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Lck Regulates the Tyrosine Phosphorylat ion 
o f  the T Cell Receptor  Subunits and ZAP-70  
in Murine Thymocytes  
By Nicolai S.C. van Oers,* Nigel Killeen,r and Arthur Weiss*r 

From the Departments of*Medidne and r and Immunology and the gHoward Hughes 
Medical Institute, University of California, San Francisco, California 94143 

S u m m a r y  

The Src-family and Syk/ZAP-70 family of protein tyrosine kinases (PTK) are required for T 
cell receptor (TCR) functions. We provide evidence that the Src-family PTK Lck is responsi- 
ble for regulating the constitutive tyrosine phosphorylation of  the T C R  ~ subunit in murine 
thymocytes. Moreover, hgation of  the T C R  expressed on thymocytes from Lck-deficient mice 
largely failed to induce the phosphorylation ofTCR-~,  CD3e, or ZAP-70. In contrast, we find 
that the TCR-~ subunit is weakly constitutively tyrosine phosphorylated in peripheral T cells 
isolated from Lck-null mice. These data suggest that Lck has a functional role in regulation of  
T C R  signal transduction in thymocytes. In peripheral T cells, other Src-family PTKs such as 
Fyn may partially compensate for the absence of  Lck. 

E ngagement of  the T cell receptor (TCR) 1 leads to the 
activation of  two families of  protein tyrosine kinases 

(PTKs) that are essential for the induction of  cellular re- 
sponses (for review see references 1-3). Studies in T cell 
clones and hnes have shown that the Src-family and the 
Syk/ZAP-70 family are required for TCR-mediated signal 
transduction processes (2, 3). After T C R  engagement, the 
Src-family PTKs Lck or Fyn are proposed to initiate T C R  
signaling by phosphorylating tyrosine residues in the cyto- 
plasmic portion of  the CD3 and TCR-~ subunits (4-6). 
This phosphorylation occurs on two tyrosine residues present 
in a common signaling motif, termed ITAM (immune re- 
ceptor tyrosine-based activation motif), which is present as 
a single copy in CD37, -8, -e, and in three copies in TCR-~ 
(7). The phosphorylation of tyrosines within an ITAM 
leads to the recruitment of  a member of  a second family of  
PTKs, the Syk/ZAP-70 family, to the T C R  complex (8-11). 
This association is mediated by a high-affinity interaction 
between the tandem Src-homology 2 (SH2) domains of Syk/ 
ZAP-70 and the two phosphotyrosine residues located in 
an ITAM (11-13). 

The importance of  ZAP-70 in T C R  signaling was ini- 
tially revealed with the characterization of  a ZAP-70 defi- 
ciency in humans (14). Thus, peripheral CD4 + T cells iso- 
lated from ZAP-70--deficient patients are unable to transduce 
intracellular signals after T C R  engagement (15-17). More 
recently, ZAP-70 was shown to reconstitute B cell recep- 
tor (BCR) signaling in a Syk-deficient cell hne (18). Lck 

1Abbreviations used in this paper: BCR, B cell receptor; ITAM, immune re- 
ceptor tyrosme-based activation motit2 PTK, protein tyrosine kinase; 
PVDF, polyvinyl difluoride; SH2, Src-homology 2. 

and Fyn are also required for phosphorylating ZAP-70, re- 
sulting in an increase in the catalytic activity of  ZAP-70 
(12, 19-21). In fact, the tyrosine phosphorylation of  ZAP- 
70 by Lck or Fyn is absolutely required for lymphocyte an- 
tigen receptor functions (20). The SH2 domain of  Lck is 
also capable of  binding to phospho-ZAP-70 and phospho- 
Syk (22, 23). Since Lck is also associated with the CD4 and 
CD8 coreceptor molecules, the binding of Lck to phos- 
pho-ZAP-70 or -Syk may help to coordinate the interac- 
tion between the activated T C R  complex and the corecep- 
t0rs, thereby promoting antigen recognition (24). Thus, 
studies with T cell fines have demonstrated important roles 
for Lck and/or Fyn in regulating T C R / C D 3  subunit phos- 
phorylation as well as in the activation of  the Syk/ZAP-70 
family of  PTKs. 

The regulation of T C R / C D 3  subunit phosphorylation 
and Syk/ZAP-70 PTKs by the Src-family PTKs are less 
well defined in ex vivo thymocytes and peripheral T cells. 
Lck is expressed at all stages ofthymocyte development and 
is essential for the clonal expansion and the maturation of  
thymocytes (for reviews see references 1, 25). The require- 
ments for Lck in thymocyte development were firmly es- 
tabhshed by the targeted disruption of  Lck, which led to a 
block in the expansion ofCD4+CD8 + thymocytes (26). In 
addition, transgenic mice overexpressing a catalytically in- 
active form of  Lck fail to generate CD4+CD8 + thymocytes 
(27). Overexpression of  a constitutively active form of  Lck 
can overcome the developmental defects seen in R.AG-1 
null mice, resulting in normal numbers of CD4+CD8 + 
thymocytes (28). As a consequence of  its interaction with 
CD4 and CD8, Lck can also influence the positive and 
negative selection processes occurring at the CD4+CD8 + 
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stage o f  thymocyte  development  (1, 3, 25). Therefore, Lck 
has several functional roles at multiple stages of  thymocyte  
development  and is hkely to function in a prominent  role 
in TC1K signal transduction in thymocytes. 

In contrast to Lck, Fyn is expressed at levels 10-fold 
lower in immature thymocytes relative to mature T cells (29). 
Although thymocyte  development  proceeds normally in 
Fyn-deficient mice, Fyn appears to influence T C R - m e d i -  
ated signaling events in mature single-positive thymocytes 
(30, 31). Thus, TC1K stimulation of  mature thymocytes 
from Fyn-deficient mice results in diminished calcium and 
proliferative responses. 

Like Lck, ZAP-70 also plays a critical role in T cell on-  
togeny. For instance, CD8 + T cells fail to develop in ZAP-  
70--deficient patients, whereas the CD4  + T cells that are 
detected in the periphery are defective in T C K  signaling 
functions (14--17). Mice rendered deficient in ZAP-70 have 
normal numbers of  C D 4 + C D 8  + thymocytes but exhibit a 
complete block in positive and negative selection (32). There-  
fore, the two families o f  PTKs imphcated in TCR.-medi -  
ated signal transduction have important functions during 
thymic development.  

In murine thymocytes, and unlike cultured T cell clones 
and lines, the TC1K-~ subunit is constitutively tyrosine phos- 
phorylated (phospho-~) (33-35). In contrast to 4, the other 
CD3 subunits are not constitutively phosphorylated, but 
TC1K engagement induces their phosphorylation. Moreover,  
ZAP-70 is constitutively associated with phospho-~, yet 
T C R  hgation is required for the induction of  ZAP-70 
phosphorylation (36). The  constitutive interaction between 
ZAP-70 and phospho-~ is not  restricted to thymocytes as 
similar interactions are detected in murine L N  T cells (36). 
The  phospho-~ detected in murine thymocytes and L N  T 
cells migrates with an apparent molecular mass o f  21 kD, 
similar to the form induced in T cell clones stimulated with 
altered peptide l i gand-MHC complexes (37, 38). T C R  li- 
gation in thymocytes or agonist peptide stimulation o f  T 
cell clones both result in the induction o f  a second form of  
phospho-~ (23 kD), as well as the phosphorylation of  ZAP-  
70 and the CD3 subunits (36-38). These results suggest 
that the regulation of  T C R / C D 3  subunit phosphorylation 
and ZAP-70 activation are important control points for T 
cell activation and/or  positive and negative selection (39). 

To  determine which P T K  is responsible for regulating 
the constitutive phosphorylation of  T C R - ~  and the induc- 
ible tyrosine phosphorylation o f  T C R - ~ ,  CD3~, and Z A P -  
70 in murine thymocytes, we analyzed the phosphorylation 
status o f  these molecules in both  Lck- and Fyn-deficient 
mice before and after T C R  engagement. W e  report here 
that Lck but not Fyn is required for regulating the constitu- 
tive tyrosine phosphorylation of  TCI<-~ and the inducible 
phosphorylation ofTC1K-~, CD3~, and ZAP-70 in murine 
thymocytes. 

Materials and Methods  

Cell Lines and Animals. C57B1/6 mice were purchased from 
The Jackson Laboratory (Bar Harbor, ME) and maintained in the 
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Animal Care Facility at the University of California (San Fran- 
cisco, CA). The Lck- and Fyn-deficient mice were obtained from 
Drs. Tak Mak (Amgen and the Ontario Cancer Institute, Tor- 
onto, Ontario, Canada) and Koger Perlmutter (University of Wash- 
ington, Seattle, WA), respectively. A full description of their pbe- 
notypes has been published (26, 31). The Lck- and Fyn-deficient 
mice were bred and maintained in microisolator cages at UCSF. 
Murine thymocytes, LN T cells, and erythrocyte-depleted spleen 
cells were isolated as previously described (36). 

Antibodies and Antisera. The antibodies used for xmmunoprecip- 
itation, immunoblotting, and FACScan TM analyses are as follows: 
145-2Cll, CD3e (American Type Culture Collection [ATCC], 
Rockville, MD); 4G10, phosphotyrosine (Upstate Biotechnology 
Inc., Lake Placid, NY); G3 and 6B10.2, TC1K-~ chain (40, 41); 
1F6, Lck, kindly provided by Dr. J. Bolen (Bristol-Meyers Squibb, 
Princeton, NJ); anti-Lyn and anti-Syk polyclonal antisera were 
generously provided by Dr. Tony DeFranco (UCSF); anti-Fyn 
polyclonal antisera was kindly supphed by Dr. A. Veillette 
(McGill University, Montreal, Quebec, Canada); anti-Fyn mAbs 
and anti-Yes antisera were purchased from Santa Cruz Biotech- 
nology (Santa Cruz, CA). Fluorescein-conjugated anti-CDSe~ and 
PE-conjugated anti-CD4 were purchased from Collaborative 
Biomedical Products, Bedford, MA. Tricolor anti-CD4 and PE- 
anti-CD8~x were obtained from Caltag Laboratories (South San 
Francisco, CA). PE-conjugated anti-CD3e (145-2Cll) and fluo- 
rescein-conjugated anti-CD69 were obtained from PharMingen 
(San Diego, CA). Horse radish peroxidase-conjugated goat anti- 
mouse IgG and goat anti-rabbit IgG were obtained from South- 
em Biotechnology Associates (Birmingham, AL); alkaline phos- 
phatase-conjugated goat anti-rabbit Ig and goat anti-mouse lg 
were purchased from BioRad Laboratories (Hercules, CA). For 
Syk immunoblotting experiments, a polyclonal rabbit antisera 
generated against a peptide sequence (amino acids 314-339) of 
the human Syk PTK was used. For Western blots, this antibody 
was diluted 1:500 in combination with a 1:500 dilution of an 
antimurine Syk antisera provided by Dr. Tony DeFranco. 

St~'mulation, Precipitation, and Immunoblotting of Thymocytes and LN 
T Cells. Preparation of murine thymocytes and LN T ceils, an- 
tibody-mediated TCIK stimulation, as well as immunoprecipita- 
tion and Western blotting techniques, have all been described in 
detail elsewhere (36). For comparative immunoblotting, lysates 
from the different thymocyte, LN T cell, or spleen ceil prepara- 
tions were prepared, and the protein content of each preparation 
was subsequently determined with a protein assay kit (BiolKad 
Laboratories). 150 lag of protein was resolved by SDS-PAGE and 
immunoblotted as described in the figure legends. Pervanadate 
stimulation of murine thymocytes was performed for 10 min at 
37~ essentially as described using a final concentration of 100 
laM sodium orthovanadate and 10 mM H202 (42). 

Thymocyte Cultures. Thymocytes were cultured overnight at 
37~ in plates coated with PBS or 10 lag/ml ofanti-CD3e (145- 
2Cll) .  The cells were subsequently harvested and stained with a 
combination of antibodies to CD69, CD4, and CD8. The ex- 
pression of CD69 on the CD4+CD8 + population of cells was de- 
termined by electronic gating with a FACScan | flow cytometer. 

Results  

Lck Regulates the Constitutive and Inducible Tyrosine Phos- 
phorylation of the TCR-~ Subunit. As previously reported, a 
proport ion of  T C R - ~  molecules are constitutively tyrosine 
phosphorylated and associated with ZAP-70 in routine 
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thymocytes and L N  T cells (Fig. 1, lanes 1-4) (36). Since 
the ZAP-70 P T K  family member  Syk is also expressed in 
thymocytes and LN T cells, we examined whether  Syk was 
also constitutively associated with phospho-~. Fig. 1 dem-  
onstrates that, like ZAP-70,  a population o f  Syk molecules 
are constitutively associated with phospho-~ in thymocytes 
(Fig. 1, lanes 5 and 6). T C R  ligation led to the tyrosine 
phosphorylation o f  Syk as well as the coprecipitation of  the 
23-kD form ofphospho-~ (Fig. 1, lanes 5 and 6) (36). H o w -  
ever, consistent with our previous studies, Syk expression is 
very low in L N  T cells, and its association with phospho-~ 
was difficult to detect (Fig. 1, lanes 7 and 8) (9). These find- 
ings extend our previous observations demonstrating that 
both ZAP-70  and Syk are constitutively associated with 
phospho-~ in murine thymocytes,  and T C R  ligation is 
necessary to induce an appreciable level o f  ZAP-70 or Syk 
tyrosine phosphorylation. However ,  these experiments do 
not address which P T K  is responsible for regulating T C R - ~  
phosphorylation. 

Since the Lck P T K  has been implicated in the phospho-  
rylation of  the T C R / C D 3  subunit in T cell lines, we ex- 
amined its role in regulating T C R - ~  phosphorylation in thy- 
mocytes and LN T cells from mice lacking Lck. As previously 
reported, mice rendered deficient in the Lck P T K  (Lck - / - )  

Figure 1. The ZAP-70 and Syk PTKs are constitutively associated 
with the tyrosine-phosphorylated TCR-~ subunit. (A) Murine thy- 
mocytes (lanes 1, 2, 5, and 6) (2 X 108 cells/lane) or LN T cells (lanes 3, 
4, 7, and 8) (4 • 107 cells/lane) were either unstimulated (lanes 1, 3, 5, 
and 7) or stimuhted with anti-CD3e mAbs for 3 min (lanes 2, 4, 6, and 
8) and subsequently lysed in a 1% Triton X-100 containing lysis buffer. 
ZAP-70 or Syk were immunoprecipitated from the lysates with affinity- 
purified anti-ZAP-70 or anti-Syk polyclonal antisera. The precipitates 
were resolved in 12.5% SDS-PAGE, the gels were transferred to polyvi- 
nyl difluoride (PVDF) membranes, and immunoblotted with an antiphos- 
photyrosine rnAb (4G10). (B) The blots were subsequently stripped and 
reprobed with anti-ZAP-70 (lanes 1-4) or anti-Syk antisera (lanes 5-8). 
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exhibit a 10-20-fold reduction in overall thymic cellularity 
with a significant reduction in mature C D 4 + C D 8  - and 
C D 4 - C D 8  + T cell populations when  compared with wild- 
type mice (shown in Fig. 2 for comparative purposes) (26, 
28). The  targeted disruption o f  Lck also results in an in- 
creased surface expression of  the T C R  in thymocytes (Fig. 2). 

T o  directly address whether  the constitutive and induc- 
ible tyrosine phosphorylation of  T C R - ~  (phospho-~) in 
murine thymocytes is regulated by Lck, thymocytes f rom 
normal and Lck-deficient mice were lysed, and the T C R /  
CD3 complexes were immunoprecipitated, resolved by SDS- 
PAGE, and immunoblot ted  with an antiphosphotyrosine 
mAb. In contrast to normal mice, in which the T C R - ~  
subunit is constitutively phosphorylated, there was a mark-  
edly reduced level o f  phospho-~ in thymocytes isolated 
from Lck - / -  mice (Fig. 3 A, lane 3 vs. lane 1). In fact, pro-  
longed enhanced chemiluminescence exposures of  20-30 
min were required in order to reveal a small degree of  
phospho-~ in the Lck - / -  thymocytes.  Furthermore,  there 
was no detectable induction of  phospho-~ or tyrosine- 
phosphorylated CD3~ in the Lck - / -  thymocytes after 
T C R  ligation, in contrast to the phosphorylation o f  CD3e  
seen in wild-type mice (Fig. 3 A, lane 4 vs. lane 2). The  
upper band, which migrates near 28 kD, may correspond 
to phospho-CD3-8 ,  although this band comigrates with 
the Ig light chain. The  extremely low levels o f  phospho-~ 
in Lck - / -  mice were not attributable to decreases in the 
amounts o f T C R - ~  coprecipitating with CD3e,  since simi- 
lar levels o f  nonphosphorylated T C R - ~  (16 kD) were 
present in both  the wild-type and Lck - / -  thymocytes (Fig. 
3 B, lanes 1-4). 

It is possible that thymocytes from Lck-null mice express 
some T C R  complexes that maintain a weak biochemical 
association with the T C R - ~  subunit, similar to that de- 
scribed for the p r e -TClk  complex (41, 43-45). In fact, the 
C D 4 + C D 8  + thymocytes from Lck - / -  mice may include a 
population of  cells expressing the p r e - T C R  (28, 45). Thus, 
it was conceivable that phospho-~ was present in t hymo-  
cytes from Lck - / -  mice, but simply failed to coprecipitate 
with CD3e.  T o  examine this possibility, we precipitated 
the T C R - ~  subunit from the T C R / C D 3 - d e p l e t e d  lysates 
with a TCR-~--specific mAb. However ,  we were unable to 
detect any phospho-~ in the Lck - / -  thymocyte  lysates, al- 
though some additional phospho-~ was precipitated from 
the wild-type mice (Fig. 3 A, lanes 7 and 8 vs. 5 and 6). 

W e  also examined whether  the ZAP-70 P T K  could be 
inducibly tyrosine phosphorylated in thymocytes f rom the 
Lck-nuU mice. Lysates were prepared from unstimulated or 
an t i -TCR-s t imula ted  thymocytes. ZAP-70 was precipi- 
tated f rom the lysates with affinity-purified polyclonal anti- 
sera (Fig. 3 C). In thymocytes from normal mice, T C R  11- 
gation results in the tyrosine phosphorylation of  ZAP-70  
(Fig. 3 C, lane 2). In contrast, we were unable to detect 
any inducible tyrosine phosphorylation of  ZAP-70 in the 
thymocytes from Lck - / -  mice (Fig. 3 C, lane 4 vs. lane 3). 
However ,  it was apparent that a small degree o fphospho-~  
was coprecipitated with ZAP-70  in both unstimulated and 
TCR-s t imula ted  Lck - / -  thymocytes. T o  assess whether  a 
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Figure  2. Flow cytometric analysis ofthymocytes and LN T cells from wild-type and Lck-deficient mice. Thymocytes from normal C57BL (+/+) or 
Lck-deficient C57B1 (- / - )  mice (4--6 wk of age) were stained with directly labeled mAbs for CD4, CD8, or T C R / C D 3  and analyzed by two- or one- 
color flow cytometry. For two-color plots, the percentage of  cells in each quadrant is listed. For one-color histograms, the dotted line represents staining 
with a control PE-conjugated mAb. LN were isolated from the same mice whose thymocyte profiles are displayed, depleted of B cells, and the remaining 
cells were stained as described for thymocytes. The thymic cellularity varied from 5 • 106 to 2 X 107 cells/thymus in Lck - / -  mice versus 1-3 • 10 s cells 
in wild-type mice. LN T cell yields typically varied from 1-2 • 106 cells in Lck - t -  mice to 1-3 • 107 cells in normal mice. 

significant level of phospho-~ or tyrosine-phosphorylated 
CD3~ (phospho-e) could be elicited in Lck - / -  mice, thy- 
mocytes were stimulated with the protein tyrosine phos- 
phatase inhibitor pervanadate. Pervanadate treatment of  hu- 
man peripheral blood lymphocytes has been shown to cause 
dramatic increases in protein tyrosine phosphorylation (42). 
After pervanadate treatment ofthymocytes from normal and 
Lck-null mice, the cells were lysed, and the T C R  complex 
was immunoprecipitated and blotted with antiphosphoty- 
rosine mAbs. Both the CD3e and TCR-~ chains were ex- 
tensively phosphorylated in normal and Lck - / -  thymocytes 
after pervanadate-mediated activation (Fig. 3 C, lanes 6 and 
8). However, the levels ofphospho-~ and phospho-e elic- 
ited with pervanadate were always two- to fourfold lower 
in the Lck - / -  thymocytes. Therefore, based on these ob- 
servations, it appears that Lck is the primary PTK responsi- 
ble for regulating the constitutive and inducible tyrosiue 
phosphorylation of  the T C R  subunits and the phosphory- 
lation of ZAP-70 in murine thymocytes, although under 
some  circumstances, other PTKs may  be able to c o n t r i b u t e  

to these effects. 
The Constitutive Tyrosine Phosphorylation of TCR-~ Occurs 

in the Absence of the Fyn PTK. Some  mature T cells can de-  

ve lop in the thymuses  o f  L c k - d e f i c i e n t  m i c e  (26).  More-  
over, we detected a small amount of phospho-~ in Lck- 
deficient thymocytes, and a substantial increase was elicited 
upon treatment with pervanadate (Fig. 3 C). These obser- 
vations suggested that additional Src-family PTKs or other 
PTKs may contribute to the regulation of  T C R  subunit 
phosphorylation. One Src-family PTK that may mediate 
these effects is Fyn (1). This is supported by the observation 
that thymocytes from Fyn-mutant mice exhibit impaired 
calcium mobilization and proliferative responses after TCR 
engagement (30, 31). To determine whether the Fyn PTK 
was also required for regulating T C R - ~  phosphorylat ion i n  

thymocytes ,  w e  compared normal  and Fyn-def ic ient  m i c e  

for the expression o f  phospho-~ .  T h y m o c y t e s  from both 
types of mice were lysed, and the T C R / C D 3  complex was 
subsequently precipitated with an anti-CD3e mAb. The pre- 
cipitates were  i m m u n o b l o t t e d  with an antiphoshotyrosine 
mAb and an anti-TCR-~ mAb. As shown in Fig. 4, we 
were unable to detect significant differences in the levels of 
phosho-~  or nonphosphorylated  T C R - ~  coprecipitating 
with the T C R  complex when comparing thymocytes from 
normal  and Fyn-def ic ient  m i c e  (Fig. 4,  A a n d  B, l an e s  1 

and 2 vs. 3 and 4). 
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Figure 3. The Lck PTK regulates the constitutive and inducible tyrosine phosphorylation of the TCR-~ subunit. (A) Thymocytes (4 • 107 cells/lane) 
from normal C57B1/6J mice (lanes 1, 2, 5, and 6) or Lck-deficient mice (lanes 3, 4, 7, and 8) were left untreated (lanes I, 3, 5, and 7) or stimulated with 
anti-CD3e mAbs for 3 min (lanes 2, 4, 6, and 8), rapidly pelleted, and subsequently lysed in 0.5% Triton X-100 containing lysis buffers. The TCR/CD3 
complex from either unstimulated or TCR-stimulated lysates was sequentially immunoprecipitated with anti-CD3~ mAbs (lanes I-4) followed by an 
anti-TCR-~ mAb (lanes 5-8). The precipitates were resolved on 12.5% SDS-PAGE, transferred to PVDF, and blotted with antiphosphotyrosine mAbs. 
(13) The region below 18 kD was blotted with anti-E-specific mAbs. The results are representative of four independent experiments. (C) Thymocytes 
from normal (lanes 1, 2, 5, and 6) or Lck-deficient mice (lanes 3, 4, 7, and 8) were left untreated (lanes 1, 3, 5, and 7), stimulated with anti-CD3~ mAb 
for 3 min (lanes 2 and 4), or treated with pervanadate for 10 min (lanes 6 and 8). Lysates were prepared from 7.5 • 10 v cells (lanes I-4) or 1.5 • 10 v cells 
(lanes 5-8) and immunoprecipitated with affinity-purified anti-ZAP-70 antisera (lanes 1-4) or an anti-CD3~ mAb (lanes 5-8). The precipitates were re- 
solved by SDS-PAGE and Western blotted with an antiphosphotyrosine mAb (4G10). 

W e  also per formed i m m u n o b l o t t i n g  exper iments  to as- 
sess whe the r  Fyn  or o ther  PTKs ,  normal ly  implicated in  
T C R -  or  B C R - m e d i a t e d  signaling events,  may  be  upregu-  
lated in  the thymus  o f  Lck-def ic ient  mice.  Equiva lent  

amount s  o f  p ro te in  f rom lysates prepared f rom wi ld- type  
and Lck - / -  thymocytes ,  as wel l  as wi ld- type  spleen cells, 
were  resolved by  S D S - P A G E  and  i m m u n o b l o t t e d  wi th  a 
n u m b e r  o f  different antibodies.  Thymocy te s  f rom Lck - / -  
mice  express no  Lck and essentially undetectable  levels o f  
Lyn and Yes u n d e r  the b lo t t ing  condi t ions  used (Fig. 5 A, 
lane 2, and data no t  shown).  However ,  Fyn  was expressed 
at roughly  equivalent  amount s  in  b o t h  wi ld - type  and  Lck-  
nul l  thymocytes ,  at levels that are substantially lower  w h e n  
compared  wi th  that seen in  peripheral  L N  T cells (Fig. 5 
B). Thymocy te s  f rom the Lck - / -  mice  also express slightly 
lower  levels o f  Z A P - 7 0  (Fig. 5 A, lane 2 vs. lane 1). These 
results are all consistent  wi th  previously publ ished findings 
that Fyn  levels are substantially reduced in  C D 4 + C D 8  + thy-  

Figure 4. The Fyn PTK is not required for the constitutive tyrosine 
phosphorylation of the TCR-~ subunit. Thymocytes (2.5 • 107 cells/ 
lane) from normal C57B1/6 mice (lanes 1, 2, 5, and 6) or Fyn-deficient 
mice (lanes 3 and 4) were left untreated (lanes 1, 3, and 5) or stimulated 
with anti-CD3e mAbs for 3 min (lanes 2, 4, and 6) and processed as de- 
scribed in Fig. 3. The precipitates were resolved on 12.5% SDS-PAGE, 
transferred to PVDF, and blotted with antiphosphotyrosine mAbs (A), 
whereas the region of the membrane below 18 kD was blotted with anti- 
X-specific mAbs (B). The results are representative of three independent 
experiments. 
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Figure 5. Analysis of Src-family and Syk/ZAP-70 family PTK expres- 
sion in normal mice and mice lacking Lck. (A) Thymocyte lysates (150 
~g) from wild-type (lane 1) and Lck-deficient mice (lane 2), and spleen 
cell lysates (150 ~g) from wild-type mice (lane 3), were prepared and re- 
solved on 10% SDS-PAGE. The gels were transferred to nitrocellulose 
and subsequently immunoblotted with antibodies against the Src-family 
PTKs Lck, Fyn, and Lyn as well as the Syk/ZAP-70 family of PTKs. 
Spleen cell lysates (containing both T and B cells) were first depleted of 
erythrocytes and are included as positive controls for Lyn and Syk expres- 
sion. (B) Thymocyte (lanes 1 and 2) and LN T cell lysates (lanes 3 and 4) 
were prepared from equivalent numbers of cells (5 • 10 6) from normal 
(lanes 1 and 3) and Lck-deficient mice (lanes 2 and 4). The lysates were 
separated on 10% SDS-PAGE and subsequently Western blotted with 
anti-Fyn polyclonal antisera. 

mocytes, and that the ZAP-70 PTK is expressed at slightly 
lower levels in immature versus mature T cells (9, 29). In- 
terestingly, Syk was expressed at roughly 1.5-2-fold higher 
levels in Lck - / -  thymocytes relative to unfractionated thy- 
mocytes from normal mice (Fig. 5 A). In summary, the re- 
sults demonstrate that the Src-family PTK Lck, but not 
Fyn, has a specific role in regulating TC1L-~ phosphoryla- 
tion in thymocytes. However,  these results do not rule out 
the possibility that Fyn may contribute to the small levels o f  
phospho-~ seen in the Lck-deficient thymocytes. The  mo-  
lecular mechanism underlying the contribution o f  Fyn to 
TCR-media ted  signaling events in thymocytes has yet to 
be resolved. 

TCR-mediated Signaling in Lck-deficient Mice after T C R  Li- 
gation. Since the phosphorylation o f  TCIk-~ could not be 
induced in thymocytes from Lck - / -  mice after T C R  liga- 
tion, we were interested in determining whether any ty- 
rosine-phosphorylated proteins could be detected in Lck - / -  
thymocytes when stimulated with mAbs against the TCIL 
complex. T C R  ligation o f  thymocytes from normal mice 
results in the tyrosine phosphorylation o f  a number  ofphos-  
phoproteins with apparent molecular masses o f  110, 95, 80, 
70, and 36 kD (Fig. 6, lanes I-4).  Surprisingly, several o f  
these phosphoproteins are also induced in the Lck - / -  thy- 
mocytes, although the degree o f  phosphorylation was less 
and kinetics o f  activation were somewhat delayed when 
compared to wild-type mice (Fig. 6, lanes 6-8  vs. 2-4). 
Thus, phosphoproteins o f  110, 95, 80, and 36 kD were de- 

Figure 6. Tyrosine phosphorylation in thymocytes after TCP,./CD3 
engagement. Thymocytes (107 cells/lane) from normal and Lck-deficient 
mice were left untreated or stimulated with anti-CD3e mAbs for 1, 3, or 
10 rain, rapidly sedimented, and whole-cell lysates were prepared. The 
lysates were loaded onto 12.5% SDS-PAGE gels, subsequently transferred 
to PVDF membranes, and immunoblotted with an antiphosphotyrosine 
mAb (4G10). 

tected in the Lck - / -  cells after TCtk  ligation. In contrast, 
almost no constitutive or inducible phosphoproteins o f  70, 
56, or 21 kD were detected, these proteins likely corre- 
sponding to phospho-ZAP-70,  phospho-Lck, and phos- 
pho-~, respectively. These results suggest that additional 
PTKs can mediate the phosphorylation o f  several substrates 
in Lck-deficient thymocytes. We also noted that T C R  en- 
gagement resulted in the induction o f  CD69 expression in 
the C D 4 + C D 8  + population o f  thymocytes from Lck-defi- 
cient mice, albeit at levels substantially less than wild-type 
mice (Fig. 7). Importantly, the critical components o f  T C R -  
mediated signal transduction processes including TCR-~ ,  
CD3~, and ZAP-70  are, at best, only poorly phosphory- 
lated in Lck - / -  thymocytes. 

L N  T Cells from Lck - / -  Mice Express a Constitutively Ty- 
rosine-phosphorylated TCR-~Subunit.  Because small num-  
bers o f  T cells are also present in the peripheral lymphoid 
organs o f  Lck-deficient mice (26), we were interested in as- 
sessing their signaling functions. To perform these experi- 
ments, LN cells had to be pooled from a large number o f  
Lck - / -  mice and enriched for T cells by depleting murine 
B cells (Fig. 1). Interestingly, we detected a constitutively 
tyrosine-phosphorylated 21-kD phosphoprotein that corni- 
grated with phospho-~ in the wild-type mice (Fig. 8, lane 3 
vs. lane 1). By inununodepletion experiments, we have deter- 
mined that this phosphoprotein is, in fact, tyrosine-phos- 
phorylated T C R - ~  (data not shown). From three indepen- 
dent experiments, we noted that the levels ofphospho-~ in 
the LN T cells from the Lck - / -  mice were always three- to 
four-fold lower when compared with wild-type mice. This 
may be a consequence o f  the lower cell surface T C R  den- 
sity seen in the Lck - / -  LN T cells (Fig. 1). Stimulation o f  
the LN T cells from wild-type mice results in the induction 
o f  many of  the phosphoproteins detected in the stimulated 
thymocyte cell lysates (Fig. 8, lane 2, and Fig. 5, lanes 2-4). 
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CD69 induction on CD4+CD8 + thymocytes. Thymocytes Figure 7. 
(2 X 106 cells/ml) from normal and Lck-deficient mice were incubated at 
37~ in plates precoated with an anti-CD3~ mAb. After 20 h, the cells 
were harvested and stained with a combination of anti-CD69-FITC, 
anti-CD8~x-PE, and anti-CD4-Tricolor. The cells were analyzed for 
CD69 expression by three-color flow cytometry using software gating on 
the CD4+CD8 + population. 

In contrast, we were unable to induce any additional phos- 
phoproteins in the Lck - / -  L N  T cells (Fig. 8, lane 4). It is 
currently unclear which P T K  is responsible for the consti- 
tutively phosphorylated T C R - ~  chain in the absence o f  
Lck, but  one likely candidate is Fyn, since Fyn is upregu- 
lated in the peripheral T cells relative to thyrnocytes (Fig. 4 
B) (29). 

D i s c u s s i o n  

W e  have previously shown that ZAP-70 is constitutively 
associated with a 21-kD form ofphospho-~  in C D 4 + C D 8  + 
thymocytes,  unfractionated thymocytes,  and peripheral LN 
T cells (36). Stimulation of  T cell clones with antagonist 
p e p t i d e - M H C  complexes also results in the generation of  
the 21-kD form of  phospho-~, which is associated with 
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Figure 8. Tyrosine phospho- 
rylation in peripheral T cells after 
TCR/CD3 engagement. LN T 
cells (107 cells/lane) from normal 
and Lck-deficient mice were left 
untreated or stimulated with 
anti-CD3~ mAbs for 3 rain, rap- 
idly pelleted, and whole-cell ly- 
sates were prepared. The lysates 
were loaded onto 12.5% SDS- 
PAGE gels, subsequently trans- 
ferred to PVDF membranes, and 
immunoblotted with an anti- 
phosphotyrosine mAb (4G10). 

ZAP-70 (38). In this report, we provide evidence that Lck 
regulates the tyrosine phosphorylation o f  the T C R - ~  sub- 
unit, the CD3 subunits, and the ZAP-70 P T K  in murine 
thymocytes. Lck is required for regulating the constitutive 
tyrosine phosphorylation of  the T C R - ~  subunit in murine 
thymocytes.  The  targeted disruption of  Lck also prevents 
the inducible tyrosine phosphorylation of  both  the T C R - ~  
and CD3~ subunits as well as the ZAP-70  PTK. In contrast 
to these findings, the constitutive tyrosine phosphorylation 
of  T C R - ~  and the inducible phosphorylation of  the T C R /  
CD3 subunits after T C R  ligation appear normal in Fyn- 
deficient mice. These results demonstrate a specific role for 
Lck in regulating the tyrosine phosphorylation of  the T C R /  
CD3 subunits and ZAP-70 during thymocyte  develop- 
ment.  Thus, Lck performs several regulatory roles in thy- 
mopoiesis (27, 28, 46, 47). 

In the absence of  Lck, the constitutive phosphorylation 
of  T C R - ~  is substantially reduced in murine thymocytes,  
suggesting that T C R - ~  is a direct substrate for Lck. This 
interpretation is consistent with earlier studies with an Lck- 
deficient Jurkat T cell mutant  and experiments with heter- 
ologous C O S  cell systems as well as in vitro assays (4, 12, 
48). However ,  none o f  the experiments preclude the possi- 
bility that Lck functions upstream of  another P T K  that 
phosphorylates T C R - ~ .  In fact, a direct coupling between 
the T C R  and Lck has proven extremely dit icult  to ob-  
serve, and the molecular mechanism resulting in the consti- 
tutive phosphorylation o f  T C R - ~  remains unclear. In any 
event, the expression of  phospho-~ leads to the association 
of  ZAP-70 or Syk, which are themselves not tyrosine phos- 
phorylated. In fact, both  ZAP-70 and Syk may additionally 
protect phospho-~ from protein tyrosine phosphatases. This 
is consistent with the observation that overexpression o f  
the tandem SH2 domains of  Syk or ZAP-70 results in a 
basal hyperphosphorylation of  the ITAMs, which are consti- 
tutively associated with the tandem SH2 construct (49, 50). 
Mapping the sites o f  T C R - ~  phosphorylation will be 
important in determining the requirements for ZAP-70 as- 
sociation, phosphorylation, and, presumably, ZAP-70 acti- 
vation. Although all six tyrosines in T C R - ~  can be phos- 
phorylated by Lck in vitro, the selective phosphorylation of  



certain tyrosines in vivo may result in the formation of  the 
21-kD form ofphospho-~ (51). This may promote ZAP- 
70 binding without its concomitant phosphorylation and 
activation. 

For thymocytes and LN T cells, the constitutive associa- 
tion between ZAP-70 and phospho-~ may poise a propor- 
tion of T C R  complexes to respond to antigenic stimulation. 
T C R  ligation would promote the activation or relocaliza- 
tion of Lck, resulting in the tyrosine phosphorylation of  
ZAP-70, the CD3 subunits, and an increase in the phos- 
phorylation of  TCP,-~. Notably, in the absence of  Lck, we 
were unable to detect any significant induction in the ty- 
rosine phosphorylation of  TCR-~,  CD3e, or ZAP-70 in 
murine thymocytes (Fig. 3). This is in agreement with pre- 
viously published reports that the T C R / C D 3  subunits and 
ZAP-70 are not tyrosine phosphorylated in an Lck-defi- 
cient Jurkat T cell line after TCR. ligation (4, 12, 52). 

It should be noted that some phospho-~ is detected in 
thymocytes from Lck - / -  mice, and ZAP-70 is constitu- 
tively associated with this smaLl pool o f  phospho-~. In the 
absence of  Lck, the regulation of  this phospho-~ may be at- 
tributable to Fyn, which is expressed, albeit weakly, in 
CD4+CD8 + thymocytes. Therefore, Fyn may promote the 
development of  some mature T cells in Lck - / -  mice by 
regulating TCR-~  phosphorylation and, possibly, TCR. 
signaling. Moreover, we detected substantial levels ofphos-  
pho-{ in peripheral LN T cells isolated from Lck-deficient 
mice. The increased expression of  Fyn in the peripheral T 
cells relative to thymocytes is consistent with Fyn compen- 

sating for the lack of  Lck. In support of  this notion, LN T 
cells from Lck-deficient mice do exhibit TCP,.-mediated 
proliferative responses, although at levels four-fold lower 
than wild-type mice (26). The potential compensation by 
Fyn may be more definitively addressed with the analyses 
of  mice deficient in both Fyn and Lck. It is also possible 
that other PTKs may be upregulated or activated in the pe- 
ripheral LN T cells to compensate for the loss of  Lck. 

In spite of  the presence of  phospho-~ in LN T cells iso- 
lated from Lck-nulI mice, we were unable to detect any 
phosphoproteins that are induced after T C R  hgation. This 
result contrasts with the observation that several additional 
phosphoproteins are weakly induced in Lck-deficient thy- 
mocytes after T C R  engagement. One potential explanation 
for these differences is the elevated expression of  Syk in thy- 
mocytes relative to peripheral T cells (9). In fact, Syk ex- 
pression can promote some TCR.-mediated signaling events 
in ZAP-70-deficient human thymocytes (53). Moreover, 
Syk can reconstitute some TCR-mediated signals in Lck- 
deficient cell lines (Chu, D., and A. Weiss, submitted for 
publication). 

In summary, Lck performs several important functions 
influencing T C R  signaling in thymocytes. Lck regulates the 
constitutive phosphorylation of  TCR.-~ and the inducible 
phosphorylation of the TCP,,/CD3 subunits as well as Syk/ 
ZAP-70. These functions appear specific to Lck as other 
Src-family PTKs are unable to compensate fully in the ab- 
sence of  Lck. 

We thank Emma Timms (Ontario Cancer Institute, Toronto, Canada) and Katherine Forbush (Howard 
Hughes Medical Institute, Seattle, WA) for providing us with multiple breeding pairs of Lck- and Fyn-defi- 
cient mice, respectively. We also thank members of the Weiss laboratory for helpful discussions. 

This work was supported in part by grants from the National Institutes of Health (GM-39553 to A. Weiss) 
and the Human Frontier Science Program Organization (LT-505/93 to N. van Oers). N. van Oers is the re- 
cipient of a Human Frontier Science Program Postdoctoral Fellowship Award. N. Killeen holds a Special 
Fellowship from the Leukemia Society of America. 

Address correspondence to Dr. Arthur Weiss, Howard Hughes Medical Institute, U-330, 3rd and Parnassus 
Avenues, UCSF, San Francisco, CA 94143-0724. 

Received for publication 2 October 1995. 

References  

1. Perlmutter, R.M., S.D. Levin, M.W. Appleby, S.J. Ander- 
son, and J. Alberola-Ila. 1993. Regulation of lymphocyte 
function by protein phosphorylation. Annu. Rev. Immunol. 
11:451-499. 

2. Chan, A.C., D. Desai, and A. Weiss. 1994. Role of protein 
tyrosine kinases and protein tyrosine phosphatases in T cell 
antigen receptor signaling. Annu. Rev. Immunol. 12:555-592. 

3. Weiss, A., and D.R.. Littman. 1994. Signal transduction by 
lymphocyte antigen receptors. Cell. 76:263-274. 

4. Straus, D., and A. Weiss. 1992. Genetic evidence for the in- 
volvement of the Lck tyrosine kinase in signal transdnction 
through the T cell antigen receptor. Cell. 70:585-593. 

5. Karnitz, L., S.L. Sutor, T. Torigoe, J.C. Reed, M.P. Bell, 
D.J. McKean, P.J. Leibson, and R..T. Abraham. 1992. Effects 
of p56 Ick on the growth and cytolytic effector function of an 
interleukin-2-dependent cytotoxic T-cell line. Mol. Cell. 
Biol. 12:4521-4530. 

6. Sarosi, G.P., P.M. Thomas, M. Egerton, A.F. Phillips, K.W. 
Kim, E. Bonvini, and L.E. Samelson. 1992. Characterization 
of the T cell antigen receptor-p60~" protein tyrosine kinase 
association by chemical cross-linking. Int. Immunol. 4:1211- 
1217. 

7. Cambier, J.C. 1995. New nomenclature for the Reth motif 
(or ARH1/TAM/ARAM/YXXL). Immunol. Today. 16:110. 

1060 Lck Regulates TCR Subunit and ZAP-70 Tyrosine Phosphorylation 



8. Chan, A.C., M. Iwashima, C.W. Turck, and A. Weiss. 1992. 
ZAP-70: a 70kD protein tyrosine kinase that associates with 
the TCR ~ chain. Celt. 71:649-662. 

9. Chan, A.C., N.S.C. van Oers, A. Tran, L. Turka, C.-L. Law, 
J.C. Ryan, E.A. Clark, and A. Weiss. 1994. Differential ex- 
pression of ZAP-70 and Syk protein tyrosine kinases, and the 
role of this family of protein tyrosine kinases in T cell antigen 
receptor signalling. J. lmmunol. 152:4758--4766. 

10. Wange, R.L., A.-N.T. Kong, and L.E. Samelson. 1992. A 
tyrosine-phosphorylated 70-kDa protein binds a photoaflln- 
ity analogue of  ATP and associates with both the ~ and CD3 
components of the activated T cell antigen receptor. J. Biol. 
Chem. 267:11685-11688. 

11. Wange, R.L., S.N. Malek, S. Desiderio, and L.E. Samelson. 
1993. Tandem SH2 domains of ZAP-70 bind to T cell anti- 
gen receptor ~ and CD3e from activated Jurkat T cells. J. 
Biol. Chem. 268:19797-19801. 

12. Iwashima, M., B.A. Irving, N.S.C. van Oers, A.C. Chan, and 
A. Weiss. 1994. Sequential interactions of the T C R  with two 
distinct cytoplasmic tyrosine kinases. Science (Wash. DC). 263: 
1136-1139. 

13. Hatada, M.H., X. Lu, E.R. Laird, J. Green, J.P. Morgenstern, 
M. Lou, C.S. Mart, T.B. Phillips, M.K. Ram, K. Theriault, 
et al. 1995. Molecular basis for the interactions of the protein 
tyrosine kinase ZAP-70 with the T cell receptor. Nature 
(Lond.). 377:32-38. 

14. Hivroz, C., and A. Fischer. 1994. Multiple roles for ZAP-70. 
Curr. Biol. 4:731-733. 

15. Arpaia, E., M. Shahar, H. Dadi, A. Cohen, and C.M. Roif- 
man. 1994. Defective T cell receptor signaling and CD8 + 
thymic selection in humans lacking ZAP-70 kinase. Cell. 76: 
947-958. 

16. Chan, A.C., T.A. Kadlecek, M.E. Elder, A.H. Filipovich, 
W.-L. Kuo, M. Iwashima, T.G. Parslow, and A. Weiss. 
1994. ZAP-70 deficiency in an autosomal recessive form of 
severe combined immunodeficiency. Sdence (Wash. DC). 
264:1599-1601. 

17. Elder, M.E., D. Lin, J. Clever, A.C. Chan, T.J. Hope, A. 
Weiss, and T. Parslow. 1994. Human severe combined im- 
munodeficiency due to a defect in ZAP-70, a T cell tyrosine 
kinase. Science (Wash. DC). 264:1596-1599. 

18. Kong, G.-H., J.-Y. Bu, T. Kurosaki, A.S. Shaw, and A.C. 
Chan. 1995. R, econstitution of Syk function by the ZAP-70 
protein tyrosine kinase. Immunity. 2:485-492. 

19. Watts, J.D., M. Affolter, D.L. Krebs, R.L. Wange, L.E. 
Samelson, and 19... Aebersold. 1994. Identification by electro- 
spray ionization mass spectromoetry of  the sites of  tyrosine 
phosphorylation induced in activated Jurkat T cells on the 
protein tyrosine kinase ZAP-70. J. Biol. Chem. 269:29520-- 
29529. 

20. Chan, A.C., M. Dalton, R. Johnson, G.-H. Kong, T. Wang, 
19... Thoma, and T. Kurosaki. I995. Activation ofZAP-70 ki- 
nase activity by phosphorylation of tyrosine 493 is required 
for lymphocyte antigen receptor function. EMBO (Eur. Mol. 
Biol. Organ.) J. 14:2499-2508. 

21. Wange, R.L., 19,.. Guitian, N. Isakov, J.D. Watts, R. Aeber- 
sold, and L.E. Samelson. 1995. Activating and inhibitory mu- 
tations in adjacent tyrosines in the kinase domain of ZAP-70. 

J. Biol. Chem. 270:18730-18733. 
22. Thome, M., P. Duplay, M. Guttinger, and O. Acuto. 1995. 

Syk and ZAP-70 mediate recruitment of  p56~*/CD4 to the 
activated T cell receptor/CD3/~ complex.J. Exp. Med. 181: 
1997-2006. 

23. Duplay, P., M. Thome, 16. Hervt, and O. Acuto. 1994. p56 ta 
interacts via its src homology 2 domain with the ZAP-70 ki- 
nase.J. Exp. Med. 179:1163--1172. 

24. Xu, H., and D.R. Littman. 1993. A kinase-independent 
function oflck in potentiating antigen-specific T cell activa- 
tion. Cell. 74:633--644. 

25. Anderson, S.J., and R.M. Perlmutter. 1995. A signaling path- 
way governing early thymocyte maturation, lmmunol. Today. 
16:99--105. 

26. Molina, TJ., K. Kishihara, D.P. Siderovski, W. van Ewijk, 
A. Narendran, E. Timms, A. Wakeham, C.J. Paige, K.-U. 
Hartmann, A. Veillette, et al. 1992. Profound block in thy- 
mocyte development in mice lacking p561ck. Nature (Lond.). 
357:161-164. 

27. Levin, S.D., S.J. Anderson, K.A. Forbush, and R.M. Pet -  
mutter. 1993. A dominant-negative transgene defines a role 
for p561ck in thymopoiesis. EMBO (Fur. Mol. BioL Organ.).]. 
12:1671-1680. 

28. Mombaerts, P., S.J. Anderson, R.M. Perlmutter, T.W. Mak, 
and S. Tonegawa. 1994. An activated lck transgene promotes 
thymocyte development in RAG-1 mutant mice. Immunity 1: 
261-267. 

29. Cooke, M.P., K.M. Abraham, K.A. Forbush, and R.M. Perl- 
mutter. 1991. RRegulation o f T  cell receptor signaling by a src 
family protein-tyrosine kinase (p59fr,). Cell. 65:28t-292. 

30. Stein, P.L., H.-M. Lee, S. Rich, and P. Soriano. 1992. p59 fyn 
mutant mice display differential signaling in thymocytes and 
peripheral T cells. Cell. 70:741-750. 

31. Appleby, M.W., J.A. Gross, M.P. Cooke, S.D. Levin, X. 
Qian, and R.M. Perlmutter. 1992. Defective T cel/receptor 
signaling in mice lacking the thymic isoform of p596% Cell. 
70:751-763. 

32. Negishi, I., N. Motoyama, K.-I. Nakayama, K. Nakayama, S. 
Senju, S. Hatakeyama, Q. Zhiang, A.C. Chan, and D.Y. 
Lob. 1995. Essential role for ZAP-70 in both positive and 
negative selection ofthymocytes. Nature (Lond.). 376:435--438. 

33. Nakayama, T., A. Singer, E.D. Hsi, and L.E. Samelson. 1989. 
Intrathymic signalling in immature CD4+CD8 + thymocytes 
results in tyrosine phosphorylation of  the T-cell receptor zeta 
chain. Nature (Lond.). 341:651-654. 

34. Vivier, E., P. Moran, Q. Tian, J. Daley, M.-L. Blue, S.F. 
Schlossman, and P. Anderson. 1991. Expression and tyrosine 
phosphorylation of the T cell receptor ~ subunit in human 
thymocytes. J. Immunol. 146:1142-1148. 

35. van Oers, N.S.C., W. Tao, J.D. Watts, P. Johnson, 19... Ae- 
bersold, and H.-S. Teh. 1993. Constitutive tyrosine phos- 
phorylation of  the T cell receptor (TCR) ~ subunit: regula- 
tion of TCR-associated protein kinase activity by TCR ~. 
Mol. Cell. Biol. 13:5771-5780. 

36. van Oers, N.S.C., N. KiUeen, and A. Weiss. 1994. ZAP-70 is 
constitutively associated with tyrosine phosphorylated TCR 
in murine thymocytes and lymph node T cells. Immunity. 1: 
675-685. 

37. Sloan-Lancaster, J., A.S. Shaw, J.B. Rothbard, and P.M. 
Allen. 1994. Partial T cell signaling: altered phospho-~ and 
lack of  ZAP-70 recruitment in APL-induced T cell anergy. 
Cell. 79:913-922. 

38. Madrenas, J., R.L. Wange, J.L. Wang, N. lsakov, L.E. 
Samelson, and R.N. Germain. 1995. ~ phosphorylation with- 
out ZAP-70 activation induced by T cell receptor antagonists 
or partial agonists. Sdence (Wash. DC). 267:515-518. 

39. Allen, P.M. 1994. Peptides in positive and negative selection: 
a delicate balance. Cell. 76:593-596. 

1061 van Oers et al. 



40. van Oers, N.S.C., S.-J. Teh, B.A. Irving, J. Tiong, A. Weiss, 
and H.-S. Teh. 1994. Production and characterization of 
monoclonal antibodies specific for the murine T cell receptor 

chain.J. Immunol. Methods. 170:261-268. 
41. van Oers, N.S.C., H. von Boehmer, and A. Weiss. 1995. 

The pre-TCR complex is functionally coupled to the T C R  
subunit.J. Exp. Med. 182:1585-1590. 

42. O'Shea, J., D.W. McVicar, T.L. Bailey, C. Bums, and M.J. 
Smyth. 1992. Activation of human peripheral blood lympho- 
cytes by pharmacological induction of protein-tyrosine phos- 
phorylation. Proc. Natl. Acad. Sci. USA. 89:10306-10310. 

43. Groettrup, M., K. Ungewiss, O. Azogni, R. Palacios, M.J. 
Owen, A.C. Hayday, and H. von Boehmer. 1993. A novel 
disulfide-linked heterodimer on pre-T cells consists of the T 
cell receptor [3 chain and a 33 kDa glycoprotein. Cell. 75: 
283-294. 

44. Groettrup, M., and H. von Boehmer. 1993. A role for a pre- 
T-cell receptor in T cell development, lmmunol. Today. 14: 
610-614. 

45. Saint-Ruf, C., K. Ungewiss, M. Groettmp, L. Bruno, H.J. 
Fehling, and H. yon Boehmer. 1994. Analysis and expression 
of a cloned pre-T cell receptor gene. Science (Wash. DC). 
266:1208-1212. 

46. Anderson, S.J., S.D. Levin, and R.M. Perlmutter. 1993. Pro- 
tein tyrosine kinase p56 Ic~ controls allehc exclusion of T-cell 
receptor 13-chain genes. Nature (Lond.). 365:552-554. 

47. Anderson, S.J., K.M. Abraham, T. Nakayama, A. Singer, and 
R.M. Perlmutter. 1992. Inhibition ofT-cell receptor 13-chain 

gene arrangement by overexpression of the non-receptor 
protein tyrosine kinase p56 ~k. EMBO (Eur. Mol. Biol. Organ.) 
J. 11:4877-4886. 

48. Watts, J.D., G.M. Wilson, E. Ettehadieh, I. Clark-Lewis, C.-A. 
Kubanek, C.R. Astell, J.D. Marth, and R. Aebersold. 1992. 
Purification and initial characterization of a lymphocyte-spe- 
cific protein-tyrosyl kinase p56 a~k from a baculovirus expres- 
sion system.J. Biol. Chem. 267:901-907. 

49. Scharenberg, A.M., S. Lin, B. Chuenod, H. Yamamura, and 
J.-P, Kinet. 1995, Reconstitution of interactions between ty- 
rosine kinases and the high affinity IgE receptor which are 
controlled by receptor clustering. EMBO (Eur. Mol. Biol. Or- 
gan.)J. 14:3385-3394. 

50. Qian, D., M.N. MoUenauer, and A. Weiss. 1996. Dominant- 
negative zeta-associated protein 70 inhibits T cell antigen re- 
ceptor signaling.J. Exp. Med. 183:611-620. 

51. Affolter, M., J.D. Watts, D.L. Krebs, and R. Aebersold. 
1994. Evaluation of two-dimensional phosphopeptide maps 
by electrospray ionization mass spectrometry of recovered 
peptides. Anal. Biochem. 223:74--81. 

52. Straus, D.B., and A. Weiss. 1993. The CD3 chains of the T 
cell antigen receptor associate with the ZAP-70 tyrosine ki- 
nase and are tyrosine phosphorylated after receptor stimula- 
tion.J. Exp. Med. 178:1523-1530. 

53. Gelfand, E.W., K. Weinberg, B.D. Mazer, T.A. Kadlecek, 
and A. Weiss. 1995. Absence of ZAP-70 prevents signaling 
through the antigen receptor on peripheral blood T cells but 
not thymocytes.J. Exp, Med. 182:1057-1066. 

1062 Lck Regulates TCR Subunit and ZAP-70 Tyrosine Phosphorylation 




