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ARTICLE OPEN

Immunoglobulin genes expressed in lymphoblastoid cell lines
discern and predict lithium response in bipolar disorder
patients
Liron Mizrahi1,7, Ashwani Choudhary1,7, Polina Ofer1, Gabriela Goldberg2, Elena Milanesi 3, John R. Kelsoe 4, David Gurwitz 5,
Martin Alda 6, Fred H. Gage 2 and Shani Stern 1✉

© The Author(s) 2023

Bipolar disorder (BD) is a neuropsychiatric mood disorder manifested by recurrent episodes of mania and depression. More than
half of BD patients are non-responsive to lithium, the first-line treatment drug, complicating BD clinical management. Given its
unknown etiology, it is pertinent to understand the genetic signatures that lead to variability in lithium response. We discovered a
set of differentially expressed genes (DEGs) from the lymphoblastoid cell lines (LCLs) of 10 controls and 19 BD patients belonging
mainly to the immunoglobulin gene family that can be used as potential biomarkers to diagnose and treat BD. Importantly, we
trained machine learning algorithms on our datasets that predicted the lithium response of BD subtypes with minimal errors, even
when used on a different cohort of 24 BD patients acquired by a different laboratory. This proves the scalability of our methodology
for predicting lithium response in BD and for a prompt and suitable decision on therapeutic interventions.

Molecular Psychiatry (2023) 28:4280–4293; https://doi.org/10.1038/s41380-023-02183-z

INTRODUCTION
Bipolar disorder (BD) is a chronic, heritable neuropsychiatric
disorder with alternating episodes of mania and depression in
patients [1–3]. With a prevalence of 1–2 % in the general
population, BD is also a notable cause of disability and premature
deaths due to suicide or co-morbidities [2, 4]. Clinical manage-
ment of BD is dependent on lithium and classes of antipsychotic
and anticonvulsant drugs [5]. Due to its effectiveness, lithium is
used as a first-line treatment for BD patients [3, 6, 7]. However,
more than half of BD patients respond to lithium treatment
inadequately; therefore, BD patients have been classified and
characterized as lithium responders (LRs) and non-responders
(NRs) [7, 8]. The presence of subpopulations among BD patients
further hints at the confounding genetic complexity and
heterogeneity among the patients. Some studies have also
pointed toward the neurodevelopmental origin of BD, although
the clinical symptoms are only visible in adulthood [8]. Genome-
wide association studies (GWAS) in BD patients have identified
genomic loci associated with BD but, in the absence of functional
validation, the causative genes are obscure [9–13].
Animal models for BD are imperfect mainly due to the unknown

genetic component and inability to mimic the extreme mood
shifts observed in patients [14]. Disease modeling via induced
pluripotent stem cell (iPSC) technology has opened a new
possibility for studying psychiatric diseases by allowing research-
ers to investigate patient-specific neural cells in vitro in 2D and 3D
culture systems [12]. Recently, researchers have employed iPSC

technology to study BD patient-specific neurons to understand
the cellular pathophysiology and mechanisms underlying BD
[15–17]. In 2018, we found that patch clamp recordings of neurons
derived from BD patients could be used to predict lithium
response with a very low error rate [16]. While these investigations
were expensive and well-trained personnel were needed to
perform neuronal differentiation and electrophysiological experi-
ments, they showed a proof of concept that the prediction of
lithium response was indeed feasible with a low error rate. In
addition to iPSCs, LCLs have been used to study drug response in
BD. LCLs are immortal lymphoblastoid cell lines derived by the
transformation of B lymphocytes by Epstein-Barr virus (EBV)
[12, 18]. LCLs can expand indefinitely and are low-cost, patient-
specific polyclonal cells as compared to patient-specific iPSCs,
which are generally monoclonal and require higher cost and
expertise to study [18].
Poor understanding of the etiology and genetics of BD also

makes its diagnosis difficult, in turn affecting the therapy received
by the patients. Hence, appropriate biomarkers are necessary to
diagnose BD correctly as well as predict the patients’ response to
lithium [19, 20]. Previous studies have found serum and plasma
levels of BDNF; the altered response of lymphocytes to glucose
deprivation; and oxidative stress markers to be potential
biomarkers of BD [21–23]. Gene expression analysis using DNA
microarrays from whole blood RNA of BD patients has found some
candidate genes that are especially related to myelination or
growth factor signaling [24]. While iPSCs offer an excellent system
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to study the cellular pathology and molecular mechanisms of the
disease, due to their inexpensive nature LCLs are a good source to
look for genetic biomarkers, especially in a large sample size
including BD patient subtypes [24]. There are hypotheses linking
an immune response with psychiatric disorders [25, 26], further
suggesting that LCLs will have a predictive value. Earlier studies
using LCLs from BD patients have reported altered calcium
signaling and lower ER stress response in patients as compared to
controls [12, 27, 28]. Subsequently, several studies have reinforced
the idea of conducting gene expression analysis in the LCLs of BD
patients to identify potential transcriptomic biomarkers [29–32].
Recently, machine-learning (ML) algorithms have found wide-

spread applications in the field of healthcare [16, 33, 34], with the
potential to provide effective support in clinical management
through disease prediction, detection, and diagnosis [35].
Supervised classification algorithms are a type of ML approach
that can be utilized as significant tools in the diagnosis and
treatment decisions in complex disorders such as BD [36, 37]. We
hypothesized that by analysing transcriptomic datasets with
supervised classification algorithms, patterns of gene expression
and biomarkers can be identified that are associated with BD and
its subtypes. This information can be further used to train models
and thus can be utilized for the prediction of treatment
response in BD.

In this study, we have performed RNA-seq of LCLs from control
and BD patients, including LRs and NRs, and thereby report the
analysis of DEGs to find appropriate genetic signatures that can be
used as potential biomarkers in BD. We have also incorporated the
RNA-seq data previously published by Milanesi et al. [38]. for BD
LR and BD NR patient subtypes and analysed them jointly to add
more statistical power to our results. Importantly, we trained
supervised classification algorithms on the RNA-seq data, which
predicted the lithium response from the RNA-seq data acquired by
a different laboratory with a very low error rate (Fig. 1). Such
validation is necessary since we are seeking global biomarkers
that will work in algorithms that are trained in one laboratory and
predictions need to be made based on data that are acquired
elsewhere. Our study also found convergence in altered genes
with earlier studies, providing insights into the important
biological pathways affected in BD.

METHODS
Ethics approval
All participants signed informed consent. The study was approved by the
Research Ethics Board of the Nova Scotia Health Authority, Canada. The
participants were diagnosed with BD and classified into subtypes
according to the lithium response by the psychiatrists as described
previously [16].

Fig. 1 Graphical representation of the workflow and the experimental design. RNA sequencing was performed from the LCLs of Control
and BD subtypes from the train data to find genetic signatures using machine learning algorithms to discern between Control, BD, and its
subtypes and used it for classification of test data (Lithium Responsive (LR) and Lithium Non-responsive (NR)). The graphical image was
created with Biorender.com.
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Cell culture and RNA extraction from LCLs
LCLs were generated from the PBMCs of all the patients and controls (see
details about the cohorts below) as described previously [39]. Briefly,
PBMCs were isolated from the blood using BD Vacutainer® CPT™ Cell
Preparation Tubes with Sodium Citrate (Cat no: 362761) following the
manufacturer’s protocol. Approximately, 2 million cells were infected with
the EBV produced from the B95-8 cell line as mentioned in detail
previously [39, 40]. The transformed cells formed aggregates within a week
of EBV infection and formed larger aggregates with time. These cells were
further passaged 3-4 times to ascertain the establishment of lympho-
blastoid lines (Supplementary Fig 1). The LCLs were cultured in T25 and
T75 tissue culture flasks in complete RPMI medium containing RPMI 1640
(Biological Industries, Cat no: 01-100-1 A), 1X Anti-Anti (Thermofisher
Scientific, Cat no: 15240062) 1% Glutamax (Thermofisher Scientific, Cat no:
35050061), 1% Sodium pyruvate (Thermofisher Scientific, 11360070) and
15% heat-inactivated FBS (Sigma, Cat no: F9665) as described previously
[40, 41] with media changes on alternative days. To ascertain the
confluency, the LCLs were counted using Trypan blue exclusion assay
with Bio-Rad TC20™ automated cell counter following the manufacturer’s
protocol and were passaged regularly when they reached a density of
200,000 cells/ml. All the cell lines used were tested using a Hy-Mycoplasma
PCR kit (Hylabs, Cat No. KI 5034I) and found to be free of mycoplasma
contamination.
For RNA extraction, approximately 10 million cells were collected in 1ml

of TRIzol™ reagent (Thermofisher Scientific, Cat no: 15596026) and placed
on ice for 5 min before storing at −80 oC. Total RNA was isolated using the
Zymo Quick RNA kit (Zymo Research, Cat no: R1054) according to the
manufacturer’s protocol. The RNA was further purified using the RNA clean
and concentrator kit (Zymo Research, Cat no: R1013) following the
manufacturer’s instructions. The RNA quality and integrity were checked
using an ND-1000 Nanodrop spectrophotometer (Thermofisher Scientific)
and Tape station 2200 (Agilent). All the RNA samples sent for sequencing
had RNA integrity number values > 9.

First cohort
We performed RNA sequencing from the LCLs of 9 LR (Lithium
responsive) BD patients (15 sets of RNA samples), 10 BD NR (Lithium
Non-responsive) patients (17 sets of RNA samples), and 10 control
individuals (14 sets of RNA samples) grown and sequenced in 3 batches.
Some of the samples had replicates and hence a total of 46 sets of RNA
were sequenced and analyzed. (Details about the samples in the
Github file link https://github.com/Precision-Disease-Modeling-Lab/
Lithum-Respose-Predictor/blob/main/ML/LRvsNR/samples.csv). 24 sam-
ples (5 LR in duplicates, 4 NR in duplicates, 3 control in duplicates) in
Batch 1; 10 samples (1 LR in duplicate, 2 NR in duplicate, 2 control in
duplicate) in Batch 2; and 12 samples in Batch 3 (3 LR-no replicate, 1 NR
in duplicate plus 4 NR, 4 control-no replicate). We have used batch
correction to account for the differences that arise due to the batch
effect as described below.

Second cohort
The data for the second cohort were obtained from the published work of
Milanesi et al. [38]. and consisted of 12 BD LR (12 sets of RNA samples–no
replicates) and 12 BD NR (12 sets of RNA samples-no replicates) patients for
which the RNA-sequencing was performed from LCLs. The LCLs used by
Milanesi et al. [38]. were also generated using a similar method i.e. by
infecting the PBMCs with Epstein Barr Virus produced from the B95-8 cell
line. Similarly, a batch correction algorithm was performed as
described below.

RNA sequencing, analysis, and batch correction
Libraries for the LCL RNAs from BD and control subjects were prepared
using a TruSeq RNA Library Prep Kit v2 (Illumina) following the
manufacturer’s instructions. Quality control of the raw FASTQ files was
performed using FastQC [42] (v0.11.5). Sequencing reads were aligned to
the human genome (GRCh38.104) and quantified using STAR [43] (v2.7.9a).
The R-based Bioconductor package DESeq2 [44] (v1.34.0) was used to
perform differential gene expression analysis. The experimental design was
modeled to consider batch and condition (~batch+ condition). Batch-
effect was accounted for by either including batch as a covariate in the
linear model (allowing for correct estimation of degrees of freedom) or by
using the remove batch effect function from the limma [45] package in R
for Principal Component Analysis (PCA) and correlation analysis. This

function uses linear modeling to estimate and reduce batch effects from
gene expression data.
To account for the false positives when identifying DEGs, we performed

the false discovery Rate (FDR) analysis. In DESeq2, the FDR is calculated
using the Benjamini-Hochberg (BH) procedure, which adjusts the p-values
of the hypothesis tested for multiple comparisons [46, 47]. In this study, for
each pairwise comparison, genes that reached BH false discovery rate
(FDR) (p-Adjusted) < 0.05 and log2fold-change ≥|1| were considered
significant DEGs.

Machine learning predictor analysis
The ML predictor analysis was performed using Python-based packages.
For the predictor analysis, we used PyCombat [48] (Python-based package)
to correct for the batch effect in the RNA sequencing data (that was
different from the R-based package for batch correction used during DEG
analysis as mentioned above). PyCombat uses the empirical Bayes method
to adjust for the batch effects [48]. The empirical Bayes method is effective
even with smaller sample sizes (>10) [49].
We evaluated the following five supervised classifiers: Logistic

regression (Lr), Random Forest (RF), K-Nearest Neighbors (K-NN), Support
Vector Machine (SVM), and Neural Network (NN). Among the classifiers
selected for predictor analysis, RF is a well-known ensemble learning
algorithm that combines the predictions of multiple decision trees
trained on randomly selected subsets of the training data and features
[35, 36, 50]. It can achieve high accuracy for a wide range of classification
tasks, but may not be the best choice for applications requiring
interpretability, scalability, or fast training times [35, 51–53]. For such
applications, Lr, SVM, and NN may be better suited depending on the
specific requirements [52, 53]. K-NN is a simple and non-parametric
supervised learning algorithm that makes predictions based on the
proximity and similarity to other data points in the training set [54, 55].
However, it can be computationally expensive and sensitive to the
number of neighbor data points (or K parameter) [55]. NN can handle
complex problems and a wide range of data types including high
dimensional datasets but can also be computationally expensive,
difficult to interpret, and prone to overfitting [56, 57]. Lr, another
important classifier, is particularly useful for binary classification where
interpretability and simplicity are important [35, 57]. However, it may not
perform as well as other complex models such as NN or RF for tasks that
involve complex nonlinear relationships. SVM can be used for high-
dimensional data and nonlinear relationships but can be computation-
ally expensive and sensitive to hyper-parameters required for learning
[35, 55].
To avoid overfitting, a feature selection was performed to reduce the

number of genes used for training the classifier. To this end, a Mann-
Whitney U test was performed between the two groups using the
datasets (batches 1–4). (The dataset had 39,000 genes. We dropped the
genes with less than 10 counts after which a total of 22000 genes were
kept for analysis). Twenty genes (out of the total 22,000 genes) with the
smallest p-value were selected (Supplementary Fig 5,6). An exhaustive
search with all gene combinations was then performed, and the subset
of genes with the best chance to be used as a feature list in Lr was
identified. From all gene combinations, only those with an accuracy
score above 0.93 were selected. The 7 potential and promising genes
(for LR vs. NR) and 5 promising genes (for BD vs. CTRL), which constantly
appeared in the gene combination with high accuracy scores, were
chosen as features (see Supp. Fig. 5b & 6b the prediction accuracy as a
function of the number of features selected out of the chosen 20 genes).
The selected features were used to train the classifiers using another
Python-based package, sci-kit-learn [58]. We then performed cross-
validation by splitting the data randomly into a 50% train and a 50%
test, and the classification was repeated 50 times with these random
selections (BD vs. CTRL and LR vs. NR). For BD vs. control, a total of
29 subjects (19 BD+ 10 controls) from the original dataset were used.
For LR vs. NR, a total of 43 subjects (19 BD subjects from the first cohort
and 24 BD subjects from the second cohort were used). In addition to
the cross-validation method which uses a shuffle train/test split from the
entire dataset, we also performed a predictor evaluation for LR vs. NR by
training the model with our in-house (original) datasets (the first 3
batches) and performing the classification on the second cohort
(the different dataset from another laboratory) labeled as the batch 4
dataset [38].
To further evaluate the validity of this approach, we tested the

performance of all 5 supervised classification algorithms that used the
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provided input features (5&7 for disorder and lithium response
prediction respectively). For a binary classification problem, the resulting
model decisions could fall into 4 categories: true positives (tp) when the
model correctly predicts the positive class, erroneous positive predic-
tions (false positives, fp), and, analogously, true negatives (tn) and false
negatives (fn). The accuracy, the Receiver Operator Characteristic (ROC),

and the confusion matrix were evaluated, and a cross-validation method
was used to ensure the robustness of the classification. The results were
averaged, or aggregated in the case of the confusion matrix, to create a
span of results for each iteration. We used the Area under the Curve
(AUC) of the ROC and the confusion matrix to assess the performance of
the classifiers using the following metrics: Accuracy, Precision, and the
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AUC of the ROC:

accuracy y; ŷð Þ ¼ 1
nsamples

Xnsamples�1

i¼0

1ðŷi ¼ yiÞ (1)

precision ¼ tp
tpþfp

(2)

recall ¼ tp
tpþ fn

(3)

RESULTS
Differentially expressed genes between LR and NR LCLs are
enriched in Immunoglobulin genes
To seek biomarkers for lithium response (Fig. 1.), we performed
RNA sequencing of the LCLs of 19 BD patients. Nine of them were
LRs and ten belonged to the NR subtype of BD. Since the LCLs
were cultured and sequenced in three different batches (first
cohort, batches1-3), we examined them for batch effects. Batch
effects refer to the unwanted variations in the data that can arise
due to technical differences, such as differences in sample
preparation, sequencing, or batch processing. We thus performed
a sensitivity analysis (PCA) to evaluate the impact of batch effects
on the downstream analysis. We found the variability arising in
PC1 associated with the batches as visualized in the PCA plot
(Fig. 2a). For example, the second batch (triangles) can be seen
concentrated near to first quadrant (upper right) of the PCA plot
and the third batch (squares) are in the lower part (quadrants 3&4)
in the PCA plot (Fig. 2a) regardless of the sample identity (LR or
NR). We, therefore, performed a batch correction (see Methods) to
account for this technical variability. Figure 2b shows the PCA after
the batch correction and reduction of the unwanted variation in
the RNA-seq dataset. We then performed differential gene
expression analysis (see Methods) between the subtypes (LR vs.
NR) of BD subjects. The sixty-one DEGs (out of approx. 117 genes
with FDR < 0.05) with a fold change above 2 and an FDR < 0.01
between the LR and NR subtypes across different samples in
different batches (batches 1–3) are presented in Fig. 2c as a
heatmap. The extensive list of DEGs (approximately 117 genes
with FDR < 0.05) with the plot counts has been plotted in Fig. 2d
and Supplementary 2a & b in ascending order of FDR (p-Adj)
values. Among the top 10 DEGs with the lowest p-Adj values, 70%
belonged to the immunoglobulin heavy and light chain genes
(Fig. 2d). A volcano plot is also shown in Supplementary Fig 2c. for
the highly significant DEGs (p-Adj < 0.05) with a fold change of
above 2 between LR vs. NR BD subtypes.

Differentially expressed genes between LR and NR LCLs are
highly enriched in Immunoglobulin genes when adding a
dataset from another study
To improve the statistical power, we next combined our in-house
(original) data with the RNA-seq data from another cohort of BD

LR and NR subtypes that was previously published [38] (also see
Methods). As explained above, we repeated the analysis for batch
effect. Since the data was acquired from a different laboratory, a
higher magnitude of the batch effect was observed as visualized
with the separate clustering of the first cohort (batches 1–3) in the
left side of the PCA plot (quadrant 3) and the datasets from the
second cohort (batch 4) at the right side of the PCA plot (quadrant
4) (Fig. 3a). This observed variability was reduced using our batch
correction method. The PCA plots before and after batch
corrections are presented in Fig. 3a & 3b respectively to show
the effectiveness of the method we employed. A heat map
showing the dysregulated genes with a fold change of over 2
between the LR and NR LCLs across different samples in different
batches (batches 1–4) with an FDR < 0.05 is plotted in Fig. 3c. A
Venn diagram showing the total of the shared 27 DEGs between
the two datasets (original and joint) is shown in Fig. 3d. Figure 3e
represents the plot counts of 31 DEGs for the joint dataset
arranged according to the ascending p-Adj (FDR) values. We again
found 80% of the top 10 DEGs belonging to the immunoglobulin
family in this combined dataset coming from different laboratories
and diagnosed by different psychiatrists (Fig. 3e). A volcano plot is
presented in Supplementary Fig 3 for highly significant genes with
a fold change of above 2 and FDR < 0.05 between LR vs. NR BD
subtypes in the joint datasets.

Shared genome-wide association studies (GWAS) genes
We were interested to see whether any of the DEGs in the LCLs in
our original dataset also appeared in published GWAS of BD
patients. We searched the GWAS catalog [59] for "bipolar/lithium"
and extracted studies that reported significant genetic variants. We
found overall 61 different studies but only 5 studies had one or
more genetic variants in common with our DEGs from the original
(batches 1–3) datasets after analysis (see the GitHub link for the
code used). These genes along with the respective studies have
been summarized in Table 1. Among the common genes, RIMS1
and BCL11B were notable because they appeared in 4 GWAS
publications and appeared together in 2 of the publications. RIMS1
is a protein involved in neurotransmission because it is required for
synaptic vesicle exocytosis [60]. RIMS1 has previously been found to
have altered gene expression in cortical brain samples from SCZ and
autism patients [61]. BCL11B (also known as CTIP2) is involved in
both neuronal and immunological functions. BCL11B has been
implicated in Alzheimer’s disease, Huntington’s disease, Neuro-HIV,
learning, and memory, and its cellular role in cortical GABAergic
neurons, medium spiny neurons, and vomeronasal sensory neurons
have been studied [62]. In its non-neuronal role, BCL11B is crucial for
T-cell differentiation and VDJ recombination in immunoglobulin
proteins [62, 63]. ADCY1 and NPTX1 were also found to be
associated with BD in our analysis as well as other GWAS studies
[64, 65]. ADCY1 plays a potential role in learning and memory
[66, 67], whereas NPTX1 is required for neural cell specification and
is also known to be involved in synaptic plasticity [68, 69]. The other
non-overlapping genetic variants from 56 genome-wide studies on
BD subjects have been listed in Supplementary Table 1.

Fig. 2 Differentially expressed genes between LR and NR LCLs are enriched in Immunoglobulin genes. a A PCA analysis of LR vs. NR LCLs’
RNA in the original (in-house) dataset before batch correction. Please note different colors are assigned for LR vs. NR & different shapes are
assigned for different batches 1–3. LR RNA samples: 15; NR RNA samples: 17. 24 samples (5 LR in duplicates, 4 NR in duplicates, 3 control in
duplicates) in Batch 1; 10 samples (1 LR in duplicate, 2 NR in duplicate, 2 control in duplicate) in Batch 2; and 12 samples in Batch 3 (3 LR-no
replicate, 1 NR in duplicate plus 4 NR, 4 control-no replicate). In this figure, only LR and NR are plotted. b Same as (a) but after batch correction.
c A heat map of the 61 DEGs (out of a total of 117 detected genes with FDR < 0.05) that reached a significance of FDR < 0.01 and fold-change
>2 between BD LR and NR subtypes in their respective samples in the original dataset. (LR RNA samples: 15; NR RNA samples: 17. RNA samples
were sequenced in replicates for some of the subjects as mentioned above). d The plot counts of the top ~40 significant DEGs between BD LR
and NR samples (as mentioned above) compared to controls arranged according to the ascending order of FDR (p-Adjusted) values < 0.05
with a fold-change >2 in the original dataset (batches 1–3). The upper part of the graph shows the gene expression counts while the lower
part of the graph presents the FDR values. The remaining DEGs have been plotted in Supplementary Fig 2a & b. (LR RNA samples: 15; NR RNA
samples: 17. The expression counts have been normalized in DEseq2 in the Log2 scale).
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Differentially expressed genes between BD and control LCLs
are enriched in Immunoglobulin genes
We next proceeded to identify genes that are differentially
expressed between LCLs of BD patients compared to control
individuals in the original dataset. We performed a similar analysis

and compared the samples between the two groups- Control and
BD (including LR and NR subtypes). The PCA plots before batch
correction are presented in Fig. 4a. We again reduced the
ambiguous technical factors by employing batch correction
methods which is plotted in Fig. 4b. A heat map of the top DEGs
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with a fold change ≥2 and FDR < 0.05 is plotted from the original
dataset (Batch 1, 2 & 3) (Fig. 4c). In Fig. 4d, we have presented the
plot counts of the DEGs in ascending order of p-Adjusted values. A
volcano plot is shown in Supplementary Fig 4a for the highly
significant DEGs in BD compared to control groups.
We also analyzed to determine the fraction of immunoglobu-

lin genes in the DEG groups vs. the total and substantially
expressed immunoglobulin genes detected by RNA sequencing.
First, we checked the percentage of immunoglobulin genes
when observing just the highly expressed genes with two
different thresholds of over a count of 100 (in the sequencing) or
a count of 1000 (in the sequencing). As can be observed in
Supplementary Fig. 4b (i–iii), the percentage of highly expressed
immunoglobulin genes is ~1.1–1.2% in the LCLs. However, we
found the immunoglobulin genes to be highly enriched in the
BD vs control group (17.4%). The percentage of these genes was
even higher in DEGs of LR vs. NR subtype comparisons in the
original (29.1%) and in the joint datasets (52%). The graphs
representing this data are presented in Supplementary Fig 4b
(iv–vi). This evidence suggests the deregulation of the peripheral
immune system in BD patients including the LR and NR subtypes
compared to control.

Predicting BD from the RNA of LCLs
We started this study to develop biomarkers that will be easy and
fast to implement in the clinic. Batch effects are known to often
drive the main differences between datasets of similar groups
acquired in different technical conditions. It was therefore
important for us to develop a robust protocol that will allow the
prediction of BD (Fig. 5) and lithium response (Fig. 6) from the
RNA-seq datasets. To examine this, we used five types of
supervised classification algorithms: Logistic Regression (Lr),
Random Forest (RF), K- Nearest Neighbors (K-NN), Support Vector
Machine (SVM), and Neural Network (NN). As described in the
Methods, to prevent overfitting we first performed batch
correction on RNA-seq datasets using Pycombat and implemented
a feature selection (see Methods for detail). We partitioned our
data for cross-validation (see Methods). The expression values and
the p-values of the subset of the 20 genes used for feature
selection have been shown in Fig. 5a & Supplementary Fig 5a
respectively. We selected a subset of the genes and ran the
prediction algorithm (Lr) to see the dependence of the accuracy
on the number of features (Supplementary Fig 5b). Notably, 5
features were enough to give an accuracy of about 93%.
According to the algorithm, we selected a subset of 5 genes
presented in (Fig. 5b) that were highly predictive for the disorder.
Supplementary Fig 5c presents the confusion matrix (see
Methods) of the 5 classifiers after repeating the split train /test
approach 50 times. Figure 5c presents the performance of the
respective 5 classifiers in the form of the area under the ROC
curve. The Lr, SVM, and NN classifiers gave a successful prediction
with a very low prediction error (AUC= 0.99 ± 0.00) (Fig. 5c).

Additionally, other classifiers also gave a small error in the
prediction: RF (AUC= 0.97 ± 0.04) and K-NN (AUC= 0.99 ± 0.01)
(Fig.5c). Following randomly splitting the data into a train and test
dataset and performing the classification 50 times, the accuracy of
the prediction was also plotted in Fig. 5d. The Lr (0.996 ± 0.021),
SVM (0.996 ± 0.022), NN (0.973 ± 0.058), and K-NN (0.956 ± 0.106)
classifiers were more accurate than RF (0.888 ± 0.087%).

Predicting BD patients’ response to lithium treatment
We next wondered whether the gene expression analysis from the
LCLs obtained from the BD (LR & NR subtypes) and control
subjects would be sufficient to predict lithium response and
classify them into respective groups and subtypes. As described
above, to reduce the noise and variation, we performed the batch
correction and selected 7 genes to be utilized as features from the
list of 20 genes with the lowest p-values (Fig. 6a & b;
Supplementary Fig 6a & b) in a similar manner to what was
described for selecting 5 genes to predict the disorder. Further, to
test the robustness of our algorithms, we trained the above-
mentioned five classifiers on the selected subset of 7 genes
(Fig. 6b) using a 50-50 split train/test approach repeated 50 times
(also see Methods). Supplementary Fig 6c presents the confusion
matrix for 5 different classifiers. Figure 6c presents the ROC for the
5 classifiers (50% train, 50%test repeated 50 times for the datasets
from batches 1–4). Among the predictors, Lr (AUC= 0.99 ± 0.01),
SVM (AUC= 0.98 ± 0.03) & NN (AUC= 0.98 ± 0.03) showed a
highly effective prediction with a lower error rate, but also RF
(AUC= 0.96 ± 0.03) and K-NN (AUC= 0.95 ± 0.03) gave good
results. Similarly, the accuracy of the classifiers has been plotted
(Fig. 6d). The Lr (0.965 ± 0.038), NN 0.940 ± 0.052, and SVM
(0.925 ± 0.063) had better accuracy compared to RF
(0.874 ± 0.071%) and K-NN (0.86 ± 0.074) classifiers.
Additionally, for lithium response prediction, we trained the

model on our dataset (9 LR and 10 NR) and used it to classify a
completely different dataset that was acquired in another
laboratory (batch 4) and on different patients [38]. This prediction
was 95.8% accurate with SVM & NN and 91.7% accurate with the
other three classifiers (RF, Lr, and K-NN).

DISCUSSION
The current understanding of the pathophysiology and progres-
sion of BD is inadequate. For better management of BD,
biomarkers are necessary for diagnosis as well as for the selection
of suitable therapeutic interventions [19, 24, 38]. Differential
response to lithium treatment by more than half of BD patients is
a conundrum in the field of BD research [8]. Some studies have
provided information about a genetic link to non-response to
lithium treatment, as family members of NR BD patients usually
also do not respond to lithium [8, 70–72]. Nevertheless, mood
episodes in BD are also known to be impacted by environmental
factors like stress and traumatic experience [8].

Fig. 3 Differentially expressed genes between LR and NR LCLs are highly enriched in Immunoglobulin genes when adding a dataset from
another study. a A PCA analysis of LR vs. NR LCLs’ RNA in the joint dataset (with an additional dataset from another lab, batch 4) before batch
correction. Please note different colors are assigned for LR vs. NR samples & different shapes are assigned for different batches 1–4. LR RNA
samples: 27; NR RNA samples: 29. 24 samples (5 LR in duplicates, 4 NR in duplicates, 3 control in duplicates) in Batch 1; 10 samples (1 LR in
duplicate, 2 NR in duplicate, 2 control in duplicate) in Batch 2; and 12 samples in Batch 3 (3 LR-no replicate, 1 NR in duplicate plus 4 NR, 4
control-no replicate); Batch 4–24 samples (12 LR-no replicates and 12 NR-no replicates). In this figure, only LR and NR are plotted. b Same as (a)
but after batch correction. c A heat map of the DEGs that reached a significance of FDR < 0.05 and fold-change >2 between BD LR and NR
subtypes in their respective samples in the joint dataset. (LR RNA samples: 27; NR RNA samples: 29. RNA samples were sequenced in replicates
for some of the subjects as mentioned above). d A Venn diagram showing 27 common DEGs between the original dataset and joint dataset of
BD LR compared to BD NR samples, with a threshold of FDR < 0.05 and fold-change >2. e The plot counts of all significant DEGs in BD LR and
BD NR samples compared to control samples arranged according to the ascending order of FDR (p-Adjusted) values < 0.05 with a fold-change
>2 (joint dataset). The upper part of the graph shows the gene expression counts while the lower part of the graph presents the FDR values.
(LR RNA samples: 27; NR RNA samples: 29. RNA samples were sequenced in replicates for some of the subjects. The expression counts have
been normalized in DEseq2 in the Log2 scale).
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In our study, we compared LCLs from 3 groups, Control, BD LRs,
and BD NRs, by performing RNA sequencing to search for DEGs
and associated biological pathways between the groups. The
advantage of our method is its high-throughput, hypothesis-free
approach, and the use of accessible patient-specific LCLs. LCLs
have a huge potential for use in the discovery of biomarkers,
especially in psychiatric disorders where the brain tissues are not
accessible for molecular investigations from live patients [29, 38].
We have also analyzed and compared our in-house (original)
dataset of BD LR and NR patient subtypes with a previously
published study of 24 BD patients [38] (12 LR and 12 NR) as a joint
dataset and found shared DEGs between the two cohorts.
Additionally, in our study, we discovered significant DEGs between
the BD and control groups.
When comparing the subtypes within the BD group, i.e., the LR

vs. the NR patients, a set of genes belonging to the immunoglo-
bulin heavy and light chains variable region were found to be
significantly upregulated in lithium NRs as compared to LRs in the
joint datasets. Increased expression of the immunoglobulin family
genes specifically in lithium NRs entails the deregulation of the
peripheral immune system. Apart from the immunoglobulin
genes, we found the HLA-U, ZNF300, and TRAT1 genes to be
significantly downregulated in NR subtypes. Interestingly, previous
GWAS studies have reported the association of these genes with
BD and other psychiatric disorders [73–75]. HLA-U is a pseudo-
gene found on the MHC complex [76]. GWAS have revealed the
MHC complex as an important risk gene in both BD and
Schizophrenia (SCZ) [77–81]. Apart from its vital immunological
role, the HLA locus has been proposed to play an important role
during neurodevelopment [80, 81]. In our study, we found IL-18 to

be significantly downregulated in NRs. IL-18 is a proinflammatory
cytokine reported to be expressed in different regions of the brain
and has a known role in neuroinflammation [82]. Some studies
have reported high levels of circulating IL-18 in BD and SCZ
patients [83–85]. The altered expression of these genes specifically
in NRs compared to LRs is intriguing, especially because these
genes overlap with previous reports in BD.
Further, when we analyzed the original and joint datasets, 27

genes were found to be common. Apart from HLA-U and IGV
genes, TANC1 and TMEM 132D were among the top 5 most
common genes. The TANC1 protein has been shown to interact
with PSD95 as well as other synaptic proteins such as glutamate
receptors [86]. A TANC1 mutation, along with mutations in NRXN1
and RBMS1 genes, were implicated in psychomotor delayed
development in a case study of chromosomal inversion [87].
GWAS have linked the TMEM 132D polymorphism to anxiety and
panic disorder [88, 89]. TMEM 132D has also been reported to be
dysregulated at the mRNA level in brain regions associated with
anxiety disorders [89]. The differential expression of these critical
genes is even more intriguing since we integrated datasets from
another group that was conducted in a different cohort.
We also compared gene expression between BD and control

LCLs. We found a downregulation of immunoglobulin kappa chain
variable genes in BD patients when compared with control
groups. ADAM23, IGHEP1, GNAQ, FRG1EP, and PPP4R4 were
upregulated in BD patients, including LRs and NRs as subsets.
GNAQ and ADAM23 have earlier been reported to be associated
with BD [90, 91]. ADAM23 was previously reported in a microarray-
based gene expression study of BD postmortem brain samples
[91]. ADAM23 is a membrane protein belonging to the family of

Table 1. Overlapping genes between GWAS data and DEGs in BD LR vs. NR LCLs.

Study Accession Title Overlapping genes Total reported
genes

GCST005081 Association of Polygenic Score for Schizophrenia and HLA Antigen and
Inflammation Genes With Response to Lithium in Bipolar Affective
Disorder: A Genome-Wide Association Study [101]

ADCY1 8

GCST008103 Genome-wide association study identifies 30 loci associated with bipolar
disorder [102]

RIMS1, BCL11B, NPTX1 146

GCST009600 Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across
Eight Psychiatric Disorders [103]

RIMS1, BCL11B 111

GCST011102 Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among
Han Chinese Individuals: A Genome-Wide Association Study and Meta-
analysis [104]

RIMS1 23

GCST012465 Genome-wide association study of more than 40,000 bipolar disorder
cases provides new insights into the underlying biology [105]

BCL11B 63

56 more studies that did not have any overlap with our set of DEGs are mentioned in
Supplementary Table 1

Genes with no overlap with DEGS
HOMER2, MIR52, NF1A, PTGFR, FAT, MHC,
RP11–252P19.1,ADM,NFIA, DGKH NCAN,
DPY19L3, CGNL1, SPATS2L, RND1, DDX23,
CANCNB3, GRIK5, ST8SIA2, C15orf32, SLITRK1,
SLITRK6, SNAP91, PRSS35, SDCCAG8, ANK3,
CADM3, ENSG00000258081, POU3F2, MIR2113
FER1L5, LMAN2L, CNNM4, NF1A, ST6GALNAC3,
ADCY2, ODZ4, TRANK1, ROR2, NFIL3, AUH,
MIR3910, APOB, RPRD2, AC096669.1,
LOC440300, LOC388152, LOC642423,
GOLGA6L4, DNM1P41, GOLGA6L5,
UBE2Q2P1,LOC100506874, ZSCAN2, SCAND2P,
WDR73, NMB, SEC11A, ZNF592, ALPK3,
SLC28A1OR4F16, OR4F29, LOC729467,
LOC100133331, LOC100132287, FGGY,
TMEM108, FAM178B, MKLN1, ETV5, FGGY,
STAG1

(Reference database: GWAS catalog [59]; see Methods) and the significant DEGs from the original dataset of BD LR and BD NR samples. The other studies that
did not overlap with our set of DEGs are mentioned in Supplementary Fig. 1.
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Fig. 4 Differentially expressed genes between BD and control LCLs are enriched in Immunoglobulin genes. a PCA analysis of BD vs.
control LCLs’ RNA in the original dataset before batch correction. (Please note different colors are assigned for BD vs. Ctrl samples & shapes for
different batches 1–3. RNA samples: 32; Control RNA samples: 14. RNA samples were sequenced in replicates for some of the subjects as
mentioned in Fig. 2a). b Same as (a) but after batch correction. c A heat map of the DEGs that reached a significance of FDR < 0.05 and fold-
change >2 between BD and control groups in their respective samples in the original dataset (BD RNA samples: 32; Control RNA samples: 14.
RNA samples were sequenced in replicates for some of the subjects.). d The plot counts of all significant DEGs in BD samples compared to
control samples arranged according to the ascending order of FDR (p-Adjusted) values < 0.05 with a fold-change >2. (Original dataset). The
upper part of the graph shows the gene expression counts while the lower part of the graph presents the FDR values. (RNA samples: 32;
Control RNA samples: 14. The expression counts have been normalized in DEseq2 in the Log2 scale).
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Fig. 5 Predicting BD from the RNA of LCLs. Using 50%-50% cross-validation schemes, we utilized five different supervised classification
algorithms to predict which of the LCLs’ RNA was extracted from a BD patient or control individual. Approximately 50% of the data (15
subjects) were used as a training set and ~50% (14 subjects) of the dataset were used as a test (out of the dataset that consisted of 19 BD and
10 controls) from cohort 1. The 50%-50% train/test approach was iterated 50 times. The five algorithms used were Logistic Regression (Lr),
Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), and Neural Network (NN). a The gene expression counts of
20 genes in BD and control subjects with the lowest p-values (Mann Whitney U test) were used for the feature selection for the different
classifiers. b Box plots of the expression of the five genes in BD and control groups that were used for the prediction. c A joint ROC for the
prediction of BD vs. Control for the five classifiers. d The accuracy scores for BD vs. Control prediction for the five classifiers after splitting the
data into test/train and repeating 50 times.
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Fig. 6 Predicting BD patients’ response to lithium treatment. Similarly as Fig. 5; Approximately 50% of the data (21 subjects) were used as a
training set and ~50% (22 subjects) of the datasets were used as a test (out of the datasets that consisted of 19 BD subjects including LR & NR
from cohort 1 & 24 BD subjects including LR & NR from cohort 2). a The plot counts of 20 genes in LR and NR subjects with the lowest p-values
(Mann–Whitney U test) were used for the feature selection for the five classifiers. b Box plots of the expression of the seven genes in BD LR
and NR subtypes that were used for the prediction. c A joint ROC for the prediction of LR vs. NR for the five classifiers. d Similarly, the accuracy
scores of the classifiers for BD LR vs. NR prediction using a 50–50% cross-validation scheme repeated 50 times. Additionally, training was done
on our dataset and the trained model was used to predict the lithium response of the BD patients in the Cohort 2 dataset (Milanesi et al. [38]).
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ADAM proteins and is part of a presynaptic complex interacting
with the Lgl receptor [92]. While FRG1EP has a reported function in
cancer, the function of the other above-mentioned genes is not
well understood, especially in the context of psychiatric diseases
[93].
Overall, our findings suggest significant dysregulation of genes

with immunological function as well as alteration of genes
involved in synaptic pathways in BD LCLs. Overwhelming reports
have highlighted the importance of immune dysregulation in BD
and SCZ [94–97]. We also found genes implicated in neuro-
inflammation and anxiety disorder altered in BD LCLs. Further-
more, between BD patient subtypes, we found cytokines and
immunological genes specifically altered in NR compared to LR
patients.
We used five diverse supervised classification algorithms – Lr,

RF, K-NN, SVM, and NN to predict BD and lithium treatment
response. Each classifier has its own set of pros and cons as
described briefly above (in Methods) and reviewed previously
[36, 55, 57, 98]. One typical drawback with supervised classification
algorithms is that their performance decreases with high-
dimensional datasets (like RNA-seq data) with a large number of
features leading to overfitting [98, 99]. To prevent overfitting, we
reduced the number of genes (features) used for training the
classifier to only 5 & 7 (for BD prediction and lithium response
respectively) and thus reduced the complexity of the model by
selecting only the statistically informative and robust genes for
prediction. Further, our model used a random sampling cross-
validation scheme to split the data into training and test datasets.
This gave robust statistical results with a very low error rate
especially using the Lr, SVM, and NN classifiers for lithium
response prediction. The error rate was very low (less than 5%
with SVM and NN; approx. 8% for Lr, RF, and K-NN) even when
trained on our in-house dataset and tested on the data from
another laboratory. The BD samples could also be predicted with
high conformity and distinguished from the control samples with
minimal errors using the Lr, SVM, and NN classifiers.
Some studies have used supervised machine learning algorithms

for Diabetes, Cardiovascular diseases, Cancers, Alzheimer’s disease,
and Parkinson’s disease using clinical parameters and neuroimaging
datasets [100]. Ours is the first study to use transcriptomic datasets
from LCLs of BD patients to predict the disorder as well as the
responsiveness to lithium. The method is cost-effective and scalable
and can be easily implemented in a psychiatric clinic. While one of
the limitations of the study is the insufficient clinical sample size
given the complexity and polygenic nature of BD, we showed the
robustness of our algorithm by testing it on a new dataset from
another lab. Further, the use of transformed B cell lines (LCLs) may
not be the ideal tissue choice for a neuropsychiatric disorder like BD
but the fact that we could find statistically significant DEGs and
were able to predict and classify BD subtypes using the classifiers
provides proof about the existing specific genetic signatures
between BD subtypes.
In conclusion, using RNA-seq, we have found a set of DEGs from

LCLs of BD patients that can be used as potential biomarkers to
diagnose as well as classify BD patient subtypes. Functional
studies of these genes in model systems should also aid in
elucidating the cellular and molecular processes underlying BD
pathophysiology. Importantly, we hope that our study and our
developed algorithm will serve as an easy and ready-to-use
protocol for deciding on effective treatment in the clinic within
days of diagnosis.

DATA AND CODE AVAILABILITY
The data including raw files are available in the following Github link below.
All the codes used in this study for RNA-seq data analysis, Machine learning
predictor analysis, and GWAS analysis are also available in the following link.
https://github.com/Precision-Disease-Modeling-Lab/Lithum-Respose-Predictor.
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