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Hippocampal sharp-wave ripples in waking and sleeping states

Demetris K Roumis and Loren M Frank*

Center for Integrative Neuroscience and Department of Physiology, University of California, San 
Francisco, United States

Abstract

Waking and sleeping states are privileged periods for distinct mnemonic processes. In waking 

behavior, rapid retrieval of previous experience aids memory-guided decision making. In sleep, a 

gradual series of reactivated associations supports consolidation of episodes into memory 

networks. Synchronized bursts of hippocampal place cells during events called sharp-wave ripples 

communicate associated neural patterns across distributed circuits in both waking and sleeping 

states. Differences between sleep and awake sharp-wave ripples, and in particular the accuracy of 

recapitulated experience, highlight their state-dependent roles in memory processes.

Introduction

The ebb and flow of waking and sleeping states imposes structure and periodicity on all 

mammalian life. In addition to the state of awareness, neural states that accompany waking 

and sleeping differ drastically in several dimensions, including the level of neuromodulators, 

widespread synchronization, and responsiveness to input from external stimuli [1]. These 

features dissociate the neural context of waking and sleeping states and manifest in distinct 

memory processing [2–4]. While awake, rapidly retrieved memories influence prediction, 

deliberation, and evaluation. Often, a decision must be made following only a short period 

of deliberation, suggesting a need for rapid and precise memory retrieval. In sleep, fresh 

memories are gradually strengthened, transformed, and integrated into the ensemble of 

amassed knowledge in the process of system-level consolidation [5,6]. Here, the need for 

rapidity and precision may be relaxed, and indeed a high fidelity representation may not be 

optimal for building more generalized representations.

Memory reactivation, serving both retrieval and consolidation, entails repetition of 

previously experienced episodic associations. Reactivation is commonly detected in the 

context of patterns of activity in spatially selective cells in subregions of the hippocampus 

[7]. The hippocampus is essential for all aspects of spatial memory, including encoding, 

consolidation, and retrieval [8,9]. Hippocampal pyramidal neurons that are active during a 
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given experience are often referred to as ‘place cells’ because a large fraction of them fire in 

a location-dependent manner - preferring certain ‘place fields’ as animals explore space. 

Plasticity mechanisms associate cells with neighboring place fields, enhancing neighbor 

coactivity following their activation during exploration [10]. During a pause in active 

exploration or while asleep, bursts (100–200 ms) of place cell activity occur within distinct 

high-frequency (150–250 Hz) fluctuations in the hippocampal local field potential, called 

sharp-wave ripples (SWRs; Fig 1a; [11]). Sequences of simultaneously recorded place cells, 

whose collective place field assemblies reflect trajectories through space, are often 

reactivated in a time-compressed cascade during hippocampal SWRs (Fig 1a,b). The 

timescale of SWRs aligns with the optimal window for inducing synaptic plasticity, and 

therefore could influence the encoding of memory traces in synaptic weights [12,13].

SWRs have garnered significant attention as a common phenomenon for broadcasting 

mnemonic messages, in both waking and sleeping states [7,14]. However, the processing 

demands of waking and sleep are distinct, and differences in sleep and awake SWR replay 

events may support these distinct functions. Here we review recent developments addressing 

this issue and discuss the hypotheses that SWR replay during the waking state serves to 

mediate awake memory retrieval [7] and update navigational planning with respect to 

current perceptual input, whereas SWR replay during sleep is fundamentally geared to 

gradually consolidate a memory trace into a broader framework of existing memories.

The Role of Awake SWR Replay

The vicarious representations of spatial paths extending beyond an animal’s current position 

could be an efficient component for deliberating and evaluating possible routes to reach a 

goal [7,15–17]. In a causal test of a role for awake SWR events, Jadhav et al. [18] found that 

waking SWR activity was necessary for navigational memory-guided decision making in 

rats. The authors employed a spatial alternation task with a ‘W’ shaped maze on which the 

animals were rewarded at each arm’s end for navigating in the following order: outbound-

left, inbound-center, outbound-right, inbound-center, and so on (Fig 1c). Brief pulses of 

electrical stimulation, delivered immediately upon awake SWR onset, selectively disrupted 

SWRs and lead to a highly significant impairment in performance of the outbound 

alternation rule, which depends on integrating immediate past experience with the task rule. 

Parallel results came from a study in which awake SWR detection during learning triggered 

a bright light which led to an impairment in trace eyeblink conditioning in rabbits, likely 

because the light disrupted neocortical activity associated with SWRs [19].

Subsequent studies have begun to identify a relationship between the content of SWRs and 

behavior [20,21]. Using the ‘W’ maze spatial alternation task (Fig. 1c), Singer and 

colleagues [21] found a greater degree of coordination in the pairwise firing of place cells in 

the waking state during SWRs that preceded a correct outbound decision, compared to an 

incorrect decision, on a trial-by-trial basis. This suggests that failure to reactivate the 

appropriate assembly representing possible future paths may lead to errors in navigational 

decision making. Interestingly, they did not find a consistent bias for the reactivated 

trajectory representation to reflect the subsequent navigational choice of the animal. This 

latter finding is in line with recent arguments positioning hippocampal replay as primarily 
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communicating possible trajectory options for downstream circuits to evaluate [15,16,22]. In 

contrast, another study, employing an ‘open field’ foraging task, did detect a bias for the 

content of awake replay events to represent space in the general direction of the subsequent 

behavior – although there were still many replay events sweeping toward alternate locations. 

The relative hippocampal involvement in prediction, deliberation, and evaluation is likely 

influenced by task, learning stage, and environment.

Finally, we note that awake replay occurs in both the forward direction, consistent with the 

animal’s experience, as well as in the reverse direction, with the relative prevalence and 

control of these sequences likely reflecting different processes [23–28]. For instance, reverse 

replay in the waking state commonly occurs when the animal has arrived at a goal location, 

potentially supporting on-line reinforcement learning [7,24–26]. Forward replay in the 

waking state is more prevalent in anticipation of a trajectory, when deliberation of future 

paths and spatial working memory is critical [7,25]. The task-location specificity of forward 

and reverse awake replay suggests an actively controlled retrieval system related to ongoing 

behavior.

The Role of Sleep SWR Replay

In contrast to the role of memory retrieval for active planning, replay in sleep is a 

component of system consolidation, which is thought to involve a quantitative and 

qualitative transformation of representations, stabilizing, decontextualizing, and integrating 

associations into distributed hippocampal-cortical circuits according to the statistical 

structure of experienced episodes [5,29–33]. Consistently, evidence indicates that sleep 

promotes mnemonic flexibility in inference tasks that are enriched by the inductive capacity 

to link remote fragments of episodic representations [34–39].

Memory stabilization and integration in sleep is thought to require reactivation of awake 

neural patterns, serving to direct synaptic modifications across hippocampal-neocortical 

networks [1,30,40,41]. Hippocampal SWR replay and cortical reactivation primarily occurs 

during periods of slow-wave sleep (SWS) [42–44]. Evidence of a direct link between SWR-

related replay in sleep and memory processes has been provided by a number of studies 

employing a spatial memory task [20,45–47]. If SWR replay assemblies percolate 

mnemonic messages across distributed circuits, a significant swath of the brain’s activity 

should be temporally aligned with SWRs. Such evidence was recently reported in a study 

showing globally coordinated response patterns from monkey whole-brain functional 

magnetic resonance imaging at the time of hippocampal SWRs while the subjects alternated 

between sleeping and waking [48].

Additionally, SWR sequences in the sleeping state have been shown to favor the forward 

direction, maintaining the overall temporal structure of the animals’ actual experience 

[27,49–52]. In order to infer future events based on previous exposure to a particular 

instance, preserving the appropriate overall temporal order of episodic fragments may be a 

crucial feature in the face of decontextualization processes. Fittingly, sleep has been shown 

to selectively strengthen the forwardly learned associations of word or picture sequences 

during post-sleep waking retrieval [53,54].
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The Fidelity of Replay

A critical feature of awake SWRs is the fidelity of recapitulated experience, as accurate 

portraits of established trajectories are crucial for rapid memory-driven behavioral 

performance. Karlsson and Frank [55] recorded from principal neurons in hippocampal 

areas CA1 and CA3 while rats performed the W-track alternation task (Fig 1c) flanked by 

‘sleep-box’ sessions. Strikingly, their analyses reveal that awake SWRs contained overall 

higher fidelity recapitulations of previously experienced traversals through place fields than 

SWRs recorded in sleep-like states (Fig 2).

Furthermore, recent evidence couples fidelity of replay with an additional level of coherence 

across hippocampal areas within and across hemispheres. Carr et al. [56] found that 

increased synchrony of ‘slow’ gamma oscillations (20–50 Hz) across CA3 and CA1 regions 

was predictive of replay fidelity in the waking state, suggestive of an internal clocking 

mechanism to coordinate sequential reactivation across the hippocampal network. In 

contrast, spiking during SWRs in sleep-like states was less modulated by slow gamma with 

no clear relationship between gamma synchrony and the fidelity of replay.

Beyond the coupling of hippocampal slow gamma oscillations in the waking state, sleep 

SWRs are temporally coordinated with oscillating ‘Up’ and ‘Down’ states of widespread 

activation and suppression of cortical activity, respectively [1,57–60]. These oscillations are 

linked to the retention and integration of new learning into existing knowledge structures 

[61,62]. Synchronized interaction between the hippocampus and prefrontal cortex (PFC), 

one of the major sites of hippocampal output, is critical for system consolidation [63], 

occurs largely coincident with SWRs during SWS [42,64], and specifically includes 

reactivated cortical patterns of awake experiences [43,65]. Recording in the PFC, Peyrache 

et al. [43] found that the temporal dynamics of reactivation strength, or the accuracy with 

which population activity in sleep corresponded to waking experience, peaked immediately 

preceding a transition from Down to Up states, which is temporally aligned with a 

prevalence of SWRs [43,66]. Given that hippocampal SWRs can occur during both Up and 

Down states [66,67], this raises an intriguing possibility that the phase of certain cortical 

oscillations are linked with the relative fidelity of replay transmission in the hippocampal-

cortical axis. For instance, widespread activation or suppression of cortical activity, 

respectively associated with Up or Down states, could either influence the cortical 

receptivity to input patterns from the hippocampus, or variably infuse noise into an ensuing 

hippocampal replay assembly. Additionally, recent work demonstrated that the medial 

entorhinal cortex, part of the main input and output structure between the hippocampus and 

neocortex, contains persistent Up states that can span multiple quantized neocortical Up/

Down states and influence the activity levels of the hippocampus, potentially gating the 

form of transmission across the hippocampal-neocortical axis around the time of SWR 

replay [68].

A Role for ‘Noisy’ Replay

It seems intuitive that high fidelity replay would promote effective decision-making during 

waking, but how could lower fidelity, ‘noisy’ recapitulations of experience serve the 
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mnemonic functions of sleep? Importantly, sleep allows the brain to consolidate sparse data 

and store the statistics of the environment into a semantic memory system, allowing for 

inductive predictions about the future. Inspired by computational linguistics, Battaglia and 

Pennartz [69] advance an illustrative approach of how memory networks, trained by ‘noisy’ 

episodic replay, could become schematized and generative, constructing episodes based on 

past experience and allowing for prediction in the face of uncertainty. In this way, the 

comparatively more random organization of sleep SWR replay may be a feature rather than 

a bug, serving to fulfill the transformational consolidation process and supporting the 

capacity to build rich schemata from only a limited number of episodic associations.

Recent evidence is consistent with the idea that adding ‘noise’ to the relevant neural circuits 

during sleep consolidation alters the specificity, but not necessarily the strength, of learning. 

Barnes and Wilson [2] conditioned electrical stimulation in the rat olfactory bulb (OB) with 

a foot-shock, an established paradigm for subsequently eliciting the rat’s natural fear 

response to the conditioned olfactomimetic stimulation. However, in intervening SWS bouts 

between conditioning and testing, they stimulated a naive (not previously conditioned) OB 

site, likely eliciting a very different activity pattern than that which was conditioned. 

Surprisingly, this manipulation, which consisted of introducing novel and seemingly 

irrelevant activity during the period of memory consolidation, did not decrease the strength 

of the trained memory association. Instead, this manipulation led to memory generalization, 

as observed by fear response to previously unpaired odors. Together, these studies suggest 

that the level of interference during periods of consolidation can influence the precision of 

memory expression, and furthermore predicts that over-rigidity in sleep replay, relative to 

awake, may impair the ability to flexibly use past memory in a novel context.

Conclusion

SWRs may be a common neurophysiological phenomenon for broadcasting mnemonic 

messages in both waking and sleeping states, the importance of which is underscored by 

recently documented impairments of sequence reactivation in models of schizophrenia 

[60,70], dementia [71,72], and aging [73]. Causal manipulations lend strong support to this 

role for SWRs, but elucidation of their intrinsic features is necessary to understand the 

mechanisms supporting distinctive memory processes. Awake SWRs proceed both forward 

and reverse, entail a more veridical account of experience, and can predict future behavior. 

Sleep SWRs mainly unfold in the forward direction, are generally more noisy depictions of 

past actions, and are tightly coordinated with cortical oscillations. Together, the evidence 

supports the hypotheses that SWR replay during the waking state serves to support retrieval 

and planning, whereas SWR replay during sleep is geared to gradually consolidate a 

memory trace into a broader framework of existing memories.
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Highlights

• Hippocampal SWRs contain neural activity reactivations in both waking and 

sleeping.

• SWRs in waking and sleeping entail distinct features, particularly replay 

accuracy.

• Features of awake SWRs suggest a role in rapid navigational planning.

• Features of sleep SWRs suggest a role in gradual memory consolidation.
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Figure 1. 
SWR Reactivation of Spatial Sequences. (a) Sequential spiking from place cells during an 

awake SWR. Bottom, rows depicting the spiking of individual place cells in CA1 or CA3 

activated during the SWR. Top, the filtered local field potential signal (150–250 Hz) from 

one tetrode with the color bar showing the separation of each 15-ms decoded bin. (b) 

Probability distributions of decoded locations for the spiking in each associated colored bin 

in a. Inset shows a cartoon of the replayed trajectory. (c) Schematic depicting the rewarded 

behavioral sequence of the ‘W’ track task. Adapted with permission from ref. [56].
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Figure 2. 
The quality of SWR replay of remote task trajectories is higher during awake than quiescent 

periods. Karlsson and Frank [55] calculated the extent to which the linear spatial distance 

between the peaks of place field pairs belonging to a remote ‘W’ environment predicted the 

relative timing of their SWR spikes for all place cell pairs. The normalized cross-correlation 

histograms of all the pairs is shown in order of their place field distances, with the signature 

of the degree to which the place-field distances are linked to their SWR timing being 

represented by the emergent ‘V’ shape centered at 0-ms latency. (a) Awake SWRs during 

the first sleep-box session of the day, prior to the daily exposure of the ‘W’ track task (R2 = 

0.025). (b) Awake SWR replay during task performance shows the most robust remote 

replay (R2 = 0.1736; see ref. [55] for further explanation of behavioral paradigm). (c) SWRs 

during waking bouts in the post-task sleep-box, after exposure to the ‘W’ maze task (R2 = 

0.1164). (d) SWRs during quiescent, sleep-like states in the sleep-box, after exposure to the 

‘W’ maze task (R2 = 0.0693). R2 values were computed by taking the correlation of the 

distance between place field peaks and the absolute value of the relative spike timing 

measure. Adapted with permission from ref. [55].
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