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ABSTRACT

Background: The left internal thoracic artery (LITA) has been used as the first conduit of 
choice in coronary artery bypass grafting (CABG) because of excellent long-term patency 
and outcomes. However, no studies have examined substances other than nitric oxide that 
could be beneficial for the bypass conduit, native coronary artery or ischemic myocardium. 
This study was conducted to evaluate differences in metabolic profiles between the LITA and 
ascending aorta using gas chromatography-time of flight-mass spectrometry (GC-TOF-MS).
Methods: Twenty patients who underwent CABG using the LITA were prospectively enrolled. 
Plasma samples were collected simultaneously from the LITA and ascending aorta. GC-
TOF-MS based untargeted metabolomic analyses were performed and a 2-step volcano plot 
analysis was used to identify distinguishable markers from two plasma metabolome profiles. 
Semi-quantitative and quantitative analyses were performed using GC-TOF-MS and enzyme-
linked immunosorbent assay, respectively, after selecting target metabolites based on the 
metabolite set enrichment analysis.
Results: Initial volcano plot analysis demonstrated 5 possible markers among 851 peaks 
detected. The final analysis demonstrated that the L-cysteine peak was significantly higher in 
the LITA than in the ascending aorta (fold change = 1.86). The concentrations of intermediate 
metabolites such as L-cysteine, L-methionine and L-cystine in the ‘cysteine and methionine 
metabolism pathway' were significantly higher in the LITA than in the ascending aorta 
(2.0-, 1.4- and 1.2-fold, respectively). Quantitative analysis showed that the concentration of 
hydrogen sulfide (H2S) was significantly higher in the LITA.
Conclusion: The plasma metabolome profiles of the LITA and ascending aorta were different, 
particularly higher plasma concentrations of L-cysteine and H2S in the LITA.
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INTRODUCTION

The left internal thoracic artery (LITA) has been used as the first conduit of choice in 
coronary artery bypass graft surgery (CABG) because of its excellent long-term patency 
and favorable clinical outcomes.1,2 The theoretical advantages of using the LITA as a CABG 
conduit include 1) its wall characteristics as an elastic artery, 2) its comparable size with the 
native coronary artery, and 3) the anti-atherosclerotic effects of affluent nitric oxide (NO) 
released from the endothelial layer.3-5

In addition, a composite grafting strategy based on the in situ LITA enables an-aortic off-
pump CABG in which the risk of stroke could be minimized.6 A previous study showed that 
the patency of the grafts, even that of the internal thoracic artery (ITA), decreased when they 
were used as an aorto-coronary fashion.7 A recent randomized controlled trial showed that 
the patency of the saphenous vein (SV) improved and was non-inferior to that of the right 
ITA when it was used as a composite graft based on the in situ LITA.8 Theoretical advantages 
using bypass conduits as composite grafts compared to aorto-coronary grafts have been 
suggested as 1) conduits anastomosed to the side of the LITA are exposed to less circulatory 
stress than those anastomosed to the ascending aorta and 2) the composite conduits are 
exposed continuously to endothelial protective substances such as NO released from the 
LITA.9,10 However, there has been no study evaluating whether there are substances other 
than NO that could be beneficial for the bypass conduit, native coronary artery or ischemic 
myocardium.

Metabolomics is a systemic study detecting and analyzing small molecules which are 
associated with cellular metabolism, biological phenotypes and dynamic physiological 
states present in certain specimens at certain time point using two main techniques, mass 
spectrometry (MS) and nuclear magnetic resonance (NMR). MS is useful instrument for the 
determination and identification of the exact mass of metabolites with high sensitivity and 
specificity, while NMR is suitable for the structural elucidation of metabolites.11,12 Analyzing 
of samples using metabolomics approach may lead to discovery of novel biomarkers which 
can explain the long-term patency of ITA. However, such study was not conducted using 
metabolomics approach.

Thus, in this study, we aimed to clarify whether there are any differences in metabolic profiles 
between the LITA and ascending aorta using gas chromatography-time of flight-MS (GC-
TOF-MS).

METHODS

Study design
The present study was conducted as a prospective observational study and patients in whom 
CABG was planned using the LITA through median sternotomy were screened for study 
eligibility. With an estimated number of patient enrollment as 10 per month based on our 
institutional clinical volume, the study was designed to enroll patients either until 20 study 
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patients were included or until 3 months of enrollment period was completed to minimize 
any bias from a prolonged storage period of blood samples. Patient enrollment was started on 
August 31, 2017 and enrollment of 20 patients was completed on November 15, 2017. During the 
study period, 24 patients were screened and 4 of these patients were excluded because there was 
a substantial risk of manipulating the heavily calcified ascending aorta. Mean age of the study 
patients was 63.8 ± 10.8 years and 14 patients were men (Table 1). Nineteen patients underwent 
isolated CABG and the other patient underwent combined CABG and aortic valve replacement.

Sample collection and preparation
Under general anesthesia and hemodynamic monitoring, the LITA was harvested after 
median sternotomy and intravenous heparin (300 IU/kg) was injected before cutting the 
distal end of the LITA to maintain an activated clotting time greater than 300 seconds. After 
pericardiotomy, 2 mL of whole blood was simultaneously drawn from the ascending aorta 
and the LITA. Aorta sample was drawn by direct puncture using 2 mL syringe with 21 gauge 
needle, and LITA sample was collected by shedding to opened 2 mL syringe. Both samples 
were injected to ethylenediaminetetraacetic acid-coated vacutainers (Becton, Dickinson and 
Company, Franklin Lakes, NJ, USA) through 21 gauge syringe needles. All sample procedures 
were carefully performed to avoid any hemolysis. Immediately after sampling, plasma was 
separated by centrifugation at 3,000 rpm for 10 minutes at 4°C and stored in a −72°C liquefied 
nitrogen (N2) freezer until sample preparation for MS.

Chemicals
Extraction solvents, including high-performance liquid chromatography grade of 
isopropanol, acetonitrile, and water were purchased from J.T. Baker Chemical Co. 
(Phillipsburg, NJ, USA). The chemicals used for derivatization including fatty acid methyl 
ester (FAME) mixtures, pyridine, methoxamine (MeOX) hydrochloride, and N-Methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA) were purchased from Sigma-Aldrich (St. Louis, 
MO, USA). Reference standards and internal standards used for identification and semi-
quantification of selected markers were also obtained from Sigma-Aldrich.

Untargeted metabolomics
Untargeted metabolomic analysis was performed using a high-resolution mass analyzer GC-
TOF-MS (LECO Corporation, St. Joseph, MI, USA). The samples were prepared as described 
previously.11 Briefly, 50 µL of plasma samples was extracted using 1 mL of degassed extraction 
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Table 1. Baseline characteristics of the 20 study patients
Variables Patients
Age, yr 63.8 ± 10.8
Gender, men 14 (70)
Overweight, BMI ≥ 25, kg/m2 13 (65)
Smoking 12 (60)
Hypertension 12 (60)
Diabetes mellitus 14 (70)
History of stroke 2 (10)
Dyslipidemia 15 (75)
Chronic renal failure 4 (20)
Atrial fibrillation 1 (5)
LV dysfunction (ejection fraction < 35%) 2 (10)
Left main disease 9 (45)
Three-vessel disease 17 (75)
Data are presented as mean ± standard deviation or number (%).
BMI = body mass index, LV = left ventricle.
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solution (acetonitrile:isopropanol:H2O = 3:3:2). For the quality control (QC) samples, 100 µL 
of each sample was pooled after the first extraction. The extracted samples were evaporated 
under a N2 evaporator and subjected to a second extraction with 400 µL of extraction 
solution (acetonitrile:H2O = 1:1). Completely dried samples were then derivatized with 10 
µL of methoximation solution (20 mg/mL MeOX hydrochloride in pyridine) at 30°C for 90 
minutes in a shaking incubator and cooled at room temperature. The samples were further 
derivatized with 90 µL of mixture solution (5% FAME in MSTFA) at 70°C for 45 minutes and 
cooled again. The prepared samples were then transferred into GC injection vials.

For the GC analysis, a 1 µL aliquot of each prepared sample was injected with a front inlet 
split ratio of 20. The QC samples were injected after every ten samples to ensure the quality 
of the analysis. The metabolites from the samples were separated through Rtx-5MS columns 
(Restek Corporation, Bellefonte, PA, USA). The GC oven temperature was increased from 
50°C at a rate of 20°C per minutes until the oven temperature reached 350°C to separate the 
metabolites. The mass spectrometer was set to detect metabolites ranging from 50 to 800 
m/z (mass per charge ratio) with an acquisition voltage and a rate of 1,750 and 20 spectra/
second, respectively. The transfer line and ion source temperatures were set to 280°C and 
250°C, respectively.

Metabolomics data analysis
Metabolomics data analysis was performed using Metaboanalyst 4.0, a web-based software.13 
Metabolites with over 50% missing values were excluded in the following analyses. 
Interquartile range was applied for the data filtering and Pareto scaling was applied as a 
data pretreatment method for normalization.14,15 Statistical analyses, such as principal 
component analysis (PCA) and the volcano plot,16-18 were performed to discover metabolic 
markers showing significant differences between the ITA and ascending aorta. Briefly, the 
PCA is an unsupervised multivariate analytical method using an unpaired data set of samples 
method to visualize subtle similarities or differences among complex datasets.16 The volcano 
plot is a combination analysis of fold change (FC) and t-test which visualizes the difference 
between datasets by the Y-axis with log10 (P value) and the X-axis with number of significant 
pairs which meet the FC cutoff criteria defined below. For the volcano plot analysis, false 
discovery rate (FDR)-adjusted P values from paired t-tests were used to control FDR in 
multiple tests.19 For selection of marker candidates the mean initial cutoff values of FC were 
set to be higher than 1.1 or lower than 0.9 with a significant threshold count percent set to be 
greater than 60%. The final markers were selected based on cutoff values of the volcano plot 
with a mean FC > 1.2 or < 0.8 and a significant threshold count percent > 75%.20,21

ChromaTOF 4.6 (LECO Corporation) was used for the identification of metabolites. Three 
commercially available libraries, including the NIST/EPA/NIH Mass Spectral Library (Version 
2.2), LECO-Fiehn Rtx5 and Wiley (9th edition), were used22 with a cut-off value of 70% to 
match the minimum similarity of the detected spectrum. After possible name assignment, 
both retention time and mass spectra were compared with commercially available 
standardization agents to identify the metabolites.

Metabolite set enrichment analysis (MSEA)
Identified metabolites were reviewed through the literature and their main metabolic 
pathways were determined using the Kyoto Encyclopedia of Genes and Genomes pathway 
database (http://www.genome.jp/kegg/pathway.html) to select other potential metabolic 
markers.16
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Quantitative analysis
Prior to the marker quantification, confirmation on assigned name of the markers was 
conducted by comparing mass spectrum with commercially available reference standards. 
For the quantification, GC-TOF-MS based semi-quantification was performed using the 
commercially available reference standards of identified metabolites. Dodecanoic acid 
methyl ester, eicosanoic acid methyl ester, and octadecanoic acid methyl ester from the FAME 
mixtures were used as the internal standards. The peak area was used for the quantification. 
For quantification of the hypothetical markers, the concentration was determined using an 
enzyme-linked immunosorbent assay (ELISA) kit (NOVATEINBIO, Woburn, MA, USA) analyzed 
through a VersaMaxPLUS microplate reader (Molecular Device, San Jose, CA, USA). The quality 
of the ELISA was treated as accurate if the quantification of the metabolite was duplicated, 
including a standard curve, and the coefficient of variation was less than 15% in all samples.

All statistical analyses were conducted using the GraphPad Prism 7.0 software package 
(GraphPad Software, San Diego, CA, USA). A paired t-test was used for statistical comparison 
between the concentrations from the ITA and ascending aorta. The P values of less than 0.05 
were considered statistically significant in the paired t-test.

Ethics statement
The study protocol was reviewed and approved by the Institutional Review Board (IRB) at 
Seoul National University Hospital (approval No. 1708-058-877). Individual consent under 
IRB-approved protocols was obtained from all study patients.

RESULTS

GC-TOF-MS based untargeted metabolomics
A total of 851 peaks were detected by GC-TOF-MS. Tightly clustered QC samples in the PCA 
plot showed that GC-TOF-MS analysis was conducted properly. No obvious separation was 
observed between the ITA and ascending aorta groups in the paired PCA plot (Fig. 1). In 
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Fig. 1. The PC analysis plot. (A) QC samples were tightly clustered in the principal component plot. (B) There is no obvious separation between the ITA and 
ascending aorta samples. 
PC = principal component; AA = ascending aorta, ITA = internal thoracic artery, QC = quality control.
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volcano plot analysis, a total of nine peaks met the initial criteria (Fig. 2). Among the nine 
selected peaks, the peak shape and mass spectrum comparison with the commercial library 
excluded four markers that were considered as derivatization reagents or artifacts. L-cysteine, 
propanoic acid, cholesterol, picolinic acid and L-glutamine were selected as possible markers 
(Table 2). In the subsequent volcano plot analysis with the final cut-off criteria, the L-cysteine 
showed a statistically higher peak intensity in the ITA than the ascending aorta (mean FC = 1.86, 
P = 0.02) (Fig. 3).

Based on the MSEA, three intermediate metabolites in the ‘cysteine and methionine 
metabolism pathway' linked with L-cysteine, such as L-methionine, L-homocysteine and 
L-cystine, were selected for the subsequent analyses. Hydrogen sulfide (H2S), one of the final 
products, was also selected as one of the hypothetical markers. The GC-TOF-MS based semi-
quantification demonstrated that plasma concentrations of L-cysteine, L-methionine, and 
L-cystine were 2.0-, 1.4- and 1.2-fold higher, respectively, in the ITA than in the ascending 
aorta (P < 0.001 in each, Table 3 and Fig. 4). L-homocysteine was not detected in the samples. 
ELISA showed that the plasma concentrations of H2S were significantly higher in the ITA than 
in the ascending aorta (P = 0.001) (Table 3).
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Fig. 2. Results of initial volcano plot analysis. Nine peaks from gas chromatography-time of flight-mass 
spectrometry results met the initial volcano plot analysis criteria (cut-off values = mean fold change > 1.1 or < 0.9, 
significant count threshold 60%, false discovery rate-adjusted P value < 0.05).

Table 2. Possible markers selected by initial volcano plot analysis based on the cut-offs of mean fold change > 1.1 or < 0.9, significant count threshold 60% and 
FDR-adjusted P value < 0.05
No. Compound ID CAS No. R.T, sec Unique mass Similarity Probability FDR-adjusted P 

value
Peak intensity in 

the ITA
13 Propanoic acid 55493-92-0 267 174 > 800 > 9,000 0.04 High
187 Tridecanea 629-50-5 379 181 > 800 < 2,000 0.004 Low
202 Picolinic acid 17881-49-1 390.4 180 > 900 > 8,000 0.005 Low
358 L-cysteine 56272-69-6 480.6 220 > 800 > 9,000 0.02 High
424 Cyclohexanea 696-29-7 515.4 268 > 700 > 3,000 0.005 Low
496 L-glutamine 56145-13-2 554.4 156 > 800 > 9,000 0.04 Low
612 Unknowna - 639 335 - - 0.02 Low
620 Linoleic acida 2566-97-4 648.85 80 > 900 < 4,000 0.01 Low
813 Cholesterol 16134-40-0 900.8 368 > 800 > 9,000 0.02 Low
CAS = Chemical Abstracts Service, FDR = false discovery rated, R.T = retention time, ITA = internal thoracic artery.
aFour of these were estimated to be derivatization agents or artifacts.
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DISCUSSION

This study demonstrated 2 main findings. First, there were differences in the plasma 
metabolome profiles of the 2 common blood sources for CABG, the LITA and the ascending 
aorta. Second, the plasma concentration of L-cysteine was 2-fold higher in the LITA than in 
the ascending aorta.
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Fig. 3. Results of GC-TOF-MS based metabolomics data analysis. GC-TOF-MS based metabolomics data analysis 
showed a significantly higher peak intensity of L-cysteine in the ITA than in the ascending aorta. 
AA = ascending aorta, GC-TOF-MS = gas chromatography-time of flight-mass spectrometry, ITA = internal thoracic artery. 
aP = 0.02.

Table 3. The gas chromatography-time of flight-mass spectrometry based semi-quantified concentrations of 
intermediate metabolites from ‘cysteine and methionine metabolism pathway' and H2S
Variables Internal thoracic artery Ascending aorta P value Mean FCa

L-methionine, µg/mL 5.67 ± 1.91 (2.28–8.80) 4.2 ± 1.43 (1.83–7.04) < 0.001 1.36
L-homocysteine, µg/mL NQ NQ - -
L-cysteine, µg/mL 2.51 ± 1.0 (0.84–4.89) 1.28 ± 0.45 (0.70–2.54) < 0.001 2.04
L-cystine, µg/mL 35.19 ± 11.71 (14.63–55.63) 31.3 ± 12.32 (8.20–50.05) < 0.001 1.18
H2S, nmol/mL 23.5 ± 17.14 (7.27–86.67) 22.71 ± 17.03 (6.76–85.54) 0.001 -
All parameters are presented as means ± standard deviations (min–max).
FC = fold change, H2S = hydrogen sulfide, NQ = not quantifiable.
aMean FC was calculated as the average of FCs in each pair.
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Fig. 4. Results of semi-quantification analysis of intermediate metabolites. The plasma concentrations of (A) L-cysteine, (B) L-methionine, and (C) L-cystine 
were 2.0-, 1.4- and 1.2- fold higher, respectively, in the ITA than in the ascending aorta. 
AA = ascending aorta, ITA = internal thoracic artery. 
aP < 0.001.
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Previous studies demonstrated that patency rates of bypass grafts might be lower when the 
bypass conduit was used as an aorto-coronary fashion than when it was used as a composite 
graft based on the LITA.7,8 Contradictory results also existed that the patency of the radial 
artery (RA) was lower when it was used as a composite graft based on the LITA compared to 
aorto-coronary grafts.23,24 However, a previous systematic review demonstrated that the best 
evidence suggests that the site of proximal anastomosis has little or no effect on RA graft 
patency following CABG.25

One of the theoretical reasons for this difference may be that the composite conduits could 
be exposed continuously to endothelial protective substances such as NO released from the 
LITA.9 Another study showed that arterial grafts including the LITA had a protective effect 
on disease progression of the native coronary artery distal to the anastomosis compared to 
the SV which was used as an aorto-coronary fashion.26 Therefore, the authors speculated 
that metabolically active arterial grafts might produce vasoactive and endothelial progenitor 
substances that defend the native vessels from the progression of atherosclerosis. The 
present study was conducted to clarify whether there is any difference in metabolome profiles 
beyond NO that affect the long-term fates of the composite grafts and native coronary vessels 
with untargeted metabolomics approach using GC-TOF-MS.

In the present study, the concentration of L-cysteine was proven to be higher in the LITA 
than in the ascending aorta. The semi-quantification of major intermediates correlated with 
L-cysteine based on MSEA confirmed that the higher peak of L-cysteine in the LITA was 
not an erroneous finding. In addition, we quantified the plasma concentration of H2S in the 
ITA and ascending aorta because L-cysteine is capable of interconversion to types of sulfide 
containing amino acids, and it is the most important donor for biosynthesis of H2S.27,28

L-cysteine is a non-essential amino acid and a precursor for protein synthesis and various 
essential metabolites. Moreover, H2S is regarded as the third endogenous gaseous signaling 
molecules affecting the cardiovascular system, a so-called “gasotransmitter” following NO 
and carbon monoxide.27-32

Previous studies demonstrated the anti-atherosclerotic and antioxidant effects of L-cysteine 
33-36; one study showed cardioprotective mechanisms of L-cysteine through an antioxidant 
effect that directly scavenges reactive free radicals and a mechanism that increases anaerobic 
energy production in a rat heart model.33 Another study revealed that exogenous L-cysteine 
in the rat heart model attenuates ischemia-reperfusion injury by stimulating the synthesis 
of H2S by cystathionine-γ-lyase in the myocardium.34 The protective effects of H2S on 
the myocardium and vascular endothelium include antioxidative action, suppression of 
beta-adrenergic function, reduction of apoptosis, preservation of mitochondrial function 
and high energy phosphate, promotion of angiogenesis, vasodilation and inhibition of 
atherosclerosis.30,31 These favorable effects of L-cysteine and H2S in addition to NO could be 
the reasons for the high long-term patency rates and cardioprotective effects of the LITA and 
composite grafting strategies in CABG. Also, with further investigations, these metabolomic 
approach and results could be applied to pharmacological modulation therapy for post 
myocardial revascularization patients.

There are several limitations to the current study that must be noted. First, the number of study 
patients could not be determined based on statistical methods because this study was designed 
to perform untargeted metabolomics in which no primary end-point could be assumed and 
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to compare the concentrations of metabolites between the two different sites in the same 
patient. Second, the number of patients enrolled was relatively small. Although all confounding 
variables could be eliminated by comparing the samples from the same patients, further studies 
with large numbers of patients using targeted metabolomics might be needed to draw definite 
conclusions about the metabolome profiles in the LITA and ascending aorta and to validate and 
confirm findings of the present study. Third, further analyses by including tissue or cells might 
be needed to clarify the mechanism of the high concentration of L-cysteine in the LITA. Finally, 
analyses of blood samples from other grafts such as RA, gastroepiploic artery and SV were 
not performed because the aim of the present study was to compare metabolomics profiles of 
bloods from 2 arteries that are used as blood flow sources in CABG.

In conclusion, there were distinguishable plasma metabolome profiles between the LITA and 
the ascending aorta, particularly a significantly higher plasma concentration of L-cysteine in 
the LITA and a higher concentration of H2S.
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