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h i g h l i g h t s

• An algorithm for finding continuous minimax optimal designs of experiments for semidefinite representable criteria.
• An algorithm based on sequential cutting plane approach.
• Semidefinite programming used to find optimal designs on a previously discretized domain.
• Nonlinear programming used to find the least attainable parameter combination for local designs.
• Algorithm convergence is theoretically demonstrated.
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a b s t r a c t

An algorithm based on a delayed constraint generation method for solving semi-infinite
programs for constructing minimax optimal designs for nonlinear models is proposed.
The outer optimization level of the minimax optimization problem is solved using a
semidefinite programming based approach that requires the design space be discretized. A
nonlinear programming solver is then used to solve the inner program to determine the
combination of the parameters that yields the worst-case value of the design criterion.
The proposed algorithm is applied to find minimax optimal designs for the logistic model,
the flexible 4-parameter Hill homoscedastic model and the general nth order consecutive
reaction model, and shows that it (i) produces designs that compare well with minimax
D−optimal designs obtained from semi-infinite programming method in the literature;
(ii) can be applied to semidefinite representable optimality criteria, that include the
common A−, E−, G−, I− and D-optimality criteria; (iii) can tackle design problems with
arbitrary linear constraints on the weights; and (iv) is fast and relatively easy to use.

© 2017 Elsevier B.V. All rights reserved.

1. Motivation

We consider the problem of determining model-based optimal designs of experiments (M-bODE) for statistical models.
Such a problem has increasing relevance today to control costs with broad applications in areas such as biomedicine,

✩ An example of the code is presented as Supplementary Material.
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engineering, and pharmaceutical industry, to name a few (Berger and Wong, 2009; Goos and Jones, 2011; Fedorov and
Leonov, 2014). M-bODE are useful because they can provide maximum information with high statistical efficiency at
minimum cost. Our setup is that we have a given parametric model defined on a compact design space, a given design
criterion and a given budget, that typically translates into having a predetermined total number of observations, n, available
for the study. The design problem is to determine optimal design points that describe the experimental conditions and
whether replicates are required at each of these design points, subject to the requirement that they sum to n. These design
issues involve hard combinatorial optimization problems that are known to be NP-hard (Welch, 1982). However, the limit
problemwhere n→∞, which is the focus of this paper, and in which we search the optimal proportion of the total number
of trials to be performed at each individual design point, is an easier, convex continuous optimization problem.

In the field of M-bODE, mathematical programming approaches have been successfully applied to solve design problems.
Some examples are Linear Programming (Gaivoronski, 1986; Harman and Jurík, 2008), Second Order Conic Program-
ming (Sagnol, 2011; Sagnol and Harman, 2015), Semidefinite Programming (SDP) (Vandenberghe and Boyd, 1999; Papp,
2012; Duarte and Wong, 2015), Semi-Infinite Programming (SIP) (Duarte and Wong, 2014; Duarte et al., 2015), Nonlinear
Programming (NLP) (Chaloner and Larntz, 1989; Molchanov and Zuyev, 2002), NLP combined with stochastic procedures
such as genetic algorithms (Heredia-Langner et al., 2004; Zhang, 2006), and global optimization techniques (Boer and
Hendrix, 2000; Duarte et al., 2016). Traditional algorithms for finding optimal designs are reviewed, compared and discussed
in Cook andNachtsheim (1982) and Pronzato (2008), among others. Mandal et al. (2015) provides a review of algorithms for
generating optimal designs, including nature-inspired meta-heuristic algorithms, which are increasingly used in computer
science and engineering to solve high dimensional complex optimization problems.

When the design criterion is not differentiable, finding an optimal design for a general nonlinear model is a difficult
computational task. For instance, consider finding a minimax (or maximin) optimal design which has a non-differentiable
criterion. The design criterion remains convex and there is an equivalence theorem for checking the optimality of the design.
However in practice, there are considerable difficulties in finding and checking whether a design is optimal under the
minimax framework (Noubiap and Seidel, 2000). In particular, the problem has two or more levels of optimization and the
non-differentiability of the criterion requires mathematical programming based algorithms that can compute sub-gradient
and iteratively evaluate the global or local (lower/upper) bounds to solve the optimization problem.

Minimax design problems abound in practice. For example, one may wish to estimate the overall response surface in a
dose–response study. A common design criterion is to consider the areas where the largest predictive variance may occur
and find a design that minimizes the maximum predictive variance. The outer level program finds a design after the inner
problem determines the set of model parameters that results in the largest possible predictive variance. Theoretically, we
can use SIP to tackle optimal design problems for any nonlinear model, see for example Duarte andWong (2014). However,
there are three potential issues with the SIP approach: (i) the task to program from scratch the various functionals of the
inverse of the Fisher Information Matrix (e.g. determinant, trace) for the various design criteria can be complex and so may
limit generalization of the algorithm to solve other problems; (ii) the SIP-based approach finds the optimal design in the
outer optimization problem (which is a hard problem) using a NLP solver that does not guarantee global optimality of the
solution unless global optimization techniques are employed; and (iii) the SIP-based algorithm determines the number of
support point for the optimal design iteratively, which can be time consuming. This is in contrast to our proposed SDP–NLP
combined approach where (i) we solve the outer optimization problem using SDP which guarantees the global optimality of
the design; (ii) we use the NLP solver to only solve the inner optimization program; (iii) find the number of support points
for the optimal design simultaneously using SDP; and (iv) our method optimizes the design points from a pre-determined
candidate set of points versus having to search for the number and the design points over a continuous domain.

Our main contribution is an algorithm to determining minimax optimal designs using a combination of mathematical
programming algorithms that on turn stand on deterministic replicable methods. The algorithm creatively combines SDP
and NLP to find minimax A−, E− and D−optimal designs easily and realize the efficiency gain in computing. In particular,
the convex solver is able to identify support points of the design (within the predetermined set of points) by assigning
zero-weight to non-support points for a broad class of semidefinite representable criteria. Our approach is flexible in that it
can incorporate other constraints and strategies when appropriate. For instance, adaptive grid techniques recently proposed
by Duarte et al. (2017)maybe incorporated into our algorithm to refine the support points and collapse those that are close in
proximity using a pre-defined ϵCOL-vicinity tolerance. The key advantages in our approach are that the SDP solver guarantees
that it finds the global optimum in polynomial time and the NLP solver only finds the parameter combination at which a
locally optimal design is least efficient, which is, in most of the problems, a low dimension program. Another innovative
aspect is using the structure of the plausible region of the parameters to judiciously construct the initial approximation of
the continuous domain which increases the convergence rate to the solution.

Section 2 presents mathematical background for the SDP and NLP formulation problems. Section 3 provides the specifics
for the SDP and NLP formulations for the outer and inner levels of the optimization problem. Section 4 presents three
applications of the algorithm to find minimax optimal designs for nonlinear models where the nominal values of the
parameters of interest all belong to a user-specified set called the plausibility region. We first consider the logistic model
and then the more flexible and widely used 4-parameter homoscedastic Hill model to test if our proposed algorithms can
generate minimax optimal designs similar to those reported in the literature. In the third application, we test our algorithm
using the nth order consecutive reaction model described by ordinary differential equations. Section 5 concludes with a
summary.
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2. Background

This section provides the background material and the mathematical formulation for finding optimal experimental
designs for nonlinear models. In Section 2.1 we introduce the minimax optimal design problem. Section 2.2 introduces the
fundamentals of SDP and Section 2.3 presents the basics of NLP. We use bold face lowercase letters to represent vectors,
bold face capital letters for continuous domains, blackboard bold capital letters for discrete domains, and capital letters for
matrices. Finite sets containing ι elements are compactly represented by [ι] = {1, . . . , ι}.

Throughoutwe assumewe have a regressionmodel with a univariate response and several regressors x ∈ X ⊂ Rnx where
nx is the dimension of the design space. The mean response at x is

E[y|x, p] = f (x, p), (1)

where f (x, p) is a given differentiable function,E[•] is the expectation operator with respect to the error distribution and the
vector of unknownmodel parameters is p ∈ P ⊂ Rnp . Here,P is a user-selected np-dimensional cartesian boxP ≡ ×np

j=1[lj, uj]

with each interval [lj, uj] representing the plausible range of values for the jth parameter. The exact optimal design problem
is: given a design criterion and a predetermined sample size, n, select a set of n runs using the best combinations of the levels
of the regressors to observe the responses.

Here, we focus on approximate or continuous designs, which are large sample designs so that the replicates can be
viewed as proportions of the total number of observations to be taken at the design points. A continuous design, ξ , is
characterized by the number of support or design points, k, their locations xi ∈ Rnx , i ∈ [k], from a user-specified design
space X and the proportion of the total number of observations, wi, to assign at each design point. Clearly, wi ∈ (0, 1), and
w1+w2+· · ·+wk = 1. In practice, continuous designs are implemented by taking roughly n×wi replicates at level xi, i ∈ [k]
after rounding n×wi to an integer subject to the constraint n×w1+· · ·+n×wk = n. Advantages ofworkingwith continuous
designs are many, and there is a unified framework for finding optimal continuous designs for M-bODE problems when the
design criterion is a convex function on the set of all approximate designs (Fedorov, 1980). In particular, the optimal design
problem can be formulated into a mathematical optimization program with convex properties and equivalence theorems
are available to check the optimality of a design in a practical way.

Consider a continuous design ξ with k points, where the weight of the ith design point xTi = (xi,1, . . . , xi,nx ) is wi, with∑k
i=1wi = 1. We identify such a design with the discrete probability measure ξ =

∑k
i=1wi δxi , and simply represent it by a

list of k vectors (xTi , wi), i ∈ [k]. Under mild regularity assumptions of the probability density function of the observations
and design ξ , the variance–covariance matrix of Maximum Likelihood Estimates is well approximated by the inverse of the
Fisher Information Matrix (FIM) and attains the lower bound in Cramér–Rao inequality (Rao, 1973). Consequently, one can
viewan optimal design problemas an allocation schemeof the covariates tominimize in some sense the variance–covariance
matrix. Given the relation between the variance–covariance matrix and the FIM, the worth of the design ξ is measured by
its FIM, which is the matrix with elements equal to the negative of the expectation of the second order derivatives of the
log-likelihood of all observed data with respect to the parameters. When responses are independent, the normalized FIM of
a continuous design ξ is

M(ξ, p) = −E
[

∂

∂p

(
∂L(ξ, p)

∂pT

)]
=

∫
X
M(δxi , p)ξ (dx) =

k∑
i=1

wi M(δxi , p). (2)

Here,L(ξ, p) is the log-likelihood function of the observed responses using design ξ , δx is the degenerate design that puts
all its mass at x andM(ξ, p) is the global FIM from the design ξ for making inference on the parameter vector p. Sometimes,
the term global FIM is also referred to as the total FIM, or simply, FIM and, the FIM fromadegenerate design is called elemental.

In what is to follow, we show our proposed semidefinite programming based approach is well suited to solve minimax
optimal design problems. The methodology requires the design space X be discretized into many points. Let X be the
discretized version of Xwith say q points. A common and simple way to discretize X is to use a grid set with equally-spaced
points ∆x units apart on each of the design spaces for all the regressor variables. We then search a probability measure χ
on X so that∑

x∈X

M(δx, p) χ (x)

approximates (2) as close as possible.
When errors are normally and independently distributed, the volume of the asymptotic confidence region of p is

proportional to det[M−1/2(ξ, p)], and so maximization of the determinant of the FIM leads to the smallest possible volume.
Other design criteria maximize the FIM in different ways and are usually formulated as a convex function of the FIM. For
example, when p is fixed, the locally D−, A− and E−optimal designs are each, respectively, defined by

ξD = argmin
ξ∈Ξ

{
det[M(ξ, p)−1]

}1/np
, (3)

ξA = argmin
ξ∈Ξ

{
tr[M(ξ, p)−1]

}
, (4)

ξE = argmin
ξ∈Ξ

{
1/λmin[M(ξ, p)]

}
. (5)
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Here λmin(λmax) is the minimum (maximum) eigenvalue of the FIM, and Ξ is the set of all designs on X. We note that
1/λmin[M(ξ, p)] = λmax[M(ξ, p)−1], and by continuity, the design criteria (3)–(5) are defined as +∞ for designs with
singular information matrices.

More generally, Kiefer (1974) proposed a class of positively homogeneous design criteria defined on the set of symmetric
np × np positive semidefinite matrices S+np . IfM(ξ, p) ∈ S+np , this class is

Φδ[M(ξ, p)−1] =
[
1
np

tr(M(ξ, p)−δ)
]1/δ

, (6)

where δ ≥ −1 is a parameter.
We note that Φδ is proportional to (i) [tr(M(ξ, p)−1)], which is A−optimality when δ = 1; (ii) 1/λmin[M(ξ, p)], which

is E−optimality when δ = +∞; and (iii) [det[M(ξ, p)]−1]1/np , which is D−optimality when δ→ 0.
Because these criteria are convex on the space of information matrices, the global optimality of any design ξ in X can be

verified using equivalence theorems, see for example Whittle (1973), Kiefer (1974) and Fedorov (1980). They are derived
from directional derivative considerations and have a general form, with each convex criterion having its own specific form.
For instance, the equivalence theorems for D− and A−optimality are as follows: (i) ξD is locally D-optimal if and only if

tr
{
[M(ξD, p)]−1 M(δ xi , p)

}
− np ≤ 0, ∀x ∈ X; (7)

and (ii) ξA is locally A-optimal if and only if

tr
{
[M(ξA, p)]−2 M(δ xi , p)

}
− tr

{
[M(ξA, p)]−1

}
≤ 0, ∀x ∈ X. (8)

We call the functions on the left side of the inequalities in (7) and (8) dispersion functions.

2.1. Minimax designs

Nonlinear models are common in many areas with typical applications ranging from engineering to pharmacokinetics.
For such models, the FIM depends on the parameters and consequently all design criteria, which are dependent on the FIM,
depend on the unknown parameters that we want to estimate. When nominal values are assumed for these parameters, the
resulting designs are termed locally optimal. The design strategies commonly used to handle the dependence noticed above
include the use of: (i) a sequence of locally optimal designs, each computedusing the latest estimate ofp; (ii) Bayesian designs
that optimize the expectation of the optimality criterion value averaged over the prior distribution of model parameters p
in P (Chaloner and Larntz, 1989); (iii) minimax designs that minimize the maximal value of the criterion from the unknown
values of the model parameters in P (Wong, 1992). In either case the prior distribution and the set P are assumed known.
Here we focus on finding minimax optimal designs.

Minimax design criteria have many forms and in this paper, we assume that there is a priori minimal knowledge of the
true values of the parameters. One scenario is that the user has a plausible range of values for each model parameter. A
reasonable goal is to find a design that maximizes the minimal accuracy for the parameter estimates regardless which set of
model parameter values in the plausible region is the truth. The maximin, or equivalently, the minimax Φδ-optimal design
sought is the one that minimizes

max
p∈P

Φδ[M(ξ, p)−1] (9)

among all designs in Ξ . The minimax optimal design problems for A−, E− and D−optimality criteria are constructed from
(9) for δ = 1, +∞ and δ→ 0, respectively, see (3)–(5). The mathematical program for problem (9) is

min
ξ∈Ξ

max
p∈P

Φδ[M(ξ, p)−1] (10a)

s.t
k∑

i=1

wi = 1. (10b)

As an example, application of (10) to find a minimax E−optimal design yields:

min
ξ∈Ξ

max
p∈P

(λmin[M(ξ, p)])−1 (11a)

s.t
k∑

i=1

wi = 1 (11b)

and similar formulations apply for other criteria in the Φδ class.
Our minimax design problems remain convex and so equivalence theorems for verifying optimality of a minimax design

can also be constructed. The reader is referred to Berger and Wong (2009) for details on the general equivalence theorems
for a minimax type of optimality criteria. This is discussed more generally in Wong (1992), who gave an unified approach
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to constructing minimax optimal designs. Duarte and Wong (2014), among others, displayed the equivalence theorems
for minimax D−, A− and E−optimality and for space consideration, we do not discuss them in this paper. They are more
complicated than the ones for locally optimal designs because sub-gradients are involved in the dispersion functions.
These plots represent the dispersion functions and have a general pattern; if the design under investigation is optimal,
the dispersion function must be bounded from above by zero with equality at every support point of the design. Fig. 2 in
Section 4 display examples of such plots.

We next review programming based tools for solving such minimax problems. Finding the design ξ in (10a) is called
the outer problem of the minimax program. The inner problem determines, for a given design, the values of the model
parameters p that make the criterion least attainable. The overall optimization problem is complex because it poses several
challenges: (i) the objective function of the outer problem is not differentiable, and consequently the subgradient used in
the approximation may lead to many maximizers; (ii) the inner problem function can be sensitive and may require long
computing time to solve it accurately; and (iii) global maxima of the inner problem are required to solve the minimax
problem (Rustem et al., 2008).

2.2. Semidefinite programming

We use semidefinite programming to solve the outer problem by first discretizing the design space before applying a
SDP solver to find the optimal design. Details on general use and application of SDP to search for optimal designs for linear
models are available in Vandenberghe and Boyd (1996). Additional applications include finding (i) criterion-robustmaximin
designs for linear models (Filová et al., 2011), (ii) D−optimal designs for polynomial models and rational functions (Papp,
2012); and (iii) Bayesian optimal designs for nonlinear models (Duarte and Wong, 2015). This section reviews briefly the
basics of this class of mathematical programs.

Let S+np be the space of np×np positive semidefinitematrices. A function ϕ : Rm1 ↦→ R is called semidefinite representable
(SDr) if and only if inequalities of the form u ≤ ϕ(ζ) can be expressed by linearmatrix inequalities (LMI), see for example, Papp
(2012) and Sagnol (2013). That is, ϕ(ζ) is SDr if and only if there exists some symmetric matricesM0, . . . ,Mm1 , . . . ,Mm1+m2
such that

u ≤ ϕ(ζ) ⇐⇒ ∃v ∈ Rm2 : u M0 +

m1∑
i=1

ζi Mi +

m2∑
j=1

vj Mm1+j ⪰ 0. (12)

Here, ⪰ stands for the ordering associated with the semidefinite cone where A ⪰ B holds if and only if A − B ∈ S+np . For a
given vector c , the optimal values, ζ ∈ Rm1 , of the SDr functions are found from semidefinite programs of the form:

max
ζ

{
cT ζ,

m1∑
i=1

ζi Mi −M0 ⪰ 0

}
. (13)

In the design context, c is a vector of known constants that depends on the design problem and the matricesMi, i ∈ [m1]

contain the local FIM’s and other matrices produced by the reformulation of the functions ϕ. The decision variables in the
vector ζ contain the weights wi, i ∈ [q] of the optimal design and optimized values for the auxiliary variables introduced,
and q is pre-determined by the discretization scheme. The outer problem corresponds to finding a design for a finite set of
parameter combinations p found by solving (13) subject to the linear constraints on the weights such that they are non-
negative and sum to unity.

Ben-Tal and Nemirovski (2001, Chap. 2–3) provides a list of SDr functions useful in SDP formulations for solving M-bODE
problems, see Boyd and Vandenberghe (2004, Sec. 7.3) for the basis. Sagnol (2013) showed that each criterion in the Kiefer’s
class of optimality criteria in (6) is SDr for all rational values of δ ∈ [−1,+∞) where δ = 0 is taken tomean the limiting case
when δ → 0, i.e., D−optimality criterion. We note that when there are a finite number of α SDr functions ϕ1, . . . , ϕα , then
mini=1,...,α{ϕi} is also SDr, implying that one can formulate the worst-case scenario problem by a semidefinite representable
hypograph.

2.3. Nonlinear programming

Nonlinear programming seeks to find the optimum of a mathematical program where some of the constraints or the
objective function are nonlinear. A general nonlinear program has the following form:

max
p∈P

f (p) (14a)

s.t g(p) ≤ 0 (14b)
h(p) = 0 (14c)

where f (p) is a linear/nonlinear function, g(p) is a set of inequality constraints which may be linear and/or nonlinear and
h(p) is a set of equality constraints. Here, p are variables to be optimized from a known compact set P. We use nonlinear
programming to solve the inner problem of (9) for each fixed design ξ . Our objective function is Φδ[M(ξ, p)−1] criterion
and the solution to the inner problem is the vector of parameters that result in the ξ being least efficient.
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Finding the solution of the nonlinear program (14) is the most difficult step in the algorithm (Pázman and Pronzato,
2014) because it requires finding globally optimal solutions in the compact domain P to guarantee the convergence of the
upper bound as we will show in Section 3.

There are several algorithms commonly used to solve NLP problems and they include the following: General Reduced
Gradient (GRG) (Drud, 1985, 1994), Sequential Quadratic Programming (SQP) (Gill et al., 2005), Interior-Point (IP) (Byrd
et al., 1999), and Trust-Region (Coleman and Li, 1994). Ruszczyński (2006) provides an overview of NLP algorithms. The
NLP solvers employed in our proposed algorithm do not guarantee global optimality, only local optimality. This is in contrast
to those based on Lipschitz global optimization techniques that guarantee convergence but are a lot less computationally
efficient. There are heuristics, such as resorting to multiple restarts or simulated annealing that can be used to find a ‘‘good’’
local optimum, but in general it would require the use of branch and bound techniques to prove global optimality (Sahinidis,
2014). Most of Lipschitz global optimization solvers are based on branch and bound techniques or stochastic procedures, and
may require long CPU times. Consequently, we avoid them for practical reasons, and use a gradient-based local NLP solver.
These tools might be unable to find global optima but they guarantee that local optima can be found in mild computational
time, and since the problems are of low dimension we believe that in most cases they coincide with the global optima. To
increase the efficiency and accuracy of the NLP solver we use an automatic differentiation tool to generate the jacobian
analytically. With the same purpose, we developed a global nonlinear programming tool based on a multistart heuristic
algorithm that was compared with the NLP solver.

3. Algorithms

This section describes our proposed algorithm for finding minimax Φδ-optimal designs over Ξ , or more generally, over
ΞA,b whereΞA,b := {{xi, wi}i=1,...,k : w ≥ 0,

∑
iwi = 1, Aw ≤ b}, A is a matrix and b is a vector. In Section 3.1 we formulate

and solve the outer optimization problem using SDP, and in Section 3.2 we tackle the inner optimization problem using a
NLP solver.

The minimax optimal design problem is handled in program (10) after the entire covariate design space X is discretized.
The optimization problem has finitely many variables to be optimized over a given feasible set described by infinitely many
constraints, one for each p ∈ P (López and Still, 2007). This falls into the class of semi-infinite programming, where Hettich
and Kortanek (1993) and López and Still (2007) each provides a survey of the theory, applications and recent developments.
The algorithms employed to solve SIP problems fall into three classes: (i) exchange methods; (ii) discretization based
methods; and (iii) local reduction based methods (Hettich et al., 2001). Here, we use an exchange based procedure similar
to the one proposed by Blankenship and Falk (1976), and further exploited by Žakovíc and Rustem (2003) and Mitsos and
Tsoukalas (2015) among others.

To convert (10) into an equivalent semi-infinite program we note that for a given value of τLB ∈ R:

max
p∈P

Φδ[M(ξ, p)−1] ≤ τLB ⇐⇒ Φδ[M(ξ, p)−1] ≤ τLB, ∀p ∈ P. (15)

Accordingly, the equivalent semi-infinite programobtained using a relaxation procedure is (Shimizu and Aiyoshi, 1980):

min
ξ∈Ξ ,τLB∈T

τLB (16a)

s.t Φδ[M(ξ, p)−1] ≤ τLB, ∀p ∈ P (16b)
k∑

i=1

wi = 1 (16c)

where T = [τ L, τU
] ∈ R is a closed interval with τ L being a large negative value, and τU a large positive one. The semi-

infinite program (16) is called themaster problemwhen P is infinite. One advantage of our approach is that additional linear
constraints on the design weights, if any, can be handled in a straightforward fashion. Indeed, if a minimax optimal design
is sought over ΞA,b, one must simply add the following constraints into the master problem:

Aw ≤ b. (16d)

When P is replaced by a finite subset P of P, we obtain an approximation of program (16) which is commonly designated
a restricted master problem (RMP). By construction, the optimal solution of this RMP provides a lower bound of the optimal
value of (16), see for example Mutapcic and Boyd (2009), and our strategy is to solve the RMP using semidefinite
programming. A delayed constraint generation method is used to solve the original problem, which has an infinite number of
constraints. We do so by approximating the problem by a finite set of points P sampled from P. The constraints might be
saturated at the optimum (Terry, 2009) and the term ‘‘delayed’’ means that not all constraints are present at the beginning.
Initially, the set P is populated with random points and at each iteration that follows, additional vectors p that make the
SDP-generated design least efficient are included. The optimization problem (16) is solved iteratively, alternating between
two phases as follows.

The proposed algorithm has similarities with the approach used in Pronzato andWalter (1988) and Walter and Pronzato
(1997, Sec. 6.4.4) to find minimax designs. Here, we start the convergence with a finite number of vectors P, not only one as
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in the latest reference. Similarly to Walter and Pronzato (1997, Sec. 6.4.4), the outer and the inner optimization problems
are solved iteratively to convergence. The inner program is formulated as a NLP and serves to find the vector of parameters
at which a locally optimal design is less efficient; the outer program, formulated as a SDP in a previously discretized design
space, is to determine the optimal design for a finite set P that replaces P. The vectors of parameters that solve the inner
problem for a given locally optimal design are appended to the set of instances P to increasingly constraining the design.
Notice that P replacing P changes at each iteration. Suppose that the initial set P(0) hasm0 elements and at the jth iteration,
this set becomes P(j) and hasm0 + j elements. This assumes that we add one element from P to the original finite set P(0) at
each iteration, and this element is the worst p for a given local optimum design ξ . The algorithm iterates between the outer
program P1 and the inner problem P2 until convergence. If ξ (0) is the initial design and ξ (j−1) is the optimal design at the
(j− 1)th iteration, we solve

• the Phase 1 outer problem P1 (16) by finding a design ξ (j) and a lower bound of the minimax program, τ (j)
LB after P is

replaced by P(j−1), and
• the Phase 2 inner problemP2 by finding the set of model-parameter values p(j) that yields the worst (largest) possible

value of the criterion Φδ[M(ξ, p)−1] for ξ (j). The solution provides an upper bound τ
(j)
UB for the minimax problem and

iterates after adding p(j) to P(j−1) to obtain

P(j)
= P(j−1)

∪ p(j), (17)

for the next iteration.

The above algorithm stops when the two bounds converge and reaches an ϵ-optimal solution, where ϵ is a user-specified
small positive constant. In practice this means that after each iteration one verifies whether the condition⏐⏐⏐⏐⏐τ (j)

UB − τ
(j)
LB

τ
(j)
UB

⏐⏐⏐⏐⏐ ≤ ϵ, (18)

is satisfied. Blankenship and Falk (1976) showed that the procedure is guaranteed to converge to the global optimum in a
finite number of iterations. Moreover, we shall see in Proposition 1 that the stopping criterion (18) ensures a lower bound
on the efficiency of the returned design.

Our algorithm has similarities with algorithms developed by Melas (2006, Sec. 8.7.1) using the functional approach
for determining maximin and standardized maximin optimal designs. The key idea is that the optimal support points and
the associated optimal weights can be treated as functions of the estimated parameters and, as such, can be developed
into a Taylor series around the nominal values of these parameters. The author uses standard arguments to prove that a
sequence of locally optimal designs obtained for a givendiscrete set of parameter combinations contains aweakly convergent
subsequence with a limit, and the standardized maximin optimality can be checked with a general equivalence theorem,
see Dette et al. (2007). The approach is elegant and behaves well numerically but because it exploits problem specificities
may be somewhat limited for general applications.

To describe our algorithm in more detail, we need additional notation. Let υ(P) and E(P) be the sets of vertices and edges
of P, respectively. Let m0 be the user-specified sample size of P(0) and let U(Q) be the uniform distribution over the general
compact domain Q enclosing a general sub-domain of the parameters plausible region. Let m0,k ≤ m0 be the number of
samples p including the vertices and other points randomly generated by sampling E(P). Further, let m0,r = m0 − m0,k be
the remaining number of samples that are generated by sampling randomly from the overall domain P and not only from
the edges E(P). The sampling procedure uses a uniform random number generator to draw elements from the closed domain
Q, see Press et al. (2007, Chap. 7).

We use an empirical relation based on the structure of P to set the value of m0,k. Since P is formed from the cartesian
product of intervals for each of the np parameters, the compact domain contains 2np vertices and np 2np−1 edges. We then
setm0,k = 2np + np 2np−1, and consequentlym0,r = m0− 2np − np 2np−1. The collection of data samples in P(0) is constructed
as follows:

P(0)
=

{
p1, . . . , pm0

}
(19)

where p1, . . . , p2np are the vertices of P, p2np+1, . . . , pm0,r
are sampled from the uniform distribution U(E(P)) with one point

from each edge, and pm0,r+1, . . . , pm0
are drawn from U(P). The sampling scheme is similar to that used in the H-algorithm

proposed by Fackle-Fornius et al. (2015) to first find a prior distribution for constructing Bayesian optimal designs and then
use them to check the optimality of minimax standardized designs.

All our examples in Section 4usem0 = 50but other values can beused. The above rule is empirical and seems toworkwell
for finding the optimal designs sought here.We reason that the construction ofP(0) relies on the properties ofΦδ[M(ξ, p)−1]
and our experience is that while this function is not convex nor concave (Pronzato and Pázman, 2013) over the parameter
space, the vectors p for which a design is least efficient are usually the vertices of the plausible region or points located on
one of the edges of P. We exploit this feature and so include the vertices and some randomly chosen points of E(P) in the
initial set. We find that such a construction can sometimes reduce the computation time, especially when the optimum of
the inner problem is one of the vertices.
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Algorithm 1 summarizes howwe combine SDP with NLP to find minimax optimal designs with accompanying details on
the subproblems in Phases 1 and 2. Sections 3.1 and 3.2 provide additional details about the formulations and numerical
solvers used in Algorithm 1. Here and throughout, we denote the design obtained after convergence by ξOPT and one set of
worst-case values for the model parameter at convergence by pOPT.

Algorithm 1 Algorithm to find minimax optimal designs
procedureMinimaxOptimalDesign(∆x,m0,r ,m0,k, τ

L, τU , ϵ, lj, uj, ξ
OPT , pOPT )

Construct X using intervals ∆x ▷ Discretization of the design space
Construct P(0)

▷ Sample m0 points from P according to (19)
j← 1 ▷ Initialize iterations counter
τ
(0)
LB ← τ L, τ

(0)
UB ← τU

while |(τ (j−1)
UB − τ

(j−1)
LB )/τ (j−1)

UB |> ϵ do ▷ Convergence checking
SolveP1 to determine τ and ξ ▷ SDP problem
τ
(j)
LB ← τ , ξ (j)

← ξ ▷ Update τ
(j)
LB

SolveP2 to determine τ and p ▷ NLP problem
p(j)
← p

if τ < τ
(j−1)
UB then ▷ Update opt. design and worst parameter

τ
(j)
UB ← τ , pOPT

← p, ξOPT
← ξ

else
τ
(j)
UB ← τ

(j−1)
UB ▷ Update τ

(j)
UB

end if
P(j)
← P(j−1)

∪ p(j)
▷ Update P

j← j+ 1 ▷ Update the iteration counter
end while

end procedure

The minimax-criteria Ψ (ξ ) := maxp∈PΦδ[M(ξ, p)−1] is nonnegative (and even positive at the optimum, cf. Pukelsheim
(1993)) and positively homogeneous, so it is natural to define the efficiency of a design ξ by

Eff(ξ ) =
Ψ (ξOPT)
Ψ (ξ )

,

where ξOPT is minimax-optimal. Upon convergence, the following proposition bounds the efficiency of the design returned
by Algorithm 1:

Proposition 1. Let ξOPT be the design returned by Algorithm 1, where we assume that each subproblem P1 and P2 is solved
exactly (to global optimality). Then, Eff(ξOPT) ≥ 1− ϵ. More generally, if we assume that the subproblems P1 and P2 are solved
within relative accuracy εL and εU , respectively, then the bound on the efficiency becomes

Eff(ξOPT) ≥ (1− ϵ)
1− εL

1+ εU
.

Proof. We start with the case where each subproblem is solved exactly. By construction, τ (j)
LB and τ

(j)
UB are lower and upper

bounds for Ψ (ξOPT), and at each iteration, the design ξOPT stored by the algorithm satisfies Ψ (ξOPT) ≤ τ
(j)
UB. Indeed, the value

τ returned byP2 is the value of Ψ (ξ (j)). It follows that

Eff(ξ ) =
Ψ (ξOPT)
Ψ (ξ )

≥
τ
(j)
LB

τ
(j)
UB

,

which is at least 1 − ϵ when the convergence criterion is satisfied. When the solutions to the subproblems P1 and P2
are approximate and not exact, the proof is similar. This follows by observing that Ψ (ξOPT) ≥ τ

(j)
LB (1 − εL) and Ψ (ξOPT) ≤

τ
(j)
UB(1+ εU ). □

Algorithm 1 has some similarities with that proposed by Duarte and Wong (2014), and the main differences are listed
below:

(a) the Phase 1 problem is formulated here as a semidefinite program problem instead of a nonlinear problem that
requires global optimization solvers. The use of SDP in Phase 1 allows us to find approximate designs in polynomial
time but requires the discretization of the design space, here represented by a finite number of candidate points.
In contrast to Duarte and Wong (2014), the algorithm herein does not require an initial estimate of the number of
support points.
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(b) the Phase 2 problem is partially similar to that used in Duarte and Wong (2014). Specifically, the calculation of the
answering set for the optimal design produced by Phase 1 is also represented as a NLP problem, and solved using
a similar method, but does not require iterating the number of support points until the equivalence theorem is
validated. This task is highly time consuming since it requires finding the maxima of the dispersion function for a
given answering set, which is a rather challenging NLP with multiple optima.

(c) the algorithmproposed herein can easily be extended to findminimaxA− and E−optimal designs by taking advantage
of the semidefinite representability of those criteria; the one proposed in Duarte andWong (2014) works only for the
D−optimality criterion. In practice, Algorithm 1 can be extended to every semidefinite representable criterion used
for designing a multiple regression model, see Sagnol (2011).

(d) the set P(0) in our algorithm is formed bym0 samples judiciously chosen from P, whereas in Duarte andWong (2014),
P(0) is formed by a singleton element p. This approach potentially increases the convergence rate.

Algorithm 1 has common features with that proposed by Pázman and Pronzato (2014) for finding extended E− and
G−optimal designs for protection against close-to-overlapping situations, and recently extended to find D−, A− and
Ek−optimal designs for linear models (Burclová and Pázman, 2016). Here, we formulate the Phase 1 problem for finding
optimal designs on a discrete design space as a SDP problem and exploit the semidefinite representability of D−, A− and
E−optimality criteria. This is in contrast with the work of Pázman and Pronzato (2014) where the problem is handled by
Linear Programming. The SDP formulation is harder to solve than the LP problembecause the former requires specific Interior
Point algorithms (Boyd and Vandenberghe, 2004), but because it is broader in scope and in particular, the formulation can be
generalized to include all problemswith a SDr criterion. Further, we solve the Phase 2 problem as a NLP and consequently the
convergence of the successive cutting planes that generate the upper bounds is guaranteed if global optimization techniques
are used. This desirable property is not found in the method proposed by Pázman and Pronzato (2014), where they used a
combination of grid search and local optimization.

3.1. Phase 1 problem -P1

The SDP formulation for solving the problem P1 and obtaining the successive global lower bounds for the minimax
program (10) are as follows. At the jth iteration, the goal is to find the design ξ (j) with weights w(j)

= (w(j)
1 . . . , w

(j)
q )T in

the following SDP problem:

min
ξ (j)∈Ξ ,τ

(j)
LB∈T

τ
(j)
LB (20a)

s.t Φδ[M(ξ (j), p)−1] ≤ τ
(j)
LB , ∀p ∈ P(j) (20b)

q∑
i=1

w
(j)
i = 1, (20c)

where for our interests, we set Φδ[M(ξ (j), p)−1] to be either [tr(M(ξ (j), p)−1)] for A−optimality, (λmin[M(ξ (j), p)])−1 for
E−optimality, [det[M(ξ (j), p)]−1]1/np for D−optimality, and each w

(j)
i is the weight of the point xTi ∈ X, i ∈ [q]. As

we mentioned for the master problem (16), additional constraints of the form Aw ≤ b can be added to the above SDP
formulation, for the case of optimization over ΞA,b. To handle the SDP problems, there are user-friendly interfaces, such as
cvx (Grant et al., 2012) or Picos (Sagnol, 2012), that automatically transform the constraints (20b) into a series of LMIs
before passing them to SDP solvers such as SeDuMi (Sturm, 1999) or Mosek (Andersen et al., 2009). This is possible if Φδ

is SDr, which is true for our design criteria of interest. In our work, we solved all SDP problems using the cvx environment
combined with the solver Mosek that uses an efficient interior point algorithm.

3.2. Phase 2 problem -P2

This problem is to find the vector p given the design determined in Phase 1 which results in it having the smallest
efficiency. The problem is non-convex and requires nonlinear programming tools. Its solution generates successive global
upper bounds for the minimax optimal design problem, with one obtained for each locally optimal design. Let us assume
that at the jth iteration the design ξ (j) is already determined after solving (20). The problem to solve in this phase is

τ = max
p∈P

Φδ[M(ξ (j), p)−1], (21)

and we use a NLP solver IPOPT based on an interior point algorithm (Wächter and Biegler, 2005). To increase the
accuracy of the computed gradient, we use an automatic differentiation tool, ADiMat (Bischof et al., 2002), where its
analytical representation is then passed to the solver to handle the program (21). We notice that IPOPT is a local nonlinear
programming solver, and the problem (21) may have multiple local optima. To handle this issue we develop a global
nonlinear programming tool based on a multistart heuristic algorithm similar to that proposed by Ugray et al. (2005), and
in Section 4.1 we compare the local NLP with our algorithm.
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In every iteration we assumed that the optimum found by solving P2 is global and τ is a global upper bound for the
minimax problem. The optimal p is used to update the set of data samples in P(j) employing the rule (17). In many situations,
ϵ−optimum is found in the first iteration by the SDP solver, and P2 is used to compute the upper bound, and hence, to
confirm the optimality of the design.

4. Results

In this section, we apply our proposed algorithm in Section 3 to find minimax A−, E− and D−optimal designs for
the power logistic model, the 4-parameter logistic model and the general consecutive reaction model that represents the
reactants concentration in a continuous stirred tank. The second is also called the Emaxmodel or the Hill model. Such logistic
models are commonly used to study the drug effects as the dose varies, see for example (Ting, 2006), and in other areas such
as agronomy (Tsoularis and Wallace, 2002; Ludena et al., 2007). The third is described by a system of evolutive ordinary
differential equations, and puts additional issues concerning the computation of the FIM. Except for theminimaxD−optimal
designs for the logistic model, the other optimal designs, as far as we know, are not published in the literature. The logistic
model is considered a benchmark test for algorithms for finding optimal designs of experiments, and we use it here for
comparison. First, we find minimax D−optimal designs for the logistic model for different uncertainty parameter regions
and compare the results with those of Duarte and Wong (2014). We then apply the algorithm to find minimax A− and
E−optimal designs for all models. In all cases, we assume that there is a known plausible set of values for each parameter.

All computation in this paper were carried using on an Intel Core i7 machine (Intel Corporation, Santa Clara, CA) running
64 bits Windows 10 operating system with 2.80GHz. The relative and absolute tolerances used to solve the SDP problems
were set to 10−5 in all problems. Similarly, the relative and absolute tolerances of the NLP solver were also set to 10−5 in all
problems. The value of ϵ used in the convergence criterion in Algorithm 1 is 10−4.

4.1. Example 1 - Logistic model

We consider the power logistic model proposed by Prentice (1976) and commonly used in dose–response studies when
the outcome is binary:

E[y|x, p] =
1

{1+ exp[−β (x− µ)]}s
, x ∈ X, p ∈ P (22)

where X is a used-defined bounded interval, p = [β, µ, s]T is the vector of model parameters assumed to lie in a known
compact set P. The probability of a response at dose x ∈ X is y(x, p) and the binary outcome is coded as 1 for response and
0 otherwise. When s = 1, we have the logistic model, other values of s provide more flexibility in capturing skewness and
kurtosis, but for comparison purposeswe first assume the simpler casewhen s = 1. Accordingly, let p = [β, µ]T and assume
that P = [µL, µU ]× [βL, βU ]which contains all plausible values of the two parameters. Here, µL is the lower bound of µ and
µU is its upper bound. Similarly, βL is the lower bound of β and βU is its upper bound. The FIM of the design at the point xi
isM(xi, p) = h(xi, p) h(xi, p)T, where

h(xi, p) =
1

√
E[y|xi, p] (1− E[y|xi, p])

(
∂E[y|xi, p]

∂p

)
,

∂E[y|xi, p]
∂p

=

⎛⎜⎜⎝
∂E[y|xi, p]

∂β

∂E[y|xi, p]
∂µ

⎞⎟⎟⎠ .

The initial population in P(0) of the numerical tests presented in this section was constructed using the 22 vertices plus
16 points randomly sampled from the edges of Pwith one per edge. What we meant is that we sample 16 points uniformly,
each on an edge selected at random. More precisely, we use the following procedure to sample a vector p on an edge of the
plausible region:we first sample one index j uniformly in {1, . . . , np}. Then, we sample pj uniformly at random in the interval
[lj, uj], and for i = 1, . . . , np, i ̸= j, we draw pi from the bounds {li, ui} using a binary random number generator. In addition,
we randomly sample 30more points fromPusing a uniform randomnumber generator, resulting in a total of 50 vectors for p.

In our analysis we first study the impact of the size of the plausible parametric region on the optimal design and the
computation time. We consider X ≡ [−1, 5] and four different regions for p that result from combining the intervals
[1.0, 1.25] and [1.0, 3.0] for β with the intervals [0.0, 1.0] and [0.0, 3.5] forµ. Next, we study the impact of the design space
range and solve the problem for X ≡ [3.0, 9.0]with µ ∈ [6.0, 8.0] and β ∈ [1.0, 1.25] and β ∈ [1.0, 3.0], respectively. In all
these tests, the design space was discretized using equally spaced points ∆x = 0.02 unit apart, and so for each of the design
spaces X ≡ [−1, 5] and [3.0, 9.0], we have 301 candidate design points.

Table 1 presents the D−optimal designs for different plausibility parameter regions. Our experience is that the size
of X seems to have a small impact on the speed of our proposed method. The grid obtained after discretizing the design
space seems to have impact on the computational time required by the Phase 1 problem. In practice, dense grids result
in more nodes, and consequently larger semidefinite programs are produced, thus increasing the difficulty in solving the
optimal design problem for a set of samples of parameters. The algorithm performs potentially well with a larger number
of points but the SDP solver might be unable to provide a solution in realistic time. Having denser grids allows us to obtain
more accurate optimal designs closer to those obtained if X is not discretized. In practice, one may increase the size of X by
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Table 1
Minimax D−optimal designs for the logistic model on X discretized using
∆x = 0.02, for different plausible regions.

[βL, βU ] [µL, µU ]

[0.0, 1.0]b [0.0, 3.5]b [6.0, 8.0]a

[1.0, 1.25]

(−0.84,0.3810) (−0.88,0.2746) (5.16, 0.0048)
(−0.82,0.1190) (1.74,0.2254) (5.18,0.3428)
(1.82,0.1190) (1.76,0.2254) (7.00, 0.3047)
(1.84,0.3810) (4.38,0.2746) (8.82,0.3427)

(8.84,0.0049)

pOPT
[1.25, 1.0]T [1.25, 3.5]T [1.25, 8.0]T

CPU (s) 10.13 25.00 10.09
Eff 1.0000 1.0000 0.9999

[βL, βU ] [µL, µU ]

[0.0, 1.0]b [0.0, 3.5]b [6.0, 8.0]a

[1.0, 3.0]

(−0.54,0.2190) (−0.40,0.0491) (5.66, 0.2592)
(−0.52,0.1421) (−0.38,0.1516) (6.86,0.2408)
(0.50,0.1193) (0.68,0.2350) (7.14, 0.2408)
(0.52,0.1612) (1.52,0.0384) (8.34,0.2592)
(1.52,0.0514) (1.54,0.0305)
(1.54,0.3070) (2.02,0.0610)

(2.82,0.1141)
(2.84,0.1251)
(3.88,0.0420)
(3.90,0.1532)

pOPT
[3.0, 0.0]T [3.0, 3.5]T [3.0, 8.0]T

CPU (s) 10.08 52.13 49.35
Eff 0.9995 1.0000 1.0000

(x.xx, w.wwww) ≡ (design point, weight).
a The design space is X ≡ [3, 9].
b The design space is X ≡ [−1, 5] for plausible regions.

keeping the size of the SDP problem the same by manipulating the discretization grid intervals to minimize the impact on
computational time. The Phase 2 problem is independent on the design space because the search is made on the space of
the parameters, and so has a small impact on the CPU time.

The resulting designs in Table 1 show good agreement with the designs found with a SIP-based approach which assumes
X is continuous, see Duarte andWong (2014). In some cases, the SDP-basedminimax designs havemore support points than
the SIP-generated minimax designs. The additional points are usually close to each other and depend on how we discretize
the design space. Table 1 shows that larger plausible regions tend to result in designs with more support points, a finding
already observed by other authors for Bayesian and minimax designs, see for example, Chaloner and Larntz (1989) and
Duarte and Wong (2014). The CPU times required by Algorithm 1 to find minimax D−optimal designs is, on average, 8.56
times shorter than that required in the SIP approach in Duarte and Wong (2014). The efficiency of each design in Table 1 is
computed as:

Eff =
(
det[M(ξOPT, pOPT)]
det[M(ξ ∗, p∗)]

)1/np

(23)

where ξOPT is the optimal design obtained from the proposed algorithm, along with the worst-case parameter pOPT, and ξ ∗ is
the design in Duarte and Wong (2014) for the corresponding answering set p∗. We note that the efficiencies of the designs
obtained from the proposed algorithm relative the SIP-generated designs are all between 0.9990 and 1.0000 and so this
suggests our algorithm produces optimal or highly efficient minimax designs but using shorter CPU time. It is possible to
find optimal designs with an efficiency below 1− ϵ, because the reference design ξOPT in Proposition 1 is restricted to have
support points on the grid and the designs ξ ∗ in Duarte and Wong (2014) are constructed assuming a continuous design
space and so may perform better. The CPU time of the designs in Table 1 is larger for larger regions P, one reason being the
increasing complexity of the NLPs solved to find p∗ in each iteration.

To analyze the impact of the grid density on the optimal design and CPU we consider P ≡ [1.0, 3.0] × [0.0, 1.0],
X ≡ [−1, 5], and discretize the design space using equally spaced pointswith∆x = 0.08 (76 points),∆x = 0.04 (151 points),
∆x = 0.02 (301 points) and ∆x = 0.01 (601 points), respectively. Table 2 shows that (i) the designs obtained from different
grid sets are very close and have a similar efficiency; and (ii) the CPU times are alike, where the larger size semidefinite
program is compensated by the higher convergence rate. Although the performance of themethod does not deteriorate very
much when the size of the grid increases (cf. Table 2), the SDP approach usually fails if it includes between 3000 and 6000
design points, mainly due tomemory problems, depending on the hardware. In somemulti-factor problems, it is not unusual
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Table 2
Minimax D−optimal designs for the logistic model on X ≡ [−1, 5] and P ≡ [1.0, 3.0] × [0.0, 1.0] when equally spaced grids of different sizes are used.

∆x

0.08 0.04 0.02 0.01

(−0.60,0.0542) (−0.56,0.1265) (−0.54,0.2190) (−0.55,0.0760)
(−0.52,0.3066) (−0.52,0.2334) (−0.52,0.1421) (−0.54,0.2799)
(0.44,0.0295) (0.48,0.1552) (0.50,0.1193) (0.48,0.2052)
(0.52,0.2512) (0.52,0.1242) (0.52,0.1612) (0.49,0.0789)
(1.48,0.1057) (1.52,0.2422) (1.52,0.0514) (1.53,0.1942)
(1.56,0.2528) (1.56, 0.1183) (1.54,0.3070) (1.54,0.1658)

pOPT
[3.0, 0.0]T [3.0, 0.0]T [3.0, 0.0]T [3.0, 0.0]T

CPU (s) 6.86 7.50 10.08 10.56
Eff 0.9169 0.9659 0.9995 0.9998

(x.xx, w.wwww) ≡ (design point, weight).

Fig. 1. Display of the objective function (det[M(ξOPT, p)])1/np vs. p for the optimal design obtained for P ≡ [1.0, 3.0] × [0.0, 1.0], X ≡ [−1, 5] and the
design space discretized using equally spaced points with ∆x = 0.02 (in second line, first column of Table 1).

to have millions of design points and this approach cannot handle large design spaces unless coarser discretization grids are
used.

Finally, to study the accuracy of the NLP solver to find global optima in our algorithm, we implemented a multistart
heuristic algorithm and compared its performance with the local NLP solver. To briefly describe the algorithm, we set
the number of starting points used, ns, and generate ns vectors of parameters p employing a uniform random generator
mechanism in P. Then, we solve the Phase 2 problem by calling IPOPT ns times using a different starting point in each call.
The optimum and the objective function are saved, and subsequently the best is(are) picked. If a singleton is found, P is
updated with a single vector pwhile when more than one optimum is obtained all of them are included in P, that augments
more than a vector p per iteration. For comparison purposeswe used ns = 20, and for all the examples in Table 1we obtained
the same optimal designs found with the local NLP solver. Although, the CPU time required increased in average 4.18 times.
We also observed that in most of the problems and iterations the optimum is a single point which is in agreement with our
result in Table 1 where pOPT is a singleton.

Now, we analyze the accuracy of our algorithm in determining the vector p where the criterion is least attainable.
Fig. 1 displays the objective function, (det[M(ξOPT, p)])1/np , for the optimal design obtained with the Algorithm 1 for
P ≡ [1.0, 3.0] × [0.0, 1.0], X ≡ [−1, 5] and the design space discretized using equally spaced points with ∆x = 0.02,
presented in second line, first column of Table 1. The plot shows that for the minimax design ξOPT the answering set is the
singleton pOPT

= [3.0, 0.0]T.
Fig. 2(a) displays the dispersion function of the SDP-generated design under the D-optimality criterion for the logistic

model when X ≡ [−1, 5] and the plausible region is P = [1.0, 3.0] × [0.0, 1.0]. The dispersion functions of the designs
found by our algorithm at termination are constructed after the convergence condition is attained. Briefly, it requires
the determination of a probability measure in P that validates the conditions of the equivalence theorems using a LP
formulation (Duarte andWong, 2014). Practically, the construction of the dispersion function for minimax optimal designs
is cumbersome because the need of finding a probability measure on the parameters domain before checking the General
Equivalence Theorem on the design. The procedure becomes easier when the answering set is a singleton which is what
we have, see Fig. 1. The dispersion function is bounded above by 0 and peaks at the support points of the generated design.
It follows that the dispersion function satisfies the conditions required in the equivalence theorem and so confirms the
minimax D-optimality of the generated design.



B.P.M. Duarte et al. / Computational Statistics and Data Analysis 119 (2018) 99–117 111

Table 3
Minimax A− and E−optimal designs for the logistic model on X discretized using ∆x = 0.02, for different plausible regions when β is restricted to
[1.0, 3.0].

A−optimal design E−optimal design

[µL, µU ] [µL, µU ]

[0.0, 1.0]b [0.0, 3.5]b [6.0, 8.0]a [0.0, 1.0]b [0.0, 3.5]b [6.0, 8.0]a

(−0.54,0.0510) (−0.60,0.1240) (5.54,0.0691) (−0.56,0.0945) (−0.58,0.1823) (5.56,0.0528)
(−0.52,0.3249) (−0.58,0.0733) (5.56,0.1824) (−0.54,0.2823) (0.62,0.0809) (5.58,0.2127)
(0.52,0.1970) (0.70,0.1429) (6.56,0.0467) (0.50,0.2470) (0.64,0.0557) (6.56,0.1650)
(0.54,0.0608) (1.60,0.2165) (6.58,0.1855) (1.54,0.2798) (1.46,0.0382) (6.88,0.0730)
(1.54,0.1828) (1.62,0.0071) (7.32,0.0078) (1.56,0.0965) (1.48,0.1620) (6.90,0.0377)
(1.56,0.1835) (2.28,0.0835) (7.34,0.2448) (2.16,0.1754) (7.46,0.2077)

(2.30,0.0475) (8.40,0.1123) (2.18,0.0015) (8.44,0.0481)
(2.96,0.1054) (8.42,0.1514) (2.92,0.0157) (8.46,0.2029)
(4.10,0.1999) (2.94,0.1064)

(4.08,0.1406)
(4.10,0.0413)

pOPT
[3.0, 1.0]T [3.0, 0.0]T [3.0, 8.0]T [3.0, 1.0]T [3.0, 3.5]T [3.0, 6.0]T

CPU (s) 8.23 11.31 5.20 7.06 18.25 7.32

(x.xx, w.wwww) ≡(design point, weight).
a The design space is X ≡ [3, 9].
b The design space is X ≡ [−1, 5] for plausible regions.

Similar dispersion functions can be obtained for all designs in Table 1 and for designs found by our algorithm under other
criteria. For example, Figs. 2(b) and 2(c) show, respectively, the dispersion functions of the A− and E−optimal designs in
Table 3 found by our algorithm for the logistic model when P = [1.0, 3.0] × [0.0, 1.0], ∆x = 0.02 and X ≡ [−1, 5].

In contrast to minimax D−optimal designs, minimax A− and E−optimal designs have not been reported in the literature
for the logistic model. Our proposed algorithm can be directly used to find such minimax optimal designs using the same
discretization scheme. Table 3 displays selected minimax A− and E−optimal designs obtained when [βL, βU ] = [1.0, 3.0]
and there are different plausible regions forµ. We observe from Tables 1 and 3 that theminimax A− and E−optimal designs
havemore support points than D−optimal designs. Further, the computational times required by all the designs are all quite
similar, and the differences are mainly due to the number of iterations required to reach convergence, as defined by the
user-specified tolerance level ϵ, see Eq. (18). Overall, the proposed algorithm shows good flexibility and determines the
various optimal designs without requiring a prohibitive amount of computational resources.

The number of initial sampling points tends to have low impact on the convergence rate. In each iteration we determine
the hypograph of the design criterion by considering all elements in P and generate the optimal cutting plan corresponding
to the lower bound. It follows that when P(0), by chance, contains pOPT the convergence is potentially faster since the lower
bound limit is attained at the end of the first iteration but is independent on the number of sampling points. In contrast, the
location of the sampling points might have significant impact on the convergence rate.We exploit this feature by judiciously
choosing the points inP(0), which include the vertices of the parameter domain.When pOPT coincideswith one of the vertices,
which is a feature we observed empirically formany problems, the final lower bound is obtained at the first iteration and the
subsequent iterations serve only to let the upper bound converge. General problems where pOPT does not coincide with one
of the vertices require a few iterations since successive cutting plans generating lower and upper bounds are constructed
until the condition (18) is attained. Consequently, the number of points in the initial sample does not explain the differences
observed in CPU time which are mainly due to the algorithm.

4.2. Example 2 - Four-parameter homoscedastic Hill model

Consider the 4-parameter homoscedastic Hillmodel, commonly used for curve-fitting analysis in bioassays or immunoas-
says such as ELISAs or dose–response curves (Hill, 1910). Themodel is widely used in various types of dose–response studies
and in other disciplines because it is flexible and can model mean response with different shapes. Let y be the outcome at
level x of the independent variable defined in the design space X, which we assumed is a close and bounded interval for the
dose or log dose. The outcome depends on x, and its mean response at x is

E[y|x, p] = E0 +
(E∞ − E0) xm

xm + kmd
, x ∈ X, p ∈ P. (24)

Here, p = [E0, E∞, kmd , m]T is the vector of parameters in the Hill model and its plausible values are known to lie in a
compact set P. The interpretations of the Hill parameters are: E0 is the control effect at zero dose concentration, E∞ is the
effect of a very large dose of the drug, kd is the dose that induces 50% of the maximal effect, andm is the power that controls
the slope. Khinkis et al. (2003) used (24) for studying the effect of an inhibitory drug on tumor growth and found locally
D−optimal designs using seven sets of nominal values for p and assuming no uncertainty in parameters. These designs
were found to be sensitive to mis-specification of the values of p, meaning that a design can lose its efficiency greatly if the
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(a) (b)

(c)

Fig. 2. Dispersion functions of the generated designs for the logistic model under (a) D−optimality criterion, (b) A−optimality criterion, (c) E−optimality
criterion, when X ≡ [−1, 5] is discretized by ∆x = 0.02 and the plausible region is P = [1.0, 3.0] × [0.0, 1.0].

nominal values are wrong. One design strategy that may possibly overcome this problem is to adopt a minimax strategy for
designing the study. Our goal is to find optimal designs for parameter uncertainty scenarios employing aminimax framework
formalized in Section 3.

Assume that P = [EL
0, E

U
0 ] × [E

L
∞

, EU
∞
] × [(kmd )

L, (kmd )
U
] × [mL,mU

] is the known set that contains all plausible values of
all the parameters in the model. The superscripts L and U designate the lower and upper bounds for values of the model
parameters. The FIM at the point xi is M(xi, p) = h(xi, p) h(xi, p)T, where

h(xi, p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂E[y|xi, p]
∂E∞

∂E[y|xi, p]
∂E0

∂E[y|xi, p]
∂(kmd )

∂E[y|xi, p]
∂m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xmi
kmd + xmi

kmd
kmd + xmi

−
(E∞ − E0) xmi
(kmd + xmi )2

(E∞ − E0) kmd xmi log(xi)
(kmd + xmi )2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Tables 4–5 presents minimax D−, A− and E− optimal designs for a plausibility region P = [1.0, 2.0] × [0.1, 0.5] ×
[0.5, 1.0] × [mL,mU

], and the design space is X ≡ [10−5, 10]. We consider two intervals for possible values of m to assess
the impact of the slope (positive and negative values) on the algorithm and the optimal designs. In all cases, the design
interval is discretized using intervals of length ∆x = 0.05, yielding 201 candidate design points. The initial population in
P(0) is formed by the 24 vertices of P plus 32 points randomuniformly sampled from the edges, one per edge, and 2 additional
points sampled from inside the domain, in a total of 50 vectors p.
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Table 4
Minimax D−, A− and E− optimal designs found by our algorithm for the 4-parameter homoscedastic Hill model on X ≡ [10−5, 10] using a grid of equally
spaced points ∆x = 0.05 unit apart and P ≡ [1.0, 2.0] × [0.1, 0.5] × [0.5, 1.0] × [0.5, 1].

D−optimal design A−optimal design E−optimal design

(10−5 ,0.2453) (10−5 ,0.0697) (10−5 ,0.0368)
(0.05,0.2218) (0.05,0.2126) (0.05,0.2058)
(0.30,0.0547) (0.45,0.0013) (0.50,0.0227)
(1.35,0.2292) (0.50,0.0066) (1.40,0.0313)
(10.00,0.2490) (1.35,0.0022) (1.45,0.4178)

(10.00,0.2711) (10.00,0.2856)

pOPT
[1.0, 0.5, 1.0, 0.5]T [1.0, 0.5, 1.0, 1.0]T [1.0, 0.5, 1.0, 1.0]T

CPU (s) 44.67 56.38 38.19

(xx.xx, w.wwww) ≡ (design point, weight).

Table 5
Minimax D−, A− and E− optimal designs found by our algorithm for the 4-parameter homoscedastic Hill model on X ≡ [10−5, 10] using a grid of equally
spaced points ∆x = 0.05 unit apart and P ≡ [1.0, 2.0] × [0.1, 0.5] × [0.5, 1.0] × [−2,−0.5].

D−optimal design A−optimal design E−optimal design

(10−5 ,0.2422) (10−5 ,0.0969) (10−5 ,0.0816)
(0.05,0.2190) (0.05,0.2328) (0.05,0.2289)
(0.10,0.0121) (0.85,0.0901) (0.80,0.0076)
(0.65,0.0662) (1.75,0.0010) (0.85,0.0818)
(1.80,0.0239) (1.80,0.3048) (1.80,0.0011)
(1.85,0.1876) (1.85,0.0234) (1.85,0.3425)
(10.00,0.2490) (1.90,0.0015) (10.00,0.2565)
(10.00,0.2490) (10.00,0.2495)

pOPT
[1.0, 0.5, 1.0,−2.0]T [1.0, 0.5, 1.0,−1.1092]T [1.0, 0.5, 0.5,−1.0763]T

CPU (s) 41.94 47.95 38.92

(xx.xx, w.wwww) ≡ (design point, weight).

All the designs have support points at the extremes of X. When the model has a positive slope, i.e. m > 0, the minimax
optimal designs include three additional points, one at x ∈ [0.3, 0.5], another at x ∈ [1.35, 1.45] and one at x = 0.05. When
the model has a negative slope, the optimal designs have a support point at x ∈ [0.05, 0.1], another at x ∈ [0.65, 0.85]
and the last one at x ∈ [1.80, 1.85]. Our designs have 5 points, one point more than the locally D−optimal designs with
four support points found by Khinkis et al. (2003) and Qiu (2014). This is not surprising because minimax optimal designs
often require more support points than locally optimal designs based on a single best guess for the nominal values of the
parameters. We notice that pOPT in four cases is located on one of the vertex of the plausible region, and in the remaining
two cases is on one of the edges. In those particular cases, the algorithm takes several (more than 2) iterations to converge
to pOPT.

The optimality of the generated minimax designs for the four-parameter homoscedastic Hill model in Tables 4–5 was
also confirmed using the equivalence theorem.

4.3. Example 3 - nth order successive kinetic rate model

To further test the algorithm in Section 3, we next use a model defined by ordinary differential equations (ODEs) and
discussed in Atkinson et al. (2007, page 270). The model describes the dynamics of two consecutive reactions A

r1
−→B

r2
−→C

occurring in a constant volume continuous stirred tank reactor (CSTR), where the concentration CB of product B is measured.
Let CA be the concentration of reactant A, CC the concentration of the product C, and r1 and r2 the kinetic rates of A−→ B and
B−→ C, respectively. Both kinetic rates are temperature independent and follow the Arrhenius law, i.e. ri = πi C

αi
r,i, i ∈ {1, 2},

where πi and αi are, respectively, the pre-exponential factor and the order of ith kinetic law; Cr,i is the concentration of the
reactant. The model equations are

E(CB|t, p) = CB(t), t ∈ T, p ∈ P (25a)
dCA

dt
= −π1 Cα1

A (25b)

dCB

dt
= π1 Cα1

A − π2 Cα2
B (25c)

dCC

dt
= π2 Cα2

B (25d)

CA(0) = 1.0 CB(0) = 0.0 CC (0) = 0.0. (25e)

Here, T is a user-selected, bounded time interval, p = [π1, π2, α1, α2]
T is the vector of model parameters belonging to a

known compact set P. Eqs. (25b)–(25d) describe the dynamics of the concentrations of the species in the CSTR and (25e) is
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Table 6
Minimax optimal designs for the nth order consecutive reaction model with ∆t = 0.2, T ≡ [0, 20] and P ≡ [0.5, 1.0]× [0.1, 0.5]× [1.0, 2.0]× [1.0, 2.0].

D−optimal design A−optimal design E−optimal design

(0.4,0.2493) (0.2,0.3881) (0.2,0.3889)
(1.6,0.1517) (1.6,0.2266) (1.6,0.2278)
(1.8,0.0940) (4.6,0.1595) (4.6,0.1565)
(4.4,0.1436) (10.8,0.1392) (10.8,0.1341)
(4.6,0.1057) (20.0,0.0862) (20.0,0.0941)
(10.8,0.0330)
(11.0,0.2158)

pOPT
[1.0, 0.1, 2.0, 2.0]T [1.0, 0.5, 2.0, 2.0]T [1.0, 0.5, 2.0, 2.0]T

CPU (s) 121.31 77.94 109.38

(tt.t, w.wwww) ≡ (design point, weight).

the set of initial conditions. The design interval is T = [0, 20], and we discretize it to become Twith a uniform grid ∆t units
apart. Each time instant ti = ti−1 +∆t is a candidate point from T for inclusion in the support of the optimal design.

Our goal is to prescribe an optimal design of experiments to estimate p by choosing appropriate time points, ti, to
sample from the CSTR and measure CB in the CSTR. The plausibility region of the parameters is known and equal to
P ≡ [0.5, 1.0]×[0.1, 0.5]×[1.0, 2.0]×[1.0, 2.0]. The samplingmechanism to generate the firstm0 parameter combinations
populating P(0) is similar to previous examples, that is, we select the 24

= 16 corners of P, plus 32 vectors drawn from a
uniform distribution over the edges of P and 2 additional vectors drawn from P.

To construct the FIM for model (25b)–(25e), we adopt the process systems terminology and designate the variables
representing the process dynamics as states. The states characterize the evolution of the reactional mass in time, and the
vector of states is Z(t) = [CA(t), CB(t), CC (t)]T. The variables used for monitoring the process along the time is a subset or
a linear combination of the states called measurements, and generically represented by Y(t). Here, a single measurement is
employed for monitoring the process where Y(t) = [CB(t)]T. The vector of functions f (Z(t), p) = [−π1 Cα1

A (t), π1 Cα1
A (t)−

π2 Cα2
B (t), π2 Cα2

B (t)]T contains the right hand side of the Differential Equations (25b)–(25d) and the vector g(Z(t), p) =
[CB(t)]T the right side of the measurements Eq. (25a). Finally, the sensitivity of the ith state denoted by zi ∈ Z(t) with
respect to parameter pj at reference point pref is designated by σi,j, yielding:

dσi,j

dt
=

3∑
k=1

∂ fi(Z(t), pref)
∂zk

σk,j +
∂ fi(Z(t), pref)

∂pj
,

i ∈ {1, 2, 3}, j ∈ {1, . . . , np}, (26a)

ηCB
pj (t, p

ref) =
∂g(Z(t), pref)

∂z2
σ2,j(t, pref), j ∈ {1, . . . , np}. (26b)

σi,j(0) = 0, i ∈ {1, 2, 3}, j ∈ {1, . . . , np} (26c)

where η
CB
pj (t, p

ref) is the sensitivity of the measure CB with respect to parameter pj at time instant t for pref. The vector of
sensitivities used to compute the FIM at each candidate time instant ti ∈ T is

ηCB (ti, pref) = [ηCB
π1
(ti, pref), ηCB

π2
(ti, pref), ηCB

α1
(ti, pref), ηCB

α2
(ti, pref)]T,

and

M(ti, p) = ηCB (ti, pref)
[
ηCB (ti, pref)

]T
.

The sensitivity of CB(t) with respect to the parameters at pi ∈ P is determined by solving the Eq. (26) simultaneously with
the Model (25b)–(25d) employing an ODEs solver. Here, the ODEs system is solved for each pi; in each iteration pref assumes
a value pi of P. A variable order, variable step stiff implicit integrator was used to solve the ODEs system (25b)–(26c) for each
vector p ∈ P. The absolute and relative tolerances of the integrator were set to 10−5.

Table 6 presents the optimal designs for ∆t = 0.2, and we observe that the D-optimal design is in good agreement
with the locally D−optimal designs in Atkinson et al. (2007, page 270). The locally D−optimal designs were determined
for a singleton p employing an exchange algorithm which does not require the discretization of the time domain, and are
consistently based on 4 support points. Our design has 7 support points, which is consistent with the trend observed by
several authors, that minimax and Bayesian optimal designs tend to have more support points than locally optimal designs.
The sampling instances are similar for all criteria except that the D−optimality criterion produces a design that does not
include t = 20, which also has low weight in the A− and E−optimal designs. We note that a considerable fraction of the
CPU time (about 80%) is devoted to computing the FIM that requires solving the ODE’s for every vector p ∈ P. We also
observe that for all the designs in Table 6, pOPT is on a vertex, which explains why the algorithm required only 2 iterations
to reach the ϵ−optimality where the second is confirmatory.
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4.4. Alternative algorithms

In previous sections we compared the proposed algorithm with another deterministic based procedure based on SIP.
Here, we briefly discuss other mathematical programming based tools and other kinds of algorithms, such as metaheuristic
optimization techniques that were recently used to find minimax optimal designs of experiments.

Our work suggests that the SDP based algorithm is generally more flexible, faster and easier to use than SIP for obtaining
minimax optimal designs. Exchange and multiplicative algorithms, along with many of their variants, are also systematic
ways of finding various optimal designs but they are not applicable when the optimality criteria are non-differentiable,
which is the case whenwe have aminimax or maximin type of criterion. Another algorithmic approach to findmaximin and
maximin standardized optimal designs is to use functional approach and methods developed by Melas (2006, Sec. 8.7.1).
We feel that the method offers potential but is not well tested for different applications.

Recently, nature-inspired metaheuristic algorithms are increasingly used to solve large and difficult optimization prob-
lems (Yang, 2010; Whitacre, 2011a, b) in computer science and engineering. These are general optimization tools and have
gainedmuch attention in recent years because of their flexibility, ease of implementation and their many reported successes
in solving or nearly solving different types of highdimensional and complex optimizationproblems in practice.Metaheuristic
algorithms are generally assumptions free, relatively powerful and can solve an optimization problem regardless of the
model, optimality criteria and the types of constraints imposed on the problem. However, global optimality of the solutions
cannot be guaranteed. Qiu (2014) and Chen et al. (2015) applied a well known member of this class of algorithms, called
Particle Swarm Optimization (PSO) to generate several types of optimal designs. Masoudi et al. (2017) adopted another
metaheuristic procedure called Imperialist Competitive Algorithm (ICA) for the same purpose.

We did not compare performance of such algorithms with our proposed approach because we feel that comparing
performance of algorithms should always be done meaningfully and fairly and we do not feel it is feasible to do so here.
At the onset, we focus on a systematic approach for finding optimal designs and an approach that uses metaheuristic
algorithms is not. The latter algorithms have very different motivations and work very differently from our proposed
procedure. For example, metaheuristic algorithms are stochastic in nature, meaning that repeated runs may produce
different or slightly different results, there is generally no firm rationale behind the construction of these algorithms and
they also frequently depend on a host of tuning parameters that can affect the performance of the algorithm dramatically.
Exacerbating the comparison issues is that each metaheuristic algorithm has different number of tuning parameters with
different interpretations and there are no firm guidelines for choosing these parameters. Consequently, if say PSO fails to
find the optimum, it could well be that the tuning parameters were not properly chosen and if PSO did find the optimum,
there is no guarantee that a rerun of the algorithm under the same settings will produce the same result. In addition, the
maximum iteration number and the flock size in PSO are somewhat arbitrary but their choices can affect the convergence
of the algorithm. Ultimately, it is a matter of user’s preference which type of algorithms to use and the training of the user.

5. Summary

Wepropose a systematic approach based onmathematical programming to findminimax optimal designs of experiments
for nonlinear models. Our algorithm uses NLP to solve the inner level problem after using SDP to solve the outer problem.
Our approach requires the design space to be discretized before employing a delayed constraint generation method to solve
theminimax program iteratively until convergence is attained. The SDP problem is formulated as a restricted problemwhere
a finitely constrained set of parameters replaces the plausible region of the model parameters. We use information from the
parameters domain to generate the initial sample of instances that replace the compact domain P.

We apply the proposed algorithm to find minimax D−optimal designs for the logistic model, the 4-parameter Hill model
and the model for the dynamics of two temperature independent nth order consecutive reactions in a CSTR. The results
obtained are similar to those obtained with an algorithm that assumes a continuous design space. Our designs typically
contain more support points than that obtained from a continuous domain, where the extra points may be freely collapsed
into a few obvious points.With a discrete design space, a true optimal design pointmay be clustered among a few grid points
and has its weights spread among the nearby points. Our experience is that there are small differences in the efficiencies of
the resulting designs if any one of the clustered points is selected as the support point.

We also applied our algorithm to generate minimax A− and E−optimal designs for the previous models. Such optimal
designs have not been reported before in the literature. This suggests that our algorithm is flexible and can generate
optimal designs for semidefinite representable criteria and requires mild computation times. We believe that this is the
first algorithm for finding minimax optimal designs that uses SDP formulations within a cutting plane approach. The global
optima of the consecutive outer problems are solved iteratively to convergence. In the majority of practical cases that we
have tested, our algorithm requires a single iteration to converge, and occasionally 2 or 3 iterations are required. This means
that the NLP solver is used only to ‘‘confirm’’ the optimality of the design and frequently after the SDP solver finds a highly
efficient design.

Minimax or maximin types of optimal design problems are generally hard to solve because the design criterion is not
differentiable and involve two ormore layers of optimization.Many current algorithms assume the criterion is differentiable
and so they are not applicable. Our focus was on developing an effective algorithm for finding minimax optimal designs
under a broad setup. Our work includes several examples of varying complexities that demonstrate our approach works,
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including cases when the model is more complex, such as when there are additional linear constraints on the weights and
we wish to optimize among designs ξ in ΞA,b. Such situations occur when each weight may have its lower or upper bounds,
cf. e.g. Uciński (2015) or when the sought optimal design is marginally constrained (Martín-Martín et al., 2007). It can be
shown such a problem falls under our framework and so our approach applies. The equivalence theorem for confirming the
optimality of a design in ΞA,b is more complicated than Eq. (7) or (8) because the Lagrange multipliers for the constraints
Aw ≤ b are involved, see Cook and Fedorov (1995). For space consideration, we omit further discussion and examples.
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