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It is well-known that an infrared laser can accelerate chemical 

reactions by vibrationa11y exciting one of the reactant species; e.g., 

HC2(v) + K ~ KC2 + H proceeds much faster for v = 1 than for v = 0. 1 

For the laser to be effective in promoting the reaction this way it is 

thus necessary for its frequency to be in the region that excites HC2 

from the v = 0 to the v = 1 vibrational state. 

This Communication points out that infrared lasers can enhance 

chemical reactions even if they are far from any regions where the 

reactants absorb, or even if the reactants are infrared inactive. As 

prototype for a reaction with an activation barrier consider the H + Hz ~ 

Hz + H reaction; for which the reactants are clearly infrared inactive. 

In the transition state region of the potential energy surface, however, 

it is clear that motion along the reaction coordinate--the asymmetric 

+- ± +-
stretch, H· · ·H· ··H--is infrared active, i.e., the dipole moment of the 

three-atom system varies with this coordinate. The symmetric stretch, 

+- ~ 

H···H···H, on the other hand, is infrared inactive since the dipole moment 

does not vary with this displacement. An infrared laser can thus excite 

the system when it is in the transition state region, and the energy is 

put specifically into motion along the reaction coordinate, the degree of 

freedom most effective in promoting the reaction. 

The most interesting consequence of this type of "collision-induced 

adsorption" is that the activation energy for the _reaction is lowered by 

the presence of a high power infrared laser. This effect is easily 

understood since without a field there are no trajectories that react at 

energies below the classical threshold, while in the presence of the field 

some of these non-reactive trajectories gain sufficient energy from the 
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field to become reactive. 

The effect can be seen explicitly by carrying out the appropriate 

calculation for a one-dimensional example. If the zero of energy is 

chosen as the top of the potential barrier, then the classical reaction 

probability without a laser field is a step function: PR(E) = 1 for 

E > 0, and 0 for E < 0, as seen in Figure 1. In the presence of the 

1 1 . -1 
field a simple perturbation theory calculations gives PR{E) z 2 + TI s1n 

(E/E
0
), where E

0
/h "-' wR, the Rabi frequency associatt~d with the transition; 

this is also shown in Figure 1. High laser power is thus required; e.g., 

6 2 for a reasonably strong dipole transition, a laser power of 10 watts/em 

-1 12 
corresponds to only hwR "-' 1 em , a small shift, but a power of 10 watts/ 

2 -1 em would give hwR)z 1000 em and thus a large effect. 

More realistic (and non-perturbative) calculations have been carried 

out for the prototype H + H2 reaction. 2 The theoretical approach ··being 

used treats both the molecular degrees of freedom and the radiation field 

classically; one carries out a classical trajectory calculation for the 

complete system, the molecular system plus the field oscillator. Figure 

2 shows results for the collinear version of the reaction, and one sees 

that the qualitative behavior is similar to that of the one-dimensional 

model discussed above. These results are for hwR = 0.1 eV and an empirical 

(but qualitatively correct) dipole moment function for the H3 system. The 

-1 
laser frequency corresponds to the co2 laser hw = 948 em , although other 

frequencies have been investigated. Though·not highly sensitive to laser 

frequency, there is nevertheless an optimum intermediate reeion: The dashed 

-1 
curve in Figure 1 is only slightly different for hw "-' 500 em , but the 

-1 
threshold-lowering is significantly less for much higher ("-' 2000 em ) or 

-1 
lower ("-' 100 em )frequencies. 
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In concluding we note that this type of laser induced reaction is 

expected to be quite general since the reaction coordinate is the "least 

symmetric"
3 

degree of freedom of the transition state and will thus always 

be infrared active. Other examples of more physical interest are being 

explored. 
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Figure Captions 

1. Classical "reaction probability" for a particle incident on a one­

dimensional potential barrier, as a function of the energy E relative 

to the top of the barrier. The solid line is for the field-free case, 

and the dashed line the result in the presence of a laser field. 
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2. Classical reaction probability for the collinear H + H2 (v=O) ~ H2 + H 

reaction on the Porter-Karplus potential surface, as a function of the 

initial translational energy E. The solid curv•~ is the ordinary field 

free result, and the dashed curve the result in the presence of a laser 

-1 
of frequency hw = 948 em and of an intensity such that hwR = 0.1 eV. 
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