution to (3.1) is not exponentially ergodic. In the other direction, standard results in

the literature, for example [Wan06, BGL14] show that the solution to (3.1) being exponentially

ergodic is equivalent to the density π satisfying the Poincaré inequality, which requires π to have

exponentially decaying tails. Furthermore, [Wan06, Chapter 4] shows that when π has polynomially

decaying tails, the convergence is only sub-exponential or polynomial.

Turning to time-discretizations of (3.1), the Euler discretization or the Unadjusted Langevin Al-

gorithm (ULA) is given by

xn+1 = xn − γ∇f(xn) +
√

2γun+1,(3.3)

where (un) is a sequence of independent and identically distributed d-dimensional standard Gauss-

ian vectors and γ > 0 is a user-defined step size parameter. Over the past decade, non-asymptotic

oracle complexity analysis of ULA (and other related discretizations) have been studied intensively.

We refer to [Dal17b, DM17, DK19, DMM19, LST20, DCWY19, SL19, HBE20, CDWY20, CLA+21,

WSC21] for the case when the potential f is strongly convex, [DMM19, DKRD19, CDWY20, Leh21]

when it is convex, and [CCAY+18, MCJ+19, MMS20] when it is non-convex. We also highlight

the works of [VW19], [EH20], [Ngu21] and [CEL+21] which analyzed ULA when π satisfies certain

functional inequalities. Specifically, [VW19] showed that when π satisfies a Logarithmic Sobolev

Inequality (LSI) and has Lipschitz-smooth gradients, ULA with a number of iterations of order

Õ(1/ϵ) generates a sample which is ϵ-close to π with respect to KL-divergence. A necessary condi-

tion for π to satisfy the LSI condition is that it should have sub-Gaussian tails. Furthermore, [EH20]

considered densities that satisfy a modified LSI (m-LSI) inequality and showed that the number of

iterations becomes of order Õ(1/ϵc), for some c ≥ 1 (which depends on certain smoothness condi-

tions). A typical example of a density that satisfies a m-LSI condition but not the LSI condition is

π(x) ∝ exp(−|x|). Thus, the result in [EH20] could also be viewed as an oracle complexity result

for ULA when sampling from sub-exponential densities. Recently [Ngu21] relaxed the conditions

required in [EH20] and provided similar results under the assumption that the target density satis-

fies a Poincaré inequality and dissipativity at the same time. Furthermore, [CEL+21] also presented

an analysis of ULA under the so-called Lata la-Oleszkiewicz [LO00] inequality, that interpolates be-

tween the LSI and Poincaré inequality for the stronger Rényi metric and removes the dissipativity
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assumptions required in [EH20, Ngu21]. It is worth pointing out here that the proofs of [EH20]

and [CEL+21] are based on certain transformations of the target densities.

The above results, however, are not applicable to sampling from polynomially decaying heavy-tailed

densities like the multivariate t-distribution, whose density is of the form π(x) ∝ (1 + |x|2)−
d+κ
2 ,

where κ > 0 is the degrees-of-freedom parameter. Recently, some attempts have been made to

sample from such heavy-tailed densities by considering stable-driven SDEs of the form

dXt = b(Xt)dt+
√

2dZt(3.4)

where b is the drift term defined based on the Riesz potential, and Zt is an ϑ-stable process with

ϑ ∈ (1, 2) [ŞZTG20, Şim17, HMW21]. Specifically [HMW21] established exponential ergodicity

of the solution of (3.4), under conditions that allow for much heavier tails than Brownian-driven

SDEs. The eventual hope is that discretizations of (3.4) might lead to algorithms with provable non-

asymptotic oracle complexity rates. However, it appears to be non-trivial to analyze discretization

of (3.4), especially if we are interested in tight non-asymptotic results, due to the difficulties in

dealing with the non-smoothness of drift term b.

In this section, we take an alternate approach for heavy-tailed sampling using ULA on a transformed

version of the target density. Such an approach was used by [JG12] in the context of Metropolis

Random Walk algorithm, which serves as our motivation. The key idea in this approach is to

construct smooth invertible maps (also called diffeomorphisms) h : Rd → Rd that transform the

heavy-tailed density π to an appropriately light-tailed density πh. Given such a map, one could

first sample from the light-tailed density πh and subsequently obtain samples from the heavy-

tailed density π using the inverse map of h. It is also worth highlighting that [DBCD19, DGM20]

and [BRZ19] used the transformation approach for proving asymptotic exponential ergodicity of

bouncy particle and zig-zag samplers respectively, in the heavy-tailed setting.

There are several issues to overcome when using the above strategy in the context of ULA. First,

note that the constructed map h has to convert the heavy-tailed density π to a light-tailed density

πh. In this process, however, the bulk of the density πh might become non-smooth, if the map

is not constructed carefully. This non-smoothness could subsequently hinder the usage of ULA
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algorithm to sample from πh. Second, the constants involved (for example, the LSI or m-LSI

constant) in the light-tailed density πh might start to depend exponentially on the dimension after

transformation. This again hinders the efficiency of the ULA when sampling from πh. Furthermore,

the transformation map needs to be efficiently computable. In this work, we propose a family of

carefully constructed transformations that overcome the above issues and present non-asymptotic

results for sampling from a class of heavy-tailed densities.

3.2.2. Organizations. The rest of the section is organized as follows. In Section 3.2.3 we

introduce the notation and preliminary background material used in the rest of the section. In

Section 3.2.4, we introduce our transformation map, highlight key properties and present the Trans-

formed Unadjusted Langevin Algorithm (TULA) algorithm. We also discuss a warm-up example

regarding exponentially tailed densities, and provide an interpretation of the transformed diffusion

as a special case of Itô diffusions. In Section 3.2.5, we present non-asymptotic oracle complexity

results for TULA under various assumptions on the potential function that characterize the level of

heavy-tails allowed. In Section 3.2.6, we discuss the relationship between our assumptions on the

heavy-tails used in Section 3.2.5 and non-local Dirichlet form based functional inequalities (aris-

ing in the equilibrium analysis of stable-driven diffusions). Illustrative examples are provided in

Section 3.2.7.

3.2.3. Notations and Preliminaries. For a vector a ∈ Rd, we represent the Euclidean norm

by |a|. For a mapping h : Rd → Rd, we denote the Jacobian matrix by ∇h ∈ Rd×d. In the case

when h : Rd → R, ∇h ∈ Rd denotes the gradient vector and △h = ∇ · ∇h denotes the Laplacian.

For a function h : R → R, we simply denote its first, second and third order derivatives by h′,

h′′ and h′′′ respectively. For a matrix A, we denote its determinant and operator norm by det(A)

and ∥A∥ respectively. For two symmetric matrices A,B, the relation A ⪯ B refers to the fact that

B − A is positive semi-definite. The class of function Ck(Ω) refers to those functions that have

k-times continuously differentiable derivatives on the domain Ω. For a function ϕ, ∥ϕ∥∞ refers to

the sup-norm.

We also require the following definitions used in the rest of the section. Let ν and µ be two

probability densities with full support on Rd. Then, for a convex function Φ : R → R such that
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Φ(1) = 0, the Φ-divergence of ν from µ is defined as

DΦ(ν|µ) :=

∫
Rd

Φ

(
ν(x)

µ(x)

)
µ(x)dx.

When the function is given by Φ(t) = t log(t), we obtain the Kullback-Leibler (KL) divergence of ν

with respect to µ, given by

Hµ(ν) :=

∫
Rd

log
ν(x)

µ(x)
ν(x)dx.

Our complexity results later will be provided in terms of KL-divergence. The Relative Fisher

Information of ν with respect to µ is given by

Iµ(ν) :=

∫
Rd

∣∣∣∣∇ log
ν(x)

µ(x)

∣∣∣∣2 ν(x)dx.

The Rényi divergence of order q > 1 is defined as

Rq(ν|µ) =
1

q − 1
log

(∫
Rd

(
ν(x)

µ(x)

)q

µ(x)dx

)
.

Note that when q → 1+, we have Rq(ν|µ) approaching Hµ(ν).

We now introduce additional technical details required for discussing functional inequalities; rigor-

ous expositions could be found in [Wan06, BGL14]. Let (Ω,F , µ) be a probability space and let

L denote a linear operator (infinitesimal generator) that is self-adjoint with domain D(L) which

generates a Markov semi-group Pt on L2(µ). The carré de champ operator associated to the in-

finitesimal generator L is given by the bilinear map Γ(ϕ1, ϕ2) = 1/2 [L(ϕ1ϕ2) − ϕ1Lϕ2 − ϕ2Lϕ1],

for all ϕ1, ϕ2 defined in a subspace of D(L) which is an algebra. We call the collection of the

measure µ on a state space (Rd,B(Rd)) and a carré de champ operator Γ a Markov triple, denoted

as (Rd, µ,Γ). It is well-known that the Dirichlet form associated with a Markov semi-group Pt is

then given by E(ϕ1, ϕ2) =
∫

Γ(ϕ1, ϕ2)dµ. By a standard integration-by-parts argument, we also

have that E(ϕ1, ϕ2) = −
∫
ϕ1Lϕ2. We use the convention E(ϕ) to denote E(ϕ, ϕ). The Dirichlet

domain D(E) is defined as D(E) :=
{
ϕ ∈ L2(µ) : E(ϕ) <∞

}
.

In the case of Brownian driven diffusions as in (3.1), the generator L is defined based on the

Laplacian operator △, which is a local operator. Correspondingly, the Dirichlet form is given by
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E(ϕ) =
∫
|∇ϕ(x)|2µ(x)dx, for all ϕ ∈ D(E). Based on this, we will introduce functional inequalities

below. A probability density µ is said to satisfy Poincaré Inequality (PI) with constant CP, denoted

as µ ∼ P (CP) if for all functions ϕ ∈ D(E), we have

Varµ(ϕ) :=

∫
Rd

(
ϕ2(x) −

(∫
Rd

ϕ(x)µ(x)dx

))2

µ(x)dx ≤ CP

∫
Rd

|∇ϕ(x)|2µ(x)dx = CPE(ϕ).(PI)

Similarly, a probability density µ satisfies a Logarithmic Sobolev inequality (LSI) with constant

CLSI denoted as µ ∼ LS(CLSI) if for all functions ϕ ∈ D(E), we have

Entµ(f) :=

∫
Rd

f2(x) log

(
f2(x)∫

Rd f2(x)µ(x)dx

)
µ(x)dx ≤ 2CLSI

∫
Rd

|∇f(x)|2µ(x)dx = 2CLSIE(ϕ).

(LSI)

An equivalent form of LSI is that for all probability densities ρ(x), we have

Hµ(ρ) ≤ CLSI

2
Iµ(ρ).

We refer the reader to [BGL14, Chapter 5] for the derivation of the equivalence. A probability

density µ(x) satisfies a modified Log-Sobolev Inequality (m-LSI) if for all probability measure ρ(x)

and all s ≥ 2, there is δ ∈ [0, 1/2) (depending on s) such that

Hµ(ρ) ≤ Cm-LSIIµ(ρ)1−δMs(ρ+ µ)δ.(m-LSI)

where Ms(ρ) =
∫
Rd(1 + |x|2)s/2ρ(x)dx. This version of m-LSI was introduced by [EH20] (also

see [CEL+21]), motivated by a related definition from [TV00]. It is important to notice that the

above version of m-LSI does not contain the Poincaré inequality as a special case, i.e., there exists

densities that satisfy the above m-LSI inequality but not Poincaré inequality and vice versa. There

exists other modifications to the LSI including the Beckner or Nash inequality [BGL14, Chapter 7]

and the Lata la-Oleszkiewicz [LO00] refinement to it, that interpolate between the LSI and Poincaré

inequalities.

The above discussion is focused on Brownian driven SDEs. It turns out that the above class of

functional inequalities are suitable for characterizing light-tailed densities (i.e., tails that decay ex-

ponentially fast). In the case of ϑ-stable driven diffusions as in (3.4), the generator is defined based
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on the non-local fractional Laplacian operator (−△)−
ϑ
2 ; see, for example, [Kwa17]. Correspond-

ingly, in Section 3.2.6, we present more general functional inequalities based on non-local Dirichlet

forms that are suitable for characterizing heavy-tailed densities and discuss the connection between

our assumptions and such functional inequalities.

3.2.4. The Transformed Unadjusted Langevin Algorithm.

3.2.4.1. Transformation Map. We start this section by stating the following important property

satisfied by smooth invertible transformation maps h : Rd → Rd.

Definition 1 (Transformed density functions). For a probability density µ(x) with full support

in Rd, its transformed density function under a smooth invertible transformation map (or a diffeo-

morphism) h is given by µh(x) = µ(h(x)) det(∇h(x)) for all x ∈ Rd.

If a random vector X has density µ, then we denote the density of the random vector Y = h−1(X),

denoted as µh, as the transformed density of µ. Note that in particular if X admits density π of

the form in (3.2), then Y = h−1(X) is distributed with density

πh(y) = Z−1e−fh(y) with fh(y) = f(h(y)) − log det(∇h(y)),(3.5)

being referred to as the transformed potential. In what follows, we assume that the potential func-

tion is isotropic. We emphasize that this assumptions is made for the sake of technical convenience

– it is possible to relax this assumption to certain mild regularity conditions on the density, at the

expense of having a more cluttered exposition.

Assumption A0. The initial potential function f is isotropic, i.e f(x) = f(|x|) and f : R → R is

twice continuously differentiable.

Since f is isotropic under Assumption A0, we may consider f to be a function defined on R+ as

well. In the later context, we use f(|x|) when we consider f defined on R+ and we use f(x) when

it is defined on Rd. Similarly, when we use f ′(|x|), f ′′(|x|) and so on, to represent the derivatives,

we consider f to be a function defined on R+.
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We now describe the construction of our specific transformation map. Our proposal is motivated by

the work of [JG12], who constructed similar maps to show exponential ergodicity of the Metropolis

Random Walk (MRW) algorithm. It turns out that a direct application of their construction to

analyze Langevin diffusions and their discretization, leads to worse dimensionality dependencies in

the non-asymptotic oracle complexities. Indeed, this is expected as [JG12] predominantly focused

on establishing asymptotic results. In order to proceed, we first define functions g : R → R which

correspond to the first part of the transformation map construction. Specifically, g is defined based

on initial function gin as

(3.6) g(r) =


gin(r), r < b

− 1
β ,

ebr
β

r ≥ b
− 1

β .

where β ∈ (1, 2]. The initial function gin : [0, b
− 1

β ) → [0, e) satisfies the following assumption.

Assumption G1. The initial function gin : [0, b
− 1

β ) → [0, e) is onto, monotone increasing and twice

continuously differentiable. Furthermore, it satisfies,

gin(0) = 0

lim

r→b
− 1

β
−

gin(r) = e,

lim

r→b
− 1

β
−

g′in(r) = βb
1
β e,

lim

r→b
− 1

β
−

g′′in(r) = (2β2 − β)b
2
β e,

lim

r→b
− 1

β
−

g′′′in(r) = (5β3 − 6β2 + 2β)b
3
β e,

lim
r→0+

∣∣∣∣f ′(gin(r))g′in(r)

r

∣∣∣∣ <∞,

lim
r→0+

∣∣∣∣∣ d
dr log g′in(r)

r

∣∣∣∣∣ <∞,

lim
r→0+

∣∣∣∣∣ d
dr log gin(r)

r

r

∣∣∣∣∣ <∞,

lim
r→0+

∣∣∣∣ d2dr2 log
gin(r)

r

∣∣∣∣ <∞,

lim
r→0+

∣∣∣∣ d2dr2 log g′in(r)

∣∣∣∣ <∞.

We now show that if gin satisfies Assumption G1, then g is three times continuously differentiable

and invertible on R.

Lemma 3.2.1. For the function g defined in (3.6), if gin satisfies Assumption G1, then we have

(1) g ∈ C3((0,∞)),
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(2) g is onto, strictly monotonically increasing, and hence invertible.

The proof of Lemma 3.2.1 is provided in Section 3.2.8.1. We now show that under Assumption G1,

the Φ-divergence is preserved after transformation. This property is important to eventually provide

our convergence results for sampling.

Proposition 6. Let h : Rd → Rd be a transformation map satisfying Assumption G1. For any

two probability densities ν and µ with full support on Rd, let νh and µh be the two transformed

densities under the map h. Then the Φ-divergence is preserved after transformation, i.e., we have

DΦ(ν|µ) = DΦ(νh|µh).(3.7)

Proof: We start from the right side of (3.7):

DΦ(νh|µh) =

∫
Rd

Φ

(
νh(y)

µh(y)

)
µh(y)dy =

∫
Rd

Φ

(
ν(h(y)) det(∇h(y))

µ(h(y)) det(∇h(y))

)
µ(h(y)) det(∇h(y))dy

=

∫
Rd

Φ

(
ν(x)

µ(x)

)
µ(x)dx = DΦ(ν|µ).

The second identity follows by the change of variable x = h(y) and noting det(∇h(y)) > 0 un-

der Assumption G1. ■

With the properties of g introduced in Lemma 3.2.1, we can then further define the isotropic

transformations h : Rd → Rd:

(3.8) h(x) =


g(|x|)x
|x|

x ̸= 0,

0 x = 0.

We call the map y 7→ x = h(y) to be the transformation map, which is isotropic. Furthermore, h

is also three times continuously differentiable and invertible on Rd and its inverse is

h−1(x) =


g−1(|x|) x

|x|
x ̸= 0,

0 x = 0.

Therefore, we can define the inverse transformation map x 7→ y = h−1(x).
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Algorithm 1: Transformed Unadjusted Langevin Algorithm (TULA)

Input : Step size γ and a sample y0 from a starting density ρ0
Output: Sequence x1, x2, · · ·
for n = 0, 1, · · · do

xn = h(yn) ▷ apply the inverse transformation ;

yn+1 ∼ N (yn − γ∇fh(yn), 2γId) ▷ generate samples ;

end

3.2.4.2. Transformed Langevin Diffusion and its discretization. With the transformed density

defined in (3.5), the transformed overdamped Langevin diffusion is given by

dYt = −∇fh(Yt)dt+
√

2dWt.(3.9)

We denote the density of Yt by ρt for all t ≥ 0. The stationary density function for the diffusion given

by (3.9) is πh as defined in (3.5). We can apply Euler discretization to the transformed overdamped

Langevin diffusion in (3.9) and generate a Markov chain (yn)n≥1 via the recursion,

yn+1 = yn − γn+1∇fh(yn) +
√

2γn+1un+1(3.10)

where (un) is a sequence of independent and identically distributed d-dimensional standard Gauss-

ian vectors and γ > 0 is the fixed step size. The Transformed Unadjusted Langevin algorithm

(TULA) in order to generate samples from a heavy-tailed density π is given in Algorithm 1.

We use νn to denote the density of the nth iterate xn and πγ to denote the stationary density of

(xn)n≥1. Since the step-size γ in Algorithm 1 is a constant, there is a bias between πγ and π. For

arbitrary accuracy ϵ > 0, by choosing small enough step-size γ and large enough number of iterations

n, we can bound the distance between νn and π by ϵ in terms of KL or Rényi divergence.

A Warm-up Example: Although our main motivation is to sample from densities that have

polynomially decaying tails, in this subsection, we provide a warm-up example on sampling from a

density that has exponentially decaying tails (see (3.12) for the definition of the potential function)

and does not satisfy LSI, by transforming it to satisfy LSI. Towards that goal, we consider the
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transformation map in (3.8) with the function g defined as

(3.11) g(r) =


dr2, r ≥ R,

gin(r), 0 ≤ r ≤ R,

where R > 0 is a constant, with

gin(r) = dRr exp

(
−5

6
+

3

2

r2

R2
− 2

3

r3

R3

)
.

The above form for g is motivated by [JG12, Equation 15], where they constructed transformation

maps to transform densities that are sub-exponential to sub-Gaussian. We also point out that

we consider the form of g in (3.11) only for this section, and it should not be confused with the

general form (3.6) considered in the rest of the section. By an argument similar to the proof of

Lemma 3.2.1, it could be shown that the transformation map defined with g as in (3.11) is a

diffeomorphism.

Now, consider the potential function defined in a piece-wise manner as

(3.12)

f(x) =


(1 + |x|2)

1
2 +

1

2
d log |x|, |x| ≥ R,

(1 + d2g−1
in (|x|)4)

1
2 + (d− 1) ln

|x|
g−1
in (|x|)

+ log g′in(g−1
in (|x|)) − d

2
log d− ln 2, |x| ∈ [0, R].

The corresponding probability density induced by the potential f above has a lighter tail than the

one with potential |x|. But it has a heavier tail than densities with potentials |x|ϱ for any ϱ > 1.

For the above potential f , the transformed potential is given by

fh(x) = (1 + d2|x|4)
1
2 − d

2
log d− log 2.

The LSI constant of the density induced by fh can be studied via the Holley-Stroock Theorem

(see Theorem 15). We can write

fh(x) = d|x|2 +
1

d|x|2 + (1 + d2|x|4)
1
2

− d

2
log d− log 2

:= d|x|2 − d

2
log d− log 2 + Osc(x),
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where Osc(x) := 1

d|x|2+(1+d2|x|4)
1
2

and is uniformly bounded by 1. Meanwhile the density correspond-

ing to the potential function e−d|x|2 + d
2 log d+log 2 satisfies LSI with constant 1/2d. Therefore e−fh

satisfies LSI with constant Ch,LSI = e/2d. On the other hand, fh(x) also has Lipschitz gradients

with constant Lh = O(d). Hence, according to [VW19] and Proposition 6, the iteration complexity

of TULA for sampling from a density with potential f as in (3.12) is of order Õ(d/ϵ) where ϵ is the

error tolerance in KL-divergence. This is to be contrasted with [CEL+21, Examples 9 and 11] on

using ULA to sample from densities with potentials of the from |x|ϱ for ρ ∈ [1, 2]. Specifically, we

note that TULA has better oracle complexity as long as ρ ∈ (1, 2].

3.2.4.3. Transformed Langevin Diffusions as Itô diffusions. It is worth noting that the trans-

formed diffusion process in (3.9) could also be interpreted in terms of an Itô diffusion. Specifically,

by a direct calculation, the stochastic process Xt = h(Yt) has the form

(3.13) dXt = b(Xt)dt+ σ(Xt)dWt,

with σ(x) :=
√

2(∇h)(h−1(x)) and

b(x) := −(∇hT )(h−1(x))(∇h)(h−1(x))∇f(x) + (∇hT )(h−1(x))(∇ log det∇h)(h−1(x))

+ (∆ · h)(h−1(x)),

where △ · h(·) ∈ Rd and is defined co-ordinate wise as (△ · h(x))i = △hi(x) for all i ∈ {1, · · · , d}

and x ∈ Rd. Furthermore, we can actually show that

b(x) =
1

2π(x)
⟨∇, π(x)σ(x)Tσ(x)⟩,

where ⟨∇, ·⟩ is the divergence operator for matrix-valued function, i.e ⟨∇, ω(x)⟩i =
∑d

j=1
∂ωi,j(x)

∂xj

for ω : Rd → Rd×d.

The above form of b(x) follows by noting that from the form of π(x) in (3.2), we have

1

2π(x)
⟨∇, π(x)σ(x)Tσ(x)⟩ =

1

2
⟨∇, σT (x)σ(x)⟩ − 1

2
σT (x)σ(x)∇f(x)

= −(∇hT )(h−1(x))(∇h)(h−1(x))∇f(x) +
1

2
⟨∇, σT (x)σ(x)⟩.
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Meanwhile from (3.8), based on elementary algebraic manipulations, we obtain that

1

2
⟨∇, σT (x)σ(x)⟩ =

[
2g′′(g−1(|x|)) + (d− 1)

g′(g−1(|x|))2

|x|
− (d− 1)

|x|
g−1(|x|)2

]
x

|x|
,

(∆ · h)(h−1(x)) =

[
g′′(g−1(|x|)) + (d− 1)

g′(g−1(|x|))
g−1(|x|)

− (d− 1)
|x|

g−1(|x|)2

]
x

|x|
,

and

(∇hT )(h−1(x))(∇ log det∇h)(h−1(x))

=

[
g′′(g−1(|x|)) + (d− 1)

g′(g−1(|x|))2

|x|
− (d− 1)

g′(g−1(|x|))
g−1(|x|)

]
x

|x|
.

This highlights the fact that transformations provide a way of constructing the drift and diffusion

terms in the Itô diffusion that take into account the heavy-tailed nature of the target density.

However, it turns out that the results on the analysis of discretizations of Itô diffusion from [EMS18,

LWME19], which are in the Wasserstein metric, are not applicable to the class of Itô diffusion of

the form above; indeed the stronger Wasserstein contraction conditions made in those works are

not satisfied by the above class of Itô diffusions. We leave a detailed investigation of analysis of

discretizations of Itô diffusion above, in stronger KL or Rényi metrics, as future work.

3.2.5. Convergence Results. In this section, we will impose assumptions on the potential

function f under which we show exponential ergodicity of the transformed Langevin diffusion and

convergence results for Algorithm 1.

3.2.5.1. Convergence along the transformed Langevin diffusions. We first state convergence re-

sults for the continuous time Langevin diffusion under various curvature-related assumptions on

the potential function.

Assumption A1. (Dissipativity) There exists A,B,N1 > 0, α ∈ [1, 2] such that for all |x| > N1:

f ′(ψ(|x|))ψ′(|x|)|x| − bβd|x|β + (d− β) > A|x|α −B,

where ψ(r) = ebr
β

for all r ≥ b
− 1

β .

87



Assumption A1 is imposed to guarantee that the transformed potential function satisfies the dissi-

pativity condition. We next recall the dissipativity condition for completeness.

Assumption B1. (αh-dissipativity) We say that the transformed potential function fh : Rd → R

satisfies the αh-dissipativity condition with αh ∈ [1, 2] if there exists Ah, Bh > 0 such that for all

x ∈ Rd:

⟨∇fh(x), x⟩ > Ah|x|αh −Bh.

If the transformed potential function satisfies the αh-dissipativity condition with αh = 1, then

the corresponding transformed density πh satisfies a Poincaré inequality with certain constant Ch,P

depending on the potential function. Then, similar to [VW19], we obtain the following result.

Theorem 10. Assume the initial potential function f satisfies Assumption A0 and Assumption A1

with α = 1. Then, the transformed density πh with β = 1 and b ≥ r
8(d−1) satisfies a Poincaré

inequality with a constant Ch,P depending on f . Therefore along the transformed Langevin diffusion

(3.9), we have for q ≥ 2 that

Rq(ρt|πh) ≤


Rq(ρ0|πh) −

2Ch,Pt

q
if Rq(ρ0|πh) ≥ 1 as long as Rq(ρt|πh) ≥ 1,

e
−

2Ch,Pt

q Rq(ρ0|πh) if Rq(ρ0|πh) ≤ 1.

Assumption A2. (Degenerate convexity) There exists µ,N2 > 0, θ ≥ 0 such that for all |x| > N2:

f ′(ψ(|x|))ψ′(|x|)|x|−1 − bβd|x|β−2 + (d− β)|x|−2 >
µ

(1 + 1
4 |x|2)θ/2

,

f ′′(ψ(|x|))ψ′(|x|)2 + f ′(ψ(|x|))ψ′′(|x|) − bβ(β − 1)d|x|β−2 − (d− β)|x|−2 >
µ

(1 + 1
4 |x|2)θ/2

.

where ψ(r) = ebr
β

for all r ≥ b
− 1

β .

Assumption A2 is imposed to guarantee the transformed potential function is degenerately convex

at infinity. We now recall the definition of degenerate convexity at infinity from [EH20].
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Assumption B2. (Degenerate convexity at infinity) We say that the transformed potential function

fh : Rd → R is degenerately convex at infinity if there exist a function ϕ̃ : Rd → R such that for a

constant ξh ≥ 0 ∥∥∥fh − ϕ̃
∥∥∥
∞

≤ ξh,

where f̃ satisfies,

∇2f̃(x) ⪰ µh

(1 + 1
4 |x|2)θh/2

Id,

for some µh > 0 and θh ≥ 0.

The degenerate convexity at infinity condition is weaker than the strong convexity at infinity. If

a potential function satisfies degenerate convexity at infinity, then the corresponding probability

measure satisfies m-LSI. Similar to [TV00], we obtain the following result.

Theorem 11. Assume the initial potential function f satisfies Assumption A0 and Assumption A2.

Then the transformed density πh satisfies a modified Logarithmic Sobolev Inequality with a uniform

constant δ (see (m-LSI)) and constant Ch,m-LSI depending on f . Therefore along the transformed

Langevin diffusion (3.9), we have

Hπh
(ρt) ≤

C

tℓ
,

where the constant C depends on the potential f and the transformation h and ℓ = (1 − 2δ)/δ.

Remark 11. Note that the above rate is faster than any polynomial but not truly exponential.

While the above rate could be made exponential with additional assumptions on the tail and/or

assumptions on the initial distribution, we do not present such modifications here.

Assumption A3. (Strong convexity at infinity) There exists N3, ρ > 0 such that for all |x| > N3:

f ′(ψ(|x|))ψ′(|x|)|x|−1 − bβd|x|β−2 + (d− β)|x|−2 > ρ,

f ′′(ψ(|x|))ψ′(|x|)2 + f ′(ψ(|x|))ψ′′(|x|) − bβ(β − 1)d|x|β−2 − (d− β)|x|−2 > ρ,
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where ψ(r) = ebr
β

for all r ≥ b
− 1

β .

Assumption A3 is imposed to guarantee that the transformed potential function is strongly con-

vex with parameter ρh at infinity. The property that a potential function is strongly convex at

infinity implies that the corresponding probability measure satisfies a LSI with a certain parameter

depending on the potential function and the transformation map.

Theorem 12. Assume the initial potential function f satisfies Assumption A0 and Assumption A3,

then the transformed density πh satisfies a logarithmic Sobolev inequality with a constant Ch,LSI

depending on f . Therefore along the transformed Langevin diffusion (3.9), we have

Hπh
(ρt) ≤ e−2tCh,LSIHπh

(ρ0).

3.2.5.2. Convergence along TULA. In this section, we state two types of convergence results for

Algorithm 1, based on Proposition 6 and [VW19, CEL+21]. While the works of [VW19, CEL+21]

provide results only for exponentially decaying densities, our results below are applicable for

polynomially-decaying densities based on the constructed transformation maps. To proceed, we

first list smoothness conditions on the potential function f .

Assumption A4. (Gradient Lipschitz) There exists N4, L > 0 such that for all |x| > N4:

f ′(ψ(|x|))ψ′(|x|)|x|−1 − bβd|x|β−2 + (d− β)|x|−2 < L,

f ′′(ψ(|x|))ψ′(|x|)2 + f ′(ψ(|x|))ψ′′(|x|) − bβ(β − 1)d|x|β−2 − (d− β)|x|−2 < L

where ψ(r) = ebr
β

for all r ≥ b
− 1

β .

Assumption A4 is imposed to guarantee that the transformed potential function has Lipschitz

gradients with parameter Lh. Such smoothness conditions on the potential function are required to

study the discrete Markov chain generated in the unadjusted Langevin algorithm. We also remark

that it is possible to relax the Lipschitz gradient assumption to certain weak-smooth conditions

on the gradient; we do not pursue such extensions in this work. While Theorem 11 holds under
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m-LSI, to get the corresponding result for Algorithm 1, we also require the following additional

tail-conditions.

Assumption A5. (Tail assumption) For some m ≥ 0, α1 ∈ [0, 1] and N5 > 0, there exists a positive

constant C∗
tail such that for all λ ≥ N5,

π {| · | ≥ m+ λ} ≤ 2 exp

(
−
(
ψ−1(λ)

C∗
tail

)α1
)
,

where ψ(r) = ebr
β

for all r ≥ b
− 1

β .

Assumption B5. For some mh ≥ 0 and αh,1 ∈ [0, 1], there exists a positive constant Ch,tail such

that for all λ ≥ 0,

πh {| · | ≥ mh + λ} ≤ 2 exp

(
−
(

λ

Ch,tail

)αh,1
)
.

Theorem 13. In addition to the assumptions in Theorem 11, assume that the initial potential f

is such that ∇fh(0) = 0, and it satisfies Assumption A4 and Assumption A5. Furthermore, let

ϵ−1,mh, Ch,m-LSI, Ch,tail, Lh, R2(ρ0|π̂h) ≥ 1 (π̂h is as defined in (3.52) with R̂ = 2
∫
Rd |x|πh(x)dx

and γ̂ = (3072nγ)−1), and mh, Ch,tail, R2(ρ0|π) ≤ dÕ(1). Then, Algorithm 1 with an step size

γ = Θ̃

 ϵ

dC2
h,m-LSIC

θ
h,tailL

2
hR2q(ν0|π)θ/αh,1

× min

1,
1

qϵ
,
d

mh
,

d

R2(ρ0|π̂h)
,

(
R2q(ν0|π)1/αh,1

mh

)θ

 ,

satisfies Rq(νn|π) ≤ ϵ, for all q ≥ 2 after

n = Θ̃

(
dR2q(ν0|π)2θ/αh,1C4

h,m-LSIC
2θ
h,tailL

2
h

ϵ
max

{
1, ϵ,

mh

d
,
R2(ρ0|π̂h)1/2

d
,

(
mh

R2q(ν0|π)1/αh,1

)θ
})

iterations, for some θ ∈ [0, 1] (depending on the parameter δ in (m-LSI)). Explicit form of Ch,m-LSI

is the constant λ in (3.42) and mh, Ch,tail, Lh are given in (3.51),(3.50), (3.36) respectively. The

Θ̃(·) notation hides polylogarithmic factors as well as constants depending on θ, q.
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Remark 12. In order to obtain a direct quantitative bound, it is important to obtain a control of

R2(ρ0|π̂h) and R2q(ν0|π). We refer to [CEL+21, Section A] for a proof that the conditions required

on R2(ρ0|π̂h) is satisfied, and for obtaining a control on the term R2q(ν0|π).

Theorem 14. In addition to the assumptions in Theorem 12, assume that f satisfies Assump-

tion A4. Then Algorithm 1, for any y0 ∼ ρ0 with Hπh
(ρ0) <∞, and with step size

0 < γ ≤ 1

2L2
hCh,LSI

min
{

1,
ϵ

4d

}
,

satisfies Hπ(νn) < ϵ, for any ϵ > 0 after

n = Θ̃

(
Ch,LSI

2γ
log

2Hπh
(ρ0)

ϵ

)
iterations. Explicit forms of Ch,LSI and Lh are given in (3.35) and (3.36).

Remark 13. As argued in [VW19], if we let ρ0 to be a Gaussian distribution with mean being any

stationary point of fh and covariance matrix being (1/Lh)Id, then Hπh
(ρ0) = Õ(d). Furthermore,

we also remark that similar convergence results in the stronger Rényi metric, for all q ≥ 4 holds

via [CEL+21, Theorem 4].

Remark 14. We leave a detailed study of obtaining convergence results for the underdamped

Langevin dynamics and its discretization as future work.

3.2.6. Relation with Poincaré Inequalities based on Non-local Dirichlet Forms. We

now discuss the relationship between our assumptions on the potential function and functional in-

equalities like super and weak Poincaré inequalities that arise in characterizing the heavy-tailed sta-

tionary distributions of certain ϑ-stable driven diffusions [RW01, RW03, CGGR10, Wan14, WW15,

HMW21]. Recall from Section 3.2.3 that the Dirichlet form associated with Langevin diffusion

in (3.1) is of the form E(ϕ) =
∫
|∇ϕ(x)|2µ(x)dx. However, in the case of ϑ-stable driven diffusions

the corresponding non-local Dirichlet form is given by

E(ϕ) :=
x

{x̸=y}

(ϕ(x) − ϕ(y))2

|x− y|(d+ϑ)
dxµ(dy),(3.14)
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for all functions in the Dirichlet domain D(E); see for example [Wan14]. We now introduce similar

functional inequalities that are associated with stable-driven diffusions.

Definition 2 (Poincaré-type Inequalities). A Markov triple (Rd, µ,Γ) (with µ a probability mea-

sure), with the Dirichlet form as in (3.14) is said to satisfy

• a Poincaré inequality if there exists a consatnt C > 0 such that for any function ϕ : Rd → R

in the Dirichlet domain D(E),

Varµ(ϕ) ≤ CE(ϕ),

• a weak Poincaré inequality if there exists a function α : (0,∞) → R+ such that for any

function ϕ : Rd → R in the Dirichlet domain D(E) and r > 0,

Varµ(ϕ) ≤ α(r)E(ϕ) + r ∥ϕ∥2∞ ,

• a super Poincaré inequality if there exists non-increasing function β : (0,∞) → R+ such

that for any function ϕ : Rd → R in the Dirichlet domain D(E) and r > 0,

µ(ϕ2) ≤ rE(ϕ) + β(r)µ(|ϕ|)2,

where µ(φ) =
∫
Rd φ(x)µ(dx) for all φ ∈ L1(µ).

In the following, we will discuss the relation between Assumption A1, Assumption A3, and As-

sumption A2, and the Poincaré-type inequalities above. In what follows, the terms α(r) and β(r)

are defined as

α(r) = inf
s>0

{
1

inf0<|x−y|≤s[(ef(x) + ef(y))|x− y|−(d+ϑ)]
:

∫ ∫
|x−y|>s

e−f(x)e−f(y)dxdy ≤ r/2

}
,

(3.15)

β(r) = inf
t,s>0

{
2µ(ω)

inf |x|≥t ω(x)
+ βt(t ∧ s) :

2

inf |x|≥t ω(x)
+ s ≤ r

}
,(3.16)
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where for any t > 0, we have

βt(s) = inf
u>0

{
(sup|z|≤2t e

f(z))2

ud(inf |z|≤t ef(z))
:
uϑ(sup|z|≤2t e

f(z))

(inf |z|≤t ef(z))
≤ s

}
.

The function ω will depend on the properties of the potential f .

Proposition 7. If the original potential satisfies Assumption A1 with parameters α,A,B, then

(1) If α > β or α = β, ϑ < Aβ−1b−1, the original density function satisfies the super Poincaré

inequality with

ω(x) =
C

2d+ϑ
|x|Aα−1b

−α
β log

α
β
−1

(|x|)−ϑ log
−B

β (|x|),

for some positive constant C.

(2) If α = β, ϑ ≥ Aβ−1b−1, the original density function satisfies the weak Poincaré inequality.

Proposition 8. If the original potential satisfies Assumption A2 with parameters µ, θ, then

(1) If θ < 2 − β or θ = 2 − β, ϑ < µβ−1b−1, the original density function satisfies the super

Poincaré inequality with ω(x) defined as

ω(x) =


C

2d+ϑ
|x|(1−θ)−1(2−θ)−1µb

− 2−θ
β log

2−θ
β

−1
(|x|)+1−(d+ϑ) log

− d−β
β (|x|), θ < 2 − β,

C

2d+ϑ
|x|b

− 2−θ
β log

2−θ
β

−1
(|x|)−ϑ log

− d−β
β (|x|), θ = 2 − β, ϑ < µβ−1b−1.

where C is some positive constant.

(2) If θ = 2 − β, ϑ ≥ µβ−1b−1 or θ > 2 − β, the original density function satisfies the weak

Poincaré inequality.

α(r) = inf

{
1

inf0<|x−y|≤s[(ef(x) + ef(y))|x− y|−(d+ϑ)]
:

∫ ∫
|x−y|>s

e−f(x)e−f(y)dxdy ≤ r/2

}
.

Proposition 9. If the original potential function satisfies Assumption A3 with parameter ρ, then

94



(1) If β ∈ (1, 2) or β = 2, ϑ < 1
2ρb

−1, the original density function satisfies the super Poincaré

inequality with

ω(x) =
C

2d+ϑ
|x|

1
2
ρb

− 2
β log

2
β
−1

(|x|)−ϑ log
− d−β

β (|x|),

for some positive constant C.

(2) If β = 2, ϑ = 1
2ρb

−1, d = 1, 2, the original density function satisfies the Poincaré inequality.

(3) If β = 2, ϑ = 1
2ρb

−1, d ≥ 3 or β = 2, ϑ > 1
2ρb

−1, the original density function satisfies the

weak Poincaré inequality.

Remark 15. For the example of multivariate t-distribution, it is shown later in Lemma 3.2.3, that

it satisfies Assumption A3 with β = 2, α = 2, A = 2bκ, B ≥ 0 and arbitrary µ ∈ (0, 2bκ). Therefore

when κ > ϑ, it falls into the class of densities described by the super Poincaré inequality. When

0 < κ ≤ ϑ, it falls into the class of densities described by the weak Poincaré inequality. This

classification of the multivariate t-distributions with different degrees of freedom coincides with

[WW15, Corollary 1.2].

Remark 16. For the multivariate t-distribution with degrees of freedom κ, we show later in Lemma

3.2.3 that it satisfies Assumption A2 with arbitrary µ ∈ (0, bκβ(β − 1)) and θ = 2 − β. When

ϑ < κ(β − 1), we can show that multivariate t-distribution with κ degrees of freedom satisfies the

super Poincaré inequality which agrees with the results in [Wan14] and our Remark 15 above.

3.2.7. Illustrative Examples. In this section, we introduce a specific transformation map

h defined by (3.6) and (3.8) with β = 2 and gin defined by the following equation. For all r ≤

b−
1
2 ,

gin(r) = rb
1
2 exp

(
br2 − 10

3
b
3
2 r3 +

15

4
b2r4 − 6

5
b
5
2 r5 +

47

60

)
.(3.17)

Using the above transformation map, we analyze the oracle complexity of TULA for sampling from

the multivariate t-distribution and related densities.
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3.2.7.1. Example 1. The density and potential function of the multivariate t-distribution are

respectively given by

π(x) ∝ (1 + |x|2)−
d+κ
2 , f(x) =

d+ κ

2
log(1 + |x|2),(3.18)

where κ is the degrees of freedom parameter. We first show that the above gin satisfies Assump-

tion G1 and hence the corresponding h is a diffeomorphism.

Lemma 3.2.2. With gin defined in (3.17), β = 2 and f(x) = d+κ
2 log(1 + |x|2), g defined in (3.6)

satisfies Assumption G1.

Next, we show that the potential function of the multivariate t-distribution satisfies the assumptions

we introduced in Section 3.2.5.

Lemma 3.2.3. We have for the following for the potential function f(x) in (3.18):

(1) f(x) is isotropic and f ∈ C2(Rd);

(2) f satisfies Assumption A4 with some N4 > 0 and L = 2κb
2
β β;

(3) f satisfies Assumption A1 with α = β, A = κbβ and some B ≥ 0,N1 > 0.

(4) f satisfies Assumption A2 with arbitrary µ ∈ (0, κbβ(β− 1)), θ = 2−β and some N2 > 0.

Hence, we can apply Theorem 14 with n = Õ(L2
hC

2
h,LSId/ϵ), where Ch,LSI and Lh are two constants

that depend on f as introduced in (3.35) and (3.36). However, the dependence of Ch,LSI and

Lh on f would affect the order of n significantly, especially in terms of the dimension parameter.

Specifically, after explicitly calculating the constants Ch,LSI and Lh, the mixing time of TULA

in KL-divergence with error tolerance ϵ is of order n = Õ(exp(2d)dd+1ϵ−1). A detailed proof of

Lemma 3.2.3 and the calculation for order estimation of the mixing time n are given in Sections

3.2.8.6 and 3.2.8.7 respectively.

Despite the above result for the multivariate t-distribution, we next demonstrate through several

examples that as long as the tail becomes slightly lighter, we get linear dependency on both the
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dimension parameter and inverse of the target accuracy parameter. In the next several examples, we

use the following result form [CW97] to calculate the LSI constant. Furthermore, following a similar

argument in the proof of Lemma 3.2.3, one can show that the potentials satisfy the assumptions

required by Theorem 14. However, for simplicity, we directly calculate the LSI constants of the

transformed potential and use the result from [VW19].

Corollary 1. [Simplified version of [CW97, Corollary 1.4]] For the Langevin diffusion process

with generator L = −∇f · ∇+△, let λf (x) be the largest eigenvalue of the matrix ∇2f(x) and let

β̄(r) = inf |x|≥r{−λf (x)}. If supr≥0 β̄(r) > 0, then the stationary measure to this Langevin diffusion

satisfies LSI with constant 2/α(L) such that

α(L) ≥ 2

a20
exp

(
1 −

∫ a0

0
rβ̄(r)dr

)
> 0,

where a0 > 0 is the unique solution to the equation
∫ a
0 β̄(r)dr = 2/a.

3.2.7.2. Example 2. The next potential function f we consider is given by

f(x) =



d+ κ

2
log(1 + |x|2) − d+ κ

2
log(1 + |x|−2) + (υfd+ 1) log log |x|

+

(
υf +

1

2

)
d log(1 + 2b(log |x|)−1) |x| ≥ e,

(d− 1) log |x| +
d

2
log g−1

in (|x|)2 +

(
1

2
+ υf

)
d log

(
1 +

1

2
g−1
in (|x|)2

)
− (d− 1) log g−1

in (|x|) + log g′in(g−1
in )(|x|) + υfd log b

+

[(
1

2
+ υf

)
d− 1

]
log 2, 0 ≤ |x| < e.

where υf ∈ (−3
2 ,

15
2 ). With the transformation h defined by (3.6), (3.8) and (3.17) and b = d

2κ , the

transformed potential is

fh(x) =
d

2
|x|2 +

(
1

2
+ υf

)
d log

(
1 +

1

2
|x|2
)

+ υfd log b+

[(
1

2
+ υf

)
d− 1

]
log 2, ∀x ∈ Rd.
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We can find the LSI constant of the transformed density πh ∝ e−fh(x) by [CW97, Corollary 1.4].

First, note that the two eigenvalues of ∇2fh(x) are

λ1(x) = d

[
1 +

(
1

2
+ υf

)
1

1 + 1
2 |x|2

]
, and λ2(x) = d

[
1 +

(
1

2
+ υf

)
1 − 1

2 |x|
2

(1 + 1
2 |x|2)2

]
.

We now consider the following cases.

(a) When υf = −1
2 : λ1(x) = λ2(x) = d. The LSI constant Ch,LSI = 2

d .

(b) When υf ∈ (−1
2 ,

15
2 ), λ2(x) < λ1(x) for all x ∈ Rd. Therefore

β(r) =



[
1 − 1

8

(
υf +

1

2

)]
d, 0 ≤ r ≤

√
6,[

1 +
1 − 1

2r
2

(1 + 1
2r

2)2

(
1

2
+ υf

)]
d, r >

√
6.

and

∫ a0

0
β(r)dr =

2

a0
=⇒ a0 =

(
2

1 − 1
8(υf + 1

2)
d−1

) 1
2

.

The LSI constant is hence given by

Ch,LSI = a20 exp

(∫ a0

0
rβ(r)dr − 1

)
=

2

1 − 1
8(υf + 1

2)
d−1.

(c) When υf ∈ (−3
2 ,−

1
2), λ1(x) < λ2(x) for all x ∈ Rd. Therefore

β(r) = inf
|x|>r

λ1(x) = λ1(0) = (
3

2
+ υf )d.

and

∫ a0

0
β(r)dr =

2

a0
=⇒ a0 =

(
2

3
2 + υf

d−1

) 1
2

.

The LSI constant is

Ch,LSI = a20 exp(

∫ a0

0
rβ(r)dr − 1) =

2
3
2 + υf

d−1.
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Hence, we have that Ch,LSI = O(d−1). Combined with the fact that the gradient Lipschitz constant

of fh is Lh = O(d), according to [VW19], the iteration complexity to achieve ϵ error tolerance

in KL-divergence is of order Õ(d/ϵ), where Õ hides numerical constants and poly-logarithmic

factors.

3.2.7.3. Example 3. The next potential function is given by

f(x) =



d(1 +
1

2b
) log |x| + (

d

2
+ 1) log log |x| + d log(1 + 2b(log |x|)−1)

− (d− 1) log 2 − d

2
log b, |x| > e,

(d− 1) log |x| − (d− 1) log g−1
in (|x|) +

d

2
g−1
in (|x|)2

+ d log(1 +
1

2
g−1
in (|x|)2) + log g′in(g−1

in )(|x|), 0 ≤ |x| ≤ e.

As a point of reference, we compare the potential above to the potential function f̃(x) = d(1 +

1
2b) log(1 + |x|) + (d2 + 1) log log(e + |x|). According to [Wan14], if b = d/2ϑ, f̃ satisfies the weak

Poincaré inequality with ϑ being the degree of freedom. The corresponding transformed potential

is then given by

fh(x) =
d

2
|x|2 + d log

(
1 +

1

2
|x|2
)
.

The density function induced by this potential function satisfies the LSI and the log-concavity

assumption. This follows from by calculating the two eigenvalues of the Hessian matrix ∇2fh(x),

that are given by

λ1 = d

[
1 +

1

1 + 1
2 |x|2

]
, and λ2 = d

[
1 +

1 − 1
2 |x|

2

(1 + 1
2 |x|2)2

]
.

For all x ∈ Rd, we have that 0 < λi ≤ 2d for i = 1, 2. Therefore the transformed potential fh is

gradient Lipschitz with parameter 2d. To find the LSI parameter we use [CW97, Corollary 1.4].

For all x ∈ Rd: λ2 ≤ λ1.

β̄(r) = inf
|x|>r

λ2 =


7

8
d, r ∈ (0,

√
6],

(1 +
1 − 1

2r
2

(1 + 1
2r

2)2
)d, r ∈ (

√
6,∞).
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The solution to the equation
∫ a
0 β̄(r)dr = 2/a is given by a0 =

√
16/7d. The LSI constant hence

satisfies

Ch,LSI ≤ a20 exp

(∫ a0

0
rβ̄(r)dr − 1

)
=

16

7d
.

According to [VW19], the iteration complexity is of order Õ(d/ϵ), where Õ hides only numerical

constants and poly-logarithmic factors.

3.2.7.4. Example 4. Our next potential function is given by

f(x) =



d(1 +
1

2b
) log |x| + log log |x| +

d

2
log(1 + 2b(log |x|)−1)

− (
d

2
− 1) log 2, |x| > e,

(d− 1) log |x| − (d− 1) log g−1
in (|x|) +

d

2
g−1
in (|x|)2

+
d

2
log(1 +

1

2
g−1
in (|x|)2) + log g′in(g−1

in )(|x|), 0 ≤ |x| ≤ e.

To study the tail-behavior of the original potential function f , we compare it to another potential

function f̃(x) = d(1 + 1
2b) log(1 + |x|) + log log(e+ |x|). According to [Wan14], if b = d

2ϑ , f̃ satisfies

the weak Poincaré inequality with ϑ being the degree of freedom. But compare to the previous

example, it has a heavier tail because 1 < d
2 + 1.

The transformed potential in this case is given by

fh(x) =
d

2
|x|2 +

d

2
log

(
1 +

1

2
|x|2
)
.

Similar to the previous example, the corresponding density function satisfies LSI and log-concavity

assumption. The two eigenvalues of the Hessian matrix are:

λ1 = d

[
1 +

1

2

1

1 + 1
2 |x|2

]
, and λ2 = d

[
1 +

1

2

1 − 1
2 |x|

2

(1 + 1
2 |x|2)2

]
.

For all x ∈ Rd, 0 < λi ≤ 3
2d for i = 1, 2. Therefore the transformed potential fh is gradient

Lipschitz with parameter 3
2d. To find the LSI parameter we use [CW97, Cororllary 1.4]. For all
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x ∈ Rd: λ2 ≤ λ1. Furthermore, we have

β̄(r) = inf
|x|>r

λ2 =


15

16
d, r ∈ (0,

√
6],(

1 +
1

2

1 − 1
2r

2

(1 + 1
2r

2)2

)
d, r ∈ (

√
6,∞).

The solution to the equation
∫ a
0 β̄(r)dr = 2/a is then a0 =

√
32
15d . The LSI constant Ch,LSI

satisfies

Ch,LSI ≤ a20 exp

(∫ a0

0
rβ̄(r)dr − 1

)
=

32

15d
.

According to [VW19], the iteration complexity is of order Õ(d/ϵ), where Õ hides only numerical

constants and poly-logarithmic factors.

3.2.7.5. Example 5. We next consider the following potential function given by

f(x) =



d(1 +
1

2b
) log |x| − (

d

4
− 1) log log |x| +

d

4
log(1 + 2b(log |x|)−1)

− (
d

4
− 1) log 2 +

d

4
log b |x| > e

(d− 1) log |x| − (d− 1) log g−1
in (|x|) +

d

2
g−1
in (|x|)2 + log g′in(g−1

in )(|x|) 0 ≤ |x| ≤ e

To study the tail-behavior of the original potential function f , we compare it to another potential

function f̃(x) = d(1 + 1
2b) log(1 + |x|)− (d4 − 1) log log(e+ |x|). According to [Wan14], with b = d

2ϑ ,

if d < 4, f̃ satisfies the weak Poincaré inequality with ϑ being the degree of freedom. If d = 4,

f̃ satisfies Poincaré inequality with ϑ being the degree of freedom. If d > 4, f̃ satisfies the super

Poincaré inequality with ϑ-degree of freedom.

The transformed potential is given by

fh(x) =
d

2
|x|2 +

d

4
log

(
1 +

1

2
|x|2
)
.

The corresponding density function satisfies LSI and log-concavity assumption. The two eigenvalues

of the Hessian matrix are:

λ1 = d

[
1 +

1

4

1

1 + 1
2 |x|2

]
, and λ2 = d

[
1 +

1

4

1 − 1
2 |x|

2

(1 + 1
2 |x|2)2

]
.
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For all x ∈ Rd, 0 < λi ≤ 5
4d for i = 1, 2. Therefore the transformed potential fh is gradient

Lipschitz with parameter 3
2d. To find the LSI parameter we use [CW97, Cororllary 1.4]. For all

x ∈ Rd: λ2 ≤ λ1.

β̄(r) = inf
|x|>r

λ2 =


31

32
d, r ∈ (0,

√
6],(

1 +
1

2

1 − 1
2r

2

(1 + 1
2r

2)2

)
d, r ∈ (

√
6,∞).

The solution to the equation
∫ a
0 β̄(r)dr = 2/a is then a0 =

√
64/31d. The LSI constant Ch,LSI

satisfies

Ch,LSI ≤ a20 exp

(∫ a0

0
rβ̄(r)dr − 1

)
=

64

31d
.

According to [VW19], the iteration complexity is of order Õ(d/ϵ), where Õ hides only numerical

constants and poly-logarithmic factors.

3.2.7.6. Example 6. As the limiting example of the previous three examples, we consider the

potential function

f(x) =


d(1 + 1

2b) log |x| − (d2 − 1) log log |x| + log 2 + d
2 log b for |x| > e

(d− 1) log |x| − (d− 1) log g−1
in (|x|) + d

2g
−1
in (|x|)2 + log g′in(g−1

in )(|x|), for 0 ≤ |x| ≤ e

We introduce f̃(x) = d(1 + 1
2b) log(1 + |x|) − (d2 − 1) log log(e+ |x|) which has similar tail-behavior

as the potential f above. According to [Wan14], with b = d
2ϑ , if d = 1, f̃ satisfies the weak Poincaré

inequality with ϑ being the degree of freedom. If d = 2, f̃ satisfies Poincaré inequality with ϑ being

the degree of freedom. If d > 2, f̃ satisfies the super Poincaré inequality with ϑ-degree of freedom

and it induces a density function which has heavier tail than the multivariate t-distribution with

ϑ-degree of freedom.

The transformed potential is fh(x) = d
2 |x|

2. The Hessian matrix is ∇2fh(x) = dId. Therefore

fh is log-concave with parameter d and the corresponding density satisfies LSI with parameter

Ch,LSI ≤ 2/d. According to [VW19], the iteration complexity is of order Õ(d/ϵ), where Õ hides

only numerical constants and poly-logarithmic factors.
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3.2.8. Proofs. In this section, we will prove the theorems stated in Sections 3.2.5-3.2.7.

3.2.8.1. Analysis of the transformation maps. In this section we first analyze the transformation

map induced by g defined in (3.6).

Lemma 3.2.4. If the potential function f satisfies Assumption A0, then we have

(3.19) ∇fh(x) =


[
f ′(gin(|x|))g′in(|x|) − g′′in(|x|)

g′in(|x|)
− (d− 1)

g′in(|x|)
gin(|x|)

+
d− 1

|x|

]
x

|x|
|x| < b−

1
β ,[

f ′(eb|x|
β

)bβ|x|β−1eb|x|
β

− βbd|x|β−1 +
d− β

|x|

]
x

|x|
|x| ≥ b−

1
β .

and ∇2fh(x) has two eigenvalues λ1 = λ1(|x|) and λ2 = λ2(|x|) with λ1, λ2 defined as

(1) When |x| < b
− 1

β :

λ1(|x|) = f ′′(gin(|x|))(g′in(|x|))2 + f ′(gin(|x|))g′′in(|x|) −
g
(3)
in (|x|)
g′in(|x|)

+ (
g′′in(|x|)
g′in(|x|)

)2

− (d− 1)
g′′in(|x|)
gin(|x|)

+ (d− 1)(
g′in(|x|)
gin(|x|)

)2 − (d− 1)|x|−2,(3.20)

λ2(|x|) = f ′(gin(|x|))g′in(|x|)|x|−1 − g′′in(|x|)
|x|g′in(|x|)

− (d− 1)
g′in(|x|)

|x|gin(|x|)
+ (d− 1)|x|−2.(3.21)

(2) When |x| ≥ b
− 1

β :

λ1(|x|) = f ′′(eb|x|
β
)b2β2|x|2(β−1)e2b|x|

β
+ f ′(eb|x|

β
)(β(β − 1)b|x|β−2 + β2b2|x|2(β−1))eb|x|

β
,

− bβ(β − 1)d|x|β−2 − (d− β)|x|−2(3.22)

λ2(|x|) = f ′(eb|x|
β
)bβ|x|β−1eb|x|

β |x|−1 − bβd|x|β−2 + (d− β)|x|−2.(3.23)

Proof of Lemma 3.2.4. For a general transformation map induced by h, the transformed

potential fh can be represented as

fh(x) = f(g(|x|)) − log det(∇h(x))

= f(g(|x|)) − log g′(|x|) − (d− 1) log g(|x|) + (d− 1) log |x|.
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The gradient of the transformed potential fh is

∇fh(x) =

[
f ′(g(|x|))g′(|x|) − g′′(|x|)

g′(|x|)
− (d− 1)

g′(|x|)
g(|x|)

+
d− 1

|x|

]
x

|x|
.(3.24)

Now, (3.19) follows immediately as a consequence of (3.6) and (3.24). The Hessian matrix of fh

can be represented as

∇2fh(x) = F1(|x|)
xxT

|x|2
+ F2(|x|)Id

with

F1(|x|) = f ′′(g(|x|))g′(|x|)2 + f ′(g(|x|))g′′(|x|) − f ′(g(|x|))g
′(|x|)
|x|

− g′′′(|x|)
g′(|x|)

+ (
g′′(|x|)
g′(|x|)

)2 − (d− 1)
g′′(|x|)
g(|x|)

+ (d− 1)(
g′(|x|)
g(|x|)

)2

+ (d− 1)
g′(|x|)
g(|x|)

1

|x|
− 2(d− 1)

|x|2
+

g′′(|x|)
|x|g′(|x|)

,

F2(|x|) =

(
f ′(g(|x|))g′(|x|) − g′′(|x|)

g′(|x|)
− (d− 1)

g′(|x|)
g(|x|)

+
d− 1

|x|

)
|x|−1.

Therefore the two eigenvalues of ∇2fh(x), λ1 and λ2 can be written as

λ1 = f ′′(g(|x|))g′(|x|)2 + f ′(g(|x|))g′′(|x|) − g′′′(|x|)
g′(|x|)

+ (
g′′(|x|)
g′(|x|)

)2

− (d− 1)
g′′(|x|)
g(|x|)

+ (d− 1)(
g′(|x|)
g(|x|)

)2 − (d− 1)

|x|2
,(3.25)

λ2 =

(
f ′(g(|x|))g′(|x|) − g′′(|x|)

g′(|x|)
− (d− 1)

g′(|x|)
g(|x|)

+
d− 1

|x|

)
|x|−1.(3.26)

The conclusions in (3.20),(3.21),(3.22),(3.23) can be calculated directly from (3.6), (3.25) and (3.26).

■

With the above result on the transformation map h, we can prove Lemma 3.2.1.
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Proof of Lemma 3.2.1: We first show that for all β ∈ [1, 2], g ∈ C3((0,∞)). It suffices to

show that g is three times continuously differentiable at r = b−1/β. Based on (3.6), we have

gin(b
− 1

β −) = e = ebr
β |

r=b
− 1

β
,

g′in(b
− 1

β −) = βb
1
β e = (ebr

β
)′|

r=b
− 1

β
,

g′′in(b
− 1

β −) = β(2β − 1)b
2
β e = (ebr

β
)′′|

r=b
− 1

β
,

g′′′in(b
− 1

β −) = β(5β2 − 6β + 2)b
3
β e = (ebr

β
)(3)|

r=b
− 1

β
.

Next we show g is monotone increasing. From Assumption G1, we know that gin is increasing

on the interval (0, b
− 1

β ). For r ∈ [b
− 1

β ,∞), g′(r) = bβrβ−1ebr
β
> 0. Combined with the fact that

g ∈ C3((0,∞)), we obtain that g is monotone increasing on the interval (0,∞). Furthermore, g(0) =

gin(0) = 0 and limr→+∞ g(r) = limr→+∞ ebr
β

= +∞. Therefore g is also onto and invertible. ■

Corollary 2. With function g defined in (3.6) and gin satisfying Assumption G1, if the potential

function f satisfies Assumption A0, then the transformed potential function fh defined by (3.5) is

twice continuously differentiable, i.e fh ∈ C2(Rd).

Proof of Corollary 2: Under the assumptions in Corollary 2, with the results in Lemma

3.2.1 and (3.25),(3.26), we have fh ∈ C2(Rd\{0}). Therefore it remains to show that lim|x|→0+ λi(|x|)

are well-defined for i = 1, 2. According to (3.5), we can represent the two eigenvalues of ∇2fh(x)

as for all r < b
− 1

β :

λ1(r) = f ′′h (r) = f ′′(gin(r))g′in(r)2 + f ′(gin(r))g′′in(r) − (d− 1)(
d2

dr2
log

gin(r)

r
) +

d2

dr2
log g′in(r)

λ2(r) =
f ′h(r)

r
= f ′(gin(r))

g′in(r)

r
−

d
dr log g′in(r)

r
− (d− 1)

d
dr log gin(r)

r

r

Since f ∈ C2(R) and g satisfies Assumption G1, limr→0+ |λi(r)| < ∞ for i = 1, 2, which implies

that fh is twice continuously differentiable at the origin. Therefore fh ∈ C2(Rd). ■

3.2.8.2. Proof of Theorem 10. We first recall a few definition below. Our proof is based on

connections between Lyapunov-based techniques and functional inequality-based techniques for

proving ergodicity of diffusion process [BCG08].
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Definition 3 (Dissipativity condition). The Langevin diffusion with drift function b(x) is said

to satisfy the dissipativity condition if there exists constants r,M > 0 such that for all |x| > M :

⟨b(x), x⟩ ≤ −r|x|.

Definition 4 (Lyapunov condition). A function V ∈ D(L) with V ≥ 1 is a Lyapunov function

if there exist constants λ, c > 0 and a measurable set K ⊂ Rd such that LV ≤ λV (−1 + c1K).

Equivalently, we say the L satisfies the Lyapunov condition.

Lemma 3.2.5. Consider the dynamics in (3.9). If the drift function −∇fh satisfies the dissipativity

condition with r > 0,M = 8(d−1)/r, then the infinitesimal generator Lh of (3.9) satisfies Lyapunov

condition.

Proof of Lemma 3.2.5. We first construct a Lyapunov function V with respect to the gen-

erator Lh as

V (x) =



1 |x| ≤ M

2
,

P (|x|) M

2
< |x| < M,

ea|x| |x| ≥M,

where P : [M2 ,M ] → [1, eaM ] is a monotone increasing function such that V ∈ C2(Rd) and V ≥ 1

for all x ∈ Rd. When |x| ≥M , we have that

LhV (x) = −∇fh(x) · ∇(ea|x|) + △(ea|x|)

= −∇fh(x) · (aea|x|
x

|x|
) + aea|x|

(
d

|x|
+ a− 1

|x|

)
≤ aea|x|

(
−r + a+

d− 1

|x|

)
.

Picking a = r/2, we obtain that

LhV (x) ≤ r

2
V (x)(−r

2
+
d− 1

|x|
), ∀|x| ≥M.
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Since M = 8(d− 1)/r > 4(d− 1)/r, we obtain that LhV (x) ≤ −(r2/8)V (x) for all |x| ≥M .

When 0 ≤ |x| < M , by the fact that V ∈ C2(Rd) and V ≥ 1, there exists Ar,d such that

LhV (x)

V (x)
≤ Ar,d ∀ 0 ≤ |x| < M,

where Ar,d = max4(d−1)/r≤|x|≤8(d−1)/r (−rP ′(|x|) + △(P (|x|))) ∨ 0.

Therefore if −∇fh satisfies dissipativity condition with constant r > 0, the corresponding generator

Lh satisfies Lyapunov condition with λ = λr = r2/8, c = cr,d = Ar,d/λr an

K = Kr,d = {x ∈ Rd : 0 ≤ |x| ≤ 8(d− 1)/r}.(3.27)

■

We further recall additional definitions to proceed.

Definition 5 (Local Poincaré inequality). The Markov triple (Rd, µ,Γ) satisfies a local Poincaré

inequality on a measurable set K ⊂ Rd with µ(K) ∈ (0,∞) if for some constant CK and every

function ϕ ∈ D(E): ∫
K

(ϕ−mK)2dµ ≤ CK

∫
K

Γ(ϕ)dµ

where mK =
∫
K ϕ dµ/µ(K).

Lemma 3.2.6. If the original density satisfies Assumption A0, then the Markov triple (Rd, πh,Γh)

satisfies a local Poincaré inequality on Kr,d defined in (3.27).

Proof of Lemma 3.2.6. According to the classical Poincaré inequality with respect to Lebesgue

measure, there is a universal constant C > 0 such that for all u ∈W 1,2(Rd) ⊂W 1,2(Kr,d):∫
Kr,d

(u(x) − uKr,d
)2dx ≤ C

d− 1

r

∫
Kr,d

|∇u|2dx
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where uKr,d
=
∫
Kr,d

u(x) dx. To prove the local Poincaré inequality for (Rd, πh,Γh), without loss of

generality, we assume that ϕ ∈ D(E) and ϕKr,d
=
∫
Kr,d

ϕ(x) dx = 0. Then∫
Kr,d

(ϕ−mKr,d
)2e−fh(x)dx =

∫
Kr,d

ϕ(x)2e−fh(x)dx− (

∫
Kr,d

ϕ(x)e−fh(x)dx)2/|Kr,d|

≤

(
sup

x∈Kr,d

e−fh(x)

)∫
Kr,d

ϕ(x)2dx

=

(
sup

x∈Kr,d

e−fh(x)

)∫
Kr,d

(ϕ− ϕKr,d
)2dx

≤ C
d− 1

r

(
sup

x∈Kr,d

e−fh(x)

)∫
Kr,d

|∇ϕ(x)|2dx

≤ C
d− 1

r

(
sup

x∈Kr,d

e−fh(x)

)(
sup

x∈Kr,d

efh(x)

)∫
Kr,d

Γh(ϕ)e−fh(x)dx.

Therefore the Markov triple (Rd, πh,Γh) satisfies a local Poincaré inequality on Kr,d with constant

Cr,d = (C(d− 1)/r)
(

supx∈Kr,d
e−fh(x)

)(
supx∈Kr,d

efh(x)
)

. ■

Lemma 3.2.7. If the infinitesimal generator Lh satisfies the dissipativity condition with constant

r > 0 and the original density f satisfies Assumption A0, then the Markov triple (Rd, πh,Γh) also

satisfies a Poincaré inequality.

Proof of Lemma 3.2.7. According to Lemma 3.2.5, Lh satisfies Lyapunov condition with

λ = λr = r2/8, K as in (3.27) and c = cr,d = Ar,d/λr. Therefore for all m ∈ R and ϕ ∈ D(Eh):∫
Rd

(ϕ−m)2e−fh(x)dx ≤
∫
Rd

(−8LhV

r2V
+

8Ar,d

r2
1Kr,d

)(ϕ−m)2e−fh(x)dx

= − 8

r2

∫
Rd

LhV

V
(ϕ−m)2e−fh(x)dx+

8Ar,d

r2

∫
Kr,d

(ϕ−m)2e−fh(x)dx.(3.28)

Choosing m =
∫
Kr,d

ϕ e−fh(x)dx/
∫
Kr,d

e−fh(x)dx, the second term in (3.28) can be bounded as a

result of Lemma 3.2.6:

8Ar,d

r2

∫
Kr,d

(ϕ−m)2e−fh(x)dx ≤
8Ar,d

r2
Cr,d

∫
Kr,d

Γh(ϕ)e−fh(x)dx.(3.29)
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The first term in (3.28) can be bounded by integration by parts, and the diffusion property of Γh

as

− 8

r2

∫
Rd

LhV

V
(ϕ−m)2e−fh(x)dx =

8

r2

∫
Rd

Γh(
(ϕ−m)2

V
, V )e−fh(x)dx

=
8

r2

∫
Rd

(
2(ϕ−m)

V
Γh(ϕ−m,V ) − (ϕ−m)2

V 2
Γh(V )

)
e−fh(x)dx

≤ 8

r2

∫
Rd

Γh(ϕ−m)e−fh(x)dx

=
8

r2

∫
Rd

Γh(ϕ)e−fh(x)dx.(3.30)

Combining the results in (3.29) and (3.30), we prove the Markov triple (Rd, πh,Γh) satisfies a

Poincaré inequality with constant C defined as

C =
8

r2
(1 +Ar,dCr,d) with

Ar,d = max
4(d−1)/r≤|x|≤8(d−1)/r

(
−rP ′(|x|) + △(P (|x|))

)
∨ 0,

Cr,d =
C(d− 1)

r

(
sup

x∈Kr,d

e−fh(x)

)(
sup

x∈Kr,d

efh(x)

)
.

■

Proof of Theorem 10. Applying (3.19) in Lemma 3.2.4, when |x| ≥ 1/b, we have

⟨∇fh(x), x⟩ = [f ′(eb|x|)beb|x| − b− (d− 1)
beb|x|

eb|x|
+
d− 1

|x|
]|x|

= [f ′(eb|x|)beb|x| − bd]|x| + (d− 1)

≥ A|x| −B,(3.31)

where the last inequality follows from Assumption A1 with α = 1 and β = 1. We now make the

following claim.
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Claim: The infinitesimal generator Lh satisfies the dissipativity condition with the constants

r =
−8(d− 1) +

√
64(d− 1)2 + 32AB(d− 1)

2B
∈ (0, A),(3.32)

M =
8(d− 1)

r
.

If the above Claim holds, Theorem 10 follows from Lemma 3.2.7 and Theorem 3 in [VW19].

Furthermore, Ch in the statement is given by

Ch =
r2

8
(1 +Ar,dCr,d)−1 with

Ar,d = max
4(d−1)/r≤|x|≤8(d−1)/r

(
−rP ′(|x|) + △(P (|x|))

)
∨ 0,

Cr,d =
C(d− 1)

r2

(
sup

x∈Kr,d

e−fh(x)

)(
sup

x∈Kr,d

efh(x)

)
.

with r defined in (3.32) and C is a universal constant. We now prove the claim

Proof of the Claim: To prove the Claim, it suffices to show for all |x| ≥ max{N1, 8(d − 1)/r},

we have ⟨∇fh(x), x⟩ ≥ r|x|. Based on (3.31), it further suffices to guarantee

A|x| −B ≥ r|x| and
8(d− 1)

r
≥ 1

b
.

When r = A/2, 8(d − 1)/r, with N1 > 3B/A, the above conditions are easily satisfied, therby

completing the proof. ■

3.2.8.3. Proof of Theorem 12 and Theorem 14. Theorem 12 and Theorem 14 are both built on

the intermediate result that the transformed measure πh satisfies a LSI. The proof would rely on

the following Holley-Stroock theorem.

Theorem 15 (Holley-Stroock Theorem [HS87]). Let µ ∼ LS(Cµ) and let µF = Z−1
F e−Fµ. If F is

bounded, then µF ∼ LS(CµF ) and CµF ≤ eOscFCµ where OscF := supx∈Rd F (x) − infx∈Rd F (x).

As an immediate corollary of Theorem 15, we have CµF ≥ e−OscFCµ.

Lemma 3.2.8. If the true target density π satisfies Assumption A0 and Assumption A3, then the

transformed density πh satisfies a LSI.
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Proof of Lemma 3.2.8. Based on (3.22) and (3.23) in Section 3.2.8.1, when |x| ≥ b
− 1

β , we

have

λ1 = f ′′(eb|x|
β
)b2β2|x|2(β−1)e2b|x|

β
+ f ′(eb|x|

β
)(β(β − 1)b|x|β−2 + β2b2|x|2(β−1))eb|x|

β

− β(β − 1)b|x|β−2 − (d− β)|x|−2

= f ′′(ψ(|x|))ψ′(|x|)2 + f ′(ψ(|x|))ψ′′(|x|) − β(β − 1)b|x|β−2 − (d− β)|x|−2(3.33)

λ2 = f ′(eb|x|
β

+ Cβ)bβ|x|β−1eb|x|
β |x|−1 − bβd|x|β−2 + (d− β)|x|−2

= f ′(ψ(|x|))ψ′(|x|)|x|−1 − bβd|x|β−2 + (d− β)|x|−2.(3.34)

where ψ(r) = ebr
β

for all r ≥ b
− 1

β . If f satisfies Assumption A3, then for all |x| ≥ Ñ1 :=

max{N3, b
− 1

β }: λ1(|x|) ≥ ρ for i = 1, 2. We can then construct two potentials:

f̃h(x) =


fh(x) |x| > Ñ1,

gh(x) |x| ≤ Ñ1,
fh(x) =


0 |x| > Ñ1,

fh(x) − gh(x) |x| ≤ Ñ1.

where gh : {|x| ≤ Ñ1} ⊂ Rd → R is chosen such that f̃h ∈ C2(Rd) and ∇2gh(x) ⪰ ρId for all

|x| ≤ Ñ1. Therefore, ∇2f̃h(x) ⪰ ρId for all x ∈ Rd i.e f̃h is ρ-strongly convex which implies that

the measure exp(−f̃h(x))dx ∼ LS(2/ρ)(see [BÉ85]). Meanwhile, fh is compactly supported on

{|x| ≤ Ñ1} and fh, gh ∈ C2(Rd), which implies that fh is bounded, i.e Oscfh <∞ . Last according

to the Holley-Stroock theorem and the fact that πh ∝ exp(−fh) = exp(−f̃h) exp(−fh),

πh ∼ LS(Ch,LSI) with Ch,LSI = 2eOscfh/ρ.(3.35)

■

Proof of Theorem 12. The two inequalities in Theorem 12 follows from Lemma 3.2.8 and

Theorem 4 in [VW19]. The constant Ch,LSI in Theorem 12 is the same Ch,LSI in (3.35). ■

Lemma 3.2.9. If the potential function f satisfies Assumption A4, then the transformed potential

fh(x) satisfies the gradient Lipschitz condition, i.e. there exists Lh > 0 such that for all x, y ∈ Rd,

we have |∇fh(x) −∇fh(y)| ≤ Lh|x− y|.
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Proof of Lemma 3.2.9: It suffices to prove that there is a constant Lh such that ∇2fh(x) ⪯

LhId for all x ∈ Rd, i.e λ1(|x|), λ2(|x|) ≤ Lh for all x ∈ Rd. Based on (3.33),(3.34) in the proof of

Lemma 3.2.8, and the fact that f satisfies Assumption A4, we have when |x| ≥ Ñ2 := max{N4, b
− 1

β }:

λi(|x|) ≤ L for i = 1, 2. When |x| ≤ Ñ2, since fh ∈ C2(Rd),

max
|x|≤Ñ2

∥∥∇2fh(x)
∥∥ <∞.

Therefore the transformed density fh is gradient Lipschitz with parameter Lh defined by

Lh = max{L, max
|x|≤Ñ2

∥∥∇2fh(x)
∥∥}.(3.36)

■

Proof of Theorem 14. From Lemma 3.2.9 we have that the transformed potential fh has

Lipschitz gradients with parameter Lh = max{L,max|x|≤Ñ2

∥∥∇2fh(x)
∥∥}. Furthermore, as shown

in equation (3.35) in the proof of Lemma 3.2.8, πh ∼ LS(Ch,LSI) with Ch,LSI = 2eOscf̂h/ρ. Hence,

we can apply [VW19, Theorem 1] to obtain that when 0 < γ < 1
2Ch,LSIL

2
h
,

Hπh
(ρn) ≤ e

− 2γn
Ch,LSIHπh

(ρ0) + 4Ch,LSIL
2
hγd.(3.37)

Now, applying Proposition 6 with Φ(x) = x log x to (3.37), we get

Hπ(νn) ≤ e
− 2γn

Ch,LSIHπ(ν0) + 4Ch,LSIL
2
hγd.(3.38)

The mixing time estimate in the theorem instantly follows from equation (3.38). ■

3.2.8.4. Proof of Theorem 11 and Theorem 13. In this section we will prove Theorem 11 and

Theorem 13. First we introduce a result which explains the relation between Assumption A2 and

Assumption B2.

Lemma 3.2.10. If a potential function f satisfies Assumption A2, then the transformed potential

fh satisfies Assumption B2.
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Proof of Lemma 3.2.10: If a potential function f satisfies Assumption A2 with parameters

µ,N2 and θ, then when |x| ≥ b
− 1

β , the eigenvalues of ∇2fh(x) are studied in (3.22) and (3.23).

Applying ψ(|x|) = eb|x|
β
, we have the following estimates on the eigenvalues: for all |x| ≥ Ñ5 :=

max{b−
1
β , N2} we have

λ1 = f ′′(ψ(|x|))ψ′(|x|)2 + f ′(ψ(|x|))ψ′′(|x|) − bβ(β − 1)d|x|β−2 − (d− β)|x|−2

≥ µ

(1 + 1
4 |x|2)

θ
2

,

λ2 = f ′(ψ(|x|))ψ′(|x|)|x|−1 − bβd|x|β−2 + (d− β)|x|−2

≥ µ

(1 + 1
4 |x|2)

θ
2

.

where the inequality follows from Assumption A2. Therefore for all |x| ≥ Ñ5, we have that

∇2fh(x) ⪰ µ

(1 + 1
4 |x|2)

θ
2

Id.

Meanwhile since fh ∈ C2(Rd), we can construct f̃h ∈ C2(Rd) such that f̃h(x) = fh(x) for all

|x| ≥ Ñ5, ∇2f̃h(x) ⪰ µ

(1+ 1
4
|x|2)

θ
2
Id for all x ∈ Rd. Furthermore, since both fh and f̃h are continuous,

ξ :=
∥∥∥fh − f̃h

∥∥∥
∞

= max
|x|≤Ñ5

|fh(x) − f̃h(x)| <∞(3.39)

Therefore fh satisfies Assumption B2 with parameters ξh = ξ, µh = µ and θh = θ. ■

Next we introduce a result which explains the relation between Assumption A1 and Assump-

tion B1.

Lemma 3.2.11. If a potential function f satisfies Assumption A1 then the transformed potential fh

satisfies Assumption B1.
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Proof of Lemma 3.2.11: If a potential function f satisfies Assumption A1 with parameters

α,A,B, as we have shown in (3.19), for all |x| ≥ b
− 1

β we have that

⟨∇fh(x), x⟩ = f ′(eb|x|
β
)bβ|x|βeb|x|β − βbd|x|β + (d− β)

≥ A|x|α −B.

where the first inequality follows from Assumption A1. Since fh ∈ C2(Rd), we have

min
|x|≤b

− 1
β

⟨∇fh(x), x⟩ > −∞

Therefore fh satisfies Assumption B1 with parameters

αh = α, Ah = A, Bh = max{0, B,− min
|x|≤b

− 1
β

⟨∇fh(x), x⟩} ∈ [0,∞).(3.40)

■

With the above two results, we are ready to prove Theorem 11.

Proof of Theorem 11: Taking the derivative of the KL-divergence from ρt to πh, we have

d

dt
Hπh

(ρt) =
d

dt

∫
Rd

log

(
ρt(x)

πh(x)

)
ρt(x)dx

=

∫
Rd

∂ρt(x)

∂t
log

(
ρt(x)

πh(x)

)
dx+

∫
Rd

ρt(x)
πh(x)

ρt(x)

1

πh(x)

∂ρt(x)

∂t
dx

=

∫
Rd

∇ ·
(
ρt(x)∇ log

ρt(x)

πh(x)

)
log

ρt(x)

πh(x)
dx+ 0

= −
∫
Rd

ρt(x)

∣∣∣∣∇ log
ρt(x)

πh(x)

∣∣∣∣2 dx = −Iπh
(ρt),(3.41)

where third identity follows from the Fokker-Planck equation

∂ρt
∂t

= ∇ · (ρt∇fh) + ∆ρt = ∇ ·
(
ρt∇ log

ρt
πh

)
,

and the fact that
∫ ∂ρt

∂t dx = d
dt

∫
ρtdx = 0. According to Lemma 3.2.10, we have that πh satisfies

Assumption B2. Hence, according to [EH20, Theorem 1], πh satisfies a modified LSI, i.e. for all
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probability densities ρ:

Hπh
(ρ) ≤ Ch,m-LSIIπh

(ρ)1−δMs(ρ+ πh)δ,

where Ms(ρ) =
∫
Rd(1 + |x|2)s/2ρ(x)dx is the s-th moment of any function ρ and with ξ defined in

(3.39), δ and λ are defined as

δ :=
θ

s− 2 + 2θ
∈ [0,

1

2
), Ch,m-LSI = 4e2ξµ−

s−2
s−2+2θ .(3.42)

Hence (3.41) can be further written as

d

dt
Hπh

(ρt) ≤ −λ−
1

1−δHπh
(ρt)

1
1−δMs(ρt + πh)−

δ
1−δ .(3.43)

According to Lemma 3.2.11, the transformed potential fh satisfies Assumption B1 with parameters

αh, Ah, Bh. Hence, according to [TV00, Proposition 2], under the αh-dissipativity of fh, for all

s ≥ 2:

Ms(ρt + πh) ≤Ms(ρ0 + πh) + Cst,

where

Cs = sup
x≥0

(
(ds+ s(s− 2) − sAh + sBh)x

s−2
s−2+α −Ahx

)
<∞.(3.44)

Therefore the upper bound in (3.43) can improved as

d

dt
Hπh

(ρt) ≤ −λ−
1

1−δHπh
(ρt)

1
1−δ (Ms(ρ0 + πh) + Cst)

− δ
1−δ .(3.45)

Rewriting (3.45) as

−Hπh
(ρt)

− 1
1−δ

d

dt
Hπh

(ρt) ≥ (λCδ
s )−

1
1−δ (Ms(ρ0 + πh)C−1

s + t)−
δ

1−δ ,(3.46)

and applying Gronwall’s inequality, we obtain

Hπh
(ρt) ≤ (

1 − 2δ

δ
)
1−δ
δ (λCδ

s )
1
δ (Ms(ρ0 + πh)C−1

s + t)−
1−2δ

δ ≤ C

tl
.(3.47)

with C = (1−2δ
δ )

1−δ
δ (λCδ

s )
1
δ and l = (1 − 2δ)/δ. ■
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To prove Theorem 13, we require the following result on the relationship between Assumption A5

and Assumption B5.

Lemma 3.2.12. If the density π satisfies Assumption A5, then π satisfies Assumption B5.

Proof of Lemma 3.2.12. Without loss of generality, we can assume that N5 ≥ e. When

λ ≥ N5 ≥ e,

π {| · | ≥ m+ λ} ≤ 2 exp

(
−
(
g−1(λ)

Ctail

)α1
)

with Ctail = C∗
tail. When λ ∈ [0, N5], we have

π {| · | ≥ m+ λ} ≤ π {| · | ≥ m}

≤ 2 exp

(
−
(
g−1(λ)

Ctail

)α1
)

with Ctail = g−1(N5)
(

log 2
π{|·|≥m}

) 1
α1 . Therefore for all λ ≥ 0,

π {| · | ≥ m+ λ} ≤ 2 exp

(
−
(
g−1(λ)

Ctail

)α1
)
,(3.48)

with

Ctail = max

{
C∗
tail, g

−1(N5)

(
log

2

π {| · | ≥ m}

) 1
α1

}
.

From (3.48), let X ∈ Rd be a random variable with density π and Y := h−1(X). Then Y ∈ Rd is a

random variable with density πh. We get

πh {| · | ≥ mh + λ} = P (|Y | ≥ mh + λ)

= P
(
g−1(|X|) ≥ mh + λ

)
= P (|X| ≥ g(mh + λ)) .
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For any fixed λ ≥ 0, we can choose mh(λ) = g−1(m+ g(λ)) − λ and we get

πh {| · | ≥ mh(λ) + λ} ≤ P (|X| ≥ m+ g(λ))

= π {| · | ≥ m+ g(λ)}

≤ 2 exp

(
−
(
ψ−1(g(λ))

Ctail

)α1
)

= 2 exp

(
−
(

λ

Ctail

)α1
)
.

We next claim that there exists a constant mh such that mh(λ) ≤ mh for all λ ≥ 0. To prove the

claim, we apply Taylor expansion in the definition of mh(λ) and we get for any λ ≥ 0, there exists

a constant θ(λ) ∈ [0,m] such that

mh(λ) = g−1 (g(λ)) + (g−1)′(g(λ))m− λ

≤ m sup
r∈[0,∞)

(
g−1)′(r)

)
.

According to our construction of g, we have that supr∈[0,∞)

(
g−1)′(r)

)
< ∞. Therefore we can

pick mh = m
(

supr∈[0,∞)

(
g−1)′(r)

))
which is a constant independent of λ, which proves the claim.

Hence, we get for all λ ≥ 0,

πh {| · | ≥ mh + λ} ≤ 2 exp

(
−
(
ψ−1(g(λ))

Ctail

)α1
)
.

That is, the transformed density πh satisfies Assumption B5 with

αh = α1,(3.49)

Ch,tail = max

{
C∗
tail, g

−1(N6)

(
log

2

π {| · | ≥ m}

) 1
α1

}
,(3.50)

mh = m

(
sup

r∈[0,∞)

(
g−1)′(r)

))
.(3.51)

■
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Proof of Theorem 13. Let π̂h be a modified density to πh. It’s defined as, for γ̂, R̂ > 0,

π̂h ∝ exp(−f̂h), f̂h(x) := fh(x) +
γ̂

2
(|x| − R̂)2+.(3.52)

Here (|x|−R̂)2+ is interpreted as max
{
|x| − R̂, 0

}2
. Furthermore, R̂ is chosen so that πh(B(0, R̂)) ≥

1
2 , where B(0, R̂) is an Euclidean ball of radius R̂ centered at zero. With this definition, the proof

follows immediately from Lemma 3.2.10, [EH20, Theorem 1] and [CEL+21, Theorem 8]. ■

3.2.8.5. Proofs for Section 3.2.6.

Proof of Proposition 9: When |x| ≥ g(b
− 1

β ) = e, the inverse of g can be represented as

g−1(|x|) = b
− 1

β log
1
β |x|.

Therefore, Assumption A3 can be reformulated as for all |x| ≥ g−1(N3 ∨ b−
1
β ) := g−1(Ñ1):

b
2
β [f ′(|x|)β log

1− 2
β (|x|)|x| − βd log

1− 2
β (|x|) + (d− β) log

− 2
β (|x|)] > ρ,(3.53)

b
2
β [f ′′(|x|)β2 log

2− 2
β (|x|)|x|2 + f ′(|x|)β(β − 1) log

1− 2
β (|x|)|x|

+ f ′(|x|)β2 log
2− 2

β (|x|)|x| − β(β − 1) log
1− 2

β (|x|) − (d− β) log
− 2

β (|x|)] > ρ.(3.54)

Now, (3.53) gives a lower bound on f ′(|x|) of the form:

f ′(|x|) ≥ ρb
− 2

β β−1 log
−(1− 2

β
)
(|x|)|x|−1 + d|x|−1 − d− β

β
log−1(|x|)|x|−1.

Defining N := g−1(Ñ1) and integrating from N to a larger value with respect to |x|, we obtain

f(|x|) ≥ f(N) +
1

2
ρb

− 2
β (log

2
β (|x|) − log

2
β N) + d(log |x| − logN) − d− β

β
(log log |x| − log logN)

:= CN,d +
1

2
ρb

− 2
β log

2
β (|x|) + d log |x| − d− β

β
log log |x|.

Therefore we have for all |x| > N :

ef(x) ≥ CN,d|x|
1
2
ρb

− 2
β log

2
β
−1

(|x|)+d log
− d−β

β (|x|).(3.55)
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To prove that π satisfies the Poincaré-type inequalities, we leverage the results in [Wan14] and

[WW15]. We consider the following quantity with ϑ ∈ (0, 2) and x ̸= y:

ef(x) + ef(y)

|x− y|d+ϑ

Since |x− y|d+ϑ ≤ 2d+ϑ−1(|x|d+ϑ + |y|d+ϑ), we have for all x ̸= y and |x|, |y| > N , we have

ef(x) + ef(y)

|x− y|d+ϑ
≥

CN,d

2d+ϑ−1

|x|
1
2
ρb

− 2
β log

2
β
−1

(|x|)+d log
− d−β

β (|x|) + |y|
1
2
ρb

− 2
β log

2
β
−1

(|y|)+d log
− d−β

β (|y|)
|x|d+ϑ + |y|d+ϑ

.

(3.56)

Then, (3.54) gives the lower bound

f ′′(|x|) + f ′(|x|)
(
β − 1

β
log−1(|x|)|x|−1 + |x|−1

)
≥ ρb

− 2
β β−2 log

−(2− 2
β
)
(|x|)|x|−2 +

β − 1

β
log−1(|x|)|x|−2 +

d− β

β2
log−2(|x|)|x|−2.

By multiplying log
1− 1

β (|x|)|x| on both sides, for all |x| > N we obtain

d

d|x|

(
f ′(|x|) log

1− 1
β (|x|)|x|

)
≥ρb−

2
β β−2 log

−(1− 1
β
)
(|x|)|x|−1 +

β − 1

β
log

− 1
β (|x|)|x|−1

+
d− β

β
log

−1− 1
β (|x|)|x|−1,

which implies that

f ′(|x|) ≥ CN,d,1 log
−(1− 1

β
)
(|x|)|x|−1 + ρb

− 2
β β−1 log

−(1− 2
β
)
(|x|)|x|−1 + |x|−1 − (d− β) log−1(|x|)|x|−1.

Further integration implies that for all |x| > N , we have

ef(|x|) ≥ CN,d,2|x|1+
1
2
ρb

− 2
β log

2
β
−1

(|x|)+CN,d,1β log
1
β
−1

(|x|) log−(d−β) |x|.(3.57)

Since d ≥ 1, (3.55) is stronger than (3.57), when we apply results in [Wan14], it’s enough for us to

consider only (3.55). Therefore we have the following results:

(1) When β ∈ (1, 2) or β = 2, ϑ < 1
2ρb

−1, we can see that for all |x| > N :

1

2
ρb

− 2
β log

2
β
−1

(|x|) + d− (d+ ϑ) > 0
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Therefore, with (3.56), conditions in [Wan14, Theorem 1.1-(3)] is satisfied with

ω(x) =
CN,d

2d+ϑ
|x|

1
2
ρb

− 2
β log

2
β
−1

(|x|)−ϑ log
− d−β

β (|x|),

such that lim|x|→∞ ω(x) = ∞. Hence, π ∝ exp(−f) satisfies the super-Poincaré inequality.

(2) When β = 2, ϑ = 1
2ρb

−1, d = 1, 2, we can see that for all |x| > N , we have

1

2
ρb

− 2
β log

2
β
−1

(|x|) + d− (d+ ϑ) = 0

Therefore with (3.56), since d = 1, 2 we obtain

ef(x) + ef(y)

|x− y|d+ϑ
≥

CN,d

2d+ϑ−1
.

Hence, according to in [Wan14, Theorem 1.1-(1)], π ∝ exp(−f) satisfies the Poincaré

inequality.

(3) When β = 2, ϑ = 1
2ρb

−1, d ≥ 3, for all |x| > N , we have that

1

2
ρb

− 2
β log

2
β
−1

(|x|) + d− (d+ ϑ) = 0

However, the lower bound in (3.56) goes to zero as |x|, |y| → ∞. Neither Poincaré inequal-

ity nor super Poincaré inequality is guaranteed. However, according to [Wan14, Theorem

1.1-(2)], π ∝ exp(−f) satisfies the weak Poincaré inequality with α(r) as defined in (3.15).

When β = 2, ϑ > 1
2ρb

−1, we can see that for all |x| > N :

1

2
ρb

− 2
β log

2
β
−1

(|x|) + d− (d+ ϑ) < 0

Neither Poincaré inequality nor super Poincaré inequality is guaranteed. However, accord-

ing to [Wan14, Theorem 1.1-(2)], π ∝ exp(−f) satisfies the weak Poincaré inequality with

α(r) as in (3.15).

■

Proof of Proposition 7: Similar to Assumption A3, Assumption A1 are sufficient condi-

tions for Poincaré type inequalities as well. First note that Assumption A1 is equivalent to the
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following inequality: for all |x| > N := g−1(N1 ∨ b−
1
β ) we have

f ′(|x|) ≥ Aβ−1b
−α

β log
α
β
−1

(|x|)|x|−1 + d|x|−1 − B

β
log−1(|x|)|x|−1.

Integrating with respect to |x|, we obtain

f(|x|) ≥ CN,d +Ab
−α

β α−1 log
α
β (|x|) + d log |x| − B

β
log log |x|.

For all |x| ≥ N , we then have

ef(|x|) ≥ CN,d|x|Aα−1b
−α

β log
α
β
−1

(|x|)+d log
−B

β |x|.

and

ef(x) + ef(y)

|x− y|d+ϑ
≥

CN,d

2d+ϑ−1

|x|Aα−1b
−α

β log
α
β
−1

(|x|)+d log
−B

β |x| + |y|Aα−1b
−α

β log
α
β
−1

(|y|)+d log
−B

β |y|
|x|d+ϑ + |y|d+ϑ

.

(3.58)

We now consider different cases.

(1) When α > β or α = β, ϑ < Aβ−1b−1, we can see that for all |x| > N we have that

Aα−1b
−α

β log
α
β
−1

(|x|) + d− (d+ ϑ) > 0.

Therefore, with (3.58), the conditions in [Wan14, Theorem 1.1-(3)] are satisfied with

ω(x) =
CN,d

2d+ϑ
|x|Aα−1b

−α
β log

α
β
−1

(|x|)−ϑ log
−B

β (|x|),

such that lim|x|→∞ ω(x) = ∞. Hence, π ∝ exp(−f) satisfies the super Poincaré inequality.

(2) When α = β, ϑ = Aβ−1b−1, we can see that for all |x| > N we have

Aα−1b
−α

β log
α
β
−1

(|x|) + d− (d+ ϑ) = 0.

However, the lower bound in (3.58) goes to zero as |x|, |y| → ∞. Hence, Neither the

Poincaré inequality nor the super Poincaré inequality is satisfied. However, according to
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[Wan14, Theorem 1.1-(2)], the density π ∝ exp(−f) satisfies the weak Poincaré inequality

with α(r) as in (3.15).

(3) When α = β, ϑ > Aβ−1b−1, we can see that for all |x| > N we have

Aα−1b
−α

β log
α
β
−1

(|x|) + d− (d+ ϑ) < 0.

Hence, neither the Poincaré inequality nor super Poincaré inequality is guaranteed. How-

ever, according to [Wan14, Theorem 1.1-(2)], π ∝ exp(−f) satisfies the weak Poincaré

inequality with α(r) as in (3.15).

■

Proof of Proposition 8: Similar as in the proof of Proposition 9, Assumption A2 is equiv-

alent to the following two inequalities: for all |x| ≥ N ,

f ′(|x|) ≥ µb
− 2

β β−1 log
−(1− 2

β
)
(|x|)(1 +

1

4
b
− 2

β log
2
β (|x|))−

θ
2 |x|−1 + d|x|−1 − d− β

β
log−1(|x|)|x|−1,

(3.59)

f ′′(|x|) + f ′(|x|)
(
β − 1

β
log−1(|x|)|x|−1 + |x|−1

)

≥ µb
− 2

β β−2 log
−(2− 2

β
)
(|x|)(1 +

1

4
b
− 2

β log
2
β (|x|))−

θ
2 |x|−2 +

β − 1

β
log−1(|x|)|x|−2 +

d− β

β2
log−2(|x|)|x|−2.

(3.60)

Choosing N ′ > N such that for |x| > N ′, b
− 2

β log
2
β (|x|) > 4/3, it then implies from (3.59) that for

all |x| > N ′ we have

ef(|x|) > CN,d|x|(2−θ)−1µb
− 2−θ

β log
2−θ
β

−1
(|x|)+d log

− d−β
β (|x|).(3.61)

Furthermore, (3.60) implies that for all |x| > N ′,

ef(|x|) > CN,d|x|(1−θ)−1(2−θ)−1µb
− 2−θ

β log
2−θ
β

−1
(|x|)+CN log

1
β
−1

(|x|)+1 log−(d−β)(|x|).(3.62)

We now consider the different cases as before.
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(1) When θ < 2 − β, (3.62) is stronger than (3.61). We have that for large |x|,

(1 − θ)−1(2 − θ)−1µb
− 2−θ

β log
2−θ
β

−1
(|x|) + CN log

1
β
−1

(|x|) + 1 − (d+ ϑ) > 0.

Therefore, when θ < 2 − β, the conditions in [Wan14, Theorem 1.1-(3)] are satisfied with

ω(x) =
CN,d

2d+ϑ
|x|(1−θ)−1(2−θ)−1µb

− 2−θ
β log

2−θ
β

−1
(|x|)+1−(d+ϑ) log

− d−β
β (|x|),

with lim|x|→∞ ω(x) = ∞. Hence, π ∝ exp(−f) satisfies the super Poincaré inequality.

(2) When θ = 2−β, µβ−1b−1 > ϑ, (3.61) is stronger than (3.62). We have that for all |x| > N ′,

(2 − θ)−1µb
− 2−θ

β log
2−θ
β

−1
(|x|) + d− (d+ ϑ) > 0.

Therefore, when θ = 2 − β, µβ−1b−1 > ϑ, the conditions in [Wan14, Theorem 1.1-(3)] are

satisfied with

ω(x) =
CN,d

2d+ϑ
|x|b

− 2−θ
β log

2−θ
β

−1
(|x|)−ϑ log

− d−β
β (|x|),

with lim|x|→∞ ω(x) = ∞. Hence, π ∝ exp(−f) satisfies the super Poincaré inequality.

(3) When θ = 2 − β, µβ−1b−1 ≤ ϑ, (3.61) is stronger than (3.62). We have that for all |x|

large enough,

(2 − θ)−1µb
− 2−θ

β log
2−θ
β

−1
(|x|) + d− (d+ ϑ) ≤ 0.

Neither Poincaré inequality nor super Poincaré inequality is guaranteed. According to

[Wan14, Theorem 1.1-(2)], π ∝ exp(−f) satisfies the weak Poincaré inequality with α(r)

in (3.15).

(4) When θ > 2 − β, (3.59) is stronger than (3.62). We have that for all |x| large enough,

(2 − θ)−1µb
− 2−θ

β log
2−θ
β

−1
(|x|) + d− (d+ ϑ) < 0.
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Hencce, neither the Poincaré inequality nor the super Poincaré inequality is guaranteed.

However, according to [Wan14, Theorem 1.1-(2)], π ∝ exp(−f) satisfies the weak Poincaré

inequality with α(r) in (3.15).

■

3.2.8.6. Proofs for Section 3.2.7.

Proof of Lemma 3.2.2: First, it’s easy to check that gin(0) = 0 and gin(b−
1
2 ) = e, which

implies that g ∈ C([0,∞)). Next note that we have

log
gin(r)

r
= log(b

1
2 ) + br2 − 10

3
b
3
2 r3 +

15

4
b2r4 − 6

5
b
5
2 r5 +

47

60
.

Hence, we can then check that

lim
r→0+

∣∣∣∣∣ d
dr log gin(r)

r

r

∣∣∣∣∣ <∞ and lim
r→0+

∣∣∣∣ ddr2 log
gin(r)

r

∣∣∣∣ <∞.

Note that the first derivative of gin is given by

g′in(r) = b
1
2

(
1 + 2br2 − 10b

3
2 r3 + 15b2r4 − 6b

5
2 r5
)

exp

(
br2 − 10

3
b
3
2 r3 +

15

4
b2r4 − 6

5
b
5
2 r5 +

47

60

)
.

Hence, we have that

lim
r→0+

|f ′(gin(r))g′in(r)| = (d+ ε) lim
r→0+

∣∣∣∣ g′in(r)

1 + gin(r)2

∣∣∣∣ gin(r)

r
<∞.

Similarly, as g′in(b−
1
2 ) = 2b

1
2 e and

log g′in(r) = log(b
1
2 ) + log(1 + 2br2 − 10b

3
2 r3 + 15b2r4 − 6b

5
2 r5)

+ br2 − 10

3
b
3
2 r3 +

15

4
b2r4 − 6

5
b
5
2 r5 +

47

60
,

we can also check that

lim
r→0+

∣∣∣∣ d2dr2 log g′in(r)

∣∣∣∣ <∞ and lim
r→0+

∣∣∣∣∣ d
dr log g′in(r)

r

∣∣∣∣∣ <∞.
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Similarly, by taking additional higher order derivatives it is easy to check that g
′′
in(b−

1
2 ) = 6be and

g
′′′
in(b−

1
2 ) = 20b

3
2 e. We omit the tedious but elementary calculations here. ■

Proof of Lemma 3.2.3. It’s obvious that f ∈ C2(Rd) and it’s isotropic. Note that

d

d|x|
f(|x|) = (d+ κ)

|x|
1 + |x|2

,

d2

d|x|2
f(|x|) = (d+ κ)

1 − |x|2

(1 + |x|2)2
.

With ψ(r) = ebr
β

for all r ≥ b
− 1

β , based on (3.22) and (3.23), we have that for all |x| ≫ b
− 1

β and

k ∈ Z+,

f ′(ψ(|x|))ψ′(|x|)|x|−1 − bβd|x|β−2 + (d− β)|x|−2 = κbβ|x|β−2 + (d− β)|x|−2 + o(|x|−k),

and

f ′′(ψ(|x|))ψ′(|x|)2 + f ′(ψ(|x|))ψ′′(|x|) − bβ(β − 1)|x|β−2 − (d− β)|x|−2

= κbβ(β − 1)|x|β−2 − (d− β)|x|−2 + o(|x|−k).

Note that for all |x| ≥ b
− 1

β , we have

κbβ|x|β−2 ≤ κβb
2
β ,

κbβ(β − 1)|x|β−2 ≤ κβ(β − 1)b
2
β ≤ κβb

2
β .

The last inequality holds since β ∈ (1, 2]. Therefore f satisfies Assumption A4 with some N4 > 0

and L = 2κβb
2
β .

To check Assumption A1, notice that for all |x| ≫ b
− 1

β and k ∈ Z+, we have

f ′(ψ(|x|))ψ′(|x|)|x| − bβd|x|β + (d− β) = κbβ|x|β + (d− β) + o(|x|−k)

Therefore Assumption A1 is satisfied with A = κbβ, α = β and some B ≥ 0,N1 > 0.
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Lastly, to check Assumption A2, similar to the calculation in checking Assumption A4, for all

|x| ≫ b
− 1

β and k ∈ Z+, we have

f ′(ψ(|x|))ψ′(|x|)|x|−1 − bβd|x|β−2 + (d− β)|x|−2 = κbβ|x|β−2 + (d− β)|x|−2 + o(|x|−k),

and

f ′′(ψ(|x|))ψ′(|x|)2 + f ′(ψ(|x|))ψ′′(|x|) − bβ(β − 1)|x|β−2 − (d− β)|x|−2

= κbβ(β − 1)|x|β−2 − (d− β)|x|−2 + o(|x|−k).

Therefore Assumption A2 is satisfied with arbitrary µ ∈ (0, κbβ(β − 1)), θ = 2 − β ≥ 0 and some

N2 > 0. ■

3.2.8.7. Order estimation of mixing time when β = 2. When f(x) = d+κ
2 log(1 + |x|2), for all

|x| > b−
1
2 , the two eigenvalues of ∇2fh(x) can be studied via (3.22) and (3.23). We obtain

λ1 = 2bκ+ (d− 2)|x|−2 − 2b(d+ κ)
1

1 + e2b|x|2
,(3.63)

λ2 = 2bκ− (d− 2)|x|−2 + 2b(d+ κ)
(4b|x|2 − 1)e2b|x|

2
+ 1

(1 + e2b|x|2)2
.(3.64)

Therefore, for all |x| > b−
1
2 : we can estimate λ1:

2bκ− 2bκ
1

1 + e2
− 2b < λ1 < 2bκ+ (d− 2)b,

which can be simplified as

2b(
e2

1 + e2
κ− 1) < λ1 < 2b(κ+

d

2
− 1),(3.65)

for all |x| > b−
1
2 . Similarly, we can obtain the following estimate on λ2:

2bκ− bd
e4 − 3e2 − 1

(1 + e2)2
< λ2 < 2bκ+ 2b+ 2bκ

3e2 + 1

(1 + e2)2
.

The above estimation can be further simplified as

2b(κ− 0.2d) < λ2 < 2b(1.5κ+ 1).(3.66)

126



According to (3.65) and (3.66), we instantly have the locally Lipschitz constant, denoted as Lh,loc,

for fh in the region {|x| > b−
1
2 } being characterized as

Lh,loc = 2bmax

{
κ+

d

2
− 1, 1.5κ+ 1

}
.

Next, for |x| ≤ b−
1
2 , we can check that for any fixed d, we have

lim
|x|→0

|λi(|x|)| <∞ i = 1, 2

Therefore we can check that for any fixed |x| ≤ b−
1
2 , we have |λi(x)| = O(d) for i = 1, 2 when

d≫ 1. Thus we can conclude the global Lipschitz constant of fh, Lh = O(d) for d≫ 1.

On the other hand side, from (3.65), we can see for all κ > 1+e2

e2
, λ1 > b( e2

1+e2
κ − 1). While from

(3.66), the lower bound would be negative if d≫ κ. Therefore to ensure both eigenvalues are lower

bounded by bκ, we need to restrict the region {|x| > b−
1
2 } to set of points with larger magnitudes.

For all |x| > ( d
bκ)

1
2 , we have when d ≥ κ and d ≥ 3 that

λ1 > bκ

(
2 − 2

1 + e2d/κ
− 2/d

)
> bκ,

λ2 > 2bκ− (d− 2)(bκ/d) = b(κ+ κ/d) > bκ.

To determine the LSI constant, we first construct a function Gh such that ∇2Gh(x) ⪰ bκId for all

x ∈ Rd. Letting ϖ :=
√

(d/bκ), the function Gh is defined piecewisely as

Gh =


fh |x| > ϖ

1

3
A (|x| −ϖ)3 +

1

2
f ′′h (ϖ) (|x| −ϖ)2

+ f ′h(ϖ)(|x| −ϖ) + fh(ϖ) |x| ≤ ϖ,

where

fh(ϖ) =
d

2
log(1 + e−2d/κ) +

κ

2
log(1 + e2d/κ) + (d− 2) log(ϖ) − log 2.
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Note that we also have

f ′h(ϖ) = 2bκϖ + (d− 2)

(
d

bκ

)− 1
2

− 2bd(1 + κ/d)
ϖ

1 + e2d/κ
,

f ′′h (ϖ) = bκ

(
1 +

2

d

)
+ 2bd(1 + κ/d)

(
4 d
κ − 1

)
e2d/κ + 1

(1 + e2d/κ)2
,

A = −bκ
d

(
−2ϖ − 4bd(1 + κ/d)ϖ

1 − 2 d
κe

2d/κ

(1 + e2d/κ)2

)
< 0.

With the above coefficients, we can check Gh ∈ C2(Rd) and ∇Gh(x) ⪰ bκId for all x ∈ Rd. We now

consider different cases.

(1) When d≫ κ for all k ∈ Z:

fh(ϖ) = d+
1

2
(d− 1) log d+O(1),

f ′(ϖ) = 3d

(
d

bκ

)− 1
2

− 2

(
d

bκ

)− 1
2

+ o(d−k),

f ′′(ϖ) = bκ+ 2

(
d

bκ

)−1

+ o(d−k),

A = −2d

(
d

bκ

)− 3
2

+ 4

(
d

bκ

)− 3
2

+ o(d−k).

Therefore the oscillation between fh and Gh can be written as

Osc(fh −Gh) = max
0≤|x|≤ϖ

|fh(x) −Gh(x)|.

Since both Gh and fh are monotone increasing with respect to |x|, we then have

Osc(fh −Gh) ≤ Gh(ϖ) + fh(ϖ) = 2d+ (d− 1) log d+O(1)

On the other hand,

Osc(fh −Gh) ≥ Gh(0) − fh(0) =
1

2
(d− 1) log d− 5

6
d+O(1)

Hence, apply Holley-Strook lemma, we can calculate the LSI constant Ch,LSI as

Ch,LSI ≤ 2(bκ)−1 exp(Osc(fh −Gh)) ≤ C(bκ)−1dd−1 exp(2d).
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Furthermore, because of the lower bound on Osc(fh, Gh), the factor dd−1 can be improved.

Hence, according to Theorem 14, to reach ϵ-accuracy in KL-divergence, the mixing time

n satisfies:

n ∼ Õ(LhChdϵ
−1) ≤ Õ(exp(2d)dd+1ϵ−1).

(2) When d/κ = O(1), or equivalently when d/κ→ C ′, we have

fh(ϖ) =
d

2
[log(1 + e−2C′

) + C ′−1 log(1 + e2C
′
) + log(

C ′

b
)] +O(1),

:= dC ′
1 +O(1),

f ′(ϖ) = 3d(
C ′

b
)−

1
2 − 2(

C ′

b
)−

1
2 + o(d−k)

:= b
1
2dC ′

2 +O(1)

f ′′h (ϖ) = bdC ′−1 + 2(
C ′

b
)−1 + o(d−k)

:= bdC ′
3 +O(1),

A = −2d(
C ′

b
)−

3
2 + 4(

C ′

b
)−

3
2 + o(d−k)

:= b
3
2C ′

4d+O(1).

Therefore for all |x| ≤ (C ′/b)
1
2 , we have

Gh(x) = d

{
1

3
b
3
2C ′

4|x|3 + b(
1

2
C ′
3 − C ′ 1

2C ′
4)|x|2 + b

1
2 (C ′

2 − C ′ 1
2C ′

3 + C ′C ′
4)|x|

+(C ′
1 − C ′ 1

2C ′
2 +

1

2
C ′C ′

3 −
1

3
C ′ 3

2C ′
4)

}
+O(1)

Similar to the previous argument, the oscillation can be upper bounded as

Osc(fh −Gh) = Gh((
C ′

b
)
1
2 ) + fh((

C ′

b
)
1
2 )

= C ′
hd+O(1),
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where

C ′
h =

1

3
C ′
4C

′ 3
2 + (

1

2
C ′
3 − C ′ 1

2C ′
4)C

′ + (C ′
2 − C ′ 1

2C ′
3 + C ′C ′

4)C
′ 1
2

+ (2C ′
1 − C ′ 1

2C ′
2 +

1

2
C ′C ′

3 −
1

3
C ′ 3

2C ′
4).

Hence, applying Holley-Strook Theorem, the LSI constant can be bounded by

Ch,LSI ≤ 2(bκ)−1 exp(Osc(fh −Gh)) ≤ C(bd/C ′)−1(exp(C ′
h))d.

Hence, according to [VW19], to reach ϵ-accuracy in KL-divergence, the mixing time n

satisfies

n ∼ Õ(LhCh,LSIdϵ
−1) ≤ Õ((exp(C ′

h))dd−1ϵ−1).

3.2.9. A Summary of Constants. For the sake of convenience, we provide a list of constants

in Table 3.1.

Constant Description Equation
ϵ Accuracy parameter NA
γ Step-size parameter (3.10)
CP Poincaré constant (PI)
CLSI LSI constant (LSI)

Cm-LSI, δ m-LSI related constants (m-LSI)
Ch,P Poincaré constant after Transformation NA
Ch,LSI LSI constant after Transformation NA
Ch,m-LSI m-LSI constant after Transformation NA
r, b, β Parameters related to transformation map (3.6)

A,B,N1, α Parameters related to dissipativity Assumption A1
µ,N2, θ Parameters related to degenerate convexity Assumption A2
N3, ρ Parameters related to convexity Assumption A3
N4, L Parameters related to Lipschitz-gradients Assumption A4

N5,m, α1, C
∗
tail Parameters related to tail condition Assumption A5

αh, Ah, Bh Dissipativity parameters after transformation Assumption B1
ξh, µh, θh Degenerate Convexity at infinity after transformation Assumption B2

ρh Strong-convexity parameter after transformation NA
Lh Lipschitz-gradient parameters after transformation NA

mh, αh,1, Ch,tail Tail condition parameters after transformation Assumption B5
κ Degrees-of-freedom of t distribution NA
ϑ Parameter related to super and weak Poincaré inequalities NA

Table 3.1. A list of all the constants used and their description.
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3.3. Itô Discretization

3.3.1. Motivations. Indeed, Theorem 2.4 by [RT96] shows that if |∇ log π(x)| → 0 as |x| →

∞, then the solution to (3.1) is not exponentially ergodic. In the other direction, standard results in

the literature, for example [Wan06, BGL14] show that the solution to (3.1) converging exponentially

fast to its equilibrium density in the χ2 metric, is equivalent to the density π satisfying the Poincaré

inequality, which in turn requires π to have exponentially decaying tails. Furthermore, when π has

polynomially decaying tails, the convergence is only sub-exponential or polynomial [Wan06, Chapter

4]. Consequently, the algorithms obtained as discretizations of the Langevin diffusion in (3.1) are

suited to sampling only from light-tailed exponentially decaying densities, and are rather inefficient

for sampling from heavy-tailed densities.

Our approach to heavy-tailed sampling is hence based on discretizing certain natural Itô diffusions

that arise in the context of the following Weighted Poincaré inequality [BBD+09, BL09]. Such

inequalities could be considered generalizations of the Brascamp-Lieb inequality (established for

the class of log-concave densities) to a class of heavy-tailed densities.

Theorem 16 (Weighted Poincaré Inequality; Theorem 2.3 in [BL09]). Let the target density be of

the form πβ ∝ V −β with β > d and V ∈ C2(Rd) positive, convex and with (∇2V )−1(x) well-defined

for all x ∈ Rd. For any smooth and πβ-integrable function g on Rd and G = V g,

(3.67) (β + 1)Varπβ
(g) ≤

∫
Rd

⟨(∇2V )−1∇G,∇G⟩
V

dπβ +
d

β − d

(∫
Rd

gdπβ

)
.

A canonical example of a heavy-tailed density that satisfies the conditions in Theorem 16, and

hence (3.67), is the multivariate t-distribution. In particular, we consider the following Itô diffusion

process

(3.68) dXt = −(β − 1)∇V (Xt)dt+
√

2V (Xt)dBt,

where (Bt)t≥0 is a standard Brownian motion in Rd. The Itô diffusion in (3.68) converges expo-

nentially fast to the target πβ in the χ2-divergence as long as it satisfies the Weighted Poincaré
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inequality and additional mild assumptions; see Proposition 10 for details. Hence, we study the

oracle complexity of the Euler-Maruyama discretization of (3.68), for sampling from heavy-tailed

densities. Our proofs are based on mean-square analysis techniques, a popular technique to ana-

lyze numerical discretizations of stochastic differential equations; see, for example, [MT04] for an

overview. Our results in this section pushes mean-square analysis to its limits; the heavy-tailed den-

sities we consider invariably need to have only finite variance, which is the minimum requirement

when using this technique.

In this section, we make the following contributions:

• In Theorem 17, we provide upper bounds on the number of iterations required by the Euler-

Maruyama discretization of (3.68) to obtain a sample that is ϵ-close in the Wasserstein-2

metric to the target density. The established bounds are in terms of certain (first and

second-order) moments of the target density π. Our proof technique is based on a mean-

squared analysis; we demonstrate that for the case of multivariate t-distributions, our

analysis is non-vacuous as long as the density has finite variance, a necessary condition to

carry out the mean-squared analysis.

• While the result in Theorem 17 assumes access to the exact gradient of the unnormalized

target density function (referred to as the first-order setting), in Theorem 18, we analyze

the case when the gradient is estimated based on function evaluations (the zeroth-order

setting) based on a Gaussian smoothing technique.

• We provide several illustrative examples highlighting the differences between the results in

the first and the zeroth-order setting. Specifically, in Section 3.3.7 we show that for

the multivariate t-distribution with smaller degrees of freedom, (and hence the truly

heavy-tailed case) the gradient estimation error is dominated by the discretization er-

ror. Whereas, in the case with larger degrees of freedom (and hence the comparatively

moderately heavy-tailed case), the discretization error is of comparable order to the gradi-

ent estimation error. Hence, the zeroth-order algorithm matches the iteration complexity

of the first-order algorithm by using mini-batch gradient estimators.
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As mentioned previously, our approach leverages the literature on weighted functional inequali-

ties, that are satisfied by heavy-tailed densities. The weighted Poincare inequality was introduced

in [BBD+09] and [BL09], and using an extension of the Brascamp-Lieb inequality, is shown to

hold for the class of s-concave densities. We also refer the interested reader to [CGGR10, CGW11,

BJM16, CEG17, CGMZ19] for various extensions and improvements of the works of [BBD+09]

and [BL09].

3.3.2. Notations. We use the following notation throughout the rest of the section.

• ⟨·, ·⟩ denotes the Euclidean inner product and | · | denotes the Euclidean norm.

• For two matrices A and B, A ⪯ B means that B−A is positive semi-definite. The 2-norm

of any d× d matrix A is denoted as ∥A∥2. Id is the d× d identity matrix.

• ∆ denotes the Laplacian, and ∇ denotes the gradient of a given function.

• C2(Rd) refers to the set of all real functions on Rd that are twice continuously differentiable.

C2
c (Rd) refers to the set of all functions in C2(Rd) with compact support.

• The Wasserstein-2 distance between two probability measures on Rd, µ and ν is given by

W2(µ, ν) := inf
ζ∈C(µ,ν)

(∫
Rd×Rd

|x− y|2ζ(dx, dy)

) 1
2

.

where C(µ, ν) is the set of all measures on Rd×Rd whose marginals are µ and ν respectively.

• The χ2 divergence from a probability measure ν to a probability measure µ is defined as

χ2(ν|µ) :=

∫
Rd

(
ν(dx)

µ(dx)
− 1

)2

µ(dx).

• The gamma and beta functions are given by:

Γ(z) :=

∫ ∞

0
tz−1e−tdt, ∀ z > 0, and B(x, y) :=

∫ 1

0
tx−1(1 − t)y−1dt, ∀ x, y > 0.

• For two positive quantities f(d), g(d) depending on d, we define f(d) = O(g(d)) if there

exists a constant C > 0 such that f(d) ≤ Cg(d) for all d > 1. We define f(d) = Θ(g(d)) if
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there exist constants C1, C2 > 0 such that C1g(d) ≤ f(d) ≤ C2g(d) for all d > 1. We use

Õ to hide log factors in the O notation.

3.3.3. Organizations. In Section 3.3.4, we first establish the exponential ergodicity of the

Itô diffusion in (3.68) under certain assumptions that are favorable for the discretization analysis.

We next provide our main results on the non-asymptotic oracle complexity of the Euler-Maruyama

discretization of (3.68). In Section 3.3.5, we provide moment computations in the heavy-tailed

setting that are required to obtain explicit rates from the results in Section 3.3.4. In Section 3.3.6,

we provide an extension of our results to the zeroth-order setting. In Section 3.3.7 we provide

several illustrative examples. We discuss further implications of our assumptions in Section 3.3.8.

The proofs are provided in Section 3.3.9 and in Appendices 3.3.10.1, 3.3.10.2 and 3.3.10.3.

3.3.4. Itô Discretizations and Weighted Poincare Inequalities. In this section, our goal

is to analyze the Itô diffusion in (3.68) which admits a specific class of heavy-tailed densities as its

stationary density. Let X0 follow distribution ρ0 and denote the distribution of Xt by ρt for all

t ≥ 0. For any function ψ ∈ C2
c (Rd), the infinitesimal generator of (3.68) is given by

Lψ = −(β − 1)⟨∇V,∇ψ⟩ + V∆ψ.(3.69)

Hence, the Fokker-Planck equation corresponding to (3.68) is

∂tρt = ∇ · (βρt∇V + V∇ρt) = ∇ ·
(
ρtV∇ log

ρt
πβ

)
.(3.70)

It follows that, under the conditions in Theorem 16, πβ ∝ V −β is the unique stationary density of

(3.68). We next examine the convergence properties of (3.68) to its stationary density. To do so,

we introduce the following assumption.

Assumption 11. There exists a positive constant CV such that, for all x ∈ Rd,

⟨(∇2V )−1(x)∇V (x),∇V (x)⟩
V (x)

≤ CV .
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When V is radially symmetric, i.e., when V (x) := ϕ(|x|) for some ϕ ∈ C2(R+), the condition in

Assumption 11 simplifies as follows. Note that

∇V (x) =
ϕ′(|x|)
|x|

x, and ∇2V =

(
ϕ′′(|x|) − ϕ′(|x|)

|x|

)
x⊗ x

|x|2
+
ϕ′(|x|)
|x|

Id,

where ⊗ denotes outer-product. Hence, it follows that it is sufficient for ϕ to satisfy

ϕ′(r) ≤ (ϕ′′(r)r) ∧ (CV ϕ(r)/r), for all r ≥ 0.

For example, this property holds with CV = p if ϕ is a p-order polynomial with p ≥ 2 and non-

negative coefficients.

We next provide the following corollary to Theorem 16, motivated by the discussion in Section 2

of [BL09].

Corollary 3. Consider the setting of Theorem 16 and suppose further that Assumption 11 holds

with CV ∈ (0, β + 1), then for any smooth, πβ-integrable function, ϕ on Rd,

V arπβ
(ϕ) ≤

(√
β + 1 −

√
CV

)−2
∫
Rd

⟨V (x)(∇2V )−1(x)∇ϕ(x),∇ϕ(x)⟩πβ(x)dx.(3.71)

Proof. We start from (3.67), assume that
∫
Rd gdπβ = 0. Then (3.67) could be rewritten as

(β + 1)

∫
Rd

g(x)2πβ(x)dx ≤
∫
Rd

⟨(∇2V )−1(x)∇(gV )(x),∇(gV )(x)⟩
V (x)

πβ(x)dx.

Now, note that we have the following elementary bound

⟨A(u+ v), (u+ v)⟩ ≤ r⟨Au, u⟩ +
r

r − 1
⟨Av, v⟩, u, v ∈ Rd, r > 1,

for any arbitrary positive definite symmetric matrix A ∈ Rd×d. Hence, we obtain

(β + 1)

∫
Rd

g(x)2πβ(x)dx ≤ r

∫
Rd

⟨(∇2V )−1(x)g(x)∇V (x), g(x)∇V (x)⟩
V (x)

πβ(x)dx

+
r

r − 1

∫
Rd

⟨(∇2V )−1(x)V (x)∇g(x), V (x)∇g(x)⟩
V (x)

πβ(x)dx.
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Invoking the condition in Assumption 11, we further obtain

(β + 1)

∫
Rd

g(x)2πβ(x)dx ≤ rCV

∫
Rd

g(x)2πβ(x)dx

+
r

r − 1

∫
Rd

⟨V (x)(∇2V )−1(x)∇g(x),∇g(x)⟩πβ(x)dx,

which then implies that, for any r ∈ (1, (β + 1)/CV ),∫
Rd

g(x)2πβ(x)dx ≤ r

(r − 1)(β + 1 − rCV )

∫
Rd

⟨V (x)(∇2V )−1(x)∇g(x),∇g(x)⟩πβ(x)dx.

With the choice of r :=
√

β+1
CV

> 1, we get that for all g such that
∫
gdπβ = 0, and∫

Rd

g(x)2πβ(x)dx ≤
(√

β + 1 −
√
CV

)−2
∫
Rd

⟨V (x)(∇2V )−1(x)∇g(x),∇g(x)⟩πβ(x)dx.

For all general ϕ, letting g = ϕ−
∫
ϕdπβ, we get

V arπβ
(ϕ) ≤

(√
β + 1 −

√
CV

)−2
∫
Rd

⟨V (x)(∇2V )−1(x)∇ϕ(x),∇ϕ(x)⟩πβ(x)dx.

■

When V is strongly convex, Assumption 11 holds under the following sufficient condition.

Assumption 12. The function V : Rd → (0,∞) is twice continuously differentiable and V satisfies

(1) V is α-strongly convex, i.e. ∇2V (x) ⪰ αId for all x ∈ Rd.

(2) There exists a positive constant CV such that, for all x ∈ Rd,

⟨∇V (x),∇V (x)⟩
V (x)

≤ αCV .

The following result follows immediately from Assumption 12.

Lemma 3.3.1. Let β > d. If Assumption 12 holds with CV ∈ (0, β + 1), then for any smooth, πβ

integrable function ϕ on Rd, we have

Varπβ
(ϕ) ≤ α−1

(√
β + 1 −

√
CV

)−2
∫
Rd

V (x)|∇ϕ(x)|2πβ(x)dx.(3.72)
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With (3.72), we can show the exponential decay in χ2-divergence along (3.68). The proof of the

following proposition is standard and we include it here for completeness.

Proposition 10. Under the conditions in Lemma 3.3.1, for (Xt) following diffusion (3.68) with ρt

being the distribution of Xt, we have

χ2(ρt|πβ) ≤ exp

(
−2α

(√
β + 1 −

√
CV

)2
t

)
χ2(ρ0|πβ).(3.73)

Proof of Proposition 3.3.1. First we can calculate the derivative of χ2(ρt|π) via (3.70),

d

dt
χ2(ρt|πβ) =

d

dt

∫
Rd

(
ρt(x)

πβ(x)
− 1

)2

πβ(x)dx

= 2

∫
Rd

∂tρt(x)

(
ρt(x)

πβ(x)
− 1

)
dx

= −2

∫
Rd

〈
∇
(
ρt
πβ

)
(x),∇ log

(
ρt
πβ

)
(x)

〉
V (x)ρt(x)dx

= −2

∫
Rd

V (x)

∣∣∣∣∇( ρtπβ
)

(x)

∣∣∣∣2 πβ(x)dx.

According to (3.72), we get

d

dt
χ2(ρt|πβ) ≤ −2α

(√
β + 1 −

√
CV

)2
Varπβ

(
ρt
πβ

)
= −2α

(√
β + 1 −

√
CV

)2
χ2(ρt|πβ).

Finally, (3.73) follows from Gronwall’s inequality. ■

The above result shows that for the class of πβ satisfying Assumption 12, the Itô diffusion in (3.68),

converges exponentially fast to its stationary density. Hence, time-discretizations of (3.68) provide

a practical way of sampling from that class of densities. The Euler-Maruyama discretization to

(3.68) is given by

xk+1 = xk − h(β − 1)∇V (xk) +
√

2hV (xk)ξk+1,(3.74)

where h > 0 is the step size and {ξ}∞k=1 is a sequence of i.i.d. standard Gaussian random vectors in

Rd. We now present our main result on the iteration complexity of (3.74) for sampling from πβ. We
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state our discretization result, based on a mean-square analysis, in the W2 metric. In particular,

we highlight that Proposition 10 requires that condition that β > d, in addition to Assumption

12, whereas Theorem 17 below, does not. In Section 3.3.8, we revisit these conditions and provide

additional insights. Obtaining convergence results in the stronger χ2-divergence is left as future

work.

Theorem 17. Let V be gradient-Lipschitz with parameter L > 0, and satisfying Assumption 12

with

δ :=
β − 1 − 1

4CV d
1
4CV d

> 0.(3.75)

Let (xk)∞k=0 be generated from (3.74) with νk denoting the distribution of xk, for all k ≥ 0. Then

with the step-size,

h < min

(
1

4(β − 1)L
,

2δ

3(1 + δ)α(β − 1)

)
,

the decay of Wasserstein-2 distance along the Markov chain (xk)∞k=0 can be described by the fol-

lowing equation: For all k ≥ 1,

W2(νk, πβ) ≤ (1 −A)kW2(ν0, πβ) +
C

A
+

B√
A(2 −A)

.(3.76)

with A,B and C given respectively in (3.114), (3.115) and (3.116).

Remark 17 (Constant δ). We now motivate the definition and the condition on the constant δ

based on exponential contractivity arguments.

Definition 6 (Exponential contractivity). Let Xt, Yt be two different solutions to the same sto-

chastic differential equation (SDE) with initial conditions x, y respectively. We say the SDE is

W2-exponential contractive if there exists a constant κ > 0, such that

W2(L(Xt), L(Yt)) ≤ e−κt |x− y|,

where by L(X) we refer to the law of X.
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Uniform dissipativity is a sufficient condition for exponential contractivity [GDVM19, Theorem 10].

The uniform dissipativity condition for (3.68) can be represented as

−(β − 1)⟨∇V (x) −∇V (y), x− y⟩ +
1

2

∥∥∥√2V (x)Id −
√

2V (y)Id

∥∥∥2
F
≤ −κ|x− y|2,

or equivalently as

−(β − 1)⟨∇V (x) −∇V (y), x− y⟩ + d|
√
V (x) −

√
V (y)|2 ≤ −κ|x− y|2.

When V satisfies Assumption 12, a sufficient condition for the above uniform dissipativity condition

is given by

− α(β − 1)|x− y|2 +
d

4
αCV |x− y|2 ≤ −κ|x− y|2,

or equivalently,

α

(
β − 1 − d

4
CV

)
≤ κ.

The sufficient condition coincides with the condition that δ > 0 in Theorem 17, which also motivates

the assumption in Theorem 17.

Remark 18 (Iteration complexity). With Theorem 17, we can calculate the order of the iteration

complexity to reach an ϵ-accuracy in Wasserstein-2 distance. With (3.114),(3.115),(3.116), we have

C

A
=

9(δ + 1)L

αδ
d

1
2h

1
2Eπβ

[V (X)]
1
2 +

6(δ + 1)L

αδ
(β − 1)hEπβ

[
|∇V (X)|2

] 1
2 ,

B√
A(2 −A)

≤ 8(δ + 3)

δ
d

1
2h

1
2Eπβ

[V (X)]
1
2 +

8(δ + 3)

δ
(β − 1)hEπβ

[
|∇V (X)|2

] 1
2 .

The above display implies that

C

A
+

B√
A(2 −A)

≤ 9(δ + 3)

δ

(
1 +

L

α

)(
d

1
2h

1
2Eπβ

[V (X)]
1
2 + (β − 1)hEπβ

[
|∇V (X)|2

] 1
2

)
.
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Hence, we get C
A + B√

A(2−A)
< ϵ/2 if the step-size h satisfies

h < min

 δ2Eπβ
[V (X)]−1 ϵ2

81d(δ + 3)2(1 + L
α )2

,
δEπβ

[
|∇V (X)|2

]− 1
2 ϵ

81(β − 1)(δ + 3)(1 + L
α )

 .(3.77)

Defining Kϵ = log (2W2(ν0, πβ)/ϵ), we have W2(νk, πβ) < ϵ for all k ≥ K with

K =
3(1 + δ)

α(β − 1)δh∗
Kϵ

≤ 273 max

(δ + 3)3(1 + L
α )2dEπβ

[V (X)]

αδ3(β − 1)ϵ2
,

(δ + 3)2(1 + L
α )Eπβ

[
|∇V (X)|2

] 1
2

αδ2ϵ

Kϵ.(3.78)

Recall the definition of δ in (3.75). The order of K depends on the order of δ. That is, we have the

following two cases:

• If δ = O(1) and β = O(d), we have that

K = Õ

(
1

αϵ2

(
1 +

L

α

)2

Eπβ
[V (X)] +

1

αϵ

(
1 +

L

α

)
Eπβ

[
|∇V (X)|2

] 1
2

)
.

• If δ = O(1/d) and β = O(d), we have that

K = Õ

(
d3

αϵ2

(
1 +

L

α

)2

Eπβ
[V (X)] +

d2

αϵ

(
1 +

L

α

)
Eπβ

[
|∇V (X)|2

] 1
2

)
.

In order to obtain more explicit iteration complexity bounds from Remark 18, it is required to

compute bounds on the following two quantities: Eπβ

[
|∇V (X)|2

]
and Eπβ

[V (X)].

3.3.5. Moment Bounds. In this section, we compute moment bounds under the conditions

in Theorem 17.

3.3.5.1. An Example: Multivariate t-distribution. We first start with the isotropic case.

Proposition 11. Let πβ = Z−1
β V −β with β > d/2+1, V (x) = 1+ |x|2 and Zβ =

∫
Rd(1+ |x|2)−βdx.

We have

Eπβ
[V (X)] =

β − 1

β − 1 − d
2

and Eπβ

[
|∇V (X)|2

]
=

2d

β − 1 − d
2

.(3.79)

140



Proof. Let Ad(1) denote the surface area of the unit sphere in d dimensions. By a standard

calculation, we have that, for all β > d
2 ,

Zβ =

∫
Rd

(1 + |x|2)−βdx =

∫ ∞

0
(1 + r2)−βrd−1drAd(1) =

π
d
2

Γ(d2)

∫ ∞

0
(1 +R)−βR

d
2
−1dR

=
π

d
2

Γ(d2)

∫ 1

0
u

d
2
−1(1 − u)β−

d
2
−1du =

π
d
2B(d2 , β − d

2)

Γ(d2)
,

where B is the beta function. In the above calculation, the second identity follows from a change

to polar coordinates. The third identity follows from a substitution with R = r2 and the fourth

identity follows from a substitution u = R/(1 +R). Therefore for all β > d/2 + 1, we have that

Eπβ
[V (X)] = Z−1

β

∫
Rd

(1 + |x|2)(1 + |x|2)−βdx =
Zβ−1

Zβ
=
π

d
2B(d2 , β − 1 − d

2)

Γ(d2)

Γ(d2)

π
d
2B(d2 , β − d

2)

=
B(d2 , β − 1 − d

2)

B(d2 , β − d
2)

=
Γ(d2)Γ(β − 1 − d

2)

Γ(β − 1)

Γ(β)

Γ(d2)Γ(β − d
2)

=
β − 1

β − 1 − d
2

.

where the fourth identity follows from the property of Beta function, B(x, y) = Γ(x)Γ(y)
Γ(x+y) and the

fifth identity follows from the property of Γ function, Γ(1 + z) = zΓ(z). For the other expectation,

we have

Eπβ

[
|∇V (X)|2

]
= Z−1

β

∫
Rd

|2x|2(1 + |x|2)−βdx = 4Z−1
β Ad−1(1)

∫ ∞

0
r2(1 + r2)−βrd−1dr

=
4π

d
2

Γ(d2)Zβ

∫ ∞

0
R

d
2 (1 +R)−βdR =

4π
d
2

Γ(d2)Zβ

∫ 1

0
u

d
2 (1 − u)β−

d
2
−2du

=
4π

d
2B(d2 + 1, β − d

2 − 1)

Γ(d2)

Γ(d2)

π
d
2B(d2 , β − d

2)
=

4B(d2 + 1, β − d
2 − 1)

B(d2 , β − d
2)

= 4
Γ(d2 + 1)Γ(β − d

2 − 1)

Γ(β)

Γ(β)

Γ(d2)Γ(β − d
2)

=
2d

β − d
2 − 1

,

where we apply the same substitutions and properties of Beta functions and Gamma functions in

the above calculation. ■

Remark 19. If πβ is the class of isotropic multivariate t-distributions, with the results in Propo-

sition 11, the order of the two expectations in terms of the dimension parameter d is given as

follows,
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• when β > d
2 + 1 and β − 1 − d

2 = O(d), we have

Eπβ
[V (X)] = O(1), and Eπβ

[
|∇V (X)|2

]
= O(1).

• when β > d
2 + 1 and β − 1 − d

2 = O(1), we have

Eπβ
[V (X)] = O(d), and Eπβ

[
|∇V (X)|2

]
= O(d).

For a general class of non-isotropic multivariate t-distribution, we consider πβ = Z−1
β V −β with

V (x) = 1 + xTΣx where Σ is a strictly positive-definite d × d matrix. In [Rot12], it’s been shown

that for any β > d
2 , the normalization constant is

Zβ =
Γ(ν2 )π

d
2

√
det(Σ)

Γ(ν+d
2 )

=
Γ(β − d

2)π
d
2

√
det(Σ)

Γ(β)
.

Therefore for any β > d
2 + 1, we have

Eπβ
[V (X)] =

Zβ−1

Zβ
=

Γ(β)Γ(β − 1 − d
2)

Γ(β − 1)Γ(β − d
2)

=
β − 1

β − 1 − d
2

,

and

Eπβ

[
|∇V (X)|2

]
= Z−1

β

∫
Rd

⟨∇V (x), V (x)−β∇V (x)⟩dx

= −Z−1
β

∫
Rd

V (x)∇ ·
(
V (x)−β∇V (x)

)
dx

= βEπβ

[
|∇V (X)|2

]
− Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx.

The above identity implies

Eπβ

[
|∇V (X)|2

]
= (β − 1)−1Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β

∫
Rd

trace(∇2V (x))V (x)−(β−1)dx

≤ trace(Σ)

β − 1
Eπβ

[V (X)]

≤ trace(Σ)

β − 1 − d
2

142



where the second inequality follows from the fact that ∇2V (x) = Σ.

Remark 20. If πβ is in the class of non-isotropic multivariate t-distributions, the order of the two

expectations in terms of the dimension parameter d is as follows,

• when β > d
2 + 1 and β − 1 − d

2 = O(d), we have

Eπβ
[V (X)] = O(1), and Eπβ

[
|∇V (X)|2

]
= O(d−1trace(Σ)).

• when β > d
2 + 1 and β − 1 − d

2 = O(1), we have

Eπβ
[V (X)] = O(d), and Eπβ

[
|∇V (X)|2

]
= O(trace(Σ)).

3.3.5.2. Non-isotropic densities with quadratic-like V outside of a ball. In this section, we es-

timate the expectations for a class of non-isotropic densities in the form of πβ ∝ V −β with V

satisfying the following Lyapunov condition:

∃ ε,R > 0 such that ∆V (x) − (β − 1)
|∇V (x)|2

V (x)
≤ −ε ∀ |x| ≥ R.(3.80)

The above Lyapunov condition characterizes the class of V that are ‘quadratic-like’ outside a ball of

radius R. If we assume that V has Lipschitz gradients, then when β is sufficiently large, the above

assumption is satisfied if V satisfies the PL inequality |∇V (x)|2 ≥ a2V (x) wherever |x| ≥ R with

some a > 0 and it is from this inequality that quadratic growth follows. In particular, if V satisfies

the gradient Lipschitz assumption with parameter L, we have that for all β ≥ 1+a−2(dL+ε),

∆V (x) − (β − 1)
|∇V (x)|2

V (x)
≤ dL− (β − 1)a2 ≤ −ε ∀ |x| ≥ R,

thereby leading to the Lyapunov condition in (3.80).

Proposition 12. If V ∈ C2(Rd) is positive, L-gradient Lipschitz and satisfies (3.80), then we have

Eπβ
[V (x)] ≤ (dL+ ε) max

|x|≤R
V (x), and Eπβ

[
|∇V (X)|2

]
≤ dL (dL+ ε)

(β − 1)
max
|x|≤R

V (X).(3.81)
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Proof. Since L is ergodic with stationary distribution πβ, we have

Eπβ
[V (X)] = lim

t→∞
E [V (Xt)] ,

with (Xt)t≥0 being the solution to (3.68) with initial condition X0 = x. We will first bound

E [V (Xt)] and then take t→ ∞. Let (Pt)t≥0 be the Markov semigroup of (3.68), then

d

dt
Eπβ

[V (Xt)] =
d

dt
PtV (x) = PtLV (x).

With (3.69), we have

LV (x) = V (x)

[
∆V (x) − (β − 1)

|∇V (x)|2

V (x)

]
≤ V (x)

(
−ε1|x|≥R + dL1|x|<R

)
≤ −εV (x) + (dL+ ε) max

|x|≤R
V (x),

where the first inequality follows from (3.80) and the fact that ∆V ≤ d
∥∥∇2V

∥∥
2
. Therefore we

obtain

d

dt
PtV (x) ≤ −εPtV (x) + (dL+ ε) max

|x|≤R
V (x),

and it follows from Gronwall’s inequality that

Eπβ
[V (Xt)] = PtV (x) ≤ V (x)e−εt +

(
1 − e−εt

)
(dL+ ε) max

|x|≤R
V (x).

We hence have that Eπβ
[V (X)] ≤ (dL+ ε) max|x|≤R V (x) by taking t → ∞. For the other expec-

tation, we have

Eπβ

[
|∇V (X)|2

]
= Z−1

β

∫
Rd

⟨∇V (x), V (x)−β∇V (x)⟩dx

= −Z−1
β

∫
Rd

V (x)∇ ·
(
V (x)−β∇V (x)

)
dx

= βEπβ

[
|∇V (X)|2

]
− Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx.
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The above identity implies

Eπβ

[
|∇V (X)|2

]
= (β − 1)−1Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β

∫
Rd

trace(∇2V (x))V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β dL

∫
Rd

V (x)−(β−1)dx

=
dL

β − 1
Eπβ

[V (X)]

≤ dL (dL+ ε)

β − 1
max
|x|≤R

V (x).

■

3.3.5.3. General Case. Next we discuss the general case where πβ = Z−1
β V β and V ∈ C2(Rd)

is positive such that there exist constants α,L > 0 and αId ⪯ ∇2V (x) ⪯ LId for all x ∈ Rd. Since

V is strongly convex, there is a unique x∗ ∈ Rd such that V (x) ≥ V (x∗) > 0 for all x ∈ Rd and

∇V (x∗) = 0. Without loss of generality, we assume x∗ = 0.

Proposition 13. Let β > d
2 + 1. If V ∈ C2(Rd) is positive, α-strongly convex and L-gradient

Lipschitz, we have for any r ∈ (0, β − d
2 − 1),

Eπβ
[V (X)] ≤

(
L

α

) d
2

β− d
2−r

V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d
2−r

,(3.82)

Eπβ

[
|∇V (X)|2

]
≤ dL

β − 1

(
L

α

) d
2

β− d
2−r

V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d
2−r

.(3.83)

Proof. For any r ∈ (0, β − d
2 − 1), we have

Eπβ
[V (X)] =

∫
Rd V (x)V (x)−βdx

Zβ
=
Zβ−1

Zβ
≤
(
L

α

) d
2

β− d
2−r

V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d
2−r

.
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where the last inequality follows from Lemma 3.3.3. For the other expectation, we have

Eπβ

[
|∇V (X)|2

]
= Z−1

β

∫
Rd

⟨∇V (x), V (x)−β∇V (x)⟩dx

= −Z−1
β

∫
Rd

V (x)∇ ·
(
V (x)−β∇V (x)

)
dx

= βEπβ

[
|∇V (X)|2

]
− Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx.

The above identity implies

Eπβ

[
|∇V (X)|2

]
= (β − 1)−1Z−1

β

∫
Rd

∆V (x)V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β

∫
Rd

trace(∇2V (x))V (x)−(β−1)dx

≤ (β − 1)−1Z−1
β dL

∫
Rd

V (x)−(β−1)dx

=
dL

β − 1

Zβ−1

Zβ

≤ dL

β − 1

(
L

α

) d
2

β− d
2−r

V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d
2−r

.

where the last inequality also follows from Lemma 3.3.3. ■

Remark 21. A ratio between Gamma functions appears in (3.82) and (3.83). The ratio can be

written explicitly via properties of Gamma functions.

• When d is an even number and d = 2k for some integer k,

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

=
Γ(r)

Γ(d2 + r)

Γ(β)

Γ(β − d
2)

=
Γ(r)

Γ(r)
∏k

i=1(
d
2 + r − i)

Γ(β − d
2)
∏k

i=1(β − i)

Γ(β − d
2)

=

∏k
i=1(β − i)∏k

i=1(
d
2 + r − i)

≤

(
β − d

2

r

) d
2

,
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• When d is an odd number with d = 2k − 1 for some integer k,

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

=
Γ(r)

Γ(d2 + r)

Γ(β)

Γ(β − d
2)

=
Γ(r)

Γ(12 + r)
∏k−1

i=1 (d2 + r − i)

Γ(β − d
2 + 1

2)
∏k−1

i=1 (β − i)

Γ(β − d
2)

=

∏k−1
i=1 (β − i)∏k−1

i=1 (d2 + r − i)

r−1Γ(r + 1)

Γ(12 + r)

Γ(β − d
2 + 1

2)

Γ(β − d
2)

≤

(
β − d

2 + 1
2

r + 1
2

)k−1

r−1(1 + r)
1
2

(
β − d

2
+

1

2

) 1
2

≤
√

1 + r

r

(
β − d

2

r

) d
2

,

where the first inequality follows from Gautschi’s inequality [IM94].

Remark 22. With Theorem 13 and the upper bounds in Remark 21, we can get the estimations

for Eπβ

[
|∇V (X)|2

]
and Eπβ

[V (X)]: for any r ∈ (0, β − d
2 − 1),

Eπβ
[V (X)] ≤ V (0)

(
L

α

) d
2

β− d
2−r

(
1 + r

r

) 1

2(β− d
2−r)

(
β − d

2

r

) d
2

β− d
2−r

,(3.84)

Eπβ

[
|∇V (X)|2

]
≤ V (0)dL

β − 1

(
L

α

) d
2

β− d
2−r

(
1 + r

r

) 1

2(β− d
2−r)

(
β − d

2

r

) d
2

β− d
2−r

.(3.85)

3.3.6. Zeroth-Order Itô Discretization. While previously we consider the case when the

gradient of the function V is analytically available to us, we now consider the case when we have

access only to the function evaluations. This setting is called the zeroth-order setting and has been

recently examined in the context of complexity of sampling in the works of [DCWY19, LST21,

RSBG22]. In this setting, we construct an approximation to the gradient via zeroth-order infor-

mation, i.e., function evaluations. For simplicity, we consider the case of obtaining exact function

evaluations. Based on the Gaussian smoothing technique [NS17, RSBG22], for any x ∈ Rd, we

define the zeroth order gradient estimator gσ,,m(x) as

gσ,m(x) :=
1

m

m∑
i=1

V (x+ σui) − V (x)

σ
ui(3.86)

147



where ui ∼ N (0, Id) are assumed to be independent and identically distributed. The parameter m

is called the batch size parameter. Then the zeroth order algorithm to sample πβ is given by

xk+1 = xk − h(β − 1)gσ,m(xk) +
√

2V (xk)ξk+1(3.87)

where h > 0 is the step size and {ξk+1}∞k=0 is a sequence of independent identically distributed

standard Gaussian random vectors in Rd. From [BG22] and [RSBG22], we recall the following

property of gσ,m.

Proposition 14. [RSBG22, Section 8.1] Assume V is L-gradient Lipschitz. Define ζk = gσ,m(xk)−

∇V (xk) with gσ,m defined in (3.86) and {xk}∞k=0 generated by (3.87). We have for any k ≥ 0,

E
[
|E [ζk|xk] |2

]
≤ L2σ2d,(3.88)

and

E
[
|ζk − E [ζk|xk] |2

]
≤ σ2

2m
L2(d+ 3)3 +

2(d+ 5)

m
E
[
|∇V (xk)|2

]
.(3.89)

Theorem 18. Suppose V is gradient-Lipschitz with parameter L > 0 and satisfies Assumption 12

with δ in (3.75). Let gσ,m be as defined in (3.86) and (xk)∞k=0 be generated from (3.87) with xk ∼ νk

for all k ≥ 0. Then with the time step size

h < min

{
2δ

3(1 + δ)α(β − 1)
,

αmδ

24(1 + δ)(β − 1)(d+ 5)L2
,

1

4(β − 1)L

}
,(3.90)

the decay of Wasserstein-2 distance along the Markov chain (xk)∞k=0 can be described by the fol-

lowing equation. For all k ≥ 1,

W2(νk, πβ) ≤ (1 −A′)kW2(ν0, πβ) +
C ′

A′ +
B′√

A′(2 −A′)
.(3.91)

with A′, B′ and C ′ given respectively in (3.123), (3.124) and (3.125).

Remark 23. With Theorem 18, we can study the iteration complexity to reach an ε-accuracy

in Wasserstein-2 distance. In the following discussion, we focus on the dimension dependence

and ε dependence in the iteration complexity. When β = Θ(d) and α,L = Θ(1), and when h
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satisfies (3.90), we have

A′ = O (δdh) ,
C ′

A′ = O

(dhEπβ
[V (X)])

1
2 + dhEπβ

[
|∇V (X)|2

] 1
2 + σd

1
2

δ

 ,

B′√
A′(2 −A′)

= O

((
dh

δ
+

dh
1
2

(δm)
1
2

)
Eπβ

[
|∇V (X)|2

] 1
2 +

(dh)
1
2

δ
Eπβ

[V (X)] +
σd2h

1
2

(δm)
1
2

)
.

To ensure W2(νK , πβ) < ε, we require that each of

(1 −A′)KW2(ν0, πβ),
C ′

A′ ,
B′√

A′(2 −A′)
,

is smaller than ε/3. Setting σ = εδ/
√
d, and

h = O

(
min

{
(εδ)2

d
Eπβ

[V (X)]−1 ,
εδ

d
Eπβ

[
|∇V (X)|2

]− 1
2 ,
ε2δm

d2
Eπβ

[
|∇V (X)|2

]−1
})

,

we hence obtain that the iteration complexity K is of order

K = Õ

(
max

{
1

ε2δ3
Eπβ

[V (X)] ,
1

εδ2
Eπβ

[
|∇V (X)|2

] 1
2 ,

d

ε2δ2m
Eπβ

[
|∇V (X)|2

]})
.(3.92)

The number of function evaluations is hence mK.

3.3.7. Illustrative Examples. We now provide illustrative examples to highlight the impli-

cations of our results.

3.3.7.1. Multivariate t-distribution: Large Degree of Freedom. We first consider the isotropic

multivariate t-distribution with the degrees of freedom being d + 2. We choose V (x) = 1 + |x|2,

β = d + 1 and πβ(x) ∝ V (x)−β = (1 + |x|2)−(d+1). With this choice of V and β, V satisfies

Assumption 12 with α = 2, CV = 2, and V is L-Lipschitz gradient with L = 2. The constant

δ in Theorem 17 becomes δ = 1. Furthermore, according to proposition 11, Eπβ
[V (X)] = 2 and

Eπβ
[|∇V (X)|2] = 4.

first order algorithm: According to Theorem 17 and (3.78), to obtain ϵ-accuracy in Wasserstein-

2 distance, the iteration complexity is of order Õ(1/ϵ2). With the same choice of V and β, we check

the conditions of Theorem 1 in [LWME19]. The diffusion (3.68) is α′-uniformly dissipative with

α′ = d and the Euler discretization given in (3.74) has local deviation with order (p1, p2) = (1, 3/2)
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and (λ1, λ2) = (Θ(d5),Θ(d4)). The detailed calculation for deriving the constants above is provided

in Appendix 3.3.10.2. Hence, by Theorem 1 in [LWME19], to reach an ϵ-accuracy in Wasserstein-2

distance, the iteration complexity is of order Õ(d3/ϵ2). Hence, in comparison with the result in

[LWME19], we obtain a dimension-free iteration complexity to ensure an ϵ-accuracy in Wasserstein-

2 distance.

zeroth order algorithm: According to Theorem 18 and (3.92), to obtain ε-accuracy in Wasserstein-

2 distance, the iteration complexity is of order Õ
(
(1 ∨ d/m)/ε2

)
. When m = 1, the iteration

complexity K ∼ Õ(d/ε2) and the number of functions evaluations mK is also of the same order

Õ(d/ε2). If we choose the batch size m = d, we get a dimension independent iteration complexity

K ∼ Õ(1/ε2) but the number of function evaluations is of order Õ(d/ε2). Hence, we notice that

in the case of multivariate t-distribution distributions with large degrees of freedom, the cost of

estimating the gradient has an effect on the sampling complexities.

3.3.7.2. Multivariate t-distribution: Small Degrees of Freedom. We now consider the isotropic

multivariate t-distribution with the degrees of freedom being 3. We denote the corresponding

density function by πβ. The exact number of 3 is chosen just for convenience; the results of this

example apply to all cases where the degrees of freedom is strictly larger than 2 which corresponds

to the setting where the variance is finite. We choose V (x) = 1 + |x|2, β = (d+ 3)/2 and πβ(x) ∝

V (x)−β = (1 + |x|2)−(d+3)/2. With the above choice of V and β, V satisfies Assumption 12 with

α = 2, CV = 2 and V is L-Lipschitz gradient with L = 2. Hence, the constant δ in Theorem 17 is

given by δ = 1/d. According to Proposition 11, Eπβ
[V (X)] = d+ 1 and Eπβ

[|∇V (X)|2] = 4d.

first order algorithm: According to Theorem 17 and (3.78), to obtain ϵ-accuracy in Wasserstein-2

distance, the iteration complexity is of order Õ(d4/ϵ2). With the same choice of V and β, we check

the conditions of Theorem 1 in [LWME19]. The diffusion (3.68) is α′-uniformly dissipative with

α′ = 1 and the Euler discretization given in (3.74) has local deviation with order (p1, p2) = (1, 3/2)

and (λ1, λ2) = (Θ(d5),Θ(d4)). The detailed calculation for deriving the constants is provided

in Appendix 3.3.10.2. Hence, according to Theorem 1 in [LWME19], to reach an ϵ-accuracy in

Wasserstein-2 distance, the iteration complexity is of order Õ(d6/ϵ2). Even in this extremely

heavy-tail case (i.e., only the variance exists), to ensure an ϵ-accuracy in Wasserstein-2 distance,
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we can obtain an iteration complexity with polynomial dimension dependence. Furthermore, in

comparison to [LWME19], our analysis helps to decrease the dimension exponent by a factor of

2.

zeroth order algorithm: According to Theorem 18 and (3.92), to obtain ε-accuracy in Wasserstein-

2 distance, the iteration complexity is of order Õ
(

max{d4/ε2, d
5
2 /ε, d4/ε2m}

)
. Hence, we have

that for any batch size m, the iteration complexity K = Õ(d4/ε2). Picking m = 1, the number of

function evaluations are of the same order, i.e., mK = Õ(d4/ε2).

Remark 24. The example discussed above highlights the following important observation: Choos-

ing a large batch size does not improve the iteration complexity. To explain this, we understand

both (3.74) and (3.87) as approximation to the continuous dynamics (3.68). For the first-order

algorithm, the error of the approximation only comes from the Euler-Maruyama discretization. For

the zeroth-order algorithm, the error of the approximation comes from both the Euler-Maruyama

discretization and the zeroth-order gradient estimate. When the error from the Euler-Maruyama

discretization dominates, the optimal batch size is always 1 and the oracle complexity of the zeroth

order algorithm is the same as the iteration complexity for the first-order algorithm. When the error

from the zeroth-order gradient estimate dominates, we need to choose a large batch size depending

on d so that the iteration complexity for the zeroth-order algorithm is the same as the iteration

complexity for the first-order algorithm while the zeroth-order oracle complexity is of order m-times

larger.

3.3.8. Further Results and Additional Insights on Assumptions. In Section 3.3.4, we

provide sufficient conditions on V such that when β > d, πβ ∝ V −β satisfies the weighted Poincaré

inequality with weight V . In this section, we relax the conditions in Section 3.3.4 by introducing

the following assumptions.

Assumption 13. The function V : Rd → (0,∞) is twice continuously differentiable and V satisfies

(1) ∇2V (x) is invertible for all x ∈ Rd.
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(2) There exists γ ∈
(

0, β
d+2

]
, such that

sup
x∈Rd

∥∥∥V (x)γ−1
(
∇2Vγ

)−1
(x)
∥∥∥
2
≤ CV (γ),

where Vγ := V γ and CV (γ) is a positive constant depending on γ.

Lemma 3.3.2. Under Assumption 13, for any smooth function ϕ ∈ L2(πβ),

Varπβ
(ϕ) ≤ CWPI

∫
Rd

|∇ϕ(x)|2V (x)πβ(x)dx, with CWPI = CV (γ)

(
β

γ
− 1

)−1

.(3.93)

Proof. First we define Vγ := V γ . Choose β′ = β − 2γ. For πβ′ ∝ V −β′
, we can write it as

πβ′ ∝ Vγ
−a with

a =
β′

γ
=
β − 2γ

γ
≥ d,

where the inequality follows from the fact that γ ∈
(

0, β
d+2

]
. Therefore we can apply Theorem 16

to πβ′ ∝ Vγ
−a and get for any smooth, πβ′-square integrable function g with Eπβ′ [g(X)] = 0 and

G = Vγg,

(a+ 1)

∫
Rd

g(x)2πβ′(x)dx ≤
∫
Rd

⟨(∇2Vγ)−1(x)∇G(x),∇G(x)⟩
Vγ(x)

πβ′(x)dx.(3.94)

Since β′ = β − 2γ, (3.94) is equivalent to

(a+ 1)

∫
Rd

|G(x)|2

V (x)
V (x)−(β−1)dx ≤

∫
Rd

⟨(∇2Vγ)−1(x)∇G(x),∇G(x)⟩V (x)−(β′+γ)dx.(3.95)

Under Assumption 13, we have∫
Rd

⟨(∇2Vγ)−1(x)∇G(x),∇G(x)⟩V (x)−(β′+γ)dx

≤ CV (γ)

∫
Rd

|∇G(x)|2V (x)1−γV (x)−(β′+γ)dx

= CV (γ)

∫
Rd

|∇G(x)|2V (x)−(β−1)dx,

152



where the last identity follows from the fact that β′ = β − 2γ. Along with (3.95), we get

(a+ 1)

∫
Rd

|G(x)|2

V (x)
V (x)−(β−1)dx ≤ CV (γ)

∫
Rd

|∇G(x)|2V (x)−(β−1)dx.(3.96)

Since G = V γg, G is smooth, πβ-square integrable and Eπβ−γ
[G(X)] = 0. For any πβ-square

integrable ϕ, let G = ϕ− Eπβ−γ
[ϕ(X)] and we get∫

Rd

|ϕ(x) − Eπβ−γ
[ϕ(X)]|2πβ(x)dx ≤ CV (γ)

a+ 1

∫
Rd

|∇ϕ(x)|2V (x)πβ(x)dx.(3.97)

Therefore for any smooth, πβ-square integrable ϕ,

Varπβ
(ϕ) = inf

c∈R

∫
Rd

|ϕ(x) − c|2πβ(x)dx ≤ CV (γ)

a+ 1

∫
Rd

|∇ϕ(x)|2V (x)πβ(x)dx,

which is equivalent to (3.93) with CWPI = CV (γ)
a+1 = CV (γ)

(
β
γ − 1

)−1
. ■

Remark 25. Lemma 3.3.2 can be applied to the class of multivariate t-distributions with V (x) =

1 + |x|2. When β ∈
(
d+2
2 , d

]
, with the choice of γ = β

d+2 , Assumption 13 holds with

CV (γ) =
(d+ 2)2

2β(2β − d− 2)
.

Hence, Lemma 3.3.2 implies that the multivariate t-distribution with degree of freedom ν ∈ (2, d]

satisfies the weighted Poincaré inequality with weight 1 + |x|2 and with

CWPI =
(d+ 2)2

ν(d+ 1)(d+ ν)
.

The detailed calculation for deriving the above mentioned constants is provided in Appendix 3.3.10.3.

As an immediate consequence of Lemma 3.3.2, we have the following χ2 convergence result for (3.68).

Proposition 15. Under Assumption 13, with (Xt) satisfying (3.68) with ρt being the distribution

of Xt, we have

χ2(ρt|πβ) ≤ exp

(
−CV (γ)−1

(
β

γ
− 1

)
t

)
χ2(ρ0|πβ).(3.98)
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For the case of multivariate t-distributions, Proposition 15 allows us to show exponential conver-

gence of (3.68) in the χ2 divergence with smaller degrees of freedom (and hence heavier tails)

compared to Proposition 10.

3.3.8.1. Relationship between Lemma 3.3.1 and Lemma 3.3.2. The result in Lemma 3.3.2 com-

plements that in Lemma 3.3.1. It can be used to study the WPI for πβ when β ≤ d. In particular,

when β ≤ d, if πβ ∝ V −β and V satisfies Assumption 12 with CV ∈ (0, d+2
d+2−β ), then V sat-

isfies Assumption 13. Therefore πβ satisfies the WPI. In Proposition 16, this relation is proved

formally.

Proposition 16. When β ≤ d, if Assumption 12 holds with CV ∈ (0, d+2
d+2−β ), then Assumption

13 holds.

Proof. First ∇2V is invertible because ∇2V ⪰ αId. Next we show that there exists γ ∈ (0, β
d+2 ]

such that
∥∥V (x)γ−1(∇2Vγ)−1(x)

∥∥
2
≤ CV (γ) for all x ∈ Rd. It is equivalent to showing that there

exists γ ∈ (0, β
d+2 ] such that

∥∥V (x)1−γ(∇2Vγ)(x)
∥∥
2
> 0 for all x ∈ Rd. From the calculations in

Section 3.3.10.3, we have

∇2Vγ(x) = γV (x)γ−1
(
(γ − 1)V (x)−1∇V (x)T∇V (x) + ∇2V (x)

)
.

Therefore

V (x)1−γ(∇2Vγ)(x) = γ
(
∇2V (x) − (1 − γ)V (x)−1∇V (x)T∇V (x)

)
⪰ αγ (1 − (1 − γ)CV ) Id,

where the inequality follows from Assumption 12. Last we show that there exists γ ∈ (0, β
d+2 ] such

that 1 − (1 − γ)CV > 0. Note that

1 − (1 − γ)CV > 0 =⇒ γ > 1 − 1

CV
.

Since CV ∈
(

0, d+2
d+2−β

)
, we have that

1 − 1

CV
<

β

d+ 2
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Therefore there exists a constant γ ∈
(

0, β
d+2

]
such that

∥∥V (x)1−γ(∇2Vγ)(x)
∥∥
2
> 0 for all x ∈

Rd. ■

3.3.8.2. Relationship between Theorem 17 and Proposition 15. Proposition 15 studies the con-

vergence of the continuous dynamics (3.68) while Theorem 17 studies the convergence of the dis-

cretization (3.74). The conditions in Theorem 17 can be shown to imply conditions in proposition

15. In Proposition 15 we only assume Assumption 13. In Theorem 17, we assume (i) Assumption

12, (ii) δ =
β−1− 1

4
CV d

1
4
CV d

> 0, and (iii) V is gradient Lipschitz. In the following proposition, we show

that these three assumptions together imply Assumption 13.

Proposition 17. If Assumption 12 holds such that δ =
β−1− 1

4
CV d

1
4
CV d

> 0 and V is L-gradient

Lipschitz, then Assumption 13 holds.

Proof of Proposition 15. Under Assumption 12 and L-gradient Lipschitzness assumption,

we have that V is ‘essential quadratic’. That is, assuming V attains its global minimum at x∗, for

all x ∈ Rd,

V (x∗) +
α

2
|x− x∗|2 ≤ V (x) ≤ V (x∗) +

L

2
|x− x∗|2.

Therefore for all x ∈ Rd,

|∇V (x)|2

V (x)
≤ L2|x− x∗|2

V (x∗) + α
2 |x− x∗|2

≤ 2L2

α
,

which implies that Assumption 12-(2) is satisfied with CV = 2L2

α2 . Furthermore,

V (x)1−γ(∇2Vγ)(x) ⪰ αγ (1 − (1 − γ)CV ) Id = αγ

(
1 − 2(1 − γ)

L2

α2

)
Id.

The condition δ =
β−1− 1

4
CV d

1
4
CV d

> 0 is equivalent to the condition β > L2

2α2d + 1. Notice that for all

d ≥ 1, we have (
1 − α2

2L2

)
(d+ 2) <

L2

2α2
d+ 1
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Therefore for any

β >
L2

2α2
d+ 1 >

(
1 − α2

2L2

)
(d+ 2),

we can choose γ = β
d+2 and obtain

V (x)1−γ(∇2Vγ)(x) ⪰ 2L2β

α(d+ 2)

(
α2

2L2
+

β

d+ 2
− 1

)
Id

=
2L2β

α(d+ 2)2

(
β −

(
1 − α2

2L2

)
(d+ 2)

)
Id

Therefore Assumption 13-(2) is satisfied with γ = β/(d+ 2) and

CV (γ) =
α(d+ 2)2

2L2β

(
β −

(
1 − α2

2L2

)
(d+ 2)

)−1

> 0.

The proof is now complete because Assumption 13-(1) is automatically satisfied under Assumption

12. ■

3.3.9. Proofs of the Main Results.

3.3.9.1. Proofs of Theorem 17 and Theorem 18. In this section, we provide the proof of Theorem

17 and Theorem 18 via mean square analysis. We first start with the following intermediate

result.

Proposition 18. Let (Xt)t≥0 follow (3.68) with Xt ∼ ρt for all t ≥ 0. If V is gradient Lipschitz

with parameter L, then we have

E
[
|Xt −X0|2

]
≤ 4

[
(β − 1)2t2E

[
|∇V (X0)|2

]
+ tdE [V (X0)]

]
exp

(
4(β − 1)2L2t2 + d(β − 1)L2t2 + 2dLt

)
.

(3.99)

Proof of Proposition 18. According to (3.68),

E[|Xt −X0|2] ≤ 2(β − 1)2E

[∣∣∣∣∫ t

0
∇V (Xs)ds

∣∣∣∣2
]

+ 4dE
[∫ t

0
V (Xs)ds

]
,
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where

E

[∣∣∣∣∫ t

0
∇V (Xs)ds

∣∣∣∣2
]
≤ 2E

[(∫ t

0
|∇V (Xs) −∇V (X0)|ds

)2
]

+ 2E

[(∫ t

0
|∇V (X0)|ds

)2
]

≤ 2tE
[∫ t

0
|∇V (Xs) −∇V (X0)|2ds

]
+ 2tE

[∫ t

0
|∇V (X0)|2ds

]
≤ 2L2t

∫ t

0
E
[
|Xs −X0|2

]
ds+ 2t2E

[
|∇V (X0)|2

]
,(3.100)

and

E
[∫ t

0
V (Xs)ds

]
≤ E

[∫ t

0
V (X0) + ⟨∇V (X0), Xs −X0⟩ +

L

2
|Xs −X0|2ds

]
= tE [V (X0)] +

L

2
E
[∫ t

0
|Xs −X0|2ds

]
− (β − 1)E

[∫ t

0

∫ s

0
⟨∇V (X0),∇V (Xu)⟩duds

]
≤ tE [V (X0)] +

L

2
E
[∫ t

0
|Xs −X0|2ds

]
− (β − 1)t2

2
E
[
|∇V (X0)|2

]
− (β − 1)E

[∫ t

0

∫ s

0
⟨∇V (X0),∇V (Xu) −∇V (X0)⟩duds

]
≤ tE [V (X0)] +

L

2
E
[∫ t

0
|Xs −X0|2ds

]
− (β − 1)t2

2
E
[
|∇V (X0)|2

]
+

(β − 1)t2

2
E
[
|∇V (X0)|2

]
+
β − 1

4
E
[∫ t

0

∫ s

0
|∇V (Xu) −∇V (X0)|2duds

]
≤ tE [V (X0)] +

L

2
E
[∫ t

0
|Xs −X0|2ds

]
+

(β − 1)L2

4
E
[∫ t

0

∫ s

0
|Xu −X0|2duds

]
≤ tE [V (X0)] +

(
L

2
+

(β − 1)L2t

4

)
E
[∫ t

0
|Xs −X0|2ds

]
.(3.101)

With (3.100) and (3.101), we get

E[|Xt −X0|2] ≤
∫ t

0

[
4(β − 1)2L2t+ 2dL+ d(β − 1)L2t

]
E
[
|Xs −X0|2

]
ds+ 4dtE [V (X0)]

+ 4(β − 1)2t2E
[
|∇V (X0)|2

]
.
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By Gronwall’s inequality, we hence have

E[|Xt −X0|2] ≤ 4
[
(β − 1)2t2E

[
|∇V (X0)|2

]
+ dtE [V (X0)]

]
exp

(
4(β − 1)2L2t2 + d(β − 1)L2t2 + 2dLt

)
.

■

Based on the above proposition, we now prove Theorem 17 below.

Proof of theorem 17. We perform mean square analysis to (3.74). Let (Xt)t≥0 follow (3.68)

with X0 ∼ πβ. Since πβ is the unique stationary distribution to (3.68), Xt ∼ πβ for all t ≥ 0. With

(3.74), we can calculate the difference between Xh and x1,

Xh − x1 = X0 −
∫ h

0
(β − 1)∇V (Xt)dt+

∫ t

0

√
2V (Xt)dBt −

(
x0 − (β − 1)hy0 +

√
2hV (x0)ξ1

)
= (X0 − x0) − (β − 1)h (∇V (X0) −∇V (x0)) −

∫ h

0
(β − 1) (∇V (Xt) −∇V (X0)) dt∫ h

0

(√
2V (Xt) −

√
2V (x0)

)
dBt

:= U1 + U2 + U3,

where

U1 := (X0 − x0) − (β − 1)h (∇V (X0) −∇V (x0)) ,(3.102)

U2 := −
∫ h

0
(β − 1) (∇V (Xt) −∇V (X0)) dt,(3.103)

U3 :=

∫ h

0

(√
2V (Xt) −

√
2V (x0)

)
dBt.(3.104)

Therefore according to triangle inequality,

E[|Xh − x1|2|]
1
2 ≤ E[|U1 + U3|2]

1
2 + E[|U2|2]

1
2 .
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Since U1 is adapted to F0 and E[U3|F0] = 0, we get

E[|U1 + U3|2|F0] = |U1|2 + E[|U3|2|F0]

= |(X0 − x0) − (β − 1)h (∇V (X0) −∇V (x0)) |2

+ E
[∫ h

0

∥∥∥√2V (Xt)Id −
√

2V (x0)Id

∥∥∥2
F
dt|F0

]
.

Since V is α-strongly convex and L-gradient Lipschitz, it satisfies

⟨X0 − x0,∇V (X0) −∇V (x0)⟩ ≥
αL

α+ L
|X0 − x0|2 +

1

α+ L
|∇V (X0) −∇V (x0)|2.

Therefore when h ≤ 2
(β−1)(α+L) ,

|(X0 − x0) − (β − 1)h (∇V (X0) −∇V (x0)) |2

=|X0 − x0|2 − 2(β − 1)h⟨X0 − x0,∇V (X0) −∇V (x0)⟩ + (β − 1)2h2|∇V (X0) −∇V (x0)|2

≤
(

1 − 2(β − 1)αLh

α+ L

)
|X0 − x0|2 + (β − 1)h

(
(β − 1)h− 2

α+ L

)
|∇V (X0) −∇V (x0)|2

≤ (1 − (β − 1)αh)2 |X0 − x0|2.(3.105)

Meanwhile, for arbitrary r > 0, we have

E
[∫ h

0

∥∥∥√2V (Xt) −
√

2V (x0)
∥∥∥2
F
dt

]
=dE

[∫ h

0
|
√

2V (Xt) −
√

2V (x0)|2dt
]

≤d
(
h
(√

2V (X0) −
√

2V (x0)
)2

+ E
[∫ h

0

∣∣∣√2V (Xt) −
√

2V (X0)
∣∣∣2 dt])

+ 2d|
√

2V (X0) −
√

2V (x0)|h
1
2E
[∫ h

0

∣∣∣√2V (Xt) −
√

2V (X0)
∣∣∣2 dt]

≤d(1 + r)h
(√

2V (X0) −
√

2V (x0)
)2

+ d(1 + r−1)E
[∫ h

0

∣∣∣√2V (Xt) −
√

2V (X0)
∣∣∣2 dt] .

Notice that under Assumption 12, we have

|∇(
√

2V (x))| =

√
2|∇V (x)|
2
√
V (x)

≤
√

2αCV

2
,
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for all x ∈ Rd. Therefore

(
√

2V (X0) −
√

2V (x0))
2 ≤ αCV

2
|X0 − x0|2,(3.106)

and ∫ h

0
|
√

2V (Xt) −
√

2V (X0)|2dt ≤
αCV

2

∫ h

0
|Xt −X0|2dt.(3.107)

With (3.106) and (3.107), we get

E[

∫ h

0

∥∥∥√2V (Xt) −
√

2V (x0)
∥∥∥2
F
dt] ≤ αCV dh(1 + r)

2
E[|X0 − x0|2]

+
αCV d(1 + r−1)

2

∫ h

0
E[|Xt −X0|2]dt.

(3.108)

Next we apply Proposition 18 to E[|Xt −X0|2]. In particular, when

t ∈ [0, h] and h <
1

4(β − 1)L
,

we have

E[|Xt −X0|2] ≤
(
4dtE [V (X0)] + 4(β − 1)2t2E

[
|∇V (X0)|2

])
exp(1)

≤ 12dtE [V (X0)] + 12(β − 1)2t2E
[
|∇V (X0)|2

]
.(3.109)

Combining (3.108) and (3.109), when h < 1
4(β−1)L , we have that

E[

∫ h

0

∥∥∥√2V (Xt) −
√

2V (x0)
∥∥∥2
F
dt]

≤1

2
αCV d(1 + r)hE[|X0 − x0|2]

+ 6αCV d(1 + r−1)

∫ h

0

(
dtE [V (X0)] + (β − 1)2t2E

[
|∇V (X0)|2

])
dt

=
1

2
αCV d(1 + r)hE[|X0 − x0|2](3.110)

+ 3αCV d
2(1 + r−1)h2E [V (X0)] + 2αCV d(β − 1)2(1 + r−1)h3E

[
|∇V (X0)|2

]
.
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With (3.105) and (3.110), we get

E[|U1 + U3|2]

≤
(

1 − 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

)
E
[
|X0 − x0|2

]
+ 3αCV d

2(1 + r−1)h2E [V (X0)] + 2αCV d(β − 1)2(1 + r−1)h3E
[
|∇V (X0)|2

]
≤
(

1 − 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

)
E
[
|X0 − x0|2

]
+ 2αCV d(1 + r−1)h2

(
3dE [V (X0)] + 2(β − 1)2hE

[
|∇V (X0)|2

])
.(3.111)

Since CV < 4(β−1)
d , denote δ =

(β−1)− 1
4
CV d

1
4
CV d

> 0. We have

1 − 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

= 1 − 2(β − 1)αh+ (β − 1)2α2h2 + 2(β − 1)α
1 + r

1 + δ
h

=

[
1 − α(β − 1)(1 − 1 + 2r

1 + δ
)h

]2
+ α2(β − 1)2h2

− 2α(β − 1)
r

1 + δ
h− α2(β − 1)2h2

(
δ − 2r

1 + δ

)2

.

By picking r = δ
3 , we get for any h ∈

(
0, 2δ

3(1+δ)α(β−1)

)
that

1 − 2(β − 1)αh+ (β − 1)2α2h2 +
1

2
αCV d(1 + r)h

≤
[
1 − α(β − 1)

δ

3(1 + δ)
h

]2
+ α2(β − 1)2h

(
h− 2δ

3(1 + δ)
α−1(β − 1)−1

)
≤
[
1 − α(β − 1)

δ

3(1 + δ)
h

]2
.

With the choice of r = δ/3, (3.111) could be rewritten as

E[|U1 + U3|2] ≤
(

1 − α(β − 1)δ

3(1 + δ)
h

)2

E[|X0 − x0|2]

+
8α(β − 1)(3 + δ)h2

(1 + δ)δ

(
3dE [V (X0)] + 2(β − 1)2hE

[
|∇V (X0)|2

])
.(3.112)
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Next, with the bound in (3.109), we get when h < 1
4(β−1)L ,

E[|U2|2] ≤ (β − 1)2L2E

[(∫ h

0
|Xt −X0|dt

)2
]

≤ (β − 1)2L2h

∫ h

0
E
[
|Xt −X0|2

]
dt

≤ 6d(β − 1)2L2h3E [V (X0)] + 4(β − 1)4L2h4E
[
|∇V (X0)|2

]
.(3.113)

With (3.112) and (3.113), we get when h < min
(

1
4(β−1)L ,

2δ
3(1+δ)α(β−1)

)
,

E
[
|Xh − x1|2

] 1
2 ≤

[
(1 −A)2E

[
|X0 − x0|2

]
+B2

] 1
2 + C,

with

A =
α(β − 1)δ

3(1 + δ)
h,(3.114)

B =
4α

1
2 (β − 1)

1
2 (3 + δ)

1
2h

(1 + δ)
1
2 δ

1
2

(
d

1
2Eπβ

[V (X)]
1
2 + (β − 1)h

1
2Eπβ

[
|∇V (X)|2

] 1
2

)
,(3.115)

C = 3d
1
2 (β − 1)Lh

3
2Eπβ

[V (X)]
1
2 + 2(β − 1)2Lh2Eπβ

[
|∇V (X)|2

] 1
2 .(3.116)

The above analysis works for each step, therefore we get for all k ≥ 1,

E
[
|Xkh − xk|2

] 1
2 ≤

[
(1 −A)2E

[
|X(k−1)h − xk−1|2

]
+B2

] 1
2 + C.

According to [DK19, Lemma 9], with A,B,C given in (3.114),(3.115),(3.116), for all k ≥ 1,

E
[
|Xkh − xk|2

] 1
2 ≤ (1 −A)kE

[
|X0 − x0|2

] 1
2 +

C

A
+

B√
A(2 −A)

.

Choosing X0 such that W2(ν0, πβ) = E
[
|X0 − x0|2

] 1
2 , we get (3.76). ■

We now prove Theorem 18.
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Proof of Theorem 18. Following the same strategy and notation in the proof of Theorem

17, we have

Xh − x1 = U1 + U2 + U3 + (β − 1)hE[ζ0|x0] + (β − 1)h (ζ0 − E[ζ0|x0]) ,(3.117)

where U1, U2, U3 are defined in (3.102),(3.103),(3.104) respectively and ζ0 = gσ,m(x0) − ∇V (x0).

Therefore we have

E
[
|Xh − x1|2

] 1
2 ≤ E

[
|U1 + U3 + (β − 1)h (ζ0 − E[ζ0|x0]) |2

] 1
2

+ E
[
|U2|2

] 1
2 + (β − 1)hE

[
|E[ζ0|x0]|2

] 1
2

=
{
E
[
|U1 + U3|2

]
+ (β − 1)2h2E

[
|ζ0 − E[ζ0|x0]|2

]} 1
2

+ E
[
|U2|2

] 1
2 + (β − 1)hE

[
|E[ζ0|x0]|2

] 1
2 .

(3.118)

From the proof of Theorem 17 and Proposition 14, when

h < min

(
1

4(β − 1)h
,

2δ

3(1 + δ)α(β − 1)

)
,

we have that

E
[
|Xh − x1|2

] 1
2 ≤

{
(1 −A)2E

[
|X0 − x0|2

]
+B2 +

σ2

2m
L2(β − 1)2(d+ 3)3h2

+
2(d+ 5)(β − 1)2h2

m
E
[
|∇V (x0)|2

]} 1
2

+ C + Lσ(β − 1)d
1
2h,(3.119)

where A,B,C are defined in (3.114),(3.115),(3.116). Using the fact that V is gradient Lipshcitz,

we have

E
[
|∇V (x0)|2

]
≤ E

[
(|∇V (X0)| + L|X0 − x0|)2

]
≤ 2E

[
|∇V (X0)|2

]
+ 2L2E

[
|X0 − x0|2

]
.(3.120)
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Plugging (3.120) in (3.119), we get

E
[
|Xh − x1|2

] 1
2 ≤

{
(1 −A)2E

[
|X0 − x0|2

]
+

4(d+ 5)(β − 1)2L2h2

m
E
[
|X0 − x0|2

]
+B2

+
σ2

2m
L2(β − 1)2(d+ 3)3h2 +

4(d+ 5)(β − 1)2h2

m
E
[
|∇V (X0)|2

]} 1
2

+ C + Lσ(β − 1)d
1
2h.(3.121)

When we pick the step-size such that

h < min

{
2(1 + δ)

α(β − 1)δ
,

αmδ

24(1 + δ)(β − 1)(d+ 5)L2

}
,

we have

(1 −A)2 +
4(d+ 5)(β − 1)2L2h2

m
≤
(

1 − A

2

)2

.

Therefore we have

E
[
|Xh − x1|2

] 1
2 ≤

{
(1 −A′)2E

[
|X0 − x0|2

]
+B′2

} 1
2

+ C ′,(3.122)

where

A′ =
α(β − 1)δ

6(1 + δ)
h,(3.123)

B′ =

(
4α

1
2 (β − 1)

3
2 (3 + δ)

1
2h

3
2

(1 + δ)
1
2 δ

1
2

+
2(β − 1)(d+ 5)

1
2h

m
1
2

)
Eπβ

[
|∇V (X)|2

] 1
2

+
4α

1
2 (β − 1)

1
2d

1
2 (3 + δ)

1
2h

(1 + δ)
1
2 δ

1
2

Eπβ
[V (X)]

1
2 +

σL(β − 1)(d+ 3)
3
2

m
1
2

h,(3.124)

C ′ = 3L(β − 1)d
1
2h

3
2Eπβ

[V (X)]
1
2 + 2L(β − 1)2h2Eπβ

[
|∇V (X)|2

] 1
2 + σL(β − 1)d

1
2h.(3.125)

The rest of the proof is the same as the proof of Theorem 17, and hence we get (3.91). ■

3.3.10. Appendix.

3.3.10.1. Computations for Section 3.3.5.3.
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Lemma 3.3.3. Let β > d
2 +1. If V ∈ C2(Rd) is positive, α-strongly convex and L-gradient Lipschitz,

we have for any r ∈ (0, β − d
2 − 1),

Zβ−1

Zβ
≤
(
L

α

) d
2

β− d
2−r

V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d
2−r

.(3.126)

Proof. Since V (x) ≤ V (0) + L
2 |x|

2, we know that for any r ∈ (0, β− d
2 − 1), Z d

2
+r is finite and

π d
2
+r is a probability measure. Therefore

Zβ−1

Zβ
=

∫
Rd V (x)−(β−1)dx∫

Rd V (x)−βdx
=
Z d

2
+r

∫
Rd V (x)−(β− d

2
−1−r)π d

2
+r(x)dx

Z d
2
+r

∫
Rd V (x)−(β− d

2
−r)π d

2
+r(x)dx

≤

(∫
Rd V (x)−(β− d

2
−r)π d

2
+r(x)dx

)β− d
2−1−r

β− d
2−r∫

Rd V (x)−(β− d
2
−r)π d

2
+r(x)dx

=

(∫
Rd

V (x)−(β− d
2
−r)π d

2
+r(x)dx

)− 1

β− d
2−r

=
(
Z d

2
+r

) 1

β− d
2−r

(∫
Rd

V (x)−βdx

)− 1

β− d
2−r

≤
(
Z d

2
+r

) 1

β− d
2−r

(∫
Rd

(V (0) +
L

2
|x|2)−βdx

)− 1

β− d
2−r

.

For the integral
∫
Rd(V (0) + L

2 |x|
2)−βdx, we can calculate it via change of polar coordinates and

substitutions,∫
Rd

(V (0) +
L

2
|x|2)−βdx = Ad−1(1)

∫ ∞

0
(V (0) +

L

2
R2)−βRd−1dR

=
π

d
2

Γ(d2)

∫ ∞

0
(V (0) + V (0)RL)−β(

2V (0)

L
)
d
2
−1RL

d
2
−1 2V (0)

L
dRL

=
2

d
2π

d
2

Γ(d2)L
d
2V (0)β−

d
2

∫ ∞

0
(1 +RL)−βR

d
2
−1

L dRL

=
2

d
2π

d
2

Γ(d2)L
d
2V (0)β−

d
2

∫ 1

0
u

d
2
−1(1 − u)β−

d
2
−1du

=
2

d
2π

d
2B(d2 , β − d

2)

Γ(d2)L
d
2V (0)β−

d
2

,
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where the second identity follows from a substitution with RL = LR2/(2V (0)) and the fourth

identity follows from a substitution with u = RL
1+RL

. For Z d
2
+r, we have

Z d
2
+r =

∫
Rd

V (x)−
d
2
−rdx

≤
∫
Rd

(
V (0) +

α

2
|x|2
)− d

2
−r
dx

=
π

d
2

Γ(d2)

∫ ∞

0

(
V (0) +

α

2
R2
)− d

2
−r
Rd−1dR

=
π

d
2

Γ(d2)

∫ ∞

0
(V (0) + V (0)Rα)−

d
2
−r

(
2V (0)

α

) d
2
−1

Rα
d
2
−1 2V (0)

α
dRα

=
2

d
2π

d
2

Γ(d2)α
d
2V (0)r

∫ ∞

0
(1 +Rα)−

d
2
−r Rα

d
2
−1dRα

=
2

d
2π

d
2

Γ(d2)α
d
2

∫ 1

0
u

d
2
−1(1 − u)r−1du

=
2

d
2π

d
2B(d2 , r)

Γ(d2)α
d
2V (0)r

.

Therefore, we can further get

Zβ−1

Zβ
≤

(
2

d
2π

d
2B(d2 , r)

Γ(d2)α
d
2V (0)r

Γ(d2)L
d
2V (0)β−

d
2

2
d
2π

d
2B(d2 , β − d

2)

) 1

β− d
2−r

=

(
L

d
2V (0)β−

d
2
−r

α
d
2

Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d
2−r

=

(
L

α

) d
2

β− d
2−r

V (0)

(
Γ(β)Γ(r)

Γ(d2 + r)Γ(β − d
2)

) 1

β− d
2−r

.

■

3.3.10.2. Computations for Sections 3.3.7.1 and 3.3.7.2. Let πβ(x) ∝ V (x)−β = (1 + |x|2)−β

with β > d+2
2 . The gradient and Hessian of V is

∇V (x) = 2x, ∇2V (x) = 2Id.
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Therefore V is α-strongly convex with α = 2 and L-gradient Lipschitz with L = 2. (3.68) reduces

to

(3.127) dXt = b(x)dt+ σ(Xt)dBt,

with b(x) = −2(β − 1)x and σ(x) =
√

2(1 + |x|2)
1
2 Id.

Next we look at the uniform dissipativity condition:

⟨b(x) − b(y), x− y⟩ +
1

2

∥∥∥(1 + |x|2)
1
2 Id − (1 + |y|2)

1
2 Id

∥∥∥2
F

= − 2(β − 1)|x− y|2 + d|(1 + |x|2)
1
2 − (1 + |y|2)

1
2 |2

≤− 2(β − 1 − d

2
)|x− y|2,(3.128)

where the inequality follows from the fact that x 7→ (1 + |x|2)
1
2 is 1-Lipschitz. Therefore diffusion

(3.127) is α′-uniform dissipative with α′ = 2(β − 1 − d
2). In particular, α′ = d when β = d+ 1 and

α′ = 1 when β = d+3
2 .

Last we look at the local deviation for the Euler discretization to (3.127). We use the same notations

in [LWME19]. According to [LWME19, lemma 29], p1 = 1 and

λ1 = 2
(
µ1(b)

2 + µF1 (σ)2
) (
π1,2(b) + πF1,2(σ)

)
(1 + E[|X̃0|2] + 2π1,2(b)α

′−1
).

According to [LWME19, lemma 29], p2 = 3
2 and

λ2 = µ1(b)
(
π1,2(b) + πF1,2(σ)

)
(1 + E[|X̃0|2] + 2π1,2(b)α

′−1
),

with

µ1(b) := sup
x,y∈Rd,x ̸=y

|b(x) − b(y)|
|x− y|

= 2(β − 1),

µF1 (σ) := sup
x,y∈Rd,x ̸=y

∥σ(x) − σ(y)∥F
|x− y|

=
√

2d,
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π1,2(b) := sup
x∈Rd

|b(x)|2

1 + |x|2
= 4(β − 1)2,

πF1,2(σ) := sup
x∈Rd

∥σ(x)∥2F
1 + |x|2

= 2d.

The order of λ1 and λ2 in dimension parameter d is given by:

λ1 = Θ
((

(β − 1)2 + d
) (

(β − 1)2 + 2d
) (

1 + (β − 1)2α′−1
))

,

λ2 = Θ
(

(β − 1)
(
(β − 1)2 + 2d

) (
1 + (β − 1)2α′−1

))
.

Therefore, we have that

• when β = d+ 1, (λ1, λ2) = (Θ(d5),Θ(d4)),

• when β = d+3
2 , (λ1, λ2) = (Θ(d5),Θ(d4)).

3.3.10.3. Computations for Remark 25. In the example of Cauchy class distributions, V (x) =

1 + |x|2 and Vγ := V γ . When γ > 1
2 ,

∇Vγ(x) = γV (x)γ−1∇V (x),

∇2Vγ(x) = γ(γ − 1)V (x)γ−2∇V (x)T∇V (x) + γV (x)γ−1∇2V (x)

= γV (x)γ−1
(
(γ − 1)V (x)−1∇V (x)T∇V (x) + ∇2V (x)

)
.

Plug in V (x) = 1 + |x|2, we get

∇Vγ(x) = 2γ(1 + |x|2)γ−1x,

∇2Vγ(x) = 2γ(1 + |x|2)γ−1

(
Id + 2(γ − 1)

|x|2

1 + |x|2
xTx

|x|2

)
= 2γ(1 + |x|2)γ−1

(
(Id −

xTx

|x|2
) +

(
1 − 2(1 − γ)

|x|2

1 + |x|2

)
xTx

|x|2

)
,

and

(∇2Vγ)−1(x) =
1

2γ
(1 + |x|2)1−γ

(
(Id −

xTx

|x|2
) +

1 + |x|2

1 + (2γ − 1)|x|2
xTx

|x|2

)
.
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When β ∈
(
d+2
2 , d

]
, γ = β

d+2 ∈
(
1
2 , 1
]
,

(∇2Vγ)−1(x) ⪯ 1

2γ(2γ − 1)
(1 + |x|2)1−γId =

(d+ 2)2

2β(2β − d− 2)
(1 + |x|2)1−γId.

Therefore Assumption 13 holds with CV (γ) = (d+2)2

2β(2β−d−2) . For the Cauchy distribution πβ ∝

(1+ |x|2)−β = (1+ |x|2)−
d+ν
2 with β ∈ (d+2

2 , d], i.e. ν ∈ (2, d], according to lemma 3.3.2, πβ satisfies

the weighted Poincaré inequality with weight 1 + |x|2 with weighted Poincaré constant

CWPI = CV (γ)

(
β

γ
− 1

)−1

=
(d+ 2)2

2(d+ 1)β(2β − d− 2)
=

(d+ 2)2

ν(d+ 1)(d+ ν)
.
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CHAPTER 4

Regularized Stein Variational Gradient Flow

Given a potential function V : Rd → R, the sampling problem involves generating samples from

the density

π(x) := Z−1e−V (x), with Z :=

∫
e−V (x)dx(4.1)

being the normalization constant, which is typically assumed to be unknown or hard to compute.

The task of sampling arises in several fields of applied mathematics including Bayesian statistics and

machine learning in the context of numerical integration. There are two widely-used approaches for

sampling: (i) diffusion-based randomized algorithms, which are based on discretizations of certain

diffusion processes, and (ii) particle-based deterministic algorithms, which are discretizations of

certain approximate gradient flows. A central idea connecting the two approaches is the seminal

work by [JKO98] which provided a variational interpretation of the Langevin diffusion as the

Wasserstein Gradient Flow (WGF),

∂tµt = ∇ · (µt ∇W2F (µt)) = ∇ ·
(
µt ∇ log

µt
π

)
(4.2)

where the term ∇W2F (µt) = ∇ log µt

π could be interpreted as the Wasserstein gradient1 of the

relative entropy functional (also called as the Kullback–Leibler divergence), defined by s

F (µt) = KL(µt|π) :=

∫
Rd

log
µt(x)

π(x)
µt(x)dx,

evaluated at µt. This leads to the idea that sampling could be viewed as optimization on the space of

measures, a viewpoint that has provided a deeper understanding of the sampling problem [Wib18,

TSA20].

1See, for example, [AGS05, San17] for the exact definition.
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There are several merits and disadvantages to both the randomized and deterministic discretization

of the (approximate) WGF. First, note that obtaining exact space-time discretization of the WGF

in (4.2) is not possible. Indeed, due to the presence of the diffusion term, when initialized with an

N -particle based empirical measure, the particles do not remain as particles for any time t > 0.

Hence, on the one hand, randomized discretizations like the Langevin Monte Carlo algorithm, are

used as implementable space-time discretizations of the WGF. On the other hand, motivated by

applications where the randomness in the discretization is undesirable, in the applied mathematics

literature, other discretizations of approximate WGF were developed. Such methods are predomi-

nantly based on using mollifiers and we refer the reader to [Rav85, Rus90, DM90, CB16, CCP19]

for a partial list and to [Che17], for a comprehensive overview.

Recently, in the machine learning community, the Stein Variational Gradient Descent [LW16, Liu17]

was proposed as another deterministic discretization of approximate WGF, and has gathered signifi-

cant attention due to applications to reinforcement learning [LRLP17], graphical modeling [WZL18],

measure quantization [XKS22], and other fields of machine learning and applied mathematics

[WTBL19, CLGL+20a, CLGL+20a, KSA+20]. Due to the use of the reproducing kernels, the

Stein Variational Gradient Descent (SVGD) algorithm provides a space-time discretization of the

following approximate Wasserstein Gradient Flow (which we refer to as the Stein Variational Gra-

dient Flow (SVGF) for simplicity)

∂tµt = ∇ ·
(
µt Tk,µt∇ log

µt
π

)
,(4.3)

where Tk,µ : Ld
2(µ) → Ld

2(µ) is the integral operator defined as Tk,µf(x) =
∫
k(x, y)f(y)dµ(y) for

a function f ∈ Ld
2(µ), and for a kernel k : Rd × Rd → R; see, for example [LLN19]. Hence,

SVGD (which is based on the SVGF), in this context, while being deterministic only provides

a discretization of a constant-order approximation to the Wasserstein Gradient Flow due to the

presence of the kernel integral operator. Indeed, if supp(µt) = Rd and k is bounded continuous

translation invariant characteristic kernel [SGF+10] on Rd (e.g., Gaussian, Laplacian kernels),
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then

∥Tk,µt − I∥op = sup{∥Tk,µtf − f∥Ld
2(µt)

: ∥f∥Ld
2(µt)

= 1} ≥ ∥Tk,µt1− 1∥Ld
2(µt)

≥ ∥1 − ∫ k(·, x)µt(x) dx∥L2(µt) > 0,

where 1 = (1, d. . ., 1)⊤. This shows that the order of the error is crucially dependent on the choice

of the kernel k.

To overcome the above issue with the SVGF, in this work, we propose the Regularized Stein Varia-

tional Gradient Flow (R-SVGF). To motivate the proposed flow, we first note that the Wasserstein

gradient ∇ log(µt/π) lives in Ld
2(µt), while the kernelized Wasserstein gradient Tk,µt∇ log(µt/π)

morally lives in Hd
k ⊂ Ld

2(µt). If ∇ log(µt/π) ∈ Ran(Tk,µt), then it is easy to verify that

∥((1 − ν)Tk,µt + νI)−1Tk,µt∇ log(µt/π) −∇ log(µt/π)∥Ld(µt) → 0, as ν → 0.

Additionally, if ∇ log(µt/π) is sufficiently smooth, i.e., there exists γ ∈
(
0, 12
]

such that ∇ log(µt/π) =

T γ
k,µt

h, for some h ∈ Ld
2(µt) (see, for example, [CZ07]), then

∥((1 − ν)Tk,µt + νI)−1Tk,µt∇ log(µt/π) −∇ log(µt/π)∥Ld(µt) = O(ν2γ), as ν → 0.

In other words, ∥((1 − ν)Tk,µt + νI)−1Tk,µt∇ log(µt/π) is a good approximation to ∇ log(µt/π) for

small ν. With this motivation, we propose the following R-SVGF given by

∂tµt = ∇ ·
(
µt ((1 − ν)Tk,µt + νI)−1 Tk,µt

(
∇ log

µt
π

))
,(4.4)

for some regularization parameter ν ∈ (0, 1], where R-SVGF arbitrarily approximates the WGF as

ν → 0. It is important to note that in the case of γ = 1/2, we have ∇ log(µt/π) ∈ Hd
k, yet, (4.3)

suffers from the drawback of providing only a constant-order approximation to (4.2).

Summary of Contributions. Our contributions in this work are as follows:

(1) We propose the Regularized SVGF (R-SVGF) that interpolates between the Wasserstein

Gradient Flow and the SVGF. The advantage of the proposed flow is that one could

obtain an implementable space-time discretization as long as the regularization parameter

172



is bounded away from zero. The main intuition behind the proposed flow is to pick

an appropriately small choice of regularization parameter so that we could arbitrarily

approximate the WGF (Theorems 19 and 21).

(2) For the R-SVGF, we provide rates of convergence to the equilibrium density in two cases:

(i) in the Fisher Information metric under no assumptions on the target (Theorem 20) and

(ii) in the KL-divergence metric under an LSI assumption on the target (Theorem 22).

We also establish similar results for the time-discretized R-SVGF (Theorems 23 and 24).

(3) We characterize the existence and uniqueness (Theorem 25), and stability (Theorem 26)

of the solutions to the R-SVGF in the mean-field limit.

(4) We provide preliminary numerical experiments demonstrating the advantage of the space-

time discretization of the R-SVGF, which we call as the the Regularized Stein Variational

Gradient Descent (R-SVGD) algorithm, over the standard SVGD algorithm.

4.1. Organizations

The rest of the chapter is organized as follows. In Section 4.2, we introduce the notations used in

the rest of the paper. In Section 4.3, we provide the preliminaries on reproducing kernel Hilbert

spaces required for our work. In Section 4.4, we introduce the R-SVGF, along with the notion

of regularized Stein-Fisher information, required for our analysis. Due to the technical nature

of the proofs, we postpone the results on existence and uniqueness of the R-SVGF, and related

stability results respectively to Sections 4.6 and 4.7. In Section 4.5, we provide convergence results

on the R-SVGF flow and its time-discretized version. We conclude in Section 4.8 with a space-

time discretization which provides a practically implementable algorithm, and provide preliminary

empirical results.

4.2. Notations

We use the following notations throughout this work:
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• For a matrix, ∥ · ∥2 denotes the matrix 2-norm (spectral norm) and ∥ · ∥HS denotes the

Hilbert-Schmidt norm which is defined as ∥A∥2HS =
∑d

i,j=1 |aij |2 for any matrix A =

(aij)i,j∈[d].

• The term id denotes the d× d identity matrix. Id corresponds to the identity operator in

the RKHS. I corresponds to the identity operator in L2(µ).

• P(Rd) denotes the space of all probability measures on Rd, and P2(Rd) denotes the space

of all probability measures on Rd with finite second moments.

•
(
L∞(Rd), ∥·∥L∞(Rd)

)
denotes the space of all essentially bounded measurable functions on

Rd with ∥f∥L∞(Rd) := inf{C : |f(x)| ≤ C for almost every x ∈ Rd} for any f ∈ L∞(Rd).

• For any µ ∈ P(Rd),
(
L2(µ), ∥·∥L2(µ)

)
is the space of all µ-square integrable measurable

function on Rd with ∥f∥2L2(µ)
:=
∫
Rd |f(x)|2µ(dx).

• Let (H, ∥·∥H) and
(
G, ∥·∥G

)
denote two function spaces. For an operator A : H → G,

we denote the adjoint operator of A by A∗. We denote the operator norm by ∥A∥H→G ,

which is defined as ∥A∥H→G := sup∥u∥H≤1 ∥Au∥G . When we don’t emphasize the spaces,

we denote the operator norm of A by ∥A∥op for simplicity.

• Let (H, ∥ · ∥H) and (G, ∥ · ∥G) denote two Hilbert spaces. For an operator A : H → G, we

denote the Hilbert-Schmidt norm by ∥A∥HS which is defined as ∥A∥2HS :=
∑

i∈I ∥Aei∥2G
where {ei}i∈I is an orthonormal basis of H. We denote the nuclear norm by ∥A∥nuc which

is defined as ∥A∥nuc :=
∑

i∈I⟨(A∗A)
1
2 ei, ei⟩H where {ei}i∈I is an orthonormal basis of H.

• For a smooth function f : Rd×Rd → R, ∇1f denotes the gradient of f in the first variable

and ∇2f denotes the gradient of f in the second variable.

• For a map ϕ : Rd → Rd, ϕi denotes the i-th component of the function value and ∇ϕ

denotes the Jacobian, i.e., (∇ϕ)ij = ∂jϕi.

• T#ρ represents the push-forward of the density ρ under a map T .

• ⟨·, ·⟩H denotes inner-product in the Hilbert space H. ⟨·, ·⟩ denotes inner-product in the

Euclidean space Rd.
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• C(Rd;Rd) is the space of all Rd-valued continuous functions on Rd.

• For any function space H on Rd, C([0, T ];H) is the space of functions f such that for any

fixed t ∈ [0, T ], f(t, ·) ∈ H and for any fixed x ∈ Rd, f(·, x) is a continuous function on

[0, T ]. C1([0, T ];H) is the space of functions f such that for any fixed t ∈ [0, T ], f(t, ·) ∈ H

and for any fixed x ∈ Rd, f(·, x) is a continuous function with continuous first order

derivative on [0, T ].

• C∞
0 ([0,∞) × Rd) is the space of all measurable functions on [0,∞) × Rd that vanish at

infinity, i.e., for any f ∈ C∞
0 ([0,∞)×Rd), f(t, x) → 0 as t→ ∞ and f(t, x) → 0 as x→ ∞.

• Suppose f : Rd → Rd is a vector-valued function. For a function space H, we say f ∈ Hd

if f = [f1, · · · , fd] such that fi ∈ H for all i ∈ [d].

4.3. Preliminaries on Reproducing Kernel Hilbert Space

In this section, we introduce some properties of RKHS which would be used later in the formulation

and analysis of R-SVGF. We refer the reader to [SC08, BTA11, PR16] for the basics of RKHS.

We let Hk to be a separable RKHS over Rd with the reproducing kernel k : Rd × Rd → R>0 and

with ∥ · ∥Hk
denoting the associated RKHS norm. We make the following assumption on the kernel

function k throughout the chapter.

Assumption A1. The kernel function k : Rd ×Rd → R is strictly positive definite, continuous and

bounded.

The following results are essentially based on [SC08, Lemma 4.23, and Theorems 4.26 and 4.27].

Proposition 19 ([SC08]). Under Assumption A1, the following holds.

(i) The kernel function k is bounded if and only if every f ∈ Hk is bounded. Moreover, the

inclusion id : Hk → L∞(Rd) is continuous and ∥id∥Hk→L∞(Rd) = ∥k∥∞, where ∥k∥∞ :=

supx∈Rd

√
k(x, x).
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(ii) Let µ be a σ-finite measure on Rd. Assume that

∥k∥L2(µ)
:=

(∫
Rd

k(x, x)dµ(x)

) 1
2

<∞.

Then Hk consists of 2-integrable functions and the inclusion ιk,µ : Hk → L2(µ) is continu-

ous with ∥ιk,µ∥Hk→L2(µ)
≤ ∥k∥L2(µ)

. Moreover, the adjoint of this inclusion is the operator

ι∗k,µ : L2(µ) → Hk defined by

ι∗k,µg(x) :=

∫
Rd

k(x, y)g(y)µ(y)dy, g ∈ L2(µ), x ∈ Rd.

(iii) Hk is dense in L2(µ) if and only if ι∗k,µ : L2(µ) → Hk is injective. Alternatively, ι∗k,µ :

L2(µ) → Hk has a dense image if and only if ιk,µ : Hk → L2(µ) is injective.

(iv) ιk,µ : Hk → L2(µ) is a Hilbert-Schmidt operator with ∥ιk,µ∥HS = ∥k∥L2(µ)
. Moreover, the

integral operator Tk,µ = ιk,µι
∗
k,µ : L2(µ) → L2(µ) is compact, positive, self-adjoint, and

nuclear with ∥Tk,µ∥nuc = ∥ιk,µ∥HS = ∥k∥L2(µ)
.

The RKHS norm of f ∈ Hd
k is given by ∥f∥2Hd

k
:=
∑d

i=1 ∥fi∥
2
Hk

. The Ld
2(µ) norm of f ∈ Ld

2(µ)

is given by ∥f∥2Ld
2(µ)

:=
∑d

i=1 ∥fi∥
2
L2(µ)

. When f ∈ Hd
k with f = [f1, · · · , fd] and g ∈ Hk, we

define ⟨f, g⟩Hk
as a vector in Rd and (⟨f, g⟩Hk

)i = ⟨fi, g⟩Hk
for all i ∈ [d]. When f ∈ Ld

2(µ) with

f = [f1, · · · , fd] and g ∈ L2(µ), we define ⟨f, g⟩L2(µ) as a vector in Rd and
(
⟨f, g⟩L2(µ)

)
i

= ⟨fi, g⟩L2(µ)

for all i ∈ [d]. Note also that Ran((ιk,µι
∗
k,µ)1/2) = Hd

k ⊂ Ld
2(µ). We refer the interested reader

to [CZ07] for more details.

Finally, we remark that by letting (λi, ei)
∞
i=1 to be the set of eigenvalues and eigenfunctions of the

operator ιk,µι
∗
k,µ where λ1 ≥ λ2 ≥ · · · > 0 and (ei)

∞
i=1 form an orthonormal system in Ran(ιk,µι

∗
k,µ),

we have the following spectral representation that, for all f ∈ Ran(ιk,µι
∗
k,µ),

(4.5) ιk,µι
∗
k,µf =

∞∑
i=1

λi⟨f, ei⟩L2(µ)ei.

Computing the spectral representation, in general for any given µ and kernel k is a non-trivial task.

Results are only known on a case-by-case basis; see, for example, [MNY06, AM14, CX20, SH21].
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However, we use the decomposition only in our analysis. For the purely practical algorithm that

we describe eventually in Section 4.8, we do not need to know the decomposition explicitly.

4.4. Regularized SVGF

We now introduce the formulation of the Regularized-SVGF and discuss its connection with SVGF

and the WGF. Recall that in the mean-field limit, the SVGF in (4.3) only provides a constant order

approximation to the WGF in (4.2), due to the presence of the operator Tk,µ. As the operator Tk,µ

is not invertible, we seek to obtain a regularized inverse so that we end up with the following

Regularized-SVGF, as in (4.4), for some regularization parameter ν ∈ (0, 1]. Note in particular

that as ν → 0, the Regularized-SVGF gets arbitrarily close to the WGF. Our goal in this section

is to derive the above mentioned R-SVGF from first principles.

The central operator required in our formulation is the following Stein operator, which is defined

for all p ∈ P(Rd), and for all smooth maps ϕ : Rd → Rd, as

Apϕ(x) = ϕ(x) ⊗∇ log p(x) + ∇ϕ(x),

where ⊗ denotes the outer-product. Now, the Wasserstein Gradient Flow in (4.2) could be thought

of as follows. Consider moving a particle x ∼ ρ (for some ρ ∈ P(Rd)) based on the mapping

x 7→ T (x) := x+hϕ(x), where h > 0 is a step-size parameter, and ϕ is a vector-field chosen so that

the KL-divergence between the pushforward of ρ according to T , denoted as T#ρ, and the target

density π in minimal. Liu and Wang [LW16, Theorem 3.1], showed that

∇hKL(T#ρ|π)|h=0 = −Ex∼ρ[trace(Aπϕ(x))].

We also refer to [JKO98] for an earlier version of the same result. Based on this observation, if we try

to find the vector-field ϕ in the unit-ball of Ld
2(ρ) that maximizes the quantity [Ex∼ρ[trace(Aπϕ(x))]]2,

a straight-forward calculation based on integration-by-parts, results in the optimal ϕ being the

Wasserstein gradient ∇ log ρ
π . To have a practical implementation, [LW16] considered maximizing

[Ex∼ρ[trace(Aπϕ(x))]]2 over the unit-ball in the RKHS Hd
k, which results in the optimal vector-field

being equal to Tk,ρ∇ log ρ
π , and correspondingly results in the SVGF in (4.3).
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In this work, we propose to find the vector field ϕ that maximizes [Ex∼ρ [trace(Aπϕ(x))]]2 over the

unit-ball with respect to an interpolated norm between Ld
2(ρ) and Hd

k. Specifically, the interpolation

norm that we consider is of the form ν ∥·∥2Hd
k

+ (1 − ν) ∥·∥2Ld
2(ρ)

, for some regularization parameter

ν ∈ (0, 1], which trades-off between ∥ · ∥2Hd
k

and ∥ · ∥2
Ld
2(ρ)

. We also remark here that a similar idea

has been leveraged in the context of RKHS-based statistical hypothesis testing [BLY21]. Formally,

for ρ, π ∈ P(Rd), we consider the following optimization problem.

S(ρ, π) := max
ϕ∈Hd

k

{
[Ex∼q [trace(Aπϕ(x))]]2 such that ν ∥ϕ∥2Hd

k
+ (1 − ν) ∥ϕ∥2Ld

2(ρ)
≤ 1
}
.

For any ρ ∈ P(Rd), the optimal vector field, ϕ that minimizes KL(T#ρ|π) can be described via the

following result.

Proposition 20. Let T (x) = x + hϕ(x) and T#ρ(z) be the density of z = T (x) when x ∼ ρ, for

some density ρ ∈ P(Rd). For ν ∈ (0, 1], define

B := {ϕ ∈ Hd
k : ν ∥ϕ∥2Hd

k
+ (1 − ν) ∥ϕ∥2Ld

2(ρ)
≤ 1}.

Then the direction of steepest descent in B that maximizes −∇hKL(T#ρ|π)|h=0 is given by

ϕ∗ρ,π(·) ∝
(
(1 − ν)ι∗k,ριk,ρ + νId

)−1 Ex∼ρ[−∇V (x)k(x, ·) + ∇k(x, ·)],

where ιk,ρ : Hd
k → Ld

2(ρ) is the inclusion operator and ι∗k,ρ is its adjoint as in Proposition 19.

Furthermore, under the optimal vector field ϕ∗ρ,π, we have −∇hKL(T#ρ|π)|h=0 = S(ρ, π).

Proof. First note that according to [LW16, Theorem 3.1], we have

∇hKL(T#ρ|π)|h=0 = −Ex∼q[trace(Aπϕ(x))].

Therefore, we have

ϕ∗ρ,π = arg max
ϕ∈Hd

k

{
[Ex∼ρ[trace(Aπϕ(x))]]2 such that ν ∥ϕ∥2Hd

k
+ (1 − ν) ∥ϕ∥2Ld

2(ρ)
≤ 1
}
.
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Next, observe that we have

Ex∼ρ[trace(Aπϕ(x))] =
d∑

i=1

Ex∼ρ[−∂iV (x)ϕi(x) + ∂iϕi(x)]

=
d∑

i=1

Ex∼ρ[−∂iV (x)⟨ϕi, k(x, ·)⟩Hk
+ ⟨ϕi, ∂ik(x, ·)⟩Hk

]

= ⟨ϕ,Ex∼ρ[−∇V (x)k(x, ·) + ∇k(x, ·)]⟩Hd
k
.

Meanwhile, the constraint can be written as

ν ∥ϕ∥2Hd
k

+ (1 − ν) ∥ϕ∥2Ld
2(ρ)

= ν⟨ϕ, ϕ⟩Hd
k

+ (1 − ν)⟨ιk,ρϕ, ιk,ρϕ⟩Ld
2(ρ)

= ⟨
(
νId + (1 − ν)ι∗k,ριk,ρ

)
ϕ, ϕ⟩Hd

k

=
∥∥∥((1 − ν)ι∗k,ριk,ρ + νId

) 1
2 ϕ
∥∥∥2
Hd

k

,

where Id : Hk → Hk is the identity operator. Now, note that
(

(1 − ν)ι∗k,ριk,ρ + νId

) 1
2

is well-defined

since ι∗k,ριk,ρ : Hd
k → Hd

k is positive, compact and self-adjoint. Therefore based on the above display,

the constraint {ϕ ∈ Hd
k : ν ∥ϕ∥2Hd

k
+ (1 − ν) ∥ϕ∥2Ld

2(ρ)
≤ 1} is equivalent to

{ϕ ∈ Hd
k : ψ =

(
(1 − ν)ι∗k,ριk,ρ + νId

) 1
2 ϕ and ∥ψ∥Hd

k
≤ 1}.

Since the spectrum of ι∗k,ριk,ρ is positive and ν ∈ (0, 1], (1 − ν)ι∗k,ριk,ρ + νId is invertible. For all

ϕ ∈ Hd
k, there exists a unique ψ ∈ Hd

k such that
(

(1 − ν)ι∗k,ριk,ρ + νId

)− 1
2
ψ = ϕ. Applying this

fact along with the equivalent form of the constraint, we have

Ex∼ρ(trace(Aπϕ(x))) =
〈(

(1 − ν)ι∗k,ριk,ρ + νId
)− 1

2 ψ,Ex∼ρ[−∇V (x)k(x, ·) + ∇k(x, ·)]
〉
Hd

k

=
〈
ψ,
(
(1 − ν)ι∗k,ριk,ρ + νId

)− 1
2 Ex∼ρ[−∇V (x)k(x, ·) + ∇k(x, ·)]

〉
Hd

k

≤
∥∥∥((1 − ν)ι∗k,ριk,ρ + νId

)− 1
2 Ex∼ρ[−∇V (x)k(x, ·) + ∇k(x, ·)]

∥∥∥
Hd

k
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where the second identity follows from the fact that
(

(1 − ν)ι∗k,ριk,ρ + νId

)− 1
2

is self-adjoint and

the upper bound in the last inequality is achieved when

ψ∗ ∝
(
(1 − ν)ι∗k,ριk,ρ + νId

)− 1
2 Ex∼ρ[−∇V (x)k(x, ·) + ∇k(x, ·)],

and the result hence follows. ■

With the optimal-vector field as derived above, we consider the following mean-field partial differ-

ential equation (PDE) as the R-SVGF:

(4.6) ∂tρt = ∇ ·
(
ρt ιk,ρt

(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt

(
∇ log

ρt
π

))
.

It is important to notice that the R-SVGF interpolates between SVGF and WGF. However, the

regime of interest for us is when ν → 0, as we get arbitrarily close to the WGF. We quantify this

statement precisely in the later sections. On the other hand, when ν → 1 R-SVGF becomes the

SVGF.

Remark 26. We now make the following remarks about the above result.

(i) We can alternatively write ϕ∗ρ,π from Proposition 20 as

ϕ∗ρ,π ∝ −
(
(1 − ν)ι∗k,ριk,ρ + νId

)−1
ι∗k,ρ

(
∇ log

ρ

π

)
,

since we have

Ex∼ρ[−∇V (x)k(x, ·) + ∇k(x, ·)] =

∫
Rd

k(·, x)

(
−∇V (x) − ∇ρ(x)

ρ(x)

)
ρ(x)dx

= − ι∗k,ρ

(
∇ log

ρ

π

)
.

(ii) The operator in (4.6) has an equivalent expression as we discuss below. First, we claim

that

ιk,ρ
(
(1 − ν)ι∗k,ριk,ρ + νId

)−1
ι∗k,ρ =

(
(1 − ν)ιk,ρι

∗
k,ρ + νI

)−1
ιk,ρι

∗
k,ρ.
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To see that, we start with the trivial identity in the first line below and proceed as

(
(1 − ν)ιk,ρι

∗
k,ρ + νI

)
ιk,ρ = ιk,ρ

(
(1 − ν)ι∗k,ριk,ρ + νId

)
,

=⇒ ιk,ρ =
(
(1 − ν)ιk,ρι

∗
k,ρ + νI

)−1
ιk,ρ

(
(1 − ν)ι∗k,ριk,ρ + νId

)
=⇒ ιk,ρ

(
(1 − ν)ι∗k,ριk,ρ + νId

)−1
=
(
(1 − ν)ιk,ρι

∗
k,ρ + νI

)−1
ιk,ρ

=⇒ ιk,ρ
(
(1 − ν)ι∗k,ριk,ρ + νId

)−1
ι∗k,ρ =

(
(1 − ν)ιk,ρι

∗
k,ρ + νI

)−1
ιk,ρι

∗
k,ρ.

According to this observation, (4.6) can also be written in the following form

∂tρt = ∇ ·
(
ρt
(
(1 − ν)ιk,ρtι

∗
k,ρt + νI

)−1
ιk,ρtι

∗
k,ρt

(
∇ log

ρt
π

))
= ∇ ·

(
ρt ((1 − ν)Tk,ρt + νI)−1 Tk,ρt

(
∇ log

ρt
π

))
,

thereby providing the R-SVGF introduced in (4.4).

(iii) Particle-based spatial discretization. We now describe the spatial discretization of the

R-SVGF. Based on the results in Proposition 20 and Remark 26, we obtain the following

ODE system:

dxi(t)

dt
= −

(
(1 − ν)ι∗

k,ρNt
ιk,ρNt + νId

)−1
(

1

N

N∑
j=1

−∇2k (xi(t), xj(t)) + k (xi(t), xj(t))∇V (xj(t))

bigg)

xi(0) = x0i ∈ Rd, i = 1, 2, . . . , N

,

where {xi(t)}Ni=1 is the set of N particles. ρNt = 1
N

∑N
j=1 δxj(t) is the empirical distribution

at time t, provides a N -particle spatial discretization of the R-SVGF.

(iv) Time discretization. We also have the following time-discretization of the R-SVGF. Let

{hn}∞n=1 be the sequence of time step-size. We denote the density at the n-th iterate by

ρn for all integers n ≥ 1. Then the time discretization of the R-SVGF can be written as

(4.7) ρn+1 =

(
id− hn+1Dνn+1,ρn∇ log

ρn

π

)
#

ρn,

where Dνn,ρn =
(

(1 − νn)ιk,ρnι
∗
k,ρn + νnId

)−1
ιk,ρnι

∗
k,ρn .
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(v) The parameter ν can also be made to be dependent on t or n; in fact, in our analysis we

pick a time-varying regularization parameter.

4.5. Convergence Results in Continuous and Discrete Time

Our goal in this section is derive convergence guarantees for the R-SVGF. Before we proceed, we

introduce the notion of Regularized Stein-Fisher information (or Regularized Kernel Stein Discrep-

ancy).

4.5.1. Regularized Stein-Fisher Information and its Properties. Note that several

works, for example [KSA+20, DNS19, SSR22], used the notion of Stein-Fisher Information to

understand the convergence properties of the SVGD algorithm. The Stein-Fisher information was

introduced in [CSG16, LLJ16, GM17] under the name Kernel Stein Discrepancy. However, a draw-

back of the Stein-Fisher information is that it is a weaker metric, for example in comparison to the

Fisher information metric; see [GM17, GDVM19, SGBSM20]. Below, we introduce a regularized

version of the Stein-Fisher information and show that as the regularization parameter tends to zero,

it converges to the standard Fisher information.

Let ρ, π ∈ P(Rd), then, the Fisher information corresponds to

I(ρ|π) =
∥∥∥∇ log

ρ

π

∥∥∥2
L2(ρ)

=

∞∑
i=1

∣∣∣∣〈∇ log
ρ

π
, ei

〉
L2(ρ)

∣∣∣∣2 ,
with (ei)

∞
i=1 being an orthonormal basis to L2(ρ). Correspondingly, the Stein-Fisher information is

defined as

IStein(ρ|π) :=
∥∥∥ι∗k,ρ∇ log

ρ

π

∥∥∥2
Hd

k

=
〈
∇ log

ρ

π
, ιk,ρι

∗
k,ρ∇ log

ρ

π

〉
Ld
2(ρ)

=
∞∑
i=1

λi

∣∣∣∣〈∇ log
ρ

π
, ei

〉
L2(ρ)

∣∣∣∣2 ,
where (λi, ei)

∞
i=1 are the set of eigenvalues and eigenvectors of the operator ιk,ρι

∗
k,ρ, with λ1 ≥ λ2 ≥

· · · > 0.

Remark 27. Strictly speaking, the above notation implicitly assumes that the operator Tk,ρ has a

trivial null space, in which case the Ran(Tk,ρ) ≡ L2(ρ) and hence the eigenfunctions (ei)
∞
i=1 form

an orthonormal basis to L2(ρ). However, our analysis does not require this condition on Tk,ρ. In
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particular, if Tk,ρ has a non-trivial null-space, then Ran(Tk,ρ) ⊂ L2(ρ). In this case, our analysis

still holds true. For example, with a slight abuse of notation, if we let ei, for certain values of i, to

also denote the basis of the null-space of Tk,ρ, conclusions similar to our results hold.

With this representation for the Fisher information and the Stein-Fisher information, it is immedi-

ately clear that the Stein-Fisher information is severely restrictive, in particular when the eigenval-

ues of the chosen RKHS decay faster. To counter this effect, we introduce the following regularized

Stein-Fisher information and show that when the regularization parameter is chosen appropriately,

the regularized Stein-Fisher information upper and lower bounds Fisher information.

Definition 7 (Regularized Stein-Fisher Information). For any probability measure ρ, the regular-

ized Stein Fisher information from ρ to π, denoted as Iν,Stein(ρ|π), is defined as

Iν,Stein(ρ|π) :=
〈
ι∗k,ρ∇ log

ρ

π
,
(
(1 − ν)ι∗k,ριk,ρ + νId

)−1
ι∗k,ρ∇ log

ρ

π

〉
Hd

k

.(4.8)

The regularized Stein Fisher information in (4.8) is well-defined because the operator

(1 − ν)ι∗k,ριk,ρ + νId : Hd
k → Hd

k

is positive and for any f ∈ Hd
k,
(

(1 − ν)ι∗k,ριk,ρ + νId

)
f = 0 if and only if f = 0.

Remark 28. The regularized Stein Fisher information has the following alternative representation:

Iν,Stein(ρ|π) =
∞∑
i=1

λi
(1 − ν)λi + ν

∣∣∣∣〈∇ log
ρ

π
, ei

〉
L2(ρ)

∣∣∣∣2 .(4.9)

For ν > 0, with the fact that λi decreases to zero as i → ∞, the regularized Stein Fisher infor-

mation and the Stein Fisher information both encode the spectral decay information of ιk,ρι
∗
k,ρ.

However, note that the regularized Stein Fisher information tends to the Fisher information as

ν → 0. Hypothetically speaking, if ν is set to zero, then the regularized Stein Fisher information

actually becomes the Fisher information. In our analysis, we will take advantage of the relation

between the regularized Stein Fisher information and the Fisher information, while studying the

convergence properties of R-SVGF under Log-Sobolev inequality assumptions on the target π. A
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precise relation between the regularized Stein Fisher information and the Fisher information is

stated in the following result. Before stating the result, we introduce the following notation for

convenience. For γ ∈ (0, 12 ], we denote the pre-image of ∇ log ρ
π ∈ Ld

2(ρ) under (ιk,ρι
∗
k,ρ)γ as

I(ρ, γ) := (ιk,ρι
∗
k,ρ)−γ∇ log

ρ

π
.

Note that ∥I(ρ, γ)∥Ld
2(ρ)

is finite if and only if ∇ log ρ
π ∈ Ran((ιk,ρι

∗
k,ρ)γ).

Proposition 21 (Equivalence relation between I(ρ|π) and Iν,Stein(ρ|π)). Let ρ be a probability

measure in Rd such that I(ρ|π) and Iν,Stein(ρ|π) are well-defined. Suppose there exists γ ∈ (0, 12 ]

such that ∥I(ρ, γ)∥Ld
2(ρ)

< ∞. If the regularization parameter is chosen to satisfy the following

condition,

ν

1 − ν
≤

(
I(ρ|π)

2 ∥I(ρ, γ)∥2Ld
2(ρ)

) 1
2γ

,(4.10)

then we have that
1

2
(1 − ν)−1I(ρ|π) ≤ Iν,Stein(ρ|π) ≤ (1 − ν)−1I(ρ|π).

Proof of Proposition 21. According to (4.9), we have

Iν,Stein(ρ|π) =
∞∑
i=1

λi
(1 − ν)λi + ν

∣∣∣∣〈∇ log
ρ

π
, ei

〉
L2(ρ)

∣∣∣∣2

≤ (1 − ν)−1
∞∑
i=1

∣∣∣∣〈∇ log
ρ

π
, ei

〉
L2(ρ)

∣∣∣∣2 ≤ (1 − ν)−1I(µ|π).

On the other hand, since ∥I(ρ, γ)∥Ld
2(ρ)

< ∞ for some γ ∈ (0, 12 ], there exists h = I(ρ, γ) ∈ Ld
2(ρ)

such that

∇ log
ρ

π
= (ιk,ρι

∗
k,ρ)γh.
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Therefore

(1 − ν)−1I(ρ|π) − Iν,Stein(ρ|π) =
∞∑
i=1

(1 − ν)−1ν

(1 − ν)λi + ν

∣∣⟨(ιk,ρι∗k,ρ)γh, ei⟩L2(ρ)

∣∣2(4.11)

=
∞∑
i=1

(1 − ν)−1νλ2γi
(1 − ν)λi + ν

|⟨h, ei⟩L2(ρ)|
2

≤ (1 − ν)−1−2γν2γ ∥I(ρ, γ)∥2Ld
2(ρ)

≤ 1

2
(1 − ν)−1I(ρ|π),

where the second to last inequality follows from the fact that

sup
i

(
(1 − ν)−1νλ2γi
(1 − ν)λi + ν

)
= (1 − ν)−1−2γν2γ sup

i

(
(1 − ν)λi

(1 − ν)λi + ν

)2γ ( ν

(1 − ν)λi + ν

)1−2γ

≤ (1 − ν)−1ν2γ ,

and the last inequality follows from the condition in (4.10). ■

4.5.2. Convergence results for R-SVGF.

Relationship between R-SVGF and WGF. We now provide the relationship between the

R-SVGF and the WGF in various metrics. We first start with the relationship in the Fisher

information metric, without any stringent assumptions on the target distribution (thereby allowing

for multi-modal and complex densities that arise in practice). Note that the Fisher information

metric corresponds to the first-order stationarity metric for the WGF obtained by minimizing the

KL divergence. This metric has been recently proposed as a meaningful metric to consider in the

case of sampling from general non-log-concave densities in [BCE+22]. Note in particular under mild

conditions on q (e.g., connected support) that having the Fisher information I(p|q) = 0 implies

p ≡ q. However, even when I(p|q) ≤ ϵ, for some ϵ > 0, we have that the modes of the two densities

are well-aligned, as argued in [BCE+22].
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Theorem 19 (Relation to the WGF in Relative Fisher Information). Let (ρt) be the solution to

(4.6) and (µt) be the solution to the WGF, i.e.,

(4.12)


∂tµ = ∇ ·

(
µ∇ log

µ

π

)
,

µ(0, ·) = µ0(·).

For any t > 0, suppose there exists γt ∈ (0, 12 ] such that ∥I(ρt, γt)∥Ld
2(ρt)

<∞. Then, for any initial

distribution µ0 ∈ P(Rd
2), and for any T ∈ (0,∞), we have∫ T

0
I(ρt|µt)dt ≤

4

3
KL(ρ0|µ0) +

8

3
∥k∥2∞

∫ T

0
ν2γt ∥I(ρt, γt)∥2Ld

2(ρt)
dt.(4.13)

Proof of Theorem 19. First note that we have the following upper bound on d
dtKL(ρt|µt):

d

dt
KL(ρt|µt)

=
d

dt

∫
Rd

log
ρt(x)

µt(x)
ρt(x)dx

=

∫
Rd

∂tρt(x) log
ρt(x)

µt(x)
dx+

∫
Rd

(
∂tρt(x)

µt(x)
+ ρt(x)∂t

(
1

µt(x)

))
µt(x)

ρt(x)
ρt(x)dx

=

∫
Rd

∂tρt(x) log
ρt(x)

µt(x)
dx+

∫
Rd

∂tρt(x)dx−
∫
Rd

∂tµt(x)
ρt(x)

µt(x)
dx

= −
∫
Rd

〈
ιk,ρt

(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt∇ log

ρt(x)

π(x)
,∇ log

ρt(x)

µt(x)

〉
ρt(x)dx

+ 0 +

∫
Rd

〈
µt(x)∇ log

µt(x)

π(x)
,∇
(
ρt(x)

µt(x)

)〉
dx
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= −
∫
Rd

〈
ιk,ρt

(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt∇ log

ρt(x)

π(x)
,∇ log

ρt(x)

µt(x)

〉
ρt(x)dx

+

∫
Rd

〈
∇ log

ρt(x)

µt(x)
,∇ log

µt(x)

π(x)

〉
ρt(x)dx

= −
∫
Rd

〈
∇ log

ρt(x)

µt(x)
,∇ log

ρt(x)

π(x)
−∇ log

µt(x)

π(x)

〉
ρt(x)dx

−
∫
Rd

〈(
ιk,ρt

(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt − I

)
∇ log

ρt(x)

π(x)
,∇ log

ρt(x)

µt(x)

〉
ρt(x)dx

≤ −
∫
Rd

∣∣∣∣∇ log
ρt(x)

µt(x)

∣∣∣∣2 ρt(x)dx

+
1

4

∫
Rd

∣∣∣∣∇ log
ρt(x)

µt(x)

∣∣∣∣2 ρt(x)dx+ 2
∥∥∥(ιk,ρt ((1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt − I

)
∇ log

ρt
π

∥∥∥2
Ld
2(ρt)

= −3

4
I(ρt|µt) +

∞∑
i=1

2(1 − λi)
2ν2

((1 − ν)λi + ν)2

∣∣∣∣〈∇ log
ρt
π
, ei

〉
L2(ρt)

∣∣∣∣2 .
In the above calculation, the fourth equality follows by integration-by-parts, the inequality follows

by Young’s inequality for the inner product (i.e., ⟨p, q⟩ ≤ 1
2c|p|

2 + 1
2c |q|

2 for any p, q ∈ Rd) and

the last equality follows from the proof of Proposition 21. Since ∇ log ρt
π = (ιk,ρtι

∗
k,ρt

)γtht for some

γt ∈ (0, 1/2] with ht := I(ρt, γt) ∈ Ld
2(ρt), we obtain

d

dt
KL(ρt|µt) ≤ −3

4
I(ρt|µt) + 2

(
max

i
λi ∧ 1

)2(
max

i

λγti ν

λi + ν

)2

∥ht∥2Ld
2(ρt)

≤ −3

4
I(ρt|µt) + 2 ∥k∥2∞ ν2γt ∥I(ρt, γt)∥2Ld

2(ρt)
,

where the last inequality follows from the fact that maxi λi =
∥∥∥ιk,ρtι∗k,ρt∥∥∥L2(ρt)→L2(ρt)

≤ ∥k∥∞.

Integrating from t = 0 to t = T , we get

KL(ρT |µT ) −KL(ρ0|µ0) ≤ −3

4

∫ T

0
I(ρt|µt)dt+ 2 ∥k∥2∞

∫ T

0
ν2γt ∥I(ρt, γt)∥2Ld

2(ρt)
dt.

Since KL-divergence is non-negative, (4.13) is proved. ■

Remark 29. The above result shows that as long as ρ0 = µ0, i.e., both the WGF and R-SVGF are

initialized with the same density, and ν is chosen such that T−1
∫ T
0 ν2γt ∥I(ρt, γt)∥2Ld

2(ρt)
dt→ 0, the

averaged Fisher information along the path tends to zero. This shows the benefit of regularizing the
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SVGF – it enables one to closely approximate the WGF with appropriate choice of the regularization

parameters.

Convergence to Equilibrium along the Fisher Information. We now provide results on the

convergence to equilibrium along the Fisher information for the R-SVGF. We re-emphasize here

that our result below is provided without any assumptions on the target π.

Theorem 20 (Convergence of Fisher information). Let (ρt) be the solution to (4.6). For any

t > 0, supppose there exists γt ∈ (0, 12 ] such that ∥I(ρt, γt)∥Ld
2(ρt)

<∞. Then∫ ∞

0
I(ρt|π)dt ≤ (1 − ν)KL(ρ0|π) +

∫ ∞

0
ν2γt(1 − ν)−2γt ∥I(ρt, γt)∥2Ld

2(ρt)
dt.

Furthermore, if
∫∞
0 ν2γt(1 − ν)−2γt ∥I(ρt, γt)∥2Ld

2(ρt)
dt <∞, then we get I(ρt|π) → 0 as t→ ∞.

Before proving the above theorem, we introduce a few intermediate results.

Proposition 22 (Decay of the KL-divergence). For the solution (ρt)t≥0 to the PDE (4.6), it holds

that

d

dt
KL(ρt|π) ≤ 0.(4.14)

and consequently

d

dt
KL(ρt|π) = −Iν,Stein(ρt|π).(4.15)
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Proof of Proposition 22. Note that

d

dt
KL(ρt|π) =

d

dt

∫
Rd

ρt log
ρt
π
dx

=

∫
Rd

∂tρt log
ρt
π
dx+

∫
Rd

∂tρtdx

= −
∫
Rd

〈
∇ log

ρt
π

(x), ιk,ρt
(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt

(
∇ log

ρt
π

)
(x)
〉
ρt(x)dx+ 0

= −
〈
∇ log

ρt
π
, ιk,ρt

(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt

(
∇ log

ρt
π

)〉
Ld
2(ρt)

= −
〈
ι∗k,ρt∇ log

ρt
π
,
(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt

(
∇ log

ρt
π

)〉
Hd

k

.

It suffices to show that for all ν > 0,
(

(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
is a positive operator from Hd

k to

Hd
k. By the definition of ιk,ρt , for any f ∈ Hd

k with ∥f∥Hd
k

= 1,

⟨f,
(
(1 − ν)ι∗k,ρtιk,ρt + νId

)
f⟩Hd

k
= (1 − ν)⟨ιk,ρtf, ιk,ρtf⟩Ld

2(ρt)
+ ν ∥f∥2Hd

k

= (1 − ν) ∥ιk,ρtf∥
2
Ld
2(ρt)

+ ν > 0

for all ν > 0. Therefore (1 − ν)ι∗k,ρtιk,ρt + νId is a positive operator from Hd
k to Hd

k. So is the

operator
(

(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
. Hence, we have (4.14). The claim in (4.15) follows directly

from (4.14), (4.5) and Definition 7. ■

Proof of Theorem 20. From Proposition 22 and (4.11), we know that

d

dt
KL(ρt|π) = −(1 − ν)−1I(ρt|π) +

∞∑
i=1

(1 − ν)−1ν

(1 − ν)λi + ν

∣∣∣∣〈∇ log
ρt
π
, ei

〉
L2(ρt)

∣∣∣∣2 ,
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where ∇ log ρt
π = (ιk,ρtι

∗
k,ρt

)γtht for some γt ∈ (0, 12 ] with ht := I(ρt, γt) ∈ Ld
2(ρt). Therefore we

have,

d

dt
KL(ρt|π)

= − (1 − ν)−1I(ρt|π) +
∞∑
i=1

(1 − ν)−1ν

(1 − ν)λi + ν

∣∣∣〈(ιk,ρtι∗k,ρt)γtht, ei〉L2(ρt)

∣∣∣2
= − (1 − ν)−1I(ρt|π) +

∞∑
i=1

(1 − ν)−1νλ2γti

(1 − ν)λi + ν

∣∣∣⟨ht, ei⟩L2(ρt)

∣∣∣2
=

∞∑
i=1

(1 − ν)−1−2γtν2γt
(

(1 − ν)λi
(1 − ν)λi + ν

)2γt ( ν

(1 − ν)λi + ν

)1−2γt ∣∣∣⟨ht, ei⟩L2(ρt)

∣∣∣2
− (1 − ν)−1I(ρt|π)

≤− (1 − ν)−1I(ρt|π) + (1 − ν)−1−2γtν2γt ∥I(ρt, γt)∥2Ld
2(ρt)

.

The result follows by integrating over t and noting that the KL-divergence is non-negative. Now,

with ρt denoting the solution to (9), we have that I(ρt|π) is non-negative and continuous in t. The

claim of convergence holds because for a continuous function h, if we have that
∫∞
0 h(t)dt < ∞,

then we have h(t) → 0 as t→ ∞. ■

Convergence in KL-divergence under LSI. While the previous result was provided without

any further assumptions on the target density π ∈ P(Rd
2), in this section, we provide improved

convergence results of the R-SVGF under the assumption that the π satisfies the Log-Sobolev

Inequality. Recall that we say that π ∈ P(Rd) satisfies the Log-Sobolev inequality with constant

λ > 0 if for all µ ∈ P(Rd):

KL(µ|π) ≤ 1

2λ
I(µ|π).

Our first result below is a stronger version of the result in Theorem 19, under the assumption that

the target π satisfies LSI and Assumption 4.5.1 on the initialization of the WGF.

Assumption 4.5.1. The initial density µ0 is chosen so that the solution (µt) to (4.12) also satisfies

LSI with parameter λ, for all t > 0.
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Under the stronger assumption that the target density π is strongly log-concave, following the

arguments in [VW19, Theorem 8], it is easy to show that Assumption 4.5.1 is satisfied as long

as µ0 is chosen such that it satisfies LSI. We conjecture that the same holds true even when the

target density satisfies LSI and additional mild smoothnes assumptions (i.e., LSI is preserved along

the trajectory as long as the initial density µ0 satisfies LSI, presumably with additional milder

assumptions). However, a proof of this conjecture has eluded us thus far.

Theorem 21 (Relation to the WGF under LSI). Assume π satisfies the log-Sobolev inequality

with parameter λ. Let (ρt) be the solution to (4.6). Let (µt) be the solution to WGF, defined

in (4.12), with µ0 satisfying Assumption 4.5.1. For any t > 0, suppose there exists γt ∈ (0, 12 ] such

that ∥I(ρt, γt)∥Ld
2(ρt)

<∞. Then, for any T ∈ (0,∞), we have

KL(ρT |µT ) ≤ e−3λT/2KL(ρ0|µ0) + 2 ∥k∥2∞
∫ T

0
ν2γte−3λ(T−t)/2 ∥I(ρt, γt)∥2Ld

2(ρt)
dt.(4.16)

Proof of Theorem 21. Following the same arguments as in the proof of Theorem 19, we

obtain that for any t > 0,

d

dt
KL(ρt|µt) ≤ −3

4
I(ρt|µt) +

∞∑
i=1

2(1 − λi)
2ν2

((1 − ν)λi + ν)2

∣∣∣∣〈∇ log
ρt
π
, ei

〉
L2(ρt)

∣∣∣∣2
≤ −3

4
I(ρt|µt) + 2 ∥k∥2∞ ν2γt ∥I(ρt, γt)∥2Ld

2(ρt)
.

Hence, under Assumption 4.5.1 we obtain

d

dt
KL(ρt|µt) ≤ −3λ

2
KL(ρt|µt) + 2 ∥k∥2∞ ν2γt ∥I(ρt, γt)∥2Ld

2(ρt)
.

Finally, (4.16) follows from the Gronwall’s inequality. ■

Our second result is a stronger version of the result in Theorem 20, under the assumption that

the target distribution π satisfies LSI. We remark that convergence to equilibrium of the related

WGF under various functional inequalities is a well-studied topic. We refer the interested reader

to [BGL14] for a detailed overview.
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Theorem 22 (Decay of KL-divergence under LSI). Assume that π satisfies the log-Sobolev in-

equality with λ > 0. Let (ρt) be the solution to (4.6). For any t > 0, suppose there exists γt ∈ (0, 12 ]

such that ∥I(ρt, γt)∥Ld
2(ρt)

<∞. Then, for any T ∈ (0,∞), we have

KL(ρT |π) ≤ e−2(1−ν)−1λTKL(ρ0|π) +

∫ T

0
ν2γt(1 − ν)−2γt−1 ∥I(ρt, γt)∥2Ld

2(ρt)
e2(1−ν)−1λ(t−T )dt.

Proof of Theorem 22. From the proof of Theorem 20, we have

d

dt
KL(ρt|π) ≤ −(1 − ν)−1I(ρt|π) + (1 − ν)−1−2γtν2γt ∥I(ρt, γt)∥2Ld

2(ρt)

≤ −2(1 − ν)−1λKL(ρt|π) + (1 − ν)−1−2γtν2γt ∥I(ρt, γt)∥2Ld
2(ρt)

,

where the last inequality follows the log-Sobolev inequality. The final statement follows from

Gronwall’s inequality. ■

Remark 30 (Exponential Decay of KL-divergence). Yet another way to state the above result is

via the introducing the following regularized Stein-LSI, similar to the introduction of Stein-LSI

in [DNS19]. However, the introduction of Stein-LSI is quite restrictive in the sense that it couples

assumptions on the target and the chosen RKHS. This makes verifying the conditions more delicate.

To counter this effect, we now introduce the notion of Regularized Stein-LSI. We say that π ∈ P(Rd)

satisfies the regularized Stein log-Sobolev inequality with constant λ > 0 if for all µ ∈ P(Rd):

(4.17) KL(µ|π) ≤ 1

2λ
Iν,Stein(µ|π).

An advantage of the above condition is that, as ν → 0 the regularized Stein-LSI inequality be-

comes equivalent to the standard LSI inequality. Under the condition that the target density π

satisfies (4.17), and letting (ρt)t≥0 be the solution to (4.6), it holds that

KL(ρt|π) ≤ e−2λtKL(ρ0|π).(4.18)

The proof of (4.18) follows immediately from Proposition 22 and (4.17).
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4.5.3. Convergence results for Time-discretized R-SVGF. In this section we analyze

the convergence properties of the time-discretized R-SVGF in (4.7). To do so, we require the

following additional assumptions.

Assumption A2. The following conditions hold:

(1) There exists a constant B > 0 such that ∥∇1k(x, ·)∥Hd
k
≤ B for all x ∈ Rd.

(2) The potential function V : Rd → R is twice continuously differentiable and gradient

Lipschitz with parameter L.

(3) Along the population limit (4.7), I(ρn|π) <∞ for all fixed n ≥ 0.

The smoothness assumptions in points (1) and (2) of Assumption A2 are commonly required in an-

alyzing any discrete-time algorithms, albeit deterministic [KSA+20, SSR22] or randomized [VW19,

CEL+21, BCE+22]. While it could be relaxed (see, for example, [SR22]), in general it is impossible

to completely avoid them as in the case of analyzing the corresponding flows. Before stating our

results, we also introduce some convenient notations. We let

Sn :=

sup
i

λ
(n)
i

1+2γn(
(1 − νn+1)λ

(n)
i + νn+1

)2
 and Rn := ∥I(ρn, γn)∥Ld

2(ρ
n) ,

where the sequences {λ(n)i } corresponds to the positive eigenvalues of the operator ιk,ρnι
∗
k,ρn in the

order of decreasing values.

Theorem 23 (Convergence in Fisher Divergence). Suppose Assumption A2 holds. Let (ρn) be

the time discretization of the R-SVGF described in (4.7) with initial condition ρ0 = ρ0 such that

KL(ρ0|π) ≤ R. For each n, suppose that νn+1 and the step-size hn+1 are chosen such that,

(4.19) hn+1 < min

{
1 − νn+1

L
,

α− 1

αBRn

√
Sn

}
,

193



where α ∈ (1, 2) is some constant, and suppose that there exists γn ∈ (0, 12 ], such that I(ρn, γn) ∈

Ld
2(ρn). Then,

(4.20)
∞∑
n=0

hn+1

2(1 − νn+1)
I(ρn|π) ≤

∞∑
n=0

ν2γnn+1(1 − νn+1)
−2γn−1hn+1

(
1 +

1

2
ν−1
n+1α

2B2hn+1

)
R2

n +R.

Before proving Theorem 23, we first prove the following intermediate result.

Lemma 4.5.1. For each n ≥ 1, define g = Dνn+1,ρn∇ log ρn

π . Under the conditions in Theorem 23,

we have that, for any x ∈ Rd and t ∈ [0, hn+1],

∥∇g(x)∥2HS ≤ B2R2
nSn and

∥∥(id− t∇g(x))−1
∥∥
2
≤ α.

Proof of Lemma 4.5.1. Since for each n, there exists γn ∈ (0, 1/2] and a function h =

I(ρn, γn) ∈ Ld
2(ρn) such that (ιk,ρnι

∗
k,ρn)2γnhj = ∂j log ρn

π , where hj is the j-th component of the

function value of h, we have

∥∇g(x)∥2HS =

d∑
j,l=1

∣∣∣∣∂gj(x)

∂xl

∣∣∣∣2

=
d∑

j,l=1

( ∞∑
i=1

λ
(n)
i

(1 − νn+1)λ
(n)
i + νn+1

⟨∂j log
ρn

π
, ei⟩L2(ρn)∂lei(x)

)2

=

d∑
j,l=1

( ∞∑
i=1

λ
(n)
i

1+γn

(1 − νn+1)λ
(n)
i + νn+1

⟨hj , ei⟩L2(ρn)
∂lei(x)

)2

≤
d∑

j,l=1

( ∞∑
i=1

⟨hj , ei⟩2L2(ρn)

)( ∞∑
i=1

λ
(n)
i

2+2γn(
(1 − νn+1)λ

(n)
i + νn+1

)2 |∂lei(x)|2
)

=

( ∞∑
i=1

∣∣∣⟨h, ei⟩L2(ρn)

∣∣∣2)( ∞∑
i=1

λ
(n)
i

2+2γn(
(1 − νn+1)λ

(n)
i + νn+1

)2 |∇ei(x)|2
)

≤ sup
i

(
λ
(n)
i

1+2γn(
(1 − νn+1)λ

(n)
i + νn+1

)2) ∥∇1k(x, ·)∥2Hd
k
R2

n

≤ B2R2
n sup

i

(
λ
(n)
i

1+2γn(
(1 − νn+1)λ

(n)
i + νn+1

)2).
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In the above, the first inequality follows from Cauchy-Schwartz inequality, the second inequality

follows from the fact that

∞∑
i=1

|∇ei(x)|2 =
∞∑
i=1

⟨∇1k(x, ·), ei⟩2Hd
k

= ∥∇1k(x, ·)∥2Hk
,

and the last inequality follows from Assumption A2. Meanwhile, since ∥∇g(x)∥2 ≤ ∥∇g(x)∥HS for

all x ∈ Rd, we have for every t ∈ [0, hn+1],

∥∥(id− t∇g(x))−1
∥∥
2
≤

∞∑
m=0

∥t∇g(x)∥m2 ≤
∞∑

m=0

∥t∇g(x)∥mHS

≤
∞∑

m=0

hn+1BRn sup
i

 λ
(n)
i

1+2γn(
(1 − νn+1)λ

(n)
i + νn+1

)2


1
2


m

≤
∞∑

m=0

(
α− 1

α

)m

= α.

where the last inequality follows from (4.19). ■

Proof of Theorem 23. We start from studying the single step along (4.7). In the following

analysis, for each n ≥ 1, we denote g = Dνn+1,ρn∇ log ρn

π , ϕt(x) = x − tg(x) for all x ∈ Rd,

t ∈ [0, hn+1] and ρ̃t = (ϕt)#ρ
n. Therefore we have

ρn = ρ̃0 and ρn+1 = (ϕhn+1)#ρ
n = ρ̃hn+1 .

The following analysis is motivated by [SSR22, Proposition 3.1]. According to [Vil21, Theorem

5.34], the velocity field ruling the evolution of ρ̃t is ωt ∈ Ld
2(ρ̃t) and ωt(x) = −g(ϕ−1

t (x)). Define

ψ(t) = KL(ρ̃t|π), according to the chain rule in [Vil21, section 8.2],

ψ′(t) = ⟨∇W2KL(ρ̃t|π), ωt⟩Ld
2(ρ̃t)

,

ψ′′(t) =
〈
ωt,HessKL(·|π)(ρ̃t)ωt

〉
Ld
2(ρ̃t)

.
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where HessKL(·|π)(ρ̃t) is the Wasserstein Hessian of KL(·|π) at ρ̃t. For any µ ∈ P2(Rd) and any v

in the Wasserstein tangent space at µ, the Wasserstein Hessian is given by

〈
v,HessKL(·|π)(µ)v

〉
Ld
2(µ)

=
〈
v,∇2V v

〉
Ld
2(µ)

+ Eµ[∥∇v(X)∥2HS ].

Therefore we can expand the difference in KL-divergence between the two consecutive iterations as

ψ(hn+1) − ψ(0)

= ψ′(0)hn+1 +

∫ hn+1

0
(hn+1 − t)ψ′′(t)dt

= −hn+1 ⟨∇W2KL(ρn|π), g⟩Ld
2(ρ

n) +

∫ hn+1

0
(hn+1 − t)⟨ωt,HessKL(·|π)(ρ̃t)ωt⟩Ld

2(ρ̃t)
dt.(4.21)

The first term on the right hand side of (4.21) can be studied via the spectrum of the operator

ιk,ρnι
∗
k,ρn .

− hn+1 ⟨∇W2KL(ρn|π), g⟩Ld
2(ρ

n)

= −hn+1

〈
∇ log

ρn

π
,
(
(1 − νn+1)ι

∗
k,ρnιk,ρn + νn+1Id

)−1
ι∗k,ρn∇ log

ρn

π

〉
Ld
2(ρ

n)

= −hn+1

∞∑
i=1

λ
(n)
i

(1 − νn+1)λ
(n)
i + νn+1

∣∣∣∣∣
〈
∇ log

ρn

π
, e

(n)
i

〉
L2(ρn)

∣∣∣∣∣
2

= −hn+1Iνn+1,Stein(ρn|π).

Since ρ̃t = (ϕt)#ρ
n, for any function h we have EX∼ρ̃t [h(X)] = EY∼ρn [h(ϕt(Y ))]. Hence, for the

second term on the right side of (4.21), we obtain

〈
ωt,HessKL(·|π)(ρ̃t)ωt

〉
Ld
2(ρ̃t)

=
〈
ωt,∇2V ωt

〉
Ld
2(ρ̃t)

+ Eρ̃t [∥∇ωt(x)∥2HS ]

=
〈
g(ϕ−1

t ),∇2V g(ϕ−1
t )
〉
Ld
2(ρ̃t)

+ Eρn [∥∇ωt ◦ ϕt(x)∥2HS ]

= Eρn
[
g(x)T∇V 2(ϕt(x))g(x)

]
+ Eρn

[∥∥∇g(x)(∇ϕt(x))−1
∥∥2
HS

]
≤ L ∥g∥2Ld

2(ρ
n) + Eρn

[∥∥∇g(x)(∇ϕt(x))−1
∥∥2
HS

]
,
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where the last inequality follows from Assumption A2-(2). Therefore we obtain

KL(ρn+1|π) −KL(ρn|π) ≤ −hn+1Iνn+1,Stein(ρn|π) +
Lh2n+1

2
∥g∥2Ld

2(ρ
n)

+
h2n+1

2
max

t∈[0,hn+1]
Eρn

[∥∥∇g(x)(∇ϕt(x))−1
∥∥2
HS

]
,

where

∥g∥2Ld
2(ρ

n) =

∥∥∥∥Dνn+1,ρn∇ log
ρn

π

∥∥∥∥2
Ld
2(ρ

n)

=

∥∥∥∥((1 − νn+1)ιk,ρnι
∗
k,ρn + νn+1Id

)−1
ιk,ρnι

∗
k,ρn∇ log

ρn

π

∥∥∥∥2
Ld
2(ρ

n)

=

d∑
i=1

(
λ
(n)
i

(1 − νn+1)λ
(n)
i + νn+1

)2∣∣∣∣ 〈∇ log
ρn

π
, e

(n)
i

〉
L2(ρn)

∣∣∣∣2
≤ (1 − νn+1)

−2I(ρn|π),

with (λ
(n)
i , e

(n)
i )∞i=1 being the sequence of eigenvalues and eigenvectors to the operator ιk,ρnι

∗
k,ρn

such that λ
(n)
1 ≥ · · · ≥ λ

(n)
i ≥ · · · > 0 and (e

(n)
i )∞i=1 is an orthonormal basis of L2(ρ

n). According

to Lemma 4.5.1 and Assumption A2,

∥∇g(x)∥2HS

≤ sup
i

 λ
(n)
i

1+2γn(
(1 − νn+1)λ

(n)
i + νn+1

)2
B2R2

n

≤ sup
i

 ν2γn−1
n+1

(1 − νn+1)2γn+1

(
(1 − νn+1)λ

(n)
i

(1 − νn+1)λ
(n)
i + νn+1

)1+2γn (
νn+1

(1 − νn+1)λ
(n)
i + νn+1

)1−2γn
B2R2

n

≤ν2γn−1
n+1 (1 − νn+1)

−2γn−1B2R2
n,

197



and furthermore according to Lemma 4.5.1,
∥∥(id− t∇g(x))−1

∥∥2
2
≤ α2. Therefore we get

KL(ρn+1|π) −KL(ρn|π) ≤ −hn+1Iνn+1,Stein(ρn|π) +
Lh2n+1(1 − νn+1)

−2

2
I(ρn|π)

+
1

2
α2B2ν2γn−1

n+1 (1 − νn+1)
−2γn−1R2

nh
2
n+1

≤ −hn+1(1 − νn+1)
−1

(
1 − Lhn+1(1 − νn+1)

−1

2

)
I(ρn|π)

+ hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1R2
n

(
1 +

1

2
hn+1ν

−1
n+1α

2B2

)
≤ −1

2
hn+1(1 − νn+1)

−1I(ρn|π)

+ hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1R2
n

(
1 +

1

2
hn+1ν

−1
n+1α

2B2

)
.

where the last inequality follows from (4.19) and the second inequality follows from the fact that

I(ρn|π) − Iνn+1,Stein(ρn|π) ≤ ν2γnn+1(1 − νn+1)
−2γn−1R2

n,

which is proved in Proposition 21. Lastly, summing over n and we obtain

∞∑
n=0

hn+1

2(1 − νn+1)
I(ρn|π) ≤

∞∑
n=0

(
KL(ρn|π) −KL(ρn+1)

)
+

∞∑
n=0

hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1R2
n

(
1 +

1

2
hn+1ν

−1
n+1α

2B2

)

≤ KL(ρ0|π) +

∞∑
n=0

hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1R2
n

(
1 +

1

2
hn+1ν

−1
n+1α

2B2

)
,

where the last inequality follows from the fact that KL divergence is non-negative. Therefore (4.20)

is proved. ■

Remark 31. We emphasize that the above result does not make any assumptions on the target

density π, except for the Lipschitz gradient assumption. In particular, it holds for multi-modal

densities. However, the metric of convergence is the weaker Fisher information metric.

We now provide a stronger result under LSI assumptions.
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Theorem 24. Suppose Assumption A2 holds and π satisfies the log-Sobolev inequality with pa-

rameter λ. Let (ρn) be as described in (4.7) with initial condition ρ0 = ρ0 such that KL(ρ0|π) ≤ R.

Assume the regularization parameter and the step-size parameters are chosen such that for all

n ≥ 0, they satisfy

hn+1 < min

{
1 − νn+1

L
,

α− 1

αBRn

√
Sn

,
2(1 − νn+1)

λ

}
,

νn+1

1 − νn+1
≤
(
I(ρn|π)

R2
n

) 1
2γn

,(4.22)

where α ∈ (1, 2) is a constant, γn ∈ (0, 12 ], and I(ρn, γn) ∈ Ld
2(ρn). Then, for all n ≥ 1,

KL(ρn|π) ≤ R

n∏
i=1

(
1 − 1

2
λ(1 − νi)

−1hi

)
.(4.23)

Proof of Theorem 24. From the proof of Theorem 23, we can bound the difference in KL-

divergence between two consecutive iterations by

KL(ρn+1|π) −KL(ρn|π)

≤ −1

2
hn+1(1 − νn+1)

−1I(ρn|π) + hn+1ν
2γn
n+1(1 − νn+1)

−2γn−1R2
n

(
1 +

1

2
hn+1ν

−1
n+1α

2B2

)

= −1

4
hn+1(1 − νn+1)

−1I(ρn|π)

(
2 −

ν2γnn+1

(1 − νn+1)2γn
R2

n

(
1 + 1

2hn+1ν
−1
n+1α

2B2
)

I(ρn|π)

)

≤ −1

4
hn+1(1 − νn+1)

−1I(ρn|π)

(
2 −

ν2γnn+1

(1 − νn+1)2γn
R2

n

I(ρn|π)

)

≤ −1

4
hn+1(1 − νn+1)

−1I(ρn|π),

where the last inequality follows from (4.22). Last, since π satisfies the log-Sobolev inequality with

parameter λ, we get

KL(ρn+1|π) ≤
(

1 − 1

2
λ(1 − νn+1)

−1hn+1

)
KL(ρn|π),

and (4.23) follows from the above recursive inequality. ■

Remark 32. We make the following remarks about the above result.

(i) Prior results on the analysis of time-discretization of the SVGF under functional inequality

assumptions are established only in the weaker Stein-Fisher information metric [KSA+20,
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SSR22]. Our results above are established for the KL-divergence and is more in line with

similar results established for other randomized Monte Carlo algorithms [VW19, CEL+21,

BCE+22].

(ii) According to (4.23), to reach an ϵ-accuracy in KL-divergence, we need the number of

iterations to be at least nϵ such that
∏nϵ

i=1

(
1 − 1

2λ(1 − νi)
−1hi

)
R ≤ ϵ. With the fact that

log(1 − x) < −x for all x ∈ (0, 1), we get nϵ satisfies

nϵ∑
i=1

(1 − νi)
−1hi ≥

2

λ
log

(
R

ϵ

)
.

Under (4.22), if we can choose the time step sizes (hi)
∞
i=1 to be constant h > 0, then we

have nϵ = O(log(R/ϵ)). For comparison, in the following Table, we provide the iteration

complexity results for different methods, to obtain KL(ρn|π) ≤ ϵ, under the assumption

that the target π satisfies LSI.

Algorithm Source Type Iterations

SVGD NA Deterministic unknown

LMC [VW19, CEL+21] Randomized O(1ϵ )

MALA NA Randomized unknown

Proximal sampler [CCSW22] Randomized O
(
logλ(1ϵ )

)
Regularized SVGF Theorem 24 Deterministic O

(
log
(
1
ϵ

))
Table 4.1. The results from [VW19, CEL+21, CCSW22] are presented in a sim-
plified manner to convey the dependency on the accuracy parameter ϵ. The result
for the proximal sampler holds only in expectation. Currently it is not clear how to
obtain a high-probability result in KL-divergence; see [CCSW22] for details.

4.6. Existence and Uniqueness

The existence and uniqueness of the SVGF was studied in [LLN19]. Motivated by their approach,

in this section we study the existence and uniqueness of solutions to (4.6) under appropriate as-

sumptions. Our main difficulty is in handling the non-linear operator ((1 − ν)Tk,µ + νI)−1 Tk,µ in

the R-SVGF.
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We first introduce the definition of weak solutions to (4.6). We restrict the initial conditions in the

probability measure space PV which defined as

PV :=

{
ρ ∈ P : ∥ρ∥PV

:=

∫
Rd

(1 + V (x))ρ(x)dx <∞
}
,

where P denotes the set of all probability measures on Rd. We say that a measure-value function

ρ ∈ C([0,∞),P) is a weak solution to (4.6) with initial condition ρ0 ∈ PV if

sup
t∈[0,T ]

∥ρt∥PV
<∞, ∀ T > 0,

and ∫ ∞

0

∫
Rd

(∂tϕ(t, x) + ∇ϕ(t, x) · U [ρt](x))ρt(x)dxdt+

∫
Rd

ϕ(0, x)ρ0(x)dx = 0,

for all ϕ ∈ C∞
0 ([0,∞) × Rd) and U [ρ] := −

(
(1 − ν)ιk,ρι

∗
k,ρ + νI

)−1
ιk,ρι

∗
k,ρ(∇ log ρ

π ).

In order to study the existence of weak solutions, we consider the characteristic flow (see, for

example [MRZ16] and [LLN19, Definition 3.1]) induced by (4.6), which is written as

(4.24)



d

dt
Φ(t, x, ρ0) = −Dν,ρt∇ log

ρt
π

(Φ(t, x, ρ0)),

ρt = (Φ(t, ·, ρ0))#ρ0,

Φ(0, x, ρ0) = x,

where Dν,ρt =
(

(1 − ν)ιk,ρtι
∗
k,ρt

+ νI
)−1

ιk,ρtι
∗
k,ρt

for all t > 0. Here, the expression ρt = Φ(t, ·, ρ0)#ρ0

means that the measure ρt is the push-forward measure of ρ0 under the map x → Φ(t, x, ρ0). We

think of {X(t, ·, ρ0)}t≥0,ρ0 as a family of maps from Rd to Rd parameterized by t and ρ0. The exis-

tence and uniqueness to the weak solutions of (4.6) is equivalent to the existence and uniqueness of

solutions to (4.24). In Theorem 25, we first prove that the mean field characteristic flow in (4.24)

is well-defined. To do so, we also require the following additional assumptions on the kernel and

the potential functions.
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Assumption K1. The kernel k : Rd × Rd → R is symmetric, positive definite and fourth continu-

ously differentiable in both variables with bounded derivatives up to fourth order. More explicitly,

we assume

(1) ∥k∥∞ := supx∈Rd

√
k(x, x) <∞.

(2) ∥∇k∥∞ := supx,y∈Rd |∇1k(x, y)| = supx,y∈Rd |∇2k(x, y)| <∞.

(3) ∥∇1 · ∇2k∥∞ := supx,y∈Rd |∇x · ∇yk(x, y)| <∞.

(4)
∥∥∇2k

∥∥
∞ := supx,y∈Rd

∥∥∇2
xk(x, y)

∥∥
2
<∞.

(5) ∥∇1∇2k(x, y)∥∞ := supx,y∈Rd ∥∇x∇yk(x, y)∥2 <∞.

(6)
∥∥∇2(∇1 · ∇2k)

∥∥
∞ := supx,y∈Rd

∥∥∇2
x(∇x · ∇yk(x, y))

∥∥
2
<∞.

(7) ∥∇1∇2(∇1 · ∇2k)∥∞ := supx,y∈Rd ∥∇x∇y(∇x · ∇yk(x, y))∥2 <∞.

(8)
∥∥∇2

1 · ∇2
2k
∥∥
∞ := supx,y∈Rd

∑d
i,j=1 |∂xi∂xj∂yi∂yjk(x, y)| <∞.

We emphasize here that [LLN19] required that the kernel is radial for their analysis. However,

our analysis does not require this assumption. A classical example of a kernel satisfying the above

conditions is the Gaussian kernel.

Assumption V1. The potential function V : Rd → R satisfies

(1) V ∈ C2(Rd), V ≥ 0 and V (x) → +∞ as |x| → +∞.

(2) For any α, β > 0, there exists a constant Cα,β > 0 such that if |y| ≤ α|x| + β, then

(1 + |x|)(|∇V (y)| +
∥∥∇2V (y)

∥∥
2
) ≤ Cα,β(1 + V (x)).

(3) V is gradient Lipschitz with parameter LV , i.e., for all x ∈ Rd,
∥∥∇2V (x)

∥∥
2
≤ LV .

To present our result, we define the set of functions

Y :=

{
u ∈ C(Rd;Rd)| sup

x∈Rd

|u(x) − x| <∞

}
,
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which is a complete metric space with the uniform metric dY (u, v) = supx∈Rd |u(x) − v(x)|.

Theorem 25. Let k satisfy Assumption K1, V satisfy Assumption V1 and ρ0 ∈ PV .

(i) For any T > 0, there exists a unique solution Φ(·, ·, ρ0) ∈ C1([0, T ];Y ) to (4.24). Moreover,

the measure ρt = Φ(t, ·, ρ0)#ρ0 satisfies

∥ρt∥PV
≤ ∥ρ0∥PV

exp(C1,0ν
−1/2 ∥k∥∞KL(ρ0|π)1/2t1/2).

(ii) For any ρ0 ∈ PV , there is a unique ρ ∈ C([0,∞);PV ) which is a weak solution to (4.6).

Moreover, for all t ≥ 0,

∥ρt∥PV
≤ ∥ρ0∥PV

exp(C1,0ν
−1/2 ∥k∥∞KL(ρ0|π)1/2t1/2).

Remark 33. In Theorem 25, we introduce an upper bound to the PV -norm of the solution to

(4.6) for any ν ∈ (0, 1]. A similar result is established for the case of SVGF, i.e., when ν = 1 in

[LLN19, Theorem 2.4]. In comparison to [LLN19, Theorem 2.4], our result requires that the initial

KL-divergence to the target is bounded. Furthermore, if we set ν = 1 in our result, we do not

end up recovering their result. When ν = 1, there is an explicit integral formula to D1,ρt∇ log ρt
π

which is leveraged in [LLN19] for their proof. For ν ∈ (0, 1), due to the absence of an explicit

representation, we get the result in Theorem 25 by carefully analyzing the quantity Dν,ρt(∇ log ρt
π )

along with the decay of KL-divergence property introduced in Proposition 22.

Proof of Theorem 25. Our proof leverages the approach of [LLN19, Theorem 3.2] for the

case of SVGF. In comparison to [LLN19], we handle various difficulties arising with the non-linear

operator in R-SVGF. We first prove claim (i) based on the following two steps. Claim (ii) follows

directly from claim (i) and [Vil21, Theorem 5.34].

Step 1 (Local well-posedness): Fix r > 0 and define

Yr :=

{
u ∈ Y | sup

x∈Rd

|u(x) − x| ≤ r

}
.(4.25)
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We will prove that there exists T0 > 0 such that (4.24) has a unique solution Φ(t, x, ρ0) in the set

Sr = C([0, T0];Yr) which is a complete metric space with metric

dS (u, v) = sup
t∈[0,T0]

dY (u(t, ·), v(t, ·)) .

The integral formulation of (4.24) is

(4.26) Φ(t, x, ρ0) = x−
∫ t

0
Dν,ρs∇ log

ρs
π

(Φ(s, x, ρ0))ds.

Let us define the operator F : u(t, ·) 7→ F(u)(t, ·) by

F(u)(t, x) = x−
∫ t

0
Dν,ρs∇ log

ρs
π

(u(s, x))ds,

where ρt = (u(t, ·))# ρ0. We will show that F is a contraction from Sr to Sr and thus has a unique

fixed point. First we show that F maps Sr into Sr for some T0 > 0. For some u ∈ Sr, checking that

(t, x) 7→ F(u)(t, x) is continuous is straightforward. We need to show that supx∈Rd |F(u)(t, x)−x| ≤

r for any u ∈ Sr.

F(u)(t, x) − x = −
∫ t

0
Dν,ρs∇ log

ρs
π

(u(s, x))ds

= −
∫ t

0

(
(1 − ν)ιk,ρsι

∗
k,ρs + νI

)−1
ιk,ρsι

∗
k,ρs∇ log

ρs
π

(Φ(s, x))ds

= −
∫ t

0

(
(1 − ν)ιk,ρsι

∗
k,ρs + νI

)−1 Ey∼ρs [k(·, y)∇V (y) −∇k(y, ·)](u(s, x))ds.

Note that there is an equivalent representation for Dν,ρs :

Dν,ρs = ιk,ρs
(
(1 − ν)ι∗k,ρsιk,ρs + νId

)−1
ι∗k,ρs .
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We then analyze the operators ιk,ρs and
(

(1 − ν)ι∗k,ρsιk,ρs + νId

)−1
ι∗k,ρs respectively. Since ∥k∥∞ <

∞, according to Proposition 19, ιk,ρs is the inclusion operator from Hd
k to Ld

∞(Rd). The correspond-

ing operator norm, denoted as ∥ιk,ρs∥Hd
k→Ld

∞
can be bounded in the following way:

∥ιk,ρs∥Hd
k→Ld

∞
:= sup

∥f∥Hd
k
=1

sup
x∈Rd

|f(x)|

= sup
∥f∥Hd

k
=1

sup
x∈Rd

|⟨k(x, ·), f⟩Hk
|

≤ sup
x∈Rd

√
k(x, x) := ∥k∥∞ .(4.27)

Meanwhile, let (λi, ei)
∞
i=1 be the spectrum of ιk,ρsι

∗
k,ρs

with (ei)
∞
i=1 being an orthonormal basis of

Ld
2(ρs) ≡ Ran(ιk,ρsι

∗
k,ρs

) according to Proposition 19, (
√
λiei)

∞
i=1 is an orthonormal basis of Hd

k; see

also Remark 27. Hence, we have∥∥∥((1 − ν)ι∗k,ρsιk,ρs + νId
)−1

ι∗k,ρs∇ log
ρs
π

∥∥∥2
Hd

k

≤
∥∥∥((1 − ν)ι∗k,ρsιk,ρs + νId

)− 1
2

∥∥∥2
Hd

k→Hd
k

∥∥∥((1 − ν)ι∗k,ρsιk,ρs + νId
)− 1

2 ι∗k,ρs∇ log
ρs
π

∥∥∥2
Hd

k

≤ ν−1Iν,Stein(ρs|π).(4.28)

where the last inequality follows from (4.8) and the fact that (1 − ν)ι∗k,ρsιk,ρs is positive. With

(4.27) and (4.28), we get the following uniform bound on |Dν,ρs log ρs
π (x)| for all x ∈ Rd,∣∣∣Dν,ρs∇ log

ρs
π

(x)
∣∣∣ ≤ ∥∥∥Dν,ρs∇ log

ρs
π

∥∥∥
Ld
∞

≤ ∥ιk,ρs∥Hd
k→Ld

∞

∥∥∥((1 − ν)ι∗k,ρsιk,ρs + νId
)−1

ι∗k,ρs∇ log
ρs
π

∥∥∥
Hd

k

≤ ν−
1
2 ∥k∥∞ Iν,Stein(ρs|π)

1
2 .

Therefore, for all t ∈ [0, T ] and all x ∈ Rd:

|F(u)(t, x) − x| ≤ ν−
1
2 ∥k∥∞

∫ T

0
Iν,Stein(ρs|π)

1
2ds.(4.29)
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According to Lemma 4.6.1, there exists T0 > 0 such that for all u ∈ Sr,∫ T0

0
Iν,Stein(ρt|π)

1
2dt < ν1/2 ∥k∥−1

∞ r,

which along with (4.29) implies |F(u)(t, x) − x| ≤ r for all u ∈ Sr.

Next we show that F is a contraction on Sr. Our goal is to show that there exists T0 > 0 and

C ∈ (0, 1) such that for any u, v ∈ Sr,

sup
t∈[0,T0]

sup
x∈Rd

|F(u)(t, x) −F(v)(t, x)| < C sup
t∈[0,T0]

sup
x∈Rd

|u(t, x) − v(t, x)|.

Observe that

|F(u)(t, x) −F(v)(t, x)| =

∣∣∣∣∫ t

0
Dν,ρ1,s∇ log

ρ1,s
π

(u(s, x)) −Dν,ρ2,s∇ log
ρ2,s
π

(v(s, x)) ds

∣∣∣∣
≤
∣∣∣∣∫ t

0
Dν,ρ1,s∇ log

ρ1,s
π

(u(s, x)) −Dν,ρ2,s∇ log
ρ2,s
π

(u(s, x))ds

∣∣∣∣
+

∣∣∣∣∫ t

0
Dν,ρ2,s∇ log

ρ2,s
π

(u(s, x)) −Dν,ρ2,s∇ log
ρ2,s
π

(v(s, x))ds

∣∣∣∣
≤ dS(u, v)

∫ T0

0
C1(t)dt+

∫ T0

0
L(t)dt sup

t∈[0,T0]
sup
x∈Rd

|u(t, x) − v(t, x)|

= dS(u, v)

∫ T0

0
C1(t) + L(t) dt,

where the second inequality follows from Lemma 4.6.2 and Lemma 4.6.3. Furthermore, according

to (4.33) and (4.34), there exists T0 > 0 such that∫ T0

0
C1(t) + L(t) dt < 1.

Therefore we have proved there exists T0 > 0 such that F is a contraction from Sr into Sr. Ac-

cording to the contraction theorem, F has a unique fixed point Φ(·, ·, ρ0) ∈ Sr which solves (4.24).

Defining ρt = (Φ(t, ·, ρ0))#ρ0, one sees that Φ(t, x, ρ0) solves (4.24) in the time interval [0, T0].
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Step 2 (Extension of local solution): According to (4.32) and (4.34), we can extend the local

solution beyond time T0 as long as the quantity

∥ρt∥PV
=

∫
Rd

(1 + V (Φ(t, x, ρ0)))ρ0(dx)

remains finite. Next we establish a bound on this quantity showing that the local solution can be

extended for any t > 0.

∂t

∫
Rd

(1 + V (Φ(t, x, ρ0))) ρ0(dx) = −
∫
Rd

〈
∇V (Φ(t, x, ρ0)),Dν,ρt∇ log

ρt
π

(Φ(t, x, ρ0))
〉
ρ0(dx)

= −
〈
∇V, ιk,ρt

(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt∇ log

ρt
π

〉
Ld
2(ρt)

= −
〈
ι∗k,ρt∇V,

(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt∇ log

ρt
π

〉
Hd

k

≤
∥∥ι∗k,ρt∇V ∥∥Hd

k

∥∥∥((1 − ν)ι∗k,ρtιk,ρt + νId
)−1

ι∗k,ρt∇ log
ρt
π

∥∥∥
Hd

k

,

where

∥∥ι∗k,ρt∇V ∥∥2Hd
k

=
〈
∇V, ιk,ρι∗k,ρt∇V

〉
Ld
2(ρt)

=

∫
Rd

∫
Rd

k(y, z) ⟨∇V (y),∇V (z)⟩ ρt(y)ρt(z)dydz

=

∫
Rd

∫
Rd

k(Φ(t, y, ρ0),Φ(t, z, ρ0)) ⟨∇V (Φ(t, y, ρ0)),∇V (Φ(t, z, ρ0))⟩ ρ0(y)ρ0(z)dydz

≤ ∥k∥2∞
(∫

Rd

|∇V (Φ(t, y), ρ0)|ρ0(y)dy

)2

≤ ∥k∥2∞C2
1,0 ∥ρt∥

2
PV

,

where the last inequality follows from Assumption V1. Therefore

∂t ∥ρt∥PV
≤ C1,0 ∥k∥∞ ∥ρt∥PV

∥∥∥((1 − ν)ι∗k,ρtιk,ρt + νId)−1ι∗k,ρt∇ log
ρt
π

∥∥∥
Hd

k

≤ C1,0 ∥k∥∞ ν−
1
2 Iν,Stein(ρt|π)

1
2 ∥ρt∥PV

,
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where the last inequality follows from (4.28). It follows from Gronwall’s inequality that

∥ρt∥PV
≤ ∥ρ0∥PV

exp

(
C1,0ν

− 1
2 ∥k∥∞

∫ t

0
Iν,Stein(ρs|π)

1
2ds

)

≤ ∥ρ0∥PV
exp

C1,0ν
− 1

2 ∥k∥∞

√
t

∫ t

0
Iν,Stein(ρs|π)ds


≤ ∥ρ0∥PV

exp
(
C1,0ν

− 1
2 ∥k∥∞

√
tKL(ρ0|π)

)
,(4.30)

where the second inequality follows from Jensen’s inequality and the last inequality follows from

(4.15). With this bound we can iterate the argument to extend the local solution defined on

[0, T0]×Rd to all of [0,∞)×Rd, so that (4.30) holds for all t > 0. Finally Φ(·, x, ρ0)) has continuous

first order derivative due to the integral formulation in (4.26), Assumption K1 and Assumption V1.

The proof is thus complete. ■

Lemma 4.6.1. Let ρ0 ∈ PV and suppose the assumptions of Theorem 25 hold. Then, for any ϵ > 0,

there exists a constant T > 0 such that for all u ∈ Sr and t ∈ [0, T ], with ρt = u(t, ·)#ρ0, we have∫ T

0
Iν,Stein(ρt|π)

1
2dt < ϵ.(4.31)

Proof of Lemma 4.6.1. According to Lemma 20, the regularized kernelized Stein discrep-

ancy can be written as

S(ρt|π)2 =
(
Ex∼ρt

[
trace(Aπϕ

∗
ρt,π(x))

])2
=
∥∥∥((1 − ν)ι∗k,ρtιk,ρt + νId

)− 1
2 ι∗k,ρt∇ log

ρt
π

∥∥∥2
Hd

k

=
〈
ι∗k,ρt∇ log

ρt
π
,
(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt∇ log

ρt
π

〉
Hd

k

= Iν,Stein(ρt, π).

Meanwhile, since ρt = u(t, ·)#ρ0 with u ∈ Sr, for any Rd-valued random vector X, u(t,X) ∼ ρt

and |u(t,X) −X| ≤ r almost surely. Therefore

W1(ρt, π) ≤W1(ρ0, ρt) +W1(ρ0, π) = inf
X∼ρ0,Y∼ρt

E [|X − Y |] +W1(ρ0, π) ≤ r +W1(ρ0, π).

208



Next we upper bound the regularized kernelized Stein discrepancy by the Wasserstein-2 distance.

According to [GM17, Lemma 18], for any general vector field ϕ ∈ Hd
k, we have

|Ex∼ρt [trace(Aπϕ(x))]| ≤ (M0(ϕ)M1(∇V ) +M2(ϕ)d)W1(ρt, π)

+
√

2M0(ϕ)M1(ϕ)Ex∼π [|∇V (x)|2]W1(ρt, π),

where for any g : Rd → Rd and g ∈ C1(Rd),

M0(g) := sup
x∈Rd

|g(x)|, M1(g) := sup
x ̸=y

|g(x) − g(y)|
|x− y|

, M2(g) := sup
x ̸=y

∥∇g(x) −∇g(y)∥2
|x− y|

.

For any ϕ ∈ Hd
k and ϕ = [ϕ1, · · · , ϕd]T , according to [SC08, Lemma 4.34],

sup
x∈Rd

|Dαϕi(x)| = sup
x∈Rd

∣∣∣Dα ⟨ϕi, k(x, ·)⟩Hk

∣∣∣ ≤ ∥ϕi∥Hd
k

sup
x∈Rd

|Dα
1D

α
2 k(x, x)|

1
2 .

Therefore,

M0(ϕ) = sup
x∈Rd

√√√√ d∑
i=1

ϕi(x)2 ≤
√∑

i=1

∥ϕi∥2Hk
sup
x∈Rd

k(x, x) = ∥k∥∞ ∥ϕ∥Hd
k
,

M1(ϕ) = sup
x ̸=y

√∑d
i=1 (ϕi(x) − ϕi(y))2

|x− y|
≤

√√√√ d∑
i=1

sup
x∈Rd

|∇ϕi(x)|2

≤

√√√√ d∑
i=1

d∑
j=1

∥ϕi∥2Hk
sup
x∈Rd

D
ej
1 D

ej
2 k(x, x) =

(
sup
x∈Rd

trace (∇1∇2k(x, x))

) 1
2

∥ϕ∥Hd
k

≤ ∥∇1 · ∇2k∥
1
2∞ ∥ϕ∥Hd

k
,

M2(ϕ) = sup
x ̸=y

∥∇ϕ(x) −∇ϕ(y)∥2
|x− y|

≤ sup
x ̸=y

∥∇ϕ(x) −∇ϕ(y)∥F
|x− y|

≤

√√√√ d∑
i,j=1

sup
x̸=y

|∂jϕi(x) − ∂jϕi(y)|2
|x− y|2

≤

√√√√ d∑
i,j,l=1

sup
x∈Rd

D
ej+el
1 D

ej+el
2 k(x, x) ∥ϕi∥2Hk

≤
∥∥∇2

1 · ∇2
2k
∥∥ 1

2

∞ ∥ϕ∥Hd
k
.
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According to Assumption V1, M1(∇V ) = LV and Ex∼π

[
|∇V (x)|2

]
≤ C1,0 ∥π∥PV

. Therefore

|Ex∼ρt [trace(Aπϕ(x))]| ≤
(
∥k∥∞ LV +

∥∥∇2
1 · ∇2

2k
∥∥ 1

2

∞ d
)
∥ϕ∥Hd

k
(W1(ρ0, π) + r)

+

√
2 ∥k∥∞ ∥∇1 · ∇2k∥

1
2∞C1,0 ∥π∥PV

(W1(ρ0, π) + r) ∥ϕ∥Hd
k
.

Note that ϕ∗k,ρt satisfies that ν
∥∥∥ϕ∗k,ρt∥∥∥2Hd

k

+ (1 − ν)
∥∥∥ϕ∗k,ρt∥∥∥Ld

2(ρt)
d
≤ 1. Therefore

∥∥ϕ∗k,ρt∥∥Hd
k

≤ ν−1/2,

and

Iν,Stein(ρt|π)
1
2 = S(ρt, π) =

∣∣Ex∼ρt

[
trace(Aπϕ

∗
k,ρt(x))

]∣∣
≤ ν−

1
2

(
∥k∥∞ LV +

∥∥∇2
1 · ∇2

2k
∥∥ 1

2

∞ d
)

(W1(ρ0, π) + r)

+ ν−
1
2

√
2 ∥k∥∞ ∥∇1 · ∇2k∥

1
2∞C1,0 ∥π∥PV

(W1(ρ0, π) + r).

Since the upper bound is independent of the choice of u(t, ·) ∈ Sr and the time variable t, for any

ϵ > 0, we can choose a T small enough such that (4.31) holds. ■

Lemma 4.6.2. Under the assumptions of Theorem 25, let Sr = C([0, T ];Yr) with Yr defined in

(4.25). Then for any t ∈ [0, T ] there exists L(t) > 0 such that for any u ∈ Sr, for all x, y ∈ Rd and

t ∈ [0, T ], ∣∣∣Dν,ρt∇ log
ρt
π

(x) −Dν,ρt∇ log
ρt
π

(y)
∣∣∣ ≤ L(t)|x− y|,(4.32)

where for all t ∈ [0, T ], ρt = (u(t, ·))#ρ0 and

L(t) = ν−
1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2 Iν,Stein(ρt|π)
1
2 .(4.33)
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Proof of Lemma 4.6.2. Since Dν,ρt = ιk,ρt

(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt and ιk,ρt is the

inclusion operator,∣∣∣Dν,ρt∇ log
ρt
π

(x) −Dν,ρt∇ log
ρt
π

(y)
∣∣∣

=
∣∣∣((1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt∇ log

ρt
π

(x) −
(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt∇ log

ρt
π

(y)
∣∣∣

=

∣∣∣∣〈k(x, ·) − k(y, ·),
(
(1 − ν)ι∗k,ρtιk,ρt + νId

)−1
ι∗k,ρt∇ log

ρt
π

〉
Hk

∣∣∣∣
≤ ∥k(x, ·) − k(y, ·)∥Hk

∥∥∥((1 − ν)ι∗k,ρtιk,ρt + νId
)−1

ι∗k,ρt∇ log
ρt
π

∥∥∥
Hd

k

≤ ν−
1
2 Iν,Stein(ρt|π)

1
2 ∥k(x, ·) − k(y, ·)∥Hd

k
,

where the second identity follows from the reproducing property and the last inequality follows

from (4.28). Furthermore, we can write

∥k(x, ·) − k(y, ·)∥2Hd
k

= k(x, x) − 2k(x, y) + k(y, y)

≤
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
)
|x− y|2,

where the first identity follows from the RKHS property and the second identity follows from Taylor

expansion and Assumption K1. Therefore (4.32) holds with L(t) defined in (4.33). ■

Lemma 4.6.3. Under the assumptions in Theorem 25, let Sr = C([0, T ];Yr) with Yr defined in

(4.25). Then for any t ∈ [0, T ], there exists C1(t) > 0 such that for any u, v ∈ Sr,

sup
x∈Rd

∣∣∣Dν,ρ1,t∇ log
ρ1,t
π

(x) −Dν,ρ2,t∇ log
ρ2,t
π

(x)
∣∣∣ ≤ C1(t)dS(u, v),(4.34)

where for all t ∈ [0, T ], ρ1,t = (u(t, ·))#ρ0, ρ2,t = (v(t, ·))#ρ0 and

C1(t) = 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2 ∥∇k∥∞ Iν,Stein(ρ1,t|π)
1
2 + ν−1Lr ∥k∥∞ ,

(4.35)

with Lr being defined in (4.39).
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Proof of Lemma 4.6.3. With the facts that Dν,µ = ιk,µ(ι∗k,µιk,µ + νI)−1ι∗k,µ and ιk,µ is the

inclusion operator we get,∣∣∣Dν,ρ1,t∇ log
ρ1,t
π

(x) −Dν,ρ2,t∇ log
ρ2,t
π

(x)
∣∣∣

=

∣∣∣∣((1 − ν)ι∗k,ρ1,tιk,ρ1.t + νI
)−1

ι∗k,ρ1.t∇ log
ρ1,t
π

(x)

−
(

(1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1

ι∗k,ρ2,t∇ log
ρ2,t
π

(x)

∣∣∣∣
≤
∣∣∣∣(((1 − ν)ι∗k,ρ1,tιk,ρ1.t + νI

)−1
−
(

(1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1

)
ι∗k,ρ1,t∇ log

ρ1,t
π

(x)

∣∣∣∣
+

∣∣∣∣((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1 (

ι∗k,ρ1,t∇ log
ρ1,t
π

(x) − ι∗k,ρ2,t∇ log
ρ2,t
π

(x)
)∣∣∣∣ .

We then turn to study the two terms in the upper bound separately.

First term: Note that, we have∣∣∣∣(((1 − ν)ι∗k,ρ1,tιk,ρ1.t + νI
)−1

−
(

(1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1

)
ι∗k,ρ1,t∇ log

ρ1,t
π

(x)

∣∣∣∣
=

∣∣∣∣ιk,ρ1,t ((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1 (

(1 − ν)ι∗k,ρ2,tιk,ρ2,t − (1 − ν)ι∗k,ρ1,tιk,ρ1,t

)
×
(

(1 − ν)ι∗k,ρ1,tιk,ρ1,t + νI
)−1

ι∗k,ρ1,t∇ log
ρ1,t
π

(x)

∣∣∣∣
≤
∥∥ιk,ρ1,t∥∥Hd

k→Ld
∞

∥∥∥∥((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1

∥∥∥∥
Hd

k→Hd
k

(1 − ν)
∥∥∥ι∗k,ρ2,tιk,ρ2,t − ι∗k,ρ1,tιk,ρ1,t

∥∥∥
Hd

k→Hd
k

×
∥∥∥∥((1 − ν)ι∗k,ρ1,tιk,ρ1,t + νI

)−1
ι∗k,ρ1,t∇ log

ρ1,t
π

∥∥∥∥
Hd

k

≤ ∥k∥∞ ν−1(1 − ν)ν−
1
2 Iν,Stein(ρ1,t|π)

1
2

× sup
∥ϕ∥Hd

k
=1

〈∫
Rd

k(·, x)ϕ(x)(dρ1,t(x) − dρ2,t(x)),

∫
Rd

k(·, y)ϕ(y)(dρ1,t(y) − dρ2,t(y))

〉 1
2

Hd
k

≤ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
3
∥∥∇2k

∥∥
∞ + 2 ∥∇1∇2k∥∞

) 1
2 Iν,Stein(ρ1,t|π)

1
2dS(u, v).

(4.36)

As we are bounding the function value by its Ld
∞ norm, the second step allows the function to be

in the space of Ld
∞, without which we think of the function as belonging to the RKHS. The second
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inequality follows from (4.27) and (4.28). The last inequality follows from the fact that〈∫
Rd

k(·, x)ϕ(x)(dρ1,t(x) − dρ2,t(x)),

∫
Rd

k(·, y)ϕ(y)(dρ1,t(y) − dρ2,t(y))

〉 1
2

Hd
k

=

(
sup

∥ϕ∥Hd
k
=1

∫
Rd

∫
Rd

〈
k (u(t, x), ·)ϕ (u(t, x)) − k (v(t, x), ·)ϕ (v(t, x)) ,

k (u(t, y), ·)ϕ (u(t, y)) − k (v(t, y), ·)ϕ (v(t, y))

〉
Hd

k

dρ0(x)dρ0(y)

) 1
2

≤ sup
∥ϕ∥Hd

k
=1

∫
Rd

∥k (u(t, x), ·)ϕ (u(t, x)) − k (v(t, x), ·)ϕ (v(t, x))∥Hd
k
ρ0(x)dx

≤ sup
∥ϕ∥Hd

k
=1

∫
Rd

∥(k (u(t, x), ·) − k (v(t, x), ·))ϕ (u(t, x))∥Hd
k
ρ0(x)dx

+ sup
∥ϕ∥Hd

k
=1

∫
Rd

∥k (v(t, x), ·) (ϕ (u(t, x)) − ϕ (v(t, x)))∥Hd
k
ρ0(x)dx

= sup
∥ϕ∥Hd

k
=1

∫
Rd

∥(k (u(t, x), ·) − k (v(t, x), ·))∥Hk
|⟨ϕ(·), k (u (t, x) , ·)⟩Hk

| ρ0(x)dx

+ sup
∥ϕ∥Hd

k
=1

∫
Rd

∥k (v(t, x), ·)∥Hk
|⟨ϕ(·), k (u(t, x), ·) − k (v(t, x), ·)⟩Hk

| ρ0(x)dx

≤ sup
∥ϕ∥Hd

k
=1

∫
Rd

∥(k (u(t, x), ·) − k (v(t, x), ·))∥Hk
∥ϕ∥Hd

k
∥k (u (t, x) , ·)∥Hk

ρ0(x)dx

+ sup
∥ϕ∥Hd

k
=1

∫
Rd

∥k (v(t, x), ·)∥Hk
∥ϕ∥Hd

k
∥k (u(t, x), ·) − k (v(t, x), ·)∥Hk

ρ0(x)dx

= sup
x∈Rd

(√
k (u(t, x), u(t, x)) + k (v(t, x), v(t, x)) − 2k (u(t, x), v(t, x))

×
(√

k (u(t, x), u(t, x)) +
√
k (v(t, x), v(t, x))

))
≤ 2 ∥k∥∞

(
3
∥∥∇2k

∥∥
∞ + 2 ∥∇1∇2k∥∞

) 1
2 dS(u, v),

where the first identity follows from the definition of ρi,t for i = 1, 2 and change of variable,

the second inequality holds due to the symmetry in x and y, the first identity follows from the

reproducing property of the RKHS, the last identity follows from the fact that ∥k(x, ·)∥Hk
=√

k(x, x) for all x and the last inequality follows from Assumption K1 and Taylor expansion on

both variables in k up to second order.
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Second term: Note that we have∣∣∣∣((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1 (

ι∗k,ρ1,t∇ log
ρ1,t
π

(x) − ι∗k,ρ2,t∇ log
ρ2,t
π

(x)
)∣∣∣∣

=

∣∣∣∣ιk,ρ2,t ((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1 (

ι∗k,ρ1,t∇ log
ρ1,t
π

(x) − ι∗k,ρ2,t∇ log
ρ2,t
π

(x)
)∣∣∣∣

≤
∥∥ιk,ρ2,t∥∥Hd

k→Ld
∞

∥∥∥∥((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1

∥∥∥∥
Hd

k→Hd
k

∥∥∥ι∗k,ρ1,t∇ log
ρ1,t
π

− ι∗k,ρ2,t∇ log
ρ2,t
π

∥∥∥
Hd

k

≤ ∥k∥∞ ν−1
∥∥∥ι∗k,ρ1,t∇ log

ρ1,t
π

− ι∗k,ρ2,t∇ log
ρ2,t
π

∥∥∥
Hd

k

,

where the last inequality follows from (4.27) and for all x ∈ Rd,

ι∗k,ρ1,t∇ log
ρ1,t
π

(x) − ι∗k,ρ2,t∇ log
ρ2,t
π

(x)

=

∫
Rd

k(x, y)∇ log
ρ1,t
π

(y)dρ1,t(y) −
∫
Rd

k(x, y)∇ log
ρ2,t
π
dρ2,t(y)

=

∫
Rd

(k(x, y)∇V (y) −∇2k(x, y)) dρ1,t(y) −
∫
Rd

(k(x, y)∇V (y) −∇2k(x, y)) dρ2,t(y)

=

∫
Rd

(k(x, u(t, y))∇V (u(t, y)) − k(x, v(t, y))∇V (v(t, y))) dρ0(y)

−
∫
Rd

(∇2k(x, u(t, y)) −∇2k(x, v(t, y))) dρ0(y).

Therefore, we have∥∥∥ι∗k,ρt∇ log
ρt
π

− ι∗k,µt
∇ log

µt
π

∥∥∥
Hd

k

≤
∫
Rd

(
∥k(·, u(t, y))∇V (u(t, y)) − k(·, v(t, y))∇V (v(t, y))∥Hd

k

+ ∥∇2k(·, u(t, y)) −∇2k(·, v(t, y))∥Hd
k

)
dρ0(y).

For simplicity, in the following calculations, we denote u(t, y) and v(t, y) as u and v respectively.

We will bound ∥k(·, u)∇V (u) − k(·, v)∇V (v)∥Hd
k

and ∥∇2k(·, u) −∇2k(·, v)∥Hd
k

respectively. Note
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that we have

∥k(·, u)∇V (u) − k(·, v)∇V (v)∥2Hd
k

= ⟨k(·, u)∇V (u) − k(·, v)∇V (v), k(·, u)∇V (u) − k(·, v)∇V (v)⟩Hd
k

= |∇V (u)|2k(u, u) − 2 ⟨∇V (u),∇V (v)⟩ k(u, v) + |∇V (v)|2k(v, v)

≤ |⟨∇V (u) −∇V (v),∇V (u)k(u, u) −∇V (v)k(v, v)⟩|

+ |⟨∇V (u),∇V (v)⟩ (k(u, u) + k(v, v) − 2k(u, v))| ,

where

|⟨∇V (u) −∇V (v),∇V (u)k(u, u) −∇V (v)k(v, v)⟩|

≤ |∇V (u) −∇V (v)|2 k(u, u) + |∇V (u) −∇V (v)| |∇V (v)| |k(u, u) − k(v, v)|

≤ C2
1,r(1 + V (y))2dST

(u, v)2k(u, u) + C2
1,r(1 + V (y))2dS(u, v) |k(u, u) − k(v, v)|

≤ C2
1,r(1 + V (y))2dS(u, v)2 ∥k∥2∞ + 2C2

1,r ∥∇k∥∞ (1 + V (y))2dS(u, v)2.

The second inequality follows from Assumption V1 and the last inequality follows from Assumption

K1 and Taylor expansion on both variables in k up to first order. And, we also have

|⟨∇V (u),∇V (v)⟩ (k(u, u) + k(v, v) − 2k(u, v))|

≤ C2
1,r(1 + V (y))2 |k(u, u) + k(v, v) − 2k(u, v)|

≤ C2
1,r(1 + V (y))2

(
3
∥∥∇2k

∥∥
∞ + 2 ∥∇1∇2k∥∞

)
dS(u, v)2,

where the first inequality follows from Assumption V1 and the last inequality follows from As-

sumption K1 and Taylor expansion on both variables in k up to second order. With the above two

inequalities, we have

∥k(·, u(t, y))∇V (u(t, y)) − k(·, v(t, y))∇V (v(t, y))∥Hd
k

≤ C1,r

(
∥k∥∞ + 2∥∇k∥∞

1
2 + 3

∥∥∇2k
∥∥
∞

1
2 + 2∥∇1∇2k∥∞

1
2

)
dS(u, v)(1 + V (y)).(4.37)
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Observe that for all x, y ∈ Rd,

⟨∇2k(·, x),∇2k(·, y)⟩Hd
k

= ∇1 · ∇2⟨k(·, x), k(·, y)⟩Hd
k

= ∇1 · ∇2k(x, y),

If we denote the function ∇1 · ∇2k = D1,2k where D1,2k is symmetric since k is symmetric, we get

∥∇2k(·, u) −∇2k(·, v)∥2Hd
k

= D1,2k(u, u) +D1,2k(v, v) − 2D1,2k(u, v)

≤
(
2
∥∥∇2(D1,2k)

∥∥
∞ + ∥∇1∇2(D1,2k)∥∞

)
dS(u, v)2.

where the inequality follows from Taylor expansion on both variables of D1,2k. Therefore

∥∇2k(·, u) −∇2k(·, v)∥Hd
k
≤
(

2
∥∥∇2(D1,2k)

∥∥ 1
2

∞ + ∥∇1∇2(D1,2k)∥
1
2
∞

)
dS(u, v).(4.38)

According to (4.37) and (4.38), we get∥∥∥ι∗k,ρt∇ log
ρt
π

− ι∗k,µt
∇ log

µt
π

∥∥∥
Hd

k

≤ Lrds(u, v)

with

Lr = C1,r ∥ρ0∥PV

(
∥k∥∞ + 2∥∇k∥∞

1
2 + 3

∥∥∇2k
∥∥
∞

1
2 + 2∥∇1∇2k∥∞

1
2

)
+ 2
∥∥∇2(D1,2k)

∥∥
∞

1
2 + ∥∇1∇2(D1,2k)∥∞

1
2 .

(4.39)

Therefore, the second term is bounded as

∣∣∣∣((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1 (

ι∗k,ρ1,t∇ log
ρ1,t
π

(x) − ι∗k,ρ2,t∇ log
ρ2,t
π

(x)
)∣∣∣∣ ≤ ν−1Lr ∥k∥∞ dS(u, v).

(4.40)

With (4.36) and (4.40), we obtain

sup
x∈Rd

∣∣∣Dν,ρ1,t∇ log
ρ1,t
π

(x) −Dν,ρ2,t∇ log
ρ2,t
π

(x)
∣∣∣ ≤ C1(t)dS(u, v)

with C1(t) being defined in (4.35). ■
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4.7. Stability

In this section we prove a stability estimate for the weak solutions to (4.6). To do this, we introduce

a space of probability measures on Rd and assumptions on V as follows,

Pp :=

{
ρ ∈ P : ∥ρ∥Pp

:=

∫
Rd

|x|pρ(x)dx <∞
}
,

where P denotes the set of all probability measures on Rd.

Assumption V2. In addition to Assumption V1, there exists a constant CV > 0 and q > 1 such

that |∇V (x)|q ≤ CV (1 + V (x)) for all x ∈ Rd and supθ∈[0,1]
∥∥∇2V (θx+ (1 − θ)y)

∥∥q
2
≤ CV (1 +

V (x) + V (y)).

Theorem 26. Let V satisfy Assumption V2 with q ∈ (1,∞) and k satisfies Assumption K1. Let

p be the conjugate of q, i.e., p−1 + q−1 = 1. Let ρ1, ρ2 ∈ Pp be two initial probability measures

satisfying ∥ρi∥Pp
≤ R for some constant R > 0 and i = 1, 2. Let ρ1,t and ρ2,t be the associated weak

solution to (4.6). Then given any T > 0, there exists a constant C > 0 depending on k, V, q, ν, ρ1, ρ2

such that

sup
t∈[0,T ]

Wp(ρ1,t, ρ2,t) ≤ CWp(ρ1, ρ2).

More explicitly, the constant C is given by

C = exp

(
ν−1 ∥k∥∞C(T, k, V, ν, ρ1, ρ2, q)T + +ν−

1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2
√
KL(ρ2|π)T

1
2

+ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2
∥∥∇1∇2k + 3

∥∥∇2k
∥∥
∞
∥∥
∞

) 1
2
√

KL(ρ1|π)T
1
2

)
,

(4.41)

where C(T, k, V, ν, ρ1, ρ2, q) is defined in (4.46).

Remark 34. If we focus on the dependency on ν and T in (4.41), we have

C ≤ C ′ exp
(
ν−1T exp

(
C ′ν−

1
2T

1
2

)
+ ν−

3
2 (1 − ν)T

1
2 + ν−

1
2T

1
2

)
where C ′ is a constant independent of ν and T .
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The proof is inspired by that of [LLN19, Theorem 2.7] which in turn is motivated by the Dobrushin’s

coupling argument (see, for example, [Dob79] and [MRZ16, Theorem 1.4.1]). In the following proof

we mainly highlight the parts of our proof that are different from the proof of [LLN19, Theorem

2.7].

Proof of Theorem 26. First, under Assumption V2, there exists a constant C0 > 0 such

that V (x) ≤ C0(1 + |x|p) for all x ∈ Rd. Therefore, Pp ⊂ PV and ∥ρi∥PV
≤ C(R) <∞ for i = 1, 2.

By Theorem 25, the weak solutions take the form

ρi,t = (Φ(t, ·, ρi))ρi , i = 1, 2

where Φ(·, ·, ρi) solves (4.24) with ρ0 = ρi. Let π0 be a coupling measure between ρ1 and ρ2. For

δ > 0, define ϕδ(x) = 1
p(|x|2 + δ)p/2 which satisfies

lim
δ→0+

ϕδ(x) =
1

p
|x|p and |∇ϕδ(x)| ≤ |x|p−1, for all x ∈ Rd.

We start from estimating the derivative of ϕδ in the time variable, for which we have

∂tϕδ(Φ(t, x1, ρ1) − Φ(t, x2, ρ2))

= −∇ϕδ(Φ(t, x1, ρ1) − Φ(t, x2, ρ2))
(
Dν,ρ1,t∇ log

ρ1,t
π

(Φ(t, x1, ρ1)) −Dν,ρ2,t∇ log
ρ2,t
π

(Φ(t, x2, ρ2))
)
.

The next step is to estimate∣∣∣Dν,ρ1,t∇ log
ρ1,t
π

(Φ(t, x1, ρ1)) −Dν,ρ2,t∇ log
ρ2,t
π

(Φ(t, x2, ρ2))
∣∣∣ .

Note that

Dν,ρ1,t∇ log
ρ1,t
π

(Φ(t, x1, ρ1)) −Dν,ρ2,t∇ log
ρ2,t
π

(Φ(t, x2, ρ2)) := I1 + I2,

where

I1 := Dν,ρ1,t∇ log
ρ1,t
π

(Φ(t, x1, ρ1)) −Dν,ρ2,t∇ log
ρ2,t
π

(Φ(t, x1, ρ1)),

I2 := Dν,ρ2,t∇ log
ρ2,t
π

(Φ(t, x1, ρ1)) −Dν,ρ2,t∇ log
ρ2,t
π

(Φ(t, x2, ρ2)).
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According to Proposition 23, we have

|−∇ϕδ(Φ(t, x1, ρ1) − Φ(t, x2, ρ2)) · I1|

≤ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2 Iν,Stein(ρ1,t|π)
1
2 |Φ(t, x1, ρ1) − Φ(t, x2, ρ2)|p−1

×
(∫

Rd

|Φ(t, y1, ρ1) − Φ(t, y2, ρ2)|π0(dy1, dy2)
)

+ ν−1 ∥k∥∞C(t, k, V, ν, ρ1, ρ2, q)|Φ(t, x1, ρ1) − Φ(t, x2, ρ2)|p−1

×
(∫

Rd×Rd

|Φ(t, y1, ρ1) − Φ(t, y2, ρ2)|pπ0(dy1, dy2)
)1/p

and

|−∇ϕδ(Φ(t, x1, ρ1) − Φ(t, x2, ρ2)) · I2|

≤ ν−
1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2 Iν,Stein(ρ2,t|π)
1
2 |Φ(t, x1, ρ1) − Φ(t, x2, ρ2)|p.

Now, defining

Dp(π)(s) :=

(∫
Rd×Rd

|Φ(s, y1, ρ1) − Φ(s, y2, ρ2)|pπ0(dy1, dy2)
)1/p

,

we have, for any t ∈ [0, T ] that

ϕδ(Φ(t, x1, ρ1) − Φ(t, x2, ρ2))

≤ ν−
1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2

∫ t

0
Iν,Stein(ρ2,s|π)

1
2 |Φ(s, x1, ρ1) − Φ(s, x2, ρ2)|pds

+ ϕδ(x1 − x2) + ν−1 ∥k∥∞C(T, k, V, ν, ρ1, ρ2, q)

∫ t

0
|Φ(s, x1, ρ1) − Φ(s, x2, ρ2)|p−1Dp(π

0)(s)ds

+ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2

×
∫ t

0
Iν,Stein(ρ1,s|π)

1
2 |Φ(s, x1, ρ1) − Φ(s, x2, ρ2)|p−1Dp(π

0)(s)ds.

Integrating the above inequality w.r.t. the coupling π0, and using the fact that∫
Rd×Rd

|Φ(t, x1, ρ1) − Φ(t, x2, ρ2)|p−1π0(dx1, dx2) ≤ Dp(π
0)(s)p−1,
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and letting δ → 0, we get

Dp(π
0)(t)p ≤ Dp(π

0)(0)p + ν−1 ∥k∥∞C(T, k, V, ν, ρ1, ρ2, q)

∫ t

0
Dp(π

0)(s)pds

+ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2

∫ t

0
Iν,Stein(ρ1,s|π)

1
2Dp(π

0)(s)pds

+
(
ν−

1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2

)∫ t

0
Iν,Stein(ρ2,s|π)

1
2Dp(π

0)(s)pds.

By using Gronwall’s inequality, we further obtain

Dp(π
0)(t)p

≤ Dp(π
0)(0)p exp

(
ν−1 ∥k∥∞C(T, k, V, ν, ρ1, ρ2, q)t

)
× exp

(
2ν−

3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2

∫ t

0
Iν,Stein(ρ1,s|π)

1
2ds

)
× exp

(
ν−

1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2

∫ t

0
Iν,Stein(ρ2,s|π)

1
2ds

)

≤ Dp(π
0)(0)p exp

(
ν−

1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2
√

KL(ρ2|π)t
1
2

+ ν−1 ∥k∥C(T, k, V, ν, ρ1, ρ2, q)t+ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2
√
KL(ρ1|π)t

1
2

)
.

Hence, we obtain

Wp
p (ρ1,t, ρ2,t)

= inf
π∈Γ(ρ1,t,ρ2,t)

∫
Rd×Rd

|x1 − x2|pπ(dx1, dx2) ≤ inf
π0∈Γ(ρ1,ρ2)

Dp(π
0)(t)p

≤ exp

(
ν−1 ∥k∥∞C(T, k, V, ν, ρ1, ρ2, q)t+ ν−

1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2
√

KL(ρ2|π)t
1
2

+ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2
√
KL(ρ1|π)t

1
2

)
inf

π0∈Γ(ρ1,ρ2)
Dp(π

0)(0)p

= exp

(
ν−1 ∥k∥∞C(T, k, V, ν, ρ1, ρ2, q)t+ ν−

1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2
√

KL(ρ2|π)t
1
2

+ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2
√
KL(ρ1|π)t

1
2

)
Wp

p (ρ1, ρ2),
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yielding the result. ■

Proposition 23. Under the assumption of Theorem 26, let Φ(·, ·, ρi) be the solution to (4.24) with

ρ0 = ρi for i = 1, 2. Let π0 be a probability measure on R2d with marginals ρ1 and ρ2. Then we

have ∣∣∣Dν,ρ1,t∇ log
ρ1,t
π

(Φ(t, x1, ρ1)) −Dν,ρ2,t∇ log
ρ2,t
π

(Φ(t, x1, ρ1))
∣∣∣

≤ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2 Iν,Stein(ρ1,t|π)
1
2

×
∫
Rd

|Φ(t, x1, ρ1) − Φ(t, x2, ρ2)|π0(dx1, dx2)

+ ν−1 ∥k∥∞C(t, k, V, ν, ρ1, ρ2, q)

(∫
Rd×Rd

|Φ(t, y1, ρ1) − Φ(t, y2, ρ2)|p π0(dy1, dy2)
)1/p

,(4.42)

and∣∣∣Dν,ρ2,t∇ log
ρ2,t
π

(Φ(t, x1, ρ1)) −Dν,ρ2,t∇ log
ρ2,t
π

(Φ(t, x2, ρ2))
∣∣∣

≤ ν−
1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2 Iν,Stein(ρ2,t|π)
1
2 |Φ(t, x1, ρ1) − Φ(t, x2, ρ2)| ,(4.43)

where C(t, k, V, ν, ρ1, ρ2, q) is given in (4.46).

Proof of Proposition 23. First we prove (4.43). For any x ∈ Rd,∣∣∣Dν,ρ2,t∇ log
ρ2,t
π

(x) −Dν,ρ2,t∇ log
ρ2,t
π

(y)
∣∣∣

=

∣∣∣∣((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νId

)−1
ι∗k,ρ2,t∇ log

ρ2,t
π

(x)

−
(

(1 − ν)ι∗k,ρ2,tιk,ρ2,t + νId

)−1
ι∗k,ρ2,t∇ log

ρ2,t
π

(y)

∣∣∣∣
=

∣∣∣∣∣
〈
k(x, ·) − k(y, ·),

(
(1 − ν)ι∗k,ρ2,tιk,ρ2,t + νId

)−1
ι∗k,ρ2,t∇ log

ρ2,t
π

(·)
〉

Hk

∣∣∣∣∣
≤ ∥k(x, ·) − k(y, ·)∥Hk

∥∥∥∥((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νId

)−1
ι∗k,ρ2,t∇ log

ρ2,t
π

∥∥∥∥
Hd

k

≤ ν−
1
2 Iν,Stein(ρ2,t|π)

1
2 ∥k(x, ·) − k(y, ·)∥Hd

k

≤ ν−
1
2 Iν,Stein(ρ2,t|π)

1
2
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2 |x− y|,

221



where the second inequality follows from (4.28) and the last inequality follows from the reproducing

property and Taylor expansion. The claim in (4.43) then follows from the above inequality.

To prove (4.42), first according to the proof of Lemma 4.6.3, for any x ∈ Rd, we have∣∣∣Dν,ρ1,t∇ log
ρ1,t
π

(x) −Dν,ρ2,t∇ log
ρ2,t
π

(x)
∣∣∣

≤
∣∣∣∣(((1 − ν)ι∗k,ρ1,tιk,ρ1,t + νId

)−1
−
(

(1 − ν)ι∗k,ρ2,tιk,ρ2,t + νId

)−1
)
ι∗k,ρ1,t∇ log

ρ1,t
π

(x)

∣∣∣∣
+

∣∣∣∣((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νId

)−1 (
ι∗k,ρ1,t∇ log

ρ1,t
π

(x) − ι∗k,ρ2,t∇ log
ρ2,t
π

(x)
)∣∣∣∣

and first term on the right hand side is bounded as∣∣∣∣(((1 − ν)ι∗k,ρ1,tιk,ρ1,t + νId

)−1
−
(

(1 − ν)ι∗k,ρ2,tιk,ρ2,t + νId

)−1
)
ι∗k,ρ1,t∇ log

ρ1,t
π

(x)

∣∣∣∣
≤ ∥k∥∞ ν−

3
2 (1 − ν)Iν,Stein(ρ1,t|π)

1
2

sup
∥ϕ∥Hd

k
=1

〈∫
Rd

k(·, x)ϕ(x)(dρ1,t(x) − dρ2,t(x)),

∫
Rd

k(·, y)ϕ(y)(dρ1,t(y) − dρ2,t(y))

〉 1
2

Hd
k

By Theorem 25, the weak solutions to (4.6) take the form

ρi,t = (Φ(t, ·, ρi))ρi , i = 1, 2.

Similar to the proof in Lemma 4.6.3, we have

sup
∥ϕ∥Hd

k
=1

〈∫
Rd

k(·, x)ϕ(x)(dρ1,t(x) − dρ2,t(x)),

∫
Rd

k(·, y)ϕ(y)(dρ1,t(y) − dρ2,t(y))

〉 1
2

Hd
k

=

(
sup

∥ϕ∥Hd
k
=1

∫
Rd×Rd

∫
Rd×Rd

〈
k (Φ(t, x1, ρ1), ·)ϕ (Φ(t, x1, ρ1)) − k (Φ(t, x2, ρ2), ·)ϕ (Φ(t, x2, ρ2)) ,

k (Φ(t, y1, ρ1), ·)ϕ (Φ(t, y1, ρ1)) − k (Φ(t, y2, ρ2), ·)ϕ (Φ(t, y2, ρ2))

〉
Hd

k

π0(dx1, dx2)π
0(dy1, y2)

) 1
2

≤
∫
Rd

∫
Rd

∥k (Φ(t, x1, ρ1), ·)ϕ (Φ(t, x1, ρ1)) − k (Φ(t, x2, ρ2), ·)ϕ (Φ(t, x2, ρ2))∥Hd
k
π0(dx1, dx2)

≤ 2 ∥k∥∞
(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2

∫
Rd×Rd

|Φ(t, x1, ρ1) − Φ(t, x2, ρ2)|π0(dx1, dx2).
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Therefore ∣∣∣((ι∗k,ρ1,tιk,ρ1,t + νI)−1 − (ι∗k,ρ2,tιk,ρ2,t + νI)−1
)
ι∗k,ρ1,t∇ log

ρ1,t
π

(x)
∣∣∣

≤ 2ν−
3
2 (1 − ν) ∥k∥2∞

(
2 ∥∇1∇2k∥∞ + 3

∥∥∇2k
∥∥
∞
) 1

2 Iν,Stein(ρ1,t|π)
1
2

×
∫
Rd×Rd

|Φ(t, x1, ρ1) − Φ(t, x2, ρ2)|π0(dx1, dx2).

According to the proof of Lemma 4.6.3, the second term is bounded as∣∣∣∣((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1 (

ι∗k,ρ1,t∇ log
ρ1,t
π

(x) − ι∗k,ρ2,t∇ log
ρ2,t
π

(x)
)∣∣∣∣

≤ ν−1 ∥k∥∞
∥∥∥ι∗k,ρ1,t∇ log

ρ1,t
π

− ι∗k,ρ2,t∇ log
ρ2,t
π

∥∥∥
Hd

k

.

For the factor
∥∥∥ι∗k,ρ1,t∇ log

ρ1,t
π − ι∗k,ρ2,t∇ log

ρ2,t
π

∥∥∥
Hd

k

, notice that

ι∗k,ρ1,t∇ log
ρ1,t
π

(x) − ι∗k,ρ2,t∇ log
ρ2,t
π

(x)

=

∫
Rd

k(x, y)∇ log
ρ1,t
π

(y)dρ1,t(y) −
∫
Rd

k(x, y)∇ log
ρ2,t
π
dρ2,t(y)

=

∫
Rd

(k(x, y)∇V (y) −∇2k(x, y)) dρ1,t(y) −
∫
Rd

(k(x, y)∇V (y) −∇2k(x, y)) dρ2,t(y)

=

∫
Rd×Rd

(k(x,Φ(t, y1, ρ1))∇V (Φ(t, y1, ρ1)) − k(x,Φ(t, y2, ρ2))∇V (Φ(t, y2, ρ2))) dπ
0(dy1, dy2)

−
∫
Rd×Rd

(∇2k(x,Φ(t, y1, ρ1)) −∇2k(x,Φ(t, y2, ρ2))) dπ
0(dy1, dy2)

and we get∥∥∥ι∗k,ρt∇ log
ρt
π

− ι∗k,µt
∇ log

µt
π

∥∥∥
Hd

k

≤
∫
Rd×Rd

∥k(·,Φ(t, y1, ρ1))∇V (Φ(t, y1, ρ1)) − k(·,Φ(t, y2, ρ2))∇V (Φ(t, y2, ρ2))∥Hd
k
dπ0(dy1, dy2)

+

∫
Rd×Rd

∥∇2k(·,Φ(t, y1, ρ1)) −∇2k(·,Φ(t, y2, ρ2))∥Hd
k
dπ0(dy1, dy2)

For simplicity, we denote Φ(t, y1, ρ1),Φ(t, y2, ρ2) as Φ1 and Φ2 respectively in the following calcu-

lations. We will bound the two integrals separately.
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First integral: Similar to the proof in Lemma 4.6.3, we have

∥k(·,Φ1)∇V (Φ1) − k(·,Φ2)∇V (Φ2)∥2Hd
k

= ⟨∇V (Φ1) −∇V (Φ2),∇V (Φ1)k(Φ1,Φ1) −∇V (Φ2)k(Φ2,Φ2)⟩

+ ⟨∇V (Φ1),∇V (Φ2)⟩ (k(Φ1,Φ1) + k(Φ2,Φ2) − 2k(Φ1,Φ2))

where

|⟨∇V (Φ1) −∇V (Φ2),∇V (Φ1)k(Φ1,Φ1) −∇V (Φ2)k(Φ2,Φ2)⟩|

≤ |∇V (Φ1) −∇V (Φ2)|2k(Φ1,Φ1) + |∇V (Φ1) −∇V (Φ2)||∇V (Φ2)||k(Φ1,Φ1) − k(Φ2,Φ2)|

≤ sup
θ∈[0,1]

∥∥∇2(θΦ1 + (1 − θ)Φ2)
∥∥2
2
|Φ1 − Φ2|2 ∥k∥2∞

+ sup
θ∈[0,1]

∥∥∇2(θΦ1 + (1 − θ)Φ2)
∥∥
2
|Φ1 − Φ2|Cq−1

V (1 + V (Φ2))
1/q|k(Φ1,Φ1) − k(Φ2,Φ2)|

≤ C
2/q
V (1 + V (Φ1) + V (Φ2))

2/q ∥k∥2∞ |Φ1 − Φ2|2

+ C
1/q
V (1 + V (Φ1) + V (Φ2))

1/qCq−1

V (1 + V (Φ2))
1/q ∥∇k∥∞ |Φ1 − Φ2|2

≤ C
2/q
V

(
∥k∥2∞ + ∥∇k∥∞

)
(1 + V (Φ1) + V (Φ2))

2/q|Φ1 − Φ2|2

The third inequality follows from Assumption V2 and the last inequality follows from Assumption

K1 and Taylor expansion on both variables in k up to first order. Furthermore, we have

|⟨∇V (Φ1),∇V (Φ2)⟩ (k(Φ1,Φ1) + k(Φ2,Φ2) − 2k(Φ1,Φ2))|

≤ C
2/q
V (1 + V (Φ1))

1/q(1 + V (Φ2))
1/q|k(Φ1,Φ1) + k(Φ2,Φ2) − 2k(Φ1,Φ2)|

≤ C
2/q
V (1 + V (Φ1))

1/q(1 + V (Φ2))
1/q
(
3
∥∥∇2k

∥∥
∞ + 2 ∥∇1∇2k∥∞

)
|Φ1 − Φ2|2,

where the first inequality follows from Assumption V2 and the last inequality follows from Assump-

tion K1 and Taylor expansion on both variables in k up to second order.
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With the above two inequalities, we get∫
Rd×Rd

∥k(·,Φ(t, y1, ρ1))∇V (Φ(t, y1, ρ1)) − k(·,Φ(t, y2, ρ2))∇V (Φ(t, y2, ρ2))∥Hd
k
dπ0(dy1, dy2)

≤ C
1/q
V

(
∥k∥∞ + ∥∇k∥∞

1
2 + 3

∥∥∇2k
∥∥
∞

1
2 + 2∥∇1∇2k∥∞

1
2

)
×
∫
Rd×Rd

|Φ1(t, y1, ρ1) − Φ(t, y2, ρ2)|(1 + V (Φ(t, y1, ρ1)) + V (Φ(t, y2, ρ2)))
1/qπ0(dy1, dy2)

≤ C
1/q
V

(
∥k∥∞ + ∥∇k∥∞

1
2 + 3

∥∥∇2k
∥∥
∞

1
2 + 2∥∇1∇2k∥∞

1
2

)
×
(∫

Rd×Rd

|Φ1(t, y1, ρ1) − Φ(t, y2, ρ2)|pπ0(dy1, dy2)
)1/p

×
(∫

Rd×Rd

1 + V (Φ(t, y1, ρ1)) + V (Φ(t, y2, ρ2))π
0(dy1, dy2)

)1/q

≤
(
∥ρ1∥PV

exp(C1,0ν
−1/2q−1 ∥k∥∞

√
tKL(ρ1|π))

+ ∥ρ2∥PV
exp(C1,0ν

−1/2q−1 ∥k∥∞
√
tKL(ρ2|π))

)1/q
× C

1/q
V

(
∥k∥∞ + ∥∇k∥∞

1
2 + 3

∥∥∇2k
∥∥
∞

1
2 + 2∥∇1∇2k∥∞

1
2

)
×
(∫

Rd×Rd

|Φ1(t, y1, ρ1) − Φ(t, y2, ρ2)|pπ0(dy1, dy2)
)1/p

≤ 3C
1/q
V

(
∥k∥∞ + ∥∇k∥∞

1
2 +

∥∥∇2k
∥∥
∞

1
2 + ∥∇1∇2k∥∞

1
2

)(
∥ρ1∥PV

+ ∥ρ2∥PV

)1/q
× exp(C1,0ν

−1/2q−1 ∥k∥∞
√
t(KL(ρ1|π) + KL(ρ2|π)))

×
(∫

Rd×Rd

|Φ1(t, y1, ρ1) − Φ(t, y2, ρ2)|pπ0(dy1, dy2)
)1/p

:= C1(k, V )
(
∥ρ1∥PV

+ ∥ρ2∥PV

) 1
q

exp
(
D1(k, ν, q) (KL(ρ1|π) + KL(ρ2|π))

1
2 t

1
2

)

×
(∫

Rd×Rd

|Φ1(t, y1, ρ1) − Φ(t, y2, ρ2)|pπ0(dy1, dy2)
)1/p

.

(4.44)

Second integral: Denoting the function ∇1 · ∇2k = D1,2k, we first note that D1,2k is symmetric

since k is symmetric. According to the above identity, we get

∥∇2k(·,Φ1) −∇2k(·,Φ2)∥2Hd
k

= D1,2k(Φ1,Φ1) +D1,2k(Φ2,Φ2) − 2D1,2k(Φ1,Φ2)
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Applying Taylor’s series expansion on both variables of D1,2k, we get

∥∇2k(·,Φ1) −∇2k(·,Φ2)∥2Hd
k
≤
(
2
∥∥∇2(D1,2k)

∥∥
∞ + ∥∇1∇2(D1,2k)∥∞

)
|Φ1 − Φ2|2.

With the above inequality, we obtain∫
Rd

∥∇2k(·,Φ(t, y1, ρ1)) −∇2k(·,Φ(t, y2, ρ2))∥Hd
k
dπ0(dy1, dy2)

≤
(

2
∥∥∇2(D1,2k)

∥∥
∞

1
2 + ∥∇1∇2(D1,2k)∥∞

1
2

)∫
Rd×Rd

|Φ(t, y1, ρ1) − Φ(t, y2, ρ2)|π0(dy1, dy2).
(4.45)

Based on (4.44),(4.45), we then get∥∥∥ι∗k,ρt∇ log
ρt
π

− ι∗k,µt
∇ log

µt
π

∥∥∥
Hd

k

≤ C1(k, V )
(
∥ρ1∥PV

+ ∥ρ2∥PV

) 1
q

exp
(
D1(k, ν, q) (KL(ρ1|π) + KL(ρ2|π))

1
2 t

1
2

)
(∫

Rd×Rd

|Φ1(t, y1, ρ1) − Φ(t, y2, ρ2)|pπ0(dy1, dy2)
)1/p

+
(

2
∥∥∇2(D1,2k)

∥∥
∞

1
2 + ∥∇1∇2(D1,2k)∥∞

1
2

)∫
Rd×Rd

|Φ(t, y1, ρ1) − Φ(t, y2, ρ2)|π0(dy1, dy2)

≤ C(t, k, V, ν, ρ1, ρ2, q)

(∫
Rd×Rd

|Φ1(t, y1, ρ1) − Φ(t, y2, ρ2)|pπ0(dy1, dy2)
)1/p

.

where

C(t, k, V, ν, ρ1, ρ2, q)

= C1(k, V )
(
∥ρ1∥PV

+ ∥ρ2∥PV

) 1
q

exp
(
D1(k, ν, q) (KL(ρ1|π) + KL(ρ2|π))

1
2 t

1
2

)
+ C2(k)(4.46)

with

C1(k, V ) = 3C
1/q
V

(
∥k∥∞ + ∥∇k∥∞

1
2 +

∥∥∇2k
∥∥
∞

1
2 + ∥∇1∇2k∥∞

1
2

)
,

D1(k, ν, q) = C1,0ν
−1/2q−1 ∥k∥∞ ,

C2(k) = 2
∥∥∇2(∇1 · ∇2k)

∥∥
∞

1
2 + ∥∇1∇2(∇1 · ∇2k)∥∞

1
2 .
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Therefore for all x ∈ Rd,∣∣∣∣((1 − ν)ι∗k,ρ2,tιk,ρ2,t + νI
)−1 (

ι∗k,ρ1,t∇ log
ρ1,t
π

(x) − ι∗k,ρ2,t∇ log
ρ2,t
π

(x)
)∣∣∣∣

≤ ν−1 ∥k∥∞C(t, k, V, ν, ρ1, ρ2, q)

(∫
Rd×Rd

|Φ1(t, y1, ρ1) − Φ(t, y2, ρ2)|pπ0(dy1, dy2)
)1/p

.

Therefore, we obtain the desired result. ■

4.8. Space-time Discretization: A Practical Algorithm

In this section we introduce a practical space-time discretization to the R-SVGF described in (4.24).

In the algorithm we let positive integers N and n to denote the number of particles and (discrete)

iterations. We note by (Xi
n)Ni=1 the position of the N particles at the n-th step. We let X̄n :=

[X1
n, . . . , X

N
n ]T . For all functions f : Rd → Rd, we define the operator Ln as

Lnf := [f(X1
n), · · · , f(XN

n )]T .

The positions of the particles are then updated as

X̄n+1 = X̄n − hn+1

(
(1 − νn+1)

N
Kn + νn+1IN

)−1
 1

N
Kn(Ln∇V ) − 1

N

N∑
j=1

Ln∇k(Xj
n, ·)

 ,

(4.47)

where (hn)∞n=1 is the sequence of step-sizes, IN×N is the N ×N identity matrix and Kn ∈ RN×N is

the gram matrix defined as (Kn)ij = k(Xi
n, X

j
n) for all i, j ∈ [N ]. We call the above algorithm as the

Regularized SVGD algorithm. The iterates in (4.47) follow from Lemma 20 and the finite-sample

representations for the operators ιk,ρ̂nιk,ρ̂n where ρ̂n is the empirical measure of the particles at the

n-th step, i.e., ρ̂n =
∑N

i=1 δXi
n
.

While the convergence analysis of space-time discretization of the SVGF (i.e., the SVGD algo-

rithm) and the R-SVGD (i.e., the regularized SVGD algorithm) is an interesting and challenging

open question, in this section we demonstrate the improved performance of the regularized SVGD

algorithm over the SVGD algorithm in some simulation examples. Specifically, we consider the

simulation setup in [LW16]: We let the target π := (1/3)π1 + (2/3)π2, where π1 ≡ Normal(−2, 1)
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Figure 4.1. R-SVGD for various values of the regularization parameter ν. The
case of ν = 1 corresponds to SVGD. Left, Middle and Right columns correspond
respectively to h1(x) := x, h2(x) := x2 and h3(x) := cos(ωx + b). Top and bottom
rows correspond respectively to log(MSE) versus number of particles and number
of iterations.

and π2 ≡ Normal(+2, 1), and we let the initial distribution to be Normal(−10, 1). We now focus

on numerically computing the expectations of the form Ex∼π[hi(x)], for three cases, h1(x) := x,

h2(x) := x2 and h3(x) := cos(ωx+ b), where ω ∼ Normal(0, 1) and b ∼ Uniform([0, 2π]).

In Figure 4.1, we plot the mean-squared error in estimating the above expectations with the reg-

ularized and unregularized SVGD algorithm. Here, the expectation is over the intialization (and

over ω and b for h3). In the top row, we report the logarithm of the mean-squared error versus the

number of particles N for a fixed number of iterations (set to 100). In the bottom row, we report

the logarithm of the mean-squared error versus the number of iterations for a fixed number of par-

ticles (set to 200). For both algorithms, we use the Gaussian kernel k(u, v) = exp
(
− 1

γ ∥u− v∥22
)

,

where the bandwidth parameter γ is set using the median heuristic [LW16]. We use the Adagrad

step-size choice for both cases, following [LW16]. For the choice of the regularization parameter,

we report results for various choices of ν. The case of ν = 1 corresponds exactly to the SVGD

algorithm. We notice that for small values of ν the regularized SVGD algorithm performs better

than the SVGD algorithm.
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In terms of computational complexity, in comparison to the SVGD algorithm, each iteration of

regularized SVGD algorithm requires inverting an N × N matrix. It is possible to speed-up the

regularized SVGD algorithm by reinterpreting the iterations as solving a system of linear equations,

and using fast implementations of linear systems solvers. Other techniques for speeding-up include

using Random Fourier Features and Nyström method. We leave a detailed study of speeding up

the regularized SVGD algorithm as future work.
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CHAPTER 5

Online Least-squares Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is an algorithm that was initially developed by [RM51] for root-

finding. Today, SGD and its variants are the most commonly used algorithms for training machine

learning models ranging from large-scale linear models to deep neural networks. One of the main

challenges in understanding SGD is comprehending its convergence properties. In the case of fixed-

dimensional problems, the learning theory and optimization communities have focused on providing

non-asymptotic bounds, either in expectation or with high-probability, over the past two decades.

However, such bounds often tend to be overly conservative in predicting the actual behaviour of the

SGD algorithm on large-scale statistical problems occurring in practice that are invariably based on

specific data generating models. To address this, recent research has concentrated on characterizing

the exact dynamics of SGD in large-scale high-dimensional problems. Specifically, the focus is on

obtaining the precise asymptotic behavior of SGD and its fluctuations when the number of iterations

or observations and the data dimension tend to infinity under appropriate scalings. The main idea

behind this approach is to demonstrate that, under the considered scaling, the noise effects in SGD

average out, so the exact asymptotic behavior and fluctuations are determined by a particular set

of dynamical system equations.

Our goal in this chapter is to consider the SGD algorithm on a specific statistical problem, namely

the linear regression problem, and provide a fine-grained analysis of its behaviour under high-

dimensional scalings. Specifically, we consider the linear regression model, Y = X⊤θ∗ + E , where

θ∗ ∈ Rd is the true regression coefficient, X ∈ Rd is the zero-mean input random vector with

covariance matrix E[XX⊤] = Σd ∈ Rd×d, Y ∈ R is the output or response random variable, and

E ∈ R is a zero-mean noise with at least finite-variance. For this statistical model, we consider
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minimizing the following population least-squares stochastic optimization problem

min
θ∈Rd

E[(Y − ⟨X, θ⟩)2],

using the online SGD with an initial guess θ0 ∈ Rd, given by the following iterations

θt+1 = θt + η
(
yt − ⟨xt, θt⟩

)
xt,(5.1)

where θt ∈ Rd is the output at time t and η > 0 is the step-size parameter and plays a crucial

in obtaining our scaling limits and fluctuations. Specific choices for η will be detailed shortly in

Section 5.3. The sequences {xt}t≥0 and {εt}t≥0 are assumed to be independent and identical copies

of the random vector X and noise E respectively. Note in particular that for the online SGD

in (5.1), the number of iterations is equal to the number of observations used.

In our analysis, we view the least-squares online SGD in (5.1), as a discrete space-time interacting

particle system, where the space-axis corresponds to the coordinates of the vector θt and the time-

axis corresponds to the evolution of the algorithm. Specifically, note that the online SGD updates

in (5.1) can be viewed in the following coordinate-wise form. For any 1 ≤ i ≤ d,

θt+1
i = θti + ηxtiy

t − η
d∑

j=1

xtix
t
jθ

t
j

= θti + ηxti

( d∑
j=1

xtjθ
∗
j + εt −

d∑
j=1

xtjθ
t
j

)

= θti − η
d∑

j=1

xtix
t
j(θ

t
j − θ∗j ) + ηxtiε

t.

Now, defining the centralized iterates as ∆θt := θt − θ∗ and letting ∆θti denote its i-th coordinate

for all 1 ≤ i ≤ d and t ≥ 0, the least-squares online SGD can be then alternatively be represented

as the following interacting particle system:

∆θt+1
i = ∆θti − η

d∑
j=1

xtix
t
j∆θ

t
j︸ ︷︷ ︸

random interaction

+ηxtiε
t, 1 ≤ i ≤ d,(5.2)
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where the particles {∆θti}1≤i≤d are interacting and evolve over a discrete-time scale. In particular,

the interaction among the particles {∆θti}1≤i≤d is random for any t, and the expected interaction

is captured by the covariance matrix Σd of the input vector X. Therefore, to analyze the high-

dimensional asymptotic properties of the least-squares online SGD, we analyze the scaling limit

and fluctuations of the interacting particle system given by (5.2). In particular, our limits are

derived in the form of infinite-dimensional Ordinary Differential Equations (ODEs) and Stochastic

Differential Equations (SDEs); for some background we refer to [Arn92, KX95, DPZ14].

Our approach is also motivated by the larger literature available on analyzing interacting particle

systems. See, for example, [KL98, Lig99, Zei04, Szn04, DN08, Spo12]. The interacting particle

system in (5.2) can either exhibit long-range or short-range interactions depending on the structure

of the covariance matrix Σd. The case when the covariance matrix Σd is “smooth” in an appropriate

sense, thereby prohibiting abrupt changes in the entries of the covariance matrix, corresponds to

the regime of long-range interactions. Examples of such covariance matrices include bandable

and circulant covariance matrices. In this work, we work in the long-range interaction regime.

Alternatively, the case when covariance matrix is “rough”, which allows for certain degree of abrupt

changes between the entries (allowing, for example, various patterns of structured sparsity in Σd)

corresponds to the regime of short-range interactions. For last few decades, a large number of works

on interacting particle system focused on the connection between the scaling limit of the fluctuation

in interacting particle systems and the Kardar-Parisi-Zhang (KPZ) equation. See, for example,

[BG97, BS10, Qua11, Cor12, CST18, Gho17, CGST20]. Many of those works demonstrated that the

fluctuation of the height function of the associated particle system converges to the KPZ equation

under weak noise scaling. A handful set of those works including some recent breakthroughs

[MQR21, DOV22, QS23] showed convergence towards the KPZ fixed point under the so called

KPZ scaling of space, time and fluctuation. Our fluctuation results in the current work for the

long-range interaction case does not reproduce the KPZ equation or the KPZ fixed point in the

limit. However, we do believe that in the short-range regime, the scaling limits would lead to those

unprecedented limiting behavior even for the seemingly simple problem of solving least-squares

with online SGD. In a forthcoming work, we investigate the case of short-range interactions in

detail.
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5.1. Preliminaries

Before we proceed, we list the notations we make in this work. For a positive integer a, we let

[a] := {1, . . . , a}. For vectors, superscripts denote time-index and subscripts denote coordinates.

The space of square-integrable functions on S, a subset of Euclidean space, is denoted as L2(S)

with the squared-norm ∥g∥2L2(S) := ∫S g(x)2dx for any g ∈ L2(S). The space of continuous functions

in [0, 1], is denoted by C([0, 1]), and is equipped with the topology of uniform convergence over

[0, 1]. The space of continuous functions with continuous derivatives up to kth-order in [0, 1], is

denoted by Ck([0, 1]), and is equipped with the topology of uniform convergence in function value

and derivatives up to kth-order over [0, 1] (we mainly use k = 1, 2). For any topological space H and

τ > 0, C([0, τ ];H) represents the space of H-valued functions with continuous trajectories.

We also require the definition of a Gaussian random field or Gaussian random field process, that

arise in characterizing the limiting behavior of the SGD iterates. We refer to [AT07] for additional

background.

Definition 5.1.1. A Gaussian random field is defined as a random field g on a parameter set [0, 1]

for which the finite-dimensional distributions of (g(x1), · · · , g(xK)) are multivariate Gaussian for

each 1 ≤ K <∞ and each (x1, · · · , xK) ∈ [0, 1]K . A Gaussian random field process is defined as a

time-indexed random field g on a parameter set [0,∞)× [0, 1] for which {(g(t, x1), · · · , g(t, xK))}t≥0

are multivariate Gaussian processes for each 1 ≤ K <∞ and each (x1, · · · , xK) ∈ [0, 1]K .

Space-time Interpolation. Our approach starts by constructing a space-time stochastic process

by performing a piecewise linear interpolation of the discrete particles in (5.2). This process,

denoted by {Θ
d,T

(s, x)}s∈[0,τ ],x∈[0,1] is continuous both in time and in space. The spatial coordinate

at the macroscopic scale is indexed by the set [0, 1] and is denoted by the spatial variable x. The

spatial resolution at the microscopic scale is of order 1/d. Let T ∈ N+ be a positive integer

parameter. The parameters τ ∈ (0,∞) and 1/T corresponds to the time-scale till which we would

like to observe the trajectory and the resolution of the time-axis respectively. For any τ , we

consider the first ⌊τT ⌋ least-squares online SGD iterates. Specifically, ⌊τT ⌋ corresponds to the

overall number of iterations, which also corresponds to the number of observations used.
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We now describe how to construct the interpolation of the discrete particles in (5.2). Consider the

function Θd,T (·, ·) : [0, τ ] × [0, 1] → R that satisfies the following conditions:

(a) it is evaluated as the positions of SGD particles on the grid points with grid width T−1 in

the time variable and d−1 in the space variable, i.e. for any i ∈ [d] and any 0 ≤ t ≤ ⌊τT ⌋,

Θd,T
( t
T
,
i

d

)
= ∆θti .

We can artificially define ∆θt0 = ∆θt1.

(b) it is piecewise-constant in the time variable, i.e. for any s ∈ [0, τ ],

Θd,T (s, ·) = Θd,T
(⌊sT ⌋

T
, ·
)
.

(c) it is piecewise linear in the space variable, i.e. for any x ∈ [0, 1],

Θd,T (·, x) = (⌊dx⌋ + 1 − dx)Θd,T
(
·, ⌊dx⌋

d

)
+ (dx− ⌊dx⌋)Θ

(
·, ⌊dx⌋ + 1

d

)
.

From the above construction, we can give an explicit form of Θd,T based on {∆θti}i∈[d],0≤t≤⌊τT ⌋: for

any s ∈ [0, τ ] and any x ∈ [0, 1],

Θd,T (s, x) = (⌊dx⌋ + 1 − dx)Θd,T
(⌊sT ⌋

T
,
⌊dx⌋
d

)
+ (dx− ⌊dx⌋)Θ

(⌊sT ⌋
T

,
⌊dx⌋ + 1

d

)
= (⌊dx⌋ + 1 − dx)∆θ

⌊sT ⌋
⌊dx⌋ + (dx− ⌊dx⌋)∆θ⌊sT ⌋

⌊dx⌋+1.

Condition (b) in particular implies that Θd,T is càdlag̀ in the time variable. From condition (c), it

is easy to observe that Θd,T is continuous with well-defined weak derivative in space. Actually the

first order space derivative to Θd,T is well-defined for all x except the grid points {0, 1d , · · · ,
d−1
d , 1}.

Next we construct Θ
d,T

which is piecewise linear both in time and in space. For any s ∈ [0, τ ] and

x ∈ [0, 1],

Θ
d,T

(s, x) := (⌊sT ⌋ + 1 − sT ) Θd,T
(⌊sT ⌋

T
, x
)

+ (sT − ⌊sT ⌋) Θd,T
(⌊sT ⌋ + 1

T
, x
)
.(5.3)

From this construction we can immediately see that Θ
d,T ∈ C([0, τ ];C[0, 1]). Our main objec-

tive in this work, is to characterize the limiting behavior of the space-time stochastic process
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{Θ
d,T

(s, x)}s∈[0,τ ],x∈[0,1] when both T and d go to infinity, under appropriate scalings for appropri-

ate choices of the step-size parameter η, and under various assumptions on the noise E .

5.2. Assumptions

We start with the following definition of a space-time stochastic process, which characterizes the

data generating process for X (or alternatively the sequence {xt}t≥0).

Definition 5.2.1 (Data Generating Process). Let A,B, and E be real-valued symmetric functions

defined on [0, 1]2, [0, 1]4 and [0, 1]8 respectively. {W (s, x)}s≥0,x∈[0,1] is a stochastic process which is

white in the time variable, such that for all s ≥ 0 and x, x1, · · · , x8 ∈ [0, 1]:

E [W (s, x)] = 0, E [W (s, x1)W (s, x2)] = A(x1, x2),

E
[ 4∏
i=1

W (s, xi)
]

= B(x1, x2, x3, x4), E
[ 8∏
i=1

W (s, xi)
]

= E(x1, · · · , x8).

We now introduce the assumptions on the samples {xti}t≥0,i∈[d] and random noises {εt}t≥0.

Assumption 5.2.1. The samples {xti}1≤i≤d,t≥0 and the noises {εt}t≥0 are independent and satisfy

(a) There exists a stochastic process {W (s, x)}s≥0,x∈[0,1], defined in Definition 5.2.1 such that

xti = W
( t
T
,
i

d

)
.

(b) There exists a universal constant C1 > 0 such that for any t ≥ 0,

E
[
εt
]

= 0, E
[∣∣εt∣∣2] ≤ σ2d and E

[∣∣εt∣∣4] ≤ C1σ
4
d.

The noise-variance σ2d plays a crucial role in our scaling limits. In particular, it is allowed to grow

with d, with the growth rate determining the precise scaling limit of the SGD iterates. In the

following, we drop the subscript d for convenience. We now introduce the main assumption we

make regarding smoothness of the covariance and higher-moments of the process W .
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Assumption 5.2.2 (Smoothness Conditions). The stochastic process {W (s, x)}s≥0,x∈[0,1] satisfies

the following smoothness conditions.

1. The function A : [0, 1]2 → R is such that A(x, ·) ∈ C1([0, 1]) for any x ∈ [0, 1]. As a result,

there exist constants C2, C3 such that for any x, y, z ∈ [0, 1], we have

|A(x, y)| ≤ C2 and |A(x, z) −A(y, z)| ≤ C3|x− y|.

We further assume that there exists a constant C4 such that

|A(x, x) +A(y, y) − 2A(x, y)| ≤ C2
4 |x− y|2.

2. For the function B : [0, 1]4 → R, there exist constants C5, C6, C7 > 0 such that for any

x1, x2, x3, x4 ∈ [0, 1], |B(x1, x2, x3, x4)| ≤ C5 and

|B(x1, x3, x1, x3) +B(x2, x3, x2, x3) − 2B(x1, x3, x2, x3)| ≤ C2
6 |x1 − x2|2,∣∣B(x1, x1, x1, x1) +B(x2, x2, x2, x2) + 6B(x1, x1, x2, x2) − 4B(x1, x1, x1, x2)

− 4B(x1, x2, x2, x2)
∣∣ ≤ C4

7

∣∣x1 − x2
∣∣4.

3. For the function E : [0, 1]8 → R, there exist constants C8, C9 such that for all x1, · · · , x8 ∈

[0, 1], E(x1, · · · , x8) ≤ C8 and

∣∣E(x1, x1, x1, x1, x3, · · · , x6) + E(x2, x2, x2, x2, x3, · · · , x6) + 6E(x1, x1, x2, x2, x3, · · · , x6)

− 4E(x1, x1, x1, x2, x3, · · · , x6) − 4E(x1, x2, x2, x2, x3, · · · , x6)
∣∣ ≤ C4

9

∣∣x1 − x2
∣∣4.

Assumptions 5.2.1 and 5.2.2 are made to ensure tightness of the interpolated process in (5.3). In

particular, the assumptions on the second and fourth-order moments are required to derive the

tightness conditions needed to establish the scaling limits, with the second-order moment informa-

tion actually showing up in the limit. Additionally, assumptions on the eighth-order moments are

required to derive the tightness conditions needed to establish the fluctuations. In this case, the

second-order moments information appears in the drift terms, and both the second and fourth-order

moment information show up in the diffusion term.
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Our assumptions above allow for a relative general class of distributions for the data and the noise

sequence; see Section 5.5.2 for additional insights and examples. Importantly, we emphasize here

that we do not make any isotropy or Gaussianity (or sub-Gaussianity) type assumptions made in

several recent works (see Section 5.4). Instead, without assuming the independence of different

coordinates in each sample, we take into account the structure of the kth-order moments of the

sample distribution for k = 2, 4, 8.

Finally, we remark that our analysis is general enough to allow for certain degree of dependence

within the data sequence {xt}t≥0 and within the error sequence {εt}t≥0. Such assumptions are

typically made in several applications including reinforcement learning [Mey22] and sequential or

online decision making [CLS21, KDL+21]. Furthermore, we could also allow for some level of

dependency between the data and error sequences. We do not discuss these extensions in detail to

keep our exposition simpler.

5.3. Main Results

5.3.1. Scaling Limits. We now state our results on the scaling limits of the least-squares

online SGD under different orders of noise variances.

Theorem 5.3.1 (Scaling Limits). Let the initial conditions satisfy: For any 0 ≤ i ≤ d, there exist

constants R,L such that the initial condition satisfies

E
[
|∆θ0i |4

]
≤ R4 and E

[
|∆θ0i − ∆θ0i−1|4

]
≤ L4d−4.

Also, let Assumption 5.2.1 and Assumption 5.2.2 hold and let {ξ1(s, x)}s∈[0,τ ],x∈[0,1] denote a Gauss-

ian random field process with covariance given by (5.29). Further, let there exist a uniform constant

Cs,1 such that max(ηdT, σηT
1
2 ) ≤ Cs,1. Then, we have the following scaling limits.

(1) Low-noise, i.e., σ2/d2T → 0: Assume further that there exists a uniform positive

constant α such that limd,T→∞ σ2/(d2T ) = 0 and limd,T→∞ ηdT = α. Then for any

τ ∈ (0,∞), {Θ
d,T }d≥1,T>0 converges weakly to a function Θ as d, T → ∞. Furthermore,
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the limit Θ ∈ C1([0, τ ];C1([0, 1])) is the unique continuous solution to the following ODE:

∂sΘ(s, x) = −α
∫ 1

0
A(x, y)Θ(s, y)dy.(5.4)

(2) Moderate-noise, i.e., σ2/d2T → (0,∞): Assume further that there exist uniform pos-

itive constants α, β such that limd,T→∞ σ2/(d2T ) = β2 and limd,T→∞ ηdT = α. Then for

any τ ∈ (0,∞), {Θ
d,T }d≥1,T>0 converges weakly to a process {Θ(s, ·)}s∈[0,τ ] as d, T → ∞.

Furthermore, the limit Θ is the unique solution in C([0, τ ];C([0, 1])) to the following SDE:

dΘ(s, x) = −α
∫ 1

0
A(x, y)Θ(s, y)dyds+ αβdξ1(s, x).(5.5)

(3) High-noise, i.e., σ2/d2T → ∞: Assume further that there exists a uniform positive

constant α such that limd,T→∞ ησT
1
2 = α. Then for any τ ∈ (0,∞), {Θ

d,T }d≥1,T>0

converges weakly to a process {Θ(s, ·)}s∈[0,τ ] as d, T → ∞. Furthermore, the limit Θ is the

unique solution in C([0, τ ];C([0, 1])) to the following SDE:

dΘ(s, x) = αdξ1(s, x).(5.6)

Remark 5.3.2. Theorem 5.3.1 shows that under high-dimensional scalings, the limiting behavior

of the SGD trajectory exhibits a three-step phase transition: It goes from being ballistic (i.e., char-

acterized by an infinite-dimensional ODE) in the low-noise setting, to diffusive (i.e., characterized

by an infinite-dimensional SDE) in the moderate-noise setting, to purely random in the high-noise

setting. The boundaries of this three-step phase transition are precisely characterized, and explicit

dependencies on the order of dimension, iterations and step-size choices are identified. In the mod-

erate and high-noise setting, the covariance of the diffusion term ξ1 is determined by the second

moment function A from Assumption 5.2.2. We also remark that our initial conditions are made

coordinate-wise and are rather mild.

Remark 5.3.3. In the low-noise setting, according to (5.4), we see that Θ(s, ·) has the same order

of smoothness as A(·, y) for any s ∈ [0, τ ] and y ∈ [0, 1]. This phenomenon is more general, i.e., if
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we further assume that A(·, y) ∈ Ck([0, 1]), for some finite positive integer k and for any y ∈ [0, 1],

then it can be shown that Θ ∈ C1([0, τ ];Ck([0, 1])).

Remark 5.3.4. Assumption 5.2.2 is required to show tightness results in Proposition 5.7.1 and

Proposition 5.7.2, and hence to prove existence of the weak limit. It is worth mentioning that in

the low-noise setup when the noise variance satisfies σ2 = O(d2), Assumption 5.2.2 can be relaxed

by dropping the last condition on B and the condition on E. The tightness results under the relaxed

assumptions can be proved in the same way by considering second moments bounds rather than

the fourth moments bounds in Proposition 5.7.1 and Proposition 5.7.2. For the sake of simplicity

and consistency of our analysis, the proof of Theorem 5.3.1 is based on Assumption 5.2.2.

5.3.2. Fluctuations. We now study the fluctuation of {∆θti}i∈[d],0≤t≤N in the low-noise set-

ting. In order to do so, we look at a re-scaled difference between {∆θti}i∈[d],0≤t≤N and its scaling

limit. Specifically, for any s ∈ [0, τ ], x ∈ [0, 1], define

Ud,T (s, x) := γ
(
Θ

d,T
(s, x) − Θ(s, x)

)
(5.7)

where γ is the scaling parameter and we expect γ → ∞ as d, T → ∞. We now state our fluctuation

results.

Theorem 5.3.5 (Fluctuations). Let the initial conditions follow: For any 0 ≤ i ≤ d, there exist

constants D,M such that the initial condition satisfies

E
[
|Ud,T (0,

i

d
)|4
]
≤ D4 and E

[
|Ud,T (0,

i

d
) − Ud,T (0,

i− 1

d
)|4
]
≤M4d−4.

Furthermore, let the assumptions made in Theorem 5.3.1 in the low-noise setup, i.e. σ2/dT 2 → 0,

hold. Let η = α
dT and assume that there exists a uniform constant Cs,2 such that for all d ≥ 1, T > 0,

we have max(γT− 1
2 , γd−1, γσd−1T− 1

2 ) ≤ Cs,2 . Then we have the following fluctuation results.

(1) Particle interaction dominates: Assume further that, as d, T → ∞, we have

T = o(d2), σ = O(d), γT− 1
2 → ζ ∈ (0,∞), and γσd−1T− 1

2 → β ∈ [0,∞),
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for some uniform constants ζ, β. Then for any τ ∈ (0,∞), the fluctuation of SGD particles,

{Ud,T }d≥1,T>0 converges in distribution to a function U ∈ C([0, τ ];C([0, 1])) as d, T →

∞. Furthermore, for any s ∈ [0, τ ], x ∈ [0, 1], the limit U is the unique solution in

C([0, τ ];C([0, 1])) to the SDE

dU(s, x) = −α
∫ 1

0
A(x, y)U(s, y)dyds+ αβdξ2(s, x) + αζdξ3(s, x),(5.8)

where {ξ2(s, x)}s∈[0,τ ],x∈[0,1] and {ξ3(s, x)}s∈[0,τ ],x∈[0,1] are two independent Gaussian ran-

dom field processes with covariances given by (5.39) and (5.41) respectively.

(2) Noise dominates: Assume further that, as d, T → ∞, we have

max(d, T
1
2 ) ≪ σ ≪ dT

1
2 , and γσd−1T− 1

2 → β ∈ (0,∞),

for a uniform constant β. Then for any τ ∈ (0,∞), the fluctuation of SGD particles,

{Ud,T }d≥1,T>0 converges in distribution to a function U ∈ C([0, τ ];C([0, 1])) as d, T →

∞. Furthermore, for any s ∈ [0, τ ], x ∈ [0, 1], the limit U is the unique solution in

C([0, τ ];C([0, 1])) to the SDE

dU(s, x) = −α
∫ 1

0
A(x, y)U(s, y)dyds+ αβdξ2(s, x),(5.9)

where {ξ2(s, x)}s∈[0,τ ],x∈[0,1] is a Gaussian random field process with covariance given by

(5.39).

(3) Interpolation error dominates: Assume further that, as d, T → ∞, we have

d = O(T
1
2 ), σ = O(T

1
2 ) and γd−1 → 0.

Then for any τ ∈ (0,∞), the fluctuation of SGD particles, {Ud,T }d≥1,T>0 converges in

distribution to a function U ∈ C([0, τ ];C([0, 1])) as d, T → ∞. Furthermore, for any

s ∈ [0, τ ], x ∈ [0, 1], the limit U is the unique continuous solution to the following ODE

(with random initial conditions)

dU(s, x) = −α
∫ 1

0
A(x, y)U(s, y)dyds.(5.10)
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Remark 5.3.6. The setting in Theorem 5.3.5 further splits the low-noise regime of Theorem 5.3.5

into three sub-regimes. The first two regimes correspond to the case when the dominating terms

leading to the fluctuations are due to the particle interaction (whose expectation is characterized

by the covariance function A), and the noise variance respectively. In particular, when the particle

interaction dominates, we have two independent diffusion terms; while the covariance of the process

ξ2 is determined only by the second-moment function A in Assumption 5.2.2, the covariance of the

process ξ3 appearing in the second diffusion term is determined by both A and the fourth-moments

function B. The third sub-regime comes from having to deal with the approximation of the integral

on the right hand side of (5.4) with its Riemann sum, and we refer to this regime as the interpolation

error regime. In this regime, we choose a small order of γ to ensure the interpolation error vanishes.

Doing so, fluctuations from the particle interaction and noises are suppressed in the limit. Therefore

we obtain the degenerate convergence to the ODE as in (5.10) for the fluctuations. The entire limit

identification result is provided in Theorem 5.6.4.

Remark 5.3.7. Scaling limits and fluctuations developed in Theorems 5.3.1 and 5.3.5 respectively,

also hold (with slight modifications) for the online multiplier bootstrap version of SGD developed

in [FXY18, Equations (7) and (8)]; such results may be leveraged for practical high-dimensional

statistical inference.

5.4. Related Work

High-dimensional scaling limits of SGD. [BAGJ22] studied the scaling limits of online SGD in

the high-dimensional setting for a class of non-convex problems. Their scaling limits are derived for

finite-dimensional summary statistics of the online SGD, and no fluctuation results are provided.

Furthermore, the precise scaling relationship between the dimension and the number of iterations,

and the impact of the data generating process, in particular the covariance structure, is left un-

explored. [WML17] analyzed the online SGD algorithms for least-squares regression and principal

component analysis, and derived the scaling limit of the empirical densities as solutions to PDEs.

However, their analysis was restricted to the special case of isotropic covariance matrices and no

fluctuation results are provided. See also [WL19, VSL+22, PP21, PPAP22a, PPAP22b] for related

works on specific models for online and mini-batch SGD. However, such works do not identify any
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phase transition phenomenon (from ballistic to diffusive behaviour), are applicable only for specific

statistics of the SGD iterates, and do not characterize the fluctuations.

The works by [CCM21] and [GTM+22] also characterized the asymptotic behaviors of variants of

SGD for a class of optimization problems in the high-dimensional setting. Their approach was

based on the so-called dynamical mean-field theory from statistical physics. Different from our

work, which considers online SGD on expected objective functions, both [CCM21] and [GTM+22]

considered mini-batch SGD on finite-sum objective functions (or empirical risk minimization).

[CCM21] require isotropic sub-Gaussian inputs for their analysis. While [GTM+22] allows for non-

isotrpic covariance, they required Gaussianity assumptions on the inputs. Finally, they only track

a real-valued functional of the trajectory as the dimension grows and no fluctuation results are

provided.

To our knowledge, our work provides the first result on characterizing the entire infinite-dimensional

trajectorial limit and related fluctuations of the online SGD, for the specific problem of least-squares

regression with smooth covariance structures.

Other high-dimensional analysis of SGD. Random matrix theory is also used to analyze full

and mini-batch gradient-based iterative algorithms for specific high-dimensional models; see, for

example, [DT19, PLPP21, BES+22, DT22, PvMPP22].

[CLP22, CPT23] studied mini-batch SGD for certain high-dimensional non-convex problems using

Gaussian process techniques. Their work relies heavily on the isotropy and Gaussianity assump-

tions. State-space approaches for high-dimensional analysis of online SGD was carried out in [TV23]

under isotropic Gaussianity assumptions. The work of [BAGJ21] also used a similar approach to

establish high-probability bounds in a signal-recovery setup. Recently, high-dimensional normal

approximation results and tail bounds are also established in [ABG23] and [DMN+21, DMNS22]

respectively for online least-squares SGD.

Mean-field analysis of SGD for overparametrized neural networks is also explored intensely in the

recent past. While assuming growing parameter dimension, such works, however, assume the data-

dimension is fixed. Due to the flurry of recent works in this direction, it is impossible to list them all
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here. We refer to [CB18b, MMN18, SS20b, SS20a, PN21, RVE22, DCLW22, SS22, AAM22, GGK22]

for a sampling of such works.

Fixed-dimensional analyses of SGD. The study of diffusion limits of SGD in the fixed-dimensional

setting is a classical topic. We refer to [KGY03, KC12, BMP12, LPW12] for a textbook treatment

of this topic. The main idea behind such works is to show that appropriately time-interpolated

SGD iterates converge to a multi-dimensional Ornstein-Uhlenbeck process, under specific scalings.

Recently, [LWME19] developed a framework to approximate the dynamics of a relative general class

of stochastic gradient algorithms by stochastic differential equations. See also, [KB17, LWLZ18,

GCPT20, FDBD21] for a partial list of other recent related works.

Almost sure convergence and central limit theorems for SGD in the fixed-dimensional setting is

also well-studied. See [MHKC20, SGD21, LY22] and references therein for almost-sure convergence

results. With regards to CLT, we refer to [PJ92, Rup88, DR20, TA17, AD19, YBVE21, DDB20,

BBHS21, DDJ23] and references therein for a partial list of related works. We also highlight the

works of [ABE19] and [SZ22], where non-asymptotic normal approximation for SGD is established.

For a survey of expectation and high-probability bounds for SGD and its variants, see [BCN18],

and [Lan20].

Scaling limits of MCMC algorithms. Finally, we remark that high-dimensional scaling limits

of iterative sampling algorithms like the Random-Walk Metropolis (RWM) algorithm, Unadjusted

Langevin Algorithm (ULA), and Metropolis Adjusted Langevin Algorithm (MALA) is well-studied.

For example, [PST12] and [MPS12] characterize the scaling limits in the form of infinite-dimensional

SDE (or equivalently as stochastic PDEs); see also the references therein for other related works

in this direction. While being morally related to our approach, the sampling algorithms studied in

those works correspond to a different setup than us, as the interactions are not characterized by

any data generating process.

243



5.5. Applications and Examples

As an application of our main results in Theorem 5.3.1 and 5.3.5, in this section, we show how they

can be leveraged to study certain specific properties of the least-squares online SGD, like the Mean

Square Error (MSE) and Predictive Error (PE).

Mean Squared Error (MSE) and Predictive Error (PE): For a given d and T , the time-

interpolated mean square error and prediction error of the least-squares online SGD estimator at

time s ∈ [0, τ ] are defined respectively as

MSEd,T (s) :=
1

d

d∑
i=1

Θ
d,T

(
⌊sT ⌋
T

,
i

d
)2,

PEd,T (s) :=
1

d2

d∑
i,j=1

A
( i
d
,
j

d

)
Θ

d,T (⌊sT ⌋
T

,
i

d

)
Θ

d,T (⌊sT ⌋
T

,
j

d

)
.

Specifically, we first calculate the high-dimensional scaling limits of MSE and PE in terms of the

solutions to (5.4),(5.5) and (5.6), and show the decay properties of the limiting MSE and limiting

PE in the low-noise setup. We next calculate the fluctuations of the MSE and PE in terms of the

solutions to (5.4), and (5.8),(5.9) and (5.10).

5.5.1. Scaling Limits and Fluctuations of MSE and PE. Leveraging Theorem 5.3.1, we

have the following result on the scaling limits of MSE and PE of the least-squares online SGD. In

particular, it exhibits the three-step phase-transition depending on the noise level. To proceed, we

defined the limiting MSE and PE as follows:

MSE(s) :=

∫ 1

0
Θ(s, x)2dx, PE(s) :=

∫ 1

0

∫ 1

0
Θ(s, x)A(x, y)Θ(s, y)dxdy.(5.11)

Proposition 5.5.1. Assume that Assumption 5.2.1, Assumption 5.2.2 and the initial conditions

in Theorem 5.3.1 hold. Then, we have the following convergences, (i) MSEd,T (s) → MSE(s) and

(ii) PEd,T (s) → PE(s) (in probability in the low-noise setting and in distribution in the other two

settings), provided one of the following scaling condition is satisfied:
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(1) Low-noise: σd−1T− 1
2 → 0, ηdT → α ∈ (0,∞) as d, T → ∞ and Θ is the solution to

(5.4).

(2) Moderate-noise: σd−1T− 1
2 → β ∈ (0,∞), ηdT → α ∈ (0,∞) as d, T → ∞ and Θ is the

solution to (5.5).

(3) High-noise: σd−1T− 1
2 → ∞, ησT

1
2 → α ∈ (0,∞) as d, T → ∞ and Θ is the solution to

(5.6).

We next characterize the fluctuations of MSEd,T (s) and PEd,T (s), i.e γ
(
MSEd,T (s) −MSE(s)

)
and

γ
(
PEd,T (s) − PE(s)

)
, respectively.

Proposition 5.5.2. Assume that Assumption 5.2.1, Assumption 5.2.2 and the initial conditions

in Theorem 5.3.1 and Theorem 5.3.5 hold. If η = α
dT then

(i) γ
(
MSEd,T (s) −MSE(s)

)
→ 2

∫ 1
0 Θ(s, x)U(s, x)dx in distribution,

(ii) γ
(
PEd,T (s) − PE(s)

)
→ 2

∫ 1
0

∫ 1
0 Θ(s, x)A(x, y)U(s, y)dxdy in distribution,

provided one of the following scaling is satisfied:

(1) γ = ζT
1
2 for some ζ ∈ (0,∞). T = o(d2), σ = O(d) as d, T → ∞ and Θ, U are the

solutions to (5.4) and (5.8) respectively.

(2) γ = βσ−1dT
1
2 for some β ∈ (0,∞). max(d, T

1
2 ) ≪ σ ≪ dT

1
2 as d, T → ∞ and Θ, U are

the solutions to (5.4) and (5.9) respectively.

(3) 1 ≪ γ ≪ d, d = O(T
1
2 ), σ = O(T

1
2 ) as d, T → ∞ and Θ, U are the solutions to (5.4) and

(5.10) respectively.

5.5.2. Additional Insights and Specific Example. In this section, we show that under

Assumption 5.2.1 (part (a)) and Assumption 5.2.2, the functions A,B,E in Definition 5.2.1 are the

limiting descriptions of the corresponding moments of finite-dimensional data. We first show that

a piecewise-constant function induced by the finite-dimensional covariance matrix Σd of the data

{xti}1≤i≤d converges uniformly to the function A defined in Definition 5.2.1. Before we state the

convergence result, we introduce some necessary definitions and notations.
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Definition 5.5.3. Given a symmetric d×d matrix Σ with real entries, define a piecewise-constant

function on [0, 1]2 by dividing [0, 1]2 into d2 smaller squares each of length 1/d and set

WΣ(x, y) := Σ(i, j) if ⌈dx⌉ = i, ⌈py⌉ = j.

Recalling that Σd denotes the covariance matrix of data {xti}1≤i≤d, it is easy to see that as d→ ∞,

under Assumption 5.2.1 and Assumption 5.2.2, we have

∥WΣd
−A∥∞ := sup

x,y∈[0,1]
|WΣd

(x, y) −A(x, y)| → 0.

Indeed, from the Definition 5.5.3, we have

WΣd
(x, y) −A(x, y) =


0, ⌈dx⌉, ⌈dy⌉ ∈ {0, 1, · · · , d}

A
(⌈dx⌉

d
,
⌈dy⌉
d

)
−A(x, y), otherwise.

Due to Assumption 5.2.2, we have∣∣∣A(⌈dx⌉
d

,
⌈dy⌉
d

)
−A(x, y)

∣∣∣ ≤ ∣∣∣A(⌈dx⌉
d

,
⌈dy⌉
d

)
−A

(
x,

⌈dy⌉
d

)∣∣∣+
∣∣A(x, ⌈dy⌉

d

)
−A(x, y)

∣∣ ≤ 2C3

d
.

Therefore |WΣd
(x, y) −A(x, y)| ≤ 2C3d

−1 for all x, y ∈ [0, 1]. The claimed convergence result

hence follows from definition of ∥·∥∞. Similarly, we can extend Definition 5.5.3 to any m-tensor

and study the uniform convergence for functions defined [0, 1]m with any m ∈ N. In that way we can

interpret B and E in Definition 5.2.1 as the C([0, 1]4)-limit and the C([0, 1]8)-limit of the functions

corresponding to the fourth moment tensor and the eighth moment tensor of xt respectively.

We now provide a concrete example of a model that satisfies our Assumption 5.2.2. Recall

that we consider the data {xti}t≥1,i∈[d] as being generated as the discretizations of the process

{W (s, x)}s∈[0,τ ],x∈[0,1] defined in Definition 5.2.1.

Sinusoidal Covariance. For any s ≥ 0, let {W (s, x)}x∈[0,1] be a centered stochastic process with

the covariance function A given by

A(x, y) = a0 +

∞∑
k=1

bk cos (2πk (x− y)) , ∀ x, y ∈ [0, 1].(5.12)
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such that there exists ε > 0 such that

∞∑
k=1

k5+εb2k <∞.(5.13)

Define the finite dimensional data covariance matrix as

Σd(i, j) = a0 +
∞∑
k=1

bk cos (2πk(i− j)/d) , ∀ i, j ∈ [d].(5.14)

Let A be as defined in (5.12) and WΣd
be as defined in Definition 5.5.3. When (5.13) holds, it is

easy to see that ∥A−WΣd
∥∞ → 0 as d→ ∞. Condition (5.13) guarantees that A defined in (5.12)

satisfies Assumption 5.2.2.

If we further assume that W (s, ·) is a Gaussian process, we have relatively easy expressions for the

fourth and eighth moments, thanks to Isserlis’ Theorem. That is, for any k ∈ N, we have

E
[ 2k∏
i=1

W (s, xi)
]

=
∑
p∈P 2

2k

∏
(i,j)∈p

E
[
W (s, xi)W (s, xj)

]
,(5.15)

where P 2
2k is the set of all pairings of {1, · · · , 2k}. Based on this, we have the following result.

Lemma 5.5.4. The function A defined by (5.12) and (5.13) satisfies Assumption 5.2.2. Further-

more, if W is Gaussian, its fourth moment B and eighth moment E satisfy Assumption 5.2.2.

We emphasize here that the Gaussian assumption in Lemma 5.5.4 is purely made for the sake of

simplicity. Based on generalizations of Isserlis’ theorem, computations similar to those required

to prove Lemma 5.5.4 could be carried out in the elliptical setting [ZYB21], mixture of Gaussian

setting [Vig12] and beyond.

Next, we provide more explicit decay properties of the scaling limits that govern the limiting

behavior of the finite-dimensional and finite-iteration MSE and PE in the low-noise setup.

Proposition 5.5.5. Invoke the the assumptions in Theorem 5.3.1, under the low-noise set up.

(a) For an orthonormal basis {ϕi}∞i=1 of L2([0, 1]), if A : [0, 1]2 → R admits the following

decomposition A(x, y) =
∑∞

i=1 λiϕi(x)ϕi(y), where the sum converges in L2([0, 1]2) and
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λ1 ≥ λ2 ≥ · · · > 0, with λ := infi λi > 0, we have that MSE(τ) ≤ MSE(0) exp(−2αλτ), for

any τ ∈ (0,∞).

(b) For any ϕ ∈ L2([0, 1]), if A satisfies
∫ 1
0

∫ 1
0 ϕ(x)A(x, y)ϕ(y)dxdy ≥ 0, we have that PE(τ) ≤

MSE(0)/ατ , for any τ ∈ (0,∞).

In the following, we provide two specific examples illustrating the above propositions.

(1) Let covariance matrix be defined as

Σd(i, j) = 1 + cos (2π(i− j)/d) for all i, j ∈ [d].

Then, the function A is given by A(x, y) = 1 + cos(2π(x − y)) for all x, y ∈ [0, 1]. Note

that, A could also be represented as

A(x, y) = 1 +
1

2

(√
2 cos(2πx)

)(√
2 cos(2πy)

)
+

1

2

(√
2 sin(2πx)

)(√
2 sin(2πy)

)
.

Therefore A satisfies the conditions in part (a) of Proposition 5.5.5 with λ1 = 1, λ2 = λ3 =

1/2. Hence, we look at the MSE as defined in (5.11). According to Proposition 5.5.5, the

scaling limit of the MSE satisfies MSE(τ) ≤ MSE(0) exp(−ατ) for any τ ∈ (0,∞).

(2) Now, let the covariance matrix be given by

Σd(i, j) =
( |i− j|

d
− 1

2

)2
− 2
( |i− j|

d
− 1

2

)4
for all i, j ∈ [d].

Then the function A is given by A(x, y) =
(
|x− y| − 1

2

)2 − 2
(
|x− y| − 1

2

)4
for all x, y ∈

[0, 1]. By a Fourier series expansion, we also have that

A(x, y) = a0 +
∞∑
k=1

bk
2

(√
2 cos(2πx)

)(√
2 cos(2πy)

)
+

∞∑
k=1

bk
2

(√
2 sin(2πx)

)(√
2 sin(2πy)

)
,

where a0 = 7/120 and bk = 6/π2k4 for all k ≥ 1. It can also be checked that (5.13) is

satisfied with ε = 1. As there is no positive uniform lower bound of the eigenvalues, we

look at the PE as defined in (5.11). According to part (b) of Proposition 5.5.5, we have

for any τ ∈ (0,∞), PE(s) ≤ MSE(0)/ατ .
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More generally, to compute the scaling limits and the fluctuations, in particular in the moderate

and high-noise setups, one invariably has to resort to numerical procedures. We refer, for example,

to [LPS14] regarding the details, and leave a thorough investigation of this as future work.

5.6. Proof Overview

The high level idea behind our proofs is to study the interpolated SGD iterates in (5.3) as a sequence

of random variables in the space C([0, τ ];C([0, 1])). Under appropriate assumptions, we first prove

that the sequence of random variables is tight in C([0, τ ];C([0, 1])); this forms a major portion of

our analysis. As a consequence, we have that the sequential weak limit exists. Next, we identify

the sequential limits by deriving an ODE/SDE that the limits satisfy. Last, we prove that all

the sequential weak limits are the same and therefore the sequence of random variables converges

weakly to a unique limit that solves the ODE/SDEs.

5.6.1. For Theorem 5.3.1. Our first result shows the tightness of {Θ
d,T

(·, ·)}d≥1,T>0 in the

space C ([0, τ ];C([0, 1])). It is based on two technical results (see Proposition 5.7.1 and Proposition

5.7.2) which forms the major part of our analysis.

Theorem 5.6.1 (Tightness). Let Assumptions 5.2.1 and 5.2.2 hold, and the initial conditions in

Theorem 5.3.1 are satisfied. Further suppose that there is a uniform constant Cs,1 > 0 such that

max(ηdT, ησT
1
2 ) ≤ Cs,1. Then {Θ

d,T }d≥1,T>0 defined in (5.3) is tight in C ([0, τ ];C([0, 1])). Hence

any subsequence of {Θ
d,T }d≥1,T>0 has a further weakly convergent subsequence with its limit in

C ([0, τ ];C([0, 1])).

Theorem 5.6.2 (Limit Identification). Invoke the conditions in Theorem 5.6.1. Then for any τ > 0

and any subsequence {Θdk,Tk}k≥1 of {Θd,T }d≥1,T>0, there further exists a subsequence converging

weakly to a function Θ ∈ C([0, τ ];C([0, 1])) as dk, Tk → ∞. Furthermore, for any bounded smooth

function f : [0, τ ] → R, for any s ∈ [0, τ ], x ∈ [0, 1], we have

−
∫ s

0
Θ(u, x)f ′(u)du+ f(s)Θ(s, x) − f(0)Θ(0, x)

= −ηdT
( ∫ s

0

∫ 1

0
f(u)A(x, y)Θ(u, y)dydu+ o(1)

)
+ σ2η2T

( ∫ s

0
f(u)dξ1(u, x) + o(1)

)
.
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where {ξ1(s, x)}s∈[0,τ ],x∈[0,1] is a Gaussian field process with covariance given by (5.29).

The above theorem is proved in Section 5.7.2. As an immediately consequence, we have that:

(a) When ηdT → α and σ2/d2T → 0 as d, T → ∞, we get

−
∫ s

0
Θ(u, x)f ′(u)du+ f(s)Θ(s, x) − f(0)Θ(0, x) = −α

∫ s

0

∫ 1

0
f(u)A(x, y)Θ(u, y)dydu.(5.16)

(b) When ηdT → α and σ2/d2T → β2 as d, T → ∞, we get

−
∫ s

0
Θ(u, x)f ′(u)du+ f(s)Θ(s, x) − f(0)Θ(0, x)

= −α
∫ s

0

∫ 1

0
f(u)A(x, y)Θ(u, y)dydu+ α2β2

∫ s

0
f(u)dξ1(u, x).

(c) When ησT
1
2 → α and σ2/d2T → ∞ as d, T → ∞, we get

−
∫ s

0
Θ(u, x)f ′(u)du+ f(s)Θ(s, x) − f(0)Θ(0, x) = α2

∫ s

0
f(u)dξ1(u, x).

Our main result in Theorem 5.3.1 follows from the above results; proof is provided in Section

5.7.2.

5.6.2. For Theorem 5.3.5. We next turn to proving the fluctuation results. From the defini-

tion of our interpolation process in Section 5.1, we immediately have that Ud,T ∈ C([0, τ ];C([0, 1])).

According to the definition of Θd,T , under the low-noise setup in Theorem 5.3.1, for any 0 ≤ t ≤
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⌊τT ⌋ − 1 := N − 1, i ∈ [d], we have

Ud,T (
t+ 1

T
,
i

d
) − Ud,T (

t

T
,
i

d
)

= − η
d∑

j=1

W (
t

T
,
i

d
)W (

t

T
,
j

d
)Ud,T (

t

T
,
j

d
)

− ηγ
d∑

j=1

(
W (

t

T
,
i

d
)W (

t

T
,
j

d
) − E

[
W (

t

T
,
i

d
)W (

t

T
,
j

d
)
])

Θ(
t

T
,
j

d
)

− γ
(
Θ(
t+ 1

T
,
i

d
) − Θ(

t

T
,
i

d
) + η

d∑
j=1

A(
i

d
,
j

d
)Θ(

t

T
,
j

d
)
)

+ ηγW (
t

T
,
i

d
)εt.

(5.17)

The idea of deriving the limit of {Ud,T }d≥1,T>0 is now similar to the idea of deriving the limit of

{Θ
d,T }d≥1,T>0. Specifically, we first have the following tightness result.

Theorem 5.6.3 (Tightness). Let Assumptions 5.2.1 and 5.2.2 hold and further suppose the initial

conditions in Theorem 5.3.1 and Theorem 5.3.5 are satisfied. If η = α
dT , σ = o(dT

1
2 ) and there

exists a uniform constant Cs,2 such that max(γT− 1
2 , γd−1, γσd−1T− 1

2 ) ≤ Cs,2 for all d ≥ 1, T > 0,

then {Ud,T (·, ·)}d≥1,T>0 as defined in (5.7) is tight in C ([0, τ ];C([0, 1])). Hence any subsequence of

{Ud,T (·, ·)}d≥1,T>0 has a further weakly convergent subsequence with limit in C ([0, τ ];C([0, 1])).

Theorem 5.6.4 (Limit Identification). Invoke the conditions in Theorem 5.6.3. For any τ > 0

and any subsequence {Udk,Tk}k≥1 of {Ud,T }d≥1,T>0, there exists a further subsequence converging

weakly to a stochastic function U ∈ C([0, τ ];C([0, 1])) as dk, Tk → ∞. Furthermore, for any bounded

smooth function f : [0, τ ] → R, U satisfies that for any s ∈ [0, τ ], x ∈ [0, 1],

−
∫ s

0
U(u, x)f ′(u)du+ f(s)U(s, x) − f(0)U(0, x)

= −α
∫ s

0

∫ 1

0
f(u)A(x, y)U(u, y)dydu+ αβ

∫ s

0
f(u)dξ2(u, x)1

{γσd−1T− 1
2→β}

+ αζ

∫ s

0
f(u)dξ3(u, x)1

{γT− 1
2→ζ}

+O(γd−1 + γT−1) + o(1).

The above theorem is proved in Section 5.8.2. As an immediately consequence, we have that:
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(a) When T = o(d2), σ = O(d) and γT− 1
2 → ζ ∈ (0,∞), we can show that O(γd−1 +γT−1) =

o(1). Therefore, we get

− α−1
( ∫ s

0
U(u, x)f ′(u)du+ f(s)U(s, x) − f(0)U(0, x)

)
= −

∫ s

0

∫ 1

0
f(u)A(x, y)U(u, y)dydu+ β

∫ s

0
f(u)dξ2(u, x)1

{γσd−1T− 1
2→β}

+ ζ

∫ s

0
f(u)dξ3(u, x).

(b) When max(d, T
1
2 ) ≪ σ ≪ dT

1
2 and γσd−1T− 1

2 → β ∈ (0,∞), we can show that γT− 1
2 → 0

and O(γd−1 + γT−1) = o(1). Therefore we get

− α−1
( ∫ s

0
U(u, x)f ′(u)du+ f(s)U(s, x) − f(0)U(0, x)

)
= −

∫ s

0

∫ 1

0
f(u)A(x, y)U(u, y)dydu+ β

∫ s

0
f(u)dξ2(u, x).

(c) When d = O(T
1
2 ), σ = O(T

1
2 ) and γd−1 → 0, we can show that γσd−1T− 1

2 → 0, γT− 1
2 → 0

and O(γd−1 + γT−1) = o(1). Therefore we get

−
∫ s

0
U(u, x)f ′(u)du+ f(s)U(s, x) − f(0)U(0, x) = −α

∫ s

0

∫ 1

0
f(u)A(x, y)U(u, y)dydu.

This proves Theorem 5.3.5.

5.6.3. Existence and Uniqueness of the Solutions. To fully complete the proofs of our

main results in Theorems 5.3.1 and 5.3.5, we also need to provide the following existence and

uniqueness results on the solutions to the corresponding SDEs. The ODE case follows by Picard-

Lindelöf theorem (see, for example, [Arn92]). Furthermore, since (5.5), (5.6), (5.9) and (5.10)

can be considered as certain degenerate forms of (5.8), we specifically focus on the existence and

uniqueness of solution to (5.8). Results similar to Proposition 5.6.5 below also hold for (5.5), (5.6),

(5.9) and (5.10).

Theorem 5.6.5. Let Assumption 5.2.2 hold.

(1) If the initial condition of (5.8) satisfies U(0, ·) ∈ C([0, 1]), then there exists a unique

solution {U(s, x)}s∈[0,τ ],x∈[0,1] ∈ C([0, τ ];C([0, 1])) to the SDE (5.8).
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(2) If the initial condition of (5.8) satisfies U(0, ·) ∈ L2([0, 1]), then there exists a unique

solution {U(s, x)}s∈[0,τ ],x∈[0,1] ∈ C([0, τ ];L2([0, 1])) to the SDE (5.8). Furthermore, the

solution satisfies the following stability property:

E
[

sup
s∈[0,τ ]

∥U(s, ·)∥2L2([0,1])

]
≤ 4
(
E
[
∥U(0, ·)∥2L2([0,1])

]
+ C2α

2β2τ

+ (C5 + C2
2 )α2ζ2

∫ τ

0
∥Θ(s, ·)∥2L2([0,1]) ds

)
exp

(
4C2

2α
2τ2
)
.

(5.18)

We remark that the above results not only provide theoretical support but also provide the nec-

essary conditions for provably computing the solutions numerically; see, for example, [LPS14] for

details.

5.7. Proofs for the Scaling Limits

5.7.1. Tightness of {Θ
d,T }d≥1,T>0. We first start with the following two main proposi-

tions.

Proposition 5.7.1. Assume that Assumption 5.2.1 and Assumption 5.2.2 hold and there is a

uniform constant Cs,1 > 0 such that max(ηdT, ησT
1
2 ) ≤ Cs,1. Then there exists a positive constant

C depending on τ and Cs,1 such that for any d, T > 0 and i ∈ [d] and any 0 ≤ t1 < t2 ≤ ⌊τT ⌋,

E
[ ∣∣∆θt2i − ∆θt1i

∣∣4 ] ≤ C

(
t2 − t1
T

)2

.(5.19)

Proof of Proposition 5.7.1. For any 0 ≤ t1 < t2 ≤ ⌊τT ⌋ := N , we have

∆θt2i − ∆θt1i = −η
t2−1∑
t=t1

d∑
j=1

E[xtix
t
j ]∆θ

t
j − η

t2−1∑
t=t1

d∑
j=1

(
xtix

t
j − E[xtix

t
j ]
)

∆θtj + η

t2−1∑
t=t1

xtiε
t

253



which implies that

∣∣∆θt2i − ∆θt1i
∣∣4 ≤ 27η4

( t2−1∑
t=t1

d∑
j=1

E[xtix
t
j ]∆θ

t
j

)4
︸ ︷︷ ︸

Si,1

+ 27η4
( t2−1∑
t=t1

d∑
j=1

(
xtix

t
j − E[xtix

t
j ]
)

∆θtj
)4

︸ ︷︷ ︸
Si,2

+27η4
( t2−1∑
t=t1

xtiε
t
)4

︸ ︷︷ ︸
Si,3

.

(5.20)

Sum over the space index i and take expectation and we get

1

d

d∑
i=1

E
[
|∆θt2i − ∆θt1i |4

]
≤ 27η4

d

d∑
i=1

E
[
Si,1
]

+
27η4

d

d∑
i=1

E
[
Si,2
]

+
27η4

d

d∑
i=1

E
[
Si,3
]
.(5.21)

Next we will estimate the right hand side of (5.21) term by term. Define md
t := 1

d

∑d
i=1 E

[
|∆θti |4

]
.

First we have

E
[
Si,1
]

= E
[ t2−1∑
r1,r2,r3,r4=t1

d∑
j1,j2,j3,j4=1

4∏
k=1

A(
i

d
,
jk
d

)

4∏
k=1

∆θrkjk
]
≤ C4

2E
[ ∑
r1,r2,r3,r4

∑
j1,j2,j3,j4

4∏
k=1

∆θrkjk
]

≤ C4
2d

4(t2 − t1)
3
t2−1∑
t=t1

md
t ,

where the first inequality follows from Assumption 5.2.2 and the last inequality follows from abcd ≤
1
4(a4 + b4 + c4 + d4) for any a, b, c, d ∈ R. We also have that

E
[
Si,2
]

= E
[ t2−1∑
r1,r2,r3,r4=t1

d∑
j1,j2,j3,j4=1

4∏
k=1

(
xrki x

rk
jk

− E[xrki x
rk
jk

]
) 4∏
k=1

∆θrkjk
]
.

Most terms in the above sum are zeros due to the independence between xt and xt
′

when t ̸= t′.

There are two types of terms would be preserved. To proceed, we let FN
k to be the σ-algebra

generated by
{
{xti}1≤i≤d,0≤t≤k, {∆θti}1≤i≤d,0≤t≤N

}
.

Type 1: When r1 = r2 = r3 = r4, nonzero terms are in the form of

d∑
j1,j2,j3,j4=1

E
[ 4∏
k=1

(
xtix

t
jk

− E
[
xtix

t
jk

]) 4∏
k=1

∆θtjk
]
,
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and there are 3(t2 − t1) such terms. The sum of such terms can be upper bounded as

3

t2−1∑
t=t1

d∑
j1,j2,j3,j4=1

E
[ 4∏
k=1

(
xtix

t
jk

− E
[
xtix

t
jk

]) 4∏
k=1

∆θtjk
]

= 3

t2−1∑
t=t1

d∑
j1,j2,j3,j4=1

E
[
E
[ 4∏
k=1

(
xtix

t
jk

− E
[
xtix

t
jk

]) 4∏
k=1

∆θtjk
]∣∣FN

0

]

≤ 3C ′
8

t2−1∑
t=t1

d∑
j1,j2,j3,j4=1

E
[ 4∏
k=1

∆θtjk
]
≤ C ′

8d
4
t2−1∑
t=t1

md
t ,

where the first inequality follows from Assumption 5.2.2 and C ′
8 = 16C8 + 32C2

2C5 + 16C4
2 . The

last inequality follows from abcd ≤ 1
4(a4 + b4 + c4 + d4) for any a, b, c, d ∈ R.

Type 2: When r1, r2, r3, r4 are pairwise equal, nonzero terms are in the form of

d∑
j1,j2,j3,j4=1

E
[ 2∏
k=1

(
xtix

t
jk

− E
[
xtix

t
jk

]) 4∏
k=3

(
xt

′
i x

t′
jk

− E
[
xt

′
i x

t′
jk

]) 2∏
k=1

∆θtjk

4∏
k=3

∆θt
′
jk

]
with t ̸= t′ and there are 3(t2 − t1)

2 − 3(t2 − t1) such terms. Sum of such terms can be upper

bounded as

3
∑
t̸=t′

d∑
j1,j2,j3,j4=1

E
[ 2∏
k=1

(
xtix

t
jk

− E
[
xtix

t
jk

]) 4∏
k=3

(
xt

′
i x

t′
jk

− E
[
xt

′
i x

t′
jk

]) 2∏
k=1

∆θtjk

4∏
k=3

∆θt
′
jk

]

= 3
∑
t̸=t′

E
[ d∑
j1,j2,j3,j4=1

E
[ 2∏
k=1

(
xtix

t
jk

− E
[
xtix

t
jk

]) 4∏
k=3

(
xt

′
i x

t′
jk

− E
[
xt

′
i x

t′
jk

]) 2∏
k=1

∆θtjk

4∏
k=3

∆θt
′
jk

]
|FN

0

]

≤ 3C ′2
5

∑
t̸=t′

d∑
j1,j2,j3,j4=1

E
[ 2∏
k=1

∆θtjk

4∏
k=3

∆θt
′
jk

]
≤ 3C ′2

5 d
4(t2 − t1)

t2−1∑
t=t1

md
t ,

where the first inequality follows from Assumption 5.2.2 and C ′
5 = C5 + C2

2 . The last inequality

follows from 4(abcd) ≤ (a4 + b4 + c4 +d4) for any a, b, c, d ∈ R. Combine the two upper bounds and

we have

E
[
Si,2
]
≤ 3
(
C ′
8 + C ′2

5 (t2 − t1)
)
d4

t2−1∑
t=t1

md
t ≤

(
C ′
8 + C ′2

5

)
(t2 − t1)d

4
t2−1∑
t=t1

md
t .
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Last, due to Assumption 5.2.2, we estimate E[Si,3] as follows:

E[Si,3] =

t2−1∑
t=t1

B(
i

d
,
i

d
,
i

d
,
i

d
)E
[
(εt)4

]
+
∑
t̸=t′

A(
i

d
,
i

d
)A(

i

d
,
i

d
)E
[
(εt)2

]
E
[
(εt

′
)2
]

≤ C5C1σ
4(t2 − t1) + C2

2σ
4(t2 − t1)

2 ≤
(
C5C1 + C2

2

)
σ4(t2 − t1)

2.

Plug our estimations of E[Si,,1], E[Si,2], E[Si,3] into (5.21) and we have

1

d

d∑
i=1

E
[
|∆θt2i − ∆θt1i |4

]
≤ 27η4d4

[
C4
2 (t2 − t1)

3 + 3
(
C ′
8 + C ′2

5

)
(t2 − t1)

]
×

t2−1∑
t=t1

md
t + 27

(
C5C1 + C2

2

)
η4σ4(t2 − t1)

2.

(5.22)

Pick t1 = 0, t2 = t ≤ N in (5.22). We have for any t ≤ N ,

md
t ≤ 8md

0 + 216η4d4
[
C4
2 t

3 + 3
(
C ′
8 + C ′2

5

)
t
] t−1∑
k=0

md
k + 216

(
C5C1 + C2

2

)
η4σ4t2

≤ 8md
0 + 216

(
C4
2 + 3C ′

8 + 3C ′2
5

)
η4d4t3

t−1∑
k=0

md
k + 216

(
C5C1 + C2

2

)
η4σ4t2.

According to the discrete Gronwall’s inequality, we have for any t ≤ N ,

md
t ≤ 216

(
C5C1 + C2

2

)
η4σ4t2

+ 2162
(
C5C1 + C2

2

)
η8d4σ4t3

t−1∑
k=0

k2 exp
(
216
(
C4
2 + 3C ′

8 + 3C ′2
5

)
η4d4t3(t− k − 1)

)
≤ 216

(
C5C1 + C2

2

)
η4σ4t2 + 2162

(
C5C1 + C2

2

)
η8d4σ4t6 exp

(
216
(
C4
2 + 3C ′

8 + 3C ′2
5

)
η4d4t4

)
≤ 216

(
C5C1 + C2

2

)
C4
s,1τ

2 + 2162
(
C5C1 + C2

2

)
C8
s,1τ

6 exp
(
216
(
C4
2 + 3C ′

8 + 3C ′2
5

)
C4
s,1τ

4
)
,

where the last inequality follows from max(ηdT, ησT
1
2 ) ≤ Cs,1 and N ≤ τT . We simplify the upper

bound of md
t as md

t ≤ Cτ for some positive constant Cτ independent of d, T, σ. Apply the upper
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bound of md
t to (5.20) along with estimations of E[Si,,1], E[Si,2], E[Si,3] and we get

E
[
|∆θt2i − ∆θt1i |2

]
≤ 27η4d4

(
C4
2 (t2 − t1)

3 + 3(C ′
8 + C ′2

5 )(t2 − t1)
) t2−1∑
t=t1

md
t + 27(C5C1 + C2

2 )η4σ4(t2 − t1)
2

≤ 27Cτ

(
C4
2 + 3C ′

8 + 3C ′2
5

)
η4d4(t2 − t1)

4 + 27(C5C1 + C2
2 )η4σ4(t2 − t1)

2

≤ 27Cτ

(
C4
2 + 3C ′

8 + 3C ′2
5

)
C4
s,1

(
t2 − t1
T

)4

+ 27(C5C1 + C2
2 )C4

s,1

(
t2 − t1
T

)2

,

where the last inequality follows from max(ηdT, ησT
1
2 ) ≤ Cs,1. Last due to

(
t2−t1
T

)2 ≤ τ2 for any

0 ≤ t1 < t2 ≤ N , (5.19) is proved. ■

Proposition 5.7.2. Assume that Assumption 5.2.1 and Assumption 5.2.2 hold and there exists a

uniform constant Cs,1 > 0 such that max(ηdT, ησT
1
2 ) ≤ Cs,1. Then there exists a positive constant

C depending on τ and Cs,1 such that for any d, T > 0, i, j ∈ [d] and 0 ≤ t1 < t2 ≤ ⌊τT ⌋,

E
[∣∣(∆θt2i − ∆θt2j ) − (∆θt1i − ∆θt1j )

∣∣4] ≤ C

(
i− j

d

)4( t2 − t1
T

)2

.(5.23)

Furthermore, if initial conditions in Theorem 5.3.1 hold, then for any i, j ∈ [d] and any 0 ≤ t ≤

⌊τT ⌋,

E
[∣∣∆θti − ∆θtj

∣∣4] ≤ (8L4 + 8τ2C
)( i− j

d

)4

.(5.24)

Proof of Proposition 5.7.2. According to (5.2), for any i, j ∈ [d] and any 0 ≤ t ≤ ⌊τT ⌋ −

1 := N − 1, we have

∆θt+1
i − ∆θt+1

j = (∆θti − ∆θtj) − η
d∑

l=1

(
E
[
xtix

t
l

]
− E

[
xtjx

t
l

])
∆θtl

− η
d∑

l=1

(
xtix

t
l − E

[
xtix

t
l

]
− xtjx

t
l + E

[
xtjx

t
l

])
∆θtl + η(xti − xtj)ε

t.

Summing over the time index and taking expectation of the absolute value of both sides, we get

for any 0 ≤ t1 < t2 ≤ N ,
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E
[∣∣(∆θt2i − ∆θt2j ) − (∆θt1i − ∆θt1j )

∣∣4]
≤ 27η4E

[ ( t2−1∑
t=t1

d∑
l=1

(
E
[
xtix

t
l

]
− E

[
xtjx

t
l

])
∆θtl

)4
︸ ︷︷ ︸

E[Si,j,1]

]

+ 27η4E
[ ( t2−1∑

t=t1

d∑
l=1

(
xtix

t
l − E

[
xtix

t
l

]
− xtjx

t
l + E

[
xtjx

t
l

])
∆θtl

)4
︸ ︷︷ ︸

E[Si,j,2]

]

+ 27η4E
[ ( t2−1∑

t=t1

(xti − xtj)ε
t
)4

︸ ︷︷ ︸
E[Si,j,3]

]
.

(5.25)

Next we will estimate the right hand side of (5.25) term by term. First we have

E
[
Si,j,1

]
= E

[ t2−1∑
r1,r2,r3,r4=t1

d∑
l1,l2,l3,l4=1

4∏
k=1

(
A(

i

d
,
jk
d

) −A(
j

d
,
jk
d

)
) 4∏
k=1

∆θtl
]

≤ C4
3

( i− j

d

)4
(t2 − t1)

3d4
t2−1∑
t=t1

md
t ,

where the inequality follows from Assumption 5.2.2 and 4(abcd) ≤ a4+b4+c4+d4 for all a, b, c, d ∈ R.

Similar to E[Si,2] in the proof of Proposition 5.7.1, in the estimation of E[Si,j,2], there are two types

of nonzero terms.

Type 1: The first type of nonzero terms are in the form of

d∑
l1,l2,l3,l4=1

E
[ 4∏
k=1

(
xtix

t
lk
− E[xtix

t
lk

] − xtjx
t
lk

+ E[xtjx
t
lk

]
) ∣∣ 4∏

k=1

∆θtlk
∣∣],
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and there are 3(t2 − t1) such terms. Sum of such terms can be bounded by

3

t2−1∑
t=t1

d∑
l1,l2,l3,l4=1

E
[ 4∏
k=1

(
xtix

t
lk
− E[xtix

t
lk

] − xtjx
t
lk

+ E[xtjx
t
lk

]
) ∣∣ 4∏

k=1

∆θtlk
∣∣]

= 3

t2−1∑
t=t1

d∑
l1,l2,l3,l4=1

E
[
E
[ 4∏
k=1

(
xtix

t
lk
− E[xtix

t
lk

] − xtjx
t
lk

+ E[xtjx
t
lk

]
) ∣∣ 4∏

k=1

∆θtlk
∣∣]∣∣FN

0

]

≤ 3C ′4
9

( i− j

d

)4 t2−1∑
t=t1

d∑
l1,l2,l3,l4=1

E
[∣∣ 4∏

k=1

∆θtlk
∣∣] ≤ C ′4

9

( i− j

d

)4
d4

t2−1∑
t=t1

md
t ,

where the first inequality follows from Assumption 5.2.2 and C ′4
9 = C4

9 + 2C2
3C

2
6 + C4

3 . The last

inequality follows from 4(abcd) ≤ a4 + b4 + c4 + d4 for all a, b, c, d ∈ R.

Type 2: The second type nonzero terms are in the form of

d∑
l1,l2,l3,l4=1

E

[
2∏

k=1

(
xtix

t
lk
− E[xtix

t
lk

] − xtjx
t
lk

+ E[xtjx
t
lk

]
) 4∏
k=3

(
xt

′
i x

t′
lk
− E[xt

′
i x

t′
lk

] − xt
′
j x

t′
lk

+ E[xt
′
j x

t′
lk

]
)

︸ ︷︷ ︸
P t,t′
i,j,l1,l2,l3,l4

×
∣∣ 2∏
k=1

∆θtlk

4∏
k=3

∆θt
′
lk

∣∣],
with t ̸= t′ and there are 3(t2 − t1)

2 − 3(t2 − t1) such terms. Sum of such terms can be upper

bounded by

∑
t̸=t′

d∑
l1,l2,l3,l4=1

E
[
E
[
P t,t′

i,j,l1,l2,l3,l4

2∏
k=1

∣∣∆θtlk ∣∣ 4∏
k=3

∣∣∆θt′lk ∣∣]∣∣FN
0

]

≤ C ′4
6

( i− j

d

)4∑
t̸=t′

d∑
l1,l2,l3,l4=1

E
[ 2∏
k=1

∣∣∆θtlk ∣∣ 4∏
k=3

∣∣∆θt′lk ∣∣] ≤ C ′4
6

( i− j

d

)4
d4(t2 − t1)

t2−1∑
t=t1

md
t ,

where the first inequality follows from Assumption 5.2.2 and C ′4
6 = C2

3 + C2
6 . The last inequality

follows from abcd ≤ a4+b4+c4+d4

4 for all a, b, c, d ∈ R. Therefore E[Si,j,2] can be upper bounded as

E[Si,j,2] ≤
(
C ′4
9 + C ′4

6 (t2 − t1)
)( i− j

d

)4
d4

t2−1∑
t=t1

md
t ≤

(
C ′4
9 + C ′4

6

)
(t2 − t1)

( i− j

d

)4
d4

t2−1∑
t=t1

md
t .
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Due to Assumption 5.2.2, we can bound E[Si,j,3] as

E[Si,j,3] =

t2−1∑
t=t1

E
[
(xti − xtj)

4
]
E
[ (
εt
)4 ]

+
∑
t̸=t′

E
[
(xti − xtj)

2
]
E
[
(xt

′
i − xt

′
j )2
]
E
[ (
εt
)2 ]E[(εt′)2]

≤ C1C
4
7 (t2 − t1)

( i− j

d

)4
σ4 + C4

4 (t2 − t1)
2
( i− j

d

)4
σ4 ≤

(
C1C

4
7 + C4

4

)
(t2 − t1)

2
( i− j

d

)4
σ4.

We have shown md
t ≤ Cτ for any 0 ≤ t ≤ N in the proof of Proposition 5.7.1. With (5.25) and the

estimations on E[Si,j,1], E[Si,j,2], E[Si,j,3], we have

E
[∣∣(∆θt2i − ∆θt2j ) − (∆θt1i − ∆θt1j )

∣∣4]
≤ 27(C ′4

9 + C ′4
6 + C4

3 )(t2 − t1)
3
( i− j

d

)4
η4d4

t2−1∑
t=t1

md
t + 27

(
C1C

4
7 + C4

4

)
(t2 − t1)

2
( i− j

d

)4
η4σ4

≤ 27Cτ (C ′4
9 + C ′4

6 + C4
3 )C4

s,1

( t2 − t1
T

)4( i− j

d

)4
+ 27C4

s,1

( t2 − t1
T

)2( i− j

d

)4
,

where the last inequality follows from max(ηdT, ησT
1
2 ) ≤ Cs,1. Therefore (5.23) is proved. Last

(5.24) follows from (5.23) and the initial conditions in Theorem 5.3.1. ■

We are now ready to prove Theorem 5.6.1 based on the above two propositions.

Proof of Theorem 5.6.1. Tightness can be proved by the Kolmogorov tightness criteria

[KS12, Chapter 4]. The last statement simply follows from tightness property. To apply the

Kolmogorov tightness criteria, we need to verify the following two conditions:

(a) {Θ
d,T

(0, 0)}d≥1,T>0 is tight in the probability space.

(b) There exists a positive constant Ctight such that for any s1, s2 ∈ [0, τ ] and x1, x2 ∈ [0, 1],

we have

sup
d,T

E
[∣∣Θd,T

(s1, x1) − Θ
d,T

(s2, x2)
∣∣4] ≤ Ctight

(
|s1 − s2|2 + |x1 − x2|4

)
.

To verify (a), it is easy to see that for any d ≥ 1, T > 0 and N > 0,

P
(∣∣Θd,T

(0, 0)
∣∣ > N

)
≤ N−2E

[∣∣∆θ00∣∣2] ≤ N−2R2 → 0 as N → ∞.
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To verify (b), without loss of generality we assume that 0 ≤ s1 < s2 ≤ τ , 0 ≤ x1 < x2 ≤ 1 and

⌊Ts1⌋ = t1 ≤ ⌊Ts2⌋ = t2, ⌊dx1⌋ = i ≤ ⌊dx2⌋ = j. According to (5.3), Θ
d,T

(·, ·) is linear in both

variables. We have

E
[∣∣Θd,T

(s1, x1) − Θ
d,T

(s2, x2)
∣∣4] ≤ 8E

[∣∣Θd,T
(s1, x1) − Θ

d,T
(s2, x1)

∣∣4]
+ 8E

[∣∣Θd,T
(s2, x1) − Θ

d,T
(s2, x2)

∣∣4].
According to Proposition 5.7.1, we have

E
[∣∣Θd,T

(s1, x1) − Θ
d,T

(s2, x1)
∣∣4] ≤ C

(
t2 + 1 − t1

T

)2

≤ 5C (s2 − s1)
2 .

and according to Proposition 5.7.2, we have

E
[∣∣Θd,T

(s2, x1) − Θ
d,T

(s2, x2)
∣∣4] ≤ (8M4 + 8τ2C)

(
j + 1 − i

d

)4

≤ 40(M4 + τ2C) (x2 − x1)
4 .

Therefore (b) holds with Ctight = 40C + 320(M4 + τ2C). ■

5.7.2. Limit Identification.

Proof of Theorem 5.6.2. According to Theorem 5.6.1, any subsequence

{Θ
dk,Tk(·, ·)}k≥1 of {Θ

d,T
(·, ·)}d≥1,T>0

has a further weakly convergent subsequence with limit Θ ∈ C ([0, τ ];C([0, 1])) as dk, Tk → ∞.

For the simplicity of notations, we denote the convergent subsequence of {Θ
dk,Tk(·, ·)}k≥1 by

{Θ
d,T

(·, ·)}d≥1,T>0 in the proof.

To identify the limit, first we rewrite (5.2) in terms of Θ
d,T

. For any 0 ≤ t ≤ ⌊τT ⌋ − 1 and any

i ∈ [d]:

Θ
d,T

(
t+ 1

T
,
i

d
) − Θ

d,T
(
t

T
,
i

d
) = −η

d∑
j=1

W (
t

T
,
i

d
)W (

t

T
,
j

d
)Θ

d,T
(
t

T
,
j

d
) + ηW (

t

T
,
i

d
)εt.(5.26)
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Therefore for any bounded smooth function f : [0, τ ] → R, we have for any s ∈ [0, τ ], i ∈ [d − 1]

and x ∈ [ id ,
i+1
d ],

⌊sT⌋−1∑
t=0

f(
t

T
)
(
Θ

d,T
(
t+ 1

T
, x) − Θ

d,T
(
t

T
, x)
)

= −η(i+ 1 − dx)

⌊sT⌋−1∑
t=0

d∑
j=1

f(
t

T
)W (

t

T
,
i

d
)W (

t

T
,
j

d
)Θ

d,T
(
t

T
,
j

d
) + η(i+ 1 − dx)

⌊sT⌋−1∑
t=0

f(
t

T
)W (

t

T
,
i

d
)εt

− η(dx− i)

⌊sT⌋−1∑
t=0

d∑
j=1

f(
t

T
)W (

t

T
,
i+ 1

d
)W (

t

T
,
j

d
)Θ

d,T
(
t

T
,
j

d
) + η(dx− i)

⌊sT⌋−1∑
t=0

f(
t

T
)W (

t

T
,
i+ 1

d
)εt.

(5.27)

We can rewrite the left hand side of (5.27) as

LHS(5.27) =

⌊sT ⌋−1∑
t=1

Θ
d,T

(
t

T
, x)
(
f(
t− 1

T
) − f(

t

T
)
)

+ f(
⌊sT ⌋ − 1

T
)Θ

d,T
(
⌊sT ⌋
T

, x) − f(0)Θ
d,T

(0, x).

When d, T → ∞, since f is bounded and smooth, for any s ∈ (0, τ), we have

f(s± T−1) = f(s) +O(T−1), T
(
f(s) − f(s− T−1)

)
= f ′(s) +O(T−1).

Since {Θ
d,T }d≥1,T>0 converges weakly to Θ and f, f ′ are continuously bounded, we have

1

T

⌊sT ⌋−1∑
t=1

Θ
d,T

(
t

T
, x)

(
f ′(

t

T
) +O(T−1)

)
=

∫ ⌊sT⌋
T

0
Θ(u, x)f ′(u)du+ o(1).

Therefore

LHS(5.27) = −
∫ ⌊sT⌋

T

0
Θ(u, x)f ′(u)du+ f(s)Θ(

⌊sT ⌋
T

, x) − f(0)Θ(0, x) + o(1).(5.28)
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Next, we look at the right hand side of (5.27). For any i ∈ [d], RHS(5.27) = −(i + 1 − dx)I2i −

(dx− i)Isi+1,

Isi =−(ηdT )
1

dT

⌊sT ⌋−1∑
t=0

d∑
j=1

f(
t

T
)A(

i

d
,
j

d
)Θ

d,T
(
t

T
,
j

d
)︸ ︷︷ ︸

Ns
i,1

+ (ηdT )
1

dT

⌊sT ⌋−1∑
t=0

f(
t

T
)W (

t

T
,
i

d
)εt︸ ︷︷ ︸

Ns
i,2

−(ηdT )
1

dT

⌊sT ⌋−1∑
t=0

d∑
j=1

f(
t

T
)
(
W (

t

T
,
i

d
)W (

t

T
,
j

d
) − E

[
W (

t

T
,
i

d
)W (

t

T
,
j

d
)
])

Θ
d,T

(
t

T
,
j

d
)︸ ︷︷ ︸

Ns
i,3

.

Due to the facts that f,A are continuously bounded, and {Θ
d,T }d≥1,T>0 converges weakly to Θ, we

have

N s
i,1 = −ηdT

( 1

dT

⌊sT ⌋−1∑
t=0

d∑
j=1

f(
t

T
)A(

i

d
,
j

d
)Θ(

t

T
,
j

d
) + o(1)

)

= −ηdT
( ∫ ⌊sT⌋

T

0

∫ 1

0
f(u)A(

i

d
, y)Θ(u, y)dydu+ o(1)

)
.

For N s
i,2 = (ηdT ) 1

dT

∑⌊sT ⌋−1
t=0 f( t

T )W ( t
T ,

i
d)εt, note that E [Ni,2s ] = 0. Since {W ( t

T ,
i
d)εt}Tt=1 is a

sequence of i.i.d. random variables, the limit of N s
i,2 can be studied via standard Central Limit

Theorems. In particular, we have

E[N s1
i,2N

s2
j,2] = σ2η2TA(

i

d
,
j

d
)
( ∫ s1∧s2

0
f(u)2du+ o(1)

)
.

Therefore N s
i,2 = σ2η2T

( ∫ s
0 f(u)dξ1(u,

i
d) + o(1)

)
where {ξ1(s, x)}s∈[0,τ ],x∈[0,1] is a Gaussian field

process such that for any s1, s2 ∈ [0, τ ], ξ1(s1, ·) − ξ1(s2, ·) ∼ N (0, |s1 − s2|σ21) with

σ21(x, y) = A(x, y), ∀x, y ∈ [0, 1].(5.29)

For N s
i,3, we have

N s
i,3 = −(ηdT )

d∑
j=1

⌊sT ⌋−1∑
t=0

Zt,j ,
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where Zt,j := 1
dT f( t

T )
(
W ( t

T ,
i
d)W ( t

T ,
j
d) − E

[
W ( t

T ,
i
d)W ( t

T ,
j
d)
])

Θ
d,T

( t
T ,

j
d). Notice that

E [Zt,j ] =
1

T
f(
t

T
)E
[
E
[(
W (

t

T
,
i

d
)W (

t

T
,
j

d
) − E

[
W (

t

T
,
i

d
)W (

t

T
,
j

d
)
])
|FN

0

]
Θ

d,T
(
t

T
,
j

d
)

]
= 0.

Furthermore, we can check that for any t1 ̸= t2 and any j, l ∈ [d],

E [Zt1,jZt2,l] =
1

d2T 2
f(
t1
T

)f(
t2
T

)
(
B(

i

d
,
j

d
,
i

d
,
l

d
) −A(

i

d
,
j

d
)A(

i

d
,
l

d
)
)
E
[
Θ

d,T
(
t1
T
,
j

d
)Θ

d,T
(
t2
T
,
l

d
)
]
δ(t1 − t2).

Therefore, we have E
[
N s

i,3

]
= 0 and

Var(Ni,3) = η2
d∑

j,l=1

⌊sT ⌋−1∑
t=0

f(
t

T
)2
(
B(

i

d
,
j

d
,
i

d
,
l

d
) −A(

i

d
,
j

d
)A(

i

d
,
l

d
)
)
E
[
Θ

d,T
(
t

T
,
j

d
)Θ

d,T
(
t

T
,
l

d
)
]

≤
(
C2
2 + C5

)
∥f∥2∞ sη2dT

d∑
j=1

E
[
|Θd,T

(
t

T
,
j

d
)|2
]

≤ C2
s,1

(
C2
2 + C5

)
∥f∥2∞

s

T

(1

d

d∑
j=1

E
[
|∆θ0j |2

]
+

1

d

d∑
j=1

E
[
|∆θtj − ∆θ0j |2

])
→ 0, as d, T → ∞,

where the first inequality follows from Assumption 5.2.2. The last limit follows from Proposition

5.7.1 and initial conditions in Theorem 5.3.1. Therefore we have shown that N s
i,3 → 0 in probability

and we write it as N s
i,3 = o(1) in the following calculation. Combine our approximations on

N s
i,1, N

s
i,2, N

s
i,3 for any i ∈ [d] and s ∈ [0, τ ], we can write the right hand side of (5.27) as

RHS(5.27) = −(i+ 1 − dx)(N s
i,1 +N s

i,2 +N s
i,3) − (dx− i)(N s

i+1,1 +N s
i+1,2 +N s

i+1,3)

= −ηdT
( ∫ ⌊sT⌋

T

0

∫ 1

0
f(u)

(
(i+ 1 − dx)A(

i

d
, y) + (dx− i)A(

i+ 1

d
, y)
)
Θ(u, y)dydu+ o(1)

)
+ σ2η2T

(
(i+ 1 − dx)

∫ s

0
f(u)dξ1(u,

i

d
) + (dx− i)

∫ s

0
f(u)dξ1(u,

i+ 1

d
) + o(1)

)
= −ηdT

( ∫ ⌊sT⌋
T

0

∫ 1

0
f(u)A(x, y)Θ(u, y)dydu+ o(1)

)
+ σ2η2T

( ∫ s

0
f(u)dξ1(u, x) + o(1)

)
.(5.30)

Finally, with (5.28) and(5.30), we have for any s ∈ [0, τ ],
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−
∫ ⌊sT⌋

T

0
Θ(u, x)f ′(u)du+ f(s)Θ(

⌊sT ⌋
T

, x) − f(0)Θ(0, x) + o(1)

= −ηdT
( ∫ ⌊sT⌋

T

0

∫ 1

0
f(u)A(x, y)Θ(u, y)dydu+ o(1)

)
+ σ2η2T

( ∫ s

0
f(u)dξ1(u, x) + o(1)

)
.

Hence, letting d, T → ∞ we obtain that for any bounded smooth test function f and for any

s ∈ [0, τ ], x ∈ [0, 1],

−
∫ s

0
Θ(u, x)f ′(u)du+ f(s)Θ(s, x) − f(0)Θ(0, x)

= −ηdT
( ∫ s

0

∫ 1

0
f(u)A(x, y)Θ(u, y)dydu+ o(1)

)
+ σ2η2T

( ∫ s

0
f(u)dξ1(u, x) + o(1)

)
.

■

From Theorem 5.6.2 to Theorem 5.3.1. The moderate-noise setup and the high-noise setup

simply follow from integration by parts according to the consequences 2 and 3 of Theorem 5.6.2 re-

spectively as we discussed in Section 5.6.1. The uniqueness and existence of solution in C([0, τ ];C([0, 1]))

follows from part (a) of Theorem 5.6.5.

For the low-noise setup, since f is smooth, we know that∫ (·)

0
Θ(u, x)f ′(u)du ∈ C1([0, τ ]) and

∫ (·)

0
f(u)A(x, y)Θ(u, y)dudy ∈ C1([0, τ ]).

Therefore according to (5.16), f(·)Θ(·, x) ∈ C1([0, τ ]) for any x ∈ [0, 1] which implies that Θ(·, x) ∈

C1([0, τ ]) for any x ∈ [0, 1]. We can then apply integration by parts to the left side of (5.16).

Therefore Θ satisfies (5.4).

Since A satisfies Assumption 5.2.2, for any Θ1,Θ2 ∈ C([0, τ ];C([0, 1])), we have

α sup
x∈[0,1]

∣∣∣∣ ∫ 1

0
A(x, y) (Θ1(s, y) − Θ2(s, y)) dy

∣∣∣∣ ≤ α sup
x,y∈[0,1]

|A(x, y)| sup
y∈[0,1]

|Θ1(s, y) − Θ2(s, y)|

≤ αC2 sup
y∈[0,1]

|Θ1(s, y) − Θ2(s, y)| .
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Therefore the right hand side of (5.4) is Lipschitz in Θ(s, ·) for any s ∈ [0, τ ]. According to the

Picard-Lindelöf theorem (see, for example, [Arn92]), there exists a unique solution in C([0, τ ];C([0, 1]))

to (5.4) with any initial condition Θ(0, ·) = Θ0(·) ∈ C([0, 1]).

With the uniqueness of solution to (5.4) and Theorem 5.6.2, we know that every subsequence of

{Θd,T }d≥1,T>0 has a further subsequence converging weakly to a unique Θ ∈ C([0, τ ];C([0, 1])).

Therefore {Θd,T }d≥1,T>0 converges weakly to Θ as d, T → ∞. ■

5.8. Proofs for the Fluctuations

5.8.1. Tightness of {Ud,T }d≥1,T>0.

Proposition 5.8.1. Under the assumptions in Theorem 5.6.2, if there exists a uniform positive

constant Cs,2 such that max(γT− 1
2 , γd−1, γσd−1T− 1

2 ) ≤ Cs,2, then there exists a uniform constant

C > 0 such that for any d ≥ 1, T > 0, any i ∈ [d] and any 0 ≤ t1 < t2 ≤ ⌊τT ⌋,

E
[∣∣Ud,T (

t2
T
,
i

d
) − Ud,T (

t1
T
,
i

d
)
∣∣4] ≤ C

(
t2 − t1
T

)2

.(5.31)

Proof of Proposition 5.8.1. From (5.17), we have that for any 0 ≤ t1 < t2 ≤ N := ⌊τT ⌋,

Ud,T (
t2
T
,
i

d
) − Ud,T (

t1
T
,
i

d
)

= − η

t2−1∑
t=t1

d∑
j=1

A(
i

d
,
j

d
)Ud,T (

t

T
,
j

d
)︸ ︷︷ ︸

Mi,1

− η

t2−1∑
t=t1

d∑
j=1

(
W (

t

T
,
i

d
)W (

t

T
,
j

d
) − E

[
W (

t

T
,
i

d
)W (

t

T
,
j

d
)
])
Ud,T (

t

T
,
j

d
)︸ ︷︷ ︸

Mi,2

− ηγ

t2−1∑
t=t1

d∑
j=1

(
W (

t

T
,
i

d
)W (

t

T
,
j

d
) − E

[
W (

t

T
,
i

d
)W (

t

T
,
j

d
)
])

Θ(
t

T
,
j

d
)︸ ︷︷ ︸

Mi,3

− γ
(
Θ(
t2
T
,
i

d
) − Θ(

t1
T
,
i

d
) + η

t2−1∑
t=t1

d∑
j=1

A(
i

d
,
j

d
)Θ(

t

T
,
j

d
)
)

︸ ︷︷ ︸
Mi,4

+ ηγ

t2−1∑
t=t1

W (
t

T
,
i

d
)εt︸ ︷︷ ︸

Mi,5

.

(5.32)

Therefore we have

E
[∣∣Ud,T (

t2
T
,
i

d
) − Ud,T (

t1
T
,
i

d
)
∣∣4] ≤ 125

(
E[M4

i,1] + E[M4
i,2] + E[M4

i,3] + E[M4
i,4] + E[M4

i,5]
)
.(5.33)
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Next we will bound the expectation of the right hand side term by term. Many terms can be

estimated using the proof of Proposition 5.7.1. Define ndt := 1
d

∑d
i=1 E

[∣∣Ud,T ( t
T ,

i
d)
∣∣4]. E[M4

i,1] can

be estimated similar to E[Si,1] in the proof of Proposition 5.7.1 and we have

E
[
M4

i,1

]
= η4E

[ t2−1∑
r1,r2,r3,r4=t1

d∑
j1,j2,j3,j4=1

4∏
k=1

A(
i

d
,
jk
d

)

4∏
k=1

Ud,T (
rk
T
,
jk
d

)
]

≤ C4
2η

4d4(t2 − t1)
3
t2−1∑
t=t1

ndt .

E[M4
i,2] can be estimated similar to E[Si,2] in the proof of Proposition 5.7.1 and we have

E
[
N4

i,2

]
≤ 3

(
C ′
8 + C ′2

5

)
η4d4(t2 − t1)

t2−1∑
t=t1

ndt .

Similar to the how we bound E[M4
i,2], we have

E
[
M4

i,3

]
≤ 3
(
C ′
8 + C ′2

5

)
(t2 − t1)η

4γ4E
[ t2−1∑
t=t1

d∑
j1,j2,j3,j4=1

4∏
k=1

Θ(
t

T
,
jk
d

)
]

≤ 3
(
C ′
8 + C ′2

5

)
∥Θ∥4∞ γ4η4d4(t2 − t1)

2

= O(γ4η4d4(t2 − t1)
2),

where the second inequality follows from the fact that ∥Θ∥∞ := sups∈[0,τ ],x∈[0,1] |Θ(s, x)| <∞. Next

due to the fact that A,Θ are C1 in all variables, we have

E
[
M2

i,4

]
= γ4η4d4T 4

(
−
∫ t2

T

t1
T

∫ 1

0
A(

i

d
, y)Θ(s, y)dyds+

1

dT

t2−1∑
t=t1

d∑
j=1

A(
i

d
,
j

d
)Θ(

t

T
,
j

d
)
)4

= O(γ4η4(t2 − t1)
4) +O(γ4η4d4(t2 − t1)

4T−4).

E[M4
i,5] can be estimated similar to E[Si,3] in the proof of Proposition 5.7.1 and we have

E
[
M4

i,5

]
≤ (C5C1 + C2

2 )σ4η4γ4(t2 − t1)
2 = O(γ4η4σ4(t2 − t1)

2).
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Combining all the estimations and pick t2 = t, t1 = 0 in (5.33),

ndt =
1

d

d∑
i=1

E
[∣∣Ud,T (

t

T
,
i

d
)
∣∣4] ≤ 8nd0 +

8

d

d∑
i=1

E
[∣∣Ud,T (

t

T
,
i

d
) − Ud,T (0,

i

d
)
∣∣4]

≤ 8nd0 + 2000
(
C4
2 + 3(C8 + C2

5 )
)
η4d4t3

t−1∑
k=0

ndk + Cd,T (t),

where Cd,T (t) := O(γ4η4d4t2 + γ4η4t4 + γ4η4d4t4T−4 + γ4η4σ4t2). According to the discrete Gron-

wall’s inequality, we have

ndt ≤ Cd,T (t) + 2000
(
C4

2 + 3(C8 + C2
5 )
)
η4d4t3

t−1∑
k=0

Cd,T (k) exp
(
2000η4d4

(
C4

2 t
3 + 3(C8 + C2

5 )
)
t3(t− k − 1)

)
.

Since ηdT ≤ Cs,1, 2000
(
C4
2 t

3 + 3(C8 +C2
5 )
)
η4d4t3(t− k − 1) ≤ CτC

4
s,1τ

4 for any 0 ≤ k < t, t ≤ N

and Cτ,1 is a constant independent of d, T, σ. Since Cd,T (k) is increasing with k, there exists a

constant Cτ,2 independent of d, T, σ such that

ndt ≤ Cd,T (t) + 2000
(
C4
2 t

3 + 3(C8 + C2
5 )
)

exp
(
Cτ,1C

4
s,1σ

−4τ4
)
η4d4t3

t−1∑
k=0

Cd,T (k) ≤ Cτ,2Cd,T (t).

(5.34)

Plug (5.34) into (5.33) and take expectations. Then, we get

E
[∣∣Ud,T (

t2
T
,
i

d
) − Ud,T (

t1
T
,
i

d
)
∣∣4]

≤125
(
C4
2 + 3(C ′

8 + C ′2
5 )
)
η4d4(t2 − t1)

3
t2−1∑
t=t1

ndt + Cd,T (t2 − t1)

≤125Cτ,2

(
C4
2 + 3(C ′

8 + C ′2
5 )
)
η4d4(t2 − t1)

3
t2−1∑
t=t1

Cd,T (t) + Cd,T (t2 − t1).

Observe that since max(ηdT, ησT
1
2 ) ≤ Cs,1, we have

Cd,T (t) =
( t
T

)2
O(γ4T−2 + γ4d−4 + γ4σ4d−4T−2).

Furthermore, note that

max(γT− 1
2 , γd−1, γσd−1T− 1

2 ) ≤ Cs,2 and Cd,T (t) ≤ Cτ,3C
4
s,2

( t
T

)2
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for some positive constant Cτ,3 independent of d, T, σ, γ. Therefore

E
[∣∣Ud,T (

t2
T
,
i

d
) − Ud,T (

t1
T
,
i

d
)
∣∣4] ≤ 125Cτ,2

(
C4
2 + 3(C ′

8 + C ′2
5 )
)
η4d4(t2 − t1)

4Cτ,3C
4
s,2τ

2 + Cτ,3

( t2 − t1
T

)2
≤ 125Cτ,2

(
C4
2 + 3(C ′

8 + C ′2
5 )
)
C4
s,1Cτ,3C

4
s,2τ

2
( t2 − t1

T

)4
+ Cτ,3

( t2 − t1
T

)2
.

Last (5.35) is proved since
(
t2−t1
T

)2 ≤ τ2. ■

Proposition 5.8.2. Under the assumptions in Proposition 5.8.1, for any d, T > 0, then there

exists a constant C > 0 independent of d, T such that for any d ≥ 1, T > 0, any i, j ∈ [d] and any

0 ≤ t ≤ ⌊τT ⌋,

E
[∣∣Ud,T (

t

T
,
i

d
) − Ud,T (

t

T
,
j

d
)
∣∣4] ≤ 8

(
Cτ2 +M4

) ( i− j

d

)4
.(5.35)

Proof of Proposition 5.8.2. From (5.7) we have for any 0 ≤ t1 < t2 ≤ N := ⌊τT ⌋ and any

i, j ∈ [d],

(
Ud,T (

t2
T
,
i

d
) − Ud,T (

t1
T
,
j

d
)
)
−
(
Ud,T (

t

T
,
i

d
) − Ud,T (

t

T
,
j

d
)
)

= − η

t2−1∑
t=t1

d∑
l=1

(
A(

i

d
,
l

d
) −A(

j

d
,
l

d
)
)
Ud,T (

t

T
,
l

d
)︸ ︷︷ ︸

Mi,j,1

− η

t2−1∑
t=t1

d∑
l=1

(
xtix

t
l − E

[
xtix

t
l

]
− xtjx

t
l + E

[
xtjx

t
l

])
Ud,T (

t

T
,
l

d
)︸ ︷︷ ︸

Mi,j,2

+ αγ

∫ t2
T

t1
T

∫ 1

0

(
A(

i

d
, y) −A(

j

d
, y)
)
Θ(s, y)dyds− ηγ

d∑
l=1

(
A(

i

d
,
l

d
) −A(

j

d
,
l

d
)
)
Θ(

t

T
,
l

d
)︸ ︷︷ ︸

Mi,j,3

− ηγ

t2−1∑
t=t1

d∑
l=1

(
xtix

t
l − E

[
xtix

t
l

]
− xtjx

t
l + E

[
xtjx

t
l

])
Θ(

t

T
,
l

d
)︸ ︷︷ ︸

Mi,j,4

+ ηγ

t2−1∑
t=t1

(
xti − xtj

)
εt︸ ︷︷ ︸

Mi,j,5

.

Therefore if we define ∆d,T (t, i, j) := Ud,T ( t
T ,

i
d) − Ud,T ( t

T ,
j
d), we have

E
[∣∣∆d,T (t2, i, j) − ∆d,T (t1, i, j)

∣∣4]
≤ 125

(
E
[
Mi,j,1

]
+ E

[
Mi,j,2

]
+ E

[
Mi,j,3

]
+ E

[
Mi,j,4

]
+ E

[
Mi,j,5

])
.

(5.36)

Next we estimate the right hand side of (5.36) term by term and most terms are bounded based

the proof of Proposition 5.7.2. E[Mi,j,1] can be upper bounded similar to E[Si,j,1] in the proof of
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Proposition 5.7.2 and we have

E
[
Mi,j,1

]
≤ C4

3

( i− j

d

)4
(t2 − t1)

3η4d4
t2−1∑
t=t1

ndt =
( i− j

d

)4( t2 − t1
T

)2
O(η4d4T 3

t2−1∑
t=t1

ndt ).

E[Mi,j,2] can be upper bounded similar to E[Si,j,2] in the proof of Proposition 5.7.2 and we have

E
[
Mi,j,2

]
≤
(
C ′4
9 + C ′4

6

)( i− j

d

)4
(t2 − t1)η

4d4
t2−1∑
t=t1

ndt =
( i− j

d

)4( t2 − t1
T

)2
O(η4d4T 2

t2−1∑
t=t1

ndt ).

Since Θ is C1 in both variables and ∂1A(x, ·) ∈ C1([0, 1]) for any x ∈ [0, 1], E[Mi,j,3] can be

estimated as

E
[
Mi,j,3

]
= α4γ4

( ∫ j
d

i
d

∫ t2
T

t1
T

∫ 1

0
∂1A(z, y)Θ(s, y)dydsdz −

∫ j
d

i
d

1

dT

d∑
l=1

∂1A(z,
l

d
)Θ(

t

T
,
l

d
)dz
)4

= O

(
γ4
( i− j

d

)4( t2 − t1
T

)4 1

T 4

)
+O

(
γ4
( i− j

d

)4( t2 − t1
T

)4 1

d4

)
=
( i− j

d

)4( t2 − t1
T

)4
O

(
γ4T−4 + γ4d−4

)
.

Next, E[Mi,j,4] can be estimated similar to E[Mi,j,2]:

E
[
Mi,j,4

]
≤ C ′4

9 η
4γ4
( i− j

d

)4 t2−1∑
t=t1

d∑
l1,l2,l3,l4=1

E
[∣∣ 4∏

k=1

Θ(
t

T
,
lk
d

)
∣∣]

+ C ′4
6 η

4γ4
( i− j

d

)4 t2−1∑
t′,t=t1

d∑
l1,l2,l3,l4=1

E
[∣∣ 2∏

k=1

Θ(
t

T
,
lk
d

)
4∏

k=3

Θ(
t′

T
,
lk
d

)
∣∣]

≤
(
C ′4
9 + C ′4

6

)
∥Θ∥4∞

( i− j

d

)4
η4γ4d4(t2 − t1)

2

=
( i− j

d

)4( t2 − t1
T

)2
O(η4γ4d4T 2).

Last E[Mi,j,5] can be upper bounded similar to E[Si,j,3] in the proof of Proposition 5.7.2 and we

have

E
[
Mi,j,5

]
≤
(
C1C

4
7 + C4

4

)( i− j

d

)4( t2 − t1
T

)2
η4γ4σ4T 2.
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In the proof of Proposition 5.8.1, we have shown that ndt ≤ Cτ,2Cd,T (t) ≤ Cτ,2Cτ,3C
4
s,2

(
t
T

)2
= O(1).

Therefore apply this estimation to (5.36), along with the estimations on E[Mi,j,·]’s and we have

E
[∣∣∆d,T (t2, i, j) − ∆d,T (t1, i, j)

∣∣4]
≤
( i− j

d

)4( t2 − t1
T

)2
O

(
η4d4T 3

t2−1∑
t=t1

ndt + γ4T−4 + γ4d−4 + η4γ4d4T 2 + η4γ4σ4T 2

)

=
( i− j

d

)4( t2 − t1
T

)2
O
(
η4d4T 4 + γ4T−4 + γ4d−4 + η4γ4d4T 2 + η4γ4σ4T 2

)
.

Since max(ηdT, ησT
1
2 ) ≤ Cs,1 and max(γT− 1

2 , γd−1, γσd−1T− 1
2 ) ≤ Cs,2,

O
(
η4d4T 4 + γ4T−4 + γ4d−4 + η4γ4d4T 2 + η4γ4σ4T 2

)
= O(1),

and therefore there exists uniform constant C such that

E
[∣∣∆d,T (t2, i, j) − ∆d,T (t1, i, j)

∣∣4] ≤ C
( i− j

d

)4( t2 − t1
T

)2
.

Pick t2 = t and t1 = 0, we get

E
[∣∣Ud,T (

t

T
,
i

d
) − Ud,T (

t

T
,
j

d
)
∣∣4] ≤ 8E

[∣∣Ud,T (0,
i

d
) − Ud,T (0,

j

d
)
∣∣4]+ 8C

( i− j

d

)4( t2 − t1
T

)2
≤ 8
(
Cτ2 +M4

)( i− j

d

)4
.

■

Proof of Theorem 5.6.3. When η = α
dT and σ = o(dT

1
2 ), there exists a uniform constant

Cs,1 such that max(ηdT, ησT
1
2 ) ≤ Cs,1. Therefore given Proposition 5.8.1 and Proposition 5.8.2,

the proof of Theorem 5.6.3 is exactly the same as the proof of Theorem 5.6.1. Hence we skip the

details. ■

5.8.2. Limit Identification.
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Proof of Theorem 5.6.4. For any 0 ≤ t ≤ ⌊τT ⌋ − 1 := N − 1, i ∈ [d], according to (5.3)

and (5.7), we have

Ud,T (
t+ 1

T
, x) − Ud,T (

t

T
, x)

= −η(i+ 1 − dx)

d∑
j=1

W (
t

T
,
i

d
)W (

t

T
,
j

d
)Ud,T (

t

T
,
j

d
) − η(dx− i)

d∑
j=1

W (
t

T
,
i+ 1

d
)W (

t

T
,
j

d
)Ud,T (

t

T
,
j

d
)

− ηγ(i+ 1 − dx)

d∑
j=1

(
W (

t

T
,
i

d
)W (

t

T
,
j

d
) − E

[
W (

t

T
,
i

d
)W (

t

T
,
j

d
)
])

Θ(
t

T
,
j

d
)

− ηγ(dx− i)

d∑
j=1

(
W (

t

T
,
i+ 1

d
)W (

t

T
,
j

d
) − E

[
W (

t

T
,
i+ 1

d
)W (

t

T
,
j

d
)
])

Θ(
t

T
,
j

d
)

− γ

(
Θ(
t+ 1

T
, x) − Θ(

t

T
, x) + η

d∑
j=1

(
(i+ 1 − dx)A(

i

d
,
j

d
) + (dx− i)A(

i+ 1

d
,
j

d
)
)
Θ(

t

T
,
j

d
)

)

+ ηγ(i+ 1 − dx)W (
t

T
,
i

d
)εt + ηγ(dx− i)W (

t

T
,
i+ 1

d
)εt.

If we apply a bounded smooth test function f : [0, τ ] → R on both sides, we get for any s ∈ (0, τ):

⌊sT ⌋−1∑
t=0

f(
t

T
)
(
Ud,T (

t+ 1

T
, x) − Ud,T (

t

T
, x)
)

= − (i+ 1 − dx)
3∑

k=1

P s
i,k − (dx− i)

3∑
k=1

P s
i+1,k − P s

4 ,

(5.37)

where for any i ∈ [d],

P s
i,1 = η

⌊sT⌋−1∑
t=0

d∑
j=1

f(
t

T
)W (

t

T
,
i

d
)W (

t

T
,
j

d
)Ud,T (

t

T
,
j

d
),

P s
i,2 = −ηγ

⌊sT⌋−1∑
t=0

f(
t

T
)W (

t

T
,
i

d
)εt,

P s
i,3 = ηγ

⌊sT⌋−1∑
t=0

d∑
j=1

f(
t

T
)
(
W (

t

T
,
i

d
)W (

t

T
,
j

d
) − E

[
W (

t

T
,
i

d
)W (

t

T
,
j

d
)
])

Θ(
t

T
,
j

d
),

P s
4 = γ

⌊sT⌋−1∑
t=0

f(
t

T
)
(
Θ(
t+ 1

T
, x) − Θ(

t

T
, x) + η

d∑
j=1

(
(i+ 1 − dx)A(

i

d
,
j

d
) + (dx− i)A(

i+ 1

d
,
j

d
)
)
Θ(

t

T
,
j

d
)
)
.
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Similar to the way we derive (5.28), we can write the left hand side of (5.37) as

LHS(5.37) = −
∫ ⌊sT⌋

T

0
U(u, x)f ′(u)du+ f(s)U(s, x) − f(0)U(0, x) + o(1).(5.38)

Next, we look at the right hand side of (5.37). There are 4 types of terms on the right hand side

of (5.37).

(1) For terms related to P s
i,1 for some i ∈ [d], we can deal with them akin to how we deal with

N s
i,1, N

s
2,i in the proof of Theorem 5.6.2. We get

−(i+ 1 − dx)P s
i,1 − (dx− i)P s

i+1,1 = −α
∫ ⌊sT⌋

T

0

∫ 1

0
f(u)A(x, y)U(u, y)dydu+ o(1).

(2) For terms related to P s
i,2 for some i ∈ [d], we can deal with them akin to how we deal with

N s
i,2 in the proofs of Theorem 5.6.2.

P s
i,2 =


o(1) if γσd−1T− 1

2 → 0,

αβ

∫ s

0
f(u)dξ2(u,

i

d
) + o(1) if γσd−1T− 1

2 → β ∈ (0,∞).

where {ξ2(s, x)}s∈[0,τ ],x∈[0,1] is a Gaussian field process with covariance given by

σ22(x, y) = A(x, y), ∀x, y ∈ [0, 1].(5.39)

Therefore

(2.1) When γσd−1T− 1
2 → 0, −(i+ 1 − dx)P s

i,2 − (dx− i)P s
i+1,2 → 0 in probability.

(2.2) When γσd−1T− 1
2 → β ∈ (0,∞),

−(i+ 1 − dx)P s
i,2 − (dx− i)P s

i+1,2 = αβ

∫ ⌊sT⌋
T

0
f(u)dξ2(u, x) + o(1).

(3) To study the terms related to Pi,3 for some i ∈ [d], we first define

Zd,T
γ (

t

T
,
j

d
) :=

γ

dT

d∑
l=1

f(
t

T
)
(
W (

t

T
,
j

d
)W (

t

T
,
l

d
) − E

[
W (

t

T
,
j

d
)W (

t

T
,
l

d
)
])

Θ(
t

T
,
l

d
),
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for any t ≤ ⌊sT ⌋, j ∈ [d]. Then we can write

P s
i,3 = (ηdT )

⌊sT ⌋−1∑
t=0

Zd,T
γ (

t

T
,
i

d
).

Notice that E
[
Zd,T
γ ( t

T ,
i
d)
]

= 0 and {Zd,T
γ ( t1T ,

i
d)}i∈[d] is independent of {Zd,T

γ ( t2T ,
i
d)}i∈[d]

when t1 ̸= t2. For any 0 ≤ s1 < s2 ≤ τ , i, j ∈ [d], we compute

E
[
P s1
i,3P

s2
j,3

]
= (ηdT )2 E

[ ⌊s1T ⌋−1∑
t=0

Zd,T
γ (

t

T
,
i

d
)Zd,T

γ (
t

T
,
j

d
)
]

= (ηdT )2
γ2

d2T 2

⌊s1T ⌋−1∑
t=0

d∑
l1,l2=1

f(
t

T
)2Θ(

t

T
,
l1
d

)Θ(
t

T
,
l2
d

)B̃(
i

d
,
l1
d
,
j

d
,
l2
d

)

= α2(
γ2

T
)

1

T

⌊s1T ⌋−1∑
t=0

( ∫ 1

0

∫ 1

0
f(
t

T
)2Θ(

t

T
, x)Θ(

t

T
, y)B̃(

i

d
, x,

j

d
, y)dxdy + o(1)

)
,

where B̃(x1, x2, x3, x4) = B(x1, x2, x3, x4)−A(x1, x3)A(x2, x4) for any x1, x2, x3, x4 ∈ [0, 1].

The first identity follows from independence and the last identity follows from the fact that

f,Θ, B are continuous and bounded. Therefore, we have

E
[
P s1
i,3P

s2
j,3

]
= γ2T−1α2

∫ ⌊s1T⌋
T

0

∫ 1

0

∫ 1

0
f(u)2Θ(u, x)Θ(u, y)B̃(

i

d
, x,

j

d
, y)dxdydu+ o(γ2T−1).

(5.40)

Now, we have the following observations.

(3.1) If γ = o(T
1
2 ), then P s

i,3 → 0 in probability and −(i+ 1− dx)P s
i,2 − (dx− i)P s

i+1,2 → 0

in probability.
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(3.2) If γT− 1
2 → ζ ∈ (0,∞), then with (5.40), we can apply the Lindeberg-Feller CLT to

Pi,3. Since

E
[
Zd,T
γ (

t

T
,
i

d
)2
]

= (
γ

dT
)2

d∑
l1,l2

f(
t

T
)2Θ(

t

T
,
l1
d

)Θ(
t

T
,
l2
d

)B̃(
i

d
,
l1
d
,
j

d
,
l2
d

)

=
ζ2

T
f(
t

T
)2
( ∫ 1

0

∫ 1

0
Θ(

t

T
, z1)Θ(

t

T
, z2)B̃(

i

d
, z1,

i

d
, z2)dxdy + o(1)

)
,

Var(P s
i,3) = ζ2α2

∫ ⌊sT⌋
T

0

∫ 1

0

∫ 1

0
f(u)2Θ(u, z1)Θ(u, z2)B̃(

i

d
, x,

i

d
, y)dz1dz2du+ o(1).

As T → ∞, we have

max0≤t≤⌊sT ⌋−1 E
[
Zd,T
γ ( t

T ,
i
d)2
]

Var(P s
i,3)

→ 0.

Therefore, P s
i,3 → αζ

∫ s
0 f(u)dξ3(u,

i
d) in distribution with {ξ3(s, x)}s∈[0,τ ],x∈[0,1] being

a Gaussian field process such that ξ3(s, x) ∼ N (0, σ3(s, x)2) and

σ3(s, x)2 :=

∫ 1

0

∫ 1

0
Θ(s, z1)Θ(s, z2)B̃(x, z1, x, z2)dz1dz2.(5.41)

Furthermore, using the facts that A ∈ C([0, 1]2) and B(·, x, ·, y) ∈ C([0, 1]2) we have

for any z1 ∈ [ id ,
i+1
d ), z2 ∈ [ jd ,

j+1
d ),

(i+ 1 − dz1)(j + 1 − dz2)B̃(
i

d
, x,

j

d
, y) + (i+ 1 − dz1)(dz2 − j)B̃(

i

d
, x,

j + 1

d
, y)

+ (dz1 − i)(j + 1 − dz2)B̃(
i+ 1

d
, x,

j + 1

d
, y) + (dz1 − i)(dz2 − j)B̃(

i+ 1

d
, x,

j + 1

d
, y)

= B̃(z1, x, z2, y) + o(1)

and, that any x ∈ [ id ,
i+1
d ):

−(i+ 1 − dx)P s
i,3 − (dx− i)P s

i+1,3
d→ αζ

∫ s

0
f(u)dξ3(u, x).(5.42)

Also notice that E[P s
i,3P

s
j,2] = 0 for any s ∈ [0, τ ] and i, j ∈ [d], and so we have E[ξ2(s, x)ξ3(s, y)] =

0 for any s ∈ [0, τ ] and x, y ∈ [0, 1]. Therefore the Gaussian field process {ξ3(s, x)}s∈[0,τ ],x∈[0,1]

is independent of the Gaussian field process {ξ2(s, x)}s∈[0,τ ],x∈[0,1].
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4. For the term P s
4 , since Θ ∈ C1([0, τ ];C1([0, 1])) and ∂sΘ(s, x) = −α

∫ 1
0 A(x, y)Θ(s, y)dy,

we have

Θ(
t+ 1

T
, x) − Θ(

t

T
, x)

= −α
∫ t+1

T

t
T

∫ 1

0
A(x, y)Θ(s, y)dyds =

α

dT

d∑
j=1

A(x,
j

d
)Θ(

t

T
,
j

d
) +O(d−1T−1 + T−2)

= η
d∑

j=1

(
(i+ 1 − dx)A(

i

d
,
j

d
) + (dx− i)A(

i+ 1

d
,
j

d
) +O(d−1)

)
Θ(

t

T
,
j

d
) +O(d−1T−1 + T−2).

Since ηdT → α, we have

P s
4 = γ

⌊sT ⌋−1∑
t=1

f(
t

T
)O(η + d−1T−1 + T−2) =

1

T

⌊sT ⌋−1∑
t=1

f(
t

T
)O(d−1γ + T−1γ).

Therefore, combining our approximations, we get

RHS(5.37) = − α

∫ ⌊sT⌋
T

0

∫ 1

0
f(u)A(x, y)U(u, y)dydu+ αβ

∫ s

0
f(u)dξ2(u, x)1

{γσd−1T− 1
2→β}

+ αζ

∫ s

0
f(u)dξ3(u, x)1

{γT− 1
2→ζ}

+

∫ ⌊sT⌋
T

0
f(u)duO(γd−1 + γT−1) + o(1),

(5.43)

where {ξ2(s, x)}s∈[0,τ ],x∈[0,1] and {ξ3(s, x)}s∈[0,τ ],x∈[0,1] are two independent Gaussian field processes

adapted to the same filtration {Fs}s∈[0,τ ] with covariances given by (5.39) and (5.41) respectively.

β, ζ ∈ [0,∞) because max(γT− 1
2 , γd−1, γσd−1T− 1

2 ) ≤ Cs,2. Combine (5.38) and (5.43), and we

have for any s ∈ [0, τ ],

−
∫ s

0
U(u, x)f ′(u)du+ f(s)U(s, x) − f(0)U(0, x)

= −α
∫ s

0

∫ 1

0
f(u)A(x, y)U(u, y)dydu+ αβ

∫ s

0
f(u)dξ2(u, x)1

{γσd−1T− 1
2→β}

+ αζ

∫ s

0
f(u)dξ3(u, x)1

{γT− 1
2→ζ}

+O(γd−1 + γT−1) + o(1),

giving us the desired result. ■
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5.9. Proofs for the Existence and Uniqueness of the SDE

Proof of part (a) of Theorem 5.6.5. Existence: We prove existence based on the Pi-

card iteration argument. Let U0(s, x) = U(0, x) for all s ∈ [0, τ ]. The Picard iteration is given

by

Uk(s, x) = U(0, x) − α

∫ s

0

∫ 1

0
A(x, y)Uk−1(u, y)dydu+ αβ

∫ s

0
dξ2(u, x) + αζ

∫ s

0
dξ3(u, x).(5.44)

According to the definition of ξ2, ξ3, if U(0, ·) ∈ C([0, 1]), then Uk(s, ·) ∈ C([0, 1]) for all s ∈ [0, τ ]

and k ≥ 0. Next we show that Uk ∈ C([0, τ ];C([0, 1])). For any K > 0, define the stopping time

τK,N := min(τ, inf{s ∈ [0, τ ] : max
0≤k≤K

∥Uk(s, ·)∥∞ ≥ N}).

It is easy to see that τK,N → τ almost surely as N → ∞. Define UN
k (s, x) := Uk(s ∧ τK,N , x). We

have

UN
k (s, x) = U(0, x) − α

∫ s

0

∫ 1

0
A(x, y)Uk−1(u ∧ τN , y)1(0,τN )(u)dydu

+ αβ

∫ s

0
1(0,τN )(u)dξ2(u ∧ τN , x) + αζ

∫ s

0
1(0,τN )(u)dξ3(u ∧ τN , x).

Therefore under Assumption 5.2.1 we obtain

max
0≤k≤K

∥∥UN
k (s, ·)

∥∥
∞ ≤ ∥U(0, ·)∥∞ + C2α

∫ s

0

∫ 1

0
max

0≤k≤K

∥∥UN
k (u, ·)

∥∥
∞ dydu

+ αβ sup
x∈[0,1]

∣∣ ∫ s

0
1(0,τN )(u)dξ2(u, x)

∣∣+ αζ sup
x∈[0,1]

∣∣ ∫ s

0
1(0,τN )(u)dξ3(u, x)

∣∣.
Taking the expectation, we get

E
[

max
0≤k≤K

sup
s∈[0,τ ]

∥∥UN
k (s, ·)

∥∥
∞
]
≤ E

[
∥U(0, ·)∥∞

]
+ C2α

∫ τ

0
E
[

max
0≤k≤K

∥∥UN
k (u, ·)

∥∥
∞
]
du

+ αβE
[

sup
x∈[0,1]

( ∫ τ

0
1(0,τK,N )(u)dξ2(u, x)

)2] 1
2

+ αζE
[

sup
x∈[0,1]

( ∫ τ

0
1(0,τK,N )(u)dξ3(u, x)

)2] 1
2 .
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According to (5.39) and (5.41), under Assumption 5.2.1, we have

E
[

max
0≤k≤K

sup
s∈[0,τ ]

∥∥UN
k (s, ·)

∥∥
∞
]

≤E
[
∥U(0, ·)∥∞

]
+ C2α

∫ τ

0
E
[

max
0≤k≤K

∥∥UN
k (u, ·)

∥∥
∞
]
du

+ αβE
[

sup
x∈[0,1]

∫ τ

0
A(x, x)d(u ∧ τK,N )

] 1
2

+ αζE
[

sup
x∈[0,1]

∫ τ

0

∫ 1

0

∫ 1

0
Θ(u, z1)Θ(u, z2)B̃(x, z1, x, z2)dz1dz2d(u ∧ τK,N )

] 1
2

≤E [∥U(0, ·)∥∞] + C2α

∫ τ

0
E
[

max
0≤k≤K

sup
u∈[0,s]

∥∥UN
k (u, ·)

∥∥
∞
]
ds

+ C
1
2
2 αβτ

1
2 + (C2

2 + C5)
1
2αζ ∥Θ∥∞ τ

1
2 ,

where B̃(x, z1, x, z2) = B(x, z1, x, z2) −A(x, z1)A(x, z2). With Gronwall’s inequality, we then get

E
[

max
0≤k≤K

sup
s∈[0,τ ]

∥∥UN
k (s, ·)

∥∥
∞
]
≤
(
E
[
∥U(0, ·)∥∞

]
+ C

1
2
2 αβτ

1
2 + (C5 + C2

2 )
1
2αζ ∥Θ∥∞ τ

1
2

)
exp(C2ατ).

Since K is arbitrary, we can push N → ∞ and according to Monotone convergence theorem, we

prove for any k,

E
[

sup
s∈[0,τ ]

∥∥UN
k (s, ·)

∥∥
∞
]
≤
(
E
[
∥U(0, ·)∥∞

]
+ C

1
2
2 αβτ

1
2 + (C5 + C2

2 )
1
2αζ ∥Θ∥∞ τ

1
2

)
exp(C2ατ).

Therefore for any k, Uk ∈ C ([0, τ ];C([0, 1])). Next we show that {Uk}∞k=1 converges in the space

C([0, τ ];C([0, 1])). From (5.44), we have for any k ≥ 1 and s ∈ [0, τ ],

∥Uk+1(s, ·) − Uk(s, ·)∥∞ = α

∥∥∥∥∫ s

0

∫ 1

0
A(·, y) (Uk(u, y) − Uk−1(u, y)) dydu

∥∥∥∥
∞

≤ C2αs

∫ s

0
∥Uk(u, ·) − Uk−1(u, ·)∥∞ du,

and

∥U1(s, ·) − U0(s, ·)∥∞ ≤ α

∥∥∥∥∫ s

0

∫ 1

0
A(·, y)U0(y)dydu

∥∥∥∥
∞

+ αβ sup
x∈[0,1]

∣∣ ∫ s

0
dξ2(u, x)

∣∣+ αζ sup
x∈[0,1]

∣∣ ∫ s

0
dξ3(u, x)

∣∣.
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Hence, for any s ∈ [0, τ ],

E
[

sup
r∈[0,s]

∥U1(r, ·) − U0(r, ·)∥∞
]
≤ (1 + C2αs)E

[
∥U(0, ·)∥∞

]
+ C

1
2
2 αβs

1
2 + (C5 + C2

2 )
1
2αζ ∥Θ∥∞ s

1
2

:= C(s) ≤ C(τ) <∞,

and

E
[

sup
r∈[0,s]

∥Uk+1(r, ·) − Uk(r, ·)∥∞
]
≤ C2α

∫ s

0
E
[

sup
u∈[0,r]

∥Uk(u, ·) − Uk−1(u, ·)∥∞
]
du.

By induction we get for any k ≥ 1,

E
[

sup
r∈[0,s]

∥Uk+1(r, ·) − Uk(r, ·)∥∞
]
≤ C(τ) (C2αs)

k

k!
.

Therefore according to Markov’s inequality,

P
(
∥Uk+1(r, ·) − Uk(r, ·)∥∞ >

1

2k
)
≤ C(τ) (2C2s)

k

k!
.

Let Ω be the path space on which the Gaussian field processes ξ2 and ξ3 are defined. Ac-

cording to Borel-Cantelli Lemma we have for almost every ω ∈ Ω, there exists k(ω) such that

supr∈[0,s] ∥Uk+1(r, ·) − Uk(r, ·)∥∞ ≤ 1
2k

for any k ≥ k(ω). Therefore with probability 1, {Uk(·, ·)}k≥1

converges in C([0, τ ];C([0, 1])) with limit U(·, ·) ∈ C([0, τ ];C([0, 1])). Furthermore we can check

that U satisfies SDE (5.8). Therefore existence is proved.

Uniqueness: Suppose that there exist two solutions, U,U to SDE (5.8), from (5.45), we have for

any s ∈ [0, τ ], x ∈ [0, 1],

U(s, x) − U(s, x) = −α
∫ s

0

∫ 1

0
A(x, y)

(
U(u, y) − U(u, y)

)
dydu,

which implies that

E
[

sup
s∈[0,τ ]

∥∥U(s, ·) − U(s, ·)
∥∥
∞
]
≤ C2αE

[ ∫ τ

0
sup

r∈[0,s]

∥∥U(r, ·) − U(r, ·)
∥∥
∞ ds

]
.
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By Gronwall’s inequality we have

E
[

sup
s∈[0,τ ]

∥∥U(s, ·) − U(s, ·)
∥∥
∞
]
≤ E

[ ∥∥U(0, ·) − U(0, ·)
∥∥
∞
]

exp (C2ατ) = 0.

Therefore there is a unique solution to (5.8) in C([0, τ ];C([0, 1])). ■

Proof of part (b) of Theorem 5.6.5. Stability: Suppose there exist solutions to the SDE

(5.8), then the integral form solution can be written as ∀ s ∈ [0, τ ]

U(s, x) = U(0, x) − α

∫ s

0

∫ 1

0
A(x, y)U(u, y)dydu+ αβ

∫ s

0
dξ2(u, x) + αζ

∫ s

0
dξ3(u, x).(5.45)

Define the stopping time τN := min(τ, inf{s ∈ [0, τ ] : ∥U(s, ·)∥L2([0,1]) ≥ N}). It is easy to see that

τN → τ almost surely as N → ∞. Define UN (s, x) := U(s ∧ τN , x). We have

UN (s, x) = U(0, x) − α

∫ s

0

∫ 1

0
A(x, y)U(u ∧ τN , y)1(0,τN )(u)dydu

+ αβ

∫ s

0
1(0,τN )(u)dξ2(u ∧ τN , x) + αζ

∫ s

0
1(0,τN )(u)dξ3(u ∧ τN , x).

Therefore we obtain an estimation of UN (s, ·) in the space of L2([0, 1]),∫ 1

0

∣∣UN (s, x)
∣∣2dx ≤ 4 ∥U(0, ·)∥2L2([0,1]) + 4α2s

∫ s

0

∫ 1

0

( ∫ 1

0
A(x, y)UN (u, y)dy

)2
dxdu

+ 4α2β2
∫ 1

0

∣∣ ∫ s

0
1(0,τN )(u)dξ2(u, x)

∣∣2dx+ 4α2ζ2
∫ 1

0

∣∣ ∫ s

0
1(0,τN )(u)dξ3(u, x)

∣∣2dx.
Under Assumption 5.2.2, we have that for the integral operator

A : g ∈ L2([0, 1]) 7→
∫ 1

0
A(x, y)g(y)dy ∈ L2([0, 1]),

∥A∥op := sup
∥g∥L2([0,1])=1

∫ 1

0

( ∫ 1

0
A(x, y)g(y)dy

)2
dx ≤ C2.

Therefore we get

∥∥UN (s, ·)
∥∥2
L2([0,1])

≤ 4 ∥U(0, ·)∥2L2([0,1]) + 4C2
2α

2s

∫ s

0

∥∥UN (u, ·)
∥∥2
L2([0,1])

ds

+ 4α2β2
∫ 1

0

(∫ s

0
1(0,τN )(u)dξ2(u, x)

)2

dx+ 4α2ζ2
∫ 1

0

(∫ s

0
1(0,τN )(u)dξ3(u, x)

)2

dx.
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Taking the supreme over [0, τ ] and taking the expectation, we get

E
[

sup
s∈[0,τ ]

∥∥UN (s, ·)
∥∥2
L2([0,1])

]
≤ 4E

[
∥U(0, ·)∥2L2([0,1])

]
+ 4C2

2α
2τ

∫ τ

0
E
[ ∥∥UN (s, ·)

∥∥2
L2([0,1])

]
ds

+ 4α2β2 sup
s∈[0,τ ]

∫ 1

0
E
[( ∫ s

0
1(0,τN )(u)dξ2(u, x)

)2]
dx

4α2ζ2 sup
s∈[0,τ ]

∫ 1

0
E
[( ∫ s

0
1(0,τN )(u)dξ3(u, x)

)2]
dx.

According to (5.39) and (5.41), we have

E [⟨dξ2(s, x), dξ2(s, x)⟩] = A(x, x)ds,

E [⟨dξ3(s, x), dξ3(s, x)⟩] =

∫ 1

0

∫ 1

0
Θ(s, z1)Θ(s, z2)B̃(x, z1, x, z2)dz1dz2ds,

where B̃(x, z1, x, z2) = B(x, x1, x, z2) −A(x, z1)A(x, z2). Under Assumption 5.2.2, we get

E
[

sup
s∈[0,τ ]

∥∥UN (s, ·)
∥∥2
L2([0,1])

]
≤ 4E

[
∥U(0, ·)∥2L2([0,1])

]
+ 4C2

2α
2τ

∫ τ

0
E
[ ∥∥UN (s, ·)

∥∥2
L2([0,1])

]
ds

+ 4α2β2
∫ 1

0

∫ τ

0
A(x, x)d(s ∧ τN )dx

+ 4α2ζ2
∫ 1

0

∫ τ

0

∫ 1

0

∫ 1

0
Θ(s, z1)Θ(s, z2)B̃(x, z1, x, z2)dz1dz2d(s ∧ τN )dx

≤ 4E
[
∥U(0, ·)∥2L2([0,1])

]
+ 4C2

2α
2τ

∫ τ

0
E
[ ∥∥UN (s, ·)

∥∥2
L2([0,1])

]
ds

+ 4C2α
2β2τ + 4

(
C5 + C2

2

)
α2ζ2

∫ τ

0
∥Θ(s, ·)∥2L2([0,1]) ds

≤ 4E
[
∥U(0, ·)∥2L2([0,1])

]
+ 4C2

2α
2τ

∫ τ

0
E
[

sup
r∈[0,s]

∥∥UN (r, ·)
∥∥2
L2([0,1])

]
ds

+ 4C2α
2β2τ + 4(C5 + C2

2 )α2ζ2
∫ τ

0
∥Θ(s, ·)∥2L2([0,1]) ds.

With Gronwall’s inequality we get

E
[

sup
s∈[0,τ ]

∥∥UN (s, ·)
∥∥2
L2([0,1])

]
≤ 4

(
E
[
∥U(0, ·)∥2L2([0,1])

]
+ C2α

2β2τ

+ (C5 + C2
2 )α2ζ2

∫ τ

0
∥Θ(s, ·)∥2L2([0,1]) ds

)
× exp

(
4C2

2α
2τ2
)
.

Last letting N → ∞ and according to Monotone convergence theorem, we prove (5.18).
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Existence: As before, we use the Picard iteration argument to show existence. Let U0(s, x) =

U(0, x) for all s ∈ [0, τ ]. The Picard iteration is given by

Uk(s, x) = U(0, x) − α

∫ s

0

∫ 1

0
A(x, y)Uk−1(u, y)dydu+ αβ

∫ s

0
dξ2(u, x) + αζ

∫ s

0
dξ3(u, x).(5.46)

With similar argument as in the stability part, we get for any K ∈ N,

E
[

max
1≤k≤K

∥Uk(s, ·)∥2L2([0,1])

]
≤ 4C2

2α
2s

∫ s

0
max

1≤k≤K
E
[
∥Uk(u, ·)∥2L2([0,1])

]
du

+ 4
(
E
[
∥U(0, ·)∥2L2([0,1])

]
+ C2α

2β2s+ (C5 + C2
2 )α2ζ2

∫ s

0
∥Θ(u, ·)∥2L2([0,1]) du

)
.

Gronwall’s inequality implies that for any k ∈ N,

E
[
∥Uk(s, ·)∥2L2([0,1])

]
≤ 4

(
E
[
∥U(0, ·)∥2L2([0,1])

]
+ C2α

2β2s+ (C5 + C2
2 )α2ζ2

∫ s

0
∥Θ(u, ·)∥2L2([0,1]) du

)
exp

(
4C2

2α
2s2
)
.

Therefore for any k and s ∈ [0, τ ], U(s, ·) ∈ L2([0, 1]). Next we show that {Uk}∞k=1 converges in the

space C([0, τ ];L2([0, 1])). From (5.46), we have for any k ≥ 1 and s ∈ [0, τ ],

∥Uk+1(s, ·) − Uk(s, ·)∥2L2([0,1]) = α2

∥∥∥∥∫ s

0

∫ 1

0
A(x, y) (Uk(u, y) − Uk−1(u, y)) dydu

∥∥∥∥2
L2([0,1])

≤ C2
2α

2s

∫ s

0
∥Uk(u, ·) − Uk−1(u, ·)∥2L2([0,1]) du,

and

∥U1(s, ·) − U0(s, ·)∥2L2([0,1]) ≤ 3α2

∫ 1

0

( ∫ s

0

∫ 1

0
A(x, y)U0(y)dydu

)2
dx+ 3α2β2

∫ 1

0

( ∫ s

0
dξ2(u, x)

)2
dx

+ 3α2ζ2
∫ 1

0

( ∫ s

0
dξ3(u, x)

)2
dx.
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Therefore, for any s ∈ [0, τ ], we have that

E
[

sup
r∈[0,s]

∥U1(r, ·) − U0(r, ·)∥2L2([0,1])

]
≤ 3C2

2α
2s2E

[
∥U(0, ·)∥2L2([0,1])

]
+ 3C2α

2β2s

+ 3
(
C5 + C2

2

)
α2ζ2

∫ s

0
∥Θ(u, ·)∥2L2([0,1]) du

:= C(s) ≤ C(τ) <∞,

and

E
[

sup
r∈[0,s]

∥Uk+1(r, ·) − Uk(r, ·)∥2L2([0,1])

]
≤ C2

2α
2s

∫ s

0
E
[

sup
u∈[0,r]

∥Uk(u, ·) − Uk−1(u, ·)∥2L2([0,1])

]
du.

Hence, by induction, we get that for any k ≥ 1,

E
[

sup
r∈[0,s]

∥Uk+1(r, ·) − Uk(r, ·)∥2L2([0,1])

]
≤
C(τ)

(
C2
2α

2τs
)k

k!
.

Therefore according to Markov inequality,

P
(
∥Uk+1(r, ·) − Uk(r, ·)∥2L2([0,1]) >

1

2k
)
≤
C(τ)

(
2C2

2α
2τs
)k

k!
.

Let Ω be the path space on which the Gaussian field processes ξ2 and ξ3 are defined. Accord-

ing to Borel-Cantelli Lemma, we have have that for almost every ω ∈ Ω, there exists k(ω) such

that supr∈[0,s] ∥Uk+1(r, ·) − Uk(r, ·)∥2L2([0,1]) ≤ 1
2k

for any k ≥ k(ω). Therefore with probability 1,

{Uk(·, ·)}k≥1 converges in C([0, τ ];L2([0, 1])) with limit U(·, ·) ∈ C([0, τ ];L2([0, 1])). Furthermore

we can check that U satisfies SDE (5.8). Therefore the solution to (5.8) exists.

Uniqueness: Suppose that there exist two solutions, U,U to SDE (5.8), from (5.45), we have for

any s ∈ [0, τ ], x ∈ [0, 1],

U(s, x) − U(s, x) = −α
∫ s

0

∫ 1

0
A(x, y)

(
U(u, y) − U(u, y)

)
dydu,

which implies that

E
[

sup
s∈[0,τ ]

∥∥U(s, ·) − U(s, ·)
∥∥
L2([0,1])

]
≤ C2

2α
2τE

[ ∫ τ

0
sup

r∈[0,s]

∥∥U(r, ·) − U(r, ·)
∥∥
L2([0,1])

ds
]
.
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By Gronwall’s inequality we have

E
[

sup
s∈[0,τ ]

∥∥U(s, ·) − U(s, ·)
∥∥
L2([0,1])

]
≤ E

[ ∥∥U(0, ·) − U(0, ·)
∥∥2
L2([0,1])

]
exp

(
C2
2α

2τ2
)

= 0.

Therefore these is a unique solution to (5.8) in C([0, τ ];L2([0, 1])). ■

5.10. Proofs for Applications from Section 5.5

Proof of Proposition 5.5.1. First, according to the definition of MSEd,T , we have

MSEd,T (s) =
1

d

d∑
i=1

Θ
d,T

(
⌊sT ⌋
T

,
i

d
)2 =

∫ 1

0
Θ

d,T
(s, y)2dy + o(1)

→ MSE(s) :=

∫ 1

0
Θ(s, y)2dy as d, T → ∞,

where the second identity follows from the fact that Θ
d,T ∈ C([0, τ ];C([0, 1])). The last step follows

from Theorem 5.3.1. Next for the predictive error, according to the definition of PEd,T ,

PEd,T (s) =
1

d2

d∑
i,j=1

A(
i

d
,
j

d
)Θ

d,T
(
⌊sT ⌋
T

,
i

d
)Θ

d,T
(
⌊sT ⌋
T

,
j

d
)

=

∫ 1

0

∫ 1

0
A(x, y)Θ

d,T
(s, x)Θ

d,T
(s, y)dxdy + o(1)

→ PE(s) as d, T → ∞,

where the second identity follows from the fact that Θ
d,T ∈ C([0, τ ];C([0, 1])). The last step follows

from Theorem 5.3.1. Last, different equations that characterize Θ follows directly from Theorem

5.3.1. ■

Proof of Proposition 5.5.2. Scaling conditions in (1), (2) and (3) corresponds to the dif-

ferent scalings in Theorem 5.3.5. Therefore for each cases, we have Θ
d,T p→ Θ, Ud,T d→ U with Θ

being the solution to (5.4). U solves (5.8), (5.9), (5.10) in (1), (2) and (3) respectively. Next we
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apply these convergence results to prove (i).

γ
(
MSEd,T (s) −MSE(s)

)
= −γ

( ∫ 1

0
Θ(s, x)2dx− 1

d

d∑
i=1

Θ(s,
i

d
)2
)

︸ ︷︷ ︸
Ns

1

− γ

d

d∑
i=1

(
Θ(s,

i

d
)2 − Θ(

⌊sT ⌋
T

,
i

d
)2
)

︸ ︷︷ ︸
Ns

2

− 2γ

d

d∑
i=1

Θ(
⌊sT ⌋
T

,
i

d
)
(
Θ(

⌊sT ⌋
T

,
i

d
) − Θ

d,T
(
⌊sT ⌋
T

,
i

d
)
)

︸ ︷︷ ︸
Ns

3

+
γ

d

d∑
i=1

(
Θ(

⌊sT ⌋
T

,
i

d
) − Θ

d,T
(
⌊sT ⌋
T

,
i

d
)
)2

︸ ︷︷ ︸
Ns

4

.

(a) For N s
1 , since Θ(s, ·) ∈ C1([0, 1]) ∩ L∞([0, 1]) for any s ∈ [0, τ ], we have

∣∣ ∫ 1

0
Θ(s, x)2dx− 1

d

d∑
i=1

Θ(s,
i

d
)2
∣∣ ≤ 2 ∥Θ(s, ·)∥∞ ∥∂xΘ(s, ·)∥∞ d−1

Therefore

– in (1), N s
1 = O(T

1
2
d−1

) = o(1) because T = o(d2).

– in (2), N s
1 = O(σ−1T

1
2 ) = o(1) because max(d, T

1
2 ) ≪ σ.

– in (3), N s
1 = O(γd−1) = o(1) because γ ≪ d.

(b) For N s
2 , since Θ(·, x) ∈ C1([0, τ ]) ∩ L∞([0, τ ]) for any x ∈ [0, 1], we have

∣∣Θ(s,
i

d
)2 − Θ(

⌊sT ⌋
T

,
i

d
)2
∣∣ ≤ 2 ∥Θ(·, x)∥∞ ∥∂sΘ(·, x)∥∞ T−1.

Therefore

– in (1), N s
2 = O(γT−1) = O(T− 1

2 ) = o(1).

– in (2), N s
2 = O(γT−1) = O(σ−1dT− 1

2 ) = o(1) because max(d, T
1
2 ) ≪ σ.

– in (3), N s
2 = O(γT−1) = o(dT−1) = o(1) because d = O(T

1
2 ).
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(c) For N s
3 , according to the definition of Ud,T , we have

N s
3 = −2

d

d∑
i=1

Θ(
⌊sT ⌋
T

,
i

d
)Ud,T (

⌊sT ⌋
T

,
i

d
)

= −2

∫ 1

0
Θ(s, x)U(s, x)dx+ 2

( ∫ 1

0
Θ(s, x)U(s, x)dx− 1

d

d∑
i=1

Θ(
⌊sT ⌋
T

,
i

d
)U(

⌊sT ⌋
T

,
i

d
)
)

+
2

d

d∑
i=1

Θ(
⌊sT ⌋
T

,
i

d
)
(
U(

⌊sT ⌋
T

,
i

d
) − Ud,T (

⌊sT ⌋
T

,
i

d
)
)
.

As U ∈ C([0, τ ];C([0, 1])), Ud,T d→ U and Θ ∈ C1([0, τ ];C1([0, 1])), we have that

∫ 1

0
Θ(s, x)U(s, x)dx− 1

d

d∑
i=1

Θ(
⌊sT ⌋
T

,
i

d
)U(

⌊sT ⌋
T

,
i

d
) = o(1)

2

d

d∑
i=1

Θ(
⌊sT ⌋
T

,
i

d
)
(
U(

⌊sT ⌋
T

,
i

d
) − Ud,T (

⌊sT ⌋
T

,
i

d
)
)

= o(1).

Therefore, we get

N s
3

d→ −2

∫ 1

0
Θ(s, x)U(s, x)dx.

(d) For N s
4 , according to the definition of Ud,T , we have

N s
4 = − 1

γd

d∑
i=1

Ud,T (
⌊sT ⌋
T

,
i

d
)2

= −γ−1

∫ 1

0
U(s, x)2dx− γ−1

( ∫ 1

0
U(s, x)2dx− 1

d

d∑
i=1

U(
⌊sT ⌋
T

,
i

d
)2
)

− γ−1d−1
d∑

i=1

(
Ud,T (

⌊sT ⌋
T

,
i

d
)2 − U(

⌊sT ⌋
T

,
i

d
)2
)
.
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According to (5.18) and the fact that γ ≫ 1, γ−1
∫ 1
0 U(s, x)2dx = o(1). As U ∈ C([0, τ ];C([0, 1]))

and Ud,T d→ U , we have that

∫ 1

0
U(s, x)2dx− 1

d

d∑
i=1

U(
⌊sT ⌋
T

,
i

d
)2 = o(1)

1

d

d∑
i=1

(
Ud,T (

⌊sT ⌋
T

,
i

d
)2 − U(

⌊sT ⌋
T

,
i

d
)2
)

= o(1).

Therefore, N s
4 = o(1).

According to points (a), (b), (c), and (d) above, (i) is proved. Statement (ii) can be proved similarly

under Assumption 5.2.2. We will leave it to the readers. ■

Proof of Lemma 5.5.4. Let Ā(x) = a0+
∑∞

k=1 bk cos(2πkx) for all x ∈ [0, 1]. Then A(x, y) =

Ā(|x − y|) for all x, y ∈ [0, 1]. To prove that A satisfies Assumption 5.2.2, it suffices to show

that Ā ∈ C2([0, 1]). Note that Ā is given in the form of Fourier series with orthonormal basis

{1,
√

2 cos(2πkx),
√

2 sin(2πkx)}k≥1. Under condition (5.13), we have Ā ∈ H(5+ε)/2([0, 1]), where

H(5+ε)/2([0, 1]) is the Sobolev space of functions on [0, 1] with square-integrable weak derivatives

up to order (5 + ε)/2; see, for example, [AF03] for details about Sobolev spaces. By the Sobolev

embedding theorem [AF03, Chapter 4], we hence have that Ā ∈ C2([0, 1]), thus implying the desired

result.

According to (5.15), we have

B(x1, x2, x3, x4) =
∑
p∈P 2

4

∏
(i,j)∈p

A(xi, xj)(5.47)

From Lemma 5.5.4, we know that A is bounded and twice continuously differentiable. Therefore

B is continuous and bounded. Furthermore with (5.47), we have

∣∣B(x1, x3, x1, x3) +B(x2, x3, x2, x3) − 2B(x1, x3, x2, x3)
∣∣

=
∣∣A(x1, x3) (A(x1, x1) +A(x2, x2) − 2A(x1, x2)) − 2 (A(x1, x3) −A(x2, x3))

2
∣∣ ≤ C|x1 − x2|2,
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and

∣∣B(x1, x1, x1, x1) +B(x2, x2, x2, x2) + 6B(x1, x1, x2, x2) − 4B(x1, x1, x1, x2) − 4B(x1, x2, x2, x2)
∣∣

=3
∣∣A(x1, x1) +A(x2, x2) − 2A(x1, x2)

∣∣2 ≤ C|x1 − x2|4,

where the last inequality follows from Lemma 5.5.4. Therefore the function B satisfies Assumption

5.2.2. For the eighth moments, similarly we have

E(x1, · · · , x8) =
∑
p∈P 2

8

∏
(i,j)∈p

A(xi, xj)(5.48)

Therefore according to Lemma 5.5.4, E is continuous and bounded. Furthermore with (5.48),

letting x̃ = (x3, x4, x5, x6) we have that

∣∣E(x1, x1, x1, x1, x̃) + E(x2, x2, x2, x2, x̃) + 6E(x1, x1, x2, x2, x̃)

− 4E(x1, x1, x1, x2, x̃) − 4E(x1, x2, x2, x2, x̃)
∣∣

=
∣∣3(A(x1, x1) +A(x2, x2) − 2A(x− 1, x2))

2
∑

p∈P 2
3−6

∏
(i,j)∈p

A(xi, xj) +
∑
σ(i)

4∏
j=1

(A(x1, xij ) −A(x2, xij ))

+ 3(A(x1, x1) +A(x2, x2) − 2A(x1, x2))
(∑
σ(i)

A(xi3 , xi4)

2∏
j=1

(
A(x1, xij ) −A(x2, xij )

))∣∣
≤ C

∣∣x1 − x2
∣∣4,

where we use P 2
3−6 to denote the set of all pairings in {3, 4, 5, 6} and

∑
σ(i)

to denote summing the

4-tuple i := (i1, i2, i3, i4) over all permutations of the set {3, 4, 5, 6}. The last inequality above

follows from Lemma 5.5.4. Therefore, the function E satisfies Assumption 5.2.2. ■

Proof of Proposition 5.5.5. We starting by proving part (a). According to (5.4),

d

ds
MSE(s) =

d

ds

∫ 1

0
Θ(s, x)2dx = −2α

∫ 1

0

∫ 1

0
Θ(s, x)A(x, y)Θ(s, y)dxdy

= −2α
∞∑
i=1

λi⟨Θ(s, ·), ϕi⟩2L2([0,1])

≤ −2αλMSE(s),
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where the equality in the second line follows from our assumption on A and the inequality in the

last line follows from the assumption that λ := infi λi > 0. The final claim follows from Gronwall’s

inequality.

Next, we prove part (b). Define the functional F : L2([0, 1]) → R as

F [ϕ] :=

∫ 1

0

∫ 1

0
A(x, y)ϕ(x)ϕ(y)dxdy, ∀ϕ ∈ L2([0, 1]).

Its functional gradient δF [ϕ]
δϕ : [0, 1] → R and its functional Hessian δ2F [ϕ]

δϕ2 : [0, 1]2 → R are given by

δF [ϕ]

δϕ
(x) = 2

∫ 1

0
A(x, y)ϕ(y)dy,

δ2F [ϕ]

δϕ2
(x, y) = 2A(x, y)

Let Θ be the solution to (5.4). For any s ∈ [0, τ ], we have

PE′(s) =
d

ds
F [Θ(s, ·)] = −2α

∫ 1

0

∫ 1

0

∫ 1

0
A(x, y)A(y, z)Θ(s, x)Θ(s, z)dxdydz

= −α
2

∫ 1

0

∣∣∣∣δF [Θ(s, ·)]
δΘ(s, ·)

(y)

∣∣∣∣2 dy,

where the second identity follows from (5.4). Integrate from on interval [0, s] and we get

PE(s) = PE(0) − α

2

∫ s

0

∫ 1

0

∣∣∣∣δF [Θ(r, ·)]
δΘ(r, ·)

(y)

∣∣∣∣2 dydr

= F [Θ(0, ·)] −F [0] − α

2

∫ s

0

∫ 1

0

∣∣∣∣δF [Θ(r, ·)]
δΘ(r, ·)

(y)

∣∣∣∣2 dydr,(5.49)

where the last step follows from the fact that F [0] = 0. Notice that

δF [Θ(r, ·)]
δΘ(r, ·)

(y) = 2

∫ 1

0
A(x, y)Θ(r, y)dy = − 2

α
∂rΘ(r, x).(5.50)

Therefore, we have

PE(0) −F [0] = −
〈δF [Θ(0, ·)]

δΘ(0, ·)
,−Θ(0, ·)

〉
L2([0,1])

−
∫ 1

0

∫ 1

0
Θ(0, x)A(x, y)Θ(0, y)dxdy

≤ − 2

α
⟨∂sΘ(s, x)|s=0,Θ(0, ·)⟩L2([0,1])

= − 1

α

(
d

ds

∫ 1

0
Θ(s, y)2dy

) ∣∣∣∣
s=0

,(5.51)
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where the first step follows from Taylor expansion and the inequality follows from our assumption

on A and (5.50). Meanwhile, according to (5.50),

−α
2

∫ s

0

∫ 1

0

∣∣∣∣δF [Θ(r, ·)]
δΘ(r, ·)

(y)

∣∣∣∣2 dydr = − 2

α

∫ s

0

∫ 1

0
(∂rΘ(r, y))2 dydr = − 2

α

∫ 1

0

∫ s

0
∂rΘ(r, y)Θ(r, y)drdy

= − 2

α

∫ 1

0
Θ(s, y)∂rΘ(r, y)|r=s − Θ(0, y)∂rΘ(r, y)|r=0dy

+
2

α

∫ 1

0

∫ s

0
Θ(r, y)∂2rrΘ(r, y)drdy

=
2

α

(
d

dr

∫ 1

0
Θ(r, x)2dx

∣∣∣∣
r=0

− d

dr

∫ 1

0
Θ(r, x)2dx

∣∣∣∣
r=s

)
+
α

2

∫ s

0

∫ 1

0

∣∣∣∣δF [Θ(r, ·)]
δΘ(r, ·)

(y)

∣∣∣∣2 dydr(5.52)

where the last step follows because

2

α

∫ 1

0

∫ s

0
Θ(r, y)∂2rrΘ(r, y)drdy = −2

∫ 1

0

∫ s

0
Θ(r, y)

∫ 1

0
A(y, z)∂rΘ(r, z)dzdrdy

= 2α

∫ 1

0

∫ s

0
Θ(r, y)

∫ 1

0
A(y, z)

∫ 1

0
A(z, x)Θ(r, x)dxdzdrdy

= 2α

∫ s

0

∫ 1

0

(∫ 1

0
A(y, z)Θ(r, z)dz

)2

dyds

=
α

2

∫ s

0

∫ 1

0

∣∣∣∣δF [Θ(r, ·)]
δΘ(r, ·)

(y)

∣∣∣∣2 dydr.

Therefore based on combining (5.49), (5.51) and (5.52), we have that

PE(s) ≤ − 1

α

(
d

ds

∫ 1

0
Θ(s, y)2dy

) ∣∣∣∣
s=0

+
1

α

(
d

dr

∫ 1

0
Θ(r, x)2dx

∣∣∣∣
r=0

− d

dr

∫ 1

0
Θ(r, x)2dx

∣∣∣∣
r=s

)
= − 1

α

d

ds

∫ 1

0
Θ(s, x)2dx.

Integrating over [0, τ ], we have∫ τ

0
PE(s)ds ≤ −MSE(τ)

α
+

MSE(0)

α
≤ MSE(0)

α
.
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From previous calculations we know that PE′(s) = −α
2

∫ 1
0

∣∣∣ δF [Θ(s,·)]
δΘ(s,·) (y)

∣∣∣2 dy ≤ 0. Therefore

PE(τ) ≤
∫ τ
0 PE(s)ds

τ
≤ MSE(0)

ατ
.

■
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process. The Annals of Applied Probability, 29(4):2266–2301, 2019.
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