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ABSTRACT OF THE DISSERTATION

Essays in Econometrics and Empirical Asset Pricing

by

Adam Baybutt

Doctor of Philosophy in Economics

University of California, Los Angeles, 2024

Professor Denis Nikolaye Chetverikov, Chair

The first and last chapter of this dissertation are devoted to the econometric theory of two

unrelated topics. The second chapter covers an empirical study of the novel model in the

first chapter.

The first chapter studies novel estimation procedures with supporting econometric theory

for a dynamic latent-factor model with high-dimensional asset characteristics, that is, the

number of characteristics is on the order of the sample size. Utilizing the Double Selection

Lasso estimator, our procedure employs regularization to eliminate characteristics with low

signal-to-noise ratios yet maintains asymptotically valid inference for asset pricing tests.

The second chapter studies the dynamics of crypto asset returns through the lens of

factor models, and in particular compare the out of sample pricing ability of our novel factor

model against relevant benchmarks. We were motivated to develop our new method given,

in the setting of crypto asset returns, there are a limited number of tradable assets and

years of data as well as a rich set of available asset characteristics. In an additionally novel

empirical panel, we find the new estimator obtains comparable out-of-sample pricing ability

and risk-adjusted returns to benchmark methods. We provide an inference procedure for
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measuring the risk premium of an observable nontradable factor, and employ this to find

that the inflation-mimicking portfolio in the crypto asset class has positive risk compensation.

Finally, specifying a factor model with nonparametric loadings and factors, we utilize recent

methods in deep learning to maximize out-of-sample risk-adjusted returns in an hourly panel,

which yields economically significant alphas even after a detailed accounting of transaction

costs.

The third chapter (coauthored with Manu Navjeevan) studies a novel estimator for the

conditional average treatment effect (CATE) with a doubly-robust inference procedure.

Plausible identification of CATEs can rely on controlling for a large number of variables

to account for confounding factors. In these high-dimensional settings, estimation of the

CATE requires estimating first-stage models whose consistency relies on correctly specifying

their parametric forms. While doubly-robust estimators of the CATE exist, inference proce-

dures based on the second-stage CATE estimator are not doubly-robust. Using the popular

augmented inverse propensity weighting signal, we propose an estimator for the CATE whose

resulting Wald-type confidence intervals are doubly-robust. We assume a logistic model for

the propensity score and a linear model for the outcome regression, and estimate the param-

eters of these models using an `1 (Lasso) penalty to address the high-dimensional covariates.

Inference based on this estimator remains valid even if one of the logistic propensity score or

linear outcome regression models are misspecified. To our knowledge, we are the first paper

to develop doubly-robust pointwise and uniform inference on an infinite dimensional target

parameter after high dimensional nuisance model estimation.
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CHAPTER 1

Econometric Theory for a Dynamic Latent-Factor

Model with High-Dimensional Asset Characteristics

1.1 Introduction

Factor models are the cornerstone cross-sectional asset pricing model. We develop novel

estimation procedures with supporting econometric theory for a dynamic latent-factor model

with high-dimensional asset characteristics.

We assume a statistical model where asset excess returns ri,t+1 ∈ R are a function of

common time-varying latent (unobserved) factors, ft+1 ∈ Rk, as dictated by time-varying

asset-specific factor loadings βi,t ∈ Rk, that is, for all assets i ∈ {1, . . . , N} and time t ∈

{1, . . . , T}
ri,t+1 = αi,t + β>i,tft+1 + εri,t+1

βi,t = Γ>β zi,t + εβi,t

(1.1)

where αi,t ∈ R are average pricing errors of the factor model; εri,t+1 ∈ R are uncorrelated

idiosyncratic errors, i.e., Et[εri,t+1ft+1] = 0; Γβ ∈ Rp×k is a static latent loading parameter;

and, zi,t ∈ Rp are time-varying asset-specific characteristics where p is high-dimensional, i.e.,

on the order of N and T. Crucially, we follow the established practice in the literature of

assuming the number of factors k is low-dimensional, i.e., N, T, p >> k ∈ {1, 2, 3, . . . }. This

model has theoretical underpinnings motivated by a structural model for asset excess returns

or by the assumption of no arbitrage, as discussed in our literature review.

The main contribution of this research is to develop new estimation and inference pro-
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cedures, termed the the Double Selection Lasso Factor Model (DSLFM), to fit the latent

factors ft+1 and loadings Γβ in (1.1) and to conduct standard asset pricing tests under the

novel setting of high-dimensional asset characteristics.

The DSLFM remains consistent with the equilibrium asset pricing principle that risk

premia are solely determined by risk exposures and specifies a linear loading mapping Γβ be-

tween characteristics and dynamic factor loadings βi,t. We have two novel assumptions for Γβ.

First, we develop estimation procedures and large-sample theory that allows p, T,N → ∞.

Given our focus is studying the cross-section of crypto assets, this assumption is particu-

larly relevant given the numerous asset characteristics available, as previously discussed, as

well as the existence of only a small number of tradable assets and years of relevant data

such that p, T,N are of similar order. Second, we assume exact row sparsity in Γβ; that is,

only a small number of the p asset characteristics determine the content of the factor load-

ing, which matches empirical findings in cross-sectional asset pricing (Babiak and Bianchi

(2021) and Bianchi, Guidolin, and Pedio (2022)). These novel assumptions within a dynamic

latent-factor model require novel estimation procedures and supporting asymptotic theory.

The DSLFM aims to jointly and consistently estimate the loading matrix Γβ and latent

factors ft+1. If we were to utilize the mean squared error (MSE) objective function to min-

imize over the p−dimensional choice vector Γβft+1, for each t, the mean-squared error of∑
i(ri,t+1−z>i,tΓβft+1)2, we will have not only a noisily estimated design matrix when p ∼ N,

(or, at worst, a nonsingular design matrix when p > N) but also a non-convex objective

function given the interaction between minimization arguments ft+1 and Γβ. The next logi-

cal step would be to introduce sparsity in Γβ, which would amount to adding a regularization

parameter to the aforementioned objective function to combat the curse of dimensionality

from zi,t. However, although potentially helpful for minimizing MSE by decreasing the vari-

ance of the estimator, this regularization introduces a bias in estimation, which would lead

to invalid asymptotic inference for asset pricing tests, defeating a goal of this research and,

more broadly, the purpose of factor models in this field.
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We therefore adapt for our purpose the Double Selection Lasso (DSL) estimator developed

by Belloni, Chernozhukov, and Hansen (2014). The key insight from their work was to

introduce an orthogonality wherein, assuming Γβ is row sparse, the regularization bias from

the LASSO first-stage estimation does not pass through to the target parameter of interest

when conducting inference. We first estimate for each time period t and each characteristic

j the scalar Γ>β,jft+1 using DSL; then, stacking these estimates into a T × p matrix, we use

PCA to obtain separate estimates for latent loadings Γ̂β and factors {f̂t+1}Tt=1; and, finally,

we soft-threshold Γ̂β to set numerous rows to zero given the assumption of sparsity for Γβ.

This procedure has several additional benefits. Given the period-by-period cross-sectional

regression—mirroring Fama-MacBeth regressions–our estimation procedure accommodates

unbalanced panels. This first DSL step does require running T×p cross-sectional regressions;

however, this can be done in parallel and is on the order of minutes in practice as each

regression is computationally fast. In the second step, the high dimensionality of the PCA

procedure, given we have a p× T matrix, is adapted from the established theory for N × T

excess return matrices (Bai (2003)). The final soft-thresholding step exploits the sparsity in

Γβ to remove noise from characteristics with low signal-to-noise ratios. 1

Under standard DSL assumptions adapted to our setting (Belloni, Chernozhukov, and

Hansen 2014), high-dimensional PCA assumptions (Bai 2003), and assuming we observe the

true number of latent factors (Bai and Ng 2002), we develop the asymptotic consistency of

the latent factors f̂t+1 and loading matrix Γ̌β for the latent factors ft+1 and loadings Γβ,

respectively. Monte Carlo simulations corroborate with finite-sample evidence that the per-

formance of the DSLFM is comparable to or surpasses relevant benchmarks. As is standard

in this setting, without further restrictions outlined in Bai and Ng (2013), F 0 and Γ0
β are

not separately identifiable; hence, the k × k invertible matrix transformation H appears in

1Finally, just as DSL laid the groundwork for the more general Debiased Machine Learning (DML) theory,
this work sets up future research to extend the framework with a semi-parametric specification to utilize the
rich set of available machine learning estimators that have been shown to handle well the nonlinearities in
cross-sectional asset returns (Gu, Kelly, and Xiu (2020)).
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each asymptotic result. However, in many cases, knowing F 0H is equivalent to knowing

F 0; for example, using the regressor F 0 will give the same predictions as using the regressor

F 0H given they have the same column space. Similarly, the target parameter in the coming

inference result is rotation invariant to H.

To show the generality of these estimation procedures, we enrich our model—with one of

several possible extensions—to address a common question in asset pricing research. We ask

whether an observable, nontradable factor gt+1 ∈ R carries a risk premium: compensation

for exposure to the risk factor holding constant exposure to all other sources of risk, i.e.,

variation with other factors. In the subsequent empirical applications, we investigate a

common hypothesis for the crypto asset class: exposure to inflation offers crypto investors a

positive risk premium.

Following a recent approach in the literature (Giglio and Xiu (2021) and Giglio, Xiu, and

Zhang (2021)), we assume the “true” latent factors ft+1 can be decomposed into the latent-

factor risk premia γ ∈ Rk and latent-factor innovations vt+1 ∈ Rk, that is, ft+1 := γ + vt+1.

Then, we specify the observable factor gt+1 as potentially linearly correlated with the latent

factors through

gt+1 = ηvt+1 + εgt+1,

where η ∈ Rk is an unknown parameter mapping the relation between the latent-factor

innovations and the observable factors, and εgt+1 ∈ R is measurement error in gt+1.

The risk premium of an observable factor—our target parameter in this extension—is

defined to be the expected excess return of a portfolio with loading (i.e., beta) of 1 with

respect to this factor in gt+1 and zero loadings on all other factors; in this model, that

parameter is γg := η>γ = η0>HH−1γ0 = η0>γ0, which utilizes the rotation invariant result

of Giglio and Xiu (2021).

We thus extend with our estimation procedure for γg in a dynamic latent factor model

with high-dimensional characteristics the estimation procedure of Giglio and Xiu (2021),
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which is for a static latent factor model. We additionally develop our estimator’s large-

sample distribution and variance to conduct asset pricing tests on the sign of the observable

factor risk premium.

1.2 Literature Review

This paper builds on the literature of the econometric theory of high-dimensional factor

models. Giglio, Kelly, and Xiu (2022) provide an excellent review of recent machine-learning

based factor model applications and relevant econometric theory, including the common

asymptotic frameworks of fixed N and T → ∞, fixed T and N → ∞, and T,N → ∞. In

short, this paper extends this last asymptotic framework to be high-dimensional on the new

dimension of the number of asset characteristics, i.e., p, T,N →∞.

Starting from either a structural model for asset excess returns in the style of the Capital

Asset Pricing Model (Sharpe 1964), or the assumption of no arbitrage, as in Arbitrage

Pricing Theory (Ross 1976), a stochastic discount factor mt+1 ∈ R exists and an Euler

equation, termed the Law of One Price, holds for asset excess returns ri,t+1 ∈ R for assets

i ∈ {1, 2, . . . , N} in time periods t ∈ {1, 2, . . . , T}

Et[mt+1ri,t+1] = 0,

which by the definition of the variance and covariance operators,

Et[mt+1ri,t+1] =
Covt(mt+1, ri,t+1)

V art (mt+1)︸ ︷︷ ︸
βi,t

−V art (mt+1)

Et[mt+1]︸ ︷︷ ︸
λt

.

As discussed in Section 1.1 we directly assume the statistical model

ri,t+1 = αi,t + β>i,tft+1 + εri,t+1.

To map this model to its theoretical underpinnings in the Law of One Price, one can assume

for all i and t: mean zero unobserved idiosyncratic errors Et[εri,t+1] = 0, uncorrelated errors
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Et[εri,t+1ft+1] = 0, the price of risk associated with the factors to be defined as λt := Et[ft+1],

and zero average pricing errors αi,t = 0 (Cochrane 2009). The factor model posits that asset

excess returns ri,t+1 signify compensation for asset-specific, time-varying exposure βi,t ∈ Rk

to systematic risk factors ft+1 ∈ Rk.

The classic factor model is a static loading observable factor model—in the style of Fama

and French—where pricing errors and static factor loadings βi in (1.1) using exogenously-

defined factors are estimated via the “Fama-MacBeth” two-step procedure (Fama and Mac-

Beth 1973), which has rich supporting inferential theory (Shanken 1992). This procedure

relies on ex ante declaration of observable factors ft+1 formed as a convex combination (i.e.,

a portfolio) of sorted asset returns rt+1 based on asset characteristics zt ∈ Rp. This is likely

an incomplete model of the relationship between zt and rt+1 and prone to overfit.

Recognizing the proliferation of factors, a “Factor Zoo” (Cochrane 2011), explaining the

cross section of expected returns, Feng, Giglio, and Xiu (2020) propose the use of Double

Selection Lasso (Belloni, Chernozhukov, and Hansen 2014) combined with two-pass Fama-

MacBeth regressions to evaluate the contribution of a new factor, gt+1, explaining asset

expected returns above and beyond an existing high-dimensional set of factors. However, as

the recent empirical literature has shown (e.g., Kelly, Pruitt, and Su (2019); Chen, Pelger,

and Zhu (2020)), allowing the data to construct the relevant latent factors offers superior

explanatory and predictive power as compared to using a set of selected observable factors

from the literature.

Factor models with latent factors have been a focal point since the development of APT

(Ross 1976) and early empirical efforts (Chamberlain 1983). PCA is the common estimation

framework. Bai (2003) develops the core theory for PCA estimation and inference under

joint N, T →∞ high-dimensional asymptotics, with Bai and Ng (2002) introducing a novel

Information Criterion penalization to ascertain the true number of latent factors. Assump-

tions for the joint identification of factor loadings and factors are summarized in Bai and

Ng (2013). This manuscript leverages these contributions yet employs instead a dynamic
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latent-factor model with p,N, T → ∞ high-dimensional asymptotics. In the asset pricing

context, the static model can still perform well for describing portfolios over time given the

dynamics are captured by the dynamic factors; however, this has not performed as well in

describing individual asset returns, as noted by Ang, Liu, and Schwarz (2009). Although

this model allows the data to statistically inform the factor structure, it fails to incorporate

rich asset characteristic data and it assumes a static factor loading that maps systematic

risks to excess returns.

A recent and significant methodological advance, instrumented PCA (IPCA) from Kelly,

Pruitt, and Su (2019), utilizes asset characteristics in a linear model of dynamic factor

loadings to parameterize the more general semi-parametric method studied in Connor and

Linton (2007). That is,

βi,t = Γ>β zi,t + εβi,t

where Γβ ∈ Rp×k is a loading matrix mapping asset characteristics to the factor loading.

IPCA has several benefits, including compressing the N × T factor loading matrix β to a

lower dimensional p×k loading matrix Γβ, as well as specifying a time-varying relationship βi,t

between characteristics and returns, which as stated previously appears to be the empirical

reality in crypto cross-sectional asset pricing. In a separate theory paper, the authors develop

the asymptotic distributional theory—following N, T →∞ asymptotics from Bai (2003)—for

the factor realizations and loadings under quite general identifying restrictions on loadings

and factors (Kelly, Pruitt, and Su 2020).

The IPCA procedure benefits from the following: the efficiency gains from using asset

characteristics for estimating the latent factors and their loadings; accommodation of un-

balanced panels; maintaining an expected return factor model structure to ascertain the

economic relationships among factors and assets via the observable characteristics; and, a

parametric model with inference procedures for asset pricing tests. The IPCA estimation pro-

cedure, however, is not possible under high-dimensional asset characteristics (i.e., p > T,N),

or, if regularization is used, produces biased inference for asset pricing tests.
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Giglio and Xiu (2021) develop a three-step procedure combining estimation of latent-

factor model via PCA with standard two-pass regressions to recover the risk premium of an

observable nontradable factor gt+1R, which are potentially correlated with the latent factors:

gt+1 = η>vt+1 + εgt+1

where vt+1 are (mean-zero) latent-factor innovations (i.e., ft+1 = γ+ vt+1); η ∈ Rk is a linear

mapping of the true latent factors to the observed factors; and, εgt+1 is measurement error.

This allows the observable factors to either be some component of the latent factors or just

correlated with vt+1 and therefore still carry a risk premium. The target parameter is the

risk premium associated with the observable factors γg := ηγ.

To demonstrate the generality of the DSLFM, we extend our estimation procedure by

adding the procedure of Giglio and Xiu (2021) to address this classic asset pricing test of the

recovering the risk premium of an observable factor. The DSLFM theory extends Giglio and

Xiu (2021) by incorporating not only dynamic factor loadings, but also high-dimensional

asset characteristics.

More recent literature has incorporated a wide array of machine learning-based estimation

approaches within the factor model structure. Gu, Kelly, and Xiu (2020) study a set of

machine learning estimation procedures for measuring the equity risk premium to find that

deep learning methods outperform out-of-sample. Gu, Kelly, and Xiu (2021) develop a factor

model in the structure of IPCA, but allows for non-linear mappings to the factor loadings and

the factors through two feed-forward neural networks. Although, in practice they only use

linear mappings to the factors, they still obtain out-of-sample predictive R2 and Sharpe ratio

gains in relation to benchmark methods. Other notable uses of deep learning within factor

model structures are Chen, Pelger, and Zhu (2020); Feng et al. (2018); Guijarro-Ordonez,

Pelger, and Zanotti (2021); among others.

A fundamental difference between common empirical settings for machine learning appli-

cations and their use in empirical asset pricing is the uniquely low signal-to-noise DGP. The-
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ory suggests market efficiency prices in the signal, such that, the unforecastable idiosyncratic

error dominates. This critical issue significantly compounds the curse-of-dimensionality of

using high-dimensional asset characteristics, which further motivates the parsimonious spec-

ification of the factor model.

1.3 Setup

Setting and Observable Random Variables Assume for time periods t = 1, 2, . . . , T

and assets i = 1, 2, . . . , N, that we observe realizations of random variables for asset excess

returns ri,t+1 ∈ R and asset characteristics zi,t ∈ Rp. An asset’s excess return is the simple

return of asset i from time t to t + 1 net the assumed simple return of the risk-free rate

(e.g., one-month US Treasury Bill). An asset characteristic of asset i is known at time t :

for example, the total fees for a crypto protocol between time t − 1 and t. Note that asset

characteristics are information from the previous period to follow the established convention

in the literature and to be able to use this model for prediction. Importantly, we will

introduce the novel asymptotic assumption for dynamic latent-factor models to let p grow

to infinity simultaneously with N and T.

Model Given the highly nonlinear data-generating process observed in empirical asset

returns (Gu, Kelly, and Xiu (2020); Chen, Pelger, and Zhu (2020); Bianchi, Büchner, and

Tamoni (2021)), we specify a semi-parametric factor model—where βi,t is a function of

asset characteristics zi,t—studied in recent literature (Connor and Linton (2007); Connor,

Hagmann, and Linton (2012); and Fan, Liao, and Wang (2016)). We assume a dynamic

latent-factor model where

ri,t+1 = β>i,tft+1 + εri,t+1.

However, given we are interested in conducting inference, we specify a linear model—to

9



build on the foundational work of Kelly, Pruitt, and Su (2019)—for the factor loadings

βi,t = Γ>β zi,t + εβi,t.
2

Parameters and Unobserved Random Variables ft+1 ∈ Rk are low-dimensional la-

tent factors; βi,t ∈ Rk are latent-factor loadings; Γβ ∈ Rp×k is an unknown factor loading

parameter matrix; and, εri,t+1 ∈ R and εβi,t ∈ Rk are unobserved idiosyncratic errors.

The latent factors ft+1 should be interpreted as purely statistical in nature. That is,

these risk factors do not necessarily capture fundamental shocks to productive technologies

as modeled in canonical theoretical models. Nevertheless, the latent factors capture systemic

risk or covariance among asset returns that is non-diversifiable. We follow the literature in

restricting k to be a small finite constant (i.e., k ∈ {1, 2, 3, 4, 5}) that, in our asymptotic

theory, does not grow with p, T,N. It should be noted that, although ubiquitous, it is nev-

ertheless a strong assumption: the empirical content of asset returns can be captured by a

small number of strictly time-varying systematic risk factors.

The specification of βi,t provides several benefits. First, we enable the use of a dynamic

loading to model a changing relationship (e.g., regime changes) between the cross section

of returns and systematic risk. Yet, we reduce the parameter space from a N × T loading

matrix β to the p × k loading matrix Γβ. Second, we incorporate additional data from the

large number of asset characteristics to influence the factor model for returns through the

loading matrix Γβ. This addresses a challenge of migrating assets wherein an asset-specific

but static βi would not be able to capture an asset moving from, for example, a crypto asset

earning low fees to one with high protocol fees. The classic way to handle this issue was to

sort assets into portfolios of similar characteristics to form test assets, which then compresses

the dimensionality of the cross-section. Thus, as discussed in Kelly, Pruitt, and Su (2019),

2Although we are working with this parametric specification for the factor loadings, we can in our setting,
nevertheless, employ feature engineering to generate many different functional forms of our asset character-
istics, given the coming dimensionality reduction from LASSO.
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this model specification skips ad hoc test asset formation to instead accommodate working

directly with the high-dimensional system of individual assets. Finally, we assume exact row

sparsity in Γβ—precisely stated in the coming Assumption 1(ii)—a novel assumption to the

literature; that is, only a small number of the p asset characteristics determine the content of

the factor loading, which matches empirical findings in cross-sectional asset pricing (Kelly,

Pruitt, and Su (2019); Babiak and Bianchi (2021); Bianchi, Guidolin, and Pedio (2022)).

Extended Model In order to show the generality of this approach, we enrich the model—

with one of several possible extensions—to address the common question in asset pricing

research of whether an observable factor gt+1 ∈ R carries a risk premium: compensation

for exposure to the risk factor holding constant exposure to all other sources of risk, i.e.,

variation with other factors.

In the context of asset pricing, a factor can be either tradable or nontradable. A tradable

factor is a portfolio, that is, a convex combination of tradable asset returns. The risk pre-

mium is straightforward to calculate for tradable factors: it is the time series average excess

return of the factor. However, many risk factors are nontradable, e.g., inflation expecta-

tions, consumption, liquidity, etc. Thus, we must estimate the risk premia of nontradable

observable risk factors as the risk premia associated with their tradable portfolio.

Following a recent approach in the literature (Giglio and Xiu (2021) and Giglio, Xiu,

and Zhang (2021)), first, we assume the aforementioned model for returns is a function of

the “true” latent factors ft+1,
3 and, second, we assume these true latent factors can be

decomposed into the latent-factor risk premia γ ∈ Rk (i.e., unknown parameters of the long-

run average excess return) and latent-factor innovations vt+1 ∈ Rk (i.e., mean zero risk factor

random variable), that is, ft+1 := γ + vt+1. Then, we specify the observable factor gt+1 as

3To be precise, by true latent factors, we mean we can consistently estimate the finite constant of the
number of latent factors that span the cross section of returns.
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potentially linearly correlated with the latent factors through

gt+1 = ηvt+1 + εgt+1,

where η ∈ Rk is an unknown parameter mapping the relation between the latent-factor

innovations and the observable factors, and εgt+1 ∈ R is measurement error in gt+1. This

specification allows the observable factors to be either simply some component(s) of the true

latent factors (e.g., setting εgt+1 to zero with η set to (1, 0, 0, . . . , 0) or, more generally, some

unknown linear function η of the true latent factors and thus still carry a risk premium. To

recover the tradable portfolio representing the nontradable observable risk factor, we map

gt+1 through η onto the column space of the true latent factors.

Precisely, the risk premium of an observable factor—our target parameter in this extension—

is defined to be the expected excess return of a portfolio with loading (i.e., beta) of 1 with

respect to this factor in gt+1 and zero loadings on all other factors; in this model, that

parameter is γg := η>γ.

Goal Under the novel asymptotic assumption for this setting of p,N, T → ∞, we aim to

develop estimation procedures for the latent loadings Γβ and factors ft+1, ∀t; in addition, we

aim to estimate and conduct inference on γg under the novel use of a dynamic latent-factor

model and the aforementioned novel high-dimensional asset characteristics.

1.4 Estimation

Motivating DSLFM Estimation The goal is to jointly estimate the loading matrix Γβ

and latent factors ft+1, which are not separately identifiable without further restrictions, to

be discussed (Bai and Ng 2013). However, to begin, given the model takes the form

ri,t+1 = z>i,tΓβft+1 + εi,t+1
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where εi,t+1 = (εβi,t)
>ft+1 + εri,t+1 is the composite idiosyncratic error, we observe that our

setting is high-dimensional panel data where we project {ri,t+1}i=N,t=Ti=1,t=1 onto the column

space of {zi,t}Ni=1 for each time period to estimate each p dimensional time-varying vector

{Γ̂βft+1}Tt=1 where we have to address p ∼ max(N, T ) or p >> max(N, T ).

Thus, if we utilize the objective function to minimize over the p−dimensional choice

vector Γβft+1 the mean-squared error of
∑

i(ri,t+1 − z>i,tΓβft+1)2, we will not only have a

noisily estimated design matrix when p ∼ max(N, T ), (or, at worst, a nonsingular design

matrix when p > max(N, T )) but also a non-convex objective given the interaction between

minimization arguments ft+1 and Γβ. This rules out implementing low-dimensional (in p)

methods.

One potential solution would be to introduce sparsity in zi,t, given that empirical esti-

mates show, ex post, few covariates contribute the vast majority of the signal, as stated

earlier.4 This would amount to adding a regularization parameter to the aforementioned

objective to combat the curse of dimensionality from zi,t
5 However, although potentially

helpful for minimizing MSE by decreasing the variance of the estimator, this regularization

introduces a bias in estimation, which will lead to invalid asymptotic inference for asset

pricing tests, defeating a goal of this work.

We therefore adapt for our purpose the Double Selection Lasso estimator introduced

by Belloni, Chernozhukov, and Hansen (2014). The key insight from their work was to

introduce an orthogonality wherein, assuming Γβ is row sparse, the regularization bias from

the LASSO first-stage estimation does not pass through to the target parameter of interest

when conducting inference.6 First, we estimate for each time period t and each characteristic

4The online implementation of IPCA Kelly, Pruitt, and Su (2019) does indeed offer an `1 regularization
to their MSE objective, which is not discussed in the econometric theory of Kelly, Pruitt, and Su (2020).

5One of several ways to interpret the curse of dimensionality is that as the number of covariates increases
linearly, the volume of the parameter space to estimate grows nonlinearly; hence the density of the data falls.

6The ideas developed in the Double Selection Lasso paper for inference in partially linear models with high-
dimensional controls were the basis for the generalization of this idea in the DML procedures as developed in
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j the scalar Γ>β,jft+1 using DSL; then stacking these estimates into a T × p matrix, we use

PCA to obtain separate estimates for latent loadings Γ̂β and factors {f̂t+1}Tt=1; and, finally,

soft-threshold Γ̂β to set the majority of the rows to zero given the assumption of sparsity.

We rewrite the DSLFM model and introduce a first-stage:

ri,t+1 = zi,t,jct+1,j + z>i,t,−jct+1,−j + εi,t+1, E[εi,t+1|zi,t] = 0,

zi,t,j = z>i,t,−jδt,j + εzi,t,j, E[εzi,t,j|zi,t,−j] = 0,
(1.2)

where ct+1,j refers to the j ∈ {1, . . . , p} component of ct+1 := Γβft+1 while −j refers to the

remaining p − 1 elements of the vector; δt,j ∈ R(p−1) is an unknown, possibly time-varying,

parameter; and, εzi,t,j is an unknown scalar random error. ct+1,j is an asset return when its

j−th characteristic is set to 1 and all other characteristics are set to zero, less its idiosyncratic

return εi,t+1.

There are several ways to interpret and justify the first-stage equation as discussed in

Belloni, Chernozhukov, and Hansen (2014). Intuitively, the procedure does not rely on per-

fect model selection for valid inference as instead we not only recover controls zi,t,−j in the

second-stage equation for their pricing ability in the cross section of returns but also recover

controls with high correlation to our target variable zi,t,j. From a theoretical perspective,

the first-stage equation accounts for potential omitted variable bias if one estimated only

the second-stage equation. That is, the set of potentially relevant asset covariates is enor-

mous (Chen, Pelger, and Zhu (2020) and Bianchi, Guidolin, and Pedio (2022)), and thus a

researcher may be motivated to select their preferred subset to ameliorate the curse of dimen-

sionality, which could introduce model selection mistakes. Moreover, it is known LASSO can

Chernozhukov et al. (2018a). It would likely be closer to the empirical reality to maintain a nonparametric
loading (Fan, Liao, and Wang 2016). As aforementioned, there is thus a natural extension of the work herein
to use DML wherein the target variable ct,j is linear while the controls are nonparametrically estimated
via a machine learning method, which would require the development of a Neyman Orthogonal score for
this panel data setting, perhaps in a similar fashion to Semenova and Chernozhukov (2021a). However,
the econometric theory is unknown for inference in the nonparametric setting. Moreover, given the high-
dimension asset characteristics, using a conditional independence assumption to obtain a causal parameter
may be the most fruitful path toward a causal factor model, a major area of future work (e.g., Lopez de
Prado (2022)). We explore the out-of-sample predictive ability of a non-parametric model in the last section
of this manuscript.
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have poor finite sample model selection performance (Chernozhukov, Hansen, and Spindler

2015). Thus, selecting covariates with only the second-stage equation could fail to include

relevant controls.

DSLFM Estimation Procedure Our estimation procedure for {ft+1}Tt=1 and Γβ has

three steps: Double Selection Lasso (DSL), PCA, and soft-threshold step.

1. DSL: To estimate ĉt+1,j, run T × p DSL cross-sectional regressions.7

• Run LASSO of {ri,t+1}Ni=1 on {zi,t}Ni=1 for ĉt+1,j and ĉt+1,−j.

– Let Î1 denote the nonzero elements of ĉt+1,−j.

• Run LASSO {zi,t,j}Ni=1 on {zi,t,−j}Ni=1 for δ̂t,j.

– Let Î2 denote the nonzero elements of δ̂t,j.

• Define the set Î = Î1∪ Î2∪ Î3 where Î3 is the set of controls in zi,t,−j not included in

the first two LASSOs that the econometrician thinks are important for ensuring

robustness, termed the amelioration set.

• Run OLS of {ri,t+1}Ni=1 on {zi,t,j, z̃i,t,−j}Ni=1 where z̃i,t,−j includes only elements of

zi,t,−j in Î. That is,

(ĉt+1,j, ĉt+1,−j) := arg min
cj ,c−j
{EN [(ri,t+1−zi,t,jct+1,j−z>i,t,−jct+1,−j)] : ct+1,−j,l = 0,∀l /∈ Î}.

2. PCA: To estimate Γβ and ft+1, run PCA on Ĉ = F̂ Γ̂>β —a T ×p matrix—to decompose

it into p× k and T × k matrices Γ̂β and F̂ .

3. Soft-threshold : Given the assumed exact row sparsity of Γβ, we set to zero all rows of

Γ̂β whose row `1 norm is below a cross-validated hyperparameter λ. That is,

Γ̌β,j =
(∥∥∥Γ̂β,j

∥∥∥
1
− λ
)

+
sign(

∥∥∥Γ̂β,j

∥∥∥
1
), j ∈ {1, . . . , p}. (1.3)

7To set the penalty parameter in the LASSO implementations, one can follow the analytic method
developed for heteroskedastic, non-Gaussian settings detailed in Appendix A, Algorithm 1 of Belloni, Cher-
nozhukov, and Hansen (2014). For a more modern approach, one can use the bootstrap-after-cross-validation
method of Chetverikov and Sorensen (2021). In practice, we use cross validation.
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This does require running T × p versions of the cross-sectional Double Selection Lasso

regressions, which can be in the thousands in empirical settings; however, these regressions

are all computationally light and can be run in parallel. Moreover, this allows for unbalanced

panels as each cross-section can have a different number of assets. 8 Additionally, these cross-

sectional regressions, followed by estimations with the entire panel, mirror the effort of the

most commonly used estimation procedure in the factor model setting, namely two-pass

Fama-MacBeth regressions.

The high dimensionality of the PCA procedure, given we have a p×T matrix, is adapted

from the existing literature using N × T matrices (Bai 2003). The estimated factor matrix

F̂ is the product of
√
T and the eigenvectors corresponding to the k largest eigenvalues of

the T ×T matrix (Tp)−1ĈĈ>. The estimated factors are normalized such that F̂>F̂ = Ik×k,

a standard approach. The estimated loadings are Γ̂β = T−1Ĉ>F̂ . We thus see the main

challenge in deriving the large-sample theory will be handling the estimation error in using

Ĉ instead of the unobserved C.

The final soft-thresholding step 1.3 in our estimation procedure exploits the sparsity

in Γβ to not only reduce the dimensionality of the characteristic space s (<< p) but also

remove noise from the characteristics that have low signal-to-noise ratios. Belloni et al.

(2018) discuss the general theoretical properties of the soft-threshold estimator with theory-

based hyperparameter selection, and its close relation, the better known LASSO and Dantzig

selector estimators. We further discuss constraints and selection of the hyperparameter in

Appendix 1.8.1.

Estimating the Risk Premium of an Observable Factor Under the richer setting that

includes the observable factor gt+1, our model has an additional specification and moment

8In empirical practice, we find the entire estimation procedure is on the order of ten minutes.
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conditions.

ri,t+1 = z>i,tΓβ(γ + vt+1) + εi,t+1, E[vt+1] = E[εi,t+1] = 0, E[vt+1εi,t+1] = 0,

gt+1 = ηvt+1 + εgt+1, E[εgt+1] = 0, E[vt+1ε
g
t+1] = 0.

(1.4)

Our goal is to estimate and conduct inference on γg := η>γ. Given the latent factors are

unobserved, we cannot jointly estimate vt+1 and η without further restrictions. We would

have to invoke one of the three classic identification approaches of Bai and Ng (2013); how-

ever, by using the key rotation invariance result of Giglio and Xiu (2021), we can estimate the

latent factors up to an invertible rotation matrix H ∈ Rk×k and still maintain identification

of our target parameter γg. That is, both of the underlying parameters will be identified up to

this rotation matrix: η> = η>0 H
−1 and γ = Hγ0. Thus, the target parameter is rotationally

invariant to H : γg = η>0 H
−1Hγ0 = η>γ.

For our estimation procedure, we replace the first PCA step of Giglio and Xiu (2021) with

our above procedure—augmented to use return innovations—to estimate the latent loadings

Γ̌β and factor innovations v̂t+1 for all t. We then proceed with the latter two steps of the

authors’ procedure to obtain our target estimator.

1. To estimate latent-factor risk premia γ̂, run cross-sectional OLS of average returns

r̄ ∈ RN on averaged estimated latent-factor loadings
¯̂
β = Z̄>Γ̂β ∈ RN×k.

2. To estimate latent to observable factor mapping η̂, run a time series OLS regression of

{gt+1}Tt=1 on factor innovations V̂ ∈ RT×k.

We can thus form our estimator of the risk premium for the observable factors gt+1 by

combining these estimators into γ̂g = η̂>γ̂.

This procedure extends the estimation in Giglio, Xiu, and Zhang (2021) to dynamic

loadings and high-dimensional asset characteristics, while inheriting the rotation invariance

and the specification consistent with two-pass estimators in this literature. Again, simply

applying IPCA instead of PCA in the first step of Giglio and Xiu (2021) would not be feasible

17



with p > max{N, T} or would yield biased inference if an `1 penalty were simply added to the

IPCA objective. The cross-sectional OLS of average returns on the estimated latent-factor

loadings is the standard second step in two-pass Fama-MacBeth regressions, which could

be replaced with generalized least squares or weighted least squares to explore asymptotic

efficiency gains. The final time series regression is critical to translate the uninterpretable

risk premia of latent factors to those of factors proposed by economic theory. Moreover, this

procedure handles omitted variable bias which we now briefly discuss.

To illustrate, assume we have a scalar observable factor gt+1, which is the first component

of a two-dimensional latent-factor innovation vector: vt+1 = (gt+1, v2,t+1)> (i.e. η = (1, 0)).

The vector-version of our model is thus

rt+1 = ztΓβ,1(γg + gt+1) + ztΓβ,2(γ2 + v2,t+1) + εt+1.

Using the standard Fama-MacBeth two-pass regressions (Fama and MacBeth 1973) will

produce bias in estimating γg if v2,t+1 is omitted. The first step of a time series regression

of asset excess returns on gt+1 will give a biased estimate of β̂1 as long as v2,t+1 is correlated

with both gt+1 and rt+1, per the standard OVB term: the covariance between between the

outcome and the excluded regressor times the covariance between the included and excluded

regressor, up to scale. Moreover, in the second step of a cross-sectional regression of average

returns on estimated loadings, a second omitted variable bias is introduced if the loading of

the omitted factor β̂2 is correlated with both β̂1 and r̄t+1.

Estimating the latent factors via the DSLFM procedure resolves this issue of omitting a

potentially relevant factor given one can utilize a consistent estimator of the true number of

latent factors, which we assume spans the true factor space.9

9The DSLFM could be further extended to estimate the zero-beta rate (i.e., alpha) using a very similar
approach to that discussed in Online appendix I.2 of Giglio and Xiu (2021).
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1.5 Asymptotic Theory

In this section, we present the asymptotic results for consistent estimation of the latent fac-

tors and loadings and the large sample distribution of the nontradable observable factor risk

premium estimator under the assumed setting discussed in Section 1.3 and using estimation

procedures discussed in Section 1.4 for models (1.2) and (1.4). We first provide the regular-

ity conditions sufficient for the validity of the estimation and inference results. For clarity

of exposition, we focus on motivating the assumptions and interpreting the results, while

theoretical details and mathematical proofs are provided in Appendix 1.8.1.

Throughout, let ‖A‖ = [tr(A>A)]1/2 denote the Frobenius norm of matrix A or ‖x‖ =

(
∑

i x
2
i )

1/2
for the `2 norm of a vector x. Let ‖x‖0 and ‖x‖1 be the usual `0 and `1 norms,

respectively. All limits are simultaneous where we will restrict the rates among p, T,N , to

allow p→∞, as discussed below.

1.5.1 Regularity Conditions

Consistent Estimators for the Latent-Factor Model The following assumptions en-

able the consistent estimation of the factors {ft+1}Tt=1 and the loadings Γβ. Let f 0
t+1 and Γ0

β

be the true factors and loadings such that ft+1 = Hf 0
t+1 and Γβ = Γ0

βH
−1 where H is an

unobserved k × k invertible rotation matrix.

In regard to identification, our results do not require the identification of the true factors

f 0
t+1 and loadings Γ0

β but rather simply factors (loadings) that span the true factors (loadings)

up to the rotation matrix H. Bai and Ng (2013) show identification results for PCA under

three different sets of assumptions to pin down the k × k elements in H, which requires

pinning down the covariance matrices of the factor loadings and factors to be diagonal

matrices or identity matrices to provide k(k − 1)/2 + k(k + 1)/2 = k2 restrictions. The

researcher can choose which asymptotic covariance matrix to restrict. As we will discuss,

we will additionally not need these identification restrictions for the observable factor risk
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premia given the aforementioned rotation invariance result of the target parameter.

Assumption 1 (Consistency of DSL). 1. Bounded Characteristic Portfolios: For a finite

absolute constant M and ∀t, j, |ct+1,j| =
∣∣Γ>β,jft+1

∣∣ < M.

2. Sparse Loading: Loading matrix Γβ admits an exactly sparse form. That is, for ∃s ∈

N+, i.e.p > s ≥ 1, Γβ has at most s nonzero rows:
∑p

j=1 1
{
‖Γβ,j‖1 > 0

}
≤ s.

These are two critical assumptions for DSL consistency with the additional standard

and technical DSL assumptions in Appendix 1.8.1. Assumption 1(i) converts the bounded

target parameter, in the traditional DSL context, to the DSLFM context where we require

realizations of ct+1,j to be finite-sample bounded by a constant that does not depend on

p, T,N. This imposes a bound on the return of characteristic portfolios, that is, the return

of a portfolio with characteristic j set to 1 and all other characteristics set to 0. We could

instead assume returns are bounded random variable to impose Assumption 1(i).

Assumption 1(ii) is the key LASSO assumption that the parameter on the control regres-

sors admits an exactly sparse form, which follows from our assumption such that ∀t, j, ‖ct+1,−j‖0 =

‖Γβ,−jft+1‖0 ≤ s. This sparsity of the loading matrix is supported empirically in asset pric-

ing given the relevance of only a small number of asset characteristics, which we corroborate

in our empirical setting. We have thus adapted the classic LASSO sparsity assumption to

the empirical reality of cross-sectional asset pricing using high-dimensional asset characteris-

tics. Exact sparsity could be relaxed to approximate sparsity with a similar but alternative

high-dimensional econometrics toolkit.

We next turn to assumptions for consistently estimating the latent factors and loadings.

The focus in our work is controlling the estimation error between the infeasible eigende-

composition of (Tp)−1CC> and the feasible eigendecomposition of (Tp)−1ĈĈ>, given we do

not observe C = FΓ>β but instead estimate each element via DSL and then eigendecompose

using standard PCA estimators as discussed in Section 1.4.
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Assumption 2 (Consistency of Latent-Factor Model). 1. Factors: E
∥∥f 0

t+1

∥∥4 ≤ M < ∞

and T−1
∑

t f
0
t+1f

0>
t+1 →p Σf for some k × k positive definite matrix Σf .

2. Factor Loadings: ∀j, ‖Γβ,j‖ ≤ M < ∞ and
∥∥Γ>β Γβ/p− ΣΓ

∥∥ → 0 for some k × k

positive definite matrix ΣΓ.

3. Nonzero and distinct eigenvalues: from the infeasible eigendecomposition, the k largest

eigenvalues λi for i ∈ {1, . . . , k} are bounded away from zero. Moreover, the k largest

infeasible eigenvalues are distinct, that is,

min
i:i 6=κ
|λκ − λi| > 0.

Assumptions 2(i)-(ii) are standard for factor models where the literature is styled after

Assumptions A, B, and C of Bai (2003). Assumption 2(i) does not impose i.i.d. factors,

as in the classical factor analysis literature, but instead imposes the factors are stationary,

strong mixing, and satisfy moment conditions. Assumption 2(ii) ensures each latent factor

contributes to the second moment of ct+1; that is, it imposes all factors are pervasive and

excludes weak factors. See Giglio, Xiu, and Zhang (2021) for adjustments for weak factors.

The PCA estimation herein does not require the Assumption C of Bai (2003) given our target

matrix C = FΓ>β is without an error term; we instead are controlling cross-sectional and

temporal dependence using the moment conditions of DSL given in model (1.2) and more

technical assumptions in Appendix 1.8.1.

Assumption 2(iii) assumes the k−largest eigenvalues from the infeasible and feasible

eigendecompositions remain nonzero asymptotically. In finite sample, these are real and

nonzero eigenvalues given we are taking the eigendecomposition of a rank k symmetric ma-

trix. It is reasonable to assume we have distinct eigenvalues given, for this not to hold, there

would have to be two or more dimensions in the k−largest of the T × T matrix CC> that

have precisely the same variability.
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Estimating Number of Factors Given the focus of this work is on the consistency of the

main estimators and the asymptotic distribution of the risk premium estimator, we assume

k = k0 is known.10

Assumption 3 (Consistent Estimator for Number of True Factors). For k̄ > k0, let k̂ :=

arg min0≤k≤k̄ IC(k) where

IC(k) := log(V (k)) + k

(
p+ T

pT

)
log

(
pT

p+ T

)
V (k) := min

Γβ ,F
(pT )−1

∑
j,T

(
cj,t+t − Γ>β,jft+1

)2
.

Assume k̂ →p k
0 without further restriction on the growth rates among p, T,N and k = k0

is known.

Assumptions 1 and 2 can be shown to be sufficient for consistently estimating, with the

above Information Criterion, the number of true factors k0 using the results of Appendix

1.8.1 as in Bai and Ng (2002) and Bai (2003). Although providing this assumption to show

the estimator to be studied in simulation, we are instead choosing to impose Assumption

3 in the asymptotic to focus on the main results of this work. Note that commonly used

model selection criteria (e.g., AIC or BIC) will not yield consistent estimators, hence the

specification above using the contribution of Bai and Ng (2002).

Inference on Nontradable Observable Factor Risk Premia The final assumptions

are needed to derive the limiting distribution of the risk premium estimator.

10The asymptotic distribution of the risk premium estimator is unaffected when the number of factors is
estimated because

Pr (γ̂g ≤ x) = Pr
(
γ̂g ≤ x, k̂ = k0

)
+ Pr

(
γ̂g ≤ x, k̂ 6= k0

)
= Pr

(
γ̂g ≤ x, k̂ = k0

)
+ o(1)

= Pr
(
γ̂g ≤ x|k̂ = k0

)
Pr
(
k̂ = k0

)
+ o(1) = Pr

(
γ̂g ≤ x|k̂ = k0

)
+ o(1).
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Assumption 4 (Inference). There exists a generic absolute constant M <∞ such that for

all p, T,N :

1. Bounded idiosyncratic errors: E[(
∑

t εi,t+1)2] ≤ TM.

2. Bounded scaled factor innovations: E[(
∑

t z
>
i,tΓ

0
βv

0
t+1)2] ≤ sTM.

3. Bounded measurement errors: E[(εgt+1)2] ≤M.

4. Convergence of characteristics: 1
NT

∑
i

∑
t′ E[zi,t,j]zi,t′,j′ →p Zt,j,j′ uniformly over t, j, j′

for j, j′ ∈ {1, 2, . . . , p} and a nonstochastic finite constant Zt,j,j′ ∈ R.

5. CLT: As T →∞, the following joint central limit theorem holds:

√
T

T

∑
t

v0
t+1ε

g
t+1

Πtv
0
t+1

 d−→ N(0,Φ)

where random matrix Πt ∈ Rk×k and nonstochastic matrix Φ ∈ R2k×2k are defined in

Appendix 1.8.1.

Assumption 4(i) bounds the second contemporaneous and cross-moments of the idiosyn-

cratic errors, aligning with the time and cross-section dependence assumptions of Bai (2003)

Assumption C. The assumption would hold if we assumed εi,t+1 are uncorrelated across t,

which is a simplified yet plausible assumption given the low signal-to-noise environment of

asset pricing. We have thus relaxed the temporal dependence to the specified rate T .

Assumption 4(ii) bounds the squared time series average of the factor innovations scaled

by the factor loadings. In the static factor model context of Giglio and Xiu (2021), this holds

in large sample by a simple LLN argument given the static loadings are not a function of t

and the factor innovations are mean zero random variables. Thus, we are ensuring the Γ0
β

selected columns of Zt keep the scaled v0
t+1 sufficiently small.

Assumption 4(iii) bounds the second moment of the observable factor measurement errors

for use in proving ‖εg‖ = Op(
√
T ). It is not a stringent assumption because we are bounding

23



a zero mean scalar random variable. This is nearly an identical assumption and usage to

Giglio and Xiu (2021) Assumption A8.

Assumption 4(iv) provides a convergence result such that the squared first moment for

two different characteristics averaged over time and across assets is a nonstochastic finite

constant. This is a weaker assumption on the distribution of characteristics than the DSL

moment conditions discussed in Appendix 1.8.1.

Assumption 4(v) is the assumed central limit theorem for the 2k (low) dimensional mean

zero random variable given the models’ 1.2 and 1.4 moment assumptions, which is satisfied

by various mixing processes. The second moments of the later 2k random variables are

bound already in Assumptions 4(i)-(ii). We nevertheless directly assume the needed CLT.

This extends for our inference result the assumed CLT at the same rate in Assumption F4

of Bai (2003) and the assumed CLT at the same rate in Assumption A11 of Giglio and Xiu

(2021). Note that although we have the same two mean zero random vectors, our factor

innovations are scaled by Πt instead of a constant 1 given the dynamic factor loadings of our

model.

1.5.2 Theory Results

This section presents the three main theoretical results.

Consistent Estimators for the Latent-Factor Model We present the first two results

showing the consistency of the latent-factor model estimators.

Proposition 1 (Consistency of Latent Factors). Under the model (1.2), Assumptions 1,

2, 3, and DSL Assumptions in Appendix 1.8.1.2 where T,N, p → ∞, then for all t the

latent-factor estimator described above has the property that

f̂t+1 −H>f 0
t+1 = Op

(√
s log(Tp)

N

)
.
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The proof is in Appendix 1.8.1. This result establishes the convergence rate of the latent

factor estimator in a dynamic latent-factor model with high-dimensional characteristics. If

the factor loadings were static and known, β0
i for all i, then, f 0

t+1 would be estimated via

a cross-sectional least squares with a convergence rate of
√
N. Bai (2003) establishes in

Theorem 1(ii), under N, T → ∞ for a static latent-factor model, the foundational result

of a convergence rate of min
(√

N, T
)

for the consistency of the latent-factor estimator

for the rotated true factors H>f 0
t+1. Incorporating dynamic loadings parameterized by high

dimensional characteristics comes at the cost of slowing the rate to
√
pN/s log(Tp), which

is nevertheless still reasonable for typical values of p, T,N. Additional standard DSL rates,

which are less restrictive, are in Appendix 1.8.1.

Our rate is primarily driven by the
√
N/ log(Tp) rate uniform consistency over t and j of

the DSL estimation error |ĉt+1,j − ct+1, j| as shown in Lemma A1 in Appendix 1.8.1. Given

the model for C = F 0Γ0>
β contains no error, the eigendecomposition of the unobserved C is

exact for F 0H as shown in Lemma A6; and, thus, the estimation error from using Ĉ instead

of C drives this first main result. The assumed sparsity in Γ0
β does improve the rate with

the p/s ratio.

It is worth reiterating that under our setting F 0 and Γ0
β are not separately identifiable,

hence the k×k invertible matrix transformation H appears in each asymptotic result. Simi-

larly, F̂ Γ̂>β is an estimator of the identifiable, rotation invariant common component C, which

is corroborated by simulation results. Moreover, in many cases knowing F 0H is equivalent

to knowing F 0; for example, the regressor F 0 will give the same predicted values as using

F 0H as a regressor given they have the same column space.

Proposition 2 (Consistency of Latent-Factor Loadings). Under the model (1.2), Assump-

tions 1, 2, 3, and DSL Assumptions in Appendix 1.8.1.2 where T,N, p→∞, then the latent

loading estimator described above has the property that

(
Γ̌β − Γ0

βH
−1
)

= Op

(√
s log(Tp)

N

)
.
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The proof is in Appendix 1.8.1. This result establishes the convergence rate of the latent

loading estimator in a dynamic latent-factor model with high-dimensional characteristics.

When the factors, f 0
t+1, for all t, are observable, static loadings β0

i can be estimated by a

time series regression with a convergence rate of
√
T . Bai (2003) establishes in Theorem 2(ii),

under N, T → ∞ for a static latent-factor model, the foundational result of a convergence

rate of min
(
N,
√
T
)

for the consistency of the latent-factor loading estimator β̂i for the

rotated true factor loadings H−1β0
i . Incorporating dynamic loadings parameterized by high

dimensional characteristics comes at the cost of slowing the rate to
√
N/s log(Tp), which is

nevertheless still reasonable for typical values of p, T,N.

The rate follows similar reasoning to that of the latent-factor estimator in Proposition

1. However, here we are presenting the rate of the final soft-threshold estimator—derived

using recent results in high dimensional econometrics Belloni et al. (2018)—wherein we use

the uniform estimation error between the eigendecomposition of Ĉ for β̂β,j and the infeasi-

ble loading β̃β,j from decomposing the unobserved C, which eliminates p in our rate from

Proposition 1. The
√
N/log(Tp) is similarly driven by the uniform consistency over t and j

of the DSL estimation error |ĉt+1,j − ct+1, j|, which is the key result used to establish these

consistency propositions along with typical high dimensional random matrix theory (e.g.,

Davis Kahan Theorem, Weyl Inequality, and recent tools in high dimensional econometric

theory found in Belloni et al. (2018)).

Inference on Nontradable Observable Factor Risk Premium Finally, we present

the asymptotic normality of the nontradable observable factor risk premium estimator.

Theorem 1 (Normality of Observable Factor Risk Premium). Under the models (1.2) and

(1.4); Assumptions 1, 2, 3, 4; DSL Assumptions in Appendix 1.8.1.2; and if Ts2 log(Tp)/N →

0, then as T,N, p→∞ the estimator γ̂g obeys

√
T

(γ̂g − γg)
σg

d−→ N(0, 1),

where σg is defined in Appendix 1.8.1.
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The proof is in Appendix 1.8.1. This result establishes
√
T asymptotic normality of the

nontradable observable factor risk premium estimator from Giglio and Xiu (2021) extended

to the setting of dynamic factor loadings with high dimensionality characteristics. At a

high level, our proof follows a similar approach yielding, as seen in the proof of Theorem

1, the same two asymptotically nonnegligible terms as in Giglio and Xiu (2021). The first

term arises from the time-series regression of the observed factor on the latent loadings

where again the latent loading estimation error is higher order. The latter term in the 2k

random vector in Assumption 4(v) arises from the cross-sectional regression of averaged

asset excess returns on averaged factor loadings, where the factor loading estimation error

and idiosyncratic error term are higher order. Although Giglio and Xiu (2021) have this

same second term, ours is more complicated given the dynamic loadings, which necessitates

the convergence Assumption 4(iv). A direct application of the delta method on the sum of

these two terms yields the result in Theorem 1.

The crucial rate assumption is Ts2 log(Tp)/N → 0, which controls the estimation error

for the unobserved averaged latent-factor loadings T−1
∑

t βi,t. This is similar to Bai (2003)

and Giglio and Xiu (2021), which require T/N → 0 to use the estimated factors or loadings as

generated regressors. However, we have slowed the rate again due to the high-dimensionality

in p. This is our slowest required rate.

Given the rotation invariance of the target parameter γ0
g , the unobserved rotation matrix

H does not appear in the asymptotic distribution, in contrast to the consistency results.

In finite sample, we corroborate this result in the to-be-discussed simulations. In a similar

vein, it warrants noting the asymptotic efficiency loss due to not observing the factors and

loadings could be large when N is relatively small. Also, we have assumed we directly

observe the number of tree factors k0, which would require estimation in practice and thus

likely contribute estimation error to affect finite sample performance.

In simulation, we use the plug-in estimator for σg, which has satisfactory finite-sample

coverage properties. However, one can establish a consistent variance estimator using a
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Newey and West (1987) style plug-in estimator of the asymptotic variance σg with lag cor-

rections to account for temporal dependence as in Giglio and Xiu (2021) Section IV Part

E.

1.6 Asset Pricing Tests

In this section we develop three tests central to our empirical analysis. The first uses the

asymptotic normality of the observable factor risk premium for a statistical test of nonzero

risk compensation. The second statistic informs the incremental significance of any specific

asset characteristic. The third and final discusses how we empirically measure whether the

DSLFM contributes predictive signal above and beyond a random walk.

Testing Nontradable Observable Factor Risk Premium An empirical application of

the DSLFM model will address whether a nontradable observable factor, namely, inflation,

carries a nonzero risk premium in the crypto asset class. The target parameter γg captures

the risk premium of the (inflation) factor-mimicking portfolio within the crypto asset class

as recovered by the estimated dynamic latent-factor model. We are interested not only in

the sign of the parameter, but also, in practical settings, in whether a confidence interval

suggests a risk premium of economic significance.

We test the hypothesis H0 : γg = 0 vs. H1 : γg 6= 0 using the risk premium estimation

procedure described in Section 1.4 with a plug-in variance estimator σ̂g for σg. Given the

asymptotic normality of Theorem 1, we form a confidence interval

γg ∈ [γ̂g − c(1− α/2)σ̂g, γ̂g + c(1− α/2)σ̂g]

where the critical value c(1 − α/2) is the 1 − α/2 quantile of a N(0, 1) distribution for the

researcher-specified level of the test α. We find in the coming simulation acceptable finite

sample coverage for this confidence interval.
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Testing Characteristic Significance The large-sample distribution of the latent loading

is unknown given the DSL regularization. Even inference in simple cross-sectional LASSO

is complicated (Lee et al. 2016). Instead, we develop a simple bootstrap procedure to infer

whether a specific characteristic significantly contributes to loading Γβ. We leave for subse-

quent research developing the supporting theory of this bootstrap procedure or develop the

asymptotic distribution of a consistent latent loading estimator in this setting. We test the

hypotheses ∀j

H0 : Γ>β = [Γβ,1, . . . ,Γβ,j−1, 0,Γβ,j+1, . . . ,Γβ,p] vs. H1 : Γ>β = [Γβ,1, . . . ,Γβ,p] .

That is, we ask whether characteristic j contributes to the factor loading through k × 1

mapping vector Γβ,j. This allows the researcher, using a large number of characteristics, to

systematically ask what characteristics contribute to the latent-factor model, instead of an

ad hoc selection. We thus set the entire k× 1 vector to zero so the characteristic contributes

to predicting the variation in returns through none of the k factors.

Our procedure is to test the alternative hypothesis model, with the unconstrained char-

acteristic j, and then form the test statistic

WΓ,j = Γ>β,jΓβ,j.

Using bootstrapped standard errors, we assess whether this test WΓ,j statistic is statistically

distinguishable from zero.

Testing Out-of-Sample Performance To study the out-of-sample pricing ability of the

DSLFM, we use the “predictive R2” defined as

Predictive R2 =

∑
i,t

(
ri,t+1 − z>i,tΓ̌βλ̂t

)2∑
i,t r

2
i,t+1

where λ̂ is the moving average of the estimated factors in previous time periods over a

cross-validated window size. This measure captures whether the model forecasts realized
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returns better than a random walk; or, said differently, it represents the fraction of realized

return variation explained by the model’s description of expected returns through exposure to

systematic risk. This specification allows the model’s estimated conditional expected returns

to be driven not just by the dynamic factor loadings, estimated using high-dimensional asset

characteristics, but also by time-varying risk prices λt.

1.7 Simulations

This section presents a brief study of the finite-sample performance of the dynamic latent-

factor model estimators and coverage properties of the inference procedure using Monte

Carlo simulations. To summarize, we find the estimation errors for factors and loadings

are comparable to IPCA and the Three Pass estimator of Giglio and Xiu (2021) in low-

dimensional settings while superior in high-dimensional settings. This holds even in rather

small samples with low signal to noise ratios, reflecting the empirical reality of cross-sectional

asset pricing. Moreover, we find estimation errors and coverage properties for the observable-

factor risk premium to be comparable to Giglio and Xiu (2021) in low-dimensional settings

while superior in high-dimensional settings. We now present the design, followed by the

results.

Simulation Design First, we describe the data-generating process for given N, T, k where

we follow the finite sample simulation study of IPCA (Kelly, Pruitt, and Su 2020). That is,

the DGP is favorable to IPCA. We calibrated the simulated data to parameter estimates from

IPCA fit to our weekly panel of crypto asset data using all sixty three asset characteristics.

Latent factors ft+1 are simulated from a V AR(1) model employing normal innovations

that was fit to the estimated IPCA factors. Asset characteristics are simulated from a

p variable panel V AR(1) model with normal innovations, which was fit to the demeaned

empirical weekly panel of randomly selected, without replacement, p asset characteristics.
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For each asset, we set the means of the characteristics to a bootstrap sample from the

empirical distribution of time series asset characteristic means. The idiosyncratic error εi,t+1

is simulated from an i.i.d. normal distribution whose variance is calibrated such that the

population R2 of the model is approximately 20%, matching the empirically estimated value

from fitting IPCA. The measurement error εgt+1 is simulated in a simple fashion but the

R2 = 1−E[eg]/E[g] is calibrated to approximately 40%. η = (1, 0, . . . , 0) and the loadings Γβ

are set to the empirically estimated values where p− s rows are set to zero where s = p/10.

Finally, observable factors and returns are generated according to models (1.2) and (1.4).

The simulation studies results across S = 200 Monte Carlo draws. Hyperparameters are

fixed at N = 500, T = 100, and k = 3. To compare the performance of estimators under

low-dimensional and high-dimensional characteristics, results are generated for p = 10 and

p = 50. We report results for a variety of estimators, including latent loadings Γβ, latent

factors F, average factor loadings β̄, latent matrix C = FΓ>β , and observable factor risk

premium γg.

The benchmark estimation and inference procedures are IPCA and the three-pass estima-

tor of Giglio and Xiu (2021), given DSLFM’s basis on these foundational models.11 We focus

on two comparisons: first, the estimation error of theoretically consistent latent loading Γβ

and latent factor {ft+1}Tt=1 IPCA and DSLFM estimators; and, second, coverage properties of

the observable factor risk premium estimator. We do study estimation errors for additional

estimands as relevant (e.g., the three-pass estimator does not estimate latent loadings Γβ nor

latent matrix C, while IPCA does not have an observable factor risk premium estimation

nor inference procedure).

Simulation Results Table 1.1 reports results. In the low-dimensional setting of N =

500, T = 100, p = 10, s = 1, we find DSLFM to obtain smaller estimation errors for Γβ as

11Many thanks to Matthias Buechner and Leland Bybee for the IPCA implementation https://github.

com/bkelly-lab/ipca.
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compared to IPCA; however, IPCA has an order of magnitude lower estimation errors for

F. DSLFM’s outperformance for the latent loading is driven by taking on higher bias yet

substantially lower variance of the estimator; this is obtained from soft-thresholding many

of the rows. In comparing other auxiliary estimands, DSLFM obtains lower estimation error

for the time-series averaged factor loadings β̄ although higher error for the latent matrix

C = FΓ>β . We attribute these results to IPCA fitting data simulated to match the fits of

an empirically estimated IPCA model, yet we employ an exact row-sparsity structure in the

true latent loadings Γβ.

DSLFM slightly under-covers the 90% and 95% confidence intervals in the low-dimensional

setting. The three-pass estimator obtains similar estimation error for the target parameter of

the observable factor risk premium, but has finite-sample intervals that slightly over-cover.

Moving to the high-dimensional setting of p = 50, we find DSLFM to again obtain smaller

estimation errors for latent loadings, yet now the estimation errors for the latent factors are

of the same order as IPCA. In both cases, DSLFM takes on bias from its regularization

methods, although DSLFM’s latent factor estimator’s variance is still higher than IPCA.

DSLFM is now an order of magnitude improvement for the average factor loadings and a

factor of two improvement for the latent matrix C. Finally, coverage proprieties of the risk

premium estimand for both the three-pass estimator and DSLFM estimators are degraded

under high-dimensionality.

We hope to add even higher dimensional results with hyperparameters closer to the

empirical values. Do note, given the DSLFM’s large sample theory, it is constrained by

N > T, which although is the case for the panel of crypto asset returns, this is not the case for

all cross-sectional asset pricing settings. Moreover, the DSLFM’s performance was boosted

by the assumed exact sparsity in the latent loadings; we hope to add results for approximate

sparsity, which is likely closer to the empirical reality. Nevertheless, the DSLFM performs

well as compared to state-of-the-art benchmark methods, especially under the setting for

which it was developed: high-dimensional asset characteristics.
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1.8 Appendix

1.8.1 Technical Details and Proofs

1.8.1.1 Notation

Let EN [xi] := N−1
∑

t xi for random variables {xi}Ni=1.

Let Ik be a k × k identify matrix. Let ‖·‖ be the Frobenius norm for a matrix and the

`2 norm for a vector; ‖·‖1 be the l1-norm; ‖·‖2 be the spectral norm for a matrix; and, ‖·‖∞
be the maximum element of the matrix or vector. Let a ∨ b = max(a, b). We also use the

notation a .P b to denote a = Op(b) for a, b ∈ R.

Define the following random variables: rt+1 = (r1,t+1, . . . , rN,t+1)> ∈ RN ;

zt,j = (z1,t,j, . . . , zN,t,j)
> ∈ RN ; Zt,−j = (z1,t,−j, . . . , zN,t,−j)

> ∈ RN×(p−1);

εt+1 = (ε1,t+1, . . . , εN,t+1)> ∈ RN ; εzt,j = (εz1,t,j, . . . , ε
z
N,t,j)

> ∈ RN , and so on.

For A ⊂ {1, . . . , p}, let Zt,−j[A] denote the subset of the columns of Zt,−j that are elements

of the set A. Let PA := Zt,−j[A]
(
Zt,−j[A]>Zt,−j[A]

)−1
Zt,−j[A]> be the projection operator

that maps vectors in RN into span(Zt,−j[A]). Let MA = IN−PA be the operator that projects

vectors in RN into the subspace orthogonal to span(Zt,−j[A]).

1.8.1.2 Consistency of Double Selection Lasso

We provided two critical Double Selection Lasso (DSL) assumptions in Assumption 1, to

which we add the following standard DSL assumptions, adapted to the DSLFM setting. Let

there exist absolute sequences δN,T ↘ 0 and ∆N,T ↘ 0.

Assumption 5 (ASR: Approximate Sparse Regressors).

1. Sparsity of Confounding: The confounding mapping δt,−j admits, ∀t, j an exactly sparse

form ||δt,−j||0 ≤ s.
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2. Sparsity rate: The sparsity index obeys s2 log2 (p ∨N) /
(√

N log(Tp)
)
≤ δN,T and the

size of the amelioration set obeys ŝ3 ≤ C (1 ∨ ŝ1 ∨ ŝ2) . Additionally, log3 p/N ≤ δN,T .

Assumption ASR(i) extends Assumption 1(ii) to include sparsity of the DSL first stage.

Assumption ASR(ii) controls the rate between sparsity and the asymptotic terms p,N, T ; ad-

ditionally, it constrains the amelioration set to not be substantially larger than the variables

selected by the LASSO procedures.

Next, we constrain the minimum and maximum m-spare eigenvalues as whenever p > N

the empirical design matrix EN [zi,tz
>
i,t] will not have full rank. Define the minimal and

maximal m-sparse eigenvalue of a semi-definite matrix M as

φmin(m)[M ] := min
1≤||δ||0≤m

δ>Mδ

||δ||2
and φmax(m)[M ] := max

1≤||δ||0≤m

δ>Mδ

||δ||2
.

Assumption 6 (SE: Sparse Eigenvalues). There exists an absolute sequence lN → ∞ and

such that with probability of at least 1−∆N,T the maximal and minimal lNs-sparse eigenvalues

are bounded from above and away from zero. That is, for absolute constants 0 < κ′ < κ′′ <∞,

κ′ ≤ φmin(lNs)[EN [zi,tz
>
i,t]] ≤ φmax(lNs)[EN [zi,tz

>
i,t]] ≤ κ′′

Similarly, for z̄i := T−1
∑

i zi,t, we have

κ′ ≤ φmin(lNs)[EN [z̄iz̄
>
i ]] ≤ φmax(lNs)[EN [z̄iz̄

>
i ]] ≤ κ′′.

Requiring the minimum m−sparse eigenvalue to be bounded away from zero is equivalent

to assuming all empirical design submatrices formed by any m components of zi,t are positive

definite.

Next, we impose moment conditions on the structural errors and regressors.

Assumption 7 (SM: Structural Moments). There are absolute constants 0 < ω < Ω < ∞

and 4 ≤ ρ < ∞ such that for (yi, εi) := (ri,t+1, εi,t+1) or (yi, εi) := (zi,t,−j, ε
z
i,t,j) we have

∀i, t, j:
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1. E[|zi,t,j|ρ] ≤ Ω, ω ≤ E[ε2i,t+1|zi,t,−j, εzi,t,j] ≤ Ω, and ω ≤ E[(εzi,t,j)
2|zi,t,−j] ≤ Ω;

2. E[|εi|ρ] + E[y2
i ] + max1≤k≤p{E[z2

i,t,−j,ky
2
i ] + E[|z3

i,t,−j,kε
3
i |] + 1/E[z2

i,t−1,−j,k]} ≤ Ω,

3. max1≤k≤p{E[z2
i,t,−j,kε

2
i ] + E[z2

i,t,−j,ky
2
i ]} + max1≤i≤N ||zi,t,−j||2∞

s log(N∨p)
N

≤ δN,T w.p. 1 −

∆N,T .

4. Weak dependence between the first- and second-stage errors: There exists a positive

constant M such that ∀p, T,N :∣∣∣∣∣
√

1

N

N∑
i=1

εzi,t,jεi,t+1

∣∣∣∣∣ ≤M log(Tp).

5. Uniformly over t, j, we have 1
N

∑
i(ε

z
t,j,i)

2 p−→ Z0
t,j for non-stochastic real-valued scalar

finite constant Z0
t,j, which is bounded away from zero.

Assumptions (SM)(i)-(iii) are standard for DSL to bound various moments of the er-

rors, characteristics, and returns. Assumption SM(iv) is novel and bounds the dependence

between the first- and second-stage errors in the DSL model, which is the non-negligible

asymptotic term in the DSL estimation error. This holds trivially for i.i.d. sampling in

the cross-section, which we have relaxed to this specified sum. Assumption (v) is novel and

introduces a uniform consistency for the second moment of the first-stage errors.

Lemma 1. Under the model (1.2); Assumption 1; and, DSL Assumptions ASR, SE, and

SM, the DSL estimator has the property that

max
t,j
|ĉt+1,j − ct+1,j| = Op

(√
log(Tp)

N

)
.

Proof of Lemma A1. We proceed with the decomposition of the estimation error using the

definition of the DSL estimator and model (1.2).
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ĉt+1,j − ct+1,j =
(
z>t,jMÎzt,j

)−1 (
z>t,jMÎ(Zt,−jct+1,−j + εt+1)

)
=
(
z>t,jMÎzt,j

)−1
(Zt,−jδt,j)

>
MÎZt,−jct+1,−j

+
(
z>t,jMÎzt,j

)−1
(Zt,−jδt,j)

>
MÎεt+1

+
(
z>t,jMÎzt,j

)−1
εz>t,jMÎZt,−jct+1,−j

−
(
z>t,jMÎzt,j

)−1
εz>t,j PÎεt+1

+
(
z>t,jMÎzt,j

)−1
εz>t,j εt+1.

From Belloni, Chernozhukov, and Hansen (2014) under the aforementioned DSL assump-

tions, the last term in this five-term decomposition is the asymptotically relevant term while

the remaining terms are asymptotically negligible. We first handle the denominator of the

fifth term before dealing with the entire term.

N−1z>t,jMÎzt,j = N−1
(
Zt,−jδt,j + εzt,j

)>
MÎ

(
Zt,−jδt,j + εzt,j

)
= εz>t,j ε

z
t,j/N + δ>t,jZ

>
t,−jMÎZt,−jδt,j/N + 2δ>t,jZ

>
t,−jMÎε

z
t,j/N − εz>t,j PÎε

z
t,j/N

.P ε
z>
t,j ε

z
t,j/N + op(1)

where the first equality holds by definition of the first-stage; the second equality holds by

multiplying out the terms and by definition of the projection matrices; and, the probabilistic

bound holds given the latter three terms are asymptotically negligible, as in the proof of

Theorem 1 in Belloni, Chernozhukov, and Hansen (2014), as compared to the sum of sec-

ond moments of the first-stage errors. Thus, by Assumption SM(v), we conclude εz>t,j ε
z
t,j/N

converges in probability uniformly over t, j, to Z0
t,j.

We proceed with the uniform consistency result.
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max
t,j
|ĉt+1,j − ct+1,j| .P max

t,j

∣∣∣∣∣(N−1z>t,jMÎzt,j
)−1 1

N

N∑
i=1

εzi,t,jεi,t+1

∣∣∣∣∣
.P

√
1

N
max
t,j

∣∣∣∣∣
√

1

N

N∑
i=1

εzi,t,jεi,t+1

∣∣∣∣∣
.P

√
log(Tp)

N

which holds for the first probabilistic bound by substituting the decomposition above; for the

second probabilistic bound, using the above result to replace the denominator with a constant

that is bounded away from zero uniformly over t, j; and, the final bound holds by assumption

SM(iv). In the case of i.i.d. sampling in the cross-section or if the dependence is sufficiently

weak such that SM(iv) holds, then we can invoke Lemma A.4 in Belloni et al. (2018) to

conclude the mean zero scalar random variable εzi,t,jεi,t+1, given the moment conditions of the

DSL model, has a maximal deviation that converges in probability to zero at the specified rate

if we further constrain the moment of the mean zero random variable E
[
maxt,j

∣∣εzi,t,jεi,t+1

∣∣q] ≤
M q for q > 2 and absolute constant M uniformly across t, j.

1.8.1.3 Consistency of Latent Factors and Loadings

We first prove a bound on the distance between the infeasible and feasible symmetric matrix

used in the eigendecompositions. Let Λ̂Tp ∈ Rk×k be a diagonal matrix containing the k

largest eigenvalues of (Tp)−1ĈĈ> and similarly for ΛTp ∈ Rk×k, a diagonal matrix containing

the k largest eigenvalues of (Tp)−1ĈĈ>.

Lemma 2. Under the assumptions of Lemma A1,
∥∥∥(Tp)−1ĈĈ> − (Tp)−1CC>

∥∥∥ = Op

(
log Tp
N

)
.
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Proof of Lemma A2.∥∥∥ĈĈ> − CC>∥∥∥ =
∥∥∥ĈĈ> − CĈ> + CĈ> − CC>

∥∥∥
≤
∥∥∥CĈ> − CC>∥∥∥+

∥∥∥ĈĈ> − CĈ>∥∥∥
≤ ‖C‖

∥∥∥Ĉ − C∥∥∥+
∥∥∥Ĉ − C∥∥∥∥∥∥Ĉ∥∥∥

= ‖C‖
∥∥∥Ĉ − C∥∥∥+

∥∥∥Ĉ − C∥∥∥∥∥∥Ĉ − C + C
∥∥∥

≤ ‖C‖
∥∥∥Ĉ − C∥∥∥+

∥∥∥Ĉ − C∥∥∥(∥∥∥Ĉ − C∥∥∥+ ‖C‖
)

= 2 ‖C‖
∥∥∥Ĉ − C∥∥∥+

∥∥∥Ĉ − C∥∥∥2

.P

√
sT
∥∥∥Ĉ − C∥∥∥+

∥∥∥Ĉ − C∥∥∥2

≤
√
spT 2 max

t,j
|ĉt+1,j − ct+1,j|+ Tpmax

t,j
|ĉt+1,j − ct+1,j|2

.P

√
spT 2 log(Tp)

N
+
Tp log(Tp)

N
.
Tp log(Tp)

N
.

where the first and third inequality holds by the triangle inequality; the second inequality

holds by Cauchy-Schwarz; the first probabilistic bound holds by Assumption 1(i) / 5(i); and,

the last probabilistic bound holds by Lemma A1. We use the final bound for simplicity.

We next bound the estimation error between the feasible and infeasible eigenvalues.

Lemma 3. Under the assumptions of Lemma A2 and Assumption 3,∥∥∥Λ̂Tp − ΛTp

∥∥∥2

= Op

(
s2 log2(Tp)

N2

)
.

Proof of Lemma A3.∥∥∥Λ̂Tp − ΛTp

∥∥∥2

=
k∑
l=1

k∑
i=1

(λ̂l − λi)2

≤ k2 max
l∈{1,...,k}

|λ̂l − λl|2

≤ k2 max
l∈{1,...,T}

|λ̂l − λl|2

≤ k2

T 2p2

∥∥∥ĈĈ> − CC>∥∥∥2

= Op(
s2 log2(Tp)

N2
)
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where the first equality is the definition of the Frobenius norm; the first inequality bounds

the sum by the maximum element; the second inequality bounds the maximum deviation

between the k largest eigenvalues of the feasible and infeasible decompositions by the devia-

tions between all T eigenvalues; the last inequality controls the stability of the spectrum by

applying Weyl’s inequality from Theorem 4.5.3 of Vershynin (2018); and, the probabilistic

bound holds by Lemma A2.

We next prove a lemma for the time series average of the `2 norm of the feasible and

infeasible eigenvectors.

Lemma 4. Under Assumption 2(iii) and those of Lemma A3, there exists an orthogonal

matrix Ô ∈ Rk×k such that
∥∥∥F̂ − F̃ Ô>∥∥∥2

= Op

(
log2(Tp)
N2

)
.

Proof of Lemma A4. We use a variant of the Davis-Kahan theorem shown in Yu, Wang, and

Samworth (2015) where

δ := min
i:i 6=l
|λl − λi| > 0,

which holds by Assumption 2(iii), to conclude for some Ô ∈ Rk×k orthogonal matrix that

23/2δ−1(Tp)−2
∥∥∥ĈĈ> − CC>∥∥∥2

≥ ||F̂ Ô − F̃ ||2 = ||F̂ − F̃ Ô>||2

where the inequality is the use of the variant of the Davis-Kahan theorem, bounding the

distance between the eigenvectors by the distance between the original matrices, and the

equality follows given post multiplying by an orthogonal matrix does not change the Frobe-

nius norm. The rate in the result then follows given Lemma A2.

We next bound the `2 norm between the feasible and infeasible eigenvectors.

Lemma 5. Under the assumptions of Lemma A4,
∥∥∥f̂t+1 − Ô>f̃t+1

∥∥∥ = Op

(√
s log(Tp)

N

)
.

39



Proof of Lemma A5. First, we perform the following decomposition using the definition of

the eigenvectors.

f̂t+1 − Ô>f̃t+1 = (Tp)−1Λ̂−1
TpF̂

>ĈĈt+1 − (Tp)−1Ô>Λ−1
TpF̃

>CCt+1

= (Tp)−1
(

Λ̂−1
Tp − Λ−1

Tp

)
F̂>
(
ĈĈt+1 − CCt+1

)
+ (Tp)−1Ô>Λ−1

Tp

(
F̃> − F̂>

)
CCt+1

+ (Tp)−1
(

Λ̂−1
Tp − Ô

>Λ−1
Tp

)
F̂>CCt+1

+ (Tp)−1Λ−1
TpF̂

>
(
ĈĈt+1 − CCt+1

)
where the equality follows by adding and subtracting terms.

Thus, ∥∥∥f̂t+1 − Ô>f̃t+1

∥∥∥ ≤ (Tp)−1
∥∥∥Λ̂−1

Tp − Λ−1
Tp

∥∥∥∥∥∥F̂∥∥∥∥∥∥ĈĈt+1 − CCt+1

∥∥∥
+ (Tp)−1

∥∥Λ−1
Tp

∥∥∥∥∥F̂ − F̃∥∥∥ ‖CCt+1‖

+ (Tp)−1
∥∥∥Λ̂−1

Tp − Λ−1
Tp

∥∥∥∥∥∥F̂∥∥∥ ‖CCt+1‖

+ (Tp)−1
∥∥Λ−1

Tp

∥∥∥∥∥F̂∥∥∥∥∥∥ĈĈt+1 − CCt+1

∥∥∥
= Op

(√
s3 log(Tp)3

pN3

)
+Op

(√
Ts log(Tp)

TpN

)

+Op

(
s2 log(Tp)

pN

)
+Op

(√
s log(Tp)

N

)

= Op

(√
s log(Tp)

N

)
where the first inequality follows from the aforementioned decomposition in this proof with

the use of the triangle and Cauchy-Schwarz inequalities; the first probabilistic bound holds

given the normalization that F̂>F̂ /T = Ik then ||F̂ || =
√
Tk, given ΛTp contains k nonzero

real-valued eigenvalues bounded away from zero by Assumption 2(iii), given the rates from

Lemmas A3 and A4 (which gives same rate by CMT), given—similar to lemma A2—

||ĈĈt+1 − CCt+1|| = Op(
√

sTp2 log(Tp)
N

), and ||CCt+1|| = Op(
√
s2T ) by Assumption 1(ii);

and, the final probabilistic bound holds for simplicity of exposition.
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Lemma 6. Under the assumptions of A5, for H> = Ô>Λ−1
Tp(F

>F 0/T )(Γ0>
β Γ0

β/p) we have

Ôf̃t+1 −H>f 0
t+1 = 0.

Proof of Lemma A6.

Ôf̃t+1 = (Tp)−1Ô>Λ−1
TpF

>CCt+1

= (Tp)−1Ô>Λ−1
TpF

>FΓ>β Γβft+1

= (Tp)−1Ô>Λ−1
TpF

>F 0Γ0>
β Γ0>

β f 0
t+1

= H>f 0
t+1.

where the first equality holds by the definition of the infeasible eigenvectors; the second

equality holds given the definition of C; the third equality holds given the definitions of the

true loadings and factors as rotations of the observed ones; and, the final equality holds by

definition of the H matrix.

Finally, using the above lemmas, we prove Propositions 1 and 2.

Proof of Proposition 1.∥∥∥f̂t+1 −H>f 0
t+1

∥∥∥ ≤ ∥∥∥f̂t+1 − Ô>f̃t+1

∥∥∥+
∥∥∥Ô>f̃t+1 −H>f 0

t+1

∥∥∥
= Op

(√
s log(Tp)

N

)

by Lemmas A5 and A6.

Next, we provide a lemma for the `∞ norm of the PCA estimation error for the loadings,

which will allow us to obtain norms on the soft-threshold estimation error for the loadings

by use of a tool from the high-dimensional econometrics handbook (Belloni et al. 2018).

Lemma 7. Under the assumptions of Lemma A1 and Assumption 3,∥∥∥Γ̂β − Γ0
β(H>)−1

∥∥∥
∞

= Op

(√
log(Tp)

N

)
.
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Proof of Lemma A7.∥∥∥Γ̂β − Γ0
β(H>)−1

∥∥∥
∞

= max
j

(
k∑
l=1

∣∣∣Γ̂β,j,l − (Γ0
β,j)
>(H>)−1

l

∣∣∣)
= max

j

∥∥∥Γ̂β,j −H−1Γ0
β,j

∥∥∥
1

= max
j

∥∥∥Γ̂β,j ± Γ̃β,j −H−1Γ0
β,j

∥∥∥
1

≤ max
j

∥∥∥Γ̂β,j − Γ̃β,j

∥∥∥
1

+ max
j

∥∥∥Γ̃β,j −H−1Γ0
β,j

∥∥∥
1

= max
j

∥∥∥T−1F̂>Ĉj − T−1F>Cj

∥∥∥
1

+ max
j

∥∥T−1F>Cj −H−1Γ0
β,j

∥∥
1

= T−1 max
j

∥∥∥F̂>Ĉj ± F̂>Cj − F>Cj∥∥∥
1

+ max
j

∥∥T−1F>FΓβ,j −H−1Γ0
β,j

∥∥
1

≤ T−1 max
j

∥∥∥F̂> (Ĉj − Cj)∥∥∥
1

+ T−1 max
j

∥∥∥∥(F̂ − F)>Cj∥∥∥∥
1

+ max
j

∥∥T−1F>FΓβ,j −H−1Γ0
β,j

∥∥
1

≤
√
k

T

∥∥∥F̂∥∥∥
2

max
j

∥∥∥Ĉj − Cj∥∥∥
2

+

√
k

T

∥∥∥F̂ − F∥∥∥
2

max
j
‖Cj‖2

+
√
k
∥∥T−1F>F − Ik×k

∥∥
2

∥∥H−1
∥∥

2
max
j

∥∥Γ0
β,j

∥∥
2

.P max
t,j
|ĉt+1,j − ct+1,j|+ T−1/2

∥∥∥F̂ − F∥∥∥
.P Op

(√
log(Tp)

N

)
+Op

(
log(Tp)

N

)
where the first two equalities follow from the definition of the `∞ norm; the third equality

adds and subtracts; the first inequality uses the triangle inequality; the fourth equality uses

the definitions of the feasible and infeasible estimator; the second inequality uses a triangle

inequality; the last inequality uses
∥∥A>x∥∥

1
≤
√
k ‖A‖2 ‖x‖2; the first probabilistic bound

uses
∥∥∥F̂∥∥∥

2
= Op(

√
kT ), the sum of the estimation errors in the characteristic portfolios,

|ĉt+1,j−ct+1,j| is bounded by T times the maximum element, the elements of Cj are bounded

random variables hence maxj ‖Cj‖ = Op(
√
T ), T−1

∑
t f

0
t+1f

0,>
t+1 →p Σf by Assumption 2(i),

‖H−1‖ = Op(1) by definition of the invertible H matrix, and Γ0
β contains bounded elements

uniformly over j by Assumption 2(ii); and, the last probabilistic bound follows by Lemmas
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A1 and A4 and assumption 5(ii).

Proof of Proposition 2. In Lemma A7, we show
∥∥∥Γ̂β − Γ0

β(H>)−1
∥∥∥
∞

.P

√
log(Tp)
N

, which

allows us to invoke Theorem 2.10 from Belloni et al. (2018) under exact sparsity of Γ0
β where

λ, the hyperparameter used to soft-threshold the `1 norm of the rows of Γ̂β, is selected such

that with probability approaching 1,

λ ≥ (1− α)− quantile of
∥∥∥Γ̂β − Γ0

β(H>)−1
∥∥∥
∞
.

That is, λ can be set to the product of a large constant and the rate of the `∞ norm,
√

log(Tp)
N

,

to ensure this inequality holds.12 Then, by Theorem 2.10 given α→ 0 and λ .
√

log(Tp)/N,

we have for all q ≥ 1 ∥∥Γ̌β,l − Γ0
β(H>)−1

l

∥∥
q
.P s

1/q

√
log(Tp)

N
.

This holds column-by-column for the matrix estimation error Γ̌β − Γ0
β, which we can thus

square and sum together for the squared Frobenius norm of the estimation error at the same

rate.

1.8.1.4 Consistency and Normality of Observable Factor Risk Premia

In these results, we are using the eigenvectors and loadings derived from the demeaned

characteristic portfolio matrix: ĈD := Ĉ − ιTT
−1
∑

t ĉ
>
t+1. That is, V̂ are the

√
T scaled

eigenvectors associated with the k largest eigenvalues of (Tp)−1ĈDĈD>. Further, Γ̂Dβ =

T−1ĈD>V̂ . The results established in the above subsection would follow analogously for this

new notation as we simply have mean zero eigenvectors. Finally, our cross sectional and

time series OLS estimators are standard:

γ̂ :=

(
¯̂
β
> ¯̂
β

)−1
¯̂
β
>
r̄, η̂ :=

(
V̂ >V̂

)−1

V̂ >G,

where
¯̂
β := Z̄Γ̌Dβ for Z̄ = T−1

∑
t Zt for Zt ∈ RN×p, ∀t. The same holds for the time series

average return r̄ ∈ RN .

12In practice, we cross-validate for a finite-sample optimal λ.
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Lemma 8. Under the models (1.2) and (1.4); Assumptions 1, 2, and 3; and, DSL Assump-

tions ASR, SE, and SM; we have∥∥∥∥N−1 ¯̂
β
> ¯̂
β −N−1β̄>β̄

∥∥∥∥ = Op

(√
s2 log(Tp)

N

)
.

Proof of Lemma A8.∥∥∥∥N−1 ¯̂
β
> ¯̂
β −N−1β̄>β̄

∥∥∥∥ = N−1

∥∥∥∥¯̂
β
> ¯̂
β ± ¯̂

β
>
β̄ − β̄>β̄

∥∥∥∥
≤ N−1

∥∥∥∥¯̂
β
> ¯̂
β − ¯̂

β
>
β̄

∥∥∥∥+N−1

∥∥∥∥¯̂
β
>
β̄ − β̄>β̄

∥∥∥∥
= N−1

∥∥∥∥(¯̂
β ± β̄

)> (¯̂
β − β̄

)∥∥∥∥+N−1

∥∥∥∥(¯̂
β − β̄

)>
β̄

∥∥∥∥
≤ N−1

∥∥∥¯̂
β − β̄

∥∥∥2

+
2

N

∥∥∥∥(¯̂
β − β̄

)>
β̄

∥∥∥∥
= N−1

∥∥Z̄ (Γ̌Dβ − Γ0
β

)∥∥2
+

2

N

∥∥∥(Γ̌Dβ − Γ0
β

)>
Z̄>Z̄Γ0

β

∥∥∥
≤
∥∥∥∥(Γ̌Dβ − Γ0

β

)> Z̄>Z̄
N

(
Γ̌Dβ − Γ0

β

)∥∥∥∥2

+ 2

∥∥∥∥(Γ̌Dβ − Γ0
β

)> Z̄>Z̄
N

Γ0
β

∥∥∥∥
≤
∥∥Γ̌Dβ,l − Γ0

β,l

∥∥2 ∥∥Γ̌Dβ − Γ0
β

∥∥2
φ2

max(2s)

[
Z̄>Z̄

N

]
+ 2

∥∥Γ̌Dβ,l − Γ0
β,l

∥∥∥∥Γ0
β

∥∥φmax(2s)

[
Z̄>Z̄

N

]
.P Op

(
s2 log2(Tp)

N2

)
+Op

(√
s2 log(Tp)

N

)
where the first equality follows by adding and subtracting; the first inequality follows by the

triangle inequality; the second equality follows from adding and subtracting and rearranging;

the second inequality follows from the triangle and Cauchy-Schwartz inequalities; the third

equality follows from the definition of the factor loading estimator and the average factor

loading; the third inequality follows from ||A|| ≤ ||AA>||; the final inequality follows from

multiplying and dividing by the norms to obtain unit vectors and then bounding with the s+

ŝ-maximally sparse eigenvalue of Z̄>Z̄
N

(where the s+ ŝ ≤ 2s by thresholding estimator); and,
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the probabilistic bound holds given the maximum eigenvalue is bounded by DSL Assumption

SE,
∥∥Γ0

β

∥∥ = Op(
√
s) by Assumption 1(ii), and

∥∥Γ̌Dβ,l − Γ0
β,l

∥∥ = Op

(√
s log(Tp)

N

)
, which is the

same rate for the entire matrix per Proposition 2.

Lemma 9. Under the assumptions of Lemma A8, we have

√
T

N

∥∥∥∥¯̂
β
>
r̄ − β̄>r̄

∥∥∥∥ = Op

(√
Ts2 log(Tp)

N

)
.

Proof of Lemma A9.
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T
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]
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)
where the first equality follows by the definitions of the factor loading estimator, the av-

erage factor loading, and the time series average return of assets; the first inequality fol-

lows by the triangle inequality; the second inequality holds by an analogous argument to

Lemma A8; and, the probabilistic bound holds again by an analogous argument to Lemma

A8 with the additional bounds of
∥∥Γ0

βγ
0
∥∥ = Op(

√
s) by Assumptions 2(i)-(ii) and 1(ii),
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∥∥T−1
∑

t ZtΓ
0
βv

0
t+1

∥∥ = Op(
√

sN
T

) by Assumption 4(ii), and ‖ε̄‖ = Op(
√

N
T

) by Assumption

4(i).

Lemma 10. Under the assumptions of Lemma A8 and Assumption 4(iii), we have

√
T (γ̂ −Hγ0) = Op(1).

Proof of Lemma A10. We decompose the estimation error into three terms.

√
T (γ̂ −Hγ0) =

√
T (γ̂ − γ̃) +

√
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0
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0
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β

N

)−1
Γ0>
β Z̄>

N
ε̄︸ ︷︷ ︸

Cγ

=: Aγ + Bγ + Cγ.

where the first equality follows by adding and subtracting; the second equality follows from

the definition of the feasible and infeasible estimator; the last equality follows from the

definition of the time series average of asset returns and rearranging; and, finally, we define

three terms to prove, in the rest of this proof, Aγ + Cγ = op(1) and Bγ = Op(1) to prove the

lemma.

First, we prove Aγ = oP (1). Define notation:

Aγ := Â−1
i Âii −A−1

i Aii :=

 ¯̂
β
> ¯̂
β

N

−1 √
T

¯̂
β
>
r̄

N
−
(
β̄>β̄

N

)−1 √
T β̄>r̄

N
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and ∆i := Â−1
i −A−1

i and ∆ii := Âii −Aii. Thus,

Â−1
i Âii −A−1

i Aii = Aii∆i + A−1
i ∆ii + ∆i∆ii = Op(1)op(1) +Op(1)op(1) + op(1)op(1) = op(1)

given: by Lemma A9, Aii = Op(1) and ∆ii = op(1); and, by Lemma A8 and CMT, Ai = Op(1)

and ∆i = op(1).

Second, Bγ = Op(1) given
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where the first equality substitutes the notation; the first inequality follows by ‖ABx‖ ≤

‖A‖ ‖B‖2 ‖x‖ for matrices A,B and vector x where ‖B‖2 is the spectral norm; and, the

probabilistic bound follows given ‖H‖ = Op(1), the spectral norm of the inverse matrix is

bounded by the 2s-sparse minimum eigenvalue of N−1Z̄>Z̄ which is bounded away from

zero by DSL Assumption SE,
∥∥Z̄Γ0

β

∥∥ = Op(1) by an analogues argument using the 2s-sparse

maximum eigenvalue, and
∥∥∥√ 1

TN

∑
t ZtΓ

0
βv

0
t+1

∥∥∥ = Op (1) by Assumption 4(ii).

Third, Cγ = op(1) given
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where the first equality substitutes the notation; the first probabilistic bound holds by

adding and subtracting E[Z̄] and the previously established results on ‖H‖ and the spec-

tral norm of the inverse design matrix; the second equality holds by opening up the matrix

multiplication for the two terms noting Γ0
β selects only s rows of Z̄>; the final probabilis-

tic bound holds given Assumption 4(i) yields N−1
∑

i εi,t+1 = Op(N
−1/2) and a LLN on

T−1
∑

t Z̄i,j − T−1
∑

t E[Z̄i,j] = op(1) using the structural moment Assumptions 7; and, the

final assumption holds given
√
T/N → 0.

Thus, given Aγ + Bγ + Cγ = op(1) +Op(1) + op(1) = Op(1), the lemma holds.

Lemma 11. Under the assumptions of Lemma A8, we have

∥∥∥T−1V̂ >V̂ − T−1V >V
∥∥∥ = Op

√ log2(Tp)

TN2

 .

Proof of Lemma A11.∥∥∥T−1V̂ >V̂ − T−1V >V
∥∥∥ = T−1

∥∥∥V̂ >V̂ ± V̂ >V − V >V ∥∥∥
≤ T−1

∥∥∥V̂ >V̂ − V̂ >V ∥∥∥+ T−1
∥∥∥V̂ >V − V >V ∥∥∥

≤ T−1
∥∥∥V̂ ∥∥∥∥∥∥V̂ − V ∥∥∥+ T−1

∥∥∥V̂ − V ∥∥∥ ‖V ‖
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√ log2(Tp)
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 .

where the first equality follows by adding and subtracting the term; the first and sec-

ond inequalities follow by the triangle and Cauchy-Schwartz inequalities, respectively; and,

the probabilistic bound follows given
∥∥∥V̂ ∥∥∥ .P

√
kT by the normalization,

∥∥∥V̂ − V 0H
∥∥∥ =

Op

(
log(Tp)
N

)
by an analogous argument to Lemma A4; and, ‖V ‖ ≤ ‖V 0‖ ‖H‖ = Op(

√
T )Op(1)

by Assumption 2(i).

Lemma 12. Under the assumptions of Lemma A8 and Assumption 4(ii), we have∥∥∥T−1/2V̂ >G− T−1/2V >G
∥∥∥ = Op

(
log(Tp)

N

)
.
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Proof of Lemma A12.∥∥∥T−1/2V̂ >G− T−1/2V >G
∥∥∥ = T−1/2
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)∥∥∥∥

≤ T−1/2
∥∥∥V̂ − V ∥∥∥∥∥V 0

∥∥ ‖η0‖+ T−1/2
∥∥∥V̂ − V ∥∥∥ ‖εg‖
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.

where the equality follows from definition of the observable factor model; the inequality

follows from the use of the triangle and Cauchy-Schwartz inequalities; and, the probabilistic

bound follows as in Lemma A11 with ‖εg‖ .P

√
T by Assumption 4(ii).

Lemma 13. Under the assumptions of Lemma A12, we have

√
T (η̂ − η) = Op (1)

Proof of Lemma A13.

√
T (η̂ − η) =

√
T (η̂ ± η̃ − η)

=

(
V̂ >V̂

T

)−1√
T
V̂ >G

T
±
(
V >V

T

)−1√
T
V >G

T
−
√
TH−1η0

=

(
V̂ >V̂

T

)−1√
T
V̂ >G

T
−
(
V >V

T

)−1√
T
V >G

T

+ (H>)−1

(
V 0>V 0

T

)−1√
T
V 0>εg

T

= (H>)−1

(
V 0>V 0

T

)−1√
T
V 0>εg

T
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where the first equality follows from adding and subtracting the infeasible estimator; the

second inequality follows from the definitions; the third equality follows from the definition

of the model for G and rearranging; the penultimate probabilistic bound follows given the

difference between the first two terms is op(1) by the results of Lemmas A11 and A12 using

an analogous argument as Lemma A10; and, the final probabilistic bound holds given ‖H‖ =

Op(1) for invertible matrix H, the factors have positive definite second moment matrix given
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Assumption 2(ii), the time series mean of the mean zero random variable v0
t+1ε

g
t+1 is

√
T by

CLT Assumption 4(iv).

Define Πt :=
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>
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]
where asymptotic covariance matrix Φ is defined as in the logical way.

Proof of Theorem 1.
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)
where the first equality holds by definition of the estimator and target parameter; the second

equality holds by adding and subtracting terms; the third equality holds by Lemma A10
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√
T (γ̂ − γ) = Op(1) and Lemma A13 η̂ − η = OP (T−1/2) = op(1); the last equality holds

by Lemmas A10 and A13, which leaves the two non-asymptotically negligible terms at rate
√
T scaled by the associated true parameters η0 and γ0; and, the convergence in distribution

holds given by the joint CLT assumption 4(v) applying the delta method.

Define the following two invertible matrices matrices: A := limT→∞ T
−1E

[
V >V

]
and

B := limp,T,N→∞
1
N

E
[
Γ>β Z̄

>Z̄Γβ
]
.

The asymptotic variance σ2
g is thus given by the delta method:

σ2
g := γ>A−1Φ11(A>)−1γ + η>B−1Φ22(B>)−1η + γ>A−1Φ12(B>)−1η + η>B−1Φ>12(A>)−1γ.

1.8.2 Tables
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Table 1.1: Monte Carlo Simulations.

This table reports Monte Carlo simulations, S = 200, for IPCA, Three-Pass Estimators of Giglio

and Xiu (2021), and the DSLFM—columns 1, 2, and 3, respectively—for target parameters: latent

loadings Γβ, latent-factors F, average factor loadings β̄, latent matrix C, and observable factor risk

premium γg. The true data-generating process has three factors, N = 500, T = 100, p ∈ {10, 50},

and s = p/10.
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CHAPTER 2

Empirical Crypto Asset Pricing

2.1 Introduction

In this chapter, we investigate the dynamics of crypto asset returns through the lens of factor

models. After presenting a set of motivating empirical facts, we provide empirical results

to investigate why different crypto assets earn different average returns; conduct inference

for crypto’s inflation risk premium; and, compare estimation of risk premia of crypto asset

excess returns between classic factor models and our new dynamic latent-factor model.

Why Crypto Nakamoto (2008) gifted a novel mechanism design known as Proof-of-Work,

enabling a set of adversarial entities to reach consensus on the current state of an open

database using cryptography, often framed as a solution to the Byzantine Generals’ Prob-

lem (Lamport, Shostak, and Pease 1982). The Bitcoin blockchain launched in early 2009,

employing Proof-of-Work to pioneer a censorship-resistant digital transaction ledger. This

innovation introduced a permissionless payment network for transferring bitcoin, its native

digital asset. The emergence of Nakamoto Consensus, along with other blockchain-based

consensus mechanisms that followed, enabled the scarcity of digital information, particularly

in the form of digital or crypto assets, and thus introduced a new area of economic research.

A New, Attractive, and Independent Asset Class We motivate research into the

return dynamics of these crypto assets by establishing the following empirical facts in Section

2.3. The advent of Bitcoin sparked a Cambrian explosion of other crypto assets, evolving
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from initial valuations as collectibles into a trillion dollar asset class. Bitcoin has matured

into a substantial payment network, settling hundreds of billions of dollars annually, with

the large majority of transactions settling for a cost of less than one dollar, thereby offering

monetary functions with distributed consensus.

Bitcoin exhibited superior risk-adjusted returns when compared to traditional asset classes

over our study period of 2018-2022, inclusive. With regard to independence, bitcoin has lower

correlations with the Nasdaq and the S&P500, at 0.23 and 0.21 respectively, as compared

to gold’s correlations with these indices at 0.26 and 0.28. Moreover, bitcoin’s correlation

with other assets exhibits significant temporal variance, including several quarters of zero

or negative correlation with the Nasdaq; their high correlation (¿ 0.3) is only a recent phe-

nomenon seen in 2022. While these measures are suggestive of an independent asset class,

a possibly sufficient statistic is whether there are risk-adjusted return gains from including

crypto assets in one’s portfolio. From diversifying a risk portfolio of holding 100% Nasdaq to

instead holding 60% Nasdaq and 40% the crypto market, one would obtain a Sharpe Ratio

gain of 0.53 (from 0.43 to 0.96).

Crypto Signals The emergence of hundreds of crypto assets expands to a new asset class

the central focus of empirical asset pricing: the search for explanations of why different assets

earn different average returns. A fundamentally unique aspect of the crypto asset class is

open state: the state of the digital ledger is readable. This is termed onchain data where one

has access to the (onchain) economy’s full history of transactions. For instance, we directly

observe the hodling time of all Bitcoin wallets to discover a majority of wallets utilize bitcoin

as a store of value rather than for speculatively trading.

In this manuscript, we formulate several novel crypto asset characteristics in addition to

investigating the signal content of characteristics previously studied in the literature. An

additional distinction of this study is to build a panel of tradable crypto asset excess re-

turn data with more realistic inclusion criteria than previously studied in the literature.
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In examining the signal content across this rich set of asset characteristics, although there

are some redundant characteristics and signal decays over the study years, we observe nu-

merous sources of signal for the cross-section of one-week-ahead expected returns. These

empirical observations motivate the development of the factor model in Chapter 1, which

accommodates time-varying relationships between assets and characteristics, while capable

of incorporating and compressing the signal across a large number of characteristics.

Empirical Setting To assemble a weekly panel of tradable crypto assets, we prospectively

identify, at the start of each month from 2018 to 2022, inclusive, tradable crypto assets on US

centralized crypto exchanges with sufficient trading volume and market capitalization, which

results in the number of assets growing from 10 on January 7, 2018 to 204 on December 1,

2022. There are 210 unique assets in the panel.

Motivated by a one percent threshold on an order book’s volume, the most restrictive

inclusion criteria applied each month, among several other criteria, is for each asset to have

a median weekly volume across US exchanges of $500k over the trailing three months. Using

this strict set of inclusion criteria to study tradable assets without bias (e.g., price impact

on low liquidity crypto assets), our panel has a challenge wherein assets repeatedly enter

and leave the panel over time as they rise above and fall below the inclusion criteria. We

thus have to reform the panel monthly when fitting models. For example, an asset may not

be included in January 2019 even though we have data for it, but then the asset could be

included in February 2019, for which, we would want to use all of its historical data (i.e.

January 2018-January 2019) to inform our models.

This panel of weekly crypto asset excess returns is not only novel to the literature based

on the inclusion criteria but also given it contains several novel asset characteristics across the

sixty three characteristics studied within the following categories: onchain, social, financial,

momentum, exchange, and microstructure. We do note that five years of data is limited, but

this is the current state for empirical crypto asset pricing.
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Empirical Applications: Factor Models with Low-Dimensional Characteristics

We begin our study of estimating risk premia of crypto asset excess returns by employing

classic factor models that use a low-dimensional number of asset characteristics. First, in

studying sixty three univariate factors formed as the long-short quintile portfolios sorted on

each asset characteristic, we find six financial factors (e.g., three momentums, beta, idiosyn-

cratic skewness, and 5% shortfall) are the only ones associated with significant differences in

average one-week-ahead excess returns. Given the these six factors are all functions of strictly

previous returns, this is suggestive that crypto asset returns are not driven by fundamental

factors.

Next, to build a set of benchmarks for later results, we compare the out-of-sample pre-

dictive power in the Q3-Q4 2022 data of three models, namely, a three-factor model of size,

crypto market, and momentum; a latent three-factor model fit with PCA; and a dynamic

latent-factor model fit with IPCA using a subset of the characteristics. We find IPCA out-

performs the other models, suggestive of the signal in the characteristics. Its predictive

pricing signal outperforms a random walk and it provides economically and statistically sig-

nificant risk-adjusted returns for the zero-investment portfolio, whereas the other models

underperform a random walk yet provide modest long-short risk-adjusted returns.

Empirical Applications: Factor Models with High-Dimensional Characteristics

Utilizing the broader set of asset characteristics, we first establish the comparable out-of-

sample predictive ability of the DSLFM compared to the benchmark methods, with sup-

porting bootstrapped characteristic importance measures to elucidate the drivers of returns.

Exchanges inflows and outflows were significant characteristics, showing the importance of

these onchain measures. While DSLFM achieved a maximum, with one latent factor, out-of-

sample Sharpe of 3.3, this underperforms ICPA’s maximum, with one latent factor, Sharpe

ratio of 4.07.

Additionally, we implement our testing procedure to find that the crypto asset class pro-
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vides investors a positive inflation risk premium. Early proponents of Bitcoin and other

cryptocurrencies framed these as an outside options or hedges against traditional fiat cur-

rencies. To study this question, we use our extended model to recover the 10-year expected

inflation mimicking portfolio and measure its risk premium. This inflation risk premium

was estimated at a statistically significant 1.4 basis points (0.0097 standard error). This

translates to a 7.3% annual excess return, suggestive of positive compensation for investors

holding an inflation-hedged crypto portfolio, ceteris paribus.

Relevant Literature For the nascent empirical crypto asset pricing literature, this pa-

per’s main contribution is a set of out of sample results of a wide array of factors models

in measuring expected returns, from simple univariate to observable multivariate to PCA to

IPCA and finally our novel DSLFM. Although a recent literature, there are several dozen

papers, of which we will discuss a small selection, studying the performance of all these

aforementioned models–which we replicate with a more realistic panel of crypto assets–in

addition to comparing to the DSLFM. Liu et al. (2019) uses PCA to price contemporaneous

returns and volatility in high-frequency tick data using nine crypto assets. Interestingly,

they show how the factor structure changes across market regimes and how the factor model

explainability has improved over time. Shams (2020) studies univariate factor performance

in a panel of crypto assets, including novel social media and investor base measures. Bianchi

and Babiak (2021) shows ICPA outperforms static latent factor models and observable fac-

tor models in explaining realized returns as well as measuring expected returns. Using the

interpretability of IPCA, the authors note only seven characteristics were significant, includ-

ing liquidity, momentum, and volatility. Liu, Tsyvinski, and Wu (2022) studies the cross

sectional pricing ability of univariate factor portfolio sorts and multivariate observable (i.e.,

market, size, and momentum) factor model. Several univariate factors have statistically sig-

nificant results, including characteristics formed using market capitalization, previous prices,

momentums, and volumes. The three-factor model accounts for the performance of these
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univariate strategies.

Next this paper also contributes novel empirical facts, including motivating crypto as a

new asset class, presenting bitcoin’s use as a store of value and payment network, and dis-

cussing the pricing ability of several new asset characteristics. Makarov and Schoar (2020)

provide empirical evidence of arbitrage opportunities between centralized exchanges, in par-

ticular across countries as bitcoin often trades at a premium outside the United States. Hu,

Parlour, and Rajan (2019) present a set of stylized facts on crypto as a new investable in-

strument, including crypto’s low correlation with gold and equities but significant covariance

with bitcoin, which is perhaps driven by the need to purchase bitcoin to access altcoins. Borri

(2019) estimate conditional value at risk in a small number of crypto assets to show these

crypto assets are highly exposed to tail-risk within the crypto asset class, but not exposed

to tail-risk with respect to traditional asset classes. Additionally, the authors present mean

variance gains from a small crypto allocation to a traditional portfolio. Bianchi (2020) cor-

roborates these findings showing crypto exhibits a low correlation to traditional asset classes

as well as presenting results on previous volumes predicting crypto asset returns. Liu and

Tsyvinski (2021) discover momentum and proxies for investor attention explain variation in

crypto asset returns, yet major crypto assets do not comove with traditional asset prices

nor macroeconomic factors. Zhang and Li (2020), Zhang et al. (2021), and Zhang and Li

(2023) present significant risk premia results in a panel of crypto assets for idiosyncratic

volatility, downside risk, and liquidity. Bianchi, Guidolin, and Pedio (2022) finds investor

attention significantly predicts crypto asset returns. Cheah et al. (2022) finds several asset

characteristics and macroeconomic factors with significant predictability for bitcoin returns,

while stock and bond market common factors have no correlation with bitcoin returns.

As a final contribution to the empirical crypto asset pricing literature, this paper identi-

fies several improvements for building a realistic panel of tradable crypto assets. For context,

there are low barriers to entry in launching a new crypto asset, resulting in tens of thousands

of crypto assets with a market as of 2023. However, the vast majority have insufficient liquid-
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ity for empirical study given trivial volume would have significant price impact. Moreover,

many are not available on a US exchanges. Thus, as we will argue in Section 2.2 that the

literature is currently studying asset returns which were not tradable. Our criteria suggests

a tradable panel starting with ten crypto assets in 2018 expanding to about two hundred

assets at the end of 2022. However, by way of example, in similar time periods, Liebi (2022)

studies 652 cryptoassets; Borri et al. (2022) measures risk premia of observable factors using

the method of Giglio and Xiu (2021) in a panel of about seven hundred assets; and, Cong

et al. (2022) studies risk premiums and factor pricing ability in a panel of four thousand

crypto assets.

2.2 Description of Data

Panel Overview We obtain hourly crypto asset prices, trading volumes, and market cap-

italization from Coin Metrics and CoinAPI for 2018-2022, inclusive.1 Specifically, we collect

these data for all assets with at least four months of trading history and a spot market

to USD, USDC, or USDT on one of the following United States exchanges.2 We exclude

years before 2018 given a very small number of relevant assets, and we save 2023 for future

out of sample experiments. Price is the volume-weighted average hourly candle mid-price

across these exchanges where we average all variables first across the two data providers. 3

Excess returns are formed from this tradable price measure after removing the one month

Treasury-bill rate to proxy for the risk-free rate. Our weekly panel is aggregated from this

1It should be noted that market capitalization in crypto is difficult to measure given the various mea-
sures of token supply. We use Coin Metrics’ measure which aims to estimate the free float supply;
see https://coinmetrics.io/free-float-supply-a-better-measure-of-market-capitalization/ for
further discussion.

2Specifically, : Binance US, Bitstamp, Coinbase, Crypto.com, FTX US, Gemini, Kraken, and Kucoin.

3To our knowledge, this is a uncommon approach in the literature to use the actually tradable price as
opposed to a global price across all exchanges. The mean absolute error between the global price uses the
volume-weighted average hourly price and the actual tradable price from the US exchanges is $1.71 while
the mean absolute error in weekly return is 95 bps.
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hourly panel as we will discuss.

Rolling Inclusion Criteria Crypto assets have a challenging empirical asset pricing prob-

lem of how to define a relevant temporarly-changing asset universe. To illustrate, note Coin-

MarketCap listed the market price of 1381 crypto assets on January 2, 2018. 4 However,

the vast majority of these assets are not tradable from the view of empirically studying

their returns. That is, as we will discuss in the next paragraph, the tradable volume on US

exchanges is only sufficiently high for a small number of assets, such that, historical returns

will not be distorted by price impact. Moreover, there is volatility in the trading volume so

one must sequentially build an asset universe.

On the first day of each study month, we define an asset as tradable in our study if

it has twelve weeks of trailing data to form relevant characteristics; it has a spot market

on a US exchange to USD, USDC, or USDT; it is not a stablecoin or synthetic asset (e.g.,

wrapped BTC, PAXG, etc.); its average market capitalization over the trailing three months

was above one basis point of the total crypto market capitalization5; it has nonzero trading

volume on all trailing twelve weeks; and, finally, its median weekly trading volume is above

$500,000 in the trailing twelve weeks.6

A nuanced aspect of using this asset universe is to repeatedly build the panel each month

to handle assets repeatedly entering and leaving the panel. For example, a previously in-

cluded asset may not be included in January 2019 so we remove the data we have for it,

but then the asset could be included in February 2019, for which, we would want to use its

historical data (i.e. January 2018-January 2019) to inform our models. Thus, when fitting all

4https://web.archive.org/web/20180102053542/https://coinmarketcap.com/all/views/all/.

5Many other papers define a static market capitalization threshold of $1MM, which will not be responsive
to the significant expansion and contraction of market capitalizations in the asset class, e.g., Liu, Tsyvinski,
and Wu (2022), Liu and Tsyvinski (2021), Shams (2020), Cong et al. (2022), etc.

6To our knowledge, this is a novel approach in the empirical crypto asset pricing literature where we use
a heuristic of staying below 1% of the volume to assume no price impact and a weekly trade size for a given
asset of $5,000. See transaction cost discussion in Section 2.4 for further details.
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statistical models in this paper, we have to rebuild the panel at a month by month frequency.

There are a few limitations of this approach. We study only a small number of assets

relative to the literature. Moreover, we study only assets available to trade for US investors

leaving open to future work a more global view of this asset class. Finally, we identify

relevant assets at a monthly frequency for simplicity.

Asset Characteristics For all assets in the universe, we obtain from Q4 2017 through

Q4 2022 a rich set of asset characteristics from several data providers.7 Tables 2.1-2.6 in

Appendix 2.6.1 enumerate the details of the characteristics studied across six categories:

onchain, exchange, social, momentum, microstructure, and financial. We are replicating

results, using our more rigorous panel, for many of these characteristics as derived from the

relevant literature, including Bianchi, Guidolin, and Pedio (2022), Borri et al. (2022), Liu,

Tsyvinski, and Wu (2022), Liu, Tsyvinski, and Wu (2021), Cong et al. (2022), Liebi (2022),

Zhang and Li (2020), Zhang et al. (2021), Zhang and Li (2023), and Yao et al. (2021).

To our knowledge, we also have several asset characteristics novel to the literature across

the categories: onchain (i.e., age destroyed, delta flow distribution, delta holders distribution,

percentage of supply in profit), exchange (i.e., percentage of supply on various exchanges

and exchange flows), social (i.e., positive and negative sentiment, developer activity, and VC

owned), momentum (i.e., returns from all time highs and lows), microstructure (i.e., ask and

bid sizes), and financial (i.e., market capitalization to realized value).

To handle missing values in the characteristics, we fill with cross-sectional medians, where

a characteristic was dropped if it had a week where the majority of assets were missing a

value. Although this is restrictive, our aim was to be conservative. Characteristics were

normalized on a per model basis as discussed in Section 2.4.

7The providers are Coin Metrics, CoinAPI, CoinGecko, CoinMarketCap, Messari, and Santiment.
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Panel Statistics To close the description of the data, we present basic statistics for our

panel of crypto asset excess returns. Summary statistics are presented in Table 2.7 for the

panel’s asset returns, market capitalizations, and trading volume. In Panel A, we see the

number of assets in the panel begins at 10 in January 2018 and grows to 204 at the end

of 2022 with a total of 210 unique assets in the panel. The total market capitalization

of our panel captures above 80% of the total crypto market capitalization as reported by

CoinMarketCap. The median weekly asset market capitalization is about $840MM, which is

decreases over the study period as more small cap assets are included. The median weekly

asset trading volume is in the tens of millions of USD across the study time period. In Panel

B, we report annualized excess return statistics for the market-weighted return of the crypto

assets in the panel (CMKT) at 53.84% per year and a Sharpe ratio of 0.67, which offers a

higher absolute and risk-adjusted return than the Nasdaq at 9.85% and 0.43, respectively.

Figure 2.1 reports the empirical distributions of weekly excess returns for the crypto

market, bitcoin, and ethereum. The distributions have positive mean with the vast majority

of returns between -30% and 30%. Across all three, we see several outlier weekly returns that

would be unlikely under a normal DGP. Bitcoin has a tighter distribution than the CMKT.

Finally, ethereum interestingly has a right tailed skewness.

Figure 2.2 reports the cumulative excess returns from January 1, 2018 until December 31,

2022 for each asset in the study universe and the crypto market. We thus see 172 of the 210

unique assets (∼82%) have a negative cumulative return over the study period, while 146

and 57 assets (∼70% and ∼27%) had a cumulative return below -50% and -90%, respectively.

Finally, Tables 2.8 and 2.9 report descriptive statistics for the panel’s dependent variable,

asset excess returns over the subsequent week, and the set of sixty three asset characteristics.
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2.3 Motivating Empirical Facts

“We have always had bad money because private enterprise was not permitted

to give us a better one...The important truth to keep in mind is that we cannot

count on intelligence or understanding but only on sheer self-interest to give us

the institutions we need.”

—Friedrich A. Hayek (1976) The Denationalization of Money.

Tables and Figures 2.3-2.22 present the following eleven motivating empirical facts.

1. From zero in 2009, Bitcoin and hundreds of other crypto assets have become a trillion

dollar asset class in 2022, with several multi-billion dollar sub-industries.

2. Bitcoin achieved superior risk-adjusted returns for nearly the entire study time period

as compared to traditional asset classes.

3. Bitcoin has lower correlations to the Nasdaq and S&P500 (at 0.23 and 0.21) than that

of gold’s correlation to these indices (at 0.26 and 0.28).

4. Bitcoin’s correlation with other assets is highly time varying, including several quarters

of zero or negative correlation with the Nasdaq; their high correlation (> 0.3) is only

observed recently in 2022.

5. From diversifying a risk portfolio of holding 100% Nasdaq to 60% Nasdaq and 40%

CMKT, one would obtain a Sharpe Ratio gain of 0.53 (from 0.43 to 0.96).

6. The crypto market offers a positive inflation risk premium of 31 bps.

7. Bitcoin is used to store value by a majority of wallets, not speculatively trading.

8. Bitcoin is a payment network settling hundreds of billions of dollars annually where

the large majority of transactions cost less then one USD.
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9. Efforts to fork, that is copy, the Bitcoin blockchain have had immaterial adverse effects

on it; an event study of forks observes, on the contrary, significant positive effects on

price, trading volume, active addresses, and social activity.

10. There are several characteristics with significant signal for the cross-section of one-week

ahead expected returns.

11. The asset characteristics contain redundant information; however, the variation cannot

be captured by just a few principal components.

A Rising Asset Class We begin with documenting the birth and rise of crypto asset class.

Figure 2.3 plots the market capitalization, during the study period, of the crypto market,

Bitcoin, Ethereum, assets by industry classification, and assets by usage classification. Before

the launch of Bitcoin, there were, on the order of, 50 global currencies (Fratzscher 2009).

From a market value of zero in 2009, Bitcoin and a Cambrian explosion of hundreds of other

cryptocurrencies and crypto assets have risen to a trillion dollar asset class at the end of

2022, with several multi billion dollar sub-industries. The assets included in this study have

an aggregate valuation of about $650B as of December 25, 2022, which captures about 80%

of the total crypto market, per CoinGecko, as of that date. Bitcoin and Ethereum capture

over half of the valuation of this asset class, hence the focus on these assets throughout

this paper. In the second two panels of Figure 2.3, we document, using the asset industry

and usage classifications of Messari, the rise of several different sub-industries within crypto.

We note this not only to emphasize how it is incorrect to conceptualize all crypto assets as

cryptocurrencies, but also to note areas for future work to account for these industry and

usage differences in asset pricing models and other research.

An Attractive Asset Class Bitcoin achieved superior risk-adjusted returns for nearly

the entire study time period as compared to traditional asset classes. Figure 2.4 reports

rolling Sharpe ratios over trailing four year windows using weekly excess returns for bitcoin
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and various other assets for the study period. To proxy for other assets (i.e., equities, fixed

income, real estate, currencies, and gold), various large ETFs were used to capture a low

cost exposure to the relevant asset class. Qualitatively, these rolling Sharpe ratios increase

in noise as we shrink the window over which we consider an investment horizon; notably,

Bitcoin’s separation decreases. However, we study this four year window as it is the relevant

period over which the median bitcoin is held, as will be discussed shortly.

An Independent Asset Class We now motivate the independence of this asset class by

studying correlations and the gains from diversification. Table 2.10 reports pairwise Pear-

son correlation coefficients between weekly excess returns of bitcoin, ethereum, the crypto

market, and various other assets for the January 1, 2018 to December 31, 2022 time period.

Bitcoin has lower correlations to the Nasdaq and S&P500 (at 0.23 and 0.21) than that of

gold’s correlation to these indices (at 0.26 and 0.28). The crypto market is of similar corre-

lations to the Nasdaq and S&P500 (at 0.26 and 0.25) as Gold. This is suggestive evidence of

the independence of this asset class; however, this single measure masks significant temporal

variation in this relationship between assets.

Table 2.5 reports rolling four-year Pearson Correlations between bitcoin’s weekly excess

returns and those of other major assets for the study time period. We observe those ag-

gregate positive correlations mask richer temporal variation in this rolling correlation. For

example, for twelve months leading up to the COVID 19 onset, Bitcoin had a rolling four-

year correlation with Nasdaq of less than 0.1, including a quarter of negative correlation.

Correlations between Bitcoin and other assets above 0.3 are only a recent phenomenon in

the 2022 calendar year. With risk-adjusted returns and correlation measures as context, we

now turn to study a better measure of the independence of this asset class: are there gains

from diversifying one’s portfolio to include crypto?

Figure 2.6 plots the annualized geometric average return against the annualized volatility
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of each crypto asset’s weekly excess returns over the study period.8 Additionally, the risk free

rate and the portfolio holding 100% Nasdaq are plotted. Nasdaq, in dark grey, and CMKT,

in purple show similar ratios between their annualized geometric average returns and risk

with the grey and purple dashed lines stacking nearly on top of each other. However, if we

aim to maximize this return-risk ratio in this data set, we should allocate 70% to the Nasdaq

and 30% to the crypto market for a ratio of 0.63, which is the portfolio plotted in black.

(For the Sharpe Ratio, we’d maximize at 60% Nasdaq and 40% CMKT for a Sharpe of 0.96,

a Sharpe gain of 0.53 over 100% Nasdaq at 0.43.) In this data set, the annualized geometric

average weekly return of CMKT is 26.4% with an annualized volatility of 80.8%. For BTC,

ETH, Nasdaq, and the 70 30 portfolio, those numbers are, respectively: 5.9% and 76.7%;

11.8% and 101.8%; 7.5% and 23.0%; and, 20.5% and 32.4%.

Inflation Risk Premium in the Crypto Asset Class Allocations to bitcoin and the

crypto market have been motivated as a hedge on traditional currencies; for example, infla-

tion risk as substantiated by recent survey data (Aiello et al. 2023). Some simple methods

to empirically study this claim would be to measure correlations between crypto returns

and inflation expectations or, similarly, a price impact study of large changes in inflation

expectations on crypto returns. In the spirit of these, if we study only the largest twelve

month changes in the Cleveland Fed’s 10 year expected inflation measure between January

1 2018 and December 31, 2022, the correlation between bitcoin monthly excess returns and

10 year expected inflation is 0.03 and the correlation between cmkt monthly excess returns

and 10 year expected inflation is 0.06, which compared to monthly excess return of Gold and

10 year expected inflation is -0.10. The next level of sophistication would be to partition

out the crypto market return in a regression of the monthly excess returns of Bitcoin on the

CMKT and expected inflation, which is reported in Panel A of Table 2.11. We observe a

positive covariance between inflation expectations and the contemporaneous excess returns

8Do note the ordinate axis is a geometric average, not a time series average, given the latter can be quite
different from the former given the volatility of these assets (e.g. Zcash has different signs!).
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of bitcoin. However, in asset pricing, we have a better tool to capture whether an observable

risk factor, e.g., inflation, carries a nonzero risk premium in the crypto asset class.

In Table 2.11, Panel B, we report the positive inflation risk premium of 31 bps per week

for the crypto asset class. We utilize Fama Macbeth regressions, which recover the inflation-

mimicking portfolio in the crypto asset class and estimate this portfolio’s risk premium.

Although this yields a positive and economically significant risk premium, it is not statisti-

cally distinguishable from zero. Other researchers however have found a similarly positive

premium associated with U.S. inflation breakeven rate (Borri et al. 2022). Some further

limitations of note: we used a 200 day restriction to calculate the factor loading (Bali, En-

gle, and Murray 2016); there is potential omitted variable bias of other relevant observable

factors (Giglio and Xiu 2021); and, further, a dynamic latent factor model, as opposed to a

static observable factor model, will likely better capture the dynamics of returns and regime

changes, which we show in Section 2.4.

Onchain Facts on Bitcoin’s Use We now turn to study a few onchain statistics, using

the rich environment of the Bitcoin blockchain, with the aim to correct a few misconceptions

in the literature and to motivate future research in the onchain lab.

First, Bitcoin is used to store value by a majority of wallets, rather than speculatively

trading. Figure 2.7 reports the median age in full days of all unspent transaction outputs

(UTXO) for the Bitcoin ledger for each week in 2018 through 2022. The majority of UTXOs,

which are a proxy for wallets, have not been spent for years. This may be a downward biased

estimate given Bitcoin has only been around for about fifteen years, which the trend line

supports.

Second, Bitcoin is a payment network settling hundreds of billions of dollars annually

where the large majority of transactions cost less then one USD, offering monetary functions

with distributed consensus. Figure 2.8 reports Bitcoin’s monthly onchain volume and median

transaction fee for the study period. We see monthly onchain settled transactions on the

67



order of tens of billions of USD and median transaction fees paid to miners on the order of

one USD.

Third, efforts to fork, that is copy, the Bitcoin blockchain have had immaterial adverse

effects on it. Table 2.12 reports this an event study for various Bitcoin statistics on fifteen

dates of major Bitcoin forks, subsequent to January 2016.9 Bitcoin’s market value, trading

volume, onchain and development activity, social volume, and miner hash rate all respond

positively to forks with statistically significant, at the 5% level, positive signs for return,

trading volume, active addresses, and social volume. 10 11

Asset Characteristic Signal Content Finally, we study some simple statistics to inform

the potential signal content of the sixty three asset characteristics in measuring expected

returns. Tables 2.13-2.22 report statistics for the panel’s asset characteristics, including:

univariate regression results of asset excess returns over several forward horizons on each

characteristic; the mutual information between asset excess returns seven days ahead and

each characteristic for entire study period and each calendar year; and, the correlations

among various groups of characteristics and their first principal components. Although de-

caying over the years, we observe numerous sources of signal for the cross-section of one-week

ahead expected returns. Further, the asset characteristics do contain redundant information;

however, the variation across asset characteristics cannot be captured by just a few principal

components.

9We use one week pre and post windows. The fifteen forks considered are: Bitcoin 21, Zcash, Bitcoin Cash,
Bitcoin Gold, Bitcoin Diamond, Bitcoin Lightning, Bitcoin Fast, Bitcoin2, BitcoinPlus, Bitcoin Interest,
Bitcoin Atom, Bitcoin Private, Microbitcoin, Bitcoin BEP2, and BitcoinSV. These are major assets who had
a market price tracked by CMC at some point in time subsequent to the fork. This time period containing
fork dates covers both boom and bust markets for BTC.

10There are a few major Bitcoin forks not included (e.g. Litecoin), which were outside the time period
where we have non-financial data.

11To check robustness, we also ran the event study for two day periods before and after event days as well
as two week periods before and after. The only qualitative difference in a point estimate were Return and
Miner Hash Rate flipping negative for two week windows, albeit both are not statistically indistinguishable
from zero. All other statistics maintain sign and significance, or increase significance.
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Across the univariate regression results in tables in 2.13 through 2.19, we observe numer-

ous significant coefficients not only contemporaneously and at the horizon to be studied (i.e.

seven days ahead), but also that the panel exhibits longer memory with significant results at

14, 30, and 90 day horizons. That is, there is persistent signal in characteristics for returns

over multiple future horizons beyond seven days. There are more significant coefficients

than we would expect by chance and, moreover, there are numerous coefficients that remain

highly significant at all horizons.

In the tables 2.21 and 2.22, we study mutual information to capture a broader, nonlinear

measure of the relationship between the asset characteristics and the subsequent seven day

asset excess return. Correlations and univariate regression coefficients capture only a simple

linear covariance. In these tables, we see similar patterns to the univariate regression results

for characteristics with high signal; however, we also observe falling magnitudes in the mutual

information.

Across the correlation tables in 2.13 through 2.18, we observe the redundancy in informa-

tion with many pairs of characteristics having near one Pearson correlation; in the 2.20, we

see the first principal components for each asset characteristic category has some redundancy,

however the majority of the pairwise relationships show low correlation; and, finally, in the

characteristic correlation tables, the first principal components can capture large variation

only among a few of the characteristics.

Given the aforementioned results, it suggests we will want to use a model that can (i)

compress the redundant information while remaining (ii) rich enough to capture the signal

across characteristics and (iii) temporal dependence. Moreover, we will want a model that

(iv) allows for time varying relationships between assets and characteristics. We use these

empirical facts to motivate the DSLFM.
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2.4 Empirical Applications

In this section, we first explore the ability of individual asset characteristics in predicting the

cross section of the crypto asset returns. Second, we establish the pricing ability of a variety

of benchmark factor models and compare these results to those of the DSLFM. With the

DSLFM, we utilize the asset pricing tests developed in Section 1.6 to elucidate the drivers

of returns and conduct inference for crypto’s inflation risk premium.

Univariate Observable Factor Models We begin our empirical study of the cross-

section of returns with a classic nonparametric method of univariate factor portfolio sorts

based on the rich set of crypto asset characteristics. We establish a set of empirical patterns

in the dynamic of crypto returns to offer suggestive evidence of why different crypto assets

earn different average returns. Moreover, these results can be used to motivate and develop

theoretical models, in addition to more practical and obvious use.

We study portfolios formed using sixty three asset characteristics as precisely defined in

Appendix 2.6.1. The large majority of these have extensively-studied counterparts in equity

markets, and further, as previously discussed in Section 2.2, have a small but growing liter-

ature studying these risk factors in the crypto asset class. Nevertheless, to our knowledge,

we have at least fifteen novel asset characteristics across the six categories we use to group

the sixty three characteristics. They are: age destroyed, delta flow distribution, delta hold-

ers distribution, percentage of supply in profit, percentage of supply on various exchanges,

exchange flows, positive and negative sentiment, developer activity, VC owned, returns from

all time highs and lows, ask and bid sizes, and market capitalization to realized value.

To form univariate factor portfolios for the study period 2018-2022, inclusive, we sort

crypto assets each week into five value-weighted portfolios ranked by the smallest (portfolio

1) values for the characteristic to the largest (portfolio 5). We analyze the zero-investment

portfolio of long the top quintile and short the bottom quintile. That is, each week we sort
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individual crypto assets into quintile portfolios based on the value of the given characteristic,

and then we track the value-weighted excess return of each portfolio over the week.

Table 2.23 presents the results for the statistically significant zero-investment long-short

strategies across all characteristics. Six of sixty three characteristics exhibited statistically

significant long-short strategies. Although is a low fraction, this has a low probability of oc-

curring by chance.12 Across the thirty quintile portfolios, twenty four followed a monotonic

pattern within characteristic, with only the two week momentum having monotonic quintile

portfolios. The time-series average weekly excess return spread (and annualized Sharpe ra-

tios) for the zero-investment long-short strategies are 1.5% (0.78) for two week momentum,

1.2% (0.75) for one month industry momentum, 1.4% (0.87) for two month industry mo-

mentum, 1.6% (0.76) for one week beta, 1.2% (0.79) for one month idiosyncratic skewness,

and 1.4% (0.76) for one week 5% expected shortfall.

It is of note that all of these statistically significant strategies were formed on functions

of previous returns, that is, momentum and financial characteristics. Although capturing

differences in industries lead to significant long momentum strategies, more fundamental

pricing characteristics were not associated with significant spreads between top and bottom

quintile portfolios. With this more rigorous panel, many of the univariate factor results

established in the existing literature fail to replicate. These results motivate the use of the

DSLFM to incorporate the signal across these six characteristics with feature selection, in

addition to capturing temporal heterogeneity in the relevance of the characteristics through

dynamic loadings. Moreover, as we will now see, many characteristics have economically

significant return spreads and Sharpe ratios, although the short panel of five years and the

volatility of returns in this asset class suppress the resulting t-statistics.

Tables 2.24-2.29 present the results for the statistically insignificant zero-investment long-

short strategies across the remaining characteristics, grouped into separate tables by char-

12There is a 3.7% probability of observing 6 or more successes out of 63 independent Bernoulli trials with
success probability 0.05%.
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acteristic category. Five more of these characteristics had an economically meaningful an-

nualized Sharpe ratio above 0.5 for the associated zero-investment long-short strategy. For

these, the time-series average weekly excess return spread (and annualized Sharpe ratios) for

the zero-investment long-short strategies are 0.8% (0.61) for age destroyed, -1.0% (0.58) for

delta holders distribution, -1.0% (0.57) for three to two month reversal, 1.0% (0.56) for one

month alpha, and -1.1% (0.54) for one month beta. Seventeen more of the characteristics

had an economically meaningful annualized excess return above 30% for the zero-investment

long-short strategy.13 For these, the time-series average weekly excess return spread for the

zero-investment long-short strategies are 0.6% for one week transaction volume, 0.7% for

percent of circulating supply on a CEX, 0.7% for percent of circulating supply on DeFi,

0.7% for Reddit social volume, 0.8% for one week momentum, 0.6% for one month momen-

tum, -0.6% for return from all time high, -1.0% for return from all time low, 0.9% for one

week alpha, 0.7% for one month downside beta, 0.7% for one month coskewness, 0.9% for

one week Var5%, -0.6% for one week volatility, -0.6% for one month volatility, -0.9% for

three month volatility, -0.5% for one week idiosyncratic volatility, and -0.6% for one month

idiosyncratic volatility.

We observe several notable patterns. There is a large Sharpe of economically significant

return spreads and Sharpe ratios for the long-short strategies formed using financial char-

acteristics, yet none for microstructure characteristics. Although using these more relaxed

economically significant thresholds, there were several onchain characteristics of note, which

is promising for more fundamental-based asset pricing. Only a single social characteristic

had an economically significant return spread, with no stronger results. These results further

motivate the specification of the dynamic latent factor model to select characteristics with

signal content for a dynamic factor loading and to compress the common variation into a

low-dimensional common risk factor vector.

13These are pure-alpha strategies, although for context the CMKT and Nasdaq returned 0.53% and 10%
annually during the same time period.
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We close this section noting limitations. These univariate factor results do not account

for feasibility of short selling and transaction costs, such as spreads, trading fees, margin

fees, price impact, and slippage. We also studied results for the entire study period, which

includes the out of sample period that we will use to judge the performance of the coming

more sophisticated factor models. It is for this reason we did not report annual univariate

results, as our out of sample period will comprise only 10%-20% of the total study period.

Multivariate Observable Factor Models We now turn to the out of sample perfor-

mance of low dimensional factor models in estimating risk premia of crypto asset excess

returns, beginning with multivariate observable factor models. Instead of selecting a small

number of observable factors based on individual univariate performance, we instead form,

using the sixty three characteristics, all combinations of one-, two-, and three-factor models

to select the best model of each size based on its performance in combined period of the

second half of 2021 and first half of 2022.

In detail, to select multivariate factor models, we perform the following procedure. First,

we form strictly time varying risk factors using each of the sixty three asset characteristics

as the top minus bottom value-weighted quintile portfolio excess returns. We thus do not

normalize characteristics. To form predicted asset returns, we next estimate each asset’s

static factor loading as the contemporaneous in sample time series regression of excess returns

on factor(s); estimate risk factor conditional means as the time series average of the factor

in sample; and, predict the asset’s return for the next week using the dot product. We use

this procedure to fit models in 2018 through the first half of 2021 and, with an expanding

window, predict week by week for the combined validation period of the second half of 2021

and the first half of 2022. For all one-factor models, the sixty three choose two two-factor

models, and the sixty three choose three three-factor models, we then select the best model

of each size based on the predictive R2 for the fifty two weeks in the validation period.

Throughout, we have to reform the panel each month for the relevant included assets. To
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compare to the literature, we also formed the Liu, Tsyvinski, and Wu (2022) Fama-French

style three-factor model using their CMKT, CSMB, and CMOM risk factors.

Table 2.30 presents results for the test period, i.e., the second half of 2022. The best

multivariate observable factor models were size; illiquidity and size; and, size, one month

momentum, and three month volatility. Interestingly, the model selection process incorpo-

rated size in all three models. The predictive R2 for all three models and the benchmark

model were all negative, performing worse in MSE pricing ability than a random walk. How-

ever, although statistically insignificant, all three multivariate observable factor models had

economically significant weekly time series average excess return spreads of about 1% with

associated Sharpe ratios of 1.31-1.72, which all beat the benchmark model with a return

spread of 0.5% and a Sharpe ratio of 0.65. All four associated alphas show these long-short

strategy returns are meaningfully uncorrelated. The illiquidity and size two-factor model

achieved the highest Sharpe of 1.72, which is suggestive evidence of a low number of factors

being optimal. Although the strategies replicated out of sample, we should note these results

are again before transaction costs and are for a very small test period.

Static Latent-Factor Model We next study the out of sample performance of a static

latent-factor model in estimating risk premia of crypto asset excess returns. We are not

only interested in how learning the factors from the data changes the out of sample pricing

ability, but also in developing benchmarks for the high-dimensional dynamic latent-factor

model. We use the classic approach of PCA (Bai 2003) to estimate one- through five-latent

factor models.

In detail, for each month in the test period (i.e., the second half of 2022), we form

factor(s) using the matrix of contemporaneous excess asset returns for the relevant included

assets; for each asset, we run a time series predictive regression of its weekly excess returns

on the factor(s) to obtain its factor loading(s); and, we use each asset’s factor loadings and

the PCA-estimated factors to generate predicted returns for the out of sample month.
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Table 2.30 reports results for the test period, i.e., the second half of 2022. The predictive

R2 for all five latent-factor models were all negative, performing worse in MSE pricing ability

than a random walk. Although all five models had positive return spreads, only three of the

five models had Sharpe ratios—0.78, 1.24, and 1.34—in the range of the observable factor

models; however, there was not a clear pattern across the number of latent factors. This

is suggestive evidence of latent factors not offering a clear benefit over the multivariate ob-

servable factor models. Their out-of-sample performance yielding uniformly positive Sharpe,

generated without using asset characteristics, maintains a benchmark for the richer models.

Dynamic Latent-Factor Model with Low-Dimensional Characteristics We close

our study of the out of sample performance of low dimensional factor models in estimating

risk premia of crypto asset excess returns. We investigate the performance of IPCA, a

dynamic latent-factor model where the number of asset characteristics must be smaller than

the number of assets and time periods.14 Given the small number of assets in the panel

(i.e., there are less than two dozen for the majority of the weeks), we have to, outside of

IPCA, select features from the sixty three asset characteristics. We chose to just use the

characteristics listed in Table 2.23.15 We again reform the panel each month and normalize

period-by-period features to linearly spaced on [0, 1]. Finally, we do not specify a constant to

allow for mispricing effects but rather explain variation in expected returns using exposure

to common latent risk factors.

Table 2.30 reports results for the test period, i.e., the second half of 2022. Predictive R2

are positive except for a five factor specification with the maximum predictive R2 of 0.18% for

the three-factor model. All five models have economically significant weekly excess return

14We are grateful to Matthias Buechner and Leland Bybee for the IPCA implementation at https:

//github.com/bkelly-lab/ipca.

15We realized after doing this that this biases IPCA favorably as the univariate results used the IPCA test
period, which is one of several reasons that we have not even formed 2023 data to repeat our out-of-sample
exercises in fresh and larger data.
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spreads, from 1.5% to 3.1%, and associated annualized Sharpe ratios, from 2.07 to 4.07.

The one- through four-factor models have statistically significant time-series average weekly

excess return spreads for the zero-investment long-short strategies of, respectively, 2.8%,

2.9%, 3.1%, and 2.4%. The alphas remain statistically and economically significant with

little return lost to the market. Remarkably, there are only two quintile portfolios out of

twenty five that break monotonicity. Sharpe ratios nearly monotonically decline with the

number of factors; the three factor model edges out the two factor model by a difference of

0.13. Although again these results do not account for transaction costs and the test period

is short, the dynamic latent-factor model estimated with IPCA dominates the static factor

models.

Alpha Tests Before exploring potential gains from incorporating the full set of charac-

teristics into the model, we first investigate whether these factor models can span the six

cross-sectional crypto asset return predictors identified in Table 2.23. We study intercepts

and loadings in contemporaneous time series regressions, for the whole study time period, of

each statistically significant 5-1 univariate strategy on the 5-1 returns for the best—based

on Sharpe ratio—multivariate, PCA, and IPCA models.

Table 2.31 reports results. The factor model returns subsume all of the univariate strate-

gies besides one week expected shortfall 5%, which maintains a statistically significant alpha

intercept of 1.4% weekly excess return. Half of the strategies have a significant loading on the

multivariate risk factor. No strategy has a significant loading on the latent factor models es-

timated with PCA and IPCA. R2’s are modest from 7% to 22%. Although only one strategy

maintained a significant alpha, five of the six strategies maintained economically significant

return spreads above 20% annually, which offers suggestive evidence of the possibility of a

factor model better spanning these univariate strategies. We turn to the DSLFM with this

aim.
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Dynamic Latent-Factor Model with High-Dimensional Characteristics We study

three questions using the DSLFM. We first compare the out of sample predictability in the

same test period to that of the previous factor models, in addition to understanding the

characteristics driving returns and to estimating the inflation risk premium in the crypto

asset class. The setting is the same weekly panel, reformed each month with the relevant

assets, with asset characteristics normalized to 0 to 1.

The DSLFM estimation procedure is outlined in Section 1.4 and the test procedures

are defined in Section 1.6. There are several hyperparameters for the statistician to chose,

for which we are empirically motivated to use cross validation. Specifically, we generate

predicted returns week by week in the same validation period of the second half of 2021

through the first half of 2022 by using an expanding window training data set using all

previous weeks from the start of the panel. For models with one to five latent-factors, we

cross validate the relevant hyperparameters, including the soft thresholding hyperparameter,

the lasso penalty parameter, and the number of trailing weeks to average fitted latent factors

over to form predicted factors. We present results for models with the best predictive R2 in

the validation period.

Table 2.32 presents out of sample test period results for the DSLFM. Only one out of

the five models had a positive predictive R2. Eight out of ten models, when forming equal-

weighted and value-weighted portfolios within quintile, had economically significant time

series average returns for the long-short strategies, which were maintained when studying

the associated alphas. The equal-weighted portfolios had in all but one case, the five latent-

factor specification, superior Sharpe ratios, driven by both improved return spreads and

lower volatility.

Given the small panel, the poor pricing ability of the DSLFM with more factors is per-

haps not surprising given it could be over parameterized and noisily estimated. The factor

loading matrix grows by p with each additional specified latent factor. Nevertheless, the

large majority of the long-short strategies obtained economically significant Sharpe ratios
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and associated alphas, representing an improvement over the observable factor models and

PCA. However, IPCA outperformed, which is perhaps driven by a meaningful signal to noise

ratio improvement through the feature selection done before fitting IPCA. We will explore

this in 2023 data, which will yield much more data given the wide cross-section relative to

preceding years.

Table 2.33 presents bootstrapped results on asset characteristic importance to understand

the drivers of returns. Exchange inflows and outflows were the two statistically significant

characteristics with point estimates on their importance more than an order of magnitude

larger than the next characteristic. Again, we observe the importance of onchain data.

This empirically supports approximate sparsity as a reasonable assumption, given the fast

decay with a long tail on the importance of these characteristics. Our theory, although it

would accommodate approximate, assumes exact sparsity for simplicity. Interestingly, none

of the statistically significant univariate factor strategies were significant in the DSLFM

characteristic importance. However, all six were at least in the top half, and, in practice,

the importance of studying exchange flows is well known. In future work, we will compare

these results to the importance measures available in IPCA.

Finally, to demonstrate the extensibility of the DSLFM, we conduct inference on an

observable factor risk premium, namely testing for a nonzero premium for ten year expected

inflation risk within the crypto asset class. This has been a long-standing research question

to understand the relationship between crypto’s returns and inflation. Early proponents

of Bitcoin and other cryptocurrencies framed these as an outside option or hedge against

traditional fiat currencies. To study this question, we use our extended model with one factor

and the associated estimation procedure—as described in Section 1.4 in how we extend Giglio

and Xiu (2021)—to recover the 10-year expected inflation mimicking portfolio and measure

its risk premium.

The inflation risk premium was estimated to be a statistically significant 1.4 bps with

a standard error of 0.0097 bps. This translates to a 7.3% annual excess return, suggestive
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of positive compensation for investors holding an inflation-hedged crypto portfolio, ceteris

paribus. The result corroborates similar findings using more simple methods, detailed in

Section 2.3, with a dynamic latent factor model with superior pricing ability. One could

attribute this to several aspects of the DSLFM, for example, it allows for regime changes

with time-varying loadings, it incorporates rich structure with the full asset characteristics,

among other reasons. There are limitations however, including the slow asymptotic rate

with this inference procedure, as discussed in Section 1.5, which is exacerbated by the small

cross-section in our setting. Thus, although significant, we should interpret this result as

suggestive and seek replication.

2.5 Conclusion

“Competition would provide better money than would government. I believe

we can do much better than gold ever made possible. Free enterprise, i.e. the

institutions that would emerge from a process of competition in providing good

money, no doubt would.

Two hundred years ago in The Wealth of Nations Adam Smith wrote that

‘to expect, indeed, that the freedom of trade should ever be entirely restored

in Great Britain, is as absurd as to expect that an Oceana or Utopia should ever

be established in it.’

It took nearly 90 years from the publication of his work in 1776 until Great

Britain became the first country to establish complete free trade in 1860...I fear

that since ‘Keynesian’ propaganda has filtered through to the masses, has made

inflation respectable and provided agitators with arguments which the profes-

sional politicians are unable to refute, the only way to avoid being driven by

continuing inflation into a controlled and directed economy, and therefore ulti-

mately in order to save civilisation, will be to deprive governments of their power
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over the supply of money. What we need now is a Free Money Movement...

I wish I could advise that we proceed slowly. But the time may be short.

What is now urgently required is not the construction of a new system but the

prompt removal of all legal obstacles which have for two thousand years blocked

the way for an evolution which is bound to throw up beneficial results which we

cannot now forsee.”

—Friedrich A. Hayek (1976) The Denationalization of Money.

2.6 Appendix

2.6.1 Details on Crypto Asset Characteristics

The tables below present details for each category of crypto asset characteristics.

Table 2.1: Crypto Asset Onchain Characteristics

Characteristic Definition

Tx Volume Tm7 The total transaction volume in native units over the trailing seven days.

Active Addresses Tm7 The number of active address over the trailing seven days.

∆ Log New Addresses Tm14-Tm7 The first difference of the logarithm of new addresses from 14 to 7 days ago.

New Addresses Tm7 The total number of new addresses over the trailing seven days.

Total Addresses The total number of unique addresses.

Circulation Tm7 The number of unique native units transferred over the trailing seven days.

Age Destroyed The sum over the trailing week of all native units transferred times the number of days

since they were previously transferred.

∆ Flow Distribution Tm7 The ratio between the total native units transferred between various entities identified by

Santiment (e.g. cex, dexes, defi platforms, whales, etc.) over the trailing week and the

total first absolute differences across all the flow variables over the trailing week.

∆ Holders Distribution Tm7 The same functional form as the change in flow but for the total supply held by wallets

with various magnitudes, as identified by Santiment, of the total supply.

% Supply in Profit The percentage of the total native units which last transferred at a market value below

the current market value.

80



Table 2.2: Crypto Asset Exchange Characteristics

Characteristic Definition

% Circ. Supply CEX The percentage of circulating supply in native units in wallets associated with CEXs as

identified by Santiment.

% Circ. Supply DEX The percentage of circulating supply in native units in wallets associated with DEXs as

identified by Santiment.

% Circ. Supply Defi The percentage of circulating supply in native units in wallets associated with DeFi plat-

forms as identified by Santiment.

% Circ. Supply Traders The percentage of circulating supply in native units in wallets associated with active

traders as identified by Santiment.

Exchange Inflow The total number of native units transferred from wallets not associated with exchanges

to wallets that are, over the trailing week, as identified by Santiment.

Exchange Outflow The total number of native units transferred from wallets associated with exchanges to

wallets that are not associated with exchanges, over the trailing week, as identified by

Santiment.

Number of Trading Pairs The number of trading pairs identified by CMC on CEXs.

Table 2.3: Crypto Asset Social Characteristics

Characteristic Definition

Social Volume The total number of text documents containing the asset name across Reddit, Twitter,

Telegram, and BitcoinTalk over the trailing seven days.

Social Volume Reddit The total number of text documents containing the asset name on Reddit over the trailing

seven days.

Social Volume Twitter The total number of text documents containing the asset name on Twitter over the trailing

seven days.

Sentiment Pos. Reddit The total sentiment score across all text documents with a positive sentiment on Reddit

over the trailing seven days.

Sentiment Pos. Twitter The total sentiment score across all text documents with a positive sentiment on Twitter

over the trailing seven days.

Sentiment Neg. Reddit The total sentiment score across all text documents with a negative sentiment on Reddit

over the trailing seven days.

Sentiment Neg. Twitter The total sentiment score across all text documents with a negative sentiment on Twitter

over the trailing seven days.

Developer Activity The aggregate number of GitHub actions (e.g. commits, forks, comments, etc.), as iden-

tified by CoinGecko, over the trailing seven days.

VC Owned Whether the asset has been funded by a set of prominent venture capitalists as identified

by CoinMarketCap.
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Table 2.4: Crypto Asset Momentum Characteristics

Characteristic Definition

Return Tm7 Momentum over the trailing seven days.

Return Tm14 Momentum over the trailing fourteen days.

Return Tm30 Momentum over the trailing thirty days.

Return Tm30 Momentum over the trailing sixty days.

Return Tm90 Momentum over the trailing ninety days.

Return Tm14-Tm7 Short term reversal: difference in return between trailing fourteen and seven days.

Return Tm30-Tm14 Medium term reversal: difference in return between trailing thirty and fourteen days.

Return Tm90-Tm30 Long term reversal: difference in return between trailing ninety and thirty days.

Return from ATH The return since the all time high price.

Return from ATL The return since the all time low price.

Return Industry Tm30 Industry momentum over the trailing thirty days.

Return Industry Tm60 Industry momentum over the trailing sixty days.

Table 2.5: Crypto Asset Microstructure Characteristics

Characteristic Definition

Trades Sum Tm7 The total number of CEX trades in the trailing seven days.

Volume Sum Tm7 The dollar CEX trading volume in the trailing seven days.

Spread Bps Spread in basis points.

Ask Size Market value of orders at best ask.

Bid Size Market value of orders at best bid.

Illiq Tm7 The average absolute hourly return over the trailing week divided by the average hourly

dollar volume over the trailing week.

Turnover Tm7 The total volume over the trailing week divided by the circulating supply in native units.
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Table 2.6: Crypto Asset Financial Characteristics

Characteristic Definition

Price The market value of one native unit in USD.

Size The market capitalization of all free floating native units in USD.

MVRV The ratio of the market capitalization to the realized value, or the total number of free

floating native units times the dollar value at the the time of the last transfer.

Alpha Tm7 Intercept coefficient from regressing hourly excess returns on cmkt hourly returns over

the trailing seven days.

Alpha Tm30 Intercept coefficient from regressing hourly excess returns on cmkt hourly returns over

the trailing thirty days.

Beta Tm7 Slope coefficient from regressing hourly excess returns on cmkt hourly returns over the

trailing seven days.

Beta Tm30 Slope coefficient from regressing hourly excess returns on cmkt hourly returns over the

trailing thirty days.

Beta Downside Tm30 Slope coefficient from regressing negative hourly excess returns (or zero) on negative cmkt

hourly returns over the trailing thirty days.

Coskew Tm30 The slope coefficient on the squared cmkt term from regressing hourly excess returns on

cmkt hourly returns and squared cmkt hourly returns over the trailing thirty days.

ISkew Tm30 The skewness of the residuals from from regressing hourly excess returns on cmkt hourly

returns and squared cmkt hourly returns over the trailing thirty days.

Shortfall 5% Tm7 Average hourly return of the returns below the fifth quantile of the trailing seven day

hourly returns.

VaR 5% Tm7 The fifth quantile of hourly excess returns over the trailing seven days.

Vol Tm7 The standard deviation of hourly excess returns over the trailing seven days.

Vol Tm30 The standard deviation of hourly excess returns over the trailing thirty days.

Vol Tm90 The standard deviation of hourly excess returns over the trailing ninety days.

Ivol Tm7 The standard deviation of the residuals from regressing hourly excess returns on cmkt

returns over the trailing seven days.

Ivol Tm30 The standard deviation of the residuals from regressing hourly excess returns on cmkt

returns over the trailing thirty days.

Ivol Tm90 The standard deviation of the residuals from regressing hourly excess returns on cmkt

returns over the trailing ninety days.

2.6.2 Tables and Figures
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Figure 2.1: Empirical distributions of CMKT, Bitcoin, and Ethereum weekly returns.

This figure shows the empirical distributions of weekly excess returns, with a normal distribution fit, for

coin market (top panel), Bitcoin (middle panel), and Ethereum (bottom panel) for the January 1, 2018 to

December 31, 2022 period.
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Figure 2.2: Cumulative weekly return of assets in universe.

This figure shows the cumulative excess returns for each asset in the study’s universe, and the crypto market,

for the January 1, 2018 to December 31, 2022 time period.
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Figure 2.3: Market Caps (USD).

This figure shows the market capitalization of: in the first panel, the entire panel, Bitcoin, and Ethereum;

in the second panel, the entire panel by asset industry classification; and, in the third panel, the entire panel

by asset usage classification. The asset industry and usage classifications are from Messari.
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Table 2.7: Summary statistics.

This table shows summary statistics on the weekly panel of excess returns from January 1, 2018 to December

31 2022. Panel A reports, by calendar year and for the whole panel, the number of unique assets, the cumula-

tive excess return of the crypto market, the total market capitalization in the last week in billions of dollars,

the median market capitalization in billions of dollars, and the median weekly volume in millions of dollars.

Panel B reports—for the crypto market (CMKT), Bitcoin, Ethereum, and the Nasdaq—annualized excess

return statistics, including the mean, standard deviation, Sharpe ratio, skewness, kurtosis, and percentage of

weekly excess returns that are positive. Panel C reports the percentage of extreme events using the weekly

crypto market index excess returns.
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Table 2.8: Crypto Asset Characteristics: Descriptive Statistics.

This table reports the summary statistics from the weekly asset panel for the dependent variable, asset

excess returns seven days ahead, and the asset characteristics. For each variable, we report the panel mean,

median, standard deviation, and selected percentiles. There are 22,678 asset-weeks from January 7, 2018 to

December 15, 2022.

88



Table 2.9: Crypto Asset Characteristics: Descriptive Statistics (Continued).

This table reports the summary statistics from the weekly asset panel for the dependent variable, asset

excess returns seven days ahead, and the asset characteristics. For each variable, we report the panel mean,

median, standard deviation, and selected percentiles. There are 22,678 asset-weeks from January 7, 2018 to

December 15, 2022.
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Figure 2.4: Sharpe Ratios: Bitcoin vs Major Asset Classes.

This figure shows the rolling Sharpe Ratio over four year trailing windows using weekly excess returns for

various asset classes. Bitcoin is the weekly return from Kraken’s order book. Nasdaq and SnP 500 are the

returns of the respective indices. The remaining series correspond to the following ETFs: Global Stocks is

VT; US Bonds is BND; US Real Estate is VNQ; Emerging Currencies is EBND; and, Gold is GLD.
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Table 2.10: Correlations.

This table reports Pearson correlation coefficients between weekly excess returns of row and column assets

for the January 1, 2018 to December 31, 2022 time period. CMKT, Bitcoin, and Ethereum refer to the

weekly excess returns of the market cap-weighted assets in the study universe, bitcoin, and ether, respec-

tively. Nasdaq, S&P500, and Russel 2000 refer to the weekly excess return of the IXIC, GSPC, and RUT

indices, respectively. Global Stocks, US Bonds, Ex-US Global Bonds, US Real Estate, Emerging Currencies,

Commodities, and Gold refer to the weekly excess returns of the following ETFs: VT, BND, BNDX, VNQ,

EBND, DBC, and GLD.
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Figure 2.5: Rolling Four Year Pearson Correlations: Bitcoin vs Major Asset Classes.

This figure shows rolling four-year Pearson Correlation coefficients between Bitcoin’s weekly excess returns

and those of other major asset classes for the January 1, 2018 to December 31, 2022 time period. Nasdaq

refers to the weekly excess return of the IXIC index. US Bonds, US Real Estate, Emerging Currencies,

Commodities, and Gold refer to the weekly excess returns of the following ETFs: BND, VNQ, EBND, DBC,

and GLD. EXPINF1YR refers to the Federal Reserve’s measure of expected inflation over the subsequent

year.
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Figure 2.6: Crypto Asset’s Annualized Cumulative Returns and Volatility.

This figure shows the annualized cumulative return and annualized volatility of simple weekly excess returns

of the crypto assets in the study universe (over the 2018-2022, inclusive, time period) as well as a few other

portfolios. The light grey point is the risk free rate captured by the annualized cumulative return of the

1 month treasury bill during the study period. The grey point is the annualized cumulative return and

annualized volatility of the Nasdaq index. For the same two measures, the yellow point corresponds to BTC,

the light green point for ETH, and the purple point for CMKT. For the same two measures, the black point

corresponds to a portfolio holding 60% Nasdaq and 40% CMKT. The remaining dark green points are for

the rest of the assets in the study, removing three assets with outlier returns: DOGE at 9x, LUNA at 52x,

and MATIC at 18x.
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Table 2.11: Inflation Risk Premium.

This table reports results from two regressions. Panel A reports point estimates and standard errors from

the time-series regression of BTC monthly excess returns on 1 year expected inflation innovations, CMKT

monthly excess returns, and a constant. Panel B reports the results from a Fama-MacBeth regression

procedure to estimate the risk premium of inflation in the crypto asset class, where we use assets with at

least two years of data to precisely estimate beta hats.
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Figure 2.7: Hodling: Bitcoin UTXO Median Age in Days.

This figure shows median age in full days of all unspent transaction outputs (UTXOs), rounded down to the

nearest day, on the Bitcoin ledger for each week in 2018 to 2022, inclusive. Why hodl?

Figure 2.8: Bitcoin Onchain Transactions.

This figure shows two time series for onchain bitcoin transactions. Monthly Volume reports, in USD, the

total calendar month onchain volume transferred between distinct addresses. The Median Fee reports, in

USD, the median fee paid to miners across all transactions within each calendar month.
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Table 2.12: Bitcoin Forks: Event Study.

This table reports an event study for various Bitcoin statistics on dates on which fifteen major Bitcoin

forks occurred, subsequent to January 2016. The point estimates are the difference between, in the seven

days before and after the event date, the average daily change of each characteristic. Return is the daily

change in bitcoin’s USD price. Trading Volume is the daily change in bitcoin trading volume reported as

by CoinMarketCap. Active Addresses is the daily change in the number of unique active Bitcoin addresses

as reported by Santiment. Developer Activity is the daily change in the total number of GitHub events

(e.g. code pushes, issue interactions, pull requests, comments on commits, etc.) as reported by Santiment.

Social Volume is the daily change in the total number of text documents across Reddit, Telegram, Twitter,

and BitcoinTalk containing the keyword “bitcoin” as reported by Santiment. Miner Hash Rate is the daily

change in the total Bitcoin hash rate as imputed by Coinmetrics. Standard errors are bootstrapped: the

standard deviation of the distribution formed by calculating each statistic for 10,000 randomly sampled,

with replacement, event days.
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Table 2.13: Onchain Characteristics: Correlations and Signal.

This table reports the correlation matrix among Onchain Characteristics and the loadings on asset excess returns on each

characteristic at various horizons. Panel A reports pairwise Pearson correlation coefficients among the characteristics and the

first principal component from them. The characteristics are re-scaled to be mean zero and unit variance before PCA and

studying these correlations. Panel B reports the coefficient (with 1, 2, and 3 stars for significant at the 10%, 5%, and 1% levels,

respectively), standard error, and R2 for univariate panel regressions of asset excess weekly returns at 0, 7, 14, 30, and 90 days

ahead on each of the characteristics and a constant. Standard errors are Newey-West adjusted using Bartlett’s formula for the

number of lags. There are 22,678 observations.

97



Table 2.14: Exchange Characteristics: Correlations and Signal

This table reports the correlation matrix among Exchange Characteristics and the loadings on asset excess

returns on each characteristic at various horizons. Panel A reports pairwise Pearson correlation coefficients

among the characteristics and the first principal component from them. The characteristics are re-scaled to

be mean zero and unit variance before PCA and studying these correlations. Panel B reports the coefficient

(with 1, 2, and 3 stars for significant at the 10%, 5%, and 1% levels, respectively), standard error, and R2

for univariate panel regressions of asset excess weekly returns at 0, 7, 14, 30, and 90 days ahead on each of

the characteristics and a constant. Standard errors are Newey-West adjusted using Bartlett’s formula for

the number of lags. There are 22,678 observations.
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Table 2.15: Social Characteristics: Correlations and Signal.

This table reports the correlation matrix among Social Characteristics and the loadings on asset excess

returns on each characteristic at various horizons. See the similar table descriptions for further detail.
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Table 2.16: Momentum Characteristics: Correlations and Signal.

See the similar table descriptions for further detail.
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Table 2.17: Microstructure Characteristics: Correlations and Signal.

This table reports the correlation matrix among Microstructure Characteristics and the loadings on asset

excess returns on each characteristic at various horizons. Panel A reports pairwise Pearson correlation

coefficients among the characteristics and the first principal component from from them. The characteristics

are re-scaled to be mean zero and unit variance before PCA and studying these correlations. Panel B

reports the coefficient (with 1, 2, and 3 stars for significant at the 10%, 5%, and 1% levels, respectively),

standard error, and R2 for univariate panel regressions of asset excess weekly returns at 0, 7, 14, 30, and 90

days ahead on each of the characteristics and a constant. Standard errors are Newey-West adjusted using

Bartlett’s formula for the number of lags. There are 22,678 observations.
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Table 2.18: Financial Characteristics: Correlations.

This table reports the correlation matrix among Financial Characteristics. Panel A

reports pairwise Pearson correlation coefficients among the characteristics and the

first principal component from them. The characteristics are re-scaled to be mean

zero and unit variance before PCA and studying these correlations.
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Table 2.19: Financial Characteristics: Signal.

This table reports the loadings on asset excess returns on each characteristic at various horizons. See the

similar table descriptions for further detail.
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Table 2.20: Principal Components of Characteristics: Correlations.

This table reports the correlation matrix among the first principal components of all groupings of asset

characteristics, i.e. all pairwise Pearson correlation coefficients.
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Table 2.21: Characteristic Signal by Year.

This table reports, by year and overall, the pairwise mutual information between all weekly panel charac-

teristics and asset excess returns seven days ahead.
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Table 2.22: Characteristic Signal by Year (Continued).

This table reports, by year and overall, the pairwise mutual information between all weekly panel charac-

teristics and asset excess returns seven days ahead.
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Table 2.23: Univariate Factor Returns: Statistically Significant Strategies.

This table reports the mean quintile portfolio returns (and t-statistics) for characteristics with significant

zero-investment strategies. The mean returns are the time-series averages of weekly value-weighted portfolio

excess returns. 5-1 is the long-short top minus bottom quintile zero-investment portfolio. *, **, and ***

denote significance at the 10%, 5%, and 1% levels.
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Table 2.24: Univariate Factor Returns: Onchain Strategies.

This table reports the mean quintile portfolio returns (and t-statistics) for onchain characteristics. The mean

returns are the time-series averages of weekly value-weighted portfolio excess returns. 5-1 is the long-short

top minus bottom quintile zero-investment portfolio. *, **, and *** denote significance at the 10%, 5%, and

1% levels.
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Table 2.25: Univariate Factor Returns: Exchange Strategies.

This table reports the mean quintile sorted portfolio returns (and t-statistics) for exchange characteristics.

The mean returns are the time-series averages of weekly value-weighted portfolio excess returns. 5-1 is the

long-short top minus bottom quintile zero-investment portfolio. *, **, and *** denote significance at the

10%, 5%, and 1% levels.
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Table 2.26: Univariate Factor Returns: Social Strategies.

This table reports the mean quintile portfolio returns (and t-statistics) for social characteristics. The mean

returns are the time-series averages of weekly value-weighted portfolio excess returns. 5-1 is the long-short

top minus bottom quintile zero-investment portfolio. *, **, and *** denote significance at the 10%, 5%, and

1% levels.
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Table 2.27: Univariate Factor Returns: Momentum Strategies.

This table reports the mean quintile portfolio returns (and t-statistics) for momentum characteristics. The

mean returns are the time-series averages of weekly value-weighted portfolio excess returns. 5-1 is the long-

short top minus bottom quintile zero-investment portfolio. *, **, and *** denote significance at the 10%,

5%, and 1% levels.

111



Table 2.28: Univariate Factor Returns: Microstructure Strategies.

This table reports the mean quintile portfolio returns (and t-statistics) for microstructure characteristics.

The mean returns are the time-series averages of weekly value-weighted portfolio excess returns. 5-1 is the

long-short top minus bottom quintile zero-investment portfolio. *, **, and *** denote significance at the

10%, 5%, and 1% levels.
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Table 2.29: Univariate Factor Returns: Financial Strategies.

This table reports the mean quintile portfolio returns (and t-statistics) for financial characteristics. See the

similar preceeding tables for further description.
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Table 2.30: Low Dimensional Factor Model Out-of-Sample Returns: Multivariate, PCA, &

IPCA.

This table reports—for multivariate factor models, PCA, and IPCA—the predictive R2, the mean quintile portfolio

returns, and portfolio statistics for the 5-1 strategy for July-December 2022, inclusive. For the 5-1 strategy, we

report the time-series average weekly value-weighted excess return, annualized Sharpe Ratio, annualized Sortino,

weekly turnover, maximum drawdown, and alpha and beta to the CMKT return. t-stats with *, **, and *** denote

significance at the 10%, 5%, and 1% levels. For the multivariate factor model with 1, 2, and 3 factors, the selected

characteristics are, respectively: size; illiquidity and size; and, size, 30 day momentum, and 90 day volatility.
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Table 2.31: Univariate Factor Returns: Alpha and Loadings on Factor Model Strategies.

This table reports—for each univariate factor with a statistically significant 5-1 strategy—coefficients and

standard errors from the contemporaneous time-series regression of the univariate factor 5-1 returns on the

5-1 returns for the best multivariate, PCA, and IPCA models. The best models were selected based on

their Sharpe Ratio. The coefficients for alpha (i.e. intercept) and the three loadings are reported with

standard errors in parentheses below. Standard errors are Newey-West adjusted using Bartlett’s formula for

the number of lags. *, **, and *** denote significance at the 10%, 5%, and 1% levels. The R2 is reported in

the last column.
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Table 2.32: DSLFM Out-of-Sample Portfolio Statistics.

This table reports—for the DSLFM with market cap and equal-weighted portfolios—the predictive R2, the mean quintile

portfolio returns, and portfolio statistics for the 5-1 strategy for July-December 2022, inclusive. For each quintile, the mean

returns are the time-series averages of weekly value-weighted portfolio excess returns sorted on each model’s predicted

returns. 5-1 is the long-short top minus bottom quintile zero-investment portfolio for each model; for which, we report the

time-series average weekly value-weighted excess return, annualized Sharpe Ratio, annualized Sortino, weekly turnover,

maximum drawdown, and alpha and beta to the CMKT return. t-stats are reported below each strategy’s point estimates

where *, **, and *** denote significance at the 10%, 5%, and 1% levels. Standard errors are Newey-West adjusted using

Bartlett’s formula for the number of lags.
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Table 2.33: DSLFM: Asset Characteristic Significance.

This table reports estimates of the importance of each asset characteristic to the fitted DSLFM using the

test statistic WΓ,j = Γ>β,jΓβ,j . The DSLFM latent loading estimate, i.e. Γ̂β , comes from fitting the DSLFM

to the entire weekly panel with hyperparameters selected by the DSLFM CV procedure for the best k, i.e.

highest Sharpe. Standard errors are formed from the simulated distribution of ŴΓ,j using 200 bootstrap

draws, for each j. *, **, and *** denotes significance at the 10%, 5%, and 1% levels. Only characteristics

within two orders of magnitude of the maximum estimate are shown, i.e. 34 of the 63 characteristics.
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CHAPTER 3

Doubly-Robust Inference for Conditional Average

Treatment Effects with High-Dimensional Controls

This is joint work with Manu Navjeevan. See full paper for the full appendix with supporting

mathematical proofs and empirical example.

3.1 Introduction

Consider a potential outcomes framework (Rubin 1974, 1978) where an observed outcome

Y ∈ and treatment D ∈ {0, 1} are related to two latent potential outcomes Y1, Y0 ∈ via

Y = DY1 + (1−D)Y0. To account for unobserved confounding factors a common strategy is

to assume the researcher has access to a vector of covariates, Z = (Z ′1, X
′)′ ∈1 × ⊆dz−dx ×dx ,

such that the potential outcomes are independent of the treatment decision after conditioning

on the observed covariates, (Y1, Y0) ⊥ D|Z. In this setting, we are interested in estimation

of and inference on the conditional average treatment effect (CATE):

E[Y1 − Y0 | X = x]. (3.1)

Estimation of the CATE generally requires first fitting propensity score and/or outcome

regression models. When the number of control variables Z is large (dz � n), these first-

stage models must be estimated using regularized methods which converge slower than the

nonparametric rate and typically rely on the correctness of parametric specifications for
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consistency.1

Fortunately, if both models are correctly specified, one can obtain a nonparametric-

rate consistent estimator and valid inference procedure for the CATE by using the popular

augmented inverse propensity weighted (aIPW) signal (Semenova and Chernozhukov 2021b;

Fan et al. 2022). This is because the aIPW signal obeys an orthogonality condition at,

crucially, the true nuisance model values that limits the first-stage estimation error passed

on to the second-stage estimator. Moreover, estimators based on the aIPW signal are doubly-

robust; consistency of the resulting second-stage estimators requires correct specification of

only one of the first-stage propensity score or outcome regression models. However inference

based on these estimators is not doubly-robust. The orthogonality of the aIPW signal

fails under misspecification and the resulting testing procedures and confidence intervals are

rendered invalid.

This paper proposes a doubly-robust estimator and inference procedure for the condi-

tional average treatment effect when the number of control variables dz is potentially much

larger than the sample size n. The dimensionality of the conditioning variable, dx, remains

fixed in our analysis. Our approach is based on Tan (2020) wherein doubly-robust inference

is developed for the average treatment effect. We take a series approach to estimating the

CATE, using a quasi-projection of the aIPW signal onto a growing set of basis functions. By

assuming a logistic form for the propensity score model and a linear form for the outcome re-

gression model, we construct novel `1-regularized first-stage estimating equations to recover

a partial orthogonality of the aIPW signal at the limiting values of the first-stage estimators.

So long as the limiting values of the first stage estimators have sparse representations this

restricted orthogonality is enough to achieve doubly-robust pointwise and uniform inference;

pointwise and uniform confidence intervals centered at the second-stage estimator are valid

even if one of the logistic or linear functional forms is misspecified.

1Recent works by Bauer and Kohler (2019); Schmidt-Hieber (2020) provide some limited nonparametric
results in high-dimensional settings using deep neural networks.
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To achieve this restricted orthogonality at all points in the support of the conditioning

variable, we employ distinct first-stage estimating equations for each basis term used in the

second-stage series approximation. This results in the number of first-stage estimators grow-

ing with the number of basis terms. These estimators converge uniformly to limiting values

under standard conditions in high-dimensional analysis. Improving on prior work in doubly-

robust inference, our `1 regularized first-stage estimation incorporates a data-dependent

penalty parameter based on the work of Chetverikov and Sωrensen (2021). This allows

practical implementation of our proposed estimation procedure with minimal knowledge of

the underlying data generating process.

The use of multiple pairs of nuisance parameter estimates limits our ability to straightfor-

wardly apply existing nonparametric results for series estimators (Newey 1997; Belloni et al.

2015). Under modified conditions, we analyze the asymptotic properties of our second-stage

series estimator to re-derive pointwise and uniform inference results. These modified condi-

tions are in general slightly stronger than those of Belloni et al. (2015), though in certain

special cases collapse exactly to the conditions of Belloni et al. (2015).

Prior Literature. Chernozhukov et al. (2018b) analyze the general problem of estimating

finite dimensional target parameters in the presence of potentially high-dimensional nui-

sance functions. Using score functions that are Neyman-orthogonal with respect to nuisance

parameters they show that it is possible to obtain target parameter estimates that are
√
n-

consistent and asymptotically normal so long as the nuisance parameters are consistent at

rate n−1/4, a condition satisfied by many machine learning-based estimators. Semenova and

Chernozhukov (2021b) take advantage of new results for series estimation in Belloni et al.

(2015) and consider series estimation of functional target parameters after high-dimensional

nuisance estimation.2 The inference results of these papers are highly dependent on the or-

thogonality of their second stage estimators to first stage estimation error, making it difficult

2Fan et al. (2022) provides a similar analysis using a second-stage kernel estimator.
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to directly extend these analyses when the first stage estimators are not consistent and the

orthogonality cannot be applied.

In the same setting as this paper, Tan (2020) considers estimation of the average treat-

ment effect. After assuming a logistic form for the propensity score and a linear form for the

outcome regression, Tan (2020) proposes `1-regularized first-stage estimators that allow for

partial control of the derivative of the aIPW signal away from true nuisance values and thus

allow for doubly-robust inference. Smucler, Rotnitzky, and Robins (2019) extends the anal-

ysis of Tan (2020) to consider doubly-robust inference for a larger class of finite dimensional

target parameters with bilinear influence functions. Wu et al. (2021) provide doubly-robust

inference procedures for covariate-specific treatment effects with discrete conditioning vari-

ables; their results depend on exact representation assumptions that are unlikely to hold

with continuous covariates. Moreover, no uniform inference procedures are described.

These papers pioneered the approach that we will employ below, which is to directly use

the first order conditions of the first stage estimators to control second stage estimation error.

However, it is not a priori clear how to extend this approach to control the estimation error

passed onto an infinite dimensional target parameter like the CATE. As discussed above,

our analysis requires re-deriving pointwise and uniform inference results for nonparametric

series estimators under modified conditions.

Chetverikov and Sωrensen (2021) propose a data-driven “bootstrap after cross-validation”

approach to penalty parameter selection that is modified for and implemented in our setting.

This work is related to other work on the lasso (Tibshirani 1996; Bickel, Ritov, and Tsy-

bakov 2009; Belloni and Chernozhukov 2013; Chetverikov, Liao, and Chernozhukov 2021)

and `1-regularized M-estimation in high-dimensional settings (van der Greer 2016; Tan 2017).

Notation. For any measure F and any function f , define the L2 norm, ‖f‖F,2 = (EF [f 2])1/2

and the L∞ norm ‖f‖F,∞ = ess supF |f |. For any vector in p let ‖ · ‖p for p ∈ [1,∞] denote

the `p norm, ‖a‖p = (
∑p

l=1 a
p
l )

1/p and ‖a‖∞ = max1≤l≤∞ |al|. If the subscript is unspecified,
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we are using the `2 norm. For two vectors a, b ∈p, let a ◦ b = (aibi)
p
i=1 denote the Hadamard

(element-wise) product. We adopt the convention that for a ∈p and c ∈, a+ c = (ai + c)pi=1.

For a matrix A ∈m×n let ‖A‖ = max‖v‖`2≤1 ‖Av‖`2 denote the operator norm and ‖A‖∞ =

sup1≤r≤m,1≤s≤n |Ars|. For any real valued function f let En[f(X)] = 1
n

∑n
i=1 f(Xi) denote the

empirical expectation and Gn[f(X)] = 1√
n

∑n
i=1(f(Xi)−E[Xi]) denote the empirical process.

For two sequences of random variables {an} and {bn}, we say an .P bn or an = Op(bn) if

an/bn is bounded in probability and say an = op(bn) if an/bn →p 0.

3.2 Setup

In this section, we formally define the setting and identification strategy that we consider.

We then introduce our doubly-robust estimator and inference procedure. The parameter of

interest is the conditional average treatment effect: E[Y1 − Y0 | X = x]. However, for this

paper we largely focus on estimation and inference for the conditional average counterfactual

outcome:

g0(x) := E[Y1 | X = x]. (3.2)

Doubly-robust estimation and inference on the other conditional counterfactual outcome,

E[Y0 |X = x], follows a similar procedure and is described in 3.5. The procedures can be

combined for doubly-robust estimation and inference for the CATE.

3.2.1 Setting

We assume the researcher observes i.i.d data and conditioning on Z is sufficient to control for

all confounding factors affecting both the treatment decision D and the potential outcomes,

Y1 and Y0. Our analysis allows the dimensionality of the controls, Z = (Z1, X), to grow much

faster than the sample size (dz � n), while assuming the dimensionality of the conditioning

variables, X, remains fixed (dx � n).

Assumption 8 (Identification).
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[(i)]{Yi, Di, Zi}ni=1 are independent and identically distributed. (Y1, Y0) ⊥ D | Z. There

exists a value η ∈ (0, 1) such that η < E[D | Z = z] < 1− η almost surely in Z.

To obtain doubly-robust estimation and inference we use the augmented inverse propen-

sity weighted (aIPW) signal,

Y (π,m) =
DY

π(Z)
−
(

D

π(Z)
− 1

)
m(Z), (3.3)

which is a function of a fitted propensity score model, π(Z), and a fitted outcome regression

model, m(Z), whose true values are given π?(Z) := E[D | Z] and m?(Z) := E[Y | D = 1, Z].

Under 8, the aIPW signal Y (·, ·) provides doubly-robust identification of g0(x). That is, for

integrable π 6= π? and m 6= m?,

E[Y1 | X = x] = E[Y (π?,m?) | X = x]

= E[Y (π,m?) | X = x]

= E[Y (π?,m) | X = x].

(3.4)

We use a series approach to estimate g0(x), taking a quasi-projection of the aIPW signal

onto a growing set of k weakly positive basis terms:

pk(x) := (p1(x), . . . , pk(x))′ ∈k+ . (3.5)

The basis terms are required to be weakly positive as they are used as weights within the

convex first-stage estimators estimating equations.3Examples of weakly positive basis func-

tions are B-splines or shifted polynomial series terms. To ensure that the basis terms are well

behaved, we assume regularity conditions on ξk,∞ := supx∈ ‖pk(x)‖∞, ξk,2 := supx∈ ‖pk(x)‖2,

and the eigenvalues of the design matrix Q := E[pk(x)pk(x)′].

For each basis term pj(x), j = 1, . . . , k, we estimate a separate propensity score model,

π̂j(Z), and outcome regression model, m̂j(Z). Under standard moment and sparsity condi-

tions, these converge uniformly over j = 1, . . . , k to limiting values π̄j(Z) and m̄j(Z). If the

propensity score model and outcome regression models are correctly specified these limiting
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values coincide with the true values π?(Z) and m?(Z). However, in general the limiting and

true values may differ. The double robustness of the aIPW signal allows for identification of

the CATE even if only one of the nuisance models is correctly specified. If either π̄j = π? or

m̄j = m?, we can write for all j = 1, . . . , k:

Y (π̄j, m̄j) = g0(x)+j, E[j| X] = 0

= gk(x) + rk(x)+j

(3.6)

where g0(x) is the conditional counterfactual outcome (3.2), gk(x) := pk(x)′βk is the projec-

tion of g0(x) onto the first k basis terms, and rk(x) := g0(x)−gk(x) denotes the approximation

error from this projection. Note the separate error terms for each j = 1, . . . , k in (3.6), which

are collected together in the vector k := (1, . . . ,k ). As long as one of the first-stage models

is correctly specified, the least squares parameter βk governing the projection in gk(x) can

be identified by the projection of the aIPW signal onto the basis terms pk(x):

βk := Q−1E[pk(X)Y1]

= Q−1E[pk(X)Y (π?,m?)]

= Q−1E[pk(X)Y (π̄j, m̄j)], ∀j = 1, . . . , k.

(3.7)

3.2.2 Estimator and Inference Procedure

We assume a logistic regression form for the propensity score model and a linear form for

the outcome regression model:

π(Z; γ) = (1 + exp(−γ′Z))
−1
,

m(Z;α) = α′Z.
(3.8)

3In case the researcher wants to use a second-stage basis that cannot be transformed to be weakly
positive, we have shown a slightly modified method of constructing our doubly-robust estimator and inference
procedure that does not require the first-stage weights to directly be the second-stage basis terms. This is
available on request.
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For each j = 1, . . . , k, the parameters of (3.8), γ, α ∈dz , are estimated, respectively, by

γ̂j := arg min
γ

En[pj(X){De−γ′Z + (1−D)γ′Z}] + λγ,j‖γ‖1, (3.9)

α̂j := arg min
α

En[pj(X)De−γ̂
′
jZ(Y − α′Z)2]/2 + λα,j‖α‖1. (3.10)

The penalty parameters λγ,j and αγ,j are chosen via a data dependent technique described

below. These first-stage estimating equations are designed so that their first order conditions

directly limit the bias passed on to the second-stage series estimator, as is described in 3.3.

Under standard assumptions the parameter estimators γ̂j, α̂j will converge uniformly over

j = 1, . . . , k to population minimizers

γ̄j := arg min
γ

E[pj(X){De−γ′Z + (1−D)γ′Z}], (3.11)

ᾱj := arg min
α

E[pj(Z)De−γ̄
′
jZ(Y − α′Z)2]. (3.12)

which we assume are sufficiently sparse. Our first-stage estimators are then π̂j(Z) := π(Z; γ̂j)

and m̂j(Z) := m(Z; α̂j) with limiting values π̄j(Z) := π(Z; γ̄j) and m̄j(Z) := m(Z; ᾱj),

respectively.

Our second-stage estimator ĝ(x) := pk(x)′β̂k – where β̂k is an estimate of the population

projection parameter βk – is obtained by combining all k pairs of first-stage estimators

β̂k := Q̂−1En


p1(X)Y (π̂1, m̂1)

...

pk(X)Y (π̂k, m̂k)

 , (3.13)

and Q̂ := En[pk(X)pk(X)′]. We estimate the variance of ĝ(x) using σ̂(x) := ‖Ω̂1/2pk(x)‖/
√
n

for

Ω̂ := Q̂−1En[{pk(X) ◦̂k}{pk(X) ◦̂k}′]Q̂−1, (3.14)

where ◦ represents the Hadamard product and̂k := (̂1, . . . ,̂ k); ĵ := Y (π̂j, m̂j) − ĝ(x), j =

1, ..., k.
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Inference is based on the 100(1− η)% confidence bands

[i(x), ī(x)] := [ĝ(x)− c? (1− η/2) σ̂(x), ĝ(x) + c? (1− η/2) σ̂(x)] . (3.15)

For pointwise inference, the critical value c?(1− η/2) is taken as the (1− η/2) quantile of a

standard normal distribution. For uniform inference c?(1− η/2) is taken

c?u(1− η/2) := (1− η/2)-quantile of sup
x∈

∣∣∣∣∣pk(x)Ω̂1/2

σ̂(x)
N b
k

∣∣∣∣∣
where N b

k is a bootstrap draw from N(0, Ik). Sections 3.3 and 3.4 show that, under standard

sparsity and moment conditions, these pointwise and uniform inference procedures remain

valid even under misspecification of either first-stage model.

3.2.3 Penalty Parameter Selection

To select the penalty parameters λγ,j and λα,j in (3.9)-(3.10) we propose a data driven

two-step procedure based on the work of Chetverikov and Sωrensen (2021). For each j =

0, 1 . . . , k, we start with pilot penalty parameters given by

λpilot

γ,j = cγ,j ×

√
ln3(dz)

n
and λpilot

α,j = cα,j ×

√
ln3(dz)

n
(3.16)

for some constants cγ,j, cα,j selected from the interval [cn, c̄n] with cn > 0. In practice, the

researcher has a fair bit of flexibility in choosing these constants. The optimal choice of

these constants may depend on the underlying data generating process. We recommend

using cross validation to pick these constants from a fixed-cardinality set of possible values.

In line with 9(vi), the values in the set should be chosen to be on the order of the maximum

value of ‖pk(Xi)‖∞ observed in the data.

Using λpilot

γ,j and λpilot

α,j in lieu of λγ,j and λα,j in (3.9)-(3.10) we generate pilot estimators

γ̂pilot

j and α̂pilot

j . These pilot estimators are used to generate plug in estimators Ûγ,j and Ûα,j
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of the residuals

Ûγ,j := −pj(X){De−γ̂
pilot′
j Z + (1−D)}Uγ,j

:= −pj(X){De−γ′jZ + (1−D)}

Ûα,j := pj(X)De−γ̂
pilot′
j Z(Y − α̂pilot′

j Z).

(3.17)

whose true values are given

Uγ,j := −pj(X){De−γ̄′jZ + (1−D)}

Uα,j := pj(X)De−γ̄
′Z(Y − ᾱ′Z)

(3.18)

We then use a multiplier bootstrap procedure to select our final penalty parameters λγ,j and

λα,j.

λγ,j = c0 × (1−)-quantile of max
1≤l≤dz

|En[eiÛγ,jZl]| given {Yi, Di, Zi}ni=1,

λα,j = c0 × (1−)-quantile of max
1≤l≤dz

|En[eiÛα,jZl]| given {Yi, Di, Zi}ni=1

(3.19)

where e1, . . . , en are independent standard normal random variables generated independently

of the data {Yi, Di, Xi}ni=1 and c0 > 1 is a fixed constant. In line with other work we find

c0 = 1.1 works well in simulations. So long as our residual estimates converge in empirical

mean square to limiting values, the choice of penalty parameter in (3.19) will ensure that

the penalty parameter dominates the noise with high probability. This allows for consistent

variable selection and coefficient estimation.

3.3 Theory Overview

We begin with a main technical lemma which provides a bound on rate at which first-stage

estimation error is passed on to the second-stage CATE and variance estimators. This

bound is comparable to others seen in the inference after model-selection literature (Belloni,

Chernozhukov, and Hansen 2013; Tan 2020) and is achieved under standard conditions in the

`1-regularized estimation literature (Bickel, Ritov, and Tsybakov 2009; Bühlmann and van de
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Geer 2011; Belloni and Chernozhukov 2013; Chetverikov and Sωrensen 2021). However,

this bound is achieved at the limiting values of the propensity score and outcome regression

models which may differ from the true values π? and m? under misspecification.

The potential misspecification of the first-stage models which means we cannot directly

apply orthogonality of the aIPW signal, discussed below, to show that the effect of first-stage

estimation error on the second-stage is negligible. Instead, we use the first order conditions

for γ̂j and α̂j to directly control this quantity. After presenting the lemma 3.3.2 provides

some intuition for how this is done. Controlling the rate at which first-stage estimation error

is passed on to the second-stage estimator even at points away from the true values π? and

m? is key for obtaining doubly-robust inference for the CATE.

3.3.1 Uniform First-Stage Convergence

To show uniform convergence of the first-stage estimators and thus uniform control of the

bias passed on from the first-stage estimation to the second-stage estimator we rely on the

following assumption:

Assumption 9 (first-stage Convergence).

[(i)]The regressors Z are bounded, max1≤l≤dz |Zl| ≤ C0 almost surely. The errors

Y1 − m̄j(Z) are uniformly subgaussian conditional on Z in the following sense. There

exists fixed positive constants G0 and G1 such that for any j:

G0E
[
exp

(
{Y1 − m̄j(Z)}2/G2

0

)
− 1 | Z

]
≤ G2

1

almost surely. There is a constant B0 such that γ̄′jZ ≥ B0 almost surely for all j.

There exists fixed constants ξ0 > 1 and 1 > ν0 > 0 such that for each j = 1, . . . , k

the following empirical compatability condition holds for the empirical hessian matrix

Σ̃γ,j := En[De−γ̄
′
jZZZ ′]. For any b ∈dz and j = {l : γ̄l ∨ ᾱl 6= 0}:∑
l 6∈j

|bl| ≤ ξ0

∑
l∈j

|bl| =⇒ ν2
0

(∑
l∈j

|bl|
)2

≤ ||
(
b′Σ̃γ,jb

)
.
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There exists fixed constants cu and CU > 0 such that for all j = 1, . . . , k, E[U4
γ,j] ≤

(ξk,∞CU)4 and min1≤l≤dz E[U2
γ,jZ

2
l ] ≥ cu. The constant cn is chosen such that ξk.∞ . cn

and the following sparsity bounds hold for sk = max1≤j≤k |j|

ξk,∞s
2
kc̄

2
n ln5(dzn)

n
→ 0, and

ξ4
k,∞ ln7(dzkn)

n
→ 0.

The first part of 9 assumes that the regressors are bounded while the second assumes

that tail behavior of the outcome regression errors are uniformly thin. Both of these can

be relaxed somewhat with sufficient moment conditions on the tail behavior of the controls

and errors. We should note that compactness of is generally required by nonparametric

estimators. The third part of the assumption bounds all limiting propensity scores π̄j(Z)

away from zero uniformly. The fourth assumption is an empirical compatibility condition

on the weighted first-stage design matrix. It is slightly weaker than the restricted eigenvalue

conditions often assumed in the literature (Bickel, Ritov, and Tsybakov 2009; Belloni et al.

2012). The penultimate condition is an identifiability constraint that limits the moments

of the noise and bounds it away from zero uniformly over all estimation procedures. Many

of the constants in 9 are assumed to be fixed across all j. This is mainly to simplify the

exposition of the results below and in practice all constants can be allowed to grow slowly

with k. However, the growth rate of these terms affects the required first-stage sparsity.

The last condition is required for the validity of the bootstrap penalty parameter selec-

tion procedure and is comparable to the requirements needed for the bootstrap after cross

validation technique described by Chetverikov and Sωrensen (2021). The main difference is

the additional assumption on the growth rate of the basis functions, ξk,∞ which is to ensure

uniform stability of the estimation procedures (3.9)-(3.10) as well as some assumptions on

the order of the constants cγ,j and cα,j in (3.16).

Lemma 14 (First-Stage Convergence). Suppose that 9 holds. In addition assume that c0 >

(ξ0 + 1)/(ξ0 − 1), k/n → 0, k → 0, and there is a fixed constant c > 0 such that for all

j, λα,j/λγ,j ≥ c.4Then the following weighted means converge uniformly in absolute value at

129



least at rate:

max
1≤j≤k

|En[pj(X)Y (π̂j, m̂j)]− En[pj(X)Y (π̄j, m̄j)]| .P

sk ξ
2
k,∞ ln(dz)

n
(3.20)

and in empirical mean square at least at rate:

max
1≤j≤k

En[p2
j(X)(Y (π̂j, m̂j)− Y (π̄j, m̄j))

2] .P

s2
k ξ

4
k,∞ ln(dz)

n
(3.21)

14 provides a tight bound on the first-stage estimation error passed on to the second-

stage estimator even when the first-stage estimators converge to values that are not the true

propensity score or outcome regression. In particular notice that under the (nearly familiar)

sparsity bound skξ
2
k,∞k

1/2 ln2(dz)/
√
n → 0, any linear combination of the means in both

(3.20) and (3.21) is op(
√
n). This allows us to obtain doubly-robust inference for the CATE.

3.3.2 Managing First-Stage Bias

We now provide some intuition for how this result is obtained and the role our particular

estimating equations play in establishing this fact. We focus on control of the vector Bk,

defined in (3.22), which measures the bias passed on from first-stage estimation to the second-

stage estimate β̂k. Limiting the size of Bk is crucial in showing convergence of β̂k to the true

parameter βk and thus consistency of the nonparametric estimator ĝ(x).

Bk := En


p1(X) {Y (π̂1, m̂1)− Y (π̄1, m̄1)}

...

pk(X) {Y (π̂k, m̂k)− Y (π̄k, m̄k)}

 . (3.22)

For exposition, we consider a single term of (3.22), Bk
j , which roughly measures the first-

stage estimation bias taken on from adding the jth basis term to our series approximation of

4The requirement λα,j/λγ,j ≥ c may seem a bit unnatural, but it can be enforced in practice without
upsetting any assumptions by setting the linear penalty λratio

α,j := max{λγ,j/5, λα,j}. In simulations, we find

this constraint is rarely binding.
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g0(x). The discussion that follows is a bit informal, instead of considering the derivatives with

respect to the true parameters below our proof strategy will directly use the Kuhn-Tucker

conditions of the optimization routines in (3.9)-(3.10). However, the general intuition is the

same as is used in the proofs.

In addition to the doubly-robust identification property (3.4), the aIPW signal is typically

useful in the high-dimensional setting because it obeys an orthogonality condition at the true

values (π?,m?):5

E[∇π,mY (π?,m?) | Z] = 0. (3.23)

When both the propensity score model and outcome regression model are correctly specified

we can (loosely speaking) examine the bias Bk
j by replacing π̄j = π? and m̄j = m∗ and

considering the following first order expansion:

Bk
j = En[pj(X)Y (π̂j, m̂j)]− En[pj(X)Y (π?,m?)]

= En[pj(X)∇π,m Y (π?,m?)]︸ ︷︷ ︸
Op(n−1/2) by (3.23)

 π̂j − π?
m̂j −m?

+ op(n
−1/2).

(3.24)

By orthogonality of the aIPW signal the gradient term is close to zero, which guarantees

that the bias is asymptotically negligible even if the nuisance parameters converge slowly

to the true values, π? and m?.6 This allows the researcher to ignore first-stage nuisance

parameter estimation error and treat π? and m? as known when analyzing the asymptotic

properties of the second-stage series estimator. Indeed, since the aIPW signal orthogonality

holds conditional on Z = (Z1, X), if both models are correctly specified only a single pair of

first-stage estimators would be needed to provide control over all the elements in Bk. This

is the approach followed by Semenova and Chernozhukov (2021b).

5Robustness and orthogonality are indeed closely related, see Theorem 6.2 in Newey and McFadden (1994)
for a discussion.

6Typically all that is required is that ‖π̂j−π?‖ = op(n
−1/4) and ‖m̂j−m?‖ = op(n

−1/4) in order to make
the second order remainder term

√
n-negligible
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So long as either one of π̄j = π? or m̄j = m?, double robustness of the aIPW signal (3.4)

still delivers identification: E[pj(X)Y1] ≈ En[pj(X)Y (π̄j, m̄j). However, the aIPW orthogo-

nality tells us nothing about the expectation of the gradient away from the true parameters,

π?,m?; if either π̄j 6= π? or m̄j 6= m? there is no reason to believe that the gradient on the

right hand side of (3.24) is mean zero when evaluated instead at Y (π̄j, m̄j). In general, the

bias Bk
j will then diminish at the rate of convergence of our nuisance parameters. Because

we have high dimensional controls, this convergence rate will generally be much slower than

the standard nonparametric rate (Newey 1997; Belloni et al. 2015).

To get around this, we design the first-stage objective functions (3.9)-(3.10) such that

the resulting first-order conditions control the bias passed on to the second-stage. Consider

the following expansion instead around the limiting parameters γ̄j and ᾱk.

Bk
j = En[pj(X)Y (π̂j, m̂j)]− En[pj(X)Y (π̄j, m̄j)]

= En[pj(X)∇γj ,αj Y (π̄j, m̄j)]

 γ̂j − γ̄j
α̂j − ᾱj

+ op(n
−1/2)

(3.25)

After substituting the forms of π̄j(z) = π(z; γ̄j) and m̄j(z) = m(z; ᾱj) described in (3.8) and

differentiating with respect to γj and αj we obtain

E[pj(X)∇γj ,αj Y (π̄j, m̄j)] = E

−pj(X)De−γ̄
′Z(Y − ᾱ′Z)Z

pj(x){D(1 + e−γ̄
′Z)Z + Z}

 (3.26)

However, by definition γ̄j and ᾱj solve the minimization problems defined in (3.11)-(3.12),

the population analogs of our finite sample estimating equations. The first order conditions

of these minimization problems yield

E

First order condition of γ̄j︷ ︸︸ ︷ pj(X){D(1 + eγ̄
′Z)Z + Z}

pj(X)De−γ̄
′Z(DY − ᾱ′Z)Z


︸ ︷︷ ︸

First order condition of ᾱj

= 0 =⇒ E[pj(X)∇γj ,αjY (π̄j, m̄j)] = 0 (3.27)

Examining the first order conditions in (3.27), we see that they exactly give us control over

the gradient (3.26). Under suitable convergence of the first-stage parameter estimates, this

132



guarantees the bias examined in expansion (3.25) is negligible even under misspecification

of the propensity score or outcome regression models.

Control of this gradient under misspecification is not provided using other estimating

equations, such as maximum likelihood for the logistic propensity score model or ordinary

least squares for the linear outcome regression model. Moreover, control over the gradient

of Bk
j from (3.22) is not provided by the first-order conditions for γ̄l and ᾱl for l 6= j:

E[pj(X)∇γj ,αjY (π̄j, m̄j)] = E

−pj(X)De−γ̄
′Z(Y − ᾱ′Z)Z

pj(X){D(1 + eγ̄
′Z)Z + Z}



6= E

First order condition of γ̄l︷ ︸︸ ︷pl(X){D(1 + eγ̄
′Z)Z + Z}

pl(X)De−γ̄
′Z(Y − ᾱ′Z)Z


︸ ︷︷ ︸

First order condition of ᾱl

.

(3.28)

Showing that the inference procedure of 3.2 remains valid at all points x ∈ under misspeci-

fication requires showing negligible first-stage estimation bias for any linear combination of

the vector (3.22). As outlined above, this requires using k separate pairs of nuisance param-

eter estimator to obtain k separate pairs of first order conditions, one for each term of the

vector.

3.4 Main Results

In this section, we present the main consistency and distributional results for our second-

stage estimator ĝ(x) described in 3.2. A full set of second-stage results, including pointwise

and uniform linearization lemmas and uniform convergence rates, can be found in the Online

Appendix. The first set of results is established under the following condition, which limits

the bias passed from first-stage estimation onto the second-stage estimator. In particular,

3.4 implies that the bias vector Bk from (3.22) satisfies ‖Bk‖ = op(n
−1/2).

133



[No Effect of First-Stage Bias]

max
1≤j≤k

∣∣En[pj(X)Y (π̂j, m̂j)]− En[pj(X)Y (π̄j, m̄j)]
∣∣ = op(n

−1/2k−1/2). (3.29)

Via 14 we can see that is a logistic propensity score model and a linear outcome regression

model and estimating the first-stage models using the estimating equations (3.9)-(3.10), 3.4

can be achieved under 9 and the sparsity bound

sk ξ
2
k,∞k

1/2 ln(dz)√
n

→ 0. (3.30)

If the researcher were to assume different parametric forms for the first-stage model, different

first estimating equations would have to be used to obtain doubly-robust estimation and

inference. However, so long as the 3.4 can be established at the limiting values of the first-

stage models, the results of this section hold.

Having dealt with the first-stage estimation error, the main complication remaining is

that under misspecification the aIPW signals Y (π̂j, m̂j) for j = 1, . . . , k do not all converge to

the same limiting values. However, so long as at least one of the first-stage models is correctly

specified, all of the limiting aIPW signals have the same conditional mean, g0(x). In the

standard setting, consistency of nonparametric estimator relies on certain conditions on the

error terms. In our setting, we require that these assumptions hold uniformly over k the error

terms. We note though that there is a non-trivial dependence structure between that limiting

aIPW signals. This strong dependence gives plausibility to our uniform conditions. For

example, if the logistic propensity score model is correctly specified and the limiting outcome

regression models are uniformly bounded conditional on Z, our conditions reduce exactly to

the conditions of Belloni et al. (2015). In general, however, the uniform conditions suggest

that a degree of undersmoothing is optimal when implementing our estimation procedure.

3.4.1 Pointwise Inference

Pointwise inference relies on the following assumption in tandem with 3.4.
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Assumption 10 (Second-Stage Pointwise Assumption). Let k̄ := max1≤j≤k |j|. Assume that

[(i)]Uniformly over all n, the eigenvalues of Q = E[pk(x)pk(x)′] are bounded from above

and away from zero. The conditional variance of the error terms is uniformly bounded

in the following sense. There exists constants σ2 and σ̄2 such that for any j = 1, 2 . . .

we have that σ2 ≤ Var(j| X) ≤ σ̄2 <∞; For each n and k there are finite constants ck

and `k such that for each f ∈

‖rk‖L,2 = (E[rk(x)2])1/2 ≤ ck and ‖rk‖L,∞ = sup
x∈
|rk(x)| ≤ `kck.

supx∈ E[̄2k 1{̄k + `kck > δ
√
n/ξk} | X = x]→ 0 as n→∞ and supx∈ E[`2

kc
2
k1{̄k + `kck >

δ
√
n/ξk} | X = x]→ 0 as n→∞ for any δ > 0.

As mentioned, these are exactly the conditions required by Belloni et al. (2015), with the

modification that the bounds on conditional variance and other moment conditions on the

error term hold uniformly over j = 1, . . . , k. The assumptions on the series terms being used

in the approximation can be shown to be satisfied by a number of commonly used functional

bases, such as polynomial bases or splines, under adequate normalizations and smoothness

of the underlying regression function. Readers should refer to Newey (1997), Chen (2007),

or Belloni et al. (2015) for a more in depth discussion of these assumptions.7

Under these assumptions, the variance of our second-stage estimator is governed by one

of the following variance matrices:

Ω̃ := Q−1E[{pk(x) ◦ (k+rk)}{pk(x) ◦ (k+rk)}′]Q−1

Ω0 := Q−1E[{pk(x)◦k}{pk(x)◦k}′]Q−1
(3.31)

where ◦ represents the Hadamard (element-wise) product and, abusing notation, for a vector

a ∈k and scalar c ∈ we let a + c = (ai + c)ki=1. Later on, we establish the validity of the

plug-in analog Ω̂ (3.14), as an estimator of these matrices.

7In practice, we recommend the use of B-splines in order to to satisfy the first requirement that the basis
functions are weakly positive and to reduce instability of the convex optimization programs described in
(3.9)-(3.10).
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Theorem 2 (Pointwise Normality). Suppose that 3.4 and 10 hold. In addition suppose that

ξ2
k log k/n→ 0. Then so long as either the logistic propensity score model or linear outcome

regression model is correctly specified, for any α ∈ Sk−1:

√
n
α′(β̂k − βk)
‖α′Ω1/2‖

→d N(0, 1) (3.32)

where generally Ω = Ω̃ but if `kck → 0 then we can set Ω = Ω0. Moreover, for any x ∈ and

s(x) := Ω1/2pk(x),
√
n
pk(x)′(β̂k − βk)
‖s(x)‖

→d N(0, 1) (3.33)

and if the approximation error is negligible relative to the estimation error, namely
√
nrk(x) =

o(‖s(x)‖), then
√
n
ĝ(x)− g(x)

‖s(x)‖
→d N(0, 1) (3.34)

2 shows that the estimator proposed in 3.2 has a limiting gaussian distribution even

under misspecification of either first-stage model. This allows for doubly-robust pointwise

inference after establishing a consistent variance estimator.

3.4.2 Uniform Convergence

Next, we turn to strengthening the pointwise results to hold uniformly over all points x ∈.

This requires stronger conditions. we make the following assumptions on the tail behavior

of the error terms which strengthens 10.

Assumption 11 (Uniform Limit Theory). Let k̄ = sup1≤j≤k |j|, α(x) := pk(x)/‖pk(x)‖, and

let

ξLk := sup
x,x′∈
x 6=x′

‖α(x)− α(x′)‖
‖x− x′‖

.

Further for any integer s let σ̄sk = supx∈ E[|̄k|s|X = x]. For some m > 2 assume

[(i)]The regression errors satisfy supx∈ E[max1≤i≤n |̄k,i|m | X = x] .P n1/m The basis

functions are such that (a) ξ
2m/(m−2)
k log k/n . 1, (b) (σ̄2

k ∨ σ̄mk ) log ξLk . log k, and (c)

log σ̄mk ξk . log k.
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As before, 11 is very similar to its analogue in Belloni et al. (2015), with the modification

that the conditions are required to hold for k̄ as opposed to k. Under this assumption,

we derive doubly-robust uniform rates of convergence uniform inference procedures for the

conditional counterfactual outcome g0(x).

Theorem 3 (Strong Approximation by a Gaussian Process). Assume that 3.4 holds and

that Assumptions 10-11 hold with m ≥ 3. In addition assume that (i) R̄1n = op(a
−1
n ) and

(ii) a6
nk

4ξ2
k(σ̄

3
k + `3

kc
2
k)

2 log2 n/n→ 0 where

R̄1n :=

√
ξ2
k log k

n
(n1/m

√
log k +

√
k`kck) and R̄2n :=

√
log k · `kck

Then so long as either the propensity score model or outcome regression model is correctly

specified, for some k ∼ N(0, Ik):

√
n
α(x)′(β̂ − β)

‖α(x)′Ω1/2‖
=d

α(x)′Ω1/2

‖α(x)′Ω1/2‖
Nk + op(a

−1
n ) in `∞() (3.35)

so that for s(x) := Ω1/2pk(x)

√
n
pk(x)′(β̂ − β)

‖s(x)‖
=d

s(x)

‖s(x)‖
Nk + op(a

−1
n ) in `∞() (3.36)

and if supx∈
√
n|rk(x)|/‖s(x)‖ = o(a−1

n ), then

√
n
ĝ(x)− g(x)

‖s(x)‖
=d

s(x)′

‖s(x)‖k
+ op(a

−1
n ) in `∞() (3.37)

where in general we take Ω = Ω̃ but if R̄2n = op(a
−1
n ) then we can set Ω = Ω0 where Ω̃ and

Ω0 are as in (3.31).

3 establishes conditions under which we obtain a doubly-robust strong approximation

of the empirical process x 7→
√
n(ĝ(x) − g0(x)) by a Gaussian process. After establishing

consistent estimation of the matrix Ω, this strong approximation result allows us to show

validity of the uniform confidence bands described in 3.2. As noted by Belloni et al. (2015),

this is distinctly different from a Donsker type weak convergence result for the estimator

ĝ(x) as viewed as a random element of `∞(X). In particular, the covariance kernel is left

completely unspecified and in general need not be well behaved.
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3.4.3 Matrix Estimation and Uniform Inference

We establish that the estimator Ω̂ proposed in (3.14) is a consistent estimator of the true

limiting variance Ω, where Ω = Ω̃ in general but if R̄2n = op(a
−1
n ) then Ω = Ω0. To do so, we

rely on the second-stage assumptions 10 and 11 as well as the following condition limiting

the first-stage estimation error passed on to the variance estimator Ω̂.

[Variance Estimation] Let m > 2 be as in 11. Then,

ξk,∞ max
1≤j≤k

En[pj(X)2(Y (π̂j, m̂j)− Y (π̄j, m̄j))
2] = op(k

−2n−1/m) (3.38)

Via 14 we can establish 3.4.3 under 9 as well as the additional sparsity bound8

ξ5
k,∞s

2
kk

2 ln(dz)

n(m−1)/m
. (3.39)

Theorem 4 (Matrix Estimation). Suppose that Conditions 3.4 and 3.4.3 and Assump-

tions 10-11 hold. In addition, assume that R̄1n + R̄2n . (log k)1/2. Then, so long as ei-

ther the propensity score model or outcome regression model is correctly specified then for

Ω̂ = Q̂−1Σ̂Q̂−1:

‖Ω̂− Ω‖ .P (vn ∨ `kck)
√
ξ2
k log k

n
= o(1)

4 establishes that pointwise inference based on the test statistic described in 3.2, obtained

by replacing Ω in 2 with the consistent estimator Ω̂, is doubly-robust. Hypothesis tests based

on the test statistic as well as pointwise confidence intervals for g0(x) remain valid even if

one of the first-stage parameters is misspecified.

We now establish the validity of uniform inference based on the gaussian bootstrap critical

values c?u(1− α) defined in 3.2.

8The sparsity bound (3.39) required for consistent variance estimation can be significantly sharpened if the
researcher is willing to use a cross fitting procedure, using one sample to estimate the nuisance parameters
and another to evaluate the aIPW signal. This is because one could more directly follow Semenova and
Chernozhukov (2021b) and control alternate quantities with bounds that converge more quickly to zero.
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Theorem 5 (Validity of Uniform Confidence Bands). Suppose ?? are satisfied and assm:second-

stage-assumptionsassm:uniform-limit-theory hold with m ≥ 4. In addition suppose (i) R1n +

R2n . log1/2 n, (ii) ξk log2 n/n1/2−1/m = o(1), (iii) supx∈ |rk(x)|/‖pk(x)‖ = o(log−1/2 n), and

(iv) k4ξ2
k(1 + l3kr

3
k)

2 log5 n/n = o(1). Then, so long as either the propensity score model or

outcome regression model is satisfied

Pr

(
sup
x∈
| ĝ(x)− g(x)

σ̂(x)
| ≤ c?(1− α)

)
= 1− α + o(1).

As a result, uniform confidence intervals formed in (3.15) satisfy

Pr(g(x) ∈ [i(x), ī(x)], ∀x ∈) = 1− α + o(1).

In conjunction with 14, 2 and 4, 5 shows the validity of the uniform inference procedure

described in 3.2.

3.5 Estimation of the Conditional Average Treatment Effect

Up to now, we have mainly focused on doubly-robust estimation and model-assisted inference

for the function

g0(x) = E[Y1 | X = x].

We conclude by noting that we can use a symmetric procedure to obtain model-assisted

inference for the additional conditional counterfactual outcome

g̃0(x) = E[Y0 | X = x].

To do so, we use the alternate aIPW signal

Y0(π0,m0) =
(1−D)Y

1− π0(Z)
+

(
1−D

1− π0(Z)
− 1

)
m0(Z)

where as before the true value for π?0(z) = Pr(D = 1 | Z = z) but now m?
0(z) = E[Y |

D = 0, Z = z]. To estimate these nuisance models we again assume a logistic form for the
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propensity score model π0(z) = π(z; γ0) and a linear form for the outcome regression model

m0(z) = m(z, α0) as in (3.8) and use a separate estimation procedure for each basis term in

our series approximation of g̃0(x). The estimating equations we use to estimate each γ0
j and

α0
j differ from those in (3.9)-(3.10) however, and are instead given

γ̂0
j := arg min

γ
En[pj(X){(1−D)eγ

′Z −Dγ′Z}] + λγ,j‖γ‖1

α̂0
j := arg min

α
En[pj(Z)(1−D)eγ̂

0′
j Z(Y − α′Z)2]/2 + λα,j‖α‖1

which under the natural analog of 9 converge uniformly to population minimizers:

γ̄0
j := arg min

γ
E[pj(X){(1−D)eγ

′Z −Dγ′Z}]

ᾱ0
j := arg min

α
E[pj(Z)(1−D)eγ̄

0′
j Z(Y − α′Z)2]

Letting π̄0,j(z) = π(z, γ̄0
j ), and m̄0,j(z) = m(z, ᾱ0

j ) we can repeat the decomposition of 3.3,

expressing Ỹ (π̄0,j, m̄0,j) as functions of the parameters γ̄0
j and ᾱ0

j and show that the first order

conditions for γ̄0
j and ᾱ0

j directly control the bias passed on to the second stage nonparametric

estimator for g̃0(x). Convergence rates and validity of inference then follow from symmetric

analysis of the results in ??. Combining estimation and inference of the two conditional

counterfactual outcomes then gives a doubly-robust estimator and inference procedure for

the CATE. To perform inference on the CATE we can use the variance matrix

Ω̄ = Ω0 + Ω1 − 2Ω2

where Ω0 is as in (3.31) but Ω1 and Ω2 are given

Ω1 = Q−1E[{pk(x)◦k0}{pk(x)◦k0}′]Q−1

Ω2 = Q−1E[{pk(x)◦k}{pk(x)◦k0}′]Q−1
(3.40)

where k
0,j = Y0(π̄0,j, m̄0,j) − g̃0(x) and k

0 = (k0,1, . . . ,
k
0,k )′. These matrices can be consistently

estimated using their natural empirical analogs as in (3.14).
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3.6 Simulation Study

We investigate the finite-sample performance of the doubly-robust estimator and inference

procedure via simulation study. We find that our proposed estimation procedure retains

good coverage properties even under misspecification.

3.6.1 Simulation Design

Observations are generated i.i.d. according to the following distributions The error term

is generated following ε ∼ N(0, 1). The controls are set Zi = (Z1i, Xi) ∈dz where dz =

100, X ∼ U(1, 2), and the independent regressors Z1 are jointly centered Gaussian with a

covariance matrix of the Toeplitz form

Cov(Z1,j, Z1,k) = E[Z1,jZ1,k] = 2−|j−k|, 3 ≤ j, k ≤ dz.

To capture misspecification, we let Z† be a transformation of the regressors in Z1 where

Z†j = Zj + max(0, 1 + Zj)
2, ∀ j = 3, . . . , dz. Let sparsity control the number of regressors

in Z = (Z1, X) entering the DGP.

[label=(S0)]Correct specification: Generate D given Z from a Bernoulli distribution

with Pr(D = 1|Z) = {1 + exp(p1 − X − 0.5X2 − γ′Z1)}−1 and Y = D(1 + X +

0.5X2 + γ′Z1) + ε. Propensity score model correctly specified, but outcome regression

model misspecified : Generate D given Z as in (S1), but Y = D(1+X+0.5X2+γ′Z†1)+ε.

Propensity score model misspecified, but outcome regression model correctly specified :

Generate Y according to (S1), but generate D given Z from a Bernoulli distribution

with Pr(D = 1|Z) = {1 + exp(p2 −X − 0.5X2 + γ′Z†1)}−1.

where the constants p1 and p2 differ in various simulation setups but are always set so that

the average probability of treatment is about one half. To consider various degrees of high-

dimensionality, we implement N ∈ {500, 1000} with dz = 100. For (S1), sparsity= 6;

for (S2), sparsity= 4; and, for (S3), sparsity= 5. Results are reported for S = 1, 000
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repeated simulations.

3.6.2 Estimators and Implementation

To select the first stage penalty parameters, we implement the multiplier bootstrap procedure

described in 3.2.3. The constants cγ,j and cα,j in the pilot penalty parameters (3.16) are

selected via cross validation from a set of size 5. To select the final bootstrap penalty

parameter we set c0 = 1.1 and select the 95th quantile of B = 10000 bootstrap replications. In

our second-stage estimation, we use a b-spline basis of size k = 3. B-splines are implemented

from the R package splines2 (Wang and Yan 2021), which uses the specification detailed in

Perperoglou et al. (2019). In the tables below, we refer to our method as MA-DML (model

assisted double machine learning).

We compare our proposed estimator and inference procedure to that of Semenova and

Chernozhukov (2021b), which projects a single aIPW signal onto a growing series of basis

terms. In implementing this DML method, we use the standard `1-penalized maximum

likelihood (MLE) and ordinary least squares (OLS) loss functions to estimate the first stage

propensity score and outcome regression models, respectively.

Estimation error is studied for the target parameter g0(x) = E[Y |D = 1, X = x] over a

grid of 100 points spaced across x ∈ [1, 2], i.e. the support of X. We study average coverage

across simulations of each method’s pointwise (at x = 1.5) and uniform confidence intervals.

To compare the estimation error for the target parameter g(x) across the two different

estimators ĝs(x) for each simulation s = 1, . . . , S, we utilize integrated bias, variance, and
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mean-squared error where ḡ(x) = S−1
∑S

s=1 ĝs(x),

IBias2 =

∫ 1

0

(ḡ(x)− g0(x))2dx,

IVar = S−1

S∑
s=1

∫ 1

0

(ĝs(x)− ḡ(x))2dx,

IMSE = S−1

S∑
s=1

∫ 1

0

(ĝs(x)− g0(x))2dx.

3.6.3 Simulation Results

Table 3.1 presents the simulation results for all three specifications (S1)-(S3) for n = 500

and n = 1000. Integrated squared bias, variance, and mean squared error are presented

in columns (1)-(3), respectively. Pointwise and uniform coverage results are presented in

columns (4)-(7).

For pointwise and uniform coverage under correct specification regime (S1), MA-DML

has some slight improvements. Under misspecification DGPs (S2) and (S3), the pointwise

coverage of MA-DML is closer to the targets except in the N = 1000 and (S2) case where

it slightly underperforms. However, MA-DML has a notable improvement over DML in

the (S3) case when N = 1000. Similarly, MA-DML outperforms DML in three of the four

misspecified regimes, i.e. all but (S3) when N = 500 where MA-DML has over-coverage.

Under (S2) when N = 1000, both methods are markedly deterioated uniform coverage,

although MA-DML is noticably closer to target.

In regards to estimation error, in four of the six settings, MA-DML has a lower MSE

than DML where regardless of sample size MA-DML underperforms in (S3). Notably, it

does appear MA-DML has substantially smaller IBias2 across the DGPs.

Finally, we were surprised to find for both estimators that coverage properties, in general,

improve under the higher-dimensional regime of N = 500 with dz = 100 compared to
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Table 3.1: Simulation study.

1.2.1.2.3.

DGP Estimator IBias2 IVar IMSE Cov90 Cov95 UCov90 UCov95

(1) (2) (3) (4) (5) (6) (7)

K=3, n=500, dz = 100

(S1)
DML 0.04 0.31 0.35 0.92 0.96 1.00 1.00

MA-DML ∼0.0 0.34 0.34 0.93 0.97 1.00 1.00

(S2)
DML 0.16 2.17 2.33 0.92 0.97 0.83 0.86

MA-DML 0.03 2.12 2.15 0.90 0.94 0.88 0.91

(S3)
DML 0.03 0.55 0.59 0.87 0.93 0.95 0.97

MA-DML 0.01 0.79 0.80 0.91 0.95 0.99 0.99

K=3, n=1000, dz = 100

(S1)
DML 0.12 0.20 0.32 0.83 0.90 0.96 0.96

MA-DML 0.01 0.22 0.23 0.83 0.90 0.99 0.99

(S2)
DML 0.40 2.1 2.5 0.84 0.91 0.33 0.39

MA-DML 0.19 2.07 2.26 0.83 0.89 0.50 0.55

(S3)
DML 0.11 0.34 0.46 0.74 0.82 0.80 0.84

MA-DML 0.01 0.53 0.54 0.84 0.89 0.89 0.91

Note: DGP refers to the three various data generating processes introduced

above. IBias2, IVar, and IMSE refer to integrated squared bias, variance, and

mean squared error, respectively. Cov90, Cov95, UCov90, and UCov95 refer to

the coverage proportion of the 90% and 95% pointwise and uniform confidence

intervals across simulations. K refers to the number of series terms, N to the

sample size, and dz to the dimensionality of the random variable Z1.
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N = 1, 000 and dz = 100. In particular, with a higher ratio of covariates to observations, the

uniform coverage properties under regime (S2) were substantially better. The estimation

error results were in line with our priors as the higher-dimensional regime sees in general

higher estimation errors for both methods.

For coverage under correct specification, we did anticipate the underperformance of MA-

DML given it is designed to handle misspecification with the cost of other estimators outper-

forming under correct specification. Additionally, we attribute the poor uniform coverage in

DGP (S2) for both estimators under N = 1, 000 to a lack of a rich enough cross-validation

given the performance was improved under a more difficult regime when the number of ob-

servations drops to N = 500. The integrated bias of MA-DML is lower across the various

DGPs compared to DML. Following the discussion in 3.3 this is expected since the first stage

estimating equations for the model assisted procedure are specifically designed to minimize

the bias passed on to the second stage estimator. However, the model assisted procedure

has higher values of integrated variance compared to the standard procedure, which could

be attributable to the use of k distinct first-stage estimations.

Our findings should not be interpreted as a critique of the Semenova and Chernozhukov

(2021b) benchmark method, whose work we rely on and were inspired by.

3.7 Conclusion

Estimation of conditional average treatment effects with high dimensional controls typically

relies on first estimating two nuisance parameters: a propensity score model and an outcome

regression model. In a high-dimensional setting, consistency of the nuisance parameter es-

timators typically relies on correctly specifying their functional forms. While the resulting

second-stage estimator for the conditional average treatment effect typically remains consis-

tent even if one of the nuisance parameters is inconsistent, the confidence intervals may no

longer be valid.
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In this paper, we consider estimation and valid inference on the conditional average

treatment effect in the presence of high dimensional controls and nuisance parameter mis-

specification. We present a nonparametric estimator for the CATE that remains consistent

at the nonparametric rate, under slightly modified conditions, even under misspecification

of either the logistic propensity score model or linear outcome regression model. The re-

sulting Wald-type confidence intervals based on this estimator also provide valid asymptotic

coverage under nuisance parameter misspecification.
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