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ABSTRACT 
Identifying locations of occupants is beneficial to energy 
management in buildings. A key observation in indoor 
environment is that distinct functional areas are typically 
controlled by separate HVAC and lighting systems and room level 
localization is sufficient to provide a powerful tool for energy 
usage reduction by occupancy-based actuation of the building 
facilities. Based upon this observation, this paper focuses on 
identifying the room where a person or a mobile device is 
physically present. Existing room localization methods, however, 
require special infrastructure to annotate rooms. 

SoundLoc is a room-level localization system that exploits the 
intrinsic acoustic properties of individual rooms and obviates the 
needs for infrastructures. As we show in the study, rooms’ 
acoustic properties can be characterized by Room Impulse 
Response (RIR). Nevertheless, obtaining precise RIRs is a time-
consuming and expensive process. The main contributions of our 
work are the following. First, a cost-effective RIR measurement 
system is implemented and the Noise Adaptive Extraction of 
Reverberation (NAER) algorithm is developed to estimate room 
acoustic parameters in noisy conditions. Second, a comprehensive 
physical and statistical analysis of features extracted from RIRs is 
performed. Also, SoundLoc is evaluated using the dataset 
consisting of ten (10) different rooms. The overall accuracy of 
97.8% achieved demonstrates the potential to be integrated into 
automatic mapping of building space. 

Categories and Subject Descriptors 
H.5.5 [Information Interfaces and Presentation]: Sound and 
Music Computing – Signal analysis, synthesis, and processing.  
H.4.1 [Information Systems Applications]: Office Automation 

General Terms 
Algorithms, Measurement, Performance, Design, Experimentation 

Keywords 
Indoor localization, Room acoustics, Room identification 

1. INTRODUCTION 
Commercial buildings contribute to 19% of the primary energy 
consumption in US. Prior research has shown that most of 
buildings use static control for building facilities, such as Heating, 
Ventilation and Air Conditioning (HVAC) and lighting systems, 
thereby considerable energy is wasted in conditioning and lighting 
unoccupied spaces [1, 2]. Awareness of occupancy information 
can help adaptively run the conditioning and lighting systems and 
reduce energy consumption in buildings. Therefore, availability of 
indoor locations has become an immediate need.  

Unlike outdoors, where GPS can provide a relatively accurate and 
robust solution for positioning, indoor localization has not been 
equally facilitated by GPS due to significant positioning error of 

satellite based navigation systems in closed environments. A 
variety of alternatives have been proposed for indoor operation, 
ranging from visual [3] to infrared [4]. There have also been 
extensive research works focusing on indoor localization systems 
based on WiFi wireless network along with WiFi enabled devices 
[5]. However, the density of access points has a strong influence 
on localization accuracy. The reported WiFi localization accuracy 
drops below 70% in real usage environments since access point 
density may be low or occupancy variations may lead to 
significant WiFi signal variations. Also, these techniques face 
certain disadvantages that special-purpose infrastructure is 
required. 

In contrast to infrastructure-based techniques, SoundLoc is 
supported by internal microphone and speaker on laptops or 
mobile phones, which are the most ubiquitous devices. A key 
observation that supports our work is that indoor environment is 
well-structured and can be organized into areas with distinct 
geometry and functionalities. These areas can either be open 
spaces without a proper boundary like hallway, or closed spaces 
such as offices. “Room” refers to a closed space in most cases. 
We notice that the control of lighting and HVAC systems are 
typically room-level based. Therefore, instead of notating location 
with physical coordinates (latitude/longitude), a room level 
localization is sufficient for any occupancy-based control of 
lighting and HVAC systems. Radio-based techniques have birth 
defects of confusing nearby rooms as the inference for location is 
based on received WiFi signal strength, which varies with time 
and indoor environment changes. To overcome this shortcoming, 
our work exploits the acoustic properties to identify a location. 
The acoustic effects of a space are governed by geometry and 
furnishings. Even though two rooms are geospatially adjacent, 
they can be easily distinguishable in acoustic feature space. 

This article describes SoundLoc, a room identification method 
based on the extraction of acoustic features of rooms. The concept 
of “room” also incorporates open spaces, which exhibit special 
acoustic properties that can be leveraged for localization as well. 
SoundLoc exploits the acoustic effects of a room on audio signals 
and can be freely implemented without any infrastructures. 

The rest of this paper is organized as follows. Section 2 describes 
related work. Section 3 describes the formulation of localization 
problems in terms of rooms’ acoustic properties and explores 
various acoustic features that are promising to be used for 
localization. Section 4 describes the experiment design. Section 5 
evaluates the performance of SoundLoc. Section 6 concludes the 
paper. 

2. RELATED WORK 
Indoor localization has been extensively studied. Early works 
tried to build an empirical RF propagation model to estimate the 
location by received signal strength from multiple known access 



points [6]. This method suffers from meters of localization error 
and the model is very complex in order to take the dynamics of 
RF environment into account. Recent works focus on giving a 
quantitative description of the indoor environment, i.e. to create a 
unique fingerprint for a given room. Various types of fingerprints 
have been developed, mainly RF fingerprints and ambient 
fingerprints. 

Radar [6] pioneered fingerprinting method based on received 
signal strength hearing from multiple access points. Horus [7] 
developed a more sophisticated and accurate approach wherein 
the signal strength measurements at each location are represented 
as a probability distribution and fingerprints are matched using 
maximum likelihood criterion instead of a deterministic matching 
in Radar. ARIEL [8] proposed a room localization system 
correlate occupants’ motion pattern with WiFi signal to improve 
identification accuracy. However, these techniques are hampered 
by long-term signal variations caused by occupancy variations and 
low access point density. SurroundSense [9] extends the 
fingerprinting idea by combining multiple sensors on smartphone 
and building a map using several ambient features such as 
background sound, light, color in addition to WiFi signal strength. 
In SurroundSense, the acoustic fingerprint is a compact histogram 
of sound in the time domain. ABS [10] alternatively exploits the 
spectral representation of background sounds for room 
identification. SoundSense [11] also uses spectral features but 
transient sounds are used instead to classify sounds observed on a 
mobile device. However, these works are based upon the 
assumption that the ambient sound features in a place can be 
stationary and suggestive, which is not always satisfied in 
applications. In real cases, the background sound can vary both 
transiently and long-termly. People’s talking could appear 
randomly and even different HVAC on/off states could generate 
distinctive background sound that has influence on the ambient 
sound fingerprints. Therefore, sounds fingerprints are often 
combined with other localization techniques in order to achieve a 
higher accuracy. ABS [10] integrates background sound 
fingerprints with WiFi and 69% has been realized. Several efforts 
have been made to identify the location by using pre-installed 
equipment to detect the sound generated by occupants or mobile 
devices.  Daredevil [12] deploys microphone arrays to determine 
the location of smartphones emitting a tone by triangulation. 
Rather than detecting the uncontrolled background sound, 
acoustic fingerprint exploits the room’s acoustical effect on audio 
signals. [13] demonstrates a system that identifies the room 
through analysis of acoustical properties of audio recordings. 61% 
accuracy has been achieved for musical signals and 85% for 
speech signals. [14] classifies the room based on reverberation 
time extracted from RIRs, and 3.9 % error rate has been achieved. 
However, the RIR samples used in the paper are collected from 
places that vary significantly in volumes and inside furnishings, 
such as classrooms, music hall, auditorium etc. 

Our work differs from the above work in following aspects. 
Firstly, no extra microphones need to be installed as we employ 
internal microphone and speaker on the device. Secondly, we 
leverage the rooms’ intrinsic acoustic properties rather than 
analyzing the non-stationary background. Thirdly, we present a 
real-time and cost-effective RIR measurement system. Instead of 
using RIR samples available online that were collected from 
places varying considerably in volumes, we perform RIR 
measurement in several similar building environments such as 
adjacent offices and demonstrate the potential of acoustic features 
to identify places in buildings, both closed and open spaces are 
included. 

3. THEORY FRAMEWORK 
Our localization scheme is based on the acoustic features 
extracted from the Room Impulse Response (RIR), which is an 
important characterization of the acoustical effect of a room on 
audio signals. RIR is related to the room’s size, shape, surface 
absorption, etc. However, obtaining accurate RIRs is a time-
consuming process and requires special measurement equipment, 
such as dodecahedron loudspeaker and soundfield microphone. In 
this paper, we acquire RIRs by using built-in speakers and 
microphones on laptops. Not surprisingly, the RIRs we measured 
are very noisy, which can distort the evaluated acoustic 
parameters. In this section, we present a variety of acoustic 
features extracted from the RIR and their relation to rooms’ 
geometric and absorption properties. Also, we put forward a novel 
noise compensation technique to extract features from noisy RIRs.  

3.1 Problem formulation 
When a sound is produced inside a room, the sound signal travels 
not only the direct path from source to receiver, but also arrives at 
the receiver after several bouncing off walls or other objects. 
Therefore, the signal received is a superposition of multiple delay 
and distorted versions of the original signal, which is perceived as 
echo and reverberation. Intuitively, the received signal contains 
information about room’s size and absorption properties. Since 
the environment’s geometry and interior furnishing materials are 
roughly linear and time-invariant, the “room effect” can be 
viewed as a linear time-invariant system and characterized by an 
impulse response h(t) . Thus, the received signal is a convolution 
of the transmitted signal and a room impulse response (RIR) in 
the time domain, as illustrated in Fig. 1. Since there exists a one-
to-one mapping from a room to its “room effect”, a unique label 
can be assigned to it theoretically if its RIR is available. In other 
words, we can work out the indoor localization problem with a 
granularity of rooms if the RIR of a unknown location is obtained. 

 
Figure 1. The room can be modeled as a linear time-invariant 
system and the received signal is a linear convolution of test 
excitation sequence and room impulse response. 
A common approach to measure the RIR is to apply a known 
excitation signal, measure the system’s output and then 
deconvolve the measured response with the test sequence. The 
choice concerning the excitation signals and deconvolution 
techniques is of essential significance to RIR measurement.  
Several types of most commonly used excitation signals are 
presented and compared in [15]. In our paper, we utilize 
Maximum Length Sequence (MLS) as the input sequence, which 
is known for its capability of providing vastly superior dynamic 
range and high signal-to-noise ratio. MLS is a periodic pseudo-
random signal and behaves almost the same as white noise in the 
sense of schochastic properties. Hence we can acquire the RIR by 
computing the autocorrelation of the received signal [16],    

 h(k) = Ry k( ) = E y n( )y* n − k( )⎡⎣ ⎤⎦   (1) 

where Ry k( )   denotes the autocorrelation and it is defined as the 
expectation of the product of the original signal and a delay of the 

h(t) 

n(t) 
y(t) x(t) 

test sequence room measured response 

measurement  
noise 



signal’s complex conjugate. In order to reduce the time-aliasing 
error, a MLS with longer period is preferred [17]. In our 
measurement system, the length of MLS is 217 −1 . And we 
perform the autocorrelation using the fast Hadamard transform in 
order to minimize the computing time and efficiently determine 
the RIRs [18].  

Hereto, a theoretical framework for RIR acquisition is introduced. 
However, RIRs take the form of time series and cannot be directly 
fed in the classification algorithm. It is necessary to extract some 
“valuable” features from RIR and these features should include 
rich information regarding location. And furthermore an acoustic 
fingerprint can be built by combining these acoustic features and 
used to uniquely determine the room label. 

Table 1. Details of investigated rooms 
Investigated Area Area (m2) Description 
Office A 10.2 Closed space, quiet 
Office B 8.8 Closed space, quiet 
Office C 7.1 Closed space, quiet 
Office D 11.7 Closed space, quiet 
Conference Room 26.1 Closed space, quiet 
Lab 11.7 Closed space, server noise 
Kitchen 6.5 Open space, speaking and 

coffee machine noise 
Hallway - Open space, speaking noise 
Stairs Significantly 

larger than 
other closed 
spaces  

Closed space, speaking, 
footstep and door creaky 
noise 

Cubicle Zone 8.8 Open space surrounded by 
clipboard, speaking noise 

 

3.2 Acoustic feature exploration 
3.2.1 Temporal features 
We use kurtosis of the RIR in time domain to remark its temporal 
properties. In statistics, kurtosis describes the peakedness of the 
probability density function of a real-valued random variable. 
Kurtosis of a signal x(k)  in the time domain is defined as 
follows: 

 kur x k( )⎡⎣ ⎤⎦ =
E x k( )− µ⎡⎣ ⎤⎦

σ 4   (2) 

where E[]  is the expectation operator, µ  is the mean of signal 
and σ  is the standard deviation. Higher kurtosis of a time domain 
signal means more of the variance results from infrequent extreme 
deviations, in contrast to frequent modestly sized deviations. The 
kurtosis of the RIR is an indicator of the volume of a room. If the 
room is large, then the RIR will have infrequent large deviations 
and thereby higher kurtosis. On the contrary, a small volume will 
result in lower kurtosis. Fig. 2 illustrates the distributions of 
temporal kurtosis in different locations. The details of locations 
involved are listed in Table 1. As can be seen, closed spaces with 
relatively small volumes exhibit small kurtosis in the time 
domain, while open spaces or spaces with large volume have 
larger kurtosis. 

 
Figure 2. Normalized histogram of temporal kurtosis. Closed 
spaces with small volumes such as offices, conference room, and 
cubicle have smaller temporal kurtosis. Open spaces such as 
kitchen and hallway or closed spaces with large volume such as 
stairs have large kurtosis. 

 

Figure 3. Normalized histogram of spectral standard deviation in 
octave band centered at 250 Hz. Places covered with carpet such 
as offices, lab, hallway and cubicle exhibit a larger spectral 
standard deviation. Places without special sound reduction such as 
stairs and kitchen shows a smaller spectral standard deviation. 

3.2.2 Spectral features 
In audio physics, direct-to-reverberant energy ratio is an important 
parameter to characterize a room’s acoustic properties such as 
diffuseness. It depends on the geometry and absorption of the 
space where the sound waves propagate. In [19], it is shown that 
the direct-to-reverberant energy ratio increases with the standard 
deviation of RIR spectrum. Hence, spectral standard deviation can 
be used to characterize a room. Since the absorption properties of 
materials are a function of frequency, we further inspect this 
feature within different frequency bands, as defined by 

 std f1, f2[ ] H f( )⎡⎣ ⎤⎦ = E f1, f2[ ] H 2 f( )⎡⎣ ⎤⎦ − E f1, f2[ ]
2 H f( )⎡⎣ ⎤⎦   (3) 

where H f( ) denotes the Fourier transform of the RIR 
and E[ f1, f2 ][]  means taking the mean value over the frequency 

band ranging from f1  to f2 . The distributions of spectral standard 
deviation in different rooms are plotted in Fig. 3. The places 
investigated here exhibits different absorption properties. For 
instance, offices, lab, cubicle, conference room and hallway are 
covered with carpet, which is a good sound-absorbent material. In 
these areas, sound energy is absorbed before it can bounce off in 
the space and generates reverberation. Direct sound energy from 
the emitter to the receiver will dominate in this case, and thereby 
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the locations above have a higher direct-to-reverberant sound ratio, 
i.e. a larger spectral standard deviation. In contrast, locations 
without special sound reduction, such as stairs and kitchen, show 
a relatively small spectral standard deviation.  

In addition, the kurtosis of Fourier coefficients is also included in 
our feature pool. Since the room can be identified by its room 
modes, which are collection of resonances that exist in a room 
when it is excited by a sound source. Room modes can be noticed 
by magnitude peaks in the spectrum of the RIR. We use the 
kurtosis of Fourier coefficients to describe room modes and 
further to characterize a room. 

3.2.3 Energetic features 
In general, energetic features of RIRs describe how sound energy 
decays as it propagates in rooms. Reverberation time (RT) is a 
promising energetic feature for room identification as it doesn’t 
require a special microphone arrangement nor does it rely on the 
source orientation [20]. A standard RT is defined by the time 
taken for the acoustic energy in a space to decay by 60 dB once 
the source is turned off. According to Sabine’s formula [21], 

 RT = 0.161 V
Sα

  (4) 

RT is directly related to the volume V  and the surface absorption 
of the room, given by the product of surface area S  and average 
absorption coefficients α . RT can be estimated from the 
normalized energy decay curve (EDT), which is computed by 
reverse integrating the squared RIR,  

 E t( ) = G h2 τ( )dτ
t

∞

∫   (5) 

where G  is a constant related to excitation level. Then, RT can be 
given by estimating the decay rate over −5dB,−35dB[ ] using 
linear regression techniques. ISO 3382 specifies the above 
measurement method as a standard. However, this method is not 
applicable in our case. Firstly, the RIR we collect is very noisy. 
The noise stems both from the measurement equipment and the 
background. Noise dominates and stretches the energy decay 
curve as shown in Fig. 4. Secondly, the positions of the speaker 
and the microphone are very close to each other on laptops, which 
results in a very strong direct feed-through. It shows as a sharp 
drop at the beginning of both RIR and EDT. However, this 
segment makes no contribution to calculation of reverberation 
time, since the direct sound energy depends only on the distance 
between speaker and microphone and is independent of rooms’ 
properties. The EDT segment that is useful for RT calculation is 
where reverberation dominates, but it is very short as illustrated in 
Fig. 4. The decay of sound energy is less than -10 dB in this 
segment. Therefore, the traditional method does not work in our 
case.  

ISO 3382 international standard also defines three different 
methods to compensate the noise effects for the calculation of the 
EDT. It has been shown that these methods are ill-suited when the 
peak-signal to noise ratio (PNR) is smaller than 45 dB [22]. In our 
case, the average PNR of RIR samples is 34 dB. Therefore, a new 
noise compensation method is needed to extract reverberation 
time from very noisy RIRs.  

 

Figure 4. Impulse response and energy decay curve. EDT 
segments corresponding to direct sound domination, reverberation 
domination, noise domination are annotated. 

 

Figure 5. NAER estimate the noise energy and defines RT as the 
time taken for total sound energy decay to noise energy 

 

Figure 6. RT given by NAER varies in the same trend as the area 
values. Particularly, we do not have access to precise area values 
of hallway and stairs, but they are much larger than other 
locations investigated and these two locations also have much 
larger RTs as is shown here. 
To overcome the aforementioned obstacles, we introduce the 
Noise Adaptive Extraction of Reverberation (NAER) method. 
NAER gives an estimation of noise level and defines 
reverberation time as the time taken for sound energy decays to 
noise level (Fig. 5). Therefore, it is robust to noise level of the 
environment. The algorithm of NAER is presented in Table 2.  
Based upon NAER, we calculate reverberation time of several 
rooms in listed in Table. 1, the result shows a consistence with the 
volume and absorption properties of rooms, as illustrated in Fig.6.  
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Table 2. Pseudocode for NARE 
NARE_Measurement (RIR, PerNoise, BondP, Th) 
    Inputs:    RIR: room impulse response of length L 
                    PerNoise: the last PerNoise portion of RIR to 

estimate noise level 
BondP: the bonding point defined where sound 
energy meets noise 
Th: threshold to define reverberation time 

    Noise Estimation: 
        NoiseLevel  RIR (PerNoise : end) 
    Pseudo Noise Energy Curve Calculation: 

PseudoNoiseEnergy inverse integrate NoiseLevel 
        SoundEnergy inverse integrate RIR 
        PseudoNoiseEnergy PseudoNoiseEnergy + 

 SoundEnergy(BondP) PseudoNoiseEnergy(BondP) 
Reverberation Time Extraction: 

for FindInd ∈ 1,...L{ }   

if  SoundEnergy(FindInd) PseudoNoiseEnergy(FindInd) Th 
    break 
end of for 

Figure 7. Normalized histogram of early to late arriving sound 
energy ratio. Sound energy in rooms with smaller volumes tends 
to be dominated by early energy, while C50 for closed spaces with 
larger volumes or open spaces tends to be smaller. 

Chu [23] proposed to subtract noise from the squared RIR before 
backwards integration, which makes the EDC ascend at some time 
slots if the noise level is high. Comparatively speaking, NAER 
doesn’t distort the energy decay curve and is superior when RIRs 
are noisy and have a very strong direct sound energy. This 
condition can be viewed on EDC by a narrow reverberation 
dominated zone that is squeezed between a sheer direct sound 
energy drop zone and a gentle noisy energy decay zone. 

We also extract RT in various octave bands in order to take into 
account the frequency-dependent absorption properties of the 
room. In addition, early to total sound energy ratio (D50), early to 
late arriving sound energy ratio (C50) and center time of the 
squared impulse response (TS) are also used for energetic 
features. Generally speaking, these parameters describe where the 
sound energy is concentrated along the timeline. The dominance 
of early energy is an indicator for a smaller volume or a low 

sound absorption (Fig. 7). D50, C50, TS can be computed by the 
following formulas, respectively: 

 D50 =
h2 t( )dt

0

0.05 s

∫
h2 t( )dt

0

∞

∫
  (6) 

 C50 = 10 log
D50

1− D50

⎛
⎝⎜

⎞
⎠⎟

  (7) 

 TS =
t ⋅h2 t( )dt

0

∞

∫
h2 t( )dt

0

∞

∫
  (8) 

4. EXPERIMENTS 
The aim of our experiments is to verify if the noisy RIR’s 
obtained by the cheap internal speakers and microphones on 
laptops contain “valuable” features that are capable of indicating 
indoor locations. Furthermore, we design experiment to test the 
noise-robustness and time-invariance of the features. 

4.1 Corpus collection 
We implement the MLS-based RIR measurement on laptops. The 
built-in loudspeaker on laptop plays a MLS sequence and the 
microphone records the sound signal synchronously. The whole 
playing and recording process last about 18 seconds. Then a fast 
devolution algorithm is running on laptop to compute RIRs. In the 
end, a 2.8 second CSV file (16-bit 44kHz) recording the RIR is 
generated.  We collected RIR samples in 10 different functional 
areas in Cory Hall locating at the campus of UC Berkeley, as 
listed in Table. 1. These 10 areas include both closed spaces and 
open spaces. “Closed” means that the area is surrounded by wall 
materials, such as offices and conference rooms. For “open” 
spaces, there is no clearly defined boundary, such as hallway. The 
kitchen investigated in our experiments is an area that connects 
two open aisles and thereby is an open space in our definition. 
These areas also vary in volumes, wall materials and furnishings. 
A description of their environments during data collection is given 
in Table. 1. All of the 10 areas are controlled by different 
lightings, which allows the lighting system to turn off individual 
zone to save energy. The experimenter set up the SoundLoc 
system at two positions in each area. For each position, 50 
samples are collected. All the experiments are carried out in 
ordinary workdays. Hence, the majority of our samples are 
collected with random background noise, such as speaking, 
footsteps, door creaky noise and HVAC sounds.  

4.2 Experiment design 
4.2.1 Experiment A 
In this experiment, we aim at examining the distinctiveness of the 
features. We use the 1000 samples (10 areas× 2 positions× 50 
samples) described in the last section to build our training sets and 
testing sets and conduct a 10 fold cross validation. 

4.2.2 Experiment B 
This experiment aims at examining the ability of SoundLoc to 
deal with noise. In particular, we collected 100 RIR samples in the 
conference room during and after meetings. During the meeting, 
there exist successive talking and moving noise in the recordings 
and RIRs are computed from these noisy recordings. The testing 
set includes only noisy samples for conference room. The training 
set includes quiet samples for conference room and samples 
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described in Experiment A for other places. A 5-fold cross 
validation is carried out in this experiment. Compared with 
Experiment A, this experiment is potentially challenging because 
the testing set is based on completely different samples that the 
model was trained on. 

4.2.3 Experiment C 
The purpose for this experiment is to test the time-stationarity of 
the features. We conduct the second visits in a different day to 
three areas: Office B, stairs and cubicle zone. These three 
locations are randomly picked from the places that are available. 
We do not exclude any samples after we see the result. For each 
place, 100 samples are collected. In the classification stage, the 
training set includes only the samples from the first visit while the 
test set includes only the samples from the second visit. 10 fold 
cross-validation is carried out. 

5. RESULTS AND DISCUSSION 
In this section, we evaluate the SoundLoc from the following 
aspects: distinctiveness, responsiveness, compactness, efficient-
computability, noise-robustness and time-invariance. This is the 
DESENT criteria proposed in [10] to assess the performance of a 
fingerprint-based localization technique.  

5.1 Parameter Study 
As the reverberation dominates at the beginning of RIRs and is 
gradually overwhelmed by noise (Fig. 4), we truncate RIRs with a 
rectangular window in order to extract the reverberation 
information and diminish the influence of noise. Intuitively, more 
noise effect will be eliminated as the window length twindow gets 
larger, but more information about reverberation will also be 
excluded in the meanwhile. And in practice, the following 
condition must be guaranteed for implementation of NAER,  

 twindow ≥max RT1,...,RTn{ }   (9) 

where n  is the number of locations investigated. Fig. 8 provides 
insights for choosing an “optimal” twindow . As can be seen, in the 
region where (9) is satisfied, the accuracy increases when a 
smaller window is applied to RIRs. However, the accuracy drops 
dramatically once the window length is below RT. The minimum 
accuracy of labeling each room follows the same pattern. In our 
paper, twindow is chosen to be 1.5 second, i.e. only the first half of 
RIRs are used for feature extraction. 
 

 
Figure 8. Overall accuracy and minimum accuracy increases as 
the window size decreases above RT. The accuracy drops 
significantly when the window size decreases blow RT. 
 

5.2 Distinctiveness 
In order to support localization, fingerprints should have a good 
separation between distinctive areas. In other words, there should 
be a one-to-one mapping from a room label to a feature 
distribution. The dissimilarity of distributions can be measured by 
Jensen-Shannon (JS) divergence, which is known for its unique 
capability of measuring a divergence between more than two 
probability distributions. JS divergence is given by the following 
formula: 

 JS P1,...,PM( ) = π iKL Pi || P( )
i=1

M

∑   (10) 

where P = π iPii=1

M∑  is the mixed distribution, π i  represents the 

weight for the distribution Pi  , π i ∈ 0,1[ ]   and π i = 1i=1

M∑ . 

KL(Pi || P) is the Kullback-Leibler divergence, defined as 

 KL Pi || P( ) = ln Pi x( )
P x( )

⎛
⎝⎜

⎞
⎠⎟x

∑ Pi x( )   (11) 

JS divergence is a weighted sum of KL divergence and measures 
the distinctiveness of multiple distributions by considering how 
far each of the distributions deviates from the mixed distribution. 
The larger the JS divergence is, the better the separability the 
feature has achieved.  

We verify the distinctiveness of a certain feature by classical 
permutation test. The idea is to randomly permute the labels of 
room labels and each time obtain a JS divergence. The null 
hypothesis is that the observed JS divergence for a given feature is 
independent of the room labeling, namely 

 H 0
Feat . : JSObserved

Feat . = JSPermuted
Feat .   (12) 

where H 0
Feat .  denotes the null hypothesis for a certain feature. If 

the observed JS divergence significantly deviates from the mean 
of the JS divergence distribution in permutation test, we can reject 
the null hypothesis, i.e. the feature is distinctive for different 
locations.  

 
Figure 9. Permutation test summary. The observed JS divergence 
is significantly larger than the distribution of JS divergence 
obtained in permutation test and the null hypothesis should be 
rejected. 

The result of the permutation test is presented in Fig. 9. The error 
bar specifies the quadruple standard deviation below and above 
the mean of JS divergence distribution in permutation test. As can 
be seen, the observed JS divergence is significantly larger than the 
distribution obtained in the permutation test. The result of p-value 
of significance testing is 2e-4, which shows that the probability of 

0 0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

90

100

Window Length (in s)

Ac
cu

ra
cy

 (%
)

max{RTi} 

Overall Accuracy 
Minimum Accuracy  

T_Kur 
RT_250 

RT_500 
RT_1000 

RT_2000 

RT_4000 
RT_8000 

D50 
C50 TS 

Std_250 
Std_500 

Std_1000 

Std_2000 

Std_4000 

Std_8000 
Kur_250 

Kur_500 

Kur_1000 

Kur_2000 

Kur_4000 

Kur_8000 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

JS
 D

ive
rg

en
ce

Observed JSD 
Permutated JSD 

Permutation Test Summary 



obtaining a JS divergence as extreme as observed under the null 
hypothesis is extremely small; therefore, the null hypothesis is 
rejected. We conclude that the features presented above can 
achieve high separability for different locations. 

Within the context of localization, we further evaluate the feature 
distinctiveness by measuring the localization accuracy. The 
sequential floating forward selection (SFFS) algorithm was used 
to select a set of features to minimize the prediction error [24]. 
One essential reason for feature selection is to avoid overly 
complex models with respect to the number of features employed, 
since a sparse model is more robust to changes under different 
circumstances. For instance, we expect slight variations for 
feature distribution at different background noise levels, as 
discussed in Section 5.3, or at different times, as in Section 5.4. A 
robust set of features should be able to still distinguish the 
location from other in such conditions. 

The sequential floating forward selection (SFFS) is an extension 
to the Plus-L minus-R selection (LRS) with flexible backtracking 
capabilities. In each iteration the number of features to be added 
and removed are determined from the data. Briefly, denote the 
feature set in iteration  i  as  S

i , the algorithm adds feature  fk  
which satisfies: 

 fk = argminf X,Y( )1
n ;Si−1, f( )   (13) 

where 
  

X ,Y( )1
n
 is the testing set with  n  samples, 

  
g ⋅;Θ( )  is the 

loss function when we use a feature set of   S
i−1, f . The function is 

chosen as the misclassification rate aggregated for all the room 
labels. In the same iteration we also examine if by removing 
feature  fv  we can further reduce the misclassification error, and 
the removal process stops until we can no longer improve the 
classification result. Then the algorithm retries to add features in 
the optimal set in the next iteration. [24] provides a detailed 
algorithm for SFFS. 

We use overall accuracy as the criterion for SFFS. Fig. 10 shows 
the classification confusion matrix for the room identification 
using optimal feature set listed in Table 3. The overall accuracy is 
97.8%. When all features are used for classification, the overall 
accuracy is 95.9%. 

 
Figure 10. Confusion matrix for Experiment A. The features used 
are from optimal set list in Table 3. The overall accuracy is 97.8%. 

 
 

Table 3. Optimal feature set created by SFFS 
Temporal Feat. Kur. 
Spectral Feat. Std. 1000 Hz, Std. 2000 Hz, Std. 4000 Hz, 

Std. 8000 Hz, Kur 1000 Hz, Kur. 2000Hz, 
Kur. 4000 Hz, Kur. 8000 Hz 

Energetic Feat. RT 1000 Hz, RT 2000 Hz, RT 4000 Hz, RT 
8000 Hz, C50, D50, CT 

5.3 Noise-robustness 
Generally speaking, any acoustic localization system exploits the 
location information hidden behind the recordings. Inevitably, 
there exist some transient changes that are independent of the 
position and carries no useful information for location estimation. 
For instance, speech noise leads to an over 20% accuracy drop in 
the localization method based on ambient background sound 
sensing [10]. Therefore, noise-robustness is a challenging issue in 
acoustic localization system.  

Our localization technique leverages information from RIRs. They 
are computed using MLS excitation and cross-correlation 
technique. Since the phase spectrum of MLS is strongly erratic 
with a uniform density of probability in the −π ,+π[ ]  interval, 
transient noise like clicks, footsteps etc. will be randomized and 
transformed into benign noise distributed evenly over the entire 
impulse response. Therefore, MLS-based RIR measurement 
should be expected to be immune to extraneous noise of all kinds 
theoretically. We design Experiment B to test the noise-robustness 
of SoundLoc. In this experiment, test and training set are noisy 
and quiet samples collected in the conference room, respectively. 
The accuracy of labeling the conference room is used as the 
indicator of noise-robustness. The result is presented in Table 4.  
The accuracy is very poor when all features or optimal features 
determined from Experiment A are used for classification. This 
result shows that the transient noise cannot fully weakened by 
using MLS technique in practice and some features in our feature 
pool are sensitive to noise. Again, we use SFFS and try to 
determine which feature is least sensitive to noise. The reselected 
features are listed in Table 5. They tend to exclude voice band, 
which is approximately 80-260 Hz. When using these selected 
features for classification, 98% accuracy can be achieved for 
labeling conference room.  

Table 4. Results summary of Experiment B 
Location Accuracy        

All           
Feat. 

Exp. A   
Feat. 

Reselected 
Feat. 

Conf. Rm. 15% 24% 98% 

Table 5. Noise-robust feature set created by SFFS 
Spectral Feat. Std. 500 Hz, Std. 1000 Hz, Std. 2000 Hz,   

Std. 4000 Hz, Kur. 1000 Hz, Kur. 2000Hz 
Energy Feat. RT 500 Hz, RT 1000 Hz, RT 8000Hz, C50, 

D50, CT 

5.4 Time-invariance 
A useful fingerprint should be relatively stationary over time. We 
design Experiment C to test the time-invariance of SoundLoc. In 
this experiment, test and training set are from separate visits. The 
result is summarized in Table 6. In general, using data from 
completely different visits for training results in a slightly lower 
accuracy than that when training and testing data come from the 
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same visit. For Office B, the accuracy suffers from a dramatic fall 
when different visit samples are used for training. However, for 
stairs and cubicle, the accuracy remains above 99%. The reason 
for this is that stairs and cubicle are very different from other 
locations investigated in our paper, while the 4 offices in our 
experiment have similar geometry, wall materials and furnishings. 
The features do vary somewhat, which leads to confusion of very 
similar environments. We also test the features that are chosen by 
SFFS in Experiment A. The accuracy using this feature set is 
lower than that when all features are used for classification. That’s 
because some features that are invariant in longer time scale but 
do not lead to the best accuracy are excluded during feature 
selection in Experiment A. We reselect the most time-stationary 
features using SFFS, as listed in Table 7. Higher than 93% 
accuracy has been achieved with the reselected features. 

Table 6.  Results summary of Experiment C 
Location Training Type Accuracy 

All 
Feat. 

Exp. A 
Feat. 

Reselected 
Feat. 

Office B Different Visit 79% 76% 95% 

Same Visit 93% 97% 93% 

Stairs Different Visit 99% 98% 99% 

Same Visit 99% 98% 99% 

Cubicle Different Visit 100% 100% 100% 

Same Visit 99% 100% 99% 

 Table 7. Time-invariant feature set created by SFFS 
Temporal Feat. Kur. 
Spectral Feat. Std. 250 Hz, Std. 500 Hz, Std. 1000 Hz,  

Std. 2000 Hz, Std. 4000 Hz, Std. 8000 Hz, 
Kur. 250 Hz, Kur 500 Hz, Kur. 1000 Hz, 
Kur. 2000 Hz 

Energy Feat. RT 250 Hz, RT 500Hz, RT 2000 Hz, RT 
4000 Hz, RT 8000 Hz, C50, D50, CT 

 

5.5 Comprehensive Feature Selection 
The previous three experiments consider three experiments 
consider three different data collection and testing scenarios. 
Experiment A is when the distribution of testing and training data 
do not differ by noise or time. Experiment B and C consider the 
effect of noise and time transition on RIR respectively. We also 
conducted an additional experiment that considers all the settings 
by combining the noise- and time-corrupted data and use the 
mixed data for feature selection. In reality it is likely that the data 
is collected and tested under any one of the four scenarios.  
Table 8 organizes the features by the number of time they are 
selected in each case. Features that are consistently selected, such 
as RT 8000 Hz, CT, and Std. 4000 Hz, are very likely to perform 
well in practice, since they stand the test of noise-robustness and 
time-invariance. Those who are selected more than two times are 
also good features since their inclusion can enhance the 
classification performance in most situations. We notice that some 
low frequency features are not likely to be selected, since it often 
suffers from human talking and ambient noises. As a guideline, 
the user is advised to include features sequentially from the first 
row to the last row in Table 8, depending on the complexity of 
model that is desired. Usually sparse model is good for generality 

and more complex model is good if the situation is not highly 
dynamic. 
 

Table 8. Comprehensive feature selection table 
# time selected Features 

4 out of 4 RT 8000 Hz, CT, Std. 4000 Hz, Kur. 1000 
Hz, Kur. 2000 Hz 

3 out of 4 Time Kur., RT 2000 Hz, RT 4000 Hz, C50, 
D50, Std. 500 Hz, Std. 1000 Hz, Std 2000 Hz, 
Std 8000 Hz, Kur. 1000 Hz, Kur. 8000 Hz 

2 out of 4 RT 250 Hz, RT 500 Hz, RT 1000 Hz, Kur 
4000 Hz, Kur 8000 Hz 

5.6 Computation Effort 
In this part, we evaluate the performance of SoundLoc based on 
its responsiveness and memory requirement. 

The time taken for SoundLoc to identify the room mainly lies on 
three processing steps: RIR collection, RIR computation and 
feature extraction. The collecting and computing for one RIR in 
our corpus last 32 second, which accounts for the majority of 
SoundLoc’s time cost. The feature extraction step is very effective, 
with most features computation requiring just an accumulative 
summation with complexity Θ nRIR( ) , where nRIR  denotes the 
length of RIR. Feature computation time is mainly spent on 
spectral features that require a fast Fourier transform (FFT), 
giving a runtime complexity Θ nRIR log nRIR( )( ) . Another time cost 
comes from computing RT within different octave bands. 
Convolving RIR with octave filters has a complexity of 
Θ rspec.noct .nRIR( ) , where noct .  denotes the length of octave filters 

and rspec.  is resolution of octave bands. As noct . and rspec. are 

negligible compared with nRIR , the overall complexity of feature 

extraction will be Θ nRIR log nRIR( )( ) . Moreover, we can truncate 
RIR with a window in order to reduce the feature extraction time. 
According to Fig. 7, we can select a RIR length that can achieve 
relatively high accuracy and requires a moderate computation 
time in the meanwhile. The time taken to extract features for one 
RIR sample is 0.2 second in our experiment. 

We also evaluate the features in terms of compactness, which 
describes the memory requirements of a fingerprint. The original 
RIR requires 1.5 Mega bytes of storage. However, only 188 bytes 
are needed to save the 22 features in total. We can further reduce 
the memory requirements by feature selection algorithm 
aforementioned.  

5.7 Energy Footprint Optimization 
In this part, we evaluate the SoundLoc based on its ability to 
lower the energy consumption whilst remain robust when faced 
with changing conditions. The overall energy footprint can be 
considered from two aspects: firstly, how much energy is required 
for collecting a single RIR sample; secondly, how many samples 
should be included in order to train a reliable model for a room. 

5.7.1 Energy concerning single RIR collection 
The power consumption of collecting a RIR sample involves the 
loudspeaker to emit a sound excitation and hardware to perform 
calculations including feature computation, digit-to-analog 
converting and vice versa. The relationship between acoustic 
power and sound power level is given by the following formula,  

 P = P0 ⋅10
LP
10W   (14) 



For instance, 100 dB, which is almost the strongest sound level 
and begins to hurt human’s hearing, corresponds 0.01 W. 
Therefore, the power for loudspeaker to play MLS is negligible 
compared with the power consumed by CPU and soundcard to 
process the digital signal. The following discussion will focus on 
the power consumption for hardware to process data. 
The first parameter we consider here is sampling frequency. 
According to Shannon-Nyquist Sampling Theorem, if we want to 
reconstruct the analog signal, the sampling frequency is required 
to be at least twice the upper bound of frequency component of 
the original analog signal. That is, in order to inspect the room 
characteristics over higher frequency bands, the sampling 
frequency should be increased correspondingly. Fig. 11 shows 
that inclusion of higher frequency features leads to an increase of 
overall accuracy. The horizontal axis indicates the maximum 
octave bands center frequency involved in our feature pool. For 
most places investigated, the identification accuracy slightly 
changes as the frequency range inspected shrinks. However, some 
location, such as Office B, experiences a significant decrease of 
accuracy when we exclude the features of high frequency. 
Moreover, the sampling frequency is related to the time required 
for emitting excitation MLS signal by  

 texcitation =
Nreps ⋅Lmls

fs
  (15) 

where Nreps  is the repetition times of MLS sequence, Lmls  is the 

length of MLS and fs  denotes the sampling frequency. In 
addition to higher accuracy, increasing fs also benefits in terms of 
less RIR sample collection time. However, more power is needed 
for both sound card and CPU to process the increased size of 
audio as fs  increases. And there is an upper bound for sampling 

frequency. fs ≤
Nreps ⋅Lmls

RT
should be satisfied in order to avoid 

time-aliasing. 

 
Figure 11. The effect of including features in higher frequency 
bands on the classification accuracy. 

Nreps is another parameter that we can tune. In practice, we 
employ repetitive MLS stimuli and average the received signal in 
order to reduce the influence of background noise. For every 
doubling the number of time responses averaged, neglecting 
quantization and coherent noise, the signal-to-noise ratio should 
theoretically increase by 3dB [25]. The tradeoff is measurement 
time, i.e. measurement power consumption, versus increased 
noise immunity. Similarly, it has been showed that the signal-to-
noise ratio for the MLS sequence increases by 3dB when the 
length of the MLS sequence Lmls  is doubled [26]. However, 

measurement cost also comes in.  

5.7.2 Energy concerning training sample size 
Next, we will consider the overall energy footprint for modeling a 
specific location, i.e. the number of samples that are required for 
reliably labeling this place. There are several reasons to optimize 
the number of training sets for SoundLoc. Firstly, training labels 
are often costly and time-consuming to obtain. Secondly, it 
requires storage space on the mobile platform, so a large set of 
training samples might limit the number of places in the memory. 
Also, more training samples demand more computational power, 
which might represent a bottleneck on the battery-powered device. 
To study the effects of training size on classification accuracy, we 
vary the size of the training sets to train an array of popular 
classifiers and plot the results in Fig. 12.  

 
Figure 12. The effect of the number of training samples on the 
classification accuracy for various algorithms. All the models are 
implemented by the Weka machine learning toolkit [27]. The 
required number of training samples are selected randomly from 
the training sets. The rest of the samples are used as testing set. 

As can be seen, the classification accuracy generally improves as 
the number of training samples increase. Most methods converge 
to an optimal classification rates when the number of training 
samples is from ten (10) to twenty (20). For the top algorithms 
such as Multilayer Perceptron and Random Forrest, the accuracy 
achieves 95.33% and 91.67% respective with only ten (10) 
samples. The satisfactory performance with only limited number 
of training samples is attributed to the separability, noise 
robustness, and time invariance of the sound features. Relaxing 
the requirement of training samples directly benefits the energy 
efficiency of SoundLoc, as well as easiness to implement. 

6. CONCLUSION AND FUTURE WORK 
We have presented SoundLoc, a room identification system 
exploiting the acoustic properties of the room. The acoustic 
properties are described quantitatively by various features 
extracted from room impulse response. We build a cheap MLS-
based RIR measuring system using internal speakers and 
microphones on laptops.  A noise adaptive reverberation 
extraction algorithm is developed to deal with feature extraction 
from the noisy RIRs. The algorithm is shown to be effective to 
extract reverberation time when the sound energy decay is 
dominated by direct sound and noise. Using this measurement 
system, we collect more than 1000 RIR samples in different 
locations, with different noise background and during separate 
days. The acoustic features we extracted are shown to be 
distinctive, robust and efficient to compute. 97.8% of overall 
accuracy has been achieved for 10 rooms’ identification. 
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Moreover, the training sample size can be reduced to 10 samples 
while 95.3% accuracy can still be achieved.  

For future work, we want to explore the application of acoustic 
features more than indoor localization. Automatic mapping is an 
emerging field in recent years. It aims at building a map with 
landmarks for an unmapped building. Right now, a robot 
equipped with sensors such as laser-based ranging and cameras 
are used for mapping. It is expensive and time-consuming to 
collect training samples. However, SoundLoc is cheap and energy 
efficient. A room can be identified in the map with very small 
dataset. It is potential and promising to be implemented for 
automatic mapping a building of interest organized by areas with 
distinctive acoustic properties. 
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