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June 30, 2015

Abstract

We present a distributed-memory library for computations with dense structured matrices. A matrix
is considered structured if its off-diagonal blocks can be approximated by a rank-deficient matrix with
low numerical rank. Here, we use Hierarchically Semi-Separable representations (HSS). Such matrices
appear in many applications, e.g., finite element methods, boundary element methods, etc. Exploiting
this structure allows for fast solution of linear systems and/or fast computation of matrix-vector products,
which are the two main building blocks of matrix computations. The compression algorithm that we
use, that computes the HSS form of an input dense matrix, relies on randomized sampling with a novel
adaptive sampling mechanism. We discuss the parallelization of this algorithm and also present the
parallelization of structured matrix-vector product, structured factorization and solution routines. The
efficiency of the approach is demonstrated on large problems from different academic and industrial
applications, on up to 8,000 cores.

This work is part of a more global effort, the STRUMPACK (STRUctured Matrices PACKage)
software package for computations with sparse and dense structured matrices. Hence, although useful on
their own right, the routines also represent a step in the direction of a distributed-memory sparse solver.

1 Introduction

1.1 Background

Many applications involve dense matrix computations with structured (or low-rank, or data-sparse) matrices,
i.e., matrices that are compressible in some sense. In some applications, these matrices are rank-deficient or
nearly so and can be readily compressed exactly or approximately using such algorithms as SVD, CUR [22],
or a rank-revealing factorization. In many applications, the matrix is not (nearly) singular, but contains
low-rank blocks, typically the blocks away from the main diagonal. Such matrices appear in the boundary
element methods and finite element methods [9, 18] for solving partial differential equations (PDEs). In
the discretized matrices, the low-rank off-diagonal blocks arise because the associated Green’s functions are
smooth. The low-rank structured matrices also arise in applications that involve Toeplitz matrices (e.g.,
quantum chemistry, time-series analysis, queuing theory. . . ), etc. Identifying and compressing these low-
rank blocks is the key to reducing the storage and computational costs of many matrix operations, such as
solving linear systems, performing matrix-vector products, and computing eigenvalues.

Different algebraic low-rank representations have been proposed in the literature. In particular, H-
matrices, H2-matrices, and Hierarchically Semi-Separable (HSS) matrices have been widely studied. It is
not our goal to review these techniques and we recommend the references listed in [36] for an overview. Some
of these low-rank representations have been successfully implemented in software packages, but we are not
aware of many publicly-available parallel libraries. In previous works, two codes based on the multifrontal
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method for solving sparse linear systems embedded HSS algorithms: Hsolver, a distributed-memory geometric
code for finite-difference discretizations on regular meshes [31], and StruMF, a sequential algebraic code [25].
The other software packages that use low-rank approximation techniques include: Hlib (for H- and H2-
matrices) [7], and MUMPS (sparse direct solver with Block Low-Rank approximation techniques) [2, 1].

1.2 Contributions of this work

Despite a large number of papers on the asymptotically low complexity of HSS-based representation and
operations, the methods are mostly inaccessible to the high-performance computing community due to
the lack of parallel software. Our work aims at providing a scalable package that can be used in large-
scale applications. We have developed STRUMPACK - STRUctured Matrices PACKage - a package for
computations with sparse and dense matrices. It combines HSS representations with a randomized sampling
technique, which was not the case in our previous contributions. STRUMPACK has presently two main
components: a distributed-memory dense matrix computations package and a shared-memory sparse direct
solver. In this paper, we present the distributed-memory package. It is implemented using MPI and contains
the following features:

• Compression into HSS form using randomized sampling.

• Solving linear systems using ULV-like factorization and solution.

• Computing HSS matrix-vector products.

STRUMPACK is a general package that does not make any assumption on the input matrix. It is
algebraic (as opposed to geometric) and can work on any number of MPI processes. Our previously-developed
geometric solver Hsolver also employs HSS compression and factorization kernels that can be used in a
standalone way for dense matrices [32]. However, Hsolver is limited in usability – it is a simplified code that
works only with power-of-two number of processes and in single precision complex arithmetic. STRUMPACK
does not have these limitations and, as presented here, it employs more recent algorithm advances (e.g., HSS
combined with randomized sampling). It typically outperforms Hsolver, as we demonstrate in Section 4.6.

In summary, the contributions of this work are the following:

• The library we present here (part of the STRUMPACK package) is the first randomized, distributed-
memory, general purpose package for HSS matrix operations. It can use any number of MPI processes,
not restricted to power-of-two as in Hsolver. It is up to 6x faster than the dense kernels used in
Hsolver [32].

• We developed a flexible task-to-process mapping algorithm to accommodate non-uniform hierarchical
matrix partitionings and unbalanced HSS trees. Therefore, the algorithms herein are fast for a wide
range of applications (see Sections 3.1 and 4.2).

• We developed an efficient parallel adaptive sampling method that is essential for problems with rank
structures that cannot be estimated a priori. This permits the solver to be used in a black-box fashion
and increases its usability (see Section 3.3).

• We evaluated our algorithms for large-scale problems from a wide range of different academic and
industrial applications, using large number of cores.

The rest of the paper is organized as follows. In Section 2, we review HSS techniques and the different
ingredients of the HSS framework (HSS compression, ULV factorization and solution). In Section 3, we
present our parallelization approach. We show how tasks are mapped and parallelized, we present our
adaptive sampling mechanism, and we describe the communication features of our compression algorithm
(number of messages and volume of communication). In Section 4, we report on results using matrices from
different applications. We show how HSS algorithms behave for different applications, and we present weak
and strong scaling experiment to assess the performance of our code.
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2 Background on Hierarchically Semi-Separable matrices

We briefly introduce Hierarchically Semi-Separable (HSS) matrices. We mostly follow the notation used by
Martinsson [23]. We recommend [36] for more theoretical aspects, and [37] for the use of HSS techniques for
solving Toeplitz problems. The following references are works related to solving sparse linear systems using
HSS techniques: [35] (geometric setting, serial code), [33] (algebraic setting, serial code), [34] (algebraic
setting, HSS techniques combined with randomized sampling, serial code), and [31] (geometric setting,
distributed-memory code).

2.1 Representation

HSS representations rely on a cluster tree that defines a hierarchical clustering (or partitioning) of the index
set [1, n], where n is the number of rows and columns of the matrix we consider. A cluster tree is such that
every node τ is associated with an interval Iτ . The root node is associated with the interval [1, n], and, for
every node τ of the tree with children ν1 and ν2, we have Iτ = Iν1 ∪ Iν2 , and Iν1 ∩ Iν2 = ∅ (for simplicity we
only consider binary trees, but the generalization is straightforward). The numbering of the nodes is done
top-down; the root node is 0, and a node numbered i has children numbered 2i+1 and 2i+2. In Figure 1(a),
we show a possible cluster tree of [1, n]. In this example, the children of 2 are 5 and 6.

0

1

3 4

2

5 6

[1, n]

[1, n
2 ] [n2 , n]

[1, n
4 ] [n4 + 1, n2 ] [n2 + 1, 3n4 ] [ 3n4 + 1, n]

(a) Cluster tree.

0

1

3 4

2

5 6

B1,2

B2,1

B3,4

B4,3

B5,6

B6,5

U3, V3

D3

U4, V4

D4

U5, V5

D5

U6, V6

D6

U1, V1 U2, V2

(b) Three-level HSS tree.

Figure 1: Cluster tree and HSS tree associated with the example in Section 2.1.

Any n× n matrix A can be written into HSS form as follows:

1. Considering a 2× 2 partitioning of A, i.e., a two-level cluster tree (one root node and two leaves), the
off-diagonal blocks of A are decomposed into an “SVD-like” UBV form:

A =

[
A1,1 A1,2

A2,1 A2,2

]

=

[

D1 Ubig
1 B1,2V

big
2

∗

Ubig
2 B2,1V

big
1

∗
D2

]

(1)

The D matrices are simply the diagonal blocks of A and the U,B, V matrices are called generators.
We explain the reason of the “big” superscript in the third point. This decomposition holds for any
matrix A, but it is useful in practice (i.e., it reduces storage requirements and can be used for fast
operations with A), only if the off-diagonal blocks of A are low-rank. As mentioned in the introduction,
this happens in many applications such as boundary element and finite element methods. When the
off-diagonal blocks are low-rank, the U matrices are “tall and skinny”, the B matrices are small and
square or nearly square, and the V ∗ matrices are “short and wide”, the aspect ratio depending on the
ranks. The U,B, V matrices are computed using a rank-revealing factorization; we elaborate on this
in the next sections.

Note that in situations where the off-diagonal blocks have large ranks, we may wish to approximate
them instead of computing their exact UBV decomposition; we show how in Section 2.2. In this case,
Equation (1) provides us with an approximation of A that can be used, e.g., for preconditioning.
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Note that this partitioning of the matrix corresponds to partitioning [1, n] as [1, n] = I1 ∪ I2.

2. Recursively, i.e., considering a three-level cluster tree, the off-diagonal blocks of the diagonal blocks of
A are also decomposed into U,B, V form, and so on. After another stage of recursion:

A =









[

D3 Ubig
3 B3,4V

big
4

∗

Ubig
4 B4,3V

big
3

∗
D4

]

Ubig
1 B1,2V

big
2

∗

Ubig
2 B2,1V

big
1

∗

[

D5 Ubig
5 B5,6V

big
6

∗

Ubig
6 B6,5V

big
5

∗
D6

]









(2)

This partitioning corresponds to I1 = I3 ∪ I4 and I2 = I5 ∪ I6.

3. There is a recursive relation between the generators appearing at different stages of recursions (which
is the specificity of HSS and H2-matrices over the other classes of H-matrices, and explains the use of
the “big” superscript):

Ubig
1 =

[
Ubig
3 0

0 Ubig
4

]

U1 , V big
1 =

[
V big
3 0

0 V big
4

]

V1 (3)

Thus,

A =











[

D3 Ubig
3 B3,4V

big
4

∗

Ubig
4 B4,3V

big
3

∗
D4

] [
Ubig
3 0

0 Ubig
4

]

U1B1,2V
∗
2

[

V big
5

∗
0

0 V big
6

∗

]

[
Ubig
5 0

0 Ubig
6

]

U2B2,1V
∗
1

[

V big
3

∗
0

0 V big
4

∗

] [

D5 Ubig
5 B5,6V

big
6

∗

Ubig
6 B6,5V

big
5

∗
D6

]











(4)

This property is called the nested basis property.

In general, the HSS representation of A follows the structure of the cluster tree:

• For each leaf node τ , the corresponding diagonal block Dτ = A(Iτ , Iτ ) is left untouched (uncompressed,
or “full-rank”).

• For each non-leaf node τ with children ν1 and ν2, the corresponding off-diagonal blocks Aν1,ν2 =
A(Iν1 , Iν2 ) and Aν2,ν1 = A(Iν2 , Iν1) are represented (exactly or approximately) by:1

Aν1,ν2 ≈ Ubig
ν1 Bν1,ν2V

big
ν2

∗
(5)

Furthermore, the hierarchical relation holds, i.e., basis are nested :

Ubig
τ =

[
Ubig
ν1 0
0 Ubig

ν2

]

Uτ , V big
τ =

[
V big
ν1 0
0 V big

ν2

]

Vτ (6)

Note that we never have to store or form explicitly the “big” matrices at non-leaf nodes. Indeed, U
at node τ is given by Uτ and the Ubig matrices at its children ν1 and ν2, which are themselves given by
looking at the grand-children of τ , and so on. At leaf nodes, Ubig = U . In Figure 1(b), we show the tree
corresponding to the previous example.

It is important to mention that the order of the rows and columns of matrix A matters. If A is shuffled
randomly, the low-rank property is lost. In practice, matrices from real-life applications are often generated
following an order that preserves the low-rank property. This was the case with all the matrices that we use
in Section 4. This point is developed in the literature [25, 31, 1].

In the rest of this section, we show how to obtain the HSS form of a matrix using randomized sampling.
Then, we describe the different operations that can be performed with an HSS representation: matrix-vector
product, ULV factorization (a specialized LU factorization), and triangular solution.

1In the subsequent sections, when the context is clear, we will use equal sign instead of approximately equal.
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2.2 Compression with randomized sampling

Compression, i.e., construction of the HSS form of a matrix, is the most important algorithm of the HSS
framework. Once the matrix is compressed, fast operations, such as a specialized factorization or specialized
matrix-vectors products can be performed. We provide algorithmic details in the following sections.

The HSS compression algorithm we use is based on randomized sampling, which is essentially done by
multiplying the input matrix with a set of random vectors. It was introduced by Martinsson [23] and was
also used by Xia et al. in a sparse multifrontal solver [34] and for algorithms for Toeplitz matrices [37].
The main advantage of this approach is that it does not require explicit access to all the entries of A; it
only requires a matrix-vector product routine and access to selected elements of A. Therefore, A does not
need to be explicitly formed, which saves memory, and the algorithm can benefit from an application-specific
matrix-vector product. Furthermore, using randomized sampling simplifies the embedding of HSS kernels
within a sparse solver [34]. This is the other component of the STRUMPACK project and is described in [16].

Using a classical O(n2) matrix-vector product, the complexity of the compression operation is O(rn2)
with r the maximum rank found during the compression, that we refer to as the HSS rank of A. In many
applications, r is much smaller than n. For example, it can be a small constant (e.g., 2D Poisson problems),
or grow slowly with n (e.g., logn for 2D Helmholtz or n1/3 for 3D Helmholtz problems) [33]. If a fast
(typically O(n)) matrix-vector product is available, the complexity drops to O(r2n). Most of the floating-
point operations happen when computing the samples, i.e., in the matrix-vector product. In a parallel
setting, this helps load balancing in situations where very different ranks appear in different branches of the
HSS tree.

We briefly recall how HSS compression without randomized sampling works, as described in [36]. The
main property that we use is that, at each node τ , the off-diagonal row blocks and column blocks A(Iτ , I0\Iτ )
and A(I0 \ Iτ , Iτ ) are low-rank, denoting I0 = [1, n]. These blocks are referred to as the strip row Hankel
blocks and strip column Hankel blocks of A in [9]. Consider row blocks. We traverse the tree following a
postorder, from the leaf nodes up to the root node. At a leaf node l, A(Il, I0 \ Il) is low rank and we can
find a basis Ul for the rows, by using a rank revealing factorization: A(Il, I0 \ Il) = UlXl. At the parent
node p, we wish to compress A(Ip, I0 \ Ip). However compressing this block directly is potentially expensive
and does not make use of the nested basis property. Instead, we use:

A(Ip, I0 \ Ip) =
[
A(Iν1 , I0 \ Ip)
A(Iν2 , I0 \ Ip)

]

=

[
Uν1Xν1(:, I0 \ Ip)
Uν2Xν2(:, I0 \ Ip)

]

=

[
Uν1 0
0 Uν2

] [
Xν1(:, I0 \ Ip)
Xν2(:, I0 \ Ip)

]

(7)

Our objective is to compress A(Ip, I0 \ Ip) as A(Ip, I0 \ Ip) = Ubig
p Xp; using the above equation, we get Ubig

p

and Xp by computing a rank revealing factorization of

[
Xν1(:, I0 \ Ip)
Xν2(:, I0 \ Ip)

]

, instead of compressing A(Ip, I0 \ Ip)
directly. This process is illustrated in Figure 2. Column blocks are compressed in a similar way to obtain
the V generators, using the X obtained during the compression of row blocks.

The randomized compression algorithm follows a similar process, except that it relies on samples of the
input matrix instead of accessing the matrix directly. For now we suppose that the maximum rank r is known
a priori. We relax this assumption in Section 3.3. Let Rr and Rc be n× d tall and skinny random matrices
with d = r + p columns, where p is a small oversampling parameter (Martinsson recommends p = 10). Let
Sr = ARr and Sc = A∗Rc be samples for the row and column bases of A respectively. For a non-leaf node
τ with children ν1 and ν2, let Dτ be defined as

Dτ =

[
Dν1 Aν1,ν2

Aν2,ν1 Dν2

]

If {τ1, τ2, . . . , τq} are the nodes at level ℓ of the HSS tree, then

D(ℓ) = diag(Dτ1 , Dτ2 , . . . , Dτq )

is an n × n block diagonal matrix. The main idea of the randomized sampling algorithm is to construct a

5



Ip

Iν2

Iν1

Ip

Iν1 Iν2

(a) Before compression of children.

A(Iν1 , I0 \ Iν1)

Ip

Iν2

Iν1

Ip

Iν1 Iν2

Uν2 ·

Uν1 ·

(b) After compression of children:

A(Iν1 , I0 \ Iν1) = Uν1Xν1 , A(Iν2 , I0 \ Iν2) = Uν2Xν2

Xν1

Ip

Ip

[

Uν1 0
0 Uν2

]

·

(c) Before compression of parent:

A(Ip, I0 \ Ip) =

[

Uν1 0
0 Uν2

] [

Xν1 (:, I0 \ Ip)
Xν2 (:, I0 \ Ip)

]

[

Xν1(:, I0 \ Ip)
Xν2(:, I0 \ Ip)

]

Ip

Ip

[

Uν1 0
0 Uν2

]

· Up·

(d) After compression of parent:

A(Ip, I0 \ Ip) =

[

Uν1 0
0 Uν2

]

UpXp

Xp

Figure 2: Compression process without randomized sampling, at two child nodes ν1 and ν2 and their parent
τ . Full blocks are off-diagonal blocks to be compressed. Shaded blocks are that are left untouched.

row sample matrix S(ℓ) for each level of the tree as

S(ℓ) =
(

A−D(ℓ)
)

Rr = Sr −D(ℓ)Rr

This row sample matrix S(ℓ) captures the action of a product of the block off-diagonal part of A with a set
of random vectors Rr. It is exactly this block off-diagonal part that needs to be compressed using low-rank
approximation to obtain the HSS generators. Similarly, we compute a sample matrix using Sc and Rc to
capture the column space of the off-diagonal blocks.

A central component of the randomized sampling algorithm is the Interpolative Decomposition (ID) [11].
The ID computes a factorization of a rank-k m × n matrix Y by expressing the columns of Y as linear
combinations of a subset of columns of Y :

[X, J ] = ID(Y ), s.t. Y = Y (:, J)X where Y is m× k and X is k × n

A compression tolerance ε can be added as a parameter:

[X, J ] = ID(Y, ε), s.t. Y ≃ Y (:, J)X where Y is m× k′ and X is k′ × n

where the numerical rank k′ ≤ k. The ID can be computed using, for example, a QR factorization with
column pivoting [8, 28]

Y = QRΠ−1 (Π: permutation matrix representing column pivoting)

= Q [R1 R2] Π
−1 (R1 : k × k)

= (QR1) (
[
I R−1

1 R2

]
Π−1)

= Y (:, J)X (QR1: first columns of pivoted Y )

6



A consequence of using Interpolative Decomposition is that Bν1,ν2 = A(Irν1 , I
c
ν2) is a submatrix of the

original matrix A. Furthermore, it also leads to a special structure for the Uτ and Vτ generators:

Uτ = Πr
τ

[
I
Er

τ

]

and Vτ = Πc
τ

[
I
Ec

τ

]

where Uτ and Vτ have respective column ranks rrτ and rcτ , Π
r
τ and Πc

τ are permutation matrices and the
I’s are the Identity matrices, one is of order rrτ , the other of order rcτ . This structure is exploited in the
factorization, as shown in Section 2.4, and it allows for faster operations with the generators. From a memory
viewpoint, we only need to store the E matrices, and the permutation matrices Π are represented by a single
vector. A remarkable consequence is that when the block we want to compress is full-rank, the generators
have the degenerate form Uτ = Πr

τ I, and therefore they can be stored at very low cost (only the permutation
information needs to be stored).

The compression algorithm works as follows:

1. Generate Rr and Rc random n× d matrices.

2. Compute the samples Sr = ARr and Sc = A∗Rc.

3. Traverse the tree in topological order (i.e., children before parents): at each node,

(a) Construct local samples.

(b) Compute generators using Interpolative Decomposition.

(c) Update samples and random vectors to make the construction of local samples faster at subsequent
nodes.

The detailed algorithm is presented in Algorithm 1. Note that in the serial case, the topological order that
we follow is simply a postordering of the HSS tree. However, in the parallel case, we follow a more general
topological order, as described in Section 3.1. Note that the Interpolative Decomposition (step (3)(b), line 10
in the algorithm) is the step where the user-given threshold ε is used. The QR factorization with column
pivoting stops when Rii

R11
≤ ε.

2.3 Matrix-vector product

Once a matrix is compressed into an HSS form, matrix-vector products can be computed in O(rn), thus
typically faster than using a classical O(n2) product. However, the compression cost is O(rn2) using a
standard non-randomized algorithm, or using a randomized algorithm based on samples computed with
standard matrix-vector products; therefore, it is amortized only when multiple products are computed, either
successively or with blocks of vectors. This is the case for example in iterative linear solvers or eigensolvers.
The HSS matrix-vector algorithm consists of two traversals of the HSS tree, as shown in Algorithm 2. The
first traversal accumulates the actions of the V generators, while the other traversal uses the U generators
as well as the Bν1,ν2 , Bν2,ν1 and Dτ matrices.

2.4 ULV-like factorization

A matrix in HSS form can be factored using a special form of factorization called ULV factorization [10].
Then, the factored form can be used to obtain the solution to the linear system. We now describe the
factorization algorithm, using a two-stage HSS example (i.e., a three-level tree) to aid exposition.

In the original ULV factorization, fast orthogonal transformations are used to eliminate O(n − r) un-
knowns; the remaining O(r) unknowns are eliminated using a standard LU factorization. The factorization
we use does not use orthogonal transformations but instead it exploits the special structure of the HSS
generators that comes from the Interpolative Decomposition. Algorithm 3 shows the complete ULV factor-
ization procedure. In the following we explain how it works, starting from the one-stage HSS form (1), i.e.,
a two-level tree.

7



Algorithm 1: Computing the HSS representation of an unsymmetric matrix.

Data: d = r + 10 with r an upper bound for the rank of A ∈ R
n×n

Sr = ARr and Sc = A∗Rc with {Sr, Sc, Rr, Rc} ∈ R
n×d

A tree on the index vector [1, n] with an index set Iτ at each node τ
Result: Basis matrices defining the HSS matrix:

Dτ at the leaves, Uτ , Vτ at all nodes except the root
Bν1,ν2 at non-leaves for all children combinations

1 foreach node τ in topological order (bottom-up traversal) do

2 if node τ is a leaf then

3 Dτ = A(Iτ , Iτ )

4 Sr
loc = Sr(Iτ , :)−DτR

r(Iτ , :) Sc
loc = Sc(Iτ , :)−D∗

τR
c(Iτ , :)

5 else

6 Let ν1 and ν2 be the two children of node τ

7 Bν1,ν2 = A(Irν1 , I
c
ν2) Bν2,ν1 = A(Irν2 , I

c
ν1)

8 Sr
loc =

[
Sr
ν1 −Bν1,ν2R

r
ν2

Sr
ν2 −Bν2,ν1R

r
ν1

]

Sc
loc =

[
Sc
ν1 −B∗

ν2,ν1R
c
ν2

Sc
ν2 −B∗

ν1,ν2R
c
ν1

]

9 end

10

[
(Uτ )

∗, Jr
τ

]
= ID ((Sr

loc)
∗)

[
(Vτ )

∗, Jc
τ

]
= ID ((Sc

loc)
∗)

11 Sr
τ = Sr

loc(J
r
τ , :) Sc

τ = Sc
loc(J

c
τ , :)

12 if node τ is a leaf then

13 Rr
τ = (Vτ )

∗Rr(Iτ , :) Rc
τ = (Uτ )

∗Rc(Iτ , :)

14 Irτ = Iτ (J
r
τ ) Icτ = Iτ (J

c
τ )

15 else

16 Rr
τ = (Vτ )

∗

[
Rr

ν1
Rr

ν2

]

Rc
τ = (Uτ )

∗

[
Rc

ν1
Rc

ν2

]

17 Irτ = [Irν1 Irν2 ](J
r
τ ) Icτ = [Icν1 Icν2 ](J

c
τ )

18 end

19 end

Recall that each U generator has the special structure Uτ = Πr
τ

[
I
Er

τ

]

. Define Ωτ =

[
−Er

τ I
I 0

]

Πr
τ
T . Then

the transformation ΩτUτ =

[
0
I

]

introduces a zero block on the top, where I is of order rrτ . Now consider the

one-stage HSS decomposition (as in Equation (1)):

A =

[
A1,1 A1,2

A2,1 A2,2

]

=

[
D1 U1B1,2V

∗
2

U2B2,1V
∗
1 D2

]

Applying Ω1 and Ω2, we get:

[
Ω1 0
0 Ω2

]

A =







Ω1D1

[
0

B1,2V
∗
2

]

[
0

B2,1V
∗
1

]

Ω2D2







At each node τ , we partition Wτ = ΩτDτ into the top (t) and bottom (b) parts, Wτ =

[
Wτ ;t

Wτ ;b

]

where Wτ ;b

8



Algorithm 2: HSS matrix-vector product, for a non-symmetric matrix.

Data: HSS form: Dτ (leaves), Uτ , Vτ (all nodes except root), Bν1,ν2 and Bν2,ν1 (non-leaves).
Right-hand side x (one or more columns).

Result: b = Ax.

1 foreach node τ in topological order (bottom-up traversal) do

2 if node τ is a leaf then

3 yτ = V ∗
τ x(Iτ , :)

4 else

5 yτ = V ∗
τ

[
yν1
yν2

]

6 end

7 end

8 zτ = 0 for root node
9 foreach node τ in reverse topological order (top-down traversal) do

10 if node τ is a leaf then

11 b(Iτ , :) = Uτzτ +Dτx(Iτ , :)
12 else

13

[
zν1
zν2

]

=

[
0 Bν1,ν2

Bν2,ν1 0

] [
yν1
yν2

]

+ Uτzτ

14 end

15 end

has rrτ rows, and we perform an LQ decomposition of Wτ ;t, Wτ ;t = [Lτ 0]Qτ . Then,

[
Ω1

Ω2

]

A

[
Q∗

1

Q∗
2

]

=







[
L1 0

]
0

W1;bQ
∗
1 B1,2V

∗
2 Q

∗
2

0
[
L2 0

]

B2,1V
∗
1 Q

∗
1 W2;bQ

∗
2







=








L1 0 0 0
W1;bQ

∗
1;t W1;bQ

∗
1;b B1,2V

∗
2 Q

∗
2;t B1,2V

∗
2 Q

∗
2;b

0 0 L2 0
B2,1V

∗
1 Q

∗
1;t B2,1V

∗
1 Q

∗
1;b W2;bQ

∗
2;t W2;bQ

∗
2;b








(8)

Implicitly, if we swap block rows (and columns) corresponding to the {1;b} and {2;t} parts, denoted by a

permutation matrix Γ1;b↔2;t =

[
I
0 I
I 0

I

]

the above transformation can be written in the ULV factored form:

A =

[
Ω−1

1

Ω−1
2

]

Γ1;b↔2;t

︸ ︷︷ ︸

U

·





L1

0 L2

L2,1 L1,2 D0





︸ ︷︷ ︸

L

·ΓT
1;b↔2;t

[
Q1

Q2

]

︸ ︷︷ ︸

V

(9)

where L2,1 =

[
W1;bQ

∗
1;t

B2,1V
∗
1 Q

∗
1;t

]

and L1,2 =

[
B1,2V

∗
2 Q

∗
2;t

W2;bQ
∗
2;t

]

, and D0 is the reduced submatrix

D0
def
=

[
W1;bQ

∗
1;b B1,2V

∗
2 Q

∗
2;b

B2,1V
∗
1 Q

∗
1;b W2;bQ

∗
2;b

]

def
=

[

D̃1 B1,2V
∗
2 Q

∗
2;b

B2,1V
∗
1 Q

∗
1;b D̃2

]

This is how the name “ULV-factorization” came from [10]. In the original form, both “U” and “V”
transformations are orthogonal. But here, since Ωτ has the special structure stemming from the Interpolative

9



Decomposition, it may not be orthogonal. Therefore, we refer to it as a “ULV-like” factorization. Note that
factorization (9) is not used in the solution procedure; instead, it is the transformation (8) that is actually
used, as we show in the next section. This transformation is also used in the sparse factorization by Xia [34].

With the “L” form above, the unknowns corresponding to L1 and L2 can be eliminated using a regular
forward substitution. The reduced submatrix D0 corresponds to the O(r) remaining unknowns, and is
formed at the parent node, which is also a root node, where LU(D0) is performed. This is illustrated in
Figure 3, with D0 colored red.

U1

V2B1,2

[

Ω1 0
0 Ω2

]

×. . . . . .×

[

Q∗
1

0
0 Q∗

2

]

At parent

Figure 3: Illustration of the one-stage ULV factorization process.

Note that in the one-stage case presented above, we have to perform LQ factorizations of two matrices
with order n rows and columns, assuming r is small; therefore the cost is O(n3). To bring the asymptotic cost
down, we need more levels in the HSS tree. In the next step, we consider the two-stage HSS decomposition
in Equation (4), i.e., a three-level tree. We assume that the two diagonal blocks (children 1 and 2) are
already transformed into ULV form (9), via U = diag(Ω−1

3 ,Ω−1
4 ,Ω−1

5 ,Ω−1
6 ) and V = diag(Q3, Q4, Q5, Q6).

The remaining uneliminated blocks are

D1 =

[
W3;bQ

∗
3;b B3,4V

∗
4 Q

∗
4;b

B4,3V
∗
3 Q

∗
3;b W4;bQ

∗
4;b

]

, D2 =

[
W5;bQ

∗
5;b B5,6V

∗
6 Q

∗
6;b

B6,5V
∗
5 Q

∗
5;b W6;bQ

∗
6;b

]

. (10)

The two transformations diag(Ω3,Ω4) and diag(Ω5,Ω6) can be respectively applied to the off-diagonal blocks

(1,2) and (2,1) of the matrix A. Due to the nested basis property (see (3)), Ubig
3 and Ubig

4 are already annihi-

lated to

[
0
I

]

. Therefore, the only nonzero part of the (1,2) block ofA is U1B1,2V
∗
2

[
V ∗
5 Q

∗
5;t V ∗

5 Q
∗
5;b

V ∗
6 Q

∗
6;t V ∗

6 Q
∗
6;b

]

;

similarly for the (2,1) block of A.
At the parent nodes 1 and 2, which are non-root nodes and have U1 and U2 bases associated with them,

we use the transformations Ω1U1 =

[
0
I

]

and Ω2U2 =

[
0
I

]

to introduce the zero blocks. Then, we apply the

above annihilation and transformation to the diagonal blocks D1 and D2 (see (10)), followed by the LQ
decomposition of each top part. Eventually, at the root node, only O(r) unknowns are left and a regular
LU factorization (with pivoting if needed) is used.

The two-stage transformation process can be written as follows:

Γ1;b↔2;t







I
Ω1

I
Ω2







[

Γ3;b↔4;t

Γ5;b↔6;t

]







Ω3

Ω4

Ω5

Ω6






A







Q∗

3

Q∗

4

Q∗

5

Q∗

6







[

ΓT
3;b↔4;t

ΓT
5;b↔6;t

]







I
Q∗

1

I
Q∗

2






Γ
T
1;b↔2;t

=

















































L3

0 L4

(Ω1L4,3)t (Ω1L3,4)t L1

L5

0 0 L6

(Ω2L6,5)t (Ω2L5,6)t L2

(Ω1L4,3)b (Ω1L3,4)b W1;bQ
∗

1;t B1,2V
∗

2

[

V ∗

5 Q∗

5;t V ∗

5 Q∗

5;b

V ∗

6 Q∗

6;t V ∗

6 Q∗

6;b

] [

I
Q∗

2

]

D0

B2,1V
∗

1

[

V ∗

3 Q∗

3;t V ∗

3 Q∗

3;b

V ∗

4 Q∗

4;t V ∗

4 Q∗

4;b

] [

I
Q∗

1

]

(Ω2L6,5)b (Ω2L5,6)b W2;bQ
∗

2;t

















































(11)
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The algorithm is presented in Algorithm 3. The complexity is O(r2n) [10, 34]. Notice that the output
of the algorithm is, at each non-root node τ , the Qτ and Lτ matrices that represent the ULV factors,
but also the matrix Wτ = ΩτDτ and the matrix Ṽτ , that accumulates the actions of V bases and the Q
transformations, as shown in lines 5 and 15 of the algorithm. Ṽτ is conceptually similar to V big

τ , except it
has only O(r) rows, corresponding to the uneliminated variables. The matrices Wτ and Ṽτ are useful for the
solution phase, as shown in the next section.

Algorithm 3: ULV-like factorization of a non-symmetric matrix in HSS form.

Data: HSS form: Dτ (leaves), Uτ , Vτ (all nodes except root), Bν1,ν2 and Bν2,ν1 (non-leaves).
Result: ULV factors: Qτ orthonormal, Lτ lower triangular (all nodes except root). LU at root.

Wτ and Ṽτ to be used in solution step.

1 foreach node τ in topological order (fine to coarse) do

2 if node τ is a non-leaf then

3 Dτ =

[

D̃ν1 Bν1,ν2 Ṽ
∗
ν2;b

Bν2,ν1 Ṽ
∗
ν1;b

D̃ν2

]

4 if node τ is not the root node then

5 V̂τ =

[
Ṽν1;b 0

0 Ṽν2;b

]

Vτ

6 end

7 else

8 V̂τ = Vτ

9 end

10 if node τ is the root node then

11

[
Pτ , Lτ , Uτ

]
= LU(Dτ )

12 else

13 Wτ = ΩτDτ =

[
−Er

τ I
I 0

]

Πr
τ
TDτ =

[
Wτ ;t

Wτ ;b

]

14 LQ (Wτ ;t) =
[
Lτ 0

]
[
Qτ ;t

Qτ ;b

]

15 Ṽτ = Qτ V̂τ =

[
Ṽτ ;t

Ṽτ ;b

]

16 D̃τ = Wτ ;bQ
∗
τ ;b

17 end

18 end

2.5 Solution using ULV factorization

The ULV-factored form (11) can be used to solve a linear system Ax = b. We still use the two-stage HSS
example (three-level tree) to explain the solution procedure.

Consider a partitioning of the right-hand side b and the solution vector x along the cluster tree: b =
[
b(I1, :)
b(I2, :)

]

=

[
b1
b2

]

and similarly, x =

[
x1

x2

]

and the one-stage ULV factorization given in Equation (8). The

solution x can be obtained by the following five steps:

1. Transform the right-hand side: b̃1 = Ω1b1, and b̃2 = Ω2b2;

2. Forward substitution: y1 = L−1
1 b̃1;t, y2 = L−1

2 b̃2;t;

11



3. Update right-hand side:
b1;b = b̃1;b −W1;bQ

∗
1;t y1 −B1,2V

∗
2 Q

∗
2;t y2,

b2;b = b̃2;b −B2,1V
∗
1 Q

∗
1;t y1 −W2;bQ

∗
2;t y2;

4. Triangular solution at root: x0 = U−1
0 L−1

0 P0

[
b1
b2

]

.

5. Orthogonally transform back to the original solution: x1 = Q∗
1

[
y1
x0;t

]

, x2 = Q∗
2

[
y2
x0;b

]

.

Next, consider the two-stage ULV transformation given in Equation (11). Algorithm 4 shows the complete
procedure, which follows a bottom-up traversal of the HSS tree. We first apply all the transformations
involving Ω’s to the right-hand side b, to obtain b̃ (line 10 in the Algorithm.) Then we obtain all the
intermediate variable yτ for the non-root node τ via forward substitution (line 11 in the Algorithm). Now
looking at the last block row of (11) involving D0, we need the contributions from the children of the
root node (nodes 1 and 2). For example, the intermediate solution y1 coming from node 1 contributes
to the terms W1;bQ

∗
1;ty1 and B2,1V

∗
1 Q

∗
1;ty1. Furthermore, there are contibutions coming from the grand

children of the root node, i.e., nodes 3, 4, 5, and 6. For example, nodes 3 and 4 contribute via the term

B2,1V
∗
1

[
V ∗
3 Q

∗
3;t V ∗

3 Q
∗
3;b

V ∗
4 Q

∗
4;t V ∗

4 Q
∗
4;b

] [
I

Q∗
1

]




y3
y4
y1



. In the general case (arbitrary number of levels),

b0 (updated right-hand side at root node) receives contributions from all the nodes in the tree, because the
last block row of the L is full. In the algorithm, we accumulate these updates when going up the tree, as
shown in lines 10 and 13 of the algorithm. We illustrate this in more detail in Appendix A.

Finally, the intermediate solution involving y needs to be transformed back to the original solution x
(line 21 in the Algorithm). The complexity of Algorithm 4 is O(rn) [10, 34].

3 Distributed-memory parallelism

In this section, we present our distributed-memory algorithms. We mostly focus on the implementation of
the HSS compression algorithm, as this is the most complicated of all HSS operations but also the most
critical for performance. In Section 3.3, we present a novel parallel adaptive sampling mechanism.

3.1 Task mapping

The HSS tree presented in Section 2.1 is a task graph and data-dependency graph for all the different
operations: compression, factorization, solution, and product. The tree structure allows for two levels of
parallelism. Tree parallelism comes from the fact that nodes lying on different branches of the tree can
be processed in parallel, independently of one another. Node parallelism consists in assigning a node of
the tree to multiple processes. We enforce node parallelism by using parallel kernels from PBLAS [12] and
ScaLAPACK [6].

We rely on a static mapping technique to assign tasks to different processes. We use the idea of the
proportional mapping by Pothen and Sun [26], which is popular for mapping tasks along the elimination tree
of sparse factorizations. The mapping process consists in a top-down traversal of the tree. All the processes
are assigned to work on the root node, because this is the last task to be executed during a bottom-up
traversal (e.g., compression, factorization) and the first task to be executed during a top-down traversal
(e.g., matrix-vector product and triangular solution). Then, for every node in the tree, the list of processes
working at that node is split among its children, proportionally to the weights (determined according to
a given metric) of the subtrees rooted at these children. Consider a parent node f in the tree with ncf
children. Let pf be the number of processes working at that node and Wi be the load of the subtree rooted
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Algorithm 4: Solution of a linear system Ax = b after ULV-like factorization, for a non-symmetric
matrix.
Data: ULV factors: Qτ orthonormal, Lτ lower triangular (all nodes except root). LU at root.
Result: x, solution of Ax = b.

1 foreach node τ in topological order (bottom-up traversal) do

2 if node τ is a non-leaf then

3 bτ =

[
b̃ν1;b −Wν1;bQ

∗
ν1;t yν1 −Bν1,ν2 zν2

b̃ν2;b −Bν2,ν1 zν1 −Wν2;bQ
∗
ν2;t yν2

]

4 else

5 bτ = b(Iτ , :)
6 end

7 if node τ is the root node then

8 xτ = U−1
τ L−1

τ Pτ bτ =

[
xτ ;t

xτ ;b

]

9 else

10 b̃τ = Ωτbτ =

[
−Er

τ I
I 0

]

Πr
τ
T bτ =

[
b̃τ ;t
b̃τ ;b

]

11 yτ = L−1
τ b̃τ ;t

12 if node τ is a non-leaf then

13 zτ = V ∗
τ

[
zν1
zν2

]

+ Ṽ ∗
τ ;t yτ

14 else

15 zτ = Ṽ ∗
τ ;t yτ

16 end

17 end

18 end

19 foreach node τ in reverse topological order (top-down traversal) do

20 if node τ is a non-leaf then

21 xν1 = Q∗
ν1

[
yν1
xτ ;t

]

, xν2 = Q∗
ν2

[
yν2
xτ ;b

]

22 else

23 x(Iτ , :) = xτ

24 end

25 end

at a child i. The number of processes given to node i is

pi =
Wi

∑
ncf

j=1 Wj

· pf

This procedure is applied in a recursive fashion to all the children of f ; the recursion stops when leaf nodes
are reached or entire subtrees are mapped onto single processes, which happens because the number of nodes
in the tree is commonly much larger than the number of processes.

The usual metric used at each step of the mapping is the workload of each subtree. However, in our
case, we cannot use this because we do not know in advance the cost of processing a node since it depends
on the ranks found at that node. Instead, we use the size of the interval Iτ associated with each node τ .
The idea is that, at leaf nodes, the compression cost (computing local samples and performing Interpolative
Decomposition) is proportional to the size of the interval. If the ranks found at different branches of
the tree are balanced, workloads will be balanced. Otherwise, workloads might be unbalanced, leading to
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poorer performance of the compression process. However, after the compression is done, the tree can be
remapped using the rank information, which can be useful for subsequent operations (factorization, etc.)
or for improving compression times for different problems from the same application. We illustrate this in
Section 4.2.

An interesting property of the proportional mapping is that the traversal of every process (i.e., the set
of tasks that this process executes and the order in which those are processed) is fully known in advance.
Indeed, every process is in charge of a sequential subtree and takes part in the computation of the parallel
nodes in the path between that subtree and the root of the elimination tree; this defines a single possible
traversal. Denoting by i the root of the sequential subtree mapped on a given process, the traversal followed
by that process consists of a postorder traversal of the subtree rooted at i followed by the path from i to the
root node. This makes the code easier to write.

As we just saw, a node of the HSS tree can be mapped onto several processes. Within a node, our choice
is to perform all the arithmetic operations with PBLAS and ScaLAPACK. All the matrices that we handle
are distributed following a 2D block-cyclic scheme and each node of the HSS tree is associated with a 2D
grid of processes that handle the computations. We typically try to make the grid as square as possible,
as advised in the ScaLAPACK documentation [6], but the code can accommodate any kind for grid. For
example, if 32 processes work at a node, our grid has

⌊√
32
⌋
= 5 rows and ⌊32/5⌋ = 6 columns. In this

example, 32− 6× 5 = 2 processes stay idle at that node. However, it does not mean these processes are idle
throughout the whole computation; they are idle at that node, but can be active at ancestors or descendants
of that node. We illustrate this situation in Figure 4. In this example, node 7 is mapped on processes P0 to
P4, but P4 is out of the 2D grid associated with node 7 and is thus idle at that node. However it is active
at nodes 4 and 6 (descendants of 7) and 15 (ancestor of 7). At a given node mapped on P processes, the
associated grid is Pr × Pc and there are at most ⌊

√
P ⌋ − 1 idle processes.

15

7

3

1 2

6

4 5

14

10

8 9

13

11 12

P0 P1 P2

P3 P4 P5

P6 P7 P8

P0 P1

P2 P3

+P4

P0 P1 P2

P0 P1 P2

P3 P4

P3 P4

P5 P6

P7 P8

P5 P6

P5 P6

P7 P8

P7 P8

Figure 4: Proportional mapping of an HSS tree with 9 processes and uniform weights. Every node is
associated with a 2D grid of processes and, sometimes, a few idle processes.

3.2 Parallel compression

We provide some details about our implementation of the parallel HSS construction (compression) algorithm.
The first stage of the compression algorithm is to generate random vectors. In STRUMPACK, different
generators can be used: the legacy rand C function, or advanced generators from the C++11 standard, like
the Mersenne Twister [24]. They can be combined with a postprocessing that enforces certain distribution
of random numbers, e.g., uniform or normal.

The second stage is to generate the samples Sr = ARr and Sc = A∗Rc. For this, the compression
algorithm needs either access to a user-given matrix-vector product or explicit access to the whole matrix A.
We require the input matrix to be distributed in 2D block-cyclic form and we use the PBLAS matrix-matrix
product PxGEMM to compute the product.
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The third stage is a topological traversal of the tree, where at each node, a local sample is formed then
compressed and updated. To form the sample we need access to some selected elements of the matrix. For
this, the compression algorithm needs either access to a user-given routine that provides selected elements
or explicit access to the whole matrix A. If the input matrix A is explicitly given (in 2D block-cyclic
form), we distribute it so that at each stage of the compression, a process can extract selected elements
without communicating with processes working at other nodes of the HSS tree. This is done by traversing
the tree following a serialized postorder (i.e., all the processes traverse the whole HSS tree synchronously).
At each node, a piece of the original matrix (shared by all the processes) is redistributed to the subset of
processes that work at that node. The diagonal blocks of A correspond to leaves of the HSS tree and are
redistributed to the processes working at these nodes, so that they can extract a diagonal block Dτ without
communicating with processes mapped at other nodes. Similarly, the off-diagonal blocks are also distributed
along the mapping of the tree, so that the Bν1,ν2 and Bν2,ν1 matrices at non-leaf nodes can be extracted
without communication. For each block, we rely on a 2D block-cyclic distribution using the process grid
associated with the corresponding node.

We provide an example in Figure 5, corresponding to the mapping in Figure 4. Consider node 1. The
first step in the compression at node 1 is to extract D1 = A(I1, I1) from the input matrix. These entries are
distributed on P0 and P1 and readily available. Then, at node 3, which is mapped on P0, P1 and P2, matrix
B1,2 = A(Ir1 , I

c
2) is extracted by selecting some rows and columns of A(I1, I2). A(I1, I2) is distributed on

P0, P1 and P2, therefore the extraction can be done without communicating with processes working at other
nodes.

P0 P1

P2

P3

P4

P5

P6

P7

P8

P3 P4

P3 P4

P5 P6

P5 P6

P7 P8

P7 P8

P0P1P2

P0P1P2

P0 P1

P2 P3

+P4

P0 P1

P2 P3

+P4

P5 P6

P7 P8

P5 P6

P7 P8

P0 P1 P2

P3 P4 P5

P6 P7 P8

P0 P1 P2

P3 P4 P5

P6 P7 P8

Figure 5: Distribution of the input matrix conforming to the mapping in Figure 4.

After building random vectors, computing samples, and distributing the input matrix, the postorder
traversal starts. Serial subtrees (subtrees mapped on one process) are processed by a sequential compression
routine that relies on BLAS and LAPACK kernels (which is usually better than using PBLAS or ScaLAPACK
kernels serially). Then, parallel nodes are processed using PBLAS and ScaLAPACK operations. The main
computational kernels are matrix-matrix products (performed with PBLAS PxGEMM) and the Interpolative
Decomposition procedure described previously. For the latter, we explored two options:

1. Modifying the xGEQP3 and PxGEQPF from LAPACK and ScaLAPACK respectively. These routines
perform a QR factorization with column pivoting but they compute the full factorization. We modified
them to embed our compression threshold ε. The factorization stops when the norm of the pivot
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column becomes too small, i.e., Rii

R11
≤ ε, with R the partial R factor. The number of columns actually

eliminated is the ε-rank of the block to be compressed.

2. Implementing a Modified Gram-Schmidt (MGS) algorithm with column pivoting. The parallel imple-
mentation uses 2D block-cyclic operations. A similar version was used in Hsolver [32].

In a parallel setting, we have not observed much difference in performance between the two options. In a
serial setting, the modified xGEQP3 routine, which uses a BLAS3 implementation, is typically two to three
times faster than our BLAS2 MGS implementation.

3.3 Adaptive sampling mechanism

The algorithm in Section 2.2 assumes that the HSS rank r of the input matrix is known, so that the number
of sample vectors d (number of columns of Rr and Rc) is chosen to be a tight upper bound of r. Indeed,
d needs to be larger than r to get a stable compression, but it also needs to be not too large, because the
sampling process requires O(dn2) operations and can dominate the other parts of the compression stage.

In practice, r is rarely known. For some specific applications, we have a rough idea of its value, as
described in Section 2.2. In order to get a more black-box compression process, it is important to design an
adaptive sampling mechanism. This is mentioned in [23, 37] but neither an algorithm nor an implementation
is described in detail. Here we explain our parallel adaptive sampling algorithm and implementation. The
idea is to start with a low number of random vectors d, and whenever the rank found during Interpolative
Decomposition is too large, d is increased. Instead of restarting the compression from scratch, we keep the
generators that have been computed and the computation restarts at the node(s) where the rank was too
large.

In a serial setting, the sketch of the algorithm is the following. When the rank at a given node τfail is too
large, add new columns to Rr and Rc, compute the new columns of Sr and Sc with a product, and restart
the postorder traversal:

1. At nodes preceding τfail, keep the generators (D, U , etc.) that were previously computed. Update
Sr
loc and Sc

loc with new columns.

2. At τfail, update Sr
loc and Sc

loc with new columns, and recompute the Interpolative Decomposition. If
the rank is again too large, restart again, otherwise proceed to the next node.

3. At nodes following τfail, proceed as before.

In this serial mechanism, a node can have three states: it can be UNTOUCHED if it has never been traversed
before, PARTIALLY COMPRESSED if the local samples have been computed but the rank obtained by Inter-
polative Decomposition was found too high (i.e., the traversal restarts because of this node), or COMPRESSED
if the generators have been successfully computed. There can be at most one PARTIALLY COMPRESSED node
in the tree. All the nodes that precede that node in the postorder are necessarily COMPRESSED, and all the
nodes that follow that node in the postorder are necessarily UNTOUCHED.

In a parallel execution, since we follow a parallel topological ordering of the tree instead of a serial
postorder, we have different options. The choice we made is to implement a “late notification” mechanism.
Whenever a process finds that the number of random vectors is not sufficient, it does not immediately notify
the other processes. Instead, it simply invalidates the current node by leaving it UNTOUCHED. Then, whenever
a parent node is activated, we check the state of its two children. If they are not both COMPRESSED, the
parent node is left UNTOUCHED. Therefore, all the ancestors of the node that failed are left untouched. All
the processes meet at the root node and can generate new random vectors, recompute samples, and restart
the traversal. The difference with the serial case is that the tree can contain several PARTIALLY COMPRESSED

nodes. All the descendants of these PARTIALLY COMPRESSED (i.e., failed) nodes are compressed, and all their
ancestors have been left UNTOUCHED. This adaptive sampling mechanism is shown in Algorithm 5.

The main idea of this approach is that the different branches make as much progress as possible as long
as the number of random vectors is sufficient. In the serial case, whenever a node fails, the traversal restarts
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with more random vectors, meaning that the subsequent branches will be processed with more – and maybe
unnecessary – random vectors. As a consequence, different executions on different numbers of processes will
lead to slightly different ranks and HSS representations.

Another choice, that we have not implemented, would be an “early notification” mechanism where pro-
cesses are notified as early as possible that a node has failed somewhere in the tree. This is more complicated
to implement and requires asynchronous communications to avoid barriers at each level or node of the tree.
It is not clear that it would be significantly faster.
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Algorithm 5: Processing a node τ .

1 if myid is in the 2D grid of τ then

2 if τ non-leaf and not all children are COMPRESSED then

3 state stays UNTOUCHED
4 return

5 end

// Sampling

6 if node is UNTOUCHED then

7 Extract D or B12, B21, compute local samples Sr
loc and Sc

loc

8 else

9 Compute updates to the samples, e.g., Sr
upd −DRr

upd or

[

Sr
ν1upd

−B12R
r
ν2upd

Sr
ν2upd

−B21R
r
ν1upd

]

10 end

// Interpolative Decomposition

11 if node is PARTIALLY COMPRESSED then

// Merge updates into the samples and random vectors

12 Rr ←
[

Rr Rr
upd

]

, Sr ←
[

Sr Sr
upd

]

, Rc ←
[

RcRc
upd

]

, Sc ←
[

Sc Sc
upd

]

13 end

14 if node is not COMPRESSED then

15 Try Interpolative Decomposition of Sr if rank too small then
16 Throw away U and Ir
17 Mark node as PARTIALLY COMPRESSED

18 return

19 end

20 Same for Sc Sr ← Sr(Ir, :), Sc ← Sc(Ir , :)

21 else

22 Sr
upd ← Sr

upd(Ir, :), Sc
upd ← Sc

upd(Ir , :)

23 end

// Update

24 if node is UNTOUCHED then

25 Rr = V ∗ × . . . , Rc = V ∗ × . . .
26 else

27 Rr
upd = V ∗ × . . . , Rc

upd = V ∗ × . . .

28 end

29 if node is COMPRESSED and parent is UNTOUCHED then

// Merge updates into the samples and random vectors

30 Rr ←
[

Rr Rr
upd

]

, Sr ←
[

Sr Sr
upd

]

, Rc ←
[

RcRc
upd

]

, Sc ←
[

Sc Sc
upd

]

31 end

32 Mark node as COMPRESSED

33 else

// myid is out of the 2D grid

34 Receive state from Pτ if state==COMPRESSED then

35 Receive ranks and indices from Pτ .
36 else

37 restart()
38 end

39 end

18



3.4 Communication analysis

We briefly analyze the amount of communication of our parallel compression algorithm. The analysis is
similar to the one we derived previously on non-randomized algorithms [32]. We consider that each node of
the HSS tree has the same rank r for its U and V generators; for some applications, a specific rank pattern
can be used instead, as it is sometimes done in the literature [33, 34], but this is not our goal here. We also
consider that, at the leaf nodes, the diagonal blocks have size O(r). Finally, we assume that the number of
processes is a power of 2, and the HSS tree is a complete binary tree. The pair [#messages, #words] is used
to count the number of messages and the number of words transferred during a given operation, typically
along the critical path. For example, a broadcast of w words among p processes is modeled as [log p, w log p].
This assumes that the broadcast follows a tree-based implementation; there are log p steps on the critical
path (any branch of the tree) and w words are transferred at each step, yielding log p messages and w log p
words.

We denote n the size of the matrix and p the total number of processes. The parallel compression
algorithm has three main steps:

1. Matrix-matrix product to compute the samples. We use the PxGEMM routine from PBLAS that relies
on the SUMMA algorithm [30] and can be modeled, asymptotically, as [r log p, rn√

p ]. This relies on the

fact that, when computing a product S = AR, the PxGEMM routine selects an algorithm that reduces
communication based on the size of the operands A, S, R. In our case, matrix A is the largest operand,
so PxGEMM chooses an algorithm that communicates only S and R. The selection strategy is described
in [17].

2. Initial distribution of the matrix along the HSS tree, as described in Section 3.2. This is a serialized
postorder traversal of the parallel part of the tree, where, at each node τ , we use the PxGEMR2D routine
from ScaLAPACK to redistribute a block of the matrix with size nτ ×nτ from the p processes to the pτ

processes that work at τ . The cost for one such redistribution is [p,
n2
τ

pτ
] for the receiving processes and

[pτ ,
n2
τ

p ] for the sending processes [27]. To get the total cost, we sum over the O(p) nodes of the parallel
part of the tree, and we use the fact that, at level i (0 being the root node), a node τ is associated with
two blocks of the original matrix with nτ = n

2i rows and columns and is mapped on pτ = p
2i processes.

Each level has 2i nodes; at a given level, each process is receiver at one node (the node mapped on
that process) and sender at 2i − 1 nodes. Therefore, the number of messages is

log p
∑

level i=1

(

1 · p+ (2i − 1)
p

2i

)

= 2p log p− p

log p
∑

level i=1

1

2i
= p log p− p · O(1) = O(p log p)

Similarly, the number of words to be transferred is:

log p
∑

level i=1

(

1 · (n/2
i)2

p/2i
+ (2i − 1)

(n/2i)2

p

)

=
n2

p

log p
∑

level i=1

2i+1 − 1

22i
=

n2

p
· O(1) = O(n

2

p
)

Therefore, the cost for the initial distribution is, asymptotically, [p log p, n
2

p ].

3. Postorder traversal of the tree to compute the generators. At a given node, there are three main
ingredients:

(a) Matrix-matrix products to compute the samples and updates. Using the above assumptions, all

the blocks have size O(r) ×O(r) (e.g., 2r × r). The cost is thus [r log pτ ,
r2√
pτ
].

(b) Interpolative decomposition of a block of sizeO(r)×O(r) with rankO(r); the cost is [r log pτ , r2 log pτ√
pτ

]

(using Equation (4.1) from [32] with M = N = r).

(c) Redistribution of blocks of size O(r) ×O(r) to the parent; the cost is [1, r2

pτ
] [32].

19



The term corresponding to the redistribution (c) is negligible compared to the two other terms, and
the term corresponding to Interpolative Decompositions (b) dominates the term corresponding to local
matrix-matrix products (a). We sum (b) over the critical path (a branch of the tree). This time we
number the levels so that the leaves of the parallel tree are at level 0, and the root is at level log p. At
level i, a node is mapped on pi = 2i processes. The number of messages is

log p−1
∑

i=1

r log pi = r

log p−1
∑

i=1

i = O(r log2 p)

The number of words is, similarly,

log p−1
∑

i=1

r2
log pi√

pi
= r2

log p−1
∑

i=1

i

2i/2
= O(r2)

We summarize the results in the following table:

Algorithm Messages Words

ScaLAPACK LU O(n log p) O
(

n2 log p√
p

)

Non-randomized HSS compression O(p+ r log2 p) O
(

n2

p + rn+ r2 log p
)

Randomized HSS compression
O(p log p+ r log p+ r log2 p) O

(
n2

p + rn√
p + r2

)

dist GEMM tree dist GEMM tree

Table 1: Summary of communication costs.

Now we take a closer look at the various communication costs in the randomized algorithm (last row of
Table 1).

• In terms of latency, the initial distribution dominates for problems with small maximum rank, while
the traversal of the tree dominates for problems with large rank.

• In terms of bandwidth, when the rank is large, i.e., r > O( n√
p ), the traversal of the tree dominates

the matrix-matrix product, and the matrix-matrix product dominates the initial distribution. When
r is small, i.e., r < O( n√

p ), the initial distribution dominates the matrix-matrix product, and the

matrix-matrix product dominates the traversal of the tree.

Comparing our randomized compression algorithm to ScaLAPACK LU, one can observe that, for prob-
lems with small rank r, our algorithm communicates fewer messages and less communication volume than
ScaLAPACK does. However, for a large rank, it can be the opposite. We illustrate this in Section 4.6.

Comparing our randomized compression algorithm to the non-randomized one previously developed, we
observe the following:

• In terms of latency, our algorithm has a slightly larger complexity due to the log p in the distribution
term and the latency of the matrix-matrix product. We are investigating a way to reduce the number
of messages to O(p) in the initial distribution phase. For the matrix-matrix product, we could benefit
from advances in communication-avoiding algorithms, such as the 2.5D matrix multiplication [29].

• In terms of bandwidth, for both compression algorithms, the first term corresponds to the initial
distribution of the input matrix (Step (2) above). Afterwards, in the non-randomized HSS compression,
there is a term for the row compression (rn) and a term for the column compression (r2 log p). In
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the randomized algorithm, we have a term corresponding to the matrix-matrix product used for the
sampling phase, and a term corresponding to the tree traversals. These terms are smaller than what
appears in the communication cost of the non-randomized algorithm. Therefore, our randomized
algorithm communicates fewer words, and we expect better performance in practice. We illustrate this
in Section 4.6.

3.5 Parallel factorization, solution, and product

The parallelization strategy for the factorization, triangular solution, and matrix-vector product are similar
to the one we use for the compression. We exploit both tree parallelism, using a proportional mapping of
the tasks, and node parallelism, by using PBLAS and ScaLAPACK operations. Serial subtrees are processed
using sequential routines written using BLAS and LAPACK.

4 Experimental results

4.1 Applications

We report experimental results using the following matrices:

• Toeplitz matrix: a matrix A = [ai,j ] is a Toeplitz matrix (or diagonal-constant matrix) if ∀(i, j), ai,j =
ai+1,j+1. We experimented with two Toeplitz matrices. The first one is a simple matrix with ai,i = n2

and ai,j = i − j. It is diagonally dominant and yields very low HSS rank (a small constant). The

second one is a kinetic energy matrix from quantum chemistry [19]; ai,i =
π2

6 and ai,j =
(−1)i−j

(i−j)2d2 where

d is a discretization parameter (grid spacing). This matrix yields slightly larger maximum rank (that
grows slowly with n) and is fairly ill-conditioned. This is a collaboration with D. J. Haxton and J.
Jones at Lawrence Berkeley National Laboratory.

• Matrices from boundary element methods: these matrices are known to be structured [18, 4]. We
obtained matrices from G. Sylvand (Airbus), and B. Notaros and A. Manic (Colorado State University).
The matrices represent electromagnetic spheres (or collections of spheres). These matrices are known
to be structured although the maximum rank is often large.

• Matrices from finite differences: it is known that the inverse of a sparse matrix arising from finite
differences is dense and structured [18, 9]. More specifically, the dense matrices that appear during
sparse Gaussian Elimination are structured. Different approaches have been used to exploit this fact,
especially in the context of the multifrontal method [14]: using Block Low-Rank representations [1],
Hierarchically Off-Diagonal Low-Rank matrices [3] and HSS techniques [33, 34, 31]. In our experiments,
we use dense matrices coming from the sparse factorization of the discretized Helmholtz equation; these
matrices are generated by our code Hsolver [31].

• Covariance matrices: spatially correlated Gaussian random fields are useful in many modeling
applications. They can be generated by solving an eigenvalue problem with a covariance matrix [21].
These matrices are dense and are generally very large as they have as many degrees of freedom as
the computational (physical) domain. However they are often compressible. We experimented with
a covariance matrix generator provided by Panayot Vassilevski and Umberto Villa at the Lawrence
Livermore National Lab, that relies on the MFEM code [20].

• H−matrices: we use an in-house matrix generator that producesH−matrices (i.e., they have low-rank
off-diagonal blocks but there is no recursive relation between the different blocks) with prescribed size.
Such matrices can be compressed using HSS techniques; even though the maximum HSS rank will be
larger than the maximum H−rank, the compression can sometimes be done faster, depending on the
problem.
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We use two parallel machines at the National Energy Scientific Computing Center (NERSC). Hopper is
a Cray XE6 system with 6384 nodes; each node has two twelve-core 2.1 GHz AMD Opteron 6172 processors
and 32 GB of main memory. Edison is a Cray XC30 system; each node has two twelve-core 2.4 GHz Intel
Xeon E5-2695 processors and 64 GB of main memory.

4.2 General trees

In most of our examples and experiments, we use complete binary trees. Here, we briefly illustrate that
our code can handle more general trees. This is important, as, in some applications, the clustering of the
variables might not be a straightforward recursive bisection, thus the tree might not be balanced. Here, we
use an example where the tree is a binary “comb”, i.e., for each pair siblings, only one of the siblings has
children. Hilbert matrices exhibit such a structure [4].

The matrix we use is an H−matrix with size 40, 000 × 40, 000. It has the structure illustrated in Fig-
ure 6(a), corresponding to the comb tree in Figure 6(b).

(a) Matrix structure.

400

600

700 700

600

400

(b) Ranks.

64

32

16

8 8

16

32

(c) Uniform mapping.

64

16

4

2 2

12

48

(d) Weighted mapping.

Figure 6: Structured matrix with a comb-shaped clustering tree (a). HSS compression with a comb-shaped
HSS tree yields low maximum rank (b). The tree can be mapped to processes using a uniform mapping
where pairs of siblings are mapped on the same number of processes (c) or a mapping that assigns more
processes to right nodes (d). For example, in (c), the children of the root node are both mapped on 32
processes, but in (d) and they are mapped on 16 and 48 processes.

In Table 2, we report some experiments with this matrix. We compare the effect of using a comb-shaped
tree instead of a binary tree for the HSS compression, and we illustrate that we can modify the weights used
in the proportional mapping to improve performance. In the first experiment, the HSS compression is based
on a binary tree with 4 levels shown in Figure 7(b). One can easily understand why the maximum rank
is 40000

4 = 10000; it comes from the fact that the (2,2) block of the matrix, of size 20, 000 × 20, 000 is not
structured, i.e., not HSS compressible. Its off-diagonal blocks, of size 10, 000× 10, 000 are full-rank. This
yields the maximum rank because, at the striped node in Figure 7(b), the blocks to be compressed are the
striped blocks in Figure 7(a) and they have rank 10,000 because they contain full-rank blocks (black in the
figure).

In the second experiment, the HSS compression is based on a comb tree with the same structure as
in Figure 6(b). The compression is much faster and the maximum rank is only 700 (a parameter of our
example).

Finally, the last experiment consists in remapping the HSS tree by modifying the weights used in the
proportional mapping. Instead of using even weights (which yield an even splitting of processes between
the left and right branches of the tree), we choose to attribute more processes to right nodes. Whenever a
pair of siblings is mapped, the right child inherits from 75% of the processes working at its parent. This is
motivated by the fact that, in the factorization, we have to perform the LQ factorization of a 20, 000×20, 000
block (corresponding to the (2,2) block of the original matrix), which is the most costly operation in the
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(a) Matrix structure.
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(b) Tree structure and ranks.

Figure 7: Matrix from Figure 6 compressed using a complete binary tree.

factorization and corresponds to the right child of the root node. By simply changing the weights in the
mapping procedure using some knowledge of the input matrix, we significantly speed-up the factorization
(65.8 seconds instead of 101.4 seconds), at the price of a small increase in the compression time (19.5 seconds
instead of 14.1).

Binary tree Comb tree Comb tree, remapped
HSS compression time (s) 704.1 14.1 19.5
Maximum rank 10000 700 700
ULV factorization time (s) 122.0 101.4 65.8

Table 2: Experiments with the structured matrix in Figure 6 using 64 MPI tasks.

This simple example illustrates that our code is flexible. It can handle different tree structures, and
different task-to-process mappings, using any number of processes. In Hsolver, this was not the case. The
code was restricted to some specific problems, relied on complete binary trees, and could only work with
power-of-two number of processes.

4.3 Solving linear systems

In this section, we illustrate the performance of our code for seven different matrices from the abovementioned
applications. The results are reported in Table 3. For each matrix, we experiment with four different
compression thresholds (ε = 10−8, 10−6, 10−4, 10−2) and we report statistics for the HSS compression, the
ULV factorization and the triangular solution with iterative refinement. We provide run time, number of
floating-point operations, size of the HSS/ULV factors, and we compare with the run time for solving a system
with ScaLAPACK. In terms of memory, ignoring small temporary storage and communication buffers, the
memory footprint for ScaLAPACK is simply the storage of the matrix A. In our new code, the memory
usage consists not only of the original matrix, but also storage for the random vectors and the samples, and
storage for the HSS and ULV factors. We report a memory overhead, which represents the extra memory
usage of STRUMPACK relative to that of ScaLAPACK.

Among this collection of matrices, the data type for the two matrices BEMMultiSphere and Schur100

is single precision. The other matrices are of double precision. For the single precision input, the compression
threshold 10−8 is very small, leading to almost no compression. For example, for matrix Schur100, the
(1,2) block is of size 5,000, whereas the maximum rank is 4933 with ε = 10−8, which is essentially full rank.
The memory overhead is much larger with HSS representation. This is mostly due to the ULV factors.
Indeed, the special structure of the U and V generators keep memory usage low when blocks are full-rank,
and the HSS form has roughly the same memory footprint as the input matrix. However, in this situation,
ULV factors are usually much larger than the HSS form. Therefore, the practical use of HSS algorithms is
not with very small compression threshold ε.
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Matrix Size ε STRUMPACK: solution with HSS compression and factorization Solution with Comparison: HSS

HSS compression ULV factorization Solution+IR ScaLAPACK vs ScaLAPACK

Max Factors Flops Time Factors Flops Time Flops Time Flops Time Memory Time

rank (MB) (×109) (s) (MB) (×109) (s) (×109) (s) (×1012) (s) overhead speedup

80,000

10−8 2 14.6 307.3 11.4 37.2 0.10 0.008 0.008 0.2

341.3 856.6

0.1% 75.2

Simple 10−6 2 14.2 307.3 11.3 37.0 0.10 0.007 0.025 1.2 0.1% 68.1

Toeplitz 10−4 3 13.3 307.3 11.3 36.3 0.09 0.006 0.049 2.8 0.1% 60.5

10−2 3 13.2 307.3 11.3 36.2 0.09 0.006 0.088 5.4 0.1% 51.0

80,000

10−8 169 55.1 6411.2 19.0 152.7 1.40 0.04 1.0 1.5

341.3 894.1

1.5% 43.5

QChem 10−6 147 42.1 5126.6 17.6 110.0 0.86 0.03 0.9 2.0 1.4% 45.5

Toeplitz 10−4 120 33.3 3843.7 16.7 83.6 0.58 0.02 1.7 5.6 1.0% 40.0

10−2 30 18.1 1280.6 13.4 42.7 0.12 0.01 N/A N/A 0.5% N/A

HMatrix 80,000

10−8 787 2235.3 24707.5 52.5 7897.7 1865.0 3.5 2.1 0.22

341.3 862.1

10.3% 15.3

10−6 785 2263.4 24723.3 53.8 7966.9 1897.9 3.5 4.3 0.77 10.3% 14.9

10−4 4 14.3 409.7 11.1 37.1 0.1 0.006 0.02 0.72 0.2% 72.9

10−2 2 13.2 409.7 11.1 36.2 0.1 0.006 0.02 1.26 0.2% 69.7

10,002

10−8 1433 722.0 972.4 9.6 2029.2 401.8 3.1 0.5 0.07

0.7 3.3

120.1% 0.3

BEM 10−6 1016 507.6 624.3 4.7 1265.5 172.6 1.7 0.5 0.1 82.4% 0.5

Acoustics 10−4 793 420.0 453.6 3.3 988.8 109.2 1.1 0.7 0.3 66.6% 0.7

10−2 379 288.4 243.1 1.7 667.4 54.4 0.5 N/A N/A 44.9% N/A

BEM
27,648 10−8 5995 4489.0 38980.1 354.5 15897.3 26406.2 60.4 8.9 0.9

14.1 30.7

403.2% 0.07

Multi (Single
10−6 2145 811.7 8499.1 29.1 2568.9 1015.6 3.4 1.5 0.5 53.5% 0.9

Sphere prec.)
10−4 1488 425.6 5396.0 15.0 1237.9 322.8 1.2 1.0 0.7 38.4% 1.8

10−2 800 184.0 3179.7 8.5 495.3 52.2 0.3 1.0 1.8 25.2% 2.9

Schur100

10,000 10−8 4933 763.0 4520.4 98.3 2957.1 2928.8 19.8 16.3 3.6

0.7 4.2

722.6% 0.03

(Single
10−6 840 136.2 601.0 6.3 388.3 61.0 0.9 2.2 1.7 76.6% 0.5

prec.)
10−4 501 90.3 278.3 3.2 235.2 23.0 0.5 1.3 1.4 40.5% 0.8

10−2 282 56.6 153.0 2.0 134.0 7.4 0.2 1.3 2.5 25.6% 0.9

Covar30 27,000

10−8 2247 1221.6 8976.3 34.3 3157.2 1515.2 4.6 0.4 0.1

13.1 36.8

61.1% 0.9

10−6 1609 948.2 6363.7 18.6 2301.7 815.8 2.7 3.2 0.8 47.7% 1.7

10−4 215 380.8 1093.2 3.4 1054.7 212.6 0.6 N/A N/A 14.3% N/A

10−2 3 348.0 49.6 1.9 1042.8 205.4 0.5 N/A N/A 6.7% N/A

Table 3: Solving linear systems from different applications using 64 MPI tasks.

All the problems exhibit the same – and expected – behavior. When the compression threshold ε is higher
(e.g., 10−2), the compression and the factorization are faster and the HSS and ULV factors are smaller than
when ε is closer to machine precision. The gains in compression and factorization come at the price of
accuracy; for some problems, the solution is inaccurate when ε is too large. This is the case for matrices
QChemToeplitz, BEMAcoustics and Covar30. For some other problems, accuracy is satisfying with
the largest value of ε, but the best choice of ε is not 10−2. For example, for problem Hmatrix, the best
choice is ε = 10−4.

We now compare the behavior of our dense solver with ScaLAPACK. The last column in Table 3 is
the speed-up of STRUMPACK with respect to ScaLAPACK. For synthetic problems (SimpleToeplitz,
HMatrix) and problems with a very simple structure (QChemToeplitz), using HSS techniques yields
very large gains. For example, for the HMatrix problem and ε = 10−4, our solution process is 72.9 times
faster than a traditional dense LU factorization. For problems BEMMultiSphere and Covar30, the gains
are less impressive but still significant; STRUMPACK exhibits a 2.9x speed-up for BEMMultiSphere and
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a 1.7x speed-up in run time for Covar30. For the last two problems, Schur100 and BEMAcoustics,
STRUMPACK is slower than ScaLAPACK regardless of the parameters. These two matrices exhibit some
low-rank property and the number of floating-point operations performed by STRUMPACK is lower than that
of ScaLAPACK, but, however, the total run time is larger with STRUMPACK. This highlights a drawback
of our approach. Traditional dense LU factorization is an algorithm with a very regular computational
pattern, than can be written with BLAS3 kernels, and good implementations (e.g., vendor-tuned) usually
exhibit very good flop-rate and can reach a very large fraction of the peak performance. On the other hand,
algorithms that takes advantage of low-rank structures (e.g., HSS, but also H-matrices or Block Low-Rank
representations) have to deal with more irregular and imbalanced task flows, and manipulate a collection
of small matrices instead of one large matrix. Therefore, these algorithms cannot be expected to reach the
same flop rate as traditional algorithms. This is visible in Table 3.

We want to highlight that for a given class of applications, using low-rank approximation techniques
usually pay off past a certain size. This is because, although HSS techniques allow to solve linear systems
with a lower asymptotic complexity, but with a larger constant prefactor. Also, as we mentioned previously,
the flop rate with HSS is often lower than with traditional algorithms. These effects are visible in Section 4.6
where we experiment with matrices of growing size from a particular application; in this framework, gains
increase with problem size.

The last point that we elaborate on is memory. As stated previously, the memory overhead is the
extra memory usage of STRUMPACK relative to that of ScaLAPACK; calling memsca the memory usage
of ScaLAPACK and memstr the memory usage of STRUMPACK, this is simply memstr−memsca

memstr
. It is

important to understand that this memory overhead also represents the amount of memory that would
be used if we were to use a matrix-free implementation. We recall that our algorithm is amenable to a
matrix-free framework since it only requires access to a matrix-vector routine and selected elements, more
specifically O(r2n), elements of the matrix (with r the maximum rank and assuming the tree has logn
levels). For example, for matrix BEMMultiSphere, the memory overhead is 25.2%, which means:

1. The memory consumption of STRUMPACK is 1.252 times that of ScaLAPACK.

2. If we were to use a matrix-free version the memory consumption would be 25.2% that of ScaLAPACK,
i.e., a 4-fold reduction.

4.4 Fast matrix-vector product

In this section, we briefly illustrate the use of HSS techniques for fast matrix-vector products. Here, the
matrix is not factored with ULV but is simply kept in HSS form to perform matrix-vector multiplication.
We use the power method (that relies mainly on matrix-vector products) to compute the largest eigenvalue
of the QChemToeplitz matrix.

HSS Traditional GEMV Speed-up
Compression Iterations Iterations with HSS

Max rank Factors (MB) Flops (×109) Time #It Flops (×109) Time #It Flops Time
147 42.1 5126.6 17.6 318 1053.0 21.8 318 4070.4 69.7 1.8

Table 4: Power method for QChemToeplitz using 64 MPI tasks.

4.5 Adaptive-rank mechanism

In this section, we illustrate the behavior of the adaptive sampling mechanism described in Section 3.3. The
matrix we use corresponds to an electromagnetic sphere discretized with the boundary element method and
has size 58,800.

In Figure 8, we examine three configurations. In Figure 8(c), we use 3,000 random vectors, which is
enough to guarantee that we reveal the “true” rank of each node (in this discussion we only consider the
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Figure 8: Ranks of the U generators using adaptive sampling in steps of 500 (a), in steps of 1,000 (b), and
without adaptive sampling (c). An underlined rank means that the corresponding node triggers a restart.
A rank marked in bold is final.

rank of the U generator, for simplicity). In Figure 8(a), we start the compression with 500 random vectors.
Every time a block is compressed, we look at the difference between its rank and the number of random
vectors; if it was less than 200, we discarded the generators at the node we consider, we add 500 new random
vectors, and the compression restarts. In this example, the four leaves of the tree are compressed in parallel;
they all have rank 500, and the compression restarts with 500 + 500 = 1, 000 random vectors. Again, this is
not enough (rank 1000 is found at the leaves), and we add 500 new random vectors. 1,000 random vectors
is not enough and the compression restarts with 1, 000+ 500 = 1, 500 random vectors; this is is enough, and
the compression restarts with 1500+500 = 2000 random vectors. This time, the leaves exhibit four different
ranks: 1,592, 1,982, 1,993, and 1,660. At the leaves with 1,592 and 1,660, the generators are kept because
the difference between their rank and the number of random vectors is more than the limit that we picked.
However, the compression needs to restart because of the two other leaves. We add 500 random vectors
and the traversal restarts. At the leaves that have rank 1,592 and 1,660, we simply update the samples Sr

τ

and Sc
τ ; their generators have been obtained at the previous iteration and are not recomputed. At the two

other leaves, we recompute the generators. This fails again and the compression restarts with 3,000 random
vectors. This time the ranks are small enough and the generators are kept. The compression proceeds to
the next level then terminates.

In Figure 8(b), we start with 1,000 random vectors and we add 1,000 random vectors whenever a step
of compression fails; this time, the compression restarts only twice and successfully terminates with 3,000
random vectors. One can observe that the ranks that we obtain using different numbers of random vectors
vary slightly. This is an effect of the sampling mechanism, but it does not have any major effect on accuracy,
or the size of the HSS and ULV representations. However, the adaptive sampling mechanism influences
performance. In Table 5, we report on the run time for the HSS compression when the tree has 3 levels (as
in Figure 8) and when the tree has 8 levels. One can observe that when the HSS tree has 3 levels, using
the adaptive sampling mechanism induces a penalty in run time. This is due to the fact that processes need
to synchronize to restart the computations, and the HSS tree has to be traversed multiple times instead of
once. Also, instead of being computed in one shot, the samples Sr = ARr and Sc = A∗Rc are computed in
multiples stages, which mitigates the benefits of BLAS3 kernels. However, when the tree has more levels, we
can see that the adaptive strategy can be faster than using directly the correct number of random vectors
(3,000 here). This is due to the fact that, at the bottom of the tree, nodes have ranks much lower than
3,000. Their generators can be computed with less random vectors (e.g., 500 or 1,000). Using less random
vectors makes the Interpolative Decomposition faster, and it can potentially make the whole compression
stage faster.
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Levels Strategy
in HSS Steps of Steps of No adaptive
tree 500 1,000 sampling

3 259.9 223.9 186.2

8 147.0 125.1 137.3

Table 5: Time in seconds for the HSS compression as a function of the number of levels in the HSS tree
and the sampling strategy (as in Figure 8). The matrix arises from the discretization of an electromagnetic
sphere using BEM and has size 58,800.

In a practical setting, it is impossible to predict what the fastest strategy is. However, in many applica-
tions, practitioners have a rough idea of the compressibility of their matrices and can predict the order of
magnitude of the maximum rank. In that case, we advise to set the sampling parameters so that, at worst,
the compression routine needs to restart a limited number of times. For example, if the rank is expected to
be between 1,000 and 10,000, we would start with 1,000 random vectors and increase the number by 1,000
every time a step of compression fails, guaranteeing no more than 10 steps.

4.6 Scalability

In this section, we evaluate the scalability of our structured code using three experiments.
In the first experiment, we process dense matrices with increasing size from the same application, using

an increasing number of MPI processes. The experimental setting is the same as in [32]; we use the same
system (Hopper at NERSC) and the same settings. The matrices we consider correspond to the root node
of the multifrontal factorization of the discretized Helmholtz equations, with a fixed number of points per
wavelength. They correspond to five different cubic meshes, ranging from 100×100×100 to 500×500×500.
The topmost separators, i.e., the dense matrices we consider here, have between 10, 000 and 250, 000 rows
and columns. In Table 6, we compare the performance of ScaLAPACK, Hsolver (more precisely, the dense
kernel used within Hsolver), and STRUMPACK when solving a linear system with these matrices. Under
this setup, the maximum HSS rank grows linearly with the mesh size k. Note that this is not strictly a weak
scaling experiment since the number of processes does not increase as fast as the number of operations. The
next experiment in this section is a strict weak scaling experiment.

One can observe that STRUMPACK and Hsolver find similar maximum ranks for all the problems.
The size of HSS factors is smaller with STRUMPACK, which is due to the special structure of U and V
generators, as described in Section 2.2. In terms of performance, STRUMPACK is 2 to 6 times faster than
Hsolver, and 1.8 to 5.4 faster than ScaLAPACK. It is interesting to notice that STRUMPACK spends less
time in communication. The percentage of wall time spent in communications, as reported by the IPM
tool [15], is similar to that of Hsolver, but the overall wall time is shorter, implying less time is spent
doing communication (assuming computations and communications do not overlap, which is fair since our
algorithm is mostly synchronous).

The second experiment in this section is a strict weak-scaling experiment. We consider the root node
of the multifrontal factorization of the discretized Poisson equation on a 2D mesh. The mesh is a k × k
regular grid, therefore the dense matrix that we consider (last frontal matrix) is k × k. The multifrontal
factorization yields frontal matrices that can be compressed using HSS techniques with a very low maximum
rank [33], that is almost constant with respect to the size of the grid (in practice, it increases very slowly
– logarithmically). In the experiment, we use a fixed number of random vectors (slightly larger than the
rank of the largest problem). Therefore, the complexity of the HSS compression grows as O(k2). In the
experiment, the number of processes also grows as k2, yielding a constant number of operations per process
for the different grid sizes, as shown in Table 7. One can observe that the run time increases as k increases.
This is due to the overhead of communications. In particular, for the last problem, the redistribution of
the input matrix represents over 80% of the compression time. This is what is expected for problems with
very small maximum rank, as shown in Section 3.4, Table 1. If we ignore the redistribution time, then
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k (mesh: k × k × k) 100 200 300 400 500

Matrix size (=k2) 10,000 40,000 90,000 160,000 250,000

MPI tasks 64 256 1,024 4,096 8,192

S
ca

L
A
P
A
C
K Flops (×1012) 2.7 170.7 1944.0 10922.7 41666.7

Time (s) 4.2 57.7 176.1 313.6 541.6

Communication time 30.5% 20.5% 24.9% 40.4% 36.1%
H
so
lv
er

Maximum rank 335 618 894 1226 1497

HSS factors (GB) 0.1 0.8 2.0 4.6 6.8

Compression flops (×1012) 0.8 19.7 115.2 424.0 1051.0

Compression time (s) 8.3 51.5 193.4 207.8 259.5

Factorization flops (×1012) 0.1 0.7 2.3 7.2 10.6

Factorization time (s) 0.4 1.4 1.8 2.5 4.2

Solution flops (×109) 0.1 0.3 0.8 2.1 2.9

Solution time (s) 0.1 0.2 0.6 2.3 9.5

Communication time 12.4% 19.4% 27.7% 26.4% 31.3%

Speed-up over ScaLAPACK 0.5 1.1 0.9 1.5 2.0

S
T
R
U
M
P
A
C
K

Maximum rank 313 638 903 1289 1625

HSS factors (GB) 0.1 0.5 1.1 3.0 3.3

Compression flops (×1012) 0.6 18.8 132.7 626.1 1716.7

Compression time (s) 2.0 13.0 30.6 60.8 133.6

Factorization flops (×1012) 0.04 0.5 1.7 5.9 7.7

Factorization time (s) 0.3 1.0 1.5 2.7 5.0

Solution flops (×109) 0.2 1.1 2.9 6.9 9.5

Solution time (s) 0.04 0.3 0.4 0.6 0.8

Communication time 24.2% 24.0% 27.0% 28.5% 28.9%

Speed-up over ScaLAPACK 1.8 4.0 5.4 4.8 3.9

Speed-up over Hsolver 3.8 3.7 6.0 3.3 2.0

Table 6: Comparison between ScaLAPACK, Hsolver, and STRUMPACK for dense matrices arising from the
multifrontal factorization of the discretized Helmholtz equations.

compression time is reasonably constant, as shown in the last row of the table.
The last experiment in this section is a strong scaling benchmark. We use one test problem, a matrix

arising from the discretization of an electromagnetic sphere using BEM, with size 130,000. We compare the
run time for solving a linear system with ScaLAPACK and STRUMPACK, using a number of MPI processes
ranging from 256 to 4,096. For this problem, the maximum rank is 5,500.

We observe that although the scalability of STRUMPACK is quite good, the gap between ScaLAPACK
and STRUMPACK reduces when the number of processes increases. As explained in Section 3.4, this is
because when the HSS rank is large (which is the case in this problem), communication volume for the
traversal of the tree becomes larger than that with ScaLAPACK. The breakdown of the run time for the
parallel HSS compression with 4,096 MPI tasks is the following: 15% of the time is spent in the initial matrix
distribution, and 25% of the time is spent in the two products Sr = ARr and Sc = A∗Rc. The rest (60%)
is spent traversing the HSS tree to compute the local samples and generators. The major part is spent
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k (matrix size: k × k) 2,000 4,000 8,000 16,000 32,000

MPI tasks 1 4 16 64 256

Maximum rank 21 26 31 38 44

Compression flops per process (×109) 1.08 1.06 1.06 1.06 1.05

Compression time (s) 0.10 0.21 0.37 0.54 2.51

Compression time w/o redistribution (s) 0.10 0.11 0.13 0.20 0.42

Table 7: Weak-scaling experiment for dense matrices arising from the multifrontal factorization of the
discretized 2D Poisson equation.
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103

MPI tasks

R
u
n
ti
m
e

Ideal scaling
ScaLAPACK
STRUMPACK

(a) Run time.

MPI tasks 256 512 1,024 2,048 4,096

LU
Time (s) 862.4 466.8 257.4 157.7 132.9

% comm. 30.5% 37.9% 45.0% 55.9% 74.3%

HSS
Time (s) 469.7 233.6 176.3 130.2 121.9

% comm. 34.7% 31.2% 42.1% 47.3% 68.0%

(b) Statistics.

Figure 9: Strong scaling experiment: run time for solving a linear system for a matrix with size 130,000,
arising from the discretization of an electromagnetic sphere using BEM, with maximum rank 5,500.

computing Interpolative Decompositions, which represent 50% of total compression time. We observed that
in most cases the flop-rate of the Interpolative Decomposition (modified version of PxGEQPF) is much lower
than that of PxGEMM or PxGETRF. This is due to the fact that it relies on a BLAS2 algorithm. A BLAS3
implementation appears in the literature but the code is not publicly available [5]. Implementing a BLAS3
version is left for future work.

We are investigating different techniques to accelerate the distribution of the input matrix A. Further-
more, some recent works investigate communication optimal matrix-matrix multiplication algorithms [29]
and improvements for rectangular matrix multiplications [13]. Our implementation would directly benefit
from any improvement resulting from this research.

5 Conclusion

We presented the dense matrix computation package STRUMPACK that uses Hierarchically Semi-Separable
representations to compress an input matrix and performs operations with this compressed form, such as
solving linear systems or performing matrix-vector products. For matrices from certain classes of applications,
such as finite element or boundary element methods, or applications that involve Toeplitz matrices, using
HSS techniques allows to perform these operations asymptotically faster than when traditional algorithms
(e.g., LU factorization) are used. The compression algorithm, which is the cornerstone of the framework,
is parametrized by a compression threshold that allows the package to be used as a direct solver with full
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accuracy or as a robust preconditioner. Our compression algorithm employs randomized sampling and is
the first distributed-memory implementation that we know of. Furthermore, we introduced an adaptive
sampling mechanism that allows the code to be used in a black-box fashion.

The STRUMPACK package is very general; it can be used with any number of MPI processes and can
accommodate different hierarchical partitionings of the input matrix. Furthermore, it is an open source pack-
age made available to the community. The code is released under the BSD-LBNL license and the version pre-
sented here is currently available at http://portal.nersc.gov/project/sparse/strumpack/STRUMPACK-Dense-0.9.0.tar.

Work is in progress to use this dense package within a sparse solver. We have also developed a
shared-memory sparse solver [16] and our goal is to combine these two codes in order to obtain a hy-
brid (MPI+OpenMP) sparse solver. Another aspect that we wish to explore is using HSS techniques in
matrix-free frameworks. As mentioned here, our algorithm is amenable to a matrix-free implementation
where the user only provides a matrix-vector product and a routine to access selected elements of the matrix
on the fly. This feature will be included in a future version of STRUMPACK.

Acknowledgments Partial support for this work was provided through Scientific Discovery through Ad-
vanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced
Scientific Computing Research (and Basic Energy Sciences/Biological and Environmental Research/High En-
ergy Physics/Fusion Energy Sciences/Nuclear Physics). This research used resources of the National Energy
Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231.

We wish to thank people who provided us with test problems and helped us: Ana Manic, Guillaume
Sylvand, Umberto Villa.

References

[1] Patrick R Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves L’Excellent, and
Clément Weisbecker. Improving multifrontal methods by means of block low-rank representations.
To appear in SISC, 2014.

[2] Patrick R Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, and Stéphane Pralet. Hybrid schedul-
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A Two-stage triangular solution process

This appendix illustrates the ULV solve algorithm 4 starting from expression (11), giving the explicit ULV
factorization of A for a 3 level HSS matrix. After ULV factorization, the solution of Ax = b can be obtained
as x = V −1L−1U−1b. In (11), the transformations applied to A from the left form U−1, the transformations
applied to A from the right form V −1 and the big matrix in the right-hand side of Equation (11) forms L.
Define

Ṽτ = Qτ V̂τ with V̂τ =







Vτ , if τ is a leaf
[

Ṽν1;b

Ṽν2;b

]

Vτ , if τ is a non-leaf
(12)

Let bτ = b(Iτ ) for leaves τ and b̃τ = Ωτbτ . Now, we first compute U−1b by applying the Ωτ transformations
and the permutations Γν1;b↔ν2;t to the right-hand side b
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















b̃3;t
b̃4;t

Ω1;t

[
b̃3;b
b̃4;b

]

b̃5;t
b̃6;t

Ω2;t

[
b̃5;b
b̃6;b

]

Ω1;b

[
b̃3;b
b̃4;b

]

Ω2;b

[
b̃5;b
b̃6;b

]

























(14)

We write down explicitly the forward triangular substitution y = L−1U−1b

y =




























y3 = L−1
3 b̃3;t

y4 = L−1
4 b̃4;t

y1 = L−1
1 Ω1;t

([
b̃3;b
b̃4;b

]

− L4,3y3 − L3,4y4

)

y5 = L−1
5 b̃5;t

y6 = L−1
6 b̃6;t

y2 = L−1
2 Ω2;t

([
b̃5;b
b̃6;b

]

− L6,5y5 − L5,6y6

)

y0 = D−1
0











Ω1;b

([
b̃3;b
b̃4;b

]

− L4,3y3 − L3,4y4

)

−W1;bQ
∗
1;ty1 −B1,2V

∗
2

[

Ṽ ∗
5;t Ṽ ∗

5;b

Ṽ ∗
6;t Ṽ ∗

6;b

]



y5
y6

Q∗
2y2





Ω2;b

([
b̃5;b
b̃6;b

]

− L6,5y5 − L5,6y6

)

−W2;bQ
∗
2;ty2 −B2,1V

∗
1

[

Ṽ ∗
3;t Ṽ ∗

3;b

Ṽ ∗
4;t Ṽ ∗

4;b

]



y3
y4

Q∗
1y1










































(15)
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Clearly, this substitution should be performed bottom-up, i.e., first compute the leaves y3, y4 y5 and y6,
then y1 and y2 and finally y0. Now we introduce the intermediate variable zτ , defined as

zτ =







Ṽ ∗
τ ;tyτ , if τ is a leaf

V ∗
τ

[

zν1
zν2

]

+ Ṽ ∗
τ ;tyτ , if τ is a non-leaf

(16)

Then for a non-leaf node τ (f.i., nodes 1 and 2), with two children ν1 and ν2 which are both leaves, we have
yτ = L−1

τ Ωτ ;tbτ with

bτ =

([
b̃ν1;b
b̃ν2;b

]

− Lν2,ν1yν1 − Lν1,ν2yν2

)

=

[
b̃ν1;b −Wν1;bQ

∗
ν1;tyν1 −Bν1,ν2V

∗
ν2Q

∗
ν2;tyν2

b̃ν2;b −Bν2,ν1V
∗
ν1Q

∗
ν1;tyν1 −Wν2;bQ

∗
ν2;tyν2

]

(17)

=

[
b̃ν1;b −Wν1;bQ

∗
ν1;tyν1 −Bν1,ν2zν2

b̃ν2;b −Bν2,ν1zν1 −Wν2;bQ
∗
ν2;tyν2

]

(18)

Due to the definition of zτ as given in (16), the definition of bτ for non-leaf nodes, Equation (18), is also
valid for nodes higher up in the hierarchy, for which the situation is slightly more complicated. Consider
node 0, for which y0 = D−1

0 b0, with

b0 =









b̃1;b −W1;bQ
∗
1;ty1 −B1,2

(

V ∗
2

[
Ṽ ∗
5;ty5

Ṽ ∗
6;ty6

]

+ V ∗
2

[

Ṽ ∗
5;b

Ṽ ∗
6;b

]

Q∗
2y2

)

b̃2;b −W2;bQ
∗
2;ty2 −B2,1

(

V ∗
1

[
Ṽ ∗
3;ty3

Ṽ ∗
4;ty4

]

+ V ∗
1

[

Ṽ ∗
3;b

Ṽ ∗
4;b

]

Q∗
1y1

)









(19)

=







b̃1;b −W1;bQ
∗
1;ty1 −B1,2

(

V ∗
2

[
z5
z6

]

+ Ṽ ∗
2;ty2

)

b̃2;b −W2;bQ
∗
2;ty2 −B2,1

(

V ∗
1

[
z3
z4

]

+ Ṽ ∗
1;ty1

)






=

[
b̃1;b −W1;bQ

∗
1;ty1 −B1,2z2

b̃2;b −W2;bQ
∗
2;ty2 −B2,1z1

]

(20)

Hence, the zτ variables accumulate the contributions to the right-hand side from the already eliminated HSS
nodes. We can compute yτ as yτ = L−1

τ b̃τ , except at the root where y0 = D−1
0 b0, which is computed using

standard LU decomposition of D0. Finally, the orthogonal transformation V −1 involving the Qτ matrices
should be applied to y to obtain the solution vector x.
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