
UCLA
UCLA Electronic Theses and Dissertations

Title
Towards Effective And Efficient Graph Neural Networks

Permalink
https://escholarship.org/uc/item/2c41371c

Author
WANG, YEWEN

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2c41371c
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Towards Effective And Efficient Graph Neural Networks

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Yewen Wang

2024

© Copyright by

Yewen Wang

2024

ABSTRACT OF THE DISSERTATION

Towards Effective And Efficient Graph Neural Networks

by

Yewen Wang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2024

Professor Yizhou Sun, Chair

Graph is a pervasive data type in the real world, as it serves as a succinct yet

powerful abstraction for entities and their interconnections. Consequently, generating

high-quality graph representations that encode the graph information is important,

as these representations would be instrumental in graph-related tasks. In this context,

Graph Neural Networks (GNNs) have emerged as a significant advancement and

gained prominence for their ability to learn powerful graph representations which

lead to state-of-the-art performance across a variety of graph-based applications.

However, despite their remarkable capabilities, the design and training processes of

GNNs are still fraught with challenges. Given this, my research goal is to identify and

address these hurdles from both the effectiveness and efficiency perspectives, aiming to

develop GNN models that are potent yet scalable, thereby enhancing GNN’s power in

producing superior graph representations in practice. This dissertation systematically

investigates two fundamental questions: (1) What impedes the effectiveness of GNNs?

ii

(2) How to train GNNs efficiently? Despite providing a comprehensive discussion of

each question, it presents practical solutions to mitigate each side and covers both

homogeneous graphs and heterogeneous graphs.

iii

The dissertation of Yewen Wang is approved.

Cho-jui Hsieh

Quanquan Gu

Wei Wang

Yizhou Sun, Committee Chair

University of California, Los Angeles

2024

iv

To my family, and myself.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Motivation . 1

1.2 Thesis Contribution . 3

1.3 Thesis Outline . 5

2 Background . 9

2.1 Graphs: Definition, Key Concepts, and Applications 9

2.2 Graph Representation Learning: From Shallow to Deep 13

2.3 Challenges in GNNs and Existing Solutions 16

2.3.1 Challenges in Making GNNs Effective 16

2.3.2 Challenges in Making GNNs Efficient 18

I Effectivenss 20

3 Laplacian Score Benefit Adaptive Filter Selection for Graph Neural

Networks . 21

3.1 Introduction . 21

3.2 Preliminaries . 24

3.2.1 GNNs for Semi-Supervised NC 24

3.2.2 Graph Convolutional Filters 25

vi

3.3 Method . 27

3.3.1 Constructing the GCF Set . 29

3.3.2 Filter Selection: A Kernel Perspective 32

3.3.3 Laplacian Score-based Filter Selection 34

3.3.4 Learning Representations with AdaFS 35

3.3.5 Discussion on AdaFS . 36

3.4 Experiments . 38

3.4.1 Datasets, Baselines, and Settings 38

3.4.2 Main Results . 41

3.4.3 Ablation Study and Discussion 42

3.5 Conclusion . 48

4 SMASH: Scalable Meta-path Aggregation baSed Heterogeneous Graph

Neural Networks . 49

4.1 Introduction . 49

4.2 Preliminaries . 52

4.2.1 Node Classification for Heterogeneous Graphs 52

4.2.2 Heterogeneous Graph Emebedding 53

4.3 Methodology: SMASH . 56

4.3.1 Details for Components in SMASH 57

4.3.2 Advantages of SMASH. 60

4.3.3 Distinguishing SMASH with Existing Models. 61

vii

4.4 Experiment . 62

4.4.1 Experimental Setup . 62

4.4.2 Results . 64

4.5 Conclusion . 66

II Efficiency 68

5 Decoupled Greedy Learning of Graph Neural Networks 69

5.1 Introduction . 69

5.2 Related Work . 72

5.2.1 Deep Graph Convolutional Network (DeepGCN) 72

5.2.2 Efficient GNN Training . 73

5.2.3 Layer-wise GNN . 74

5.3 Proposed Approach . 75

5.3.1 Model Architecture . 75

5.3.2 Decoupled Greedy Learning Algorithm 77

5.4 Analysis . 80

5.4.1 Complexity Analysis . 81

5.4.2 Analogy to block coordinate descent 82

5.4.3 Convergence Guarantee . 84

5.5 Experimental Results . 85

5.5.1 Experiment Settings . 86

viii

5.5.2 Main Results . 87

5.5.3 Ablation Study . 89

5.6 Conclusions . 92

6 BLADS: Bi-Level Adaptive Sampling for Heterogeneous Informa-

tion Network Training . 93

6.1 Introduction . 93

6.2 Preliminaries . 95

6.2.1 HetG and Notations . 96

6.2.2 Node Classification and Link Prediction with Heterogeneous

GNNs . 96

6.2.3 Related Works: Sampling on Graphs 99

6.3 Method . 101

6.3.1 Random Sampling with Uniform Distribution 102

6.3.2 BLADS: Bi-Level Adaptive Sampling 108

6.3.3 Combining BLADS with Heterogeneous GNNs 111

6.3.4 Overall Algorithm and Optimization 113

6.4 Experiments . 115

6.4.1 Experimental Setup . 116

6.4.2 Results . 117

6.5 Conclusion . 120

7 Conclusion and Future Directions . 121

ix

LIST OF FIGURES

2.1 Example of an academic heterogeneous graph and related concepts. . . . 11

3.1 Overview of the AdaFS Framework. 28

3.2 Toy Examples to Illustrate Different Graphs Prefers Different GCF. . . . 29

3.3 Heatmap for the Learned Filter Combination Weight and Curves for

Hyper-parameter Tuning. 42

3.4 Visualization Results with Different GCFs on (a) Cora and (b) Squirrel. . 44

3.5 Importance of Non-linearity and Importance of the Laplacian Loss. . . . 46

4.1 Runtime and Accuracy Rank of SMASH and Different HeterHeterogeneous

GNNs on ACM Dataset. 51

4.2 An Illustration Example for the Difference Between Relation-based Mes-

sage Passing and Metapath-based Message Passing. 54

4.3 Overview of SMASH. 57

4.4 The Influence of the Number of Metapath Subsets on Accuracy (left) and

Running Time (right) with ACM Datasset. 65

5.1 High-level Framework of Conventional DeepGCN (upper) and Layerwise

DeepGCN (lower). 76

5.2 Signal Propagation Process for Conventionally Trained GNN, Sequentially

Trained Layerwise GNN, and the Parallel Trained GNN. 77

5.3 Comparison of Sequential and Parallel Training. 90

x

6.1 An Illustration Example on Partial OGBN-MAG. 96

6.2 Schema for Synthetic HetGs in the Challenge Cases. 102

6.3 Computational Graphs Generated with Different Sampler on NoiHetG. . 103

6.4 Computational Graphs Generated with Different Sampler on ComHetG. 107

6.5 An Illustration for Applying BLADS With a Heterogeneous GNN. Schema

is Taken From OGBN-MAG in Fig6.1. 108

6.6 (Validation Loss Change In Terms of Wall-time (a) and Epoch (b). The

Budget’s Effects on the Accuracy (c). 118

6.7 γ’s Influence on BLADS Performance. The Dashed Lines Are For the

Dynamic Schedule in 3.4. The Solid Lines Are For Results With Different

Fixed γ. 119

xi

LIST OF TABLES

3.1 Statistics of Benchmark Datasets. The h-score is the Homophily Score of

Graphs Defined in [143]. 39

3.2 Performance of AdaFS and Baselines on Node Classification Benchmark

Dataset. 41

3.3 Performance of AdaFS and SIGN on Node Classification Benchmark

Datasets With and Without the Laplacian Regularizer. 43

4.1 Statistics of Benchmark Datasets for Node Classification in Heterogeneous

Graphs. 63

4.2 Performance of SMASH and Baselines on Benchmark Datasets. OOM

indicates out of memory. 64

4.3 Importance of Multi-stage Aggregation on ACM dataset. 66

5.1 Summary of Complexity. 74

5.2 Statistics of Benchmark Dataset . 86

5.3 Comparison of DGL-GCN and LU-DGL-GCN With Baseline Methods on

Benchmark Datasets. Set Tlazy = 50 for LU-DGL-GCN. 88

5.4 Comparison of LU-DGL-GCN With Different Tlazy. 89

5.5 The Decoupled Greedy Learning Method Can Also Be Combined With

the Graph Isomorphism Network Model. 90

5.6 The Decoupled Greedy Learning Method Can Also Be Combined With

the Sampling-based Method. 91

xii

6.1 Notation Summary . 97

6.2 Benchmark Dataset Statistics . 116

6.3 Results for Node Classification Task. 117

6.4 Results for Link Prediction Task . 118

6.5 Initialization’s Effect on BLADS’s Performance. 118

xiii

ACKNOWLEDGMENTS

The journey to completing my Ph.D. in UCLA’s Computer Science Program has

been a challenging yet rewarding experience filled with personal discovery, growth,

exhilarating highs, inevitable lows, and moments of joy and tears. This incredible

journey, would not have been possible without the companionship, support, guidance,

and inspiration of so many brilliant people, my advisors and mentors, collaborators

and labmates, instructors, staff, family, and friends.

First and foremost, I want to extend my heartfelt thanks to my advisor, Professor

Yizhou Sun, for her invaluable mentorship which is pivotal for my academic journey.

Her remarkable intellect, deep knowledge, passion for pioneering scientific problems,

and dedicated commitment to research have set a role model that I have continually

aspired to reach. Her warm encouragement, hands-on guidance, and steadfast support

foster an exceptional environment for me to learn and grow.

I am very grateful to my esteemed committee members: Professor Wei Wang,

Professor Quanquan Gu, and Professor Cho-Jui Hsieh. Their academic rigor and

discerning feedback significantly broadened my academic perspective and helped me

to refine my research. Additionally, I am deeply thankful to Professor Junghoo Cho

for his insightful questions and comments during our reading groups. His challenging

questions prompted me to delve deeper into various technical and research issues,

enhancing my understanding and familiarity with these topics, and also inspired me

how to be analytical and thoughtful when learning things.

I am very fortunate to have had the opportunity to complete four internships and

collaborate with a group of remarkably talented individuals. My gratitude extends to

my mentors at AWS: Soji Adeshina, Vassilis N. Ioannidis, Jiani Zhang, Xiang Song,

xiv

Da Zheng, Christos Faloutsos, and George Karypis, and many of my peer interns, with

a special thanks to Soji Adeshina. As my manager during all three of my internships

at AWS, Soji fostered numerous inspiring discussions about my projects and provided

patient, detailed guidance on coding techniques. The internships at AWS broadened

my research horizons into the realm of heterogeneous graphs and have also paved the

way for me to join Amazon after graduation, marking the beginning of my professional

career. In addition, I am grateful to my mentors at MILA, Professor Guy Wolf and

Professor Jian Tang, for motivating me to explore the field of parallelization for

GNN modeling. Collaborating with all these distinguished individuals has been an

invaluable learning experience for me.

I am deeply thankful to be part of such a warm and brilliant lab, and I wish

to express my appreciation to my labmates: Ting Chen, Yupeng Gu, Xuelu Chen,

Junheng Hao, Yunsheng Bai, Ziniu Hu, Patricia Xiao, Vivian Cheng, Song Jiang,

Roshni Iyer, Zijie Huang, Shichang Zhang, Zongyue Qin, Derek Xu, Arjun Subramo-

nian, Fred Xu, Yanqiao Zhu, Fang Sun, Weikai Li, Zongyu Lin, Jiaqi Zhu, Changjun

Fan, Jiarong Xu, Xiao Luo, Zijun Xue, Jin Wang, Manoj Reddy, Shengming Zhang,

Zeyu Li, Xiusi Chen, Mingyu Derek Ma, Mandy Wang, and Yijia Xiao. Our shared

experiences and mutual support have greatly enriched my Ph.D. journey, making this

challenging path of academic pursuit enjoyable.

I extend my thanks to the course instructors who provided me with the invaluable

opportunity to serve as a TA: Yizhou Sun, Quanquan Gu, and David Smallberg. Their

exceptional lectures and meticulously prepared materials have been instrumental

in enhancing my knowledge of course design, making my TA experience rewarding

and enjoyable. Additionally, I learned a lot from the courses I have taken and am

grateful for these amazing instructors as well: Richard Korf, Yizhou Sun, Quanquan

xv

Gu, Lieven Vandenberghe, Junghoo Cho, Ernest K. Ryu, Wei Wang, Cho-Jui Hsieh,

Paul Eggert, and Songwu Lv.

My appreciation also goes to the dedicated UCLA CS department staff, for their

diligent efforts in maintaining an efficient and supportive departmental environment.

Special thanks to Madelene Hem and Osanna Kazarian for their management of our

lab, ensuring it remains a conducive space for research and innovation, to Joseph

Brown and Helen Tran for assisting with doctoral academic affairs, and to Ning Jiang,

Cassandra Franklin, and Diana de los Santos for managing funding and financial

matters, to Mildri Lopez-Duarte for issuing keys to access lab, and to Jade Hill and

Juliana Alvarez for keeping us well-informed with regular updates.

Last but most importantly, I want to say a huge thank you to my cherished

family and best friends. To my father and my mother, your unconditional love and

unwavering support transcend the mere words I can find to describe. Your enduring

belief in me has been my strength in all the hardest moments, giving me the courage

and confidence to get through the dark times. To my husband, your understanding

and companionship are the bedrock of this journey, providing solace and joy in my

most struggling moments. My heartfelt thanks also go to my dear friends: Jasmine

Ouyang, Wendy Ni, Zoey Zhou, and Young Zhang, for always being there to give

unending support and comfort to me in my down times. The depth of my gratitude

for my family and friends is boundless, they are my refuge, and my pillar of strength.

As this chapter of my journey concludes, I wish to express my heartfelt gratitude

to every individual who has impacted my life and work over the past five and a half

years. To each of you, I extend my best wishes for the future, hoping that it holds

success, happiness, and fulfillment. Thank you for being a part of my journey.

xvi

VITA

2014–2018 B.Eng. in Automation, Tsinghua University

Beijing, China.

2019–2021 Teaching Assistant/Associate, Computer Science Department, UCLA

Los Angeles, CA, United States

2020 Graduate Research Intern, Quebec AI Institute (MILA)

Montréal, QC, Canada

2021 Applied Scientist Intern, Amazon Web Services

Santa Clara, CA, United States.

2022 Applied Scientist Intern, Amazon Web Services

Santa Clara, CA, United States.

2023 Applied Scientist Intern, Amazon Web Services

Santa Clara, CA, United States.

2018 - 2023 Graduate Student Researcher, Computer Science Department, UCLA

Los Angeles, CA, United States

PUBLICATIONS

Yewen Wang, Shichang Zhang, Junghoo Cho, Yizhou Sun, Laplacian Score Benefit

Adaptive Filter Selection for Graph Neural Networks, Proceedings of the 2024 SIAM

International Conference on Data Mining (SDM 2024, SoCal-KDD23)

xvii

Zhicheng Ren, Yifu Yuan, Yuxin Wu, Xiaxuan Gao, Yewen Wang, Yizhou Sun,

Dissimilar Nodes Improve Graph Active Learning, GLFrontiers 2022 Workshop: New

Frontiers in Graph Learning (GLFrontiers-NeurIPS22)

Yewen Wang, Jian Tang, Yizhou Sun, Wolf Guy, Decoupled Greedy Learning of

Graph Neural Networks, OPT2020 Workshop: Optimization for Machine Learning

(OPT-NeurIPS20)

Yewen Wang, Ziniu Hu, Yusong Ye, Yizhou Sun, Demystifying Graph Neural

Networks with Graph Filter Assessment, The Second International Workshop on

Deep Learning on Graphs: Methods and Applications (DLG-KDD20)

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, Quanquan Gu, Layer-

Dependent Importance Sampling for Training Deep and Large Graph Convolutional

Networks, 2019 Neural Information Processing System (NeurIPS19)

xviii

CHAPTER 1

Introduction

1.1 Motivation

Graph Neural Network (GNN) is a family of prominent models for learning high-

quality representations for ubiquitous graph data, and has gained more and more

attention due to its State-Of-The-Art (SOTA) performance across diverse graph-

related tasks [14, 109, 139, 10]. However, achieving effective and efficient GNN models

presents significant challenges. On the effectiveness side, issues such as over-smoothing

[64] where node features become non-distinguishable when the network gets deeper

hampers deep GNN architectures from being effective, and heterophily1 [143] where

nodes connected by edges do not necessarily share similarities betrays the underlying

homophily assumptions in most of the GNN models, pose considerable hurdles. On the

efficiency side, challenges such as update-locking [49] hamper parallel computations,

while the inherently costly nature of graph convolutional operations [144] makes

large-scale deep GNN applications problematic.

A lot of research efforts are paid to making GNN models more powerful [53, 141,

100] and more efficient [132, 68]. For the effective side, various prominent GNN

1Please note that, heterophilic graph and heterogeneous graph are different. Heterophilic graph
belongs to the category of homogeneous graphs. Chapter 2 provides a concrete definition and
examples for both.

1

architectures such as GCN [55], GAT [95], deepGCN [64, 61], SIGN [31], GIANT [22]

are developed to enhance GNN’s representation learning capabilities, while another

branch of work such as RGCN [82], NARS [123], MAGNN [129], CLGNN [105]

aims to tailor architectures for learning with the heterogeneous graphs. There are

also many works that pay attention to identifying and addressing the challenging

cases for GNNs such as H2GCN [143], EGP [24] GFNN [73]. For the efficiency

side, people develop algorithms to train GNNs more efficiently such as GraphSAGE

[38], GraphSAINT [128], GOREN [12], and GCond [52]. Efforts are also extended

from inference [131, 91], system [97, 136], hardware [126, 35] perspectives to make

GNNs more efficient. Despite these extensive research efforts aimed at enhancing the

effectiveness and efficiency of GNNs, existing solutions are insufficient, leaving ample

scope for exploration in the field.

To this end, my goal is to develop powerful GNN models that can achieve high-

quality graph representations even under demanding situations and enable GNNs to

be trained efficiently for large-scale applications under time and memory constraints.

My research is mainly structured around the following research questions:

1. Regarding effectiveness, given that the graph convolutional operation is pivotal in

empowering GNNs and considering the variety of graph convolutional operators
2 available, we should understand: What specific applicability and limitation

scenarios exist for each operator? Additionally, how can we adaptively employ

these operators across various graph representation tasks to optimize their

utility and performance, especially when facing the heterophilic challenge and

2We should distinguish the term “Graph convolution operator” and ”Graph convolutional filter”,
the filter is a matrix assigning weights on each edge for message passing, while the operator indicates
applying the filter and conduct message passing on the graph.

2

the over-smoothing challenge mentioned above?

2. Regarding efficiency, as graph convolutional operations bring the exponen-

tial neighborhood growth problem when conducting batch-wise training on

large-scale graphs, we should think: How can we mitigate this exponential

neighborhood expansion to reduce the computational burden? To take a step

further, can we address the update-unlocking which is an inherent challenge

that hinders neural networks from being more efficient as well?

3. There are usually trade-offs between the effectiveness side and the efficiency

side, a lot of work may trade in one side when focusing on the other (especially

when the focus is on the effectiveness side). Therefore, we think about, can

we develop GNN models to ensure that improvements in one aspect do not

undermine the other?

4. When transitioning the focus to heterogeneous graphs, how do we manage their

intrinsic heterogeneity and customize effective and efficient message-passing

strategies for them?

1.2 Thesis Contribution

This dissertation delves into the motivations outlined in the previous section, and its

major contributions are summarized as follows.

• Regarding effectiveness, my research targets the creation of an adaptive graph

convolutional operator design. We start by examining a comprehensive set

of existing operators, subsequently selecting a specific operator family as our

3

focus. We justify the necessity to consider each operator within this family,

and introduce an innovative adaptive soft-selection mechanism. This scheme is

designed to learn the most suitable operator for any given graph representation

task, thereby enhancing the effectiveness of GNNs.

• On the efficiency front, we develop a GNN model in which each layer could

be trained in parallel so that the training time can be greatly reduced and

the memory cost can be distributed to multiple devices. With prior findings

that GNN layers need not be trained jointly, we propose a novel approach

that decouples the GNNs into blocks and trains each block independently with

auxiliary greedy learning objectives in parallel. We show that this method

mitigates the challenges of update-locking and exponential neighbor growth,

resulting in markedly increased training efficiency.

• Concerning the inherent trade-offs between effectiveness and efficiency, we care

about developing a balanced approach that caters to both sides concurrently.

Though it is nearly impossible to develop models that could be the best in

terms of both effectiveness and efficiency, we consider scalability as well when

targeting a model design to get top effectiveness, and vice versa, ensuring our

advancement on one side does not come at the price of the other.

• Concerning the heterogeneity, we tailor message-passing and efficiency-enhancing

techniques to suit various node and edge types. To achieve an effective design

for heterogeneous GNNs, we introduce an adaptive message-passing scheme

that adjusts to a variety of meta-paths, while for efficient training of heteroge-

neous GNNs, we develop a bi-level sampling strategy that customizes neighbor

distributions for distinct node types.

4

The thesis aims to make a substantive contribution to the advancement of GNNs,

paving the way for their broader application and impact across various domains.

1.3 Thesis Outline

The rest of this dissertation is structured as follows:

Chapter 2 establishes the foundational background for this thesis. It provides

formal definitions, and examples for both homogeneous and heterogeneous graphs,

provides use cases on graph-related applications, and goes through prominent literature

for graph representation learning from shallow models to deep models and from

homogeneous graphs to heterogeneous graphs.

Chapter 3 focuses on enhancing the effectiveness of GNNs for homogeneous graphs.

The graph convolutional filter (GCF) for aggregating neighbor information is shown

to be the key factor that leads to GNNs’ success. Various GCFs are designed but

how to select the proper filter that can best benefit the data and the task remains

an open problem. Thus, to improve the effectiveness, we introduce the Adaptive

Filter Selection (AdaFS) framework that addresses two critical issues: (1) defining

a criterion to establish a strong base filter set; and (2) adaptively selecting filters

for a specific task, even when labeled data is limited, by employing Laplacian score

regularization. We further connect this multiple GCF learning process and the

well-developed multiple kernel learning problem to provide a solid rationale for filter

selection. The proposed AdaFS achieves top-tier performance in benchmarks and

is shown to enjoy the benefit of mitigating the over-smoothing and heterophilic

5

challenge.

Chapter 4 also concentrates on the effectiveness, but shifts the focus to heteroge-

neous graphs. Heterogeneous graphs have strong capability of modeling multi-typed

nodes and relations, and Heterogeneous GNNs have been greatly explored due to

their SOTA performance on heterogeneous graphs. Existing works can be divided

into two categories: relation-based ones which construct subgraphs based on the

relation subsets and consider message passing and aggregation on the subgraphs;

and metapath-based ones which perform message passing via metapaths on the full

graph. The relation-based methods may lose the rich semantics as the relation subsets

will inevitably fail to cover all the metapaths, while the metapath-based ones suffer

scalability bottlenecks since the number of metapath in the full graph is usually

exponential to the path length. To address the challenges from both sides and develop

effective heterogeneous GNNs, we propose the Scalable Metapath Aggregation baSed

Heterogeneous GNN model (SMASH), which shows great performance in terms of

both accuracy and scalability.

Chapter 5 tackles the efficiency aspect of homogeneous GNNs by developing a

Decoupled Greedy Learning GNN (DGL-GNN) approach combined with a lazy

update scheme for GNN training. The computational intensity of graph convolution

operations and the update-locking issue are notable obstacles in large-scale GNN

training. Intending to overcome these hurdles, we introduce the DGL-GNN which

decouples the GNN into smaller modules and associates each module with greedy

auxiliary objectives. Our approach allows GNN layers to be updated during the

training process without waiting for feedback from successor layers, thus making

6

parallel GNN training possible. Further, we propose a lazy-update scheme during

training to further improve its efficiency. Despite its success in reducing the per-

GPU memory cost and total running time without significantly compromising model

accuracy, the proposed algorithm is compatible with other scalability-enhancing

methods such as sampling, and can be integrated with these methods to achieve even

greater improvements in efficiency.

Chapter 6 also aims at the efficient training but focuses on heterogeneous GNNs,

by introducing a bi-level sampling technique. The uncontrollable neighbor expansion

brought by the graph convolutional operation also bothers heterogeneous GNNs.

While uniform random sampling has been shown to successfully speed up GNN model

training, we observe that uniform random sampling is not enough for heterogeneous

GNNs. We examine the performance of heterogeneous GNNs trained with random

sampling with and without considering the heterogeneity and find that they fail in the

two following cases respectively: 1) a “noisy” graph in which many neighboring node

instances do not provide information for the downstream task; 2) a schema-complex

graph which includes numerous relation types but has a limited sampling budget. As

such, we posit that training heterogeneous GNNs requires a non-uniform relation-

importance-aware sampling method for fast and accurate performance. Current

sampling methods are mostly either designed for homogeneous graphs and are not

capable of handling heterogeneity properly, or are task-agnostic which apply the same

sampling heuristics regardless of the downstream tasks and do not explicitly sample

to boost the model effectiveness on the current task. Therefore, we propose the

Bi-Level Adaptive Sampling (BLADS), to conduct the sampling from both schema

and instance levels. The schema-level sampler learns to generate more samples of the

7

critical relation types and the entity level generates diverse representatives of each

relation type uniformly.

Chapter 7 concludes the dissertation, summarizing my research outcomes and

discussing potential directions for future research.

8

CHAPTER 2

Background

2.1 Graphs: Definition, Key Concepts, and Applications

Graphs are ubiquitous in the real world and they serve as an insightful abstraction

in numerous domains, capturing the essence of entities and their interactions. For

instance, a chemical compound can be represented with a molecular graph, in which

nodes are atoms and edges are chemical bonds. Similarly, Facebook’s friendship

network could be represented with a simple social network, nodes represent individuals,

while edges signify friendships. Moreover, in the recommender systems, we could

have user-product graphs that depict users and products as nodes, interconnected by

edges that may denote relationships such as purchase history or shared preferences.

In general, these graphs fall into two primary categories: homogeneous graphs

and heterogeneous graphs. Homogeneous graphs consist of a single type of node

and edge, making their structure and learning them relatively straightforward. In

contrast, heterogeneous graphs, which consist of multiple types of nodes or edges

(could be both as well), are capable of preserving richer semantics but also present

more challenges in learning, because diverse types of nodes and links have their

type-specific feature spaces and feature distributions and the structure also gets more

complex. In the aforementioned examples, the molecular graphs and simple social

9

networks are homogeneous, while the user-product graphs in recommender systems

are heterogeneous. We give formal definitions to each graph type and present the key

related concepts in the following.

Definition 1 (Homogeneous Graph) A homogeneous graph is defined and de-

noted as Ghom(Vhom, Ehom), where Vhom = {v1, v2, ..} is the node set, and Ehom =

{e1, e2, ...} is the edge set. Each homogeneous graph is associated with an adjacency

matrix A ∈ Rn×n (Ai,j = 1 if there exists an edge between node vi and vj, otherwise

0) and a feature matrix X ∈ Rn×d, where n is the total number of nodes in Ghom,

and d is the input feature dimension. In this dissertation, we omit the under-script

“hom” for simplicity when we specify the homogeneous context in the chapters.

Definition 2 (Heterogeneous Graph) Ghet(Vhet, Ehet,Φ,Ψ), where Vhet = {v1, v2, ..}

is a multi-type node set, Ehet = {e1, e2, ...} is a multi-type edge set, Φ : Vhet → A is a

mapping function that associate each node vi to a node type a in node type set A, and

Ψ : E → R is a mapping function that associate each edge ei to an relation type r

in relation type set R. Each heterogeneous graph is associated with a feature matrix

set {Xa : a ∈ A} where Xa ∈ Rna×da is the feature matrix for node type a, na is the

number of nodes with type a and da is the feature dimension. We assume all node

types have the same initial feature dimension for simplicity, i.e. ∀a, da = d. Each

heterogeneous graph is also associated with an adjacency matrix set {Ar : r ∈ R},

where Ar ∈ Rnasrc×nadst , nasrc and nadst are the node number for node type of source

and destination node respectively. In this dissertation, we omit the under-script “het”

for simplicity when we specify the heterogeneous context in the chapters.

There are many key concepts associated with heterogeneous graphs. We summarize

the key concepts we will be using in the dissertation as follows. We provide a concrete

10

P1

P2

Fig. An Illustration Example of Heterogeneous Graph and Related Concepts

P3

P4

P A

A1T1

T

T2

A2

A3

(b) A heterogeneous graph

(c) The schema of the
heterogeneous graph in (b)

P AT

PT P

(d) Two meta-paths (APT and PPT)
in the heterogeneous graph in (b)

P1T1

P2T1

A1

A1

P4T2 A3

(e) Three meta-paths instances
for meta-path APT

(a) Node types and
relation types

P

A

T Topic node

Paper node

Author node

‘’has_topic’’
relation

‘’writes’’
relation

‘cites’’
relation

Figure 2.1: Example of an academic heterogeneous graph and related concepts.

example to explain the definition and key concepts in heterogeneous graphs in Figure

2.1 to help understanding.

Definition 3 (Schema) The network schema [90] or the metagraph is the abstract

graph representation of a heterogeneous graph, it preserves all the node types and

their relations, but each type only has one instance.

Definition 4 (Metapath) A length-k metapath [90] p is a path defined on the

network schema: a1
r1−→ a2

r2−→ ...
rk−1−−→ ak, where each ri and ai specifies a relation

type and a node type respectively.

Definition 5 (Metapath Instance) A metapath instance of a metapath is a path:

v1
e1−→ v2

e2−→ ...
ek−1−−→ vk, where each ei and vi is a relation and a node of the

corresponding relation and node type in the metapath respectively.

11

Various real-world applications can be formulated into graph-related tasks, en-

abling them to be solved with advanced graph-learning techniques. Here we provide

some illustrative examples. At the instance level which we make predictions to node

or edge, we have:

• Node Classification in which we predict labels for each node. Fraud detection

in financial networks can be modeled as a node classification task, where we

classify nodes in a transaction network to identify fraudulent activities [69].

Protein function prediction can also be formulated into a node classification

task, where we classify proteins’ (nodes) functions to help understand their

roles in biological processes [119].

• Link Prediction in which we predict the edge existence between a pair of

nodes. Friend recommendations in social media can be one example of this

task, where we identify potential edges indicating two people may know each

other and then can make “people you may know” predictions accordingly [65].

Collaboration prediction in academic networks can also be modeled as link

prediction, as it forecasts edge existence indicating future collaborations in

academic networks between the researcher nodes [130].

• Ranking which is to assign a significance score to each node and sort them in

order. Influencer analysis can be modeled as a ranking task, as it identifies the

most influential user nodes based on their interactions and behaviors [54].

At the graph level where we focus on entire graphs, we have tasks such as:

• Graph Classification in which we predict labels for each graph. Chemical

12

compound property classification can be formulated as a graph classification,

where we classify chemical compound graphs to identify their properties [103].

• Clustering in which we put nodes in the graph into smaller groups. Com-

munity detection can be modeled as a clustering task where we identify node

groups with common interests or characteristics in a social network [87]. Market

Segmentation is another example application that can be formulated as cluster-

ing, where we aim to identify clusters of customers with similar preferences or

behaviors in a retail network [28].

• Graph Generation in which we aim to generate new graphs with similar

properties of a given graph set. Drug discovery can be modeled as graph

generation, as it requires generating new molecular graph structures for potential

new drugs [50].

2.2 Graph Representation Learning: From Shallow to Deep

Given the wide applications that graphs offer across the diverse real-world problems

mentioned earlier, people are motivated to delve deeper into the domain of graph

learning. The fundamental step is to perform node representation learning, which

aims to map each node into a low-dimensional vector space.

Traditional methods for graph learning are primarily shallow models designed

with the fundamental intuition that connected nodes should have similar embeddings,

which encourage the learned representations to preserve the structure information

of the graph. Matrix factorization-based methods [79, 2] are the first branch of

work for node embedding. These methods construct proximity matrices based on

13

node connectivity and factorize the proximity matrix with dimensionality reduction

techniques. Proximity-learning based methods [13, 75] are then developed and

shown to be effective. These methods also request the construction of proximity

matrices, but let the embedding matrix be fully parametrized, and then optimize the

inner product of a pair of nodes’ embeddings to approximate the corresponding term

in the proximity matrix. Despite their achievements at the time they were invented,

matrix-factorization base methods and proximity-learning-based methods heavily

rely on hand-design deterministic node similarity measures. Random walk-based

methods [77, 37] is also a hot branch for the shallow graph learning models. The

idea is to perform random walks among the nodes in the graph, and optimize the

fully parametrized embedding matrix to let the inner product of a pair of nodes’

embeddings approximate their co-occurrence in the created walks. Though getting rid

of the hand-design proximity matrix, the parameter size for the random walk-based

methods can be big when the graph has a large scale. Shallow methods are also

developed for heterogeneous graphs, based on proximity-preserving intuition as well,

such as metapath2vec [29], PTE [92], and HIN2vec [32].

The aforementioned shallow methods exhibit common shortcomings that can

significantly restrict their applicability: (1) Poor Generalization. The shallow models

are designed for transductive settings, especially those that rely on heuristics, and

could be hard to accommodate unseen nodes or generalize across diverse graph types.

(2) Featureless. In shallow methods, they rely solely on structural information and

neglect the rich node feature data available in many real-world graphs. In most cases,

incorporating these node features is crucial as they carry inherent properties of nodes.

To address these problems, inspired by the breakthrough success of Neural Net-

works (NN) models in other application fields such as computer vision [96] and

14

natural language processing [27], people started to explore NN-based deep models

for graph representation learning. Over recent years, various GNN models have been

developed, including those from spatial and spectral perspectives. Spatial GNNs

such as [55, 18, 95, 34] for homogeneous graphs and [33, 45, 101] for heterogeneous

graphs leverage the message-passing mechanism [36] which integrates feature and

structural information by letting nodes aggregate the information from their connected

neighboring nodes. Spectral GNNs such as [94, 42, 142, 99] are grounded in spectral

graph theory. These models employ eigen-decomposition techniques to discern graph

patterns within the frequency Fourier domain.

This dissertation primarily concentrates on spatial GNN models, as they are

more straightforward and have broader applications[53]. In the message-passing

mechanism that is followed by most existing spatial GNN models, each node will have

a representation vector initialized with its raw feature, then at each message-passing

step (corresponds to one GNN layer), we perform the two operations: (1) Graph

Convolutional Operation, during which each node aggregates the representations of

its neighboring nodes, and (2) Projection, where these aggregated representations

are transformed into a suitable embedding space. These steps facilitate the effective

integration and propagation of information across the graph and naturally encode the

feature and topological information of the graph in the obtained representations. This

representation learning process can be described with the following mathematical

forms, we start with the homogeneous case for simplicity. For matrix-wise formulation,

we have:

H(l) = σ(FH(l−1)W (l)) (2.1)

whereH(l) ∈ Rn×dl is the representation matrix, dl is the dimensionality for l−th GNN

15

layer, F ∈ Rn×n is the graph convolutional filter that determines the weight on each

edge for neighborhood aggregation, W (l) ∈ Rdl−1×dl is the learnable transformation

weight for l−th GNN layer for projection, σ is the non-linear transformation for

projection. We have H(0) = X as initialization. For node-wise formulation, we have:

H(l)
v = σ(Σu∈N (v)FuvH

(l−1)
u W (l)) (2.2)

where H
(l)
v is the representation for node v at the l−th GNN layer, N (v) is the

neighbor set for node v, Fuv is the corresponding item in the graph convolutional

filter F for edge (u.v).

Starting from this formulation, various extension techniques are proposed for a

more complex GNN design, such as customize F for different GNN layers [95], adding

residual links to let GNN layers obtain all its predecessor layers’ representations

[18], or concatenate representations for all layers in the end to achieve the final node

representation [19]. Besides, the formulation can be easily extended to heterogeneous

graphs [100], but we may have to construct separate H(l)s for different node types,

F s for different edge types, and W (l)s for different node and edge type combinations.

2.3 Challenges in GNNs and Existing Solutions

2.3.1 Challenges in Making GNNs Effective

There are numerous challenges where GNNs may struggle to achieve optimal per-

formance and thus would request specialized approaches and tailored solutions. My

thesis addresses two prevalent issues in real-world applications: over-smoothing and

heterophily.

16

Over-smoothing is about the problem that node representations converge to-

wards the same constant value and thus become non-distinguishable when the GNN

gets deeper [64]. This becomes the major bottleneck for applying the deep GNN

models. Recent studies have proposed various approaches to tackle the challenges

of over-smoothing [81]. Normalization and Regularization techniques mitigate

the over-smoothing effect by regularizing the training objective with over-smoothing

metrics or by normalizing node embeddings or introducing noise into the optimization

process. EGNN [140], DropEdge [78], and PairNorm [134] are the representative

works in this branch. Adding Residual Links can be another way to address over-

smoothing, it considers adding residual connections to deep GNNs to obtain the

distinguishable node embeddings at earlier layers. GCNII [18], JKNets [112], and

DAGNN [115] are some examples within this thread.

Heterophily refers to the scenario where the labels of a node tend to be different

from those of its neighbors, and therefore presenting a challenge for GNN models

that typically rely on the assumption of label homophily such as [55]. People paid

a lot of attention to address the homophily challenge during the past years [137].

Blending high-order neighbors is one of the solutions for heterophily, instead of

only aggregating information from direct neighbors (i.e. 1-hop neighbors), it proposes

to incorporate information from higher-order neighbors. MixHop [1], Ordered GNN

[86], and EvenNet [58] are some examples of this kind. Identifying Potential

Neighboring Nodes is another effective way to address the heterophily challenge.

Unlike the methods in the previous category that adhere strictly to the existing graph

structure, this category aims to discover suitable neighboring nodes for each node,

thereby learning new graph structures to facilitate message passing in heterophilic

contexts. Geom-GCN [76], HOG-GNN [99], and GOAL [138] are some examples using

17

neighbor discovery to help with heterophily. Adaptive Message Aggregation also

helps with the heterophilic graphs, it learns to assign adaptive weights on each edge

or each representation channel, so different neighbors and different representation

channels will get customized attention during the message-passing procedure. GOAT

[57], GDAMN [16], CGCN [113], and GBK-GNN [30] are some examples of this

category. Besides these approaches, other models using hybrid strategies are also

developed for heterophilic graphs [143, 51, 40].

2.3.2 Challenges in Making GNNs Efficient

GNNs also face significant scalability challenges when graphs get gigantic with millions

or even billions of nodes, and coupled with dense interconnections. Addressing the

computational demands of training and applying GNNs on such large-scale graphs,

particularly under time or memory constraints, has emerged as a critical area of

research. My thesis delves into two pivotal aspects of these scalability challenges: the

exponential neighborhood growth resulting from graph convolutional operations and

the update-locking issue common to all NN-based models.

Exponential Neighbor Growth refers to the problem that when conducting

batch-wise training/inference for large-scale graphs, the neighborhood size for each

node grows exponentially with the depth of the GNN (i.e., the number of GNN

layers). Addressing this challenge is essential for scalable GNN applications, with

strategies spanning training algorithms, inference techniques, system optimizations,

and customized accelerators being developed [132]. My thesis narrows its focus to a

training perspective.

Graph Modification is one way to improve efficiency, the basic idea is to

18

generate a modified graph that is much smaller (i.e. with much fewer nodes/edges

or both) than the original graph and is thus faster to train. Graph coarsening [48],

graph sparsification [62, 135], and graph condensation [52] are three representative

tracks within graph modification. Sampling is another way to enhance efficiency, it

dynamically selects a subset of nodes and edges for each training iteration, thus greatly

reducing the computation graph size and could benefit the efficiency [67]. Various

node-wise sampling [38, 15, 116], layer-wise sampling [17, 144, 46], and subgraph-wise

sampling [128, 20, 127] methods are proposed toward this direction. Beyond graph

modification and sampling, some research [107, 123, 19] proposes to move the graph

convolutional operations to the pre-processing stage, store the aggregated features,

and thus simplify training a GNN into training an MLP with the aggregated features

as input. Moreover, some parallelization-based methods [97, 9] are also proposed to

distribute data, tensor, or model to different devices to achieve faster training speed

and less per-device GPU cost.

Update-locking states that each layer heavily relies on subsequent layers’ feed-

back to update itself, and therefore must wait for the information to propagate through

the whole network before updating. This characteristic of neural networks prevents

concurrent updates across layers, resulting in inefficiencies as earlier layers remain

idle awaiting gradients from later ones, thereby slowing down the training process.

With the observation that the joint training objective for NNs can be relaxed [6, 120],

researchers explored greedy layerwise training schemes as a solution to address the

update-locking issue [47, 7]. These methods facilitate more independent and parallel

layer updates, significantly enhancing training efficiency by mitigating idle wait times

and expediting the learning process.

19

Part I

Effectivenss

20

CHAPTER 3

Laplacian Score Benefit Adaptive Filter Selection for

Graph Neural Networks

3.1 Introduction

Graph representation learning [14] has received great attention during the past years

as it maps the ubiquitous irregular structured data to informative embeddings, which

benefits dozens of graph-related downstream applications. With people’s efforts in

graph representation learning research, Graph Neural Networks (GNNs) are shown to

be the most powerful tools that can take advantage of both node features and graph

structure to learn high-quality representations, and achieve superior performance in

tasks such as node classification [55], graph classification [110], and recommender

systems [116].

In general, GNNs include two operations: (1) the graph convolutional operation

which enables each node to aggregate information from its neighborhood to get a

smoothed feature, and (2) the transformation operation which feeds the smoothed

features into MLPs to project them into a good embedding space. Compared to

other neural networks, the key factor that empowers GNNs is the graph convolutional

operation [111]. The Graph Convolutional Filter (GCF) acts as a feature extractor in

21

the graph convolutional operation, which takes features from immediate or multi-hop

neighbors as the input. Thus, great efforts are paid to the GCF design, but how to

select suitable GCFs that can be adaptive to the given task remains an open problem.

To select a proper GCF, the first question is what would be the proper scope of

the neighborhood to consider. Dozens of GCFs are designed to aggregate immediate

neighbors’ (i.e. 1-hop) information [55, 95]. For these designs, each node receives

information from t-hops when t-layers of GNN layers are stacked, which assume the

homophily of the graph structure and always apply non-linear transformation in each

layer. Some work [107, 56, 31, 133] extend the neighborhood and enable the central

nodes to aggregate information from multi-hop neighbors in each network layer, and

some spectral-based GNNs are designed to obtain further neighborhood’s information

by utilizing spectral properties [25]. These works have shown great improvement,

which encourages us to consider different hops of neighbors instead of only focusing

on immediate neighbors when aggregating neighborhood information.

The next question is how to put weight on neighbors within the scope. The

GCFs usually can be viewed as a transformed Graph Laplacian1, and they control

the weight of each neighbor node when aggregating neighbor information. The early

work usually uses a fixed symmetrically normalized Graph Laplacian to design GCFs

[55, 107], which is not flexible and would hinder the network to identify important

neighbors for each node. Later work realizes the importance of a flexible GCF which

allows the network to learn to adaptively aggregate neighbor information [95, 102].

However, this would enlarge the filter space and can cause overfitting [98]. Hence, it

1Please note that Graph Laplacian and Laplacian Score are different. Graph Laplacian is a
matrix form of the negative discrete Laplace operator on a graph, while the Laplacian Score is a
scalar that acts as a feature selection metric.

22

is critical to allow flexibility in neighbor aggregation while alleviating overfitting for

GCF design.

The discussions surrounding these two questions provide valuable insights and

inspiration for considering a larger filter space and constructing it effectively. However,

this naturally leads to another important question: how can we explore this ex-

panded filter space and identify filters that are specifically tailored to our current

task, rather than being agnostic?

In this work, with the aim of answering this question, we present the Adaptive

Filter Selection Graph Neural Networks (AdaFS) to address two challenges in the

GCF selection: (1) defining a criterion to establish a strong base filter set, and (2)

adaptively selecting filters for the downstream task. The AdaFS provides a framework

for graph representation learning with adaptive GCF soft selection. To give a concrete

instantiation, for the base filter family, we incorporate filters from four categories and

their combinations in a higher-order receptive field: (1) a random walk-based GCF

that controls the amount of information received by each node, (2) a reverse random

walk-based GCF that controls the amount of information sent by each node, (3) a

symmetric Graph Laplacian-based GCF that tries to balance both sides, and (4) an

identity matrix-based GCF which aims to keep the raw input. To address the second

challenge, we introduce a Laplacian score-based regularization term as an auxiliary

training objective, which is able to evaluate the quality of embeddings extracted by

GCF in an unsupervised manner. Besides, AdaFS takes advantage of the decoupled

graph convolutional and transformation operations, and thus enjoys better efficiency

than traditional GNNs. Additionally, we connect this multiple filter learning process

to the well-established multiple kernel learning problem, justifying the filter selection

rationale. Our main contributions are summarized as follows:

23

• Framework: Propose the adaptive AdaFS framework that learns a soft selection

of GCFs with extended neighbor scope and diverse Graph Laplacians.

• Rationale: Connect filter selection and kernel selection to justify the rationale

behind filter selection.

• Regularizer: Propose an unsupervised objective using Laplacian score, which

assists selecting appropriate filter with the expanded filter space.

• Experiments: Evaluate AdaFS on 9 datasets, conduct thorough ablation studies

to validate the importance of key components, and demonstrate its adaptability in

consistently producing competitive results.

3.2 Preliminaries

In this work, the proposed AdaFS is a filter selection-based GNN framework, we

provide concrete instantiation, and take the semi-supervised node classification (NC)

task for graph data as an example task. Thus in this section, we provide the necessary

preliminaries regarding the task and the GNNs with diverse GCFs.

3.2.1 GNNs for Semi-Supervised NC

We denote an undirected attributed graph by G = (V , E), where V is the node set and

E is the edge set. Let A ∈ Rn×n be the adjacency matrix for G, let X ∈ Rn×df be the

feature matrix, where row Xv is the feature for node v ∈ V . For semi-supervised NC,

let Y be the class assignment vector, C be the number of classes, and Yv ∈ {1, · · · , C}

be the class that node v belongs to. Then, the goal is to learn a mapping function

f(A,X) : V → {1, · · · , C} to predict the class labels for the unlabeled nodes, i.e.,

Ŷv = f(v).

24

GNNs are shown to be the most promising technique so far to solve the semi-

supervised node classification task. It includes 2-step operations and usually can fit

into a unified message-passing framework for layer l: H(l) = σ(F(G)H(l−1)W (l)),

where H(l) is the node representation for l−th layer, F(G) is the GCF for G, W (l) is

the learnable mapping parameter. This formula describes the graph convolutional

operation with F(G)H(l−1), and the transformation operation with σ(·W (l)). Various

GNN architectures have been proposed with their own GCF designs, in the next

subsection, we take a close look at existing designs.

3.2.2 Graph Convolutional Filters

In the previous section, we highlighted the importance of selecting an appropri-

ate Graph Convolutional Filter (GCF) by considering both the proper scope of

the neighborhood and the weighting scheme for neighbors within that scope.

Existing designs encompass GCFs that consider immediate neighbors’ (1-hop) in-

formation [55, 95], as well as those that incorporate extended multi-hop neighbors

[107, 56, 31, 133]. Weighting schemes also vary, including fixed ones [55, 107] and

learnable ones [95, 102]. In the following, we categorize GCFs based on their neigh-

borhood scope and flexibility. We introduce GCFs in each category and analyze their

pros and cons.

Fixed and Immediate Neighborhood. The early GNNs obtain information from

immediate neighbors and aggregate the information with a fixed weighting scheme.

The work of GCN [55] first adopts the convolutional operation on graphs and uses

the symmetrically normalized adjacency matrix as the graph filter. Several studies

propose to use a sampling strategy to speed up GNN training [144, 38]), which can

25

be considered as a sparser version of GCN’s filter. Besides, some work noticed the

importance to use diverse GCFs based on different propagation rules [26] and tried

to integrate them together, but their designed filter is still a fixed data-agnostic

combination of GCFs and is only for immediate neighborhood. These models are

shown empirically to be less powerful due to their lack of flexibility, in addition,

though they can reach further neighborhoods by stacking multiple network layers, a

deeper network would not enlarge the filter space and may bring the over-smoothing

problem.

Fixed and Higher-order Neighborhood. Some studies aim to expand the neigh-

borhood scope and capture information from a wider receptive field. SGC [107],

MixHop [1], and GFNN [73] utilize a higher-order symmetrically normalized adja-

cency matrix with a predefined exponent as their GCF. SIGN [31] and GFN [19]

propose concatenating embeddings obtained with GCFs of different receptive fields.

These approaches enable nodes to gather information from distant neighbors without

redundant computations. GDC [56] employs the diffusion process and uses heat

kernel and personalized PageRank as combination weights to aggregate information

from neighbor nodes at different hops. While these models benefit from an expanded

receptive field, they require manual adjustment of the neighborhood scope and lack

flexibility in the aggregation strategy, which restricts their performance.

Learnable and Immediate Neighborhood. Efforts are also paid to developing

flexible models with learnable GCFs. Certain works [111, 21] augment the self-loop

skip connection with a learnable parameter. Others [59, 39, 66] design filters as poly-

nomials or rational polynomials of graph Laplacian matrices, incorporating learnable

coefficients. GAT [95] introduces an attention mechanism to assign weights to nodes

in the neighborhood, serving as a flexible GCF based on parametric attention. HOG-

26

GCN [99] constructs a learnable homophily degree matrix using label propagation to

adjust message passing weights on each edge. GBK-GNN [30] applies two different

transformation operations on the neighbor nodes, and proposes a learnable kernel

selection gate for combination weights. Despite their good performance obtained due

to their adaptiveness, these learnable GCFs exhibit to be either too simple (e.g. GIN

[111]) or too complex (e.g. GAT [95]). The simple ones lack adaptiveness, while the

complex ones require additional computation and are prone to overfitting on simple

graphs. Moreover, they solely focus on the immediate neighborhood, limiting the

information received within each network layer.

Learnable and Higher-order Neighborhood. Recently, there have been attempts

to propose GCFs with both adaptiveness and large receptive fields. The work of

ADC [133] is built on top of the GDC [56], but enables the diffusion process to

have a learnable neighborhood ratio. While it offers flexibility without hand-tuned

parameters, it requires optimizing the validation set to address overfitting. FSGNN

[72] proposes a learnable weighted concatenation of embedding matrices obtained

with different GCFs. Although it achieves good performance, it lacks a systematic

interpretation.

3.3 Method

Our filter selection-based AdaFS framework aims to be capable of learning a data-

specific soft-selection of a set of GCFs F = {F0, F1...Fm} with diverse neighbor scopes

and weighting schemes. The overview of the AdaFS is shown in Figure 3.1. In this

Figure, each Fi is a GCF computed based on A, each φi is a normalized output of

a filter-specific MLP with the aggregated feature FiX. The αis are the trainable

27

	𝑿

	𝑨

𝐹%

𝐹&
𝐹'
𝐹(

𝐹)*'
𝐹)*&
𝐹)

⋮

𝜙- = 𝑁𝑂𝑅𝑀(𝑀𝐿𝑃-(𝐹-𝑋))

𝜙%

𝜙&
𝜙'
𝜙(

𝜙7*'
𝜙)*&
𝜙)

Weighted
Concat

𝐻

Classifier
𝑌:

Kernel
Laplacian
Score

𝛼%

Cross
Entropy

𝛼&

𝛼'

𝛼(

𝛼)*'

𝛼)*&

𝛼)

<𝛼-' = 1
�

-

Figure 3.1: Overview of the AdaFS Framework.

weights for the weighted concat module, which would help to identify the importance

of the corresponding φi. With our implementation, we set F0 to be the identity

matrix, F3j+1, F3j+2, F3j+3 to be the filters with three different aggregation strategies

but all can reach (j + 1)-hop neighbors. The formal form of the learned embedding

can be represented as:

H = [α0φ0, α1φ1, · · · , αmφm] (3.1)

where φi is the hidden embedding obtained with the i-th GCF Fi in the filter

set, and αi is the concatenation weight. The AdaFS should be trained with the

downstream classification task as well as the additional objective for assisting learning

with multiple GCFs and addressing the overfitting concerns brought by the expanded

filter space. In the following, we formally present the AdaFS framework. We start by

discussing how to prepare the GCF set F by providing a concrete example. Next,

28

1

1

1

0

0

0

2

0

0

1
31

3

1
3

1

1

0

0

1
3

2
3

1

1

1

1

1 1

0 0

0

0.5

0.5

0.5

0.5

0.5 0.5

0.5 0.5

0.5

0.5

0.5

0.5

0.5

0.5 0.5

1 1

1

(a) Raw feature 𝑋 ! for graph 𝐺! (b) Aggregated feature 𝐹!𝑋 !

(d) Raw feature 𝑋 " for graph 𝐺" (e) Aggregated feature 𝐹!𝑋 "

(c) Aggregated feature 𝐹"𝑋 !

(f) Aggregated feature 𝐹"𝑋 !

𝐺!:

𝐺":

Figure 3.2: Toy Examples to Illustrate Different Graphs Prefers Different GCF.

we establish the rationale behind our design by connecting it to the well-developed

multiple kernel learning problem. Then we introduce the Laplacian score as an

auxiliary unsupervised objective for training. Finally, we wrap up with discussions

on AdaFS’s training, advantages, and complexity.

3.3.1 Constructing the GCF Set

Based on the preceding discussion, a GCF set comprising filters with varying neigh-

borhood scopes and diverse weighting schemes is pivotal for a powerful GNN. Building

upon this insight, we present an example GCF set for AdaFS, serving as a strong

instantiation.

We begin by exploring basic neighborhood weighting schemes utilizing different

Graph Laplacian transformations, as they can be easily applied to any given neighbor

scope. The following four matrices are considered: F0 = I, F1 = D−1A, F2 = AD−1,

29

and F3 = D−1/2AD−1/2, where D = diag(
∑

j Aij) is the degree matrix. Among

them, the identity matrix F0 preserves the raw input feature. F1 employs a random

walk-based Laplacian to average the features of a node’s neighbors, ensuring every

node’s new aggregated feature is in the same range. F2 uses reverse random walk-

based Laplacian whose information propagation idea is similar to the PageRank

algorithm, distributing the same amount of information to immediate neighbors. It

considers node degree during aggregation, which can be beneficial for the case in

which node degree plays an important role in classification. F3 uses symmetric graph

Laplacian, combining aspects of both F1 and F2. Figure 3.2 gives two toy examples

of binary classification in which the graph favors F1 and F2 respectively, showing

the necessity of considering different Graph Laplacian. Both graphs assume nodes

with the same raw feature on them are in the same class. For G1, after applying F1

as shown in (b), two classes are still distinguishable, but after applying the F2 as

shown in (c), the three nodes with a bold outline are not separable, thus F1 is better

than F2 for this case. For G2, after applying F1 as shown in (e), all the nodes get

non-distinguishable, while applying F2 is still separable as shown in (f).

Various empirical research outcomes [143, 31, 72, 18, 56] point out the importance

of considering a neighborhood of different scopes to ensure obtaining richer neigh-

borhood information at one network layer, and this finding inspires us to explore

GCF candidates that can reach <= t-hop neighbors with previous base GCF F1, F2,

and F3 when given maximum hop number t. For example, when t = 3, potentially

we can explore filters such as F1F2F3, F 2
2 , and F3 . To give a concrete example, in

our current implementation, for each hop number j, we select F j
1 , F

j
2 , F

j
3 from the

3j possible combinations to construct the GCF set. To put it more clearly, given

maximum hop t, we construct the GCF set consisting of the following 3t+ 1 filters

30

{F0, F1, ..., Fm}, where m = 3t and F3j+i = F j+1
i for i ∈ {1, 2, 3}.

As for the theory side, existing works [107, 31, 19] and [26, 102] have provided

analysis for the necessity of combining GCFs of diverse neighbor scope and weighting

scheme in this selected filter set respectively. We formally organize two claims for the

sake of answering the question of why using this GCF set example, and justify them

in the following.

• Claim 1: From a spectral perspective, GCFs with different Graph Laplacian would

not include additional information as they share the same eigenvector space, but

provide different coordinate systems to enable GNNs to learn good representations

easier.

• Claim 2: From a signal processing perspective, different neighborhood scopes

would bring us filters for graph signals with different frequencies.

To justify Claim 1, let L1 = I−D−1A, L2 = I−AD−1, L3 = I−D−1/2AD−1/2

be the corresponding graph Laplacian for GCF F1, F2, F3 respectively. Let the eigen-

decomposition for the symmetric L3 be: L3 = U3Λ3U
>
3 , where Λ3 = diag(λ

(1)
3 , ...λ

(n)
3)

is a diagonal matrix consists of L3’s eigenvalues, and U3 = [U
(1)
3 , ...,U

(n)
3] is a

matrix whose columns are the corresponding eigenvectors of L3 and satisfies U3U
>
3 =

U>(·)U(·) = I. Then, ∀ λ(i)
3 , U

(i)
3 :

L3U
(i)
3 = λ

(i)
3 U

(i)
3

⇒


(D−1/2)L3(D1/2D−1/2)U

(i)
3 = λ

(i)
3 D−1/2U

(i)
3

(D1/2)L3(D−1/2D1/2)U
(i)
3 = λ

(i)
3 D1/2U

(i)
3

⇒


L1(D−1/2U

(i)
3) = λ

(i)
3 (D−1/2U

(i)
3)

L2(D1/2U
(i)
3) = λ

(i)
3 (D1/2U

(i)
3)

31

which indicates L1, L2, and L3 share the same eigenvalues and their eigenvectors can

be expressed as U (i)
1 = D−1/2U

(i)
3 , and U

(i)
2 = D1/2U

(i)
3 . Since D−1 is a non-singular

matrix, we know that L1, L2, and L3’s eigenvectors share the same vector space, and

thus F1, F2, F3 would not include additional information but would provide different

coordinate systems and enable the GNNs to learn more powerful representations.

To justify Claim 2, following the work of [73, 74], taking F3 as an example, we

know that the message passing step (F3)kX in GNNs can be reformed as:

(F3)kX = (D−1/2AD−1/2)kX = (I −L3)kX (3.2)

= (I −U3λ
(i)
3 U>3)kX

= (U3U
>
3 −U3λ

(i)
3 U>3)kX (3.3)

=
(
U3(I − λ(i)

3)U>3
)k
X

=
(
U3(I − λ(i)

3)U>3
)
...
(
U3(I − λ(i)

3)U>3
)
X

= U3(I − λ(i)
3)kU>3 X

From the graph signal perspective, the eigenvalues correspond to the frequencies

of the graph signals. Therefore, graph filters with different exponents correspond to

the eigenvalues (1 − λ(i)
3)k can give us different frequencies and thus can bring us

additional information from the spectral perspective.

3.3.2 Filter Selection: A Kernel Perspective

With the GCF set {F0, F1, ..Fm} in Subsection 3.3.1, we employ filter soft-selection

to combine them, effectively determining the importance of each filter. Before delving

into how to do the soft selection, let’s first establish a connection between our filter

32

combination and the extensively studied Multiple Kernel Learning (MKL) problem

[?], which operates on the principle of not relying solely on one kernel, but rather

explores a predefined set of kernels K = {K1, K2, . . .} by designing algorithms to

perform the soft selection and learn a powerful composite kernel K = COMBINE(K).

Let’s associate each GCF Fi with a feature mapping φi(X) : Rdf → Rdi that

generates filter-specific embeddings. Each mapping function corresponds to a kernel

Ki : Rdf × Rdf → R such that for any pair of nodes u and v, Ki(Xv,Xu) =

〈φi(Xu), φi(Xv)〉. The Kernel function Ki serves as a similarity measure between

pairs of instances from the kernel perspective. Then, for the filter learning, let’s

consider the mapping function φ which combines the filter-specific embeddings φi with

the weighted concatenation combinator: φ = [α0φ0, α1φ1, ...αmφm], where each αi can

reflect the importance of its corresponding filter Fi and can act as a soft-selection

score. Let K be φ’s kernel function, then we find:

K(Xu,Xv) = 〈φ(Xu), φ(Xv)〉

=
m∑
i=0

α2
i 〈φi(Xu), φi(Xv)〉

=
m∑
i=0

α2
iKi(Xu,Xv)

This observation can be summarized as follows: Multiple filter selection using weighted

concatenation is analogous to multiple kernel selection using the linear combination.

This connection seamlessly bridges the gap between learning multiple filters and the

well-established MKL problem, and offers support to justify the rationale behind

performing filter soft-selection.

33

3.3.3 Laplacian Score-based Filter Selection

To mitigate potential overfitting issues resulting from the expanded filter space, it is

crucial to incorporate an auxiliary unsupervised objective to enable the algorithm

to acquire a generalized model that is not overly biased towards the training set

and learn a higher-quality embedding. As we want the auxiliary training objective

to be capable of evaluating the representations obtained by the selected filter, it is

worth exploring the feature selection metrics, which enable us to assess the quality of

representations.

Laplacian score [41] is a popular feature selection metric. It selects features

that can best preserve the data manifold structure [63] and can be applied in an

unsupervised setting. The basic idea is to use the features for the input instances to

construct a k-Nearest Neighbor graph with the weighted adjacency matrix Aknn ∈

Rn×n, then construct the corresponding degree matrix Dknn and Laplacian matrix

Lknn = Dknn −Aknn. Finally, the Laplacian score for feature channel fr ∈ RN is

computed as:

Lr =
f̃Tr Lknnf̃r

f̃Tr Dknnf̃r
(3.4)

where f̃r = fr− fTr D1
1TD11 is the centralized fr and 1 indicates all-one vector. In general,

a smaller Laplacian score indicates a stronger locality-preserving power, and therefore

we would select features with a smaller Lr.

As the Laplacian score has shown its effectiveness in identifying features that

capture the underlying manifold structure, in our work, we leverage the Laplacian

score within the graph learning context as an example auxiliary objective to guide

the training process and mitigate overfitting resulting from the expanded filter

34

space. Specifically, we utilize the Laplacian score to assess the quality of the learned

embeddings produced by our AdaFS. To compute the Laplacian score, we start

with the learned graph embedding matrix H. By employing cosine similarity, we

compute the graph kernel K(H). Subsequently, based on K(H), we construct Aknn

by preserving the edges between instance pairs (i, j) if and only if i is among the

top-k most similar instances to j. Following the aforementioned steps, we compute

the Laplacian score (as defined in Eq.3.4) for each feature channel fr = H:,r. The

auxiliary unsupervised training objective `lap is obtained by summing up all Lr values.

We aim to minimize `lap during training.

3.3.4 Learning Representations with AdaFS

Other Details. Under the AdaFS framework in Figure 3.1, with the example GCF

set in Subsection 3.3.1, taking the adopted Laplacian score for the unsupervised

regularization, we already have a clear workflow. In the following, we complete

the remaining details for AdaFS instantiation. We set φi = NORM(MLPi(FiX)),

where NORM is the row-wise L2-normalization for the sake of scaling each row of

the output of the MLP to a unit sphere. We use 1-layer MLPs here instead of a

simple linear transformation in order to inject non-linearity. Different MLPi have

different parameters, giving each φi the flexibility to learn the parameters that is the

best for the corresponding filter. Besides, with Subsection 3.3.2, we use the weighted

concatenator to combine the φis with the formula Eq.3.1. We restrict the learnable

weights αis with
∑

i α
2
i = 1 to make it identical to the constraint in the multiple

kernel soft-selection.

AdaFS Training. We train the AdaFS model by jointly optimizing the cross-

35

entropy loss `CE and the Laplacian loss `Lap. As for `CE, we pass the embedding

H in Eq.3.1 through a classifier consisting of a linear projection and a softmax to

get the predicted labels Ŷ = Softmax(HW), then compute the cross entropy value

as `CE = −
∑

v∈Vtrain Ŷvlog(Yv). As for the Laplacian loss, we follow Subsection

3.3.3. Finally, the overall optimization objective is: ` = λ`CE + (1 − λ)`Lap with

hyper-parameter λ ∈ [0, 1].

3.3.5 Discussion on AdaFS

Advantages of AdaFS. The proposed AdaFS offers several advantages. (1) By

utilizing an enriched filter set, AdaFS can explore a larger filter space encompassing

various aggregation strategies. This flexibility allows AdaFS to effectively handle

graphs with diverse properties (e.g. different levels of homophily). (2) The filter

soft-selection scheme in AdaFS enables adaptive identification of the importance of

each filter non-agnostic to the graph and the task, while its connection to kernel

selection strengthens its justifiability. Besides, the success of the Laplacian Score

in assisting the filter selection inspires us that, as a successful filter selection will

lead to a more powerful aggregated feature, various feature selection metrics might

be applied to boost the filter selection process. (3) Since each filter Fi is fixed, the

graph convolutional operation FiX can be performed as a one-time procedure during

pre-processing. This significantly reduces computational costs and improves the

scalability of the model.

Comparison to Existing Works. To distinguish AdaFS from the baselines SIGN

and FSGNN, which all shared the idea of decoupling the convolutional and transfor-

mation operation in GNNs and taking various GCFs into consideration. We highlight

36

the following points: (1) AdaFS is not a single model but a framework designed to

leverage diverse GCFs while maintaining flexibility. SIGN and FSGNN also align with

this idea and can be seen as specific instantiations within the AdaFS framework. (2)

AdaFS introduces the Laplacian loss as an auxiliary objective, which evaluates the

quality of learned embeddings and guides GCF soft-selection. This enhances model

stability, as demonstrated in our ablation study. (3) Even only considering the AdaFS

instantiation, it has a broader family of GCFs, allowing for a more powerful filter

design. In contrast, SIGN only considers different neighborhood scopes, while FSGNN

considers cases with and without self-loops in addition, both lack consideration for

GCFs with diverse weighting schemes.

Complexity Analysis of AdaFS. For AdaFS with m filters and graph G with N

nodes, it takes O(mNdfd) complexity, where df is the input feature dim, and d is

the output dim. For Laplacian loss, according to the work of [?], the KNN graph

construction takes O(N1.14d) complexity, therefore, AdaFS trained with the Laplacian

loss takes O(mNdfd+N1.14d) complexity in total. Comparing to the classic GCN

whose complexity is O(L|E|df +LNdfd) where L = 1
3
m is the layer number and |E| is

the total edge number in G, we know the regular training for our AdaFS instantiation

is more efficient than GCN, but the Laplacian loss may slightly sacrifice the running

time for performance gain. In addition, other adaptive methods such as GAT usually

have unavoidable pair-wise computation on each node pair, and are taking graph

convolutional operation every epoch, thus would be less efficient than AdaFS.

Limitations of AdaFS. Although AdaFS has shown great performance, there are

still areas where potential improvements can be explored. (1) It would be beneficial

to investigate alternative filter designs that can offer additional spectral information

beyond providing diverse coordinate systems within the same eigenvector space, as it

37

could potentially enhance the expressive power and effectiveness of AdaFS. (2) In our

current instantiation, we employ a weighted concatenator to combine embeddings

obtained with different filters. However, when the number of filters is large, the

concatenated embedding matrix H can have high dimensionality, making the filter

soft selection more challenging and imposing a higher computational cost. Exploring

techniques to address this issue could lead to improvements in both the efficiency and

effectiveness of the AdaFS framework.

3.4 Experiments

3.4.1 Datasets, Baselines, and Settings

Datasets. We evaluate the AdaFS on nine benchmark datasets commonly used for

node classification. Three of them exhibit homophily: Cora, Citeseer, Pubmed [83].

These datasets are citation networks where nodes represent documents, edges represent

citation links, and node features are sparse bag-of-words feature vectors. The class

labels correspond to the field of each document. The remaining six datasets exhibit

heterophily: Texas, Wisconsin, Cornell [76], Squirrel, Chameleon [80], and Actor [93].

Texas, Wisconsin, and Cornell are web pages of universities where each node is a

web page, each edge is a hyperlink, node features are bag-of-words representations,

and the categories include courses, faculty, students, projects, or staff. Squirrel and

Chameleon consist of English Wikipedia pages related to squirrels and chameleons

until December 2018, edges represent hyperlinks, and node features are keywords

extracted from the pages. The nodes are classified into five categories based on their

average monthly traffic between October 2017 and November 2018. Actor is a graph

38

Table 3.1: Statistics of Benchmark Datasets. The h-score is the Homophily Score of

Graphs Defined in [143].

Dataset Cora Citeseer Pubmed Texas Wisconsin Cornell Squirrel Chameleon Actor

Nodes 2708 3327 19717 183 251 183 5201 2277 7600

Edges 5429 4732 44558 309 499 295 198353 36101 26659

Classes 7 6 3 5 5 5 5 4 5

Feature 1433 3703 500 1703 1703 1703 2089 2325 932

h-score 0.81 0.74 0.80 0.11 0.21 0.30 0.22 0.23 0.22

of actor co-occurrence in Wikipedia pages, node features are the extracted keywords,

and the categories are in terms of words of actor’s Wikipedia. Table 4.1 provides a

summary of the dataset statistics.

Baselines. We compare against the following baseline models. MLP, GCN [55],

GAT [95], and GraphSAGE [38] are the classic models that are widely applied in

the node classification tasks. Among them, GCN is the first work that adapts the

convolutional operation to graphs; GAT adds an attention module to GCN and enables

a learnable feature aggregation scheme; GraphSAGE introduces randomness to the

GCN model by a node-wise neighborhood sampler module and can work under both

inductive and transductive settings. GCNII [18], MixHop [1], H2GC [143], SIGN [31],

FSGNN [72], and GBK-GNN [30] are regarded as the state-of-the-art GNN models,

most of them considers higher-order neighborhoods. GCNII proposes to add initial

residual and identity mapping between layers to make use of the output of each layer.

MixHop proposes to concatenate the representation obtained by different hops of the

neighborhood. H2GCN also concats the representation of different hops but utilizes

the ego- and neighbor-embedding separation to focus on handling heterophily graphs.

SIGN aims to improve the model scalability by decoupling the graph convolutional

39

operation and the transformation operation. FSGNN further improves SIGN by

making the aggregation coefficient for different hop numbers learnable and exploring

comprehensive experimental settings. GBK-GNN only considers immediate neighbors

at a layer but provides different transformations for homophily and heterophily

neighbors. Though there can be a long list of related baselines, we select the

aforementioned ones for the following reasons: (1) They are representative works and

can cover all types of graph convolutional filters discussed in subsection 2.2; (2) They

have either released their public implementations or reported their results on most of

the benchmark datasets under the same experimental setting as us.

Settings. Follow the experimental setting in [143], we split each dataset evenly for

each class into 48%, 32%, 20% for training, validation, and testing respectively. We run

10 splits on each dataset, then report the mean and variance of the performance. As for

the baseline models, for a fair comparison, we use their reported results [143, 72] (with

3-hop), which are the performance obtained by their public implementation under

the same experimental setting as us. For hyper-parameters, we set the maximum hop

number as t = 3, set the number of layers as 1 for each MLPi, set the loss weight

λ = 0.5, and set the k-value in k-Nearest Neighbor graph construction as k = 5 (as

it is one of the most frequently applied hyper-parameter settings when computing

Laplacian Score [41]). We initialize the learnable weight αis as 1/10 as we have

10 different filters in total. For the homophily datasets, following the experimental

convention, we add self-loop to the adjacency matrix. Our code is run on a Tesla

V100 GPU device.

40

Table 3.2: Performance of AdaFS and Baselines on Node Classification Benchmark

Dataset.
Homophily Graphs (h-score>=0.5) Heterophily Graphs (h-score<0.5) Average

Cora Citeseer Pubmed Texas Wisconsin Cornell Squirrel Chameleon Actor AVG9 AVG6

MLP 74.75±2.2 72.41±2.1 86.65±0.3 81.89±4.7 85.29±3.6 81.08±6.3 29.68±1.8 46.36±2.5 35.76±0.9 65.99 80.35

GCN 87.28±1.2 76.68±1.6 87.38±0.6 59.46±5.2 59.80±6.9 57.03±4.6 36.89±1.3 59.82±2.5 30.26±0.7 61.62 71.27

GAT 82.68±1.8 75.46±1.7 84.68±0.4 58.38±4.4 55.29±8.7 58.92±3.3 30.62±2.1 54.69±1.9 26.28±1.7 58.55 69.24

GraphSAGE 86.90±1.0 76.04±1.3 88.45±0.5 82.43±6.1 81.18±5.5 75.95±5.0 41.61±0.7 58.73±1.6 34.23±0.9 69.50 81.83

GCNII 88.01±1.3 77.13±1.3 90.30±0.3 77.84±5.6 81.57±4.9 76.49±4.3 N/A 62.48±2.7 N/A N/A 81.89

MixHop 87.61±0.8 76.26±1.3 85.31±0.6 77.84±7.7 75.88±4.9 73.51±6.3 43.80±1.4 60.50±2.5 32.22±2.3 68.10 79.40

H2GCN 86.92±1.3 77.07±1.6 89.40±0.3 84.86±6.7 86.67±4.6 82.16±4.8 36.42±1.8 57.11±1.5 35.86±1.0 70.72 84.51

SIGN 85.47±1.7 76.81±1.5 89.78±0.4 78.37±6.7 81.17±3.6 78.37±5.9 48.20±1.4 64.12±2.0 37.13±0.8 71.05 71.05

GBK-GNN 88.6±0.4 79.1±0.9 89.11±0.2 81.08±4.8 84.21±4.3 74.27±2.1 N/A N/A 38.97±0.9 N/A 82.76

FSGNN 87.61±1.3 77.17±1.4 89.70±0.4 87.57±4.7 88.24±3.4 87.30±5.973.86±1.8 78.93±1.0 35.38±0.8 78.39 86.26

AdaFS 87.82±1.1 77.86±1.5 89.82±0.3 87.83±4.889.80±3.886.42±6.1 74.32±1.979.33±1.237.43±1.1 78.96 86.59

3.4.2 Main Results

In this subsection, we present the results of AdaFS on benchmark datasets. We

summarize the classification accuracy of AdaFS and baselines in Table 3.2. Besides,

we compute the average accuracy on all the benchmarks (AVG9) and on the first six

benchmarks (AVG6, as the other three benchmarks miss results from some baselines).

The results show that AdaFS consistently gets competitive test performance.

We observed that, for homophily datasets, all the models can obtain satisfactory

performance, and the simple, traditional models such as GCN and GraphSAGE may

even outperform the complicated ones, as simple GCFs are powerful enough and their

filter space and parameter space are smaller and are less likely to overfit. GCNII

achieves the best performance on Cora and Pubmed, and gets the second best on

Citeseer, as its skip-connections not only keep a reasonable portion of the initial

features, but also reduce unnecessary interaction between feature channels, which

would benefit the performance. Our AdaFS is also very competitive and gets the

41

best on Citeseer, second on Cora, and Pubmed. For heterophily datasets, the classic

models GCN, GAT, and GraphSAGE has poor accuracy, as they fail to focus on

the raw features that are shown to be the best for the heterophilic graphs. GCNII,

H2GCN, FSGNN, and GCNII work better on these graphs as they preserve the raw

feature and consider neighbors of different hops. Our model has the best performance

on 4 out of 6 heterophilic graphs.

3.4.3 Ablation Study and Discussion

(a) Heatmap of filter soft-selection

(d) Full heatmap of filter soft-selection

(b) Influence of 𝜆 on performance

(e) Influence of 𝜆 (clearer version)

(c) Influence of 𝑡 on performance

(e) Influence of 𝑡 (deeper version)

Figure 3.3: Heatmap for the Learned Filter Combination Weight and Curves for

Hyper-parameter Tuning.

Soft-selection Results Learned by AdaFS.

We present the learned weights αis for soft selection in Figure 3.3(a)(d), we

omit the F0 in (a) as it takes a large portion in many datasets and makes the

importance score for other filters indistinguishable, but we also want to provide

42

Table 3.3: Performance of AdaFS and SIGN on Node Classification Benchmark

Datasets With and Without the Laplacian Regularizer.
Homophily Graphs (h-score>=0.5) Heterophily Graphs (h-score<0.5)

Cora Citeseer Pubmed Texas Wisconsin Cornell Squirrel Chameleon Actor

SIGN 85.47 76.81 89.78 78.37 81.17 78.37 48.20 64.12 37.13

SIGN-Lap 86.29(↑0.82)76.72(↓0.09)89.63(↓0.15) 79.72(↑1.35)81.90(↑0.73)80.14(↑1.77)51.06(↑2.86)64.49(↑0.37)36.82(↓0.31)

AdaFS 86.58 76.49 89.55 82.16 87.45 82.97 67.98 78.17 36.88

AdaFS-Lap 87.82(↑1.24)77.86(↑1.37)89.82(↑0.27) 87.83(↑5.67)89.80(↑2.35)86.42(↑3.45)74.32(↑6.37)79.33(↑1.16)37.43(↑0.55)

the full heatmap including the weights for F0 in (d). In this figure, Citeseer shows

a preference for one-hop filters, particularly the random walk-based F1, while still

incorporating information from higher-order filters, this might be because it is a

homophilic graph and thus benefits from direct neighbor’s information. Cora, Pubmed,

and Chameleon exhibit balanced importance scores across filters, suggesting that

instead of selecting a few important filters, AdaFS learns a more powerful combination

of filters that can leverage all available information during the soft-selection process.

For Texas, Wisconsin, Cornell, and Actor, though exhibiting a slight preference for

the 1-hop GCFs, they assign relatively small importance scores to F1 ∼ F9 compared

to other graphs, indicating a higher reliance on raw features due to their high level

of heterophily. Squirrel, despite being heterophilic, benefits from graph structural

information and favors the reverse-random walk-based 1-hop filter F2, as its graph

structure may play a non-negligible role for the current node classification task. The

heatmap highlights the importance of including different filters to accommodate the

preferences of different graphs as well as demonstrates that AdaFS is capable of

learning a high-quality GCF non-agnostic to the graph and the task.

Furthermore, to compare the power of different filters and demonstrate the benefit

of the soft-filter selection intuitively, we provide visualizations of the aggregated

43

Raw Feature

GCF ("#!")

GCF "#!" #

GCF "#!" $

GCF I

GCF (#!"")

GCF #!"" #

GCF #!"" $

GCF by AdaFS

GCF (#!"/#"#!"/#)

GCF #!
!
""#!

!
"
#

GCF #!
!
""#!

!
"
$

Raw Feature

GCF ("#!")

GCF "#!" #

GCF "#!" $

GCF I

GCF (#!"")

GCF #!"" #

GCF #!"" $

GCF by AdaFS

GCF (#!"/#"#!"/#)

GCF #!
!
""#!

!
"
#

GCF #!
!
""#!

!
"
$

(a) (b)

Figure 3.4: Visualization Results with Different GCFs on (a) Cora and (b) Squirrel.

features obtained by AdaFS for Cora and Squirrel in Figure 3.4 (a)(b) respectively.

These visualizations show that the GCF obtained by AdaFS always leads to the best

performance compared to other GCFs across different datasets, and the soft-selection

may even have the potential to learn a combination of base GCFs that is more

powerful than simply selecting one of them.

The Role of Laplacian Loss. We investigate the impact of the combination weight

λ in the loss function ` = λ`CE+(1−λ)`Lap on performance. We select five benchmark

44

datasets as examples and vary λ from 0 to 1 in intervals of 0.1. The results are shown

in Figure 3.3(b)(e), both sub-figures depict the sensitivity of accuracy to λ, but (b)

provides the full view, while (e) focuses on the curves with λ ≥ 0.4 to give a clearer

view of the performance gain achieved by incorporating the Laplacian loss (as cases

with λ ≥ 0.3 are clearly less competitive compared to the others). We find that,

when λ = 0, corresponding to training the embedding H solely with the Laplacian

loss, the performance is poor. This observation is not surprising and matches our

intuition that it is important to have a supervised loss to guide both embedding and

classifier training. When λ = 1, corresponding to training the model solely with

the cross-entropy loss, the performance is already quite good and outperforms many

baselines. However, combining both losses yields even better results. Please note

that as the λ = 0 case is too bad, the benefit of incorporating the Laplacian loss

may not be very obvious. To address this, we present Table 3.3 to underscore the

significance of the Laplacian loss. In addition, we also consider taking SIGN as the

backbone model since it also applies multiple GCFs. For AdaFS, comparing the

results with (AdaFS-Lap) and without (AdaFS) `Lap, we find that Laplacian loss

improves the classification performance. Comparing the performance gain brought by

the Laplacian loss between SIGN and AdaGS, we observe that AdaFS benefits more

from the Laplacian loss while SIGN gets less. This might be because the purpose of

Laplacian loss is to assist the learning with an enlarged filter space, so for models

with a fixed filter such as SIGN, it is less helpful. Besides, we also provide the loss

curves in Figure 3.5 (g)(h) for the setting with and without `Lap respectively. We

find that AdaFS trained with Laplacian loss is more stable.

Influence of Maximum Hop Number t. We examine the influence of the maxi-

mum hop number t on classification accuracy. We select four benchmark datasets

45

Acc: 73.71 Acc: 76.79

(g) Training without ℓ!"#

(h) Training with ℓ!"#

Without Non-Linearity With Non-Linearity

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Importance of Non-linearity and Importance of the Laplacian Loss.

and vary t from 2 to 20, showing the results in Figure 3.3(c). We observe that,

with t = 20, where we need to learn a soft selection from 61 filters, AdaFS can still

learn an effective combination of filters and achieve competitive performance. The

performance does not show a clear difference when varying t from 2 to 20. This

demonstrates that AdaFS, trained along with the Laplacian loss, can mitigate the

overfitting caused by the increased filter space. Furthermore, we present 3.3(f) as

an extended version to investigate AdaFS’s performance with a deeper architecture,

which presents the results for AdaFS with t = 2, 3, 5, 8, 10, 16, 20, 32, 64, 128 on Cora

and Wisconsin datasets. We find that, even with a larger t up to 128, we can still

observe the identical phenomenon that, when hop number t goes large, AdaFS does

not suffer a performance drop, which indicates it can go deeper.

46

Importance of Including Non-linearity in φi. We present Figure 3.5 (a)∼(f) to

highlight the importance of incorporating non-linearity in the design of φ functions.

In the figure, (a) and (d) are the same synthetic two-circle graphs with two classes

and 1000 nodes for each class. (b) and (e) are the TSNE visualization of H learned

by AdaFS with linear mapping as φi and MLP as φi respectively. (c) and (f) are the

corresponding predicted 2-D label vectors. By comparing the t-SNE visualizations of

H learned by AdaFS without non-linearity (Figure 3.5(b)) and with non-linearity

(Figure 3.5(e)), we find that, the visualization without non-linearity still exhibits a

two-circle structure, and this leads to a lower classification performance, as shown

in Figure 3.5(c). In contrast, the visualization that incorporates non-linearity is

shown to be capable of making the two classes more separable, and demonstrates a

higher classification accuracy, as indicated in Figure 3.5(f). These findings emphasize

the necessity of incorporating non-linearity in the design of φi functions in order to

achieve better classification performance.

Results on Running Time. In order to compare the actual running time, we take

the dataset Squirrel and Chameleon as examples to compare AdaFS without `Lap,

AdaFS, SIGN, and H2GCN. We examine the 3-layer network, and the results are the

following: AdaFS without `Lap takes 94.2653s on Squirrel and 62.9830s on Chameleon;

AdaFS takes 179.4837s on Squirrel and 84.5602s on Chameleon; SIGN takes 81.4807s

on Squirrel and 59.7841s on Chameleon; H2GCN takes 254.s on Squirrel and 90.0227s

on Chameleon.

47

3.5 Conclusion

In this work, we aim to give a comprehensive study of the GCF selection. We begin by

highlighting the GCF for GNN should not be data-agnostic and task-agnostic and thus

an adaptive filter design should be explored. We argue that exploring an expanded

GCF family with diverse filters is crucial, and incorporating an auxiliary training

objective would be important for effective filter learning with this enlarged filter

space. To address these considerations, we formally present the AdaFS framework for

graph representation learning, and instantiate it with a GCF set consisting of GCFs

varies in neighbor scopes and weighting schemes. Furthermore, we take the adapted

Laplacian score in the instantiation as the regularizer. Besides, we seamlessly build

the connection between the mature MKL problem and the filter selection problem,

providing theoretical support for AdaFS. Through extensive experiments, AdaFS is

shown to becapable of generating appropriate GCFs to accommodate the given task.

48

CHAPTER 4

SMASH: Scalable Meta-path Aggregation baSed

Heterogeneous Graph Neural Networks

4.1 Introduction

Many real-world data take the form of heterogeneous graphs - a very informative

graph type that contains various types of nodes and edges and can model complex

realistic systems, such as academic graphs and social networks. Heterogeneous Graph

Neural Networks are a family of heterogeneous graph embedding models adapted

from the GCN kipf2016semi and have shown their great capability by taking the

performance of tasks on heterogeneous graphs to the next level.

As a heterogeneous graph has multi-typed nodes and relations, when conducting

the message passing on heterogeneous graphs, the question of how to propagate

information among different node types via different relation types arises naturally.

Based on the perspective to consider this question, most of the existing Heterogeneous

GNNs can be categorized into two types: relation-based and metapath-based models.

Relation-based models [82, 121, 123] usually constructs homogeneous sub-

graphs for each single relation type or for each sub-set of relation types for message

passing, then combine the obtained embeddings on each subgraph to get the final

49

embedding on the full graph. However, it is very challenging for relation subsets to

cover all the important meta-paths in the full graph, and therefore, they may suffer

inevitable semantic information loss.

Metapath-based methods [101, 33, 45, 125] consider message passing for each

important metapath either explicitly or implicitly, then combine the obtained embed-

dings to get the final embeddings on the full graph. But as the number of metapaths

usually goes exponentially to the length of metapath, these models would either suffer

scalability challenges, or heavily depend on the domain expertise to pre-select the

important metapaths. Besides, in the final combination step for both types of models,

we need to carefully consider the importance of each combined component.

With the aim of the aforementioned challenges, we carefully think about how

we can design an effective and scalable Heterogeneous GNN model. This leads

us towards designing a model with the goal of covering more metapaths to keep

richer semantic information while giving the metapaths enough flexibility to make

them distinguishable. In this work, We focus on the node classification task on

heterogeneous graphs, and propose the SMASH model, which consists of 1) Metapath

Feature Propagation step which conducts message passing for matapaths obtained by

a Breadth-First-Search (BFS) to avoid semantic information loss; 2) Metapath Feature

Aggregation step which is a 3-stage operation to combine the obtained embedding

from previous step stage by stage in a hierarchical manner with a heuristic based

metapath aggregator, an attention-based metapath aggregator, and a concatenation-

based aggregator; 3) Transformation step which projects the representation in a better

embedding space with a few MLP layers.

We summarize our main contributions as follows:

50

Higher
Accuracy

Less Running Time

Figure 4.1: Runtime and Accuracy Rank of SMASH and Different HeterHeterogeneous

GNNs on ACM Dataset.

• We systematically discuss how to develop powerful metapath-based hetero-

geneous GNNs by proposing and answering the three fundamental questions

regarding metapath aggregation: what metapaths to use, when to aggregate,

and how to aggregate.

• We propose a multi-stage metapath aggregation module that can get aware of

the metapath importance, and then propose the Scalable Metapath Aggregation-

baSed Heterogeneous GNN (SMASH) model.

• We demonstrate the power of SMASH on benchmark datasets. SMASH achieves

top-1 performance on ACM, OAG-L1, and OAG-Venue dataset, and also gets

competitive results on OGB-MAG. We provide a glance at the high-level

comparison in terms of running time and accuracy of our SMASH with existing

methods in Figure 4.1.

51

4.2 Preliminaries

4.2.1 Node Classification for Heterogeneous Graphs

A heterogeneous graph [89] G(V , E ,Φ,Ψ) is a type of directed graph which contains

multiple types of nodes and relations which help to represent interconnected data,

where V is a multi-type node set, E is a multi-type edge set, Φ : V → A is a mapping

function that associates each node v in the node set V to a node type a in node type

set A, and Ψ : E → R is a mapping function that associate each edge e in edge set E

to an relation type r in relation type set R.

Our work focuses on the node classification task on attributed heterogeneous

graphs. The task specifies a target node type, and has a set of labeled and unlabeled

nodes within this type respectively. The labeled nodes are used as the training

supervision to learn a model that predicts the labels for the unlabeled ones. We

provide a detailed formal task description as follows:

Given the heterogeneous graph G(V , E ,Φ,Ψ), let Xai ∈ Rnai×d be the feature

matrix for node type ai, where nai is the number of nodes with type ai and d is

the initial feature dimension (we assume all node types have same initial feature

dimension), the v-th row Xai(v) is the initial feature vector for node v satisfies

Φ(v) = ai. Let Ap ∈ Rnak
×na1 be the adjacency matrix for metapath p starts from

a a1 node type and ends with a ak node type, where Ap(vk, v1) = 1 if and only if

there is a metapath instance for metapath p connecting node vk with node type ak

and node v1 with node type a1. Let a∗ be the target node type and V∗ be the set of

type-a∗ nodes, let Y ∗ be the class assignment vector for all the nodes in V∗, C be

the number of classes, then Y ∗(v) ∈ {1, · · · , C} would be the label for node v in V∗.

52

Let P∗ be the full metapath set end with node type a∗. Then the node classification

task is to learn a mapping function f : V∗ → {1, · · · , C} by leveraging node features

{Xai : ai ∈ A}, adjacency matrices {Ap : p ∈ P∗} and the labeled nodes, to predict

the class labels for the unlabeled nodes.

4.2.2 Heterogeneous Graph Emebedding

Extensive studies have been done on heterogeneous graph embedding [114].

Shallow Methods. Before the deep learning era, various powerful shallow

models were proposed. Metapath2vec [29] is a shallow effective model inspired by

Deepwalk [77], and its main idea is to first conduct metapath-based random walks and

generate a set of random walk sequences, then use heterogeneous skip-gram to obtain

the embeddings. Hin2vec [32] is another random-walk-based shallow model, which

exploits various types of relations among nodes by conducting multiple prediction

tasks jointly. The work PTE [92] is a proximity-based approach that is designed

based on the idea that similar nodes’ embeddings should be close, it decomposes

the heterogeneous graph into multiple bipartite graphs for each relation type and

considers the log-likelihoods over all of them. All these shallow methods are shown to

be powerful on various real-world benchmark datasets, however, they only utilize the

structural information, so they may lose important information from node attributes.

In addition, these methods heavily rely on the quality of the graph structure and

therefore would be more vulnerable when the graph structure is noisy or irrelevant to

the downstream node classification task.

Deep Methods. Graph neural networks (GNNs) have emerged as the state-of-art

family of models for graph representation learning and related tasks [55, 110, 116, 82].

53

P1

P2

P3

A1T1

T2

A2

A3

(a) A heterogeneous graph

P1

P2

P3

T1

T2

P1

P2

P3

A1

A2

A3

(b) relation-based message passing (c) meta-path-based message passing

Relation subset 1:
{P->T; P->P}

Message Passing:
{𝐴##𝑋#, 𝐴&#𝑋&}
{𝐴#&#𝑋#, 𝐴&##𝑋#, 𝐴###𝑋#}

Relation subset 2:
{A->P}

Message Passing:
{𝐴(#𝑋#}
{𝐴#(#𝑋#}

P1

P2

P3

T1

T2

P1

P2

P3

A1

A2

A3

Meta-path 1:
{T->P->P}

Message Passing:
{𝐴&##𝑋&}

Meta-path 2:
{A->P->P}

Message Passing:
{𝐴(##𝑋(}

Figure 4.2: An Illustration Example for the Difference Between Relation-based

Message Passing and Metapath-based Message Passing.

Different GNN architectures have been proposed [55, 95, 110] based on the message-

passing framework to generate powerful embeddings by fusing the node attributes

and the graph structural information. In recent years, researchers have made efforts

to generalize GNNs to heterogeneous graphs, and developed dozens of powerful

heterogeneous GNN architectures. These deep methods can be categorized into two

different types in general: relation-based methods and metapath-based methods,

based on what perspective the model considers for message passing.

Relation-based models [82, 123, 121] usually construct homogeneous sub-graphs

for each relation type or for each relation subsets, then propagate information on

the sub-graphs to update the representations for the target nodes type. RGCN [82]

is a simple but effective extension of GCN [55], which conducts message passing

for each single relation’s in-coming and out-going edges respectively, then combines

the generated representations using degrees as combination weights to obtain the

54

representation for one RGCN layer. R-HGNN [121] proposes a cross-relation message

passing module to improve the interactions of node representations across different

relations after obtaining the representations on each sub-graph and thus would be

able to capture more semantics information. However, for complex heterogeneous

graphs with a large number of relations, RGCN and R-HGNN scale poorly. NARS

[123] introduces neighbor averaging over relation sub-graphs, which randomly samples

sub-graphs based on relation subsets and then simply operates on graph-smoothed

node features and therefore would be scalable on large-scale graphs. Despite their

good effectiveness, the relation-based models may lose some important semantic

information in the metapaths.

For example, suppose we have a heterogeneous graph shown in Figure 4.2 (a),

whose most important semantic information is encoded in metapath T→P→P and

A→P→P, and the target node type is P. Assume we consider two relation-subsets

or two metapaths for message passing, and we are considering 2-hop neighborhood.

Then, using a relation-based method such as NARS [123] can lead to getting the

sampled relation-subsets as shown in (b), which fails to propagate information through

A→P→P, one of the key metapaths. Therefore target node P1 would not be able

to get important information propagated from node A3 and as a result may fail

the downstream node classification task. Constructing the sub-graph using the full

relation subset is a way to avert this issue - in fact other relation-based methods like

RGCN use all the relations - however, this would mix all the relations together at an

early stage and make them undistinguishable, and therefore may include some noise.

Metapath-based methods [101, 45, 33, 125] consider message passing and feature

propagation through each individual or each group of metapath(s), then aggregate

the propagated features. HAN [101] proposes to utilize metapaths to model higher-

55

order proximity and introduce attention mechanisms to heterogeneous GNNs. It

utilizes a node-level attention module and a semantic-level attention module to

produce representations aware of the neighbor importance and metapath importance

respectively. MAGNN [33] improves HAN by considering both the metapath-based

neighborhood and the nodes along the metapath during the propagation. Though

these models are powerful and can identify important metapaths explicitly, however, as

the number of possible metapaths usually goes exponentially to the length of metapath,

these two methods need a manual selection of metapaths in a pre-processing stage,

which requires domain expertise and would bring some challenges. HGT [45] proposes

to use each edge’s type to parameterize a transformer-like self-attention architecture,

so that the metapaths can be learned implicitly and therefore the semantic information

can be captured. GTN [125] proposes to composite relations and generate useful

multi-hop metapaths implicitly and automatically learn to leverage information from

different metapaths. Though these two methods tried to solve the aforementioned

problem by implicitly learning to aggregate information from different metapaths,

they are not very efficient and do not have good interpretability. Figure 4.2 (c)

provides an example of explicit metapath-based message passing, that covers the

important metapaths in the scenario, but still relies on manual metapath selection.

4.3 Methodology: SMASH

In the following, we propose our solution: SMASH. It includes 3 steps: 1) Metapath

Feature Propagation for message passing on each metapaths; 2) Metapath Feature

Aggregation to aggregate the propagated features for the metapaths stage by stage;

and 3) Transformation which projects the obtained aggregated features into proper

56

P1

P2

P3

P4

A1
T1

T2
A2

A3

Metapath Feature
Propagation

3-Stage Metapath Aggregation

Zero-hop:
P: 𝑿"

One hop:
T→P: 𝑨%&"𝑿&
P→P: 𝑨%""𝑿"
A→P: 𝑨%'"𝑿'

Two hop:
P→A→P: 𝑨%"'"𝑿"
P→T→P: 𝑨%"&"𝑿"
T→P→P: 𝑨%&""𝑿&
P→P→P: 𝑨%"""𝑿"
A→P→P: 𝑨%'""𝑿'

C

One hop:
{𝑨%&"𝑿&} → 𝑿))
𝑨%""𝑿" → 𝑿)*

{𝑨%'"𝑿'} → 𝑿)+

Two hop:
{𝑨%&""𝑿&} → 𝑿*)
{𝑨%'""𝑿'} → 𝑿**
{𝑨%"'"𝑿",𝑨%"&"𝑿", 𝑨%"""𝑿"} → 𝑿*+

Att
Agg

Zero-hop:
{𝑿"} → 𝑿.)
{𝑿"} → 𝑿.*
{𝑿"} → 𝑿.+

Att
Agg

Att
Agg

|

	𝑾.

𝑿.

𝑿)
		𝑾)

		𝑾*𝑿*

		𝜎 	Θ

Stage 1 Stage 2 Stage 3

Transformation

𝑯

Raw Graph

Figure 4.3: Overview of SMASH.

space for the downstream tasks. Figure 4.3 shows its workflow overview, in this

example, we set the maximum metapath length to 2, and set the number of metapath

subsets to 3 per path length. σ is a non-linear transformation and Θ is an MLP

whose layer number is a hyper-parameter in the implementation. C is the classifier

for the downstream task, we set C to be the softmax classifier in our implementation.

4.3.1 Details for Components in SMASH

Metapath Feature Propagation To avoid semantic information loss, with a pre-

defined length K, we enumerate all the metapaths {p : p ∈ P∗} that end with the

target node type a∗ and are of a length less than or equivalent to K by running

a Breadth-First-Search (BFS) on the heterogeneous meta graph. Then for each

metapath p with source node type ap, we would have an adjacency matrix Ap

indicating the connectivity between nodes of type a∗ and nodes of type ap, and a

feature matrix for nodes of type ap: Xap . Then, with the normalized adjacency matrix

57

Ãp = D−1
p Ap, where D−1

p = diag[1/dp(v)], we conduct message passing via all the

metapath instances of metapath p as:

ÃpXap(v) =
1

|Nv,p|
∑
u∈Nv,p

Xp(u) (4.1)

where Nv,p is the metapath-based neighborhood for node v with metapath p, and

|Nv,p| is its size.

Metapath Feature Aggregation. To aggregate the metapath propagated node

features {ÃpXap |p ∈ P∗}, we propose a three-stage aggregation module. We use

different aggregation operators for different stages, with the purpose of maintaining

the representation learning power of the model while avoiding expensive computation

costs.

In the first stage, we split metapaths into subsets based on their length and source

node type. For each path length k ∈ {1, ..., K}, we generate S subsets (so in total

there would be K × S subsets.), and denote the subsets as Pk1,Pk2, ...,PkS. For each

metapath p of length k, we randomly put it to a subset Pks, with the constraint

that all metapaths in the same subset Pks should have the same source node type.

Next, we generate a feature matrix for each metapath subset Pks by aggregating the

propagated node features {ÃpXap |p ∈ Pks} according to their degrees, i.e.:

Xks(v) =
∑
p∈Pks

dp(v)∑
pi∈Pks

dpi(v)
· (ÃpXap)(v) (4.2)

where dp(v) is the number of metapath p reachable neighbors for node v, and

(ÃpXap(v)) is the corresponding row in ÃpXap for node v.

58

In the second stage, we design an attention-based aggregator to combine the

subset-specific features {Xks|s ∈ {1, 2...S}} and generate path length specific repre-

sentations, i.e. for each k, our aggregator adaptively learns the importance for each

Xks. We propose two aggregators for different scenarios: 1) Feature-wise attention

aggregator which learns the importance of each feature channel:

Xk(v) =
S∑
s=1

αks �Xks(v) (4.3)

where αks ∈ Rd is a learnable attention vector for subset s of length k metapaths,

and � is the element-wise multiplication operator. For a specific feature channel, all

target nodes share the same attention weight on the metapath subsets; 2) Node-wise

attention aggregator that learns different metapath subset importance for different

nodes:

Xk(v) =
S∑
s=1

βks(v)Xks(v) (4.4)

where βks ∈ Rna∗ is a learnable vector, and each entry βks(v) ∈ R is the attention

weight for node v. For a target node, all feature channels share the attention weight

for the metapath subset.

In the last stage, we aggregate the path-length specific representations to obtain

the target nodes representations that are ready for further transformations. For each

Xk, we learn a weight matrix Wk to which is used to XkWk Then, we concatenate

the to obtain the aggregated node representation:

59

H = [X1W1,X2W2, ...XkWk] (4.5)

Transformation. H is our metapath augmented node representation and in

order to obtain model predictions, we pass H through a Multi-Layer Perceptron

(MLP) Θ to transform the aggregated representations for the downstream node

classification task.

Finally, we feed the representations into an MLP classifier, to get the predicted

node labels for target nodes. The SMASH model described in this pipeline is trained

with the cross-entropy loss.

4.3.2 Advantages of SMASH.

We summarize the advantages of SMASH in effectiveness, scalability, and explainabil-

ity. For the effectiveness side, our method can prevent information loss as we cover

full metapath sets. In addition, SMASH is capable of learning to gather information

from diverse metapaths and paying attention to those informative ones with a 3-stage

aggregation scheme, which further enhances effectiveness.

For the efficiency side, our method scales well. At the first aggregation stage, we

group similar metapaths into subsets with smaller set sizes to address the scaling

issue. Then, we aggregate different groups together based on the metapath length

with an attention-based sum aggregator. This step-by-step aggregation captures the

crucial metapath information while being able to alleviate the pressure of maintaining

the distinguishability of metapaths, whose numbers grow exponentially with the

metapath length. As for the training complexity, the feature propagation and the

60

stage 1 aggregation are one-time processes before the training; stage 2 aggregation

takes O(Kmdna∗) time where m is the metapath subset number, and K is the

maximum metapath length; stage 3 aggregation takes O(Kd2na∗), here, for simplicity,

we assume all the hidden layers has dimension d; the transformation module takes

O(Ld2a∗) where L is the number of MLP layers.

In terms of interpretability, our method is capable of getting aggregated repre-

sentations that are aware of the importance of metapaths. We learn the importance

by adaptive learning how metapath subsets should be aggregated either for each

feature columns or for each node. In addition, within GNN each metapath subsets,

the SMASH model emphasizes the metapath that connects a target node to the most

metapath reachable neighbors. Therefore by considering both the adaptively-learned

importance for each metapath subset and the metapath significance inside each group,

we would be able to identify the important metapaths.

4.3.3 Distinguishing SMASH with Existing Models.

In the end, we distinguish our SMASH from existing methods. First, we want to

highlight all the concerns for Heterogeneous GNN embedding learning. On the one

side, we have effectiveness concerns, (1) we don’t want to exclude any metapaths at

the beginning, as it’s hard to decide which metapath is important; also, (2) some of

the metapaths are highly correlated, and consider them separately might be harmful

to the model performance; in the other side, we have efficiency concern, (3) number

of metapaths grow exponentially with metapath length, and some heterogeneous

graphs may have a large number of relations. In addition, (4) we want the model

to be interpretable instead of just being a powerful “black-box” model. None of the

61

existing models can satisfy all 4 points.

For the baselines, RGCN would be less efficient with a large number of relations and

cannot adaptively learn metapath importance. HAN and MAGNN handle challenge(1)

by manually selecting important metapaths that require domain expertise, and their

complicated attention mechanism limits their scalability. HGT can only implicitly

learn the metapath importance and therefore has less interpretability. NARS may

exclude some important metapaths and would suffer the challenge (1). GTN needs

to do feature propagation for each training epoch, thus having higher complexities in

both time and memory.

In SMASH, we consider a full metapath set to handle (1), we propose grouping-

based metapath feature propagation (Stage 1) to address (2) and (3), and by combining

our heuristic-based importance (stage 1) within GNN each metapath group and the

learnable attention-based importance (stage 2) among each metapath group, we can

identify important metapaths and give good interpretations for (4).

4.4 Experiment

4.4.1 Experimental Setup

Datasets. For the experiments, we evaluate the SMASH model on four widely used

academic graphs for the node classification task:

• ACM [101] is a citation graph based on ACM papers. The node classification

task has paper nodes as the target node to predict its category.

• OGB-MAG [43] is an academic network constructed from Microsoft Academic

62

Table 4.1: Statistics of Benchmark Datasets for Node Classification in Heterogeneous

Graphs.
Dataset Nodes Relations Features (init dim → dim, how features are generated) Splits

ACM P: 4,025 P-A: 13,407 P: 1903, Bag-of-words features Random Split

A: 17,431 P-F: 4,025 A: 128→1903, Randomly projected TransE features Train: 808

F: 73 F: 128→1903, Randomly projected TransE features Val: 201

Test: 2816

OGB-MAG P: 736,389 P-A: 7,145,660 P: 128→256, Randomly projected Word2Vec features Time-based Split

A: 1,134,649 P-P: 5,416,271 A: 256, TransE features Train: 629,571

F: 59,965 P-F: 7,505,078 F: 256, TransE features Val: 64,879

I: 8,740 A-I: 1,043,998 I: 256, TransE features Test: 41,939

OAG-L1 P: 119,483 P-A: 340,959 P: 768, pre-trained XLNet features Time-based Split

A: 510,189 P-P: 329,703 A: 400→768, Randomly projected TransE features Train: 81,071

V: 6,934 P-V: 119,483 V: 400→768, Randomly projected TransE features Validation: 16,439

I: 9,079 A-I: 612,872 I: 400→768, Randomly projected TransE features Test: 21,973

OAG-Venue P: 166,065 P-A: 477,676 P: 768, pre-trained XLNet features Time-based Split

A: 510,189 P-P: 851,644 A: 400→768, Randomly projected TransE features Train: 106,058

F: 45,717 P-F: 1,700,497 F: 400→768, Randomly projected TransE features Validation: 24,255

I: 9,079 A-I: 612,872 I: 400→768, Randomly projected TransE features Test: 35,752

Graph (MAG). The target node type is paper and the node classification task

is to predict the venue.

• OAG-L1 and OAG-Venue [45] are both constructed from the largest public

academic graph Open Academic Graph (OAG, [85]) by using nodes from the

CS domain. They use paper as the target node type and the goal is to predict

the L1-field of each paper and the venue of each paper respectively.

For all these four datasets, for the node types that do not have raw features, follow

the work of [123], and use the TransE model to generate initial features for them,

before projecting the features for all node types to the same dimension. The detailed

dataset statistics are summarized in Table 4.1.

Baselines. We compare SMASH against the following two types of baseline

63

Table 4.2: Performance of SMASH and Baselines on Benchmark Datasets. OOM

indicates out of memory.

Dataset Metric R-GCN NARS HAN HGT | SMASH

ACM Acc 0.930±0.002 0.931±0.004 0.922±0.002 0.919±0.003 | 0.934±0.008

OGB-MAG Acc 0.500±0.001 0.521±0.004 OOM 0.498±0.001 | 0.507±0.001

OAG-L1 NDCG 0.852±0.002 0.868±0.001 OOM 0.868±0.002 | 0.873 ± 0.001

MRR 0.843±0.002 0.857±0.003 OOM 0.849±0.003 | 0.863 ± 0.001

OAG-Venue NDCG 0.481±0.004 0.520±0.003 OOM 0.498 ± 0.014 | 0.527±0.007

MRR 0.302±0.005 0.342±0.003 OOM 0.322±0.014 | 0.349±0.010

models: Relation-based models and metapath-based models. We take R-GCN [82]

and HAN [101] as the representative classic models for each type, while NARS [123],

and HGT [45] are taken as an example for the state-of-the-art methods for each.

Training Settings. In terms of the evaluation metrics, for ACM and OGB-MAG

datasets, we report the test accuracy of all baselines and our SMASH model; for

OAG-L1 and OAG-Venue datasets, we report the NDCG and MRR for all models.

For each dataset, we regard the model with the best validation performance as the

“best model” evaluate its performance on the test dataset. We run the model 5 times

and record the mean and standard deviation. For R-GCN, NARS, HAN, and HGT,

we directly use their reported results.

4.4.2 Results

We present out main results of SMASH and baseline models on the four benchmark

datasets in Table 4.2. As shown in the results, our proposed SMASH model out-

performs all the baselines on ACM, OAG-L1, and OAG-Venue and gets the best

64

2 3 4 5 6 7 8 9 10
Set Number

0.90

0.91

0.92

0.93

0.94

0.95

A
cc

ur
ac

y
How Number of Metapath Subsets Affects Performance

2 3 4 5 6 7 8 9 10
Set Number

0.10

0.15

0.20

0.25

0.30

0.35

R
un

ni
ng

 T
im

e
(s

)

How Number of Metapath Subsets Affects Running Time

Figure 4.4: The Influence of the Number of Metapath Subsets on Accuracy (left) and

Running Time (right) with ACM Datasset.

performance, for the OGB-MAG dataset, SMASH also achieved competitive top-tier

performance. In addition, we provide the following 2 ablation studies to give a more

comprehensive justification of SMASH.

The effect of the number of metapath subsets. We examine how the

number of metapath subsets would influence the model performance in terms of

accuracy and per epoch running time. We use the ACM dataset as an example,

and conduct experiments with different subset numbers. Figure 4.4.2 shows how the

performance would change with respect to the change in the number of metapath

subsets. As ACM is a small dataset with only 2 different relation types, we find that

it prefers a smaller number of metapath subsets, because we won’t have too many

metapaths, and therefore when the number of subsets is too large, there would be

a lot of duplicates in the metapath subsets and this redundancy may lead to some

performance drop. In addition, we can observe that the variance grows when the

subset number grows, this is also a cons bring by the redundancy. Figure 4.4.2 shows

that the per epoch running time grows linearly with related to the metapath subset

number.

65

Table 4.3: Importance of Multi-stage Aggregation on ACM dataset.
SMASH SMASHSum SMASHAtt SMASHCat

Acc 0.934 0.7525 0.8849 0.8707

Epoch Time (s) 0.0670 0.0548 0.0556 0.0551

Epoch Num 67 47 754 373

Importance of multi-stage aggregation. We also examine the power of the

multi-stage aggregation on the ACM dataset. The results are summarized in Table

4.3. We compare our SMASH model with three variants:

• SMASHSum: replaces the 3-stage metapath aggregation module in SMASH with

a simple sum aggregator to aggregate all the metapaths

• SMASHAtt: uses the attention-based aggregator that automatically learns the

importance weight for each metapath and conducts weighted summation.

• SMASHCat: simply concatenates all the metapaths in the aggregation module.

According to the experimental results, we find that the multi-stage aggregation has

the best performance and is also very efficient. The sum aggregator has the smallest

running time and needs the fewest epoch numbers to get fully converged, but its

performance is the worst. The attention-based aggregator and the concatenation

aggregator can obtain better performance than the sum aggregator, but require more

epochs to get converged and need more total running time.

4.5 Conclusion

In this work, we aim to design a Heterogeneous GNN model that can alleviate

the challenges for relation-based models and metapath-based models, which are

66

potential semantic information loss and the scalability issue plus the domain-expertise

requirement respectively. We claim that the key is to cover more metapaths with

critical semantics and keep their distinguishability. We then propose the scalable and

effective SMASH model, which achieves top-level performance on all the benchmark

datasets and performs the best on three of them. For further research, it is worth

exploring whether we can improve the grouping stage in the aggregation module to

enhance the model performance.

67

Part II

Efficiency

68

CHAPTER 5

Decoupled Greedy Learning of Graph Neural

Networks

5.1 Introduction

Graph Neural Networks (GNN) have been shown to be highly effective in graph-related

tasks, such as node classification [55], graph classification [117], graph matching [3],

and recommender system [116]. Given a graph of arbitrary size and attributes, GNNs

obtain informative node embeddings by first conducting a graph convolution operation

to aggregate information from the neighbors of each node, and then transforming

the aggregated information. As a result, GNNs can fuse together the topological

structure and node features of a graph, and have thus become dominant models

for graph-based applications. Despite its superior representation power, however,

training GNNs raises challenges in run time and memory.

The first challenge is that the graph convolution operation has been shown to

be expensive when GNNs become deep and wide [15]. Therefore, training a deep

GNN model is challenging for large and dense graphs. Since deep and wide GNNs

are becoming increasingly important with the emergence of complicated classification

tasks such as [44], and semantic segmentation tasks as introduced in [60], we focus

69

here on studying methods for alleviating computational burdens associated with

large-scale GNN training.

Several strategies have been proposed during the past years to alleviate this

computation issue of large-scale GNNs. GraphSAGE [38] took the first step to use a

neighborhood sampling strategy for GNNs training, which only aggregates a sampled

subset of neighbors of each node in the graph convolution operation. However, though

this method helps reduce memory and time costs for shallow GNNs, it computes the

representation of a node recursively, and the node’s receptive field grows exponentially

with the number of GNN layers, which may make the memory and time costs even

go larger for deeper GNNs when the sample number is big. The work of [15, 17, 144]

developed sampling-based stochastic training methods to train GNNs more efficiently

and avoid this exponential growth problem. [20] proposed a batch-learning algorithm

by exploiting the graph clustering structure. Beyond the aforementioned methods,

recently, [120] proposed a layer-wise sequential training algorithm for GNNs, which

decouples the aggregation and transformation operations in the per-layer feed-forward

process and reduces the time and memory cost during training while not sacrificing

too much model capability, this indicates the GNN layers do not have to be learned

jointly. However, the sequential design in current layerwise training hinders the

further enhancement of efficiency.

The second challenge is the inefficiency caused by the sequential nature of standard

backpropagation [5], which is shared by all the neural networks. As pointed out in

[49], backpropagation for deep neural networks suffers an update-locking problem,

which means each layer heavily relies on upper layers’ feedback to update itself, and

thus, it must wait for the information to propagate through the whole network before

updating. This would be a great obstacle for GNN layers to be trained in parallel

70

to alleviate computation pressure under time and memory constraint, and would

prohibit the GNN training to be trained in an asynchronous setting.

In this work, using semi-supervised node classification as an example, we show

that greedy learning would help to decouple the optimization of each layer in GNNs

and enable GNNs to achieve update-unlocking, i.e., allow the GNN layers to update

without getting any feedback from the later layers. By using this decoupled greedy

learning for GNNs, we can achieve parallelization of the network layers, which would

make the model training much more efficient and would be very important for time

or memory-limited applications. Moreover, we propose to use a lazy-update scheme

during training, which is to exchange information between layers after a certain number

of epochs instead of every epoch, this will further improve the efficiency while not

sacrificing much performance. We theoretically analyze the computation complexity

of our proposed method, and analogue our method to the classic block coordinate

descent optimization to enable further analysis. We run a set of experiments to justify

our model, and show its great efficiency on all benchmark datasets. On the newly

proposed large OGBN-arxiv dataset, when training a 7-layer model, our proposed

method even saves 85% time and 66% per-GPU memory cost of the conventionally

trained GCN.

Our main contributions can be summarized as follows. First, we introduce a

decoupled greedy learning algorithm for GNNs that achieves update-unlocking and

enables the GNN layer to be trained in parallel. Next, we propose to leverage a

lazy-update scheme to improve the training efficiency. We evaluate our proposed

training strategy thoroughly on benchmark datasets, and demonstrate it has superior

efficiency while not sacrificing much performance. Finally, our method is not limited

to the GCN and the node classification task, but can be combined with other

71

scalability-enhancing GNNs and can be applied to other graph-related tasks.

5.2 Related Work

Before discussing our proposed approach, we review here related work on efficient

training strategies for GNNs. The computational complexities of the discussed

methods are summarized in Table 5.1. Here D̄ denotes the average degree, b denotes

the batch size, snode and slayer are the number of sampled neighbors in NS and IS

respectively, K is the dimension of embedding vectors (for simplicity, assume it is the

same across all layers), L is the number of layers, N is the number of nodes in the

graph, A is the adjacency matrix, T is the number of iterations, Twait is the waiting

time for LU-DGL-GCN.

5.2.1 Deep Graph Convolutional Network (DeepGCN)

Graph convolutional network [55] is one of the most popular models for graph-related

tasks. Given an undirected graph G with node feature matrix X ∈ RN×D and

adjacency matrix A ∈ RN×N where N is node number and D is feature dimension,

let Ã = A + I, D̃ be a diagonal matrix satisfying D̃i,i =
∑N

j=1 Ãi,j, and F =

D̃−1/2ÃD̃−1/2 be the normalized Ã, then, the l-th GCN layer will have the output

H(l) as H(l) = σ(FH(l−1)W (l)), where σ is the non-linear transformation, and W (l)

is the trainable weight matrix at layer l.

As pointed out in [64], when GCN becomes deep, it will suffer a severe over-

smoothing problem, which means the nodes will become not distinguishable after

stacking too many network layers. However, for applications such as semantic

72

segmentation [60] or classification tasks on large datasets [44], we do need deeper

GCN models. Therefore, we follow the work of [60], alleviating the over-smoothing

problem by adding residual links between GCN layers and obtain the deepGCN model.

The l-th layer of our network model will be H(l) = σ(FH(l−1)W (l)) + H(l−1).

5.2.2 Efficient GNN Training

To alleviate the expensive computation issue of GNN introduced in the previous

section, a lot of sampling-based algorithms were proposed to train GNNs more

efficiently.

GraphSAGE [38] introduced a node sampling strategy (NS), which is to randomly

sample s neighbors for each node at each layer, then, for each node, instead of

aggregating embeddings of all its neighbors, we only aggregate the sampled ones.

VRGCN [15] also followed this NS strategy, but it further proposed to leverage history

activation to reduce the variance of the estimator. Though the NS scheme has a

smaller complexity compared to full-batch GNN, there exists redundant computation

and the complexity grows exponentially with the layer number.

Layer-wise importance sampling strategy (IS) would be a more advanced method

for efficient GNN training. FastGCN [17] proposed to sample nodes for each layer

with a degree-based sampling probability in order to solve the scalability issue in

NS. The work of LADIES [144] leveraged the IS idea as well, but it proposed a

layer-dependent importance sampling scheme, which enjoys a smaller variance while

maintaining the same level of complexity as FastGCN. Though IS is better than

NS in general, we still have to trade off the complexity with the performance (i.e.

accuracy for classification tasks) via sample size, as a larger sample size will enhance

73

Table 5.1: Summary of Complexity.

Methods Memory (per GPU) Time

GCN, GIN [55, 111] O(LNK + LK2) O(TL‖A‖0K + TLNK2)

GraphSage [38] O(bKsL−1
node + LK2) O(bTKsLnode + bTK2sL−1

node)

VR-GCN [15] O(LNK + LK2) O(bD̄TKsL−1
node + bTK2sL−1

node)

FastGCN [17] O(LKslayer + LK2) O(TLKs2
layer + TLK2slayer)

LADIES [144] O(LKslayer + LK2) O(TLKs2
layer + TLK2slayer)

ClusterGCN [20] O(bLK + LK2) O(TL‖A‖0K + TLNK2)

LGCN [120] O(NK + 2K2) O(L‖A‖0K + 2TLNK2)

LU-DGL-GCN (ours) O(NK + 2K2) O(T‖A‖0K/Twait + 2TNK2)

the performance but also increase the computation cost and vice versa.

Except for the aforementioned methods, we also have ClusterGCN [20], which

proposes to partition the graph into several clusters and then randomly select multiple

clusters to form a batch to train the GNN. Though this would allow us to train

much deeper GCN without much time and memory overhead, the stability of the

performance of this approach would be hard to guarantee, since the performance

heavily depends on the graph clustering settings.

5.2.3 Layer-wise GNN

Layerwise learning for neural networks is first introduced and well-discussed in [? 8].

The work of [5, 6] explored the layerwise CNNs and achieved impressive results.

Recently, [120] proposed a layerwise algorithm for GNN training. The key idea is

to train GNNs layer by layer sequentially. Figure 5.1 illustrates the sequential training

74

framework for layerwise GNN. For a L-layer GNN, its first layer is trained with an

auxiliary classifier. Once the current layer l − 1 is fully converged, the next layer

l will be optimized. The process will be repeated until the L-th layer is optimized.

This layerwise training saves us a lot of memory, since this method only requires us

to focus on one layer and only need to store one layer’s activation results. Besides

the clear memory saving, this layerwise training scheme also saves us a lot of time.

During the learning process, it can decouple the two key components in the per-layer

feed-forward graph convolution: aggregation and transformation. Then for each

layer, it only needs to conduct the aggregation once at the beginning of the training,

and then only needs to do the transformation step at each iteration, which greatly

reduces the time cost. According to the reported results, this sequentially-trained

layerwise method is more efficient than the joint learning strategy and can get us

good performance. However, its sequential scheme would bring some inefficiency

because one layer has to wait until its previous layers get fully converged to start

training. In our work, we solve this problem and enable the model parallelization to

further improve efficiency.

5.3 Proposed Approach

5.3.1 Model Architecture

As mentioned in section 5.2.1, we introduce our proposed algorithm with deepGCN

model (i.e., the GCN model with residual link) since the residual link would help to

alleviate GCN’s over-smoothing problem when it goes deep, which would be important

for large scale scenarios.

75

A + CI A +A +A…
! "($) "(&) "(') "(())

input aggregation transformation classifier + summation

CC C
)($))(&))(')

Stage 1 Stage 2 Stage 3 Stage L

Conventional
GNN

Layerwise
GNN

A + CI A +A +A…
! " $ ∗ " & ∗ " ' ∗ "(())

one GNN layer

Figure 5.1: High-level Framework of Conventional DeepGCN (upper) and Layerwise

DeepGCN (lower).

There exist two ways to train such GCN model: conventional training and

sequential layerwise training. We illustrate these two strategies with the high-level

framework shown in Figure 5.1. The aggregation step (A) corresponds to FH(l−1)

and the transformation step corresponds to σ(·W (l)). In conventional training, both

steps are done for every iteration. For sequential layerwise training, we can decouple

these two operations to conduct the transformation step in every iteration, and

the aggregation step only once at the beginning of each layer, which results in the

demonstrated time-saving. For conventional training, the learnable parameters in all

layers and in the classifier are jointly optimized. For layerwise training, the training

for a L-layer GNN is decomposed into L sequential stages, each stage has to wait for

all its previous layers to get fully converged to start training.

Note that, sequential layerwise training has the advantage that it can save time and

memory while not compromising too much performance, this suggests its promising

76

LayerLLayerLLayerL

+
layer2

time

layer1

+
layer2

...

+
C

...

time

layer1

...

+
C

C

C

...
+

layer2

time

layer1

...

+
C

C

C

...

classifier + summation one GNN layer

(a) Conventional Training (b) Sequential Training (c) Parallel Training

Conven

tional

GNN

Layer-

wise

GNN

Layer-

wise

GNN

forward backward

Figure 5.2: Signal Propagation Process for Conventionally Trained GNN, Sequentially

Trained Layerwise GNN, and the Parallel Trained GNN.

applications in large-scale models under hardware and time constraints. We now

consider, whether we can extend it to a parallel version, so that the efficiency can

be further improved? Interestingly, as shown in the following sections, we find the

answer is affirmative.

5.3.2 Decoupled Greedy Learning Algorithm

To enable parallel GNN training, the most challenging problem is update-locking.

Before updating one layer, we have to wait until after the signal has been passed

through all its successors, which would bring inefficiency. To alleviate this problem,

we follow the design of layerwise GNN: decoupling the GNN model into different

layers, associating each layer with an auxiliary classifier, which is an MLP layer with

softmax activation, and assigning a per-layer greedy objective. Then, with the output

77

activation of a given layer, we can leverage the auxiliary classifier to optimize the

per-layer objective and therefore can update the current layer without any feedback

from its successors while the rest layers are still in the forward process. We name our

training strategy as Decoupled Greedy Learning of GNNs (DGL-GNN).

With our DGL-GNN, we achieve update-unlocking, and therefore can enable

parallel training for layerwise GNNs. For clarity, we provide Figure 5.2 to compare the

signal propagation process of the conventionally trained GNN, sequentially trained

layerwise GNN, and the parallel trained GNN. Arrows of different colors represent

different batches of data (can be either mini-batch or full-batch). We assume the

forward process and backward process have the same time cost, we also assume the

auxiliary classifier computation is negligible, these are only for simpler illustration

purposes. With this illustration, we can observe that the parallel training of layerwise

GNN can avoid the case in which one layer is forwarding or back-propagating the

signal while other layers are idle. Therefore, given the same number of batches of

data, the parallel version would finish training much earlier than the conventional

and the sequential version.

Following our previous notations, we denote by F the normalized adjacency

matrix, H(l) the output activation of l-th layer, and W (l) the learnable parameters

for l-th layer. Plus, let Y be the labels, Θ(l) be the parameters for l-th layer’s

classifier, and loss be the cross-entropy loss which is frequently used for classification

tasks. Then, we have the per-layer objective function: loss(W (l),Θ(l))(Y ,H(l−1)). We

now formally define our DGL-GNN training method in algorithm 1. Note that, the

inner for-loop can be done in a parallel manner, i.e., when the l−th layer is working

on the backward process as given in line 5, the (l + 1)−th layer can start forward

propagation as given in line 4. Therefore, we claim our DGL-GNN algorithm can

78

Algorithm 1 Decoupled Greedy Learning (DGL) of GNNs
Require: Normalized Adjacency Matrix F ; Feature Matrix X; Labels Y ; Total

Number of Iterations T ; Total Number of Layers L.

1: Initialize: H(0) = X;

2: for t = 1 to T do

3: for l = 1 to L do

4: H(l) = σ(FH(l−1)W (l)) // Forward.

5: (W (l),Θ(l))← Update with ∇loss(W (l),Θ(l))(Y ,H(l−1)) // Backward.

6: end for

7: end for

achieve update-unlocking.

We then empirically observed that, without passing the signal to the next layer

immediately after the forward process, we still get the same-level performance. Thus,

we find that the efficiency of DGL-GNN can be further improved by leveraging an

Lazy Update scheme (LU-DGL-GNN). Instead of using the up-to-date activation

output from its predecessor, one layer can use the history activation to learn its

parameters and only update the history activation a few times during the overall

training process. Then, same as sequential trained layerwise GNN, we only need to

conduct the aggregation step for one time after each update, which saves us a lot of

time. We denote by Ĥ(l) the aggregated stored history activation for layer l. We now

formally define the LU-DGL-GNN method in algorithm 2, we marked its difference

with DGL-GNN in blue.

To sum up, our proposed DGL-GNN and LU-DGL-GNN methods enjoy a very

high efficiency because (1) we introduce an auxiliary greedy objective for each layer

79

Algorithm 2 Decoupled Greedy Learning (DGL) of GNNs with Lazy Update Scheme
Require: Normalized Adjacency Matrix F ; Feature Matrix X; Labels Y ; Total

Number of Iterations T ; Total Number of Layers L; Waiting time Tlazy.

1: Initialize: Ĥ(0) = FX;

2: for t = 1 to T do

3: for l = 1 to L do

4: H(l) =σ(Ĥ(l−1)W (l)) // Forward.

5: (W (l),Θ(l))← Update with ∇loss(W (l),Θ(l))(Y , Ĥ(l−1)) // Backward.

6: if (t mod Tlazy == 0) then

7: Ĥ(l) = FH(l) // Message Passing.

8: end if

9: end for

10: end for

and thus achieve update-unlocking; (2) we then decouple the model into layers and

therefore enable the model to be trained in parallel; and (3) we finally propose to

leverage the lazy-update scheme, with which we can avoid redundant computation in

the aggregation step and further reduce the training time.

5.4 Analysis

In this section, we provide some theoretical justification for our proposed decoupled

greedy learning algorithm. We first analyze time and memory complexity for both

DGL-GCN and LU-DGL-GCN methods, then we connect our methods to block

coordinate descent, which would be beneficial for further analysis.

80

5.4.1 Complexity Analysis

As shown in Table 5.1, our proposed methods achieve a lower complexity compared to

the conventional training and other baselines. Note that DGL-GCN can be regarded

as a special case in which Twait = 1, i.e. we update the stored activation every epoch.

Therefore, we focus on the complexity justification for LU-DGL-GCN.

For time complexity, first, we know that the training process consists of two

fundamental operations: aggregation and transformation. The time complexity of

aggregation is O(‖A‖0K), and the time complexity of the transformation step is

O(NK2). Then, we note that, for LU-DGL-GCN, during the full learning process,

for each layer, we have to do aggregation T/Twait times, and we have to do the

transformation 2T times because this step should be conducted for both the GNN

layer and the auxiliary classifier. Since the computation for each layer is done in

parallel, we know that the overall time complexity for LU-DGL-GCN should be

O(T‖A‖0K/Twait+2TNK2). In practice, if we put different layers on different GPUs

and do the training in parallel, there would be some extra non-negligible time cost

for GPU communication.

For memory complexity, it also consists two components. We have to store two

things for each layer during the training: the history activation and the intermediate

learnable weight matrices for GNN and for the auxiliary classifier. The activation

takes O(NK), and the two types of weight matrix take O(2K2) space. Again, when

we do the training in a parallel fashion and assign the layers to different machines,

the per-GPU memory would only be O(NK + 2K2), which is significantly reduced

compared to most of the existing baselines.

81

5.4.2 Analogy to block coordinate descent

To justify the rationality of the proposed model, we present here an analogy of our

decoupling approach to the classic coordinate descent algorithm variants.

Coordinate descent (CD) is a classic iterative optimization algorithm that solves

an optimization problem by minimizing the objective along each coordinate direction

successively. In each iteration, it would choose one variable, fix the other components,

and then optimize the objective with respect to only the single variable. By doing so,

we only need to solve a lower dimensional minimization problem at each iteration,

which would be easier. CD algorithm has been discussed in various kinds of literature

and has been used in applications for a long time [106, 108, 84]. Block coordinate

descent (BCD) is an extension of the CD method. The difference between BCD

and the conventional CD is that BCD will do the searching along a coordinate

hyperplane instead of a single coordinate direction [4], i.e. it groups variables into

blocks, and minimizes the objective with respect to only one block of variables at

each iteration while fixing the others. For the BCD algorithm, there exist its parallel

implementations. As introduced in the work of [106], we can categorize them into two

types: synchronous and asynchronous. For synchronous parallel BCD, we partition

the computation into pieces and put different pieces on different processors, each

processor will update a part of the variables in parallel, then a synchronization step

should be conducted to guarantee the consistency of the information shared among

all processors before further computation. For asynchronous settings, the difference

is we do not have to do the synchronization.

We observe that, the sequential layerwise GNN shares a similar high-level idea

with the BCD method. We regard each layer and its associated auxiliary classifier as

82

a module. Then, for each module, all its parameters can be treated as a coordinate

block, we order the coordinate block according to which layer it corresponds to. Note

that, in BCD, for each iteration, we choose one coordinate block and optimize the

overall training objective with respect to the chosen block. So if we keep choosing the

first coordinate block until it fully converges, then keep choosing the second coordinate

block, etc., until the last coordinate block fully converges, then this optimization

process is the same as the learning process of a sequentially trained layerwise GNN.

We should note that, there are slight differences between BCD and the layerwise

training. For BCD, one may optimize towards each coordinate block for multiple

rounds, but in the layerwise training, we only optimize towards each coordinate block

once. As long as we finish the training of one layer, we won’t go back and re-optimize

this layer in the latter stage. One may also doubt that, for BCD optimization, when

optimizing towards one coordinate block, though later blocks are fixed, they would

still be useful in defining the optimization objective. But in the layerwise training,

it seems that each layer has its own greedy objective. For this question, we can

consider the global optimization objective for layerwise training as the summation of

the greedy objective at each layer and the classification objective for the downstream

task. Then, when we optimize one layer, though other layers’ parameters are fixed,

they still contribute to the global optimization objective.

We then observe that, the DGL-GCN can be analog to the synchronous parallel

BCD and the LU-DGL-GCN can be regarded as an analogy of asynchronous parallel

BCD. Note that our DGL-GCN and LU-DGL-GCN can be implemented in a parallel

fashion, and their key difference is whether all the layers share consistency and up-to-

date information. Therefore, if we make the same analogy of learnable parameters

and the coordinate blocks as in the above sequential version, then it would be easy to

83

find the similarity between parallel BCD and our decoupled greedy learning methods.

With such an analogy, it would allow us to leverage existing theorems for BCD

optimization to better understand and analyze the DGL-GCN and LU-DGL-GCN.

5.4.3 Convergence Guarantee

We then justify the convergence guarantee for our proposed algorithm 1. We first

show the rationality of some standard assumptions in [11], then we compare our

settings to the parallel CNN setting in [5] and show the convergence theorem applies

to our setting as well.

We consider our algorithm to be optimized by the stochastic gradient descent

method and denote by η(t) the learning rate (i.e. step size) at iteration t. Then we

state the three standard assumptions as follows:

Assumption 1 (γ-smoothnes, [11]) The loss function loss(W (l),Θ(l))(Y ,H(l−1)) is

differentiable, and its gradient is γ-Lipschitz.

Assumption 2 (Robbins-Monro conditions, [11]) The learning rate satisfies∑
t η(t) =∞,

∑
t η(t)2 <∞.

Assumption 3 (Finite Variance) There exists constant µ, such that ∀t, we

have ‖∇loss(W (l),Θ(l))(Y ,H(l−1))‖2 ≤ µ. If we use batch training, this formula

becomes E[‖∇loss(W (l),Θ(l))(YB,H
(l−1)
B)‖2] ≤ µ, where YB and H

(l−1)
B correspond to

the sampled batch.

Note that in the parallel training process shown in Algorithm 1, the input for each

layer (except the first layer) is evolving, following [5], when analysing the convergence

guarantee for layer l, we need one more assumption for the convergence of the previous

layer l − 1. Let Z = (H(l−1),Y), denote by p(l)
t (Z) the input data distribution for

84

layer l at iteration t, and denote by p(l)∗(Z) the input data distribution for layer l

when the (l − 1)-th layer gets fully converged. Let d(l)(t) =
∫
Z
|p(l)
t (Z)− p(l)∗(Z)|dZ

be the distance between the input data distribution for layer l at iteration t and the

fully converged input data distribution for layer l. Then, the assumption should be:

Assumption 4 (Convergence of (l− 1)-th layer, [5]) We assume that
∑

t d
(l)(t) <

∞, which guarantees the previous layer can get fully converged.

Let L(W (l),Θ(l)) = Ep(l)∗ [loss(W (l),Θ(l))(Y ,H(l−1))]. With the aforementioned

assumptions, we find that the Theorem in [5] applies to our graph setting as well,

and thus we can apply the following theorem as our convergence guarantee:

Theorem ([5]) With assumptions 1∼4, we have:

∑
t

η(t)E[‖∇L(W (l),Θ(l))‖2] ≤ E[‖∇L(W (0),Θ(0))‖2]

+µ
∑
t

η(t)(
√

2d(l)(t) +
γη(t)

2
)

In the above inequality, by leveraging the assumptions and the Cauchy-Schwartz

inequality, we can know the right-hand side is bounded, therefore, we can justify the

convergence of our model.

5.5 Experimental Results

We evaluate our proposed algorithms with the multi-class node classification task.

However, it should be noted that the decoupled greedy learning method can also be

applied in other graph-related tasks and is not limited to the node classification task.

85

Table 5.2: Statistics of Benchmark Dataset
Dataset Cora Citeseer Pubmed Reddit OGBN-arxiv

Nodes 2,708 3,327 19,717 232,965 169,343

Edges 5,429 4,732 4,4338 11,606,919 1,166,243

Classes 7 6 3 41 40

Feature 1,433 3,703 500 602 100

5.5.1 Experiment Settings

Dataset. We use the following public datasets for evaluation: cora, citeseer, pubmed

[83], Reddit [38], and OGBN-arxiv [44]. We summarize the dataset statistic in Table

5.2.

Baseline. In the main experiment, we compare our method against several

baseline models: GCN [55], FastGCN [17], LADIES [144], and LGCN [120]. We do

not consider node-wise sampling such as GraphSage and VRGCN since it is shown to

be less efficient compared to Layer-wise sampling. For all the methods, we use the

same deepGCN model architecture and set all the hidden dimensions as 128. For

Cora, Citeseer, Pubmed and Reddit, we use a 5-layer model, and for OGBN-Arxiv,

we use a 7-layer model. We follow the public implementations of the baselines, and

use their parameter settings.

Metrics. We evaluate the performance of different methods with the following

evaluation metrics: Accuracy (%): The micro F1-score of the test data at the

convergence point. Memory (MiB): The maximum per-GPU memory cost during

training. Total Running Time (s): The total training time (exclude validation)

before convergence.

Training Settings. We conduct the training 10 times and take the mean and

86

variance of the evaluation results. For each running time, we apply batch training, run

each model 200 epochs and 500 epochs for small datasets (Cora, Citeseer, Pubmed)

and large datasets (OGBN, Reddit) respectively, and guarantee convergence. We

use the parameters that can achieve best validation performance to do the test. We

run the experiments on Tesla V100 GPUs (16GB). For the sampling-based methods:

FastGCN and LADIES, we set the sample number as 64, increasing this number

would improve the accuracy, but would increase the computation cost. In addition,

for the sampling-based method, we set the batch number as 10, and set the batch

size as 512.

5.5.2 Main Results

We summarize the node classification performance results in Table 5.3, which demon-

strates the efficacy of our approach. Here, for the sampling-based methods (especially

FastGCN), we can sacrifice the training time to obtain a higher accuracy by using a

larger sample size. We find that the decoupled greedy learning method can greatly

reduce the time and memory cost of GCN without a huge performance drop. Com-

pared to the sampling-based method, the accuracy of our method is more stable,

also, in our later ablation study, we show our method can be combined with the

sampling-based method to further boost efficiency. We should also note that Tlazy is

important in the LU-DGL-GCN method, increasing Tlazy can reduce running time,

but may lead to unsatisfactory accuracy performance (like in Citeseer).

87

Table 5.3: Comparison of DGL-GCN and LU-DGL-GCN With Baseline Methods on

Benchmark Datasets. Set Tlazy = 50 for LU-DGL-GCN.
Dataset Method Accuracy(%) Total Time(s) Mem(MiB)

Cora

GCN 77.8± 1.3 42.2± 1.0 31.7

LADIES(64) 78.8± 0.8 31.5± 0.8 3.1

FastGCN(64) 55.2± 4.8 36.8± 2.1 3.1

LGCN 80.4± 0.9 119.7± 11.5 6.9

DGL-GCN (ours) 78.0± 1.3 17.3± 1.2 6.9

LU-DGL-GCN (ours) 65.4± 14.1 14.1± 0.4 6.9

Citeseer

GCN 65.6± 2.4 33.1± 1.2 67.9

LADIES(64) 66.6± 1.2 32.5± 1.2 5.9

FastGCN(64) 36.0± 1.0 34.5± 1.7 5.9

LGCN 67.1± 1.7 107.9± 5.2 14.7

DGL-GCN (ours) 64.8± 3.2 15.8± 0.9 14.7

LU-DGL-GCN (ours) 54.8± 6.3 13.9± 0.2 14.7

Pubmed

GCN 74.8± 2.6 46.9± 2.0 137.9

LADIES(64) 77.9± 2.4 33.8± 1.5 1.9

FastGCN(64) 41.2± 0.5 34.6± 1.4 1.9

LGCN 76.2± 1.6 141.8± 12.8 29.1

DGL-GCN (ours) 75.5± 0.8 18.6± 1.1 29.1

LU-DGL-GCN (ours) 74.9± 0.9 14.9± 1.0 29.1

OGBN-arxiv

GCN 71.9± 0.2 162.9± 23.4 1568.7

LADIES(64) 49.1± 2.8 50.4± 16.8 3.1

FastGCN(64) 21.6± 0.0 24.0± 6.3 3.1

LGCN 68.8± 0.1 122.5± 17.2 385.2

DGL-GCN (ours) 69.1± 0.3 98.3± 10.2 385.2

LU-DGL-GCN (ours) 69.3± 0.3 31.2± 0.1 385.2

Reddit

GCN 69.6± 0.5 436.0± 18.4 2370.5

LADIES(64) 70.0± 0.4 63.3± 1.2 3.8

FastGCN(64) 67.1± 3.2 40.6± 0.2 3.8

LGCN 69.1± 0.4 544.2± 3.3 588.6

DGL-GCN (ours) 72.4± 4.5 133.8± 0.4 588.6

LU-DGL-GCN (ours) 73.7± 1.5 65.7± 0.9 588.6

88

Table 5.4: Comparison of LU-DGL-GCN With Different Tlazy.
Dataset Performance Tlazy = 1 Tlazy = 5 Tlazy = 10 Tlazy = 20 Tlazy = 50

OGBN-arxiv

Accuracy (%) 69.1± 0.3 69.4± 0.3 69.5± 0.2 69.4± 0.2 69.3± 0.3

Total Time (s) 98.3± 10.2 63.5± 2.1 44.1± 0.8 38.6± 0.2 31.2± 0.1

Memory (MiB) 385.2 385.2 385.2 385.2 385.2

5.5.3 Ablation Study

In the following, we provide ablation studies to further justify the superiority of our

proposed method.

Importance of Lazy Update Scheme. We illustrate the advantage of the Lazy

Update Scheme and show how the waiting time Tlazy will influence the performance.

We use the OGBN-arxiv as an example, and follow previous model architectures and

parameter settings. We summarize the results in Table 5.4. Note that, Tlazy = 1

corresponds to the DGL-GNN model. We find that, with the lazy update scheme, we

can greatly reduce the time cost, and a proper waiting time Tlazy may even improve

the accuracy a little bit since it can alleviate overfitting.

Sequential Training v.s. Parallel Training. Finally, we briefly compare the

sequential training and our parallel training of the greedy objective. Again, we use

Cora and OGBN-arxiv as examples and follow the above experiment settings. We

present the results in Figure 5.3, the Left column shows how the downstream task’s

accuracy changes with epochs, the middle column shows how the current layer’s

accuracy changes with time, and the right column shows how last layer’s accuracy

changes with time (therefore for the sequential layer-wise training, the accuracy is 0

at early period). In terms of accuracy, we observe that parallel training can quickly

catch up with sequential training, and in terms of running time, parallel training is

89

0 25 50 75 100 125 150 175 200
Epoch

0.2
0.3
0.4
0.5
0.6
0.7
0.8

ac
c

cora, 5 layers, acc curves

Sequential_test
Lazy1_test
Lazy5_test
Lazy10_test
Lazy20_test
Lazy50_test

0 2 4 6 8 10 12 14
Time

0.2
0.3
0.4
0.5
0.6
0.7
0.8

ac
c

cora, 5 layers, acc curves

Sequential_test
Lazy1_test
Lazy5_test
Lazy10_test
Lazy20_test

0 2 4 6 8 10 12 14
Time

0.2
0.3
0.4
0.5
0.6
0.7
0.8

ac
c

cora, 5 layers, acc curves

Sequential_test
Lazy1_test
Lazy5_test
Lazy10_test
Lazy20_test

0 100 200 300 400 500
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ac
c

ogbn-Arxiv, 7 layers, acc curves

Sequential_test
Lazy1_test
Lazy5_test
Lazy10_test
Lazy20_test
Lazy50_test

0 100 200 300 400
Time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ac
c

ogbn-Arxiv, 7 layers, acc curves

Sequential_test
Lazy1_test
Lazy5_test
Lazy10_test
Lazy20_test
Lazy50_test

0 100 200 300 400
Time

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ac
c

ogbn-Arxiv, 7 layers, acc curves

Sequential_test
Lazy1_test
Lazy5_test
Lazy10_test
Lazy20_test
Lazy50_test

Figure 5.3: Comparison of Sequential and Parallel Training.

Table 5.5: The Decoupled Greedy Learning Method Can Also Be Combined With

the Graph Isomorphism Network Model.
Cora Pubmed

GIN

Accuracy (%) 75.7± 1.1 73.5± 1.5

Total Time (s) 6.2± 0.4 6.8± 0.3

Mem (MiB) 31.7 137.9

LGIN

Accuracy (%) 79.9± 0.9 73.7± 2.6

Total Time (s) 2.2± 0.1 1.8± 0.0

Mem (MiB) 6.9 29.1

DGL-GIN

Accuracy (%) 77.0± 1.6 74.3± 1.5

Total Time (s) 2.4± 0.0 1.8± 0.0

Mem (MiB) 6.9 29.1

90

Table 5.6: The Decoupled Greedy Learning Method Can Also Be Combined With

the Sampling-based Method.
Reddit Pubmed

FastGCN(64)

Accuracy (%) 67.1± 3.2 41.2± 0.5

Total Time (s) 40.6± 0.2 34.6± 1.4

Mem (MiB) 3.8 1.9

LADIES(64)

Accuracy (%) 70.0± 0.4 77.9± 2.4

Total Time (s) 63.3± 1.2 33.8± 1.5

Mem (MiB) 3.8 1.9

LSAMPLE(64)

Accuracy (%) 68.8± 0.5 78.4± 0.6

Total Time (s) 102.3± 2.5 66.7± 0.7

Mem (MiB) 1.1 0.5

DGL-SAMPLE(64)

Accuracy (%) 77.3± 1.4 71.8± 1.5

Total Time (s) 17.1± 1.2 14.8± 0.3

Mem (MiB) 1.1 0.5

much faster.

Decoupled Greedy Learning with GIN. We use GIN as an example to show

the decoupled greedy learning method is not limited to GCN, but can be combined

with other GNN models. We use Cora and Pubmed as examples, using full-batch

training, run the experiments 10 times to record the mean and variance, and compare

the results of GIN, layer-wise sequential GIN, and the decoupled greedy learning of

the GIN model. According to the results in Table 5.5, with the decoupled greedy

learning method, we can boost the efficiency of the GIN model and may even improve

its performance.

Decoupled Greedy Learning with Sampling. We now show the decoupled

greedy learning method is not orthogonal to the sampling method, but can be

complementary. We use Reddit and Pubmed as examples, and follow the main

91

experiment setting. As shown in Table 5.6, the decoupled greedy learning method can

further enhance the efficiency of the sampling-based method. We should note that,

since we decouple the layers, we only use importance sampling but not layer-dependent

sampling, that’s why we have a performance drop compared with LADIES.

5.6 Conclusions

In this paper, we focus on the efficiency issue of GNN training in large-scale ap-

plications and present a decoupled greedy GNN learning strategy. Our proposed

DGL-GNN model achieves update-unlocking by introducing greedy auxiliary ob-

jectives during training, and enables parallelization by decoupling the GNN into

smaller modules. We also propose to leverage a lazy-update scheme during training to

further improve the model efficiency. We empirically analyze our proposed model and

demonstrate its effectiveness and superior efficiency through a range of experiments.

We note that while we introduce our proposed method with GCN model and use the

semi-supervised node classification task as an example, the method is not limited

to this setting, and can be applied to other GNNs and graph-related downstream

tasks. Further, while here we focus on comparing the decoupled approach as an

alternative to other sampling-based methods respect to their accuracy and efficiency,

these approaches can be regarded as complementary to each other. By combining the

decoupled greedy learning method with other scalability-enhancing improvements

of GNN training, the computation cost would be further reduced, which poses a

promising direction for future work.

92

CHAPTER 6

BLADS: Bi-Level Adaptive Sampling for

Heterogeneous Information Network Training

6.1 Introduction

Many real-world datasets such as e-commerce or academic networks contain multiple

types of entities interacting with diverse relations. Heterogeneous Graph (HetG)

[90] is a multi-relational data type that can perfectly model these highly interactive

data. Therefore, significant research attention has been put to developing models to

learn representations for entities in HetGs to obtain better performance applications

like classifying an object’s category and predicting the connectivity of an object

pair [100]. Heterogeneous Graph Neural Networks (Heterogeneous GNNs) are the

State-of-the-Art family of models for learning on heterogeneous graphs and top most

existing benchmark leaderboards [44, 71, 100].

Mini-batch training is typically used to scale Heterogeneous GNNs training to

very large graphs but can still be ineffectual with the existence of high-degree nodes

that lead to uncontrollable neighbor expansion in the minibatch graph. Sampling is

an effective way to improve scaling efficiency for training the Graph Neural Networks

(GNNs) for homogeneous graphs (HomG), as it limits the neighbor fanout [38] for

93

each node during training.

An intuitive idea to apply sampling to a HetG is to uniformly randomly sample

(Uniform) a limited number of neighbors for each node, i.e. in a node-wise sampling

setting, for each node, given a sampling budget, regardless of its node type and its

neighbors’ node type, we sample the neighbor node with the same probability. We

show that this approach fails with a ‘noisy’ graph, where for the target nodes, most of

the connected neighbor types have a large number of instances that are uninformative

for the downstream task, while the valuable neighbor type only has a few instances.

We can address the shortcoming described above with a type-aware uniform

random sampling (TAUniform), i.e., in the node-wise sampling setting, for each node,

given the sampling budgets for each neighbor type, we sample the neighbor nodes

of the same type with the same probability. However, we show that when the given

HetG has a complex schema and some node types have numerous connected neighbor

types, then applying this TAUniform requires a large total sampling budget, which

is less efficient and is counter to the motivation of using sampling to reduce the

computation cost.

Pioneering works such as VRGCN [15], LADIES [144], and SHADOW [127] have

laid foundations on non-uniform sampling on graphs. The work of PASS [118],

ASGCN [46], and GCN-BS [70] even explores adaptive sampling distributions which

allow the sampling probability on each neighbor node to be learned according to

the downstream tasks. However, they focus on HomGs, and lack a discussion on

how to take care of the heterogeneous semantics in HetGs. The work of HetGNN

[129] and HGSampling [45] took steps in sampling for HetGs, however, they either

consider a uniform random walk, or consider uniformly sample from each neighbor

94

type, and therefore are still within the scope of Uniform and TAUniform. Therefore,

the question of how to effectively conduct sampling on HetG for Heterogeneous GNNs

training still lacks comprehensive discussion and remains open.

In this work, we examine the Uniform and TAUniform in Heterogeneous GNNs

training, and identify their challenges with case studies. Then, we develop a sampling

method, Bi-Level Adaptive Sampling (BLADS), to address these tough cases by

performing sampling from both schema and entity levels. The schema-level sampler

learns to generate more samples of informative neighbor types while the entity level

uses a uniform random sampler for each neighbor type to sample diverse instances.

With the framework, we learn a sampling policy customized to the downstream task -

the Heterogeneous GNNs gets more informative neighbor samples, while the sampler

learns an adaptive policy with the high-quality embeddings learned by Heterogeneous

GNNs as input - improving task performance. Further, the sampling probability on

each relation type learned by the schema-level sampler in BLADS can be interpreted

as the importance score on each neighbor type, and therefore provides the side benefit

of explainability.

6.2 Preliminaries

In this section, we formally define our problem setup, and provide an in-depth

discussion of existing sampling methods on graphs.

95

cites

writes

has a topic ofaf
fil

ia
te

d
w

ith author paper

institution

topic

A1

A2

A3

I1

I2

I3

P1

P2

P3

P4

P5

P6

T1

T2

(a) Partial HetG for OGBN-MAG Dataset (b) Schema for OGBN-MAG Dataset

Figure 6.1: An Illustration Example on Partial OGBN-MAG.

6.2.1 HetG and Notations

In this work, we focus on the Attributed Heterogeneous Graphs G(V , E ,Φ,Ψ, {X(t)})

[88], which contains multiple types of entities (also referred to as nodes), relations

(also referred to as edges), and node attributes. Figure 6.1(a) provides a partial graph

example for the OGBN-MAG dataset [44], Figure 6.1(b) is its schema. To make all

the notations clear, we summarize all the major symbols in the paper in Table 6.1.

6.2.2 Node Classification and Link Prediction with Heterogeneous GNNs

In this work, we take the node classification task and the link prediction task on

HetG as example downstream tasks. For the node classification task, we are given

a HetG G(V , E ,Φ,Ψ, {X(t)}), a target entity type ttar, and a subset of the labeled

entity within this target type V(ttar,l). Let the number of classes be C, and let the

full entity set of type ttar be V(ttar) = V(ttar,l) ∪ V(ttar,u), where V(ttar,u) indicates the

unlabeled entity set of type ttar. Then, the objective of the node classification task is

96

Notation Description

HetG

G Heterogeneous graph

V, v Full node set with multi-typed nodes for G, a node instance

V(t) Node set of type t

E, e Full edge set with multi-typed edges for G, an edge instance

T ,t, ttar Node type set, a node type, target node type for classification

R, r Edge type set, an edge type

Φ : V → T Mapping function, projects node from V to type from T

Ψ : E → R Mapping function, projects edge from E to type from R

X(t) ∈ Rnt×d0 Attribute matrix for node of type t

nt Number of nodes of type t

d0 Initial node attribute dimension

Task

V(ttar,l) Labeled node set of the target node type

V(ttar,u) Unlabeled node set of target node type

C Number of classes

yv Label for node v

ŷv Predicted label for node v

Sampler

N (v),N (S)(v) Set of neighbors of v, set of sampled neighbors of v

Nt(v),N (S)
t (v) Set of type-t neighbors of v, set of sampled type-t neighbors of v

Nr(v) Set of neighbors of v connected with relation type r

N (S)
r (v) Set of sampled neighbors of v connected with relation type r

|N (v)|, |Nt(v)| Number of neighbors of v, number of type-t neighbors of v

B Sampling budget per node per layer

Bt∗,t Sampling budget for type-t neighbors of node type t∗

βr a learnable scaler for relation r in BLADS sampler

Heterogeneous GNN

hlv ∈ Rdl Hidden embedding learned by Heterogeneous GNN’s layer l

dl Output dimension of layer l in Heterogeneous GNN

L Total layer number

α
(l+1)
r ∈ Rdl×dl+1 learnable linear projection parameter for (l + 1)−th Heterogeneous GNN layer

Table 6.1: Notation Summary

97

to learn a mapping function f : V(ttar) → {1, · · · , C} to predict the class labels for

the unlabeled entities in V(ttar,u). For the link prediction task, we would be given the

HetG G, and we aim to learn the scoring function f : (u, r, v) → s
(r)
uv in which the

score s(r)
uv indicates the probability of a type-r edge existence between node pair (u, v).

As Heterogeneous GNNs are shown to be the State-of-the-Art HetGs embedding

methods that get the top performance on existing benchmarks [100, 114], we briefly

review existing Heterogeneous GNN models.

RGCN [82] proposes to extend the seminal GCN model[55] to HetGs. At each

network layer, RGCN runs a separate GCN layer for each involved relation type (the

in-coming and out-going edges between a pair of nodes are treated as two different

relation types), then use a problem-specific normalization coefficient to sum up the

embeddings obtained by each relation types, the coefficient can either be learned or

chosen in advance. R-HGNN [122] proposes to first run a GCN module (consisting

of several GCN layers) for each relation type, then design a cross-relation message

passing module to allow the interactions across the learned relation-specific node

representations and enable the model to capture more heterogeneous semantics. HGT

[45] proposes to add attention to the edges by designing node-type dependent and

relation-type dependent parameters to characterize a transformer-like architecture,

enabling HGT to maintain specific representation spaces for nodes and edges of

different types. Though these groundbreaking works have achieved great performance

in HetG embedding learning, they may scale poorly for complex large-scale HetGs

due to uncontrollable neighbor expansion.

In addition to the aforementioned, some Heterogeneous GNN models go beyond

immediate neighbors and explore a broader neighborhood at each network layer, such

as NARS [123], HAN [101], GTN [124], and MAGNN [33]. However, in this work, we

98

propose a neighbor sampling method that should be built on top of Heterogeneous

GNNs that consider immediate neighbors, so these models exceed our discussion

scope, and we leave addressing them to future work.

6.2.3 Related Works: Sampling on Graphs

Sampling has been shown to be an effective technique for speeding up network training

on graphs [67] and we briefly review existing works for sampling on graphs. Based on

the graph type the sampler considers and the sampling distribution (also referred to

as sampling policy) the sampler uses, we categorize these samplers into three groups

as follows.

6.2.3.1 Heuristic-based Sampling on Homogeneous Graphs

. The work of GraphSAGE [38] took the first step to apply sampling on HomGs for

GNN training, it considers neighbor sampling for each node. For each network layer,

for each node, it uniformly randomly samples a fixed number of its neighbors, i.e., for

a node v has |N (v)| neighbors, the probability to sample each of its neighbors would

be 1/|N (v)|. VRGCN [15] improves GraphSAGE by reducing the embedding variance

by using historical activation. FastGCN [17] considers a layer-wise sampling, for

each network layer, it samples from the full node set with a degree-based probability

distribution, the higher degree a node has, the higher chance it can get sampled.

LADIES [144] improves FastGCN by restricting the sampling for the current network

layer to be within the immediate neighbor set of the later network layer, i.e. any node

that has the opportunity to get sampled should be connected to at least one sampled

nodes for the successor network layer. ClusterGCN [20], GraphSAINT [128], and

99

SHADOW [127] considers sampling from subgraph perspective. These works first

sample nodes or edges, then construct an induced subgraph, and use this subgraph to

train the current iteration. In addition to the aforementioned pioneering works, many

other samplers explore different aspects of sampling on HomGs [67, 116, 23]. However,

these works are task-agnostic and would apply the same sampling heuristics regardless

of the downstream task, which limits their capability to generate customized samples

to enjoy the benefit in task performance.

6.2.3.2 Adaptive Sampling on Homogeneous Graphs

. With the aim of learning to generate task-specific samples to improve network

training, several research works propose adaptive samplers on HomGs for GNN

training. The work of AS-GCN [46] considers layerwise sampling similar to the

FastGCN, but it proposes to use the adaptive sampling distribution instead of using

a heuristic-based one, and is shown to be capable of learning to give higher weights

to nodes that are more connected to the samples in the later network layer. GCN-BS

[70] aims to learn an adaptive sampler to reduce the sampling variance, and formulates

the variance minimization as an adversary bandit problem. PASS [118] proposes a

performance-adaptive sampling method to learn to sample by explicitly optimizing

the task performance. Though these works address the scalability problem as well as

learn to sample for the sake of benefiting the downstream tasks, they focus only on

HomGs. We may treat the HetGs as HomGs and apply these samplers, but this often

leads to a performance drop, so these samplers are unable to be simply generalized

to HetGs without careful consideration of the heterogeneity.

100

6.2.3.3 Heuristic-based Sampling on Heterogenous Graphs

. Heterogeneous GNNs training for HetGs confronts the same neighbor expansion

concerns as GNN training on HomGs. From previous discussions, we know that the

heterogeneous nature of HetGs requires additional treatment for Heterogeneous GNNs

sampling. HetGNN [129] proposes to use random walks with restart (RWR) to sample

the nodes of different types in the neighborhood based on the random walk frequency.

HGSampling [45] adapting the LADIES sampler to generate dense subgraphs for

efficient Heterogeneous GNNs training, and samples the same number of neighbors of

each neighbor type. Despite their thoughtful treatment of the heterogeneous semantics

in HetGs, they face similar limitations as in the Heuristic-based Sampling on HomGs,

i.e. they are task-agnostic and lack the flexibility to adapt to the downstream task.

Therefore, a systematic discussion of how to sample on HetGs to benefit Heterogeneous

GNNs training on both efficiency and performance sides is still needed.

6.3 Method

First, we identify two challenging cases to demonstrate the limits of uniform random

sampling for training Heterogeneous GNNs. Then, we propose BLADS, a bi-level

adaptive treatment that addresses the identified challenge cases.

101

(a) Schema for NoiHetG in Case 1

date

revised
at

writes

author

paper
citescollaborate

(b) Schema for ComHetG in Case 2

T0

T2T1 T3 T30

T31 T32 T33 T50

Figure 6.2: Schema for Synthetic HetGs in the Challenge Cases.

6.3.1 Random Sampling with Uniform Distribution

6.3.1.1 Case 1: Noisy HetG

To begin, we examine an intuitive sampling method, which we term Uniform, that

extends the idea of GraphSAGE [38] to HetGs. For an entity v in HetG with the total

number of neighbors |N (v)|, each of its neighbor nodes regardless of node type can

get sampled with probability 1/|N (v)| with Uniform. Applying Uniform for HetG

sampling ensures each node has the same neighbor distribution as in the original full

HetG.

However, in some cases, like a noisy HetG where most of the relation types are

not relevant for the downstream task but have more edge instances in the graph than

the few relation types that are valuable, preserving the neighbor-type distribution

does not help the downstream model performance. When applying Uniform on such

a graph, the sampler misses the critical neighbors in the generated computational

graph.

102

x8 x0 x2

x10x9x8 x1x0 x2

(a) Computational graph with Uniform

x3 x3 x4

x10x5x3 x5x3 x4

(b) Computational graph with TAUniform

x3 x5 x2

x10x2x3 x8x5 x2

(c) Computational graph with BLADS

Figure 6.3: Computational Graphs Generated with Different Sampler on NoiHetG.

In order to provide a concrete instance for this case, we generate a synthetic

graph called NoiHetG (Abbr. for Noisy HetG) with schema shown in Figure 6.2(a)

and perform a classification task. The details of the synthetic graph generation are

provided in the following:

Let us consider the task of predicting the paper node’s published venue, and it is

a binary classification for the venue CVPR and KDD. In total, there are 2000 paper

nodes, 1000 date nodes, and 100 author nodes. The node attributes for paper nodes

and for date nodes are randomly generated following a 32-dim multi-variate Gaussian

distribution N (1, I) with the 32-dim all-one vector 1 as mean, and a diagonal identity

matrix I ∈ R32×32 as the variance. The node attributes for author nodes are generated

with two different 32-dim multi-variate Gaussian distributions N (1, I) and N (0, I),

where 0 indicates 32-dim all-zero vector, and each multi-variate Gaussian takes care

of 50 author nodes.

The entities in NoiHetG interact as follows: For any pair of entities (date, paper),

they are connected with probability 0.005. For any pair of entities (paper, paper),

they are connected with probability 0.02. For any pair of entities (author, author),

they can only get connected with probability 0.08 if their attributes are generated

with the same multi-variate Gaussian distribution, and can never get connected

103

on the contrary. For any pair of entities (paper, author), if the paper’s label is

CVPR and the author’s attribute is generated with N (0, I), or the paper’s label is

KDD and the author’s attribute is generated with N (1, I), they can get connected

with probability 0.06, otherwise, they can never get connected. Hence, with these

connectivity generation rules, clearly, we know that the most crucial neighbor type

for a paper node would be the author nodes, and the author node also takes itself as

the most helpful neighbor type. However, there are only a few edge instances of the

critical (paper, author) and (author, author) types in NoiHetG, and therefore, these

valuable links are hard to get captured with Uniform.

Let us consider the binary classification task of predicting the T0 node’s class.

In total, there are 1000 nodes of type T0, and 100 nodes of other types. The

node attributes for node type R1 and R31 are generated with two different 32-dim

multi-variate Gaussian distributions N (1, I) and N (0, I), where 0 indicates 32-dim

all-zero vector, 1 indicates 32-dim all-one vector, and I ∈ R32×32 is a diagonal identity

matrix. Each multi-variate Gaussian takes care of 50 author nodes in each node type.

For other node types, we generate their node instances’ attributes with the 32-dim

multi-variate Gaussian N (1, I).

In ComHetG, we connect the entities with the following rules. First of all, as we

aim to classify the type-T0 nodes, we start by describing how type-T0 nodes interact

with others. To add edges between nodes of type T0 and T1, connections are not

allowed if the T0-type node is of class 0 and the T1-type node instance is generated

with N (1, I), or the T0-type node is of class 1 and the T1-type node instance is

generated with N (0, I). Then with this pre-requisite, for each type-T0 node instance,

we uniformly randomly select 3 T1 node instances to add the edges. For a node with

type T1 T30, for each type-T0 node instance, we uniformly randomly select 3 node

104

instances of each type, and add the connections. Then, we clarify how to connect a

pair of node instances without any type-T0 nodes. For a node pair of type (T1, T31),

we only allow connections if the feature of these two nodes are generated with the

same multi-variate Gaussian, and for each node type of T1, we uniformly randomly

select 3 node instances of qualified T31-type nodes and get them connected. For a

node pair of type (T1, T31), we only allow connections if the feature of these two

nodes are generated with the same multi-variate Gaussian, and for each node type of

T1, we uniformly randomly select 3 node instances of qualified T31-type nodes and

get them connected. For a node pair of (T2, T31), for each node instance of type T2,

if most of its connected type-T0 nodes belong to class 1, then we define the candidate

sampling set as all the T31-type nodes whose features are generated with distribution

N (1, I), on the contrary, we define the candidate sampling set as all the T31-type

nodes whose features are generated with distribution N (0, I). Then, we uniformly

randomly select 3 node instances from the candidate sampling set, and build the

connections. For other node pairs of type (Ti, Tj) where 1 ≤ i ≤ 30 and 31 ≤ j ≤ 50,

for each node of type Ti, we uniformly randomly select 3 instances of type Tj, and

add the edges between the instance pair. Then, with these connection rules, we know

that the most important neighbor node we should capture for T0 nodes would be the

type T1 nodes, type-T2 neighbors are the second important neighbor type, as they

can act as a bridge between the T0-type nodes and the critical T31-type nodes. For

T1 and T2 nodes, the most important neighbor type is both T31.

Suppose our sampling budget is 10, Figure 6.3(a) provides the computational

graph constructed with Uniform. The neighbor type distribution remains the same as

in the un-sampled NoiHetG, but the computational graph fails to capture the author

nodes in the sampled neighborhood for paper nodes. Figure 6.3(b)(c) also provides

105

the computational graph constructed with other two different samplers (TAUniform

and BLADS, we will give details in later sections), by comparing these computational

graphs, we can observe the limitations of Uniform under such kinds of noisy HetGs

more clearly.

Next, we examine a modified version of Uniform, which we refer to as Type

Aware Uniform or TAUniform, that ensures each neighbor type is equally represented.

TAUniform can be regarded as applying the GraphSAGE [38] sampler on the connected

instances of each different node type in a node’s neighborhood. For an entity v in

HetG with |Nt(v)| number of neighbors of type t, when we sample the neighbor nodes

of type t, each of its type-t neighbor nodes can get sampled with probability 1/|Nt(v)|.

As shown in Figure 6.3(b), applying TAUniform for HetG sampling can address the

limitation of Uniform under the aforementioned challenge case 1, as it guarantees

each neighbor type is sampled, so the important neighbor type can be captured even

it only has a few instances.

However, TAUniform also has its own significant limitation. Suppose we have

a schema-complex HetG that includes a large number of connected neighbor types.

To apply TAUniform, the sampling budget should be relatively large to ensure

each neighbor type is covered in the sampling process. This means that some of

the sampling budgets are spent on neighbor types that do not contribute to the

downstream task since TAUnifrom treats each neighbor type equally. Thus, applying

TAUniform for the schema-complex HetGs makes less efficient use of the sampling

budget and limits the effectiveness of using sampling to significantly reduce the overall

computation cost.

106

x1 x0 x0 x1

x1 x0 x1x1

(a) Computational graph with Uniform, TAUniform (b) Computational graph with BLADS

x4 x2 x0 x1

x1 x5 x6x0x0 x1x0x0

Figure 6.4: Computational Graphs Generated with Different Sampler on ComHetG.

6.3.1.2 Case 2: Schema-Complex HetG

To present this challenging case explicitly, we generate a synthetic graph called

ComHetG (Abbr. for Complex HetG) with the schema shown in Figure 6.2(b), note

that, due to the considerable amount of entity and relation types, we only provide a

partial schema that covers all the critical entity and relation types, and omit others

with dots. As this ComHetG includes 51 node types and 330 relation types, we only

present partial schema with key node types and relation type, and neglect the others.

Let us consider the binary classification task of predicting the T0 node’s class. For

the current case, we set our sampling budget as 10, and Figure 6.4(a) shows the

computational graph constructed with TAUniform, note that, due to the huge number

of node types and relation types, we only present partial computational graphs of key

neighbor node types. Then, due to the sampling budget constraint, the computational

graph constructed with TAUniform fails to capture the T31-type nodes in the sampled

neighborhood for T1-type nodes, and also fails to include T2-type nodes in the T0-

type nodes’ neighborhood, which disables some important information to pass from

the valuable T31-type nodes to our target T0-type nodes through T2-type nodes.

Therefore, the Heterogeneous GNN model trained on this sampled HetG is weaker.

Figure 6.3(b) also provides the computational graph constructed with the BLADS

107

BLADS

HIN

Input HetG + Labels

Embeddings + Prediction

Sampled Neighborhood

*1 *1 *0

*1*1 *1 *1 *1 *3

0.3 0.6 0.1

0.3 0.6 0.1 1.00.2 0.8

√ √

√ √ √ √

…

… … …

…

… …

√
√ √

√

√ √

Schema-level Sampler Instance-level Sampler2

Input Neighborhood

1

0

(a) Overall Workflow (c) Message Passing Workflow

(b) Bi-level Adaptive Sampler (BLADS) Workflow

Forward Backward

Loss 𝐿 Gradient ∇𝐿

Figure 6.5: An Illustration for Applying BLADS With a Heterogeneous GNN. Schema

is Taken From OGBN-MAG in Fig6.1.

sampler, and we should note that ComHetG, Uniform, and TAUniform have the same

number of neighbors of different types. By comparing these computational graphs,

we can observe the limitations of TAUniform under such kinds of schema-complex

HetGs clearly.

6.3.2 BLADS: Bi-Level Adaptive Sampling

In the following, we present our BLADS method in detail. First, in the current

subsection, we describe the workflow of the BLADS sampler and illustrate how it

generates samples and constructs the computational graph. The next sections will

cover how BLADS works together with Heterogeneous GNNs and how to optimize

BLADS and Heterogeneous GNNs. The overall workflow is described in Figure

6.5, in which subfigure (a)presents the overall workflow, subfigure (b) presents how

108

the BLADS sampler works in the form of a computational graph, since the full

neighborhood of the target node (with an orange circle) is too big, we only present a

partial neighborhood in the input neighborhood and in the instance-level sampler, and

subfigure (c) presents the message passing flow, this forward and backward process

will update both Heterogeneous GNNs and BLADS.

The case studies shown above for Uniform and TAUniform, demonstrate that

uniform random sampling is not enough for complex HetGs. To address the aforemen-

tioned tough cases, our sampler explicitly identifies important neighbor types for each

node type. The main idea of our method is to conduct a bi-level sampling. Given

the sampling budget B, for each node type t∗, the schema-level sampler will learn

to determine the share of each neighbor type Bt∗,t and assign more of the budget to

the critical neighbor types, then, for each neighbor type t, the instance-level sampler

will generate Bt∗,t neighbor instances, where we have
∑

t Bt∗,t = B. Figure 6.5(b)

illustrates the workflow for our proposed BLADS.

6.3.2.1 Schema-level Sampler

The schema-level sampler determines, for each node type sampled in the successor

Heterogeneous GNN layer, the share of each neighbor type for the current Heteroge-

neous GNN layer. In BLADS, we make this schema-level sampler adaptive to the

given downstream task, so for each node type, it learns the importance of different

neighbor types to get higher-quality sampled neighbors.

To achieve this, first, for each relation type r in HetG, we have a learnable scaler

βr. We require 0 ≤ βr ≤ 1 for all r. Then, for each node type t∗, we compute

a probability distribution pt∗(·) for all the neighbor type t in t∗’s neighborhood as

109

follows:

pt∗(t) = βrt,t∗/
∑
t′∈Nt∗

βrt′,t∗ (6.1)

where rt,t∗ indicates the relation type that takes t and t∗ as source and destination

types respectively, and Nt∗ indicates the neighbor type set for node type t∗. Then,

with this sampling policy, as shown in Figure 6.5(b)’s schema-level Sampler, BLADS

can learn different sampling probabilities (which can be interpreted as importance

score) on each neighbor type, and then can distribute the budget to each neighbor

type accordingly. We may extend the schema-level Sampler by enabling a learnable

βlr for each layer, but in this work, we fix the schema-level sampling parameters for

all layers, and leave the flexible version for future work.

6.3.2.2 Instance-level Sampler

For each node instance v of type Φ(v) sampled in the successor Heterogeneous GNN

layer, for each of its neighbor type t, with the budget BΦ(v),t determined by the

schema-level sampler, the instance-level sampler selects BΦ(v),t instances from node v’s

type-t neighbors for the current Heterogeneous GNN layer. In BLADS, different from

the schema-level sampler which we design to be adaptive, the instance-level sampler

applies the uniform distribution for sampling that gives each neighbor node of the

same node type the same chance to get selected. This generates diverse instances

and alleviates efficiency concerns as learning a customized sampling distribution for

each node instance becomes expensive and runs contrary to the goal of reducing the

total running time.

110

6.3.2.3 Sampling with BLADS

The schema-level Sampler and the Instance-level sampler make up BLADS. For each

node instance v of type Φ(v) sampled in the successor Heterogeneous GNN layer,

the probability for its neighbor node u of Φ(u)-type to get sampled in the current

Heterogeneous GNN layer would be:

p(v|u) = pΦ(v)(Φ(u)) ∗ 1/|NΦ(v)(v)| (6.2)

which is the probability to sample type Φ(u) multiplies the probability to sample

the instance u among the type-Φ(u) neighbors.

6.3.3 Combining BLADS with Heterogeneous GNNs

In this subsection, we explain how can BLADS be applied to Heterogeneous GNNs,

and present the forward and backward process of the training workflow. First of

all, we describe the backbone Heterogeneous GNN model in detail. In this work, we

use the classic RGCN [82] model to present the concrete explanation, but BLADS is

designed for any message-passing-based Heterogeneous GNNs where each network

layer uses the one-hop neighborhood.

For node v, let h(l+1)
v ∈ Rdl+1 be its learned embedding at layer l + 1 with dim

dl+1, then, the RGCN-layer has the following form:

h(l+1)
v =

∑
r∈R

∑
u∈Nr(v)

1

cv,r
α(l+1)
r h(l)

u (6.3)

where cv,r is a problem-specific constant that can be customized for normalization

purposes, and α(l+1)
r ∈ Rdl×dl+1 is the learnable parameter that transforms the current

hidden representation of node u.

111

6.3.3.1 Forward

With our BLADS sampler, the RGCN backbone model will use the sampled heteroge-

neous neighborhood to update the hidden embedding learned at each layer. Besides,

we set cv,r as a constant value for each v, r, to enable a more important relation

type with more samples to have a larger influence during the learning process. Let

N (S)
r (v) be the sampled set of neighbor nodes connected to v through type-r relation,

the RGCN layer after BLADS sampling has the form in the following. Figure 6.5(c)

presents this forwarding message passing process.

h(l+1)
v =

1

B
∑
r∈R

∑
u∈N(S)

r (v)

α(l+1)
r h(l)

u (6.4)

6.3.3.2 Backward

After the forward process, then we update the parameters BLADS sampler and

the backbone RGCN model with the gradient back-propagation shown in Figure

6.5(c). However, we may encounter a challenge here since the sampling operation

is non-differentiable. To address this issue, we use the widely applied log derivative

trick [104]. Let L be the loss function for the downstream task, with the chain rule,

we can derive the gradients for the BLADS sampler in the following:

dL
dβr

=
dL

dh
(l+1)
v

dh
(l+1)
v

dβr
(6.5)

To compute the second term and obtain the gradient of h(l+1)
v w.r.t. βr, we could

112

have the derived gradient in the following:

dh
(l+1)
v

dβr
=
d 1
B
∑

r∈R
∑

u∈N(S)
r (v)

α
(l+1)
r h

(l)
u

dβr

=
d(Eu∼p(u|v)[α

(l+1)
r h

(l)
u])

dβr

=
d(NORM(βr)

1
Br

∑
u∈N(S)

r (v)
α

(l+1)
r h

(l)
u)

dβr

= ∇βrNORM(βr)h
(l+1)
v,r

where NORM(βr) is the normalized schema-level sampling probability.

6.3.4 Overall Algorithm and Optimization

Algorithm With the BLADS and the forward and backward process described in the

previous two sections, the overall workflow of our algorithm is presented in Fig 6.5(a).

Given a HetG, the BLADS sampler will first sample neighbors for each node at each

layer based on the manually specified sampling budget, then the Heterogeneous GNN

will use message passing over the sampled subgraph to compute the node embeddings

and loss, and finally, both the Heterogeneous GNN and BLADS parameters get

updated with backpropagation. We summarize this process in Algorithm 3.

Optimization For the node classification task, we minimize the cross-entropy loss:

LNC = −
∑

v∈V(ttar,l)

yvlnŷv (6.6)

For the link prediction task, we follow the work of [82] and minimize the cross-entropy

loss through negative sampling:

LLP = −
∑

(u,v)∈ES

1(u,v)∈Er log
exp(hLTu · hLv)∑

u′∈V exp(h′LTu · hLv)
(6.7)

113

Algorithm 3 Training RGCN With BLADS
1: Input: a minibatch {vi}, sample budget B

2: Output: embedding h(L)
vi on each node, importance score βr on each relation r

3: Training for one batch: V0 = {vi}

4: for l = 0 to L− 1 do

5: Vl+1 = {}

6: for vi ∈ Vl do

7: Sample N (S)(v) with BLADS

8: Vl+1 = Vl+1 ∪N (S)(v)

9: Update embedding h(l)
vi with Formula 6.4

10: end for

11: Compute loss for downstream task

12: Update RGCN with backpropagation

13: Update BLADS with backpropagation

14: end for

114

To optimize the BLADS sampler and the RGCN backbone model, we consider an

alternative optimization process, in which we optimize the BLADS sampler for one

epoch, and optimize the RGCN for four epochs.

The BLADS sampler relies on the quality of the learned embeddings which is

low at the beginning of training. Thus, we split the sampling budget B, and take

γB samples from BLADS and (1 − γ)B samples from a uniform random sampler,

where γ is the weight coefficient. There are two extreme cases, γ = 0 corresponds to

TAUniform, while γ = 1 corresponds to using BLADS for the full budget. At the

beginning of the training process, it is better to focus on the Heterogeneous GNNs

learning, therefore, we use a dynamic γ that increases during the training process,

and set γ = nEPO
NEPO

, where nEPO is the current training epoch id and NEPO is the total

number of training epochs.

Complexity. BLADS with RGCN has a time complexity of O(bdBL + bd2BL−1),

where d is the average dimension of the intermediate representations, and b is the

batch size. Compared to the mini-batch full-neighborhood RGCN whose complexity is

O(bdDL+bd2DL−1) where D is the average degree for the full-neighborhood, applying

BLADS would lead to a great complexity reduction as we usually have B < D.

Compared to the Uniform and TAUniform sampling, BLADS has the same time

complexity.

6.4 Experiments

In this section, we evaluate our BLADS sampler with the node classification and link

prediction tasks.

115

Dataset # Entity Type # Relation Type # Entity # Relation Splits # Target Node Class

OGBN-MAG 4 4 1,939,743 21,111,007 629,571/64,879/41,939 349

Freebase 8 36 180,098 1,057,688 24%/6%/70% 7

WN18 N/A 18 40,943 151,442 141,442/5,000/5,000 N/A

FB15K N/A 1,345 14,951 592,213 483,142/50,000/59,071 N/A

Table 6.2: Benchmark Dataset Statistics

6.4.1 Experimental Setup

Datasets. We evaluate the BLADS sampler on the following two widely-used

benchmark graphs and two synthetic graphs for the node classification task : OGBN-

MAG [44] is an academic network whose target node type is paper and the node

classification task is to predict the paper’s venue. Freebase [114, 71] is a huge

knowledge graph in which we set the book nodes as targets and aim to classify their

category. We also evaluate BLADS on the two synthetic datasets NoiHetG and

ComHetG as described in section 6.3.1. As for the link prediction task, we consider

evaluating BLADS on two benchmark graphs: WN18 [82] which is a subset of the

WordNet that consists of lexical relations between words, and FB15K [82] which is a

subset of the Freebase dataset. We summarize all the dataset statistics in Table 6.2.

Baselines. We compare BLADS against the Uniform and TAUniform sampler to

demonstrate the benefits of an adaptive bi-level sampler. Besides, we also compare

to the full-neighborhood training to demonstrate the efficiency of BLADS.

Other Experimental Set-up. For OGBN-MAG and the two synthetic datasets,

we report the test accuracy, and for the Freebase dataset, we report the macro-F1

and micro-F1 scores. For the two link prediction datasets WN18 and FB15K, we

report MRR, Hits@1, Hits@3, and Hits@10 as the standard evaluation in [82]. For

each dataset, we regard the model with the best validation performance as the “best

116

ogbn-MAG Freebase NoiHetG ComHetG

Acc macro-F1 Micro-F1 Acc Acc

RGCN 42.31±0.54 45.27±0.90 52.14±1.34 87.60±0.40 92.10±0.35

UniRanS 39.78± 0.71 36.60±1.29 46.13±1.47 80.45±0.94 80.55±1.28

TAUniRanS 41.33±0.63 39.42±1.17 48.92±1.26 83.4±0.62 80.55±1.28

BLADS 41.49±0.88 43.02±1.59 51.22±1.62 87.20±0.99 91.25±1.06

Table 6.3: Results for Node Classification Task.

model” and evaluate its performance on the test dataset. We train the model 5 times

and record the mean and standard deviation of the performance metric. For the

RGCN backbone model, we consider a 2-layer network. We set the sampling budget

to be 30 for each of the benchmark datasets.

6.4.2 Results

We present our main results of BLADS and baseline models for the node classification

task in Table 6.31, and for the link prediction task in Table 6.4. As shown in the

results, BLADS outperforms Uniform and TAUniform sampler on all the datasets

and all the tasks, indicating the importance of assigning budget according to the

neighbor type importance. We show the loss convergence in terms of running time

and number of epochs in Figure 6.6(a)(b) respectively. We can observe from the

curves that BLADS achieves a similar convergence speed as Uniform and TAUniform,

and is much faster than full-neighborhood. In the following, we show some ablation

studies to provide more detailed views of BLADS, and discuss the importance of

budget, weight coefficient, and initialization to BLADS’s performance.

1We should note that, for the ComHetG, since the relation distribution is the uniform distribution,
Uniform and TAUniform are identical in this HetG, and thus have the same results.

117

WN18 FB15K

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

RGCN 81.63±0.75 66.79±0.79 92.04±0.76 95.58±0.78 65.67±0.57 52.38±0.64 72.44±0.60 81.09±0.62

UniRanS 77.94±0.91 61.83±0.82 88.73±0.87 93.35±0.88 62.09±0.67 49.16±0.73 70.24±0.72 78.85±0.69

TAUniRanS 79.48±0.89 64.50±0.84 89.91±0.86 94.21±0.85 62.80±0.69 50.22±0.70 70.85±0.71 79.94±0.71

BLADS 81.33±0.96 65.12±1.07 91.06±1.04 95.36±1.03 64.12±0.90 50.97±0.87 71.60±0.91 81.17±0.96

Table 6.4: Results for Link Prediction Task

(a) OGBN-MAG Loss (time) (b) OGBN-MAG Loss (epoch) (c) OGBN-MAG acc (budget)

Figure 6.6: (Validation Loss Change In Terms of Wall-time (a) and Epoch (b). The

Budget’s Effects on the Accuracy (c).

Budget. First, we consider the question: How does the sampling budget affect BLADS

performance? According to Figure 6.6(c), we observe that in general, increasing

the sampling budget improves the performance of all three samplers, because more

neighbors bring more information during the message-passing process. Crucially,

we find that when the budget is limited, BLADS tends to perform better than the

Uniform and TAUniform sampler since it can focus on the important neighbor types.

Weight Coefficient Next, we examine the question: How does the γ affect BLADS

Init1 Init2 Init3 Model Init1 Init2 Init3

Uniform 36.73 41.41 41.33 P(A,F,P) (0.40, 0.33, 0.27) (0.35, 0.3, 0.35) (0.33, 0.33, 0.33)

BLADS 40.51 41.85 41.49 A(I,P) (0.93, 0.07) (0.18, 0.82) (0.50, 0.50)

Table 6.5: Initialization’s Effect on BLADS’s Performance.

118

Ablation2: Different Training Schedule

(a) Accuracy for ogbn-MAG (b) Macro-F1 for Freebase (c) Micro-F1 for Freebase

Figure 6.7: γ’s Influence on BLADS Performance. The Dashed Lines Are For the

Dynamic Schedule in 3.4. The Solid Lines Are For Results With Different Fixed γ.

performance? With the results shown in Figure 6.7, we find that a fixed 0 < γ < 1

performs better than the extreme cases in which γ = 1 and γ = 0. However, a

dynamic γ makes BLADS stronger, since by doing so, we can first take advantage of

the uniform sampler to obtain a reliable RGCN backbone, then this reliable backbone

model would help to learn a more powerful BLADS sampler, and finally, BLADS and

the backbone model would be able to enhance each other by providing higher quality

samples and higher quality embeddings respectively.

Initialization. Finally, we consider: How does the schema-level sampling probability

initialization affect BLADS performance? As presented in Table 6.5, we examine

the performance of Uniform and BLADS with three different initialization, we find

that BLADS is capable of consistently providing competitive performance, while the

performance of Uniform sampler largely depends on the initial relation distribution.

This demonstrates the power of BLADS in learning the relation importance according

to the task regardless of the initialization.

119

6.5 Conclusion

In this work, we investigate existing sampling approaches for Heterogeneous GNNs, we

point out that uniform random sampling is not enough for large-scale heterogeneous

graphs with complex schemas and a limited sampling budget, especially in noisy

graphs where most instances are not informative for a downstream task. We propose

the BLADS sampler that operates at both schema and entity levels to address this

problem. The schema-level sampler learns to generate more samples in critical relation

types, while the entity-level sampler uses a uniform random sampler for each node at

each network layer for speed concerns. According to our experimental results, the

BLADS sampler is shown to be able to speed up the Heterogeneous GNNs training

without sacrificing the performance on both node classification and link prediction

tasks.

120

CHAPTER 7

Conclusion and Future Directions

This dissertation explores and expands the capabilities of GNNs. We summarize the

key contributions regarding solutions to improve GNN effectiveness and efficiency on

both homogeneous and heterogeneous graphs as follows:

• We propose the AdaFS framework and the Laplacian regularizer, an innovative

solution for soft-selecting optimal graph convolutional filters, greatly enhancing

the effectiveness of GNNs on homogeneous graphs and addressing the challenges

of over-smoothing and heterophilic challenge.

• We propose the SMASH model as a solution, which adeptly balances the

demands of accuracy and scalability for heterogeneous graphs. SMASH performs

a 3-stage aggregation which allows it to explore the full metapath set and then

identify and focus on the most important metapath for the given task.

• Addressing efficiency for homogeneous GNNs, we provide the DGL-GNN frame-

work which allows for concurrent layer updates and reducing computational

costs. This decoupled, greedy learning approach could be integrated with other

existing scalability solutions such as sampling, which further improves efficiency.

• We propose the BLADS to enhance heterogeneous GNNs training efficiency.

BLADS is a bi-level sampling technique for heterogeneous GNNs that performs

121

schema-level sampling and instance-level sampling in two stages and is capable

of learning the distributions to accommodate the task.

While this dissertation has explored a lot towards a more effective and more efficient

GNN, the related research needs further investigation. In terms of effectiveness,

developing and deploying GNNs in real-world applications presents notable challenges.

Practical training environments are seldom ideal and often include complicating factors

such as noisy data (pertaining to features, labels, and graph structures) and out-of-

distribution instances. Thus, dedicated efforts are necessary to accommodate these

adversities. On the efficiency front, while current research predominantly addresses

million- and billion-size graphs, the exploration of training techniques capable of

handling trillion-node graphs represents an ambitious and potentially rewarding

frontier. Such advancements could set new benchmarks in the scalability and utility

of GNN technologies, pushing the boundaries of what is currently achievable.

122

Bibliography

[1] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina

Lerman, Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop:

Higher-order graph convolutional architectures via sparsified neighborhood

mixing. In international conference on machine learning, pages 21–29. PMLR,

2019.

[2] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski,

and Alexander J Smola. Distributed large-scale natural graph factorization. In

Proceedings of the 22nd international conference on World Wide Web, pages

37–48, 2013.

[3] Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang.

Simgnn: A neural network approach to fast graph similarity computation. In

Proceedings of the Twelfth ACM International Conference on Web Search and

Data Mining, pages 384–392, 2019.

[4] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate

descent type methods. SIAM journal on Optimization, 23(4):2037–2060, 2013.

[5] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled greedy

learning of cnns. arXiv preprint arXiv:1901.08164, 2019.

[6] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise

learning can scale to imagenet. In International conference on machine learning,

pages 583–593. PMLR, 2019.

123

[7] Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Decoupled

greedy learning of cnns. In International Conference on Machine Learning,

pages 736–745. PMLR, 2020.

[8] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy

layer-wise training of deep networks. In Advances in neural information pro-

cessing systems, pages 153–160, 2007.

[9] Maciej Besta and Torsten Hoefler. Parallel and distributed graph neural

networks: An in-depth concurrency analysis. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2024.

[10] Rui Bing, Guan Yuan, Mu Zhu, Fanrong Meng, Huifang Ma, and Shaojie

Qiao. Heterogeneous graph neural networks analysis: a survey of techniques,

evaluations and applications. Artificial Intelligence Review, 56(8):8003–8042,

2023.

[11] Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for

large-scale machine learning. Siam Review, 60(2):223–311, 2018.

[12] Chen Cai, Dingkang Wang, and Yusu Wang. Graph coarsening with neural

networks. arXiv preprint arXiv:2102.01350, 2021.

[13] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph represen-

tations with global structural information. In Proceedings of the 24th ACM

international on conference on information and knowledge management, pages

891–900, 2015.

124

[14] Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo. Graph repre-

sentation learning: a survey. APSIPA Transactions on Signal and Information

Processing, 9:e15, 2020.

[15] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional

networks with variance reduction. arXiv preprint arXiv:1710.10568, 2017.

[16] Jie Chen, Shouzhen Chen, Mingyuan Bai, Jian Pu, Junping Zhang, and Junbin

Gao. Graph decoupling attention markov networks for semisupervised graph

node classification. IEEE Transactions on Neural Networks and Learning

Systems, 2022.

[17] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convo-

lutional networks via importance sampling. arXiv preprint arXiv:1801.10247,

2018.

[18] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple

and deep graph convolutional networks. In International conference on machine

learning, pages 1725–1735. PMLR, 2020.

[19] Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets

necessary? a dissection on graph classification. arXiv preprint arXiv:1905.04579,

2019.

[20] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui

Hsieh. Cluster-gcn: An efficient algorithm for training deep and large graph

convolutional networks. In Proceedings of the 25th ACM SIGKDD international

conference on knowledge discovery & data mining, pages 257–266, 2019.

125

[21] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui

Hsieh. Cluster-gcn: An efficient algorithm for training deep and large graph

convolutional networks. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage,

AK, USA, August 4-8, 2019., pages 257–266, 2019.

[22] Eli Chien, Wei-Cheng Chang, Cho-Jui Hsieh, Hsiang-Fu Yu, Jiong Zhang, Olgica

Milenkovic, and Inderjit S Dhillon. Node feature extraction by self-supervised

multi-scale neighborhood prediction. arXiv preprint arXiv:2111.00064, 2021.

[23] Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mahdavi. Minimal

variance sampling with provable guarantees for fast training of graph neural

networks. In Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pages 1393–1403, 2020.

[24] Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propaga-

tion. In Learning on Graphs Conference, pages 38–1. PMLR, 2022.

[25] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in

neural information processing systems, pages 3844–3852, 2016.

[26] Nima Dehmamy, Albert-László Barabási, and Rose Yu. Understanding the

representation power of graph neural networks in learning graph topology. In

Advances in Neural Information Processing Systems, pages 15387–15397, 2019.

[27] Li Deng and Yang Liu. Deep learning in natural language processing. Springer,

2018.

126

[28] Ivan Derevitskii, Oksana Severiukhina, and Klavdiya Bochenina. Clustering

interest graphs for customer segmentation problems. In 2019 Sixth International

Conference on Social Networks Analysis, Management and Security (SNAMS),

pages 321–327. IEEE, 2019.

[29] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. metapath2vec: Scalable

representation learning for heterogeneous networks. In Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and data mining,

pages 135–144, 2017.

[30] Lun Du, Xiaozhou Shi, Qiang Fu, Xiaojun Ma, Hengyu Liu, Shi Han, and

Dongmei Zhang. Gbk-gnn: Gated bi-kernel graph neural networks for modeling

both homophily and heterophily. In Proceedings of the ACM Web Conference

2022, pages 1550–1558, 2022.

[31] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael

Bronstein, and Federico Monti. Sign: Scalable inception graph neural networks.

arXiv preprint arXiv:2004.11198, 2020.

[32] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-paths in

heterogeneous information networks for representation learning. In Proceedings

of the 2017 ACM on Conference on Information and Knowledge Management,

pages 1797–1806, 2017.

[33] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath

aggregated graph neural network for heterogeneous graph embedding. In

Proceedings of The Web Conference 2020, pages 2331–2341, 2020.

127

[34] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict

then propagate: Graph neural networks meet personalized pagerank. arXiv

preprint arXiv:1810.05997, 2018.

[35] Tong Geng, Chunshu Wu, Yongan Zhang, Cheng Tan, Chenhao Xie, Haoran

You, Martin Herbordt, Yingyan Lin, and Ang Li. I-gcn: A graph convolutional

network accelerator with runtime locality enhancement through islandization.

In MICRO-54: 54th annual IEEE/ACM international symposium on microar-

chitecture, pages 1051–1063, 2021.

[36] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and

George E Dahl. Neural message passing for quantum chemistry. In International

conference on machine learning, pages 1263–1272. PMLR, 2017.

[37] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 855–864, 2016.

[38] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation

learning on large graphs. Advances in neural information processing systems,

30, 2017.

[39] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets

on graphs via spectral graph theory. Applied and Computational Harmonic

Analysis, 30(2):129–150, 2011.

[40] Dongxiao He, Chundong Liang, Huixin Liu, Mingxiang Wen, Pengfei Jiao, and

Zhiyong Feng. Block modeling-guided graph convolutional neural networks. In

128

Proceedings of the AAAI conference on artificial intelligence, volume 36, pages

4022–4029, 2022.

[41] Xiaofei He, Deng Cai, and Partha Niyogi. Laplacian score for feature selection.

Advances in neural information processing systems, 18, 2005.

[42] Yixuan He, Michael Perlmutter, Gesine Reinert, and Mihai Cucuringu. Msgnn:

A spectral graph neural network based on a novel magnetic signed laplacian.

In Learning on Graphs Conference, pages 40–1. PMLR, 2022.

[43] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for

machine learning on graphs. arXiv preprint arXiv:2005.00687, 2020.

[44] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen

Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for

machine learning on graphs. Advances in neural information processing systems,

33:22118–22133, 2020.

[45] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph

transformer. In Proceedings of The Web Conference 2020, pages 2704–2710,

2020.

[46] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling

towards fast graph representation learning. Advances in neural information

processing systems, 31, 2018.

[47] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia

Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe:

129

Efficient training of giant neural networks using pipeline parallelism. Advances

in neural information processing systems, 32, 2019.

[48] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou.

Scaling up graph neural networks via graph coarsening. In Proceedings of the

27th ACM SIGKDD conference on knowledge discovery & data mining, pages

675–684, 2021.

[49] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals,

Alex Graves, David Silver, and Koray Kavukcuoglu. Decoupled neural interfaces

using synthetic gradients. In International conference on machine learning,

pages 1627–1635. PMLR, 2017.

[50] Dejun Jiang, Zhenxing Wu, Chang-Yu Hsieh, Guangyong Chen, Ben Liao, Zhe

Wang, Chao Shen, Dongsheng Cao, Jian Wu, and Tingjun Hou. Could graph

neural networks learn better molecular representation for drug discovery? a

comparison study of descriptor-based and graph-based models. Journal of

cheminformatics, 13:1–23, 2021.

[51] Di Jin, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong

Zhang. Raw-gnn: Random walk aggregation based graph neural network. arXiv

preprint arXiv:2206.13953, 2022.

[52] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah.

Graph condensation for graph neural networks. arXiv preprint arXiv:2110.07580,

2021.

[53] Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao, Yifang

130

Qin, Jianhao Shen, Fang Sun, Zhiping Xiao, et al. A comprehensive survey on

deep graph representation learning. Neural Networks, page 106207, 2024.

[54] Seungbae Kim, Jyun-Yu Jiang, Jinyoung Han, and Wei Wang. Influencerrank:

Discovering effective influencers via graph convolutional attentive recurrent

neural networks. In Proceedings of the International AAAI Conference on Web

and Social Media, volume 17, pages 482–493, 2023.

[55] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[56] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion

improves graph learning. In Advances in Neural Information Processing Systems,

pages 13333–13345, 2019.

[57] Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C Bayan Bruss,

and Tom Goldstein. Goat: A global transformer on large-scale graphs. In

International Conference on Machine Learning, pages 17375–17390. PMLR,

2023.

[58] Runlin Lei, Zhen Wang, Yaliang Li, Bolin Ding, and Zhewei Wei. Evennet:

Ignoring odd-hop neighbors improves robustness of graph neural networks.

Advances in Neural Information Processing Systems, 35:4694–4706, 2022.

[59] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cay-

leynets: Graph convolutional neural networks with complex rational spectral

filters. IEEE Transactions on Signal Processing, 67(1):97–109, 2018.

[60] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns:

131

Can gcns go as deep as cnns? In Proceedings of the IEEE/CVF international

conference on computer vision, pages 9267–9276, 2019.

[61] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All

you need to train deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

[62] Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza

Zafarani. Sgcn: A graph sparsifier based on graph convolutional networks.

In Advances in Knowledge Discovery and Data Mining: 24th Pacific-Asia

Conference, PAKDD 2020, Singapore, May 11–14, 2020, Proceedings, Part I

24, pages 275–287. Springer, 2020.

[63] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino,

Jiliang Tang, and Huan Liu. Feature selection: A data perspective. ACM

computing surveys (CSUR), 50(6):1–45, 2017.

[64] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph con-

volutional networks for semi-supervised learning. In Proceedings of the AAAI

conference on artificial intelligence, volume 32, 2018.

[65] Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network

based recommendation in social networks. Neurocomputing, 549:126441, 2023.

[66] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet:

Multi-scale deep graph convolutional networks. arXiv preprint arXiv:1901.01484,

2019.

[67] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, and Dongrui Fan.

132

Sampling methods for efficient training of graph convolutional networks: A

survey. IEEE/CAA Journal of Automatica Sinica, 9(2):205–234, 2021.

[68] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, Dongrui Fan, Shirui

Pan, and Yuan Xie. Survey on graph neural network acceleration: An algorith-

mic perspective. arXiv preprint arXiv:2202.04822, 2022.

[69] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and

Qing He. Pick and choose: a gnn-based imbalanced learning approach for fraud

detection. In Proceedings of the web conference 2021, pages 3168–3177, 2021.

[70] Ziqi Liu, Zhengwei Wu, Zhiqiang Zhang, Jun Zhou, Shuang Yang, Le Song,

and Yuan Qi. Bandit samplers for training graph neural networks. Advances in

Neural Information Processing Systems, 33:6878–6888, 2020.

[71] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming

He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. Are we really

making much progress? revisiting, benchmarking and refining heterogeneous

graph neural networks. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery & Data Mining, pages 1150–1160, 2021.

[72] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Simplifying approach to

node classification in graph neural networks. Journal of Computational Science,

62:101695, 2022.

[73] Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we

have is low-pass filters. arXiv preprint arXiv:1905.09550, 2019.

133

[74] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose

expressive power for node classification. arXiv preprint arXiv:1905.10947, 2019.

[75] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric

transitivity preserving graph embedding. In Proceedings of the 22nd ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 1105–1114, 2016.

[76] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and

Bo Yang. Geom-gcn: Geometric graph convolutional networks. arXiv preprint

arXiv:2002.05287, 2020.

[77] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of

social representations. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 701–710, 2014.

[78] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge:

Towards deep graph convolutional networks on node classification. arXiv

preprint arXiv:1907.10903, 2019.

[79] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by

locally linear embedding. science, 290(5500):2323–2326, 2000.

[80] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed

node embedding. Journal of Complex Networks, 9(2):cnab014, 2021.

[81] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey

on oversmoothing in graph neural networks. arXiv preprint arXiv:2303.10993,

2023.

134

[82] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. Modeling relational data with graph convolutional

networks. In The Semantic Web: 15th International Conference, ESWC 2018,

Heraklion, Crete, Greece, June 3–7, 2018, Proceedings 15, pages 593–607.

Springer, 2018.

[83] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher,

and Tina Eliassi-Rad. Collective classification in network data. AI magazine,

29(3):93–93, 2008.

[84] Hao-Jun Michael Shi, Shenyinying Tu, Yangyang Xu, and Wotao Yin. A primer

on coordinate descent algorithms. arXiv preprint arXiv:1610.00040, 2016.

[85] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu,

and Kuansan Wang. An overview of microsoft academic service (mas) and

applications. In Proceedings of the 24th international conference on world wide

web, pages 243–246, 2015.

[86] Yunchong Song, Chenghu Zhou, Xinbing Wang, and Zhouhan Lin. Ordered

gnn: Ordering message passing to deal with heterophily and over-smoothing.

arXiv preprint arXiv:2302.01524, 2023.

[87] Stavros Souravlas, Sofia Anastasiadou, and Stefanos Katsavounis. A survey on

the recent advances of deep community detection. Applied Sciences, 11(16):7179,

2021.

[88] Yizhou Sun and Jiawei Han. Mining heterogeneous information networks:

principles and methodologies. Synthesis Lectures on Data Mining and Knowledge

Discovery, 3(2):1–159, 2012.

135

[89] Yizhou Sun and Jiawei Han. Mining heterogeneous information networks: a

structural analysis approach. Acm Sigkdd Explorations Newsletter, 14(2):20–28,

2013.

[90] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. Pathsim:

Meta path-based top-k similarity search in heterogeneous information networks.

Proceedings of the VLDB Endowment, 4(11):992–1003, 2011.

[91] Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane. Degree-

quant: Quantization-aware training for graph neural networks. arXiv preprint

arXiv:2008.05000, 2020.

[92] Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding

through large-scale heterogeneous text networks. In Proceedings of the 21th

ACM SIGKDD international conference on knowledge discovery and data mining,

pages 1165–1174, 2015.

[93] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in

large-scale networks. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 807–816, 2009.

[94] Shanshan Tang, Bo Li, and Haijun Yu. Chebnet: Efficient and stable con-

structions of deep neural networks with rectified power units via chebyshev

approximations. arXiv preprint arXiv:1911.05467, 2019.

[95] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,

Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint

arXiv:1710.10903, 2017.

136

[96] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Efty-

chios Protopapadakis. Deep learning for computer vision: A brief review.

Computational intelligence and neuroscience, 2018, 2018.

[97] Cheng Wan, Youjie Li, Ang Li, Nam Sung Kim, and Yingyan Lin. Bns-gcn:

Efficient full-graph training of graph convolutional networks with partition-

parallelism and random boundary node sampling. Proceedings of Machine

Learning and Systems, 4:673–693, 2022.

[98] Guangtao Wang, Rex Ying, Jing Huang, and Jure Leskovec. Improving

graph attention networks with large margin-based constraints. arXiv preprint

arXiv:1910.11945, 2019.

[99] Tao Wang, Di Jin, Rui Wang, Dongxiao He, and Yuxiao Huang. Powerful graph

convolutional networks with adaptive propagation mechanism for homophily

and heterophily. In Proceedings of the AAAI conference on artificial intelligence,

volume 36, pages 4210–4218, 2022.

[100] Xiao Wang, Deyu Bo, Chuan Shi, Shaohua Fan, Yanfang Ye, and S Yu Philip.

A survey on heterogeneous graph embedding: methods, techniques, applications

and sources. IEEE Transactions on Big Data, 9(2):415–436, 2022.

[101] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and

Philip S Yu. Heterogeneous graph attention network. In The world wide web

conference, pages 2022–2032, 2019.

[102] Yewen Wang, Ziniu Hu, Yusong Ye, and Yizhou Sun. Demystifying graph

neural network via graph filter assessment. 2019.

137

[103] Oliver Wieder, Stefan Kohlbacher, Mélaine Kuenemann, Arthur Garon, Pierre

Ducrot, Thomas Seidel, and Thierry Langer. A compact review of molecu-

lar property prediction with graph neural networks. Drug Discovery Today:

Technologies, 37:1–12, 2020.

[104] Ronald J Williams. Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Reinforcement learning, pages 5–32, 1992.

[105] Zhen Hao Wong, Hansi Yang, Xiaoyi Fu, and Quanming Yao. Loss-aware

curriculum learning for heterogeneous graph neural networks. arXiv preprint

arXiv:2402.18875, 2024.

[106] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming,

151(1):3–34, 2015.

[107] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao

Yu, and Kilian Q Weinberger. Simplifying graph convolutional networks. arXiv

preprint arXiv:1902.07153, 2019.

[108] Tong Tong Wu, Kenneth Lange, et al. Coordinate descent algorithms for lasso

penalized regression. The Annals of Applied Statistics, 2(1):224–244, 2008.

[109] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,

and S Yu Philip. A comprehensive survey on graph neural networks. IEEE

transactions on neural networks and learning systems, 32(1):4–24, 2020.

[110] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

Philip S Yu. A comprehensive survey on graph neural networks. arXiv preprint

arXiv:1901.00596, 2019.

138

[111] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are

graph neural networks? arXiv preprint arXiv:1810.00826, 2018.

[112] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs with

jumping knowledge networks. arXiv preprint arXiv:1806.03536, 2018.

[113] Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra.

Two sides of the same coin: Heterophily and oversmoothing in graph convolu-

tional neural networks. In 2022 IEEE International Conference on Data Mining

(ICDM), pages 1287–1292. IEEE, 2022.

[114] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. Hetero-

geneous network representation learning: A unified framework with survey

and benchmark. IEEE Transactions on Knowledge and Data Engineering,

34(10):4854–4873, 2020.

[115] Liqi Yang, Linhan Luo, Lifeng Xin, Xiaofeng Zhang, and Xinni Zhang. Dagnn:

Demand-aware graph neural networks for session-based recommendation. arXiv

preprint arXiv:2105.14428, 2021.

[116] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamil-

ton, and Jure Leskovec. Graph convolutional neural networks for web-scale

recommender systems. In Proceedings of the 24th ACM SIGKDD international

conference on knowledge discovery & data mining, pages 974–983, 2018.

[117] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and

Jure Leskovec. Hierarchical graph representation learning with differentiable

139

pooling. In Advances in neural information processing systems, pages 4800–4810,

2018.

[118] Minji Yoon, Théophile Gervet, Baoxu Shi, Sufeng Niu, Qi He, and Jaewon

Yang. Performance-adaptive sampling strategy towards fast and accurate graph

neural networks. In Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery & Data Mining, pages 2046–2056, 2021.

[119] Ronghui You, Shuwei Yao, Hiroshi Mamitsuka, and Shanfeng Zhu. Deepgraphgo:

graph neural network for large-scale, multispecies protein function prediction.

Bioinformatics, 37(Supplement_1):i262–i271, 2021.

[120] Yuning You, Tianlong Chen, Zhangyang Wang, and Yang Shen. L2-gcn:

Layer-wise and learned efficient training of graph convolutional networks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2127–2135, 2020.

[121] Le Yu, Leilei Sun, Bowen Du, Chuanren Liu, Weifeng Lv, and Hui Xiong.

Heterogeneous graph representation learning with relation awareness. arXiv

preprint arXiv:2105.11122, 2021.

[122] Le Yu, Leilei Sun, Bowen Du, Chuanren Liu, Weifeng Lv, and Hui Xiong.

Heterogeneous graph representation learning with relation awareness. IEEE

Transactions on Knowledge and Data Engineering, 2022.

[123] Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. Scalable graph neural

networks for heterogeneous graphs. arXiv preprint arXiv:2011.09679, 2020.

[124] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J

140

Kim. Graph transformer networks. Advances in neural information processing

systems, 32, 2019.

[125] Seongjun Yun, Minbyul Jeong, Sungdong Yoo, Seunghun Lee, Sean S Yi,

Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer networks:

Learning meta-path graphs to improve gnns. arXiv preprint arXiv:2106.06218,

2021.

[126] Hanqing Zeng and Viktor Prasanna. Graphact: Accelerating gcn training on

cpu-fpga heterogeneous platforms. In Proceedings of the 2020 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, pages 255–265,

2020.

[127] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Male-

vich, Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling

the depth and scope of graph neural networks. Advances in Neural Information

Processing Systems, 34:19665–19679, 2021.

[128] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and

Viktor Prasanna. Graphsaint: Graph sampling based inductive learning method.

arXiv preprint arXiv:1907.04931, 2019.

[129] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V

Chawla. Heterogeneous graph neural network. In Proceedings of the 25th ACM

SIGKDD international conference on knowledge discovery & data mining, pages

793–803, 2019.

[130] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks.

Advances in neural information processing systems, 31, 2018.

141

[131] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-less neu-

ral networks: Teaching old mlps new tricks via distillation. arXiv preprint

arXiv:2110.08727, 2021.

[132] Shichang Zhang, Atefeh Sohrabizadeh, Cheng Wan, Zijie Huang, Ziniu Hu,

Yewen Wang, Jason Cong, Yizhou Sun, et al. A survey on graph neural network

acceleration: Algorithms, systems, and customized hardware. arXiv preprint

arXiv:2306.14052, 2023.

[133] Jialin Zhao, Yuxiao Dong, Ming Ding, Evgeny Kharlamov, and Jie Tang.

Adaptive diffusion in graph neural networks. Advances in neural information

processing systems, 34:23321–23333, 2021.

[134] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns.

arXiv preprint arXiv:1909.12223, 2019.

[135] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao

Yu, Haifeng Chen, and Wei Wang. Robust graph representation learning via

neural sparsification. In International Conference on Machine Learning, pages

11458–11468. PMLR, 2020.

[136] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan

Gan, Zheng Zhang, and George Karypis. Distdgl: distributed graph neural

network training for billion-scale graphs. In 2020 IEEE/ACM 10th Workshop

on Irregular Applications: Architectures and Algorithms (IA3), pages 36–44.

IEEE, 2020.

[137] Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu.

142

Graph neural networks for graphs with heterophily: A survey. arXiv preprint

arXiv:2202.07082, 2022.

[138] Yizhen Zheng, He Zhang, Vincent Lee, Yu Zheng, Xiao Wang, and Shirui

Pan. Finding the missing-half: Graph complementary learning for homophily-

prone and heterophily-prone graphs. In International Conference on Machine

Learning, pages 42492–42505. PMLR, 2023.

[139] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan

Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks:

A review of methods and applications. AI open, 1:57–81, 2020.

[140] Kaixiong Zhou, Xiao Huang, Daochen Zha, Rui Chen, Li Li, Soo-Hyun Choi,

and Xia Hu. Dirichlet energy constrained learning for deep graph neural

networks. Advances in Neural Information Processing Systems, 34:21834–21846,

2021.

[141] Yu Zhou, Haixia Zheng, Xin Huang, Shufeng Hao, Dengao Li, and Jumin Zhao.

Graph neural networks: Taxonomy, advances, and trends. ACM Transactions

on Intelligent Systems and Technology (TIST), 13(1):1–54, 2022.

[142] Hao Zhu and Piotr Koniusz. Simple spectral graph convolution. In International

conference on learning representations, 2020.

[143] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and

Danai Koutra. Beyond homophily in graph neural networks: Current limitations

and effective designs. Advances in neural information processing systems,

33:7793–7804, 2020.

143

[144] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan

Gu. Layer-dependent importance sampling for training deep and large graph

convolutional networks. Advances in neural information processing systems, 32,

2019.

144

	Introduction
	Motivation
	Thesis Contribution
	Thesis Outline

	Background
	Graphs: Definition, Key Concepts, and Applications
	Graph Representation Learning: From Shallow to Deep
	Challenges in GNNs and Existing Solutions
	Challenges in Making GNNs Effective
	Challenges in Making GNNs Efficient

	I Effectivenss
	Laplacian Score Benefit Adaptive Filter Selection for Graph Neural Networks
	Introduction
	Preliminaries
	GNNs for Semi-Supervised NC
	Graph Convolutional Filters

	Method
	Constructing the GCF Set
	Filter Selection: A Kernel Perspective
	Laplacian Score-based Filter Selection
	Learning Representations with AdaFS
	Discussion on AdaFS

	Experiments
	Datasets, Baselines, and Settings
	Main Results
	Ablation Study and Discussion

	Conclusion

	SMASH: Scalable Meta-path Aggregation baSed Heterogeneous Graph Neural Networks
	Introduction
	Preliminaries
	Node Classification for Heterogeneous Graphs
	Heterogeneous Graph Emebedding

	Methodology: SMASH
	Details for Components in SMASH
	Advantages of SMASH.
	Distinguishing SMASH with Existing Models.

	Experiment
	Experimental Setup
	Results

	Conclusion

	II Efficiency
	Decoupled Greedy Learning of Graph Neural Networks
	Introduction
	Related Work
	Deep Graph Convolutional Network (DeepGCN)
	Efficient GNN Training
	Layer-wise GNN

	Proposed Approach
	Model Architecture
	Decoupled Greedy Learning Algorithm

	Analysis
	Complexity Analysis
	Analogy to block coordinate descent
	Convergence Guarantee

	Experimental Results
	Experiment Settings
	Main Results
	Ablation Study

	Conclusions

	BLADS: Bi-Level Adaptive Sampling for Heterogeneous Information Network Training
	Introduction
	Preliminaries
	HetG and Notations
	Node Classification and Link Prediction with Heterogeneous GNNs
	Related Works: Sampling on Graphs

	Method
	Random Sampling with Uniform Distribution
	BLADS: Bi-Level Adaptive Sampling
	Combining BLADS with Heterogeneous GNNs
	Overall Algorithm and Optimization

	Experiments
	Experimental Setup
	Results

	Conclusion

	Conclusion and Future Directions

