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High-performance processors and emerging deep learning applications require a tremen-

dous amount of data access. Meeting the demands of this bandwidth within the available energy

is a big challenge for current memory systems. Processing-in-Memory (PIM) is a promising

solution to address this bandwidth bottleneck by performing a portion of computation inside the

memory. Existing state-of-the-art PIM technologies implement logic using sensing circuits and

cell-based logic-in-memory technology. We present novel designs that improve performance and

energy efficiency in each of these two areas.

For the designs using the sensing circuit, we present PIM architecture based on the

latch-up effect of thyristors, enabling single-cycle addition, and significantly improving the
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performance of multiplication. Our design requires no additional cell array for processing, hence

can be an excellent candidate for the storage class memory which has been considered as the

main application of memristor-based products. Also, we present the method to carry out multiple

bit-line requests under a multiplexer in parallel, dramatically accelerating PIM applications. Our

design is 16x and 12.7x faster over state-of-the-art PIM designs [8, 18], respectively.

Considering that cell-based PIM technology is mainly targeted at high-density applica-

tions, we present technologies that contribute to energy efficiency and integration. Our UPIM

design exploits unipolar switching memristors to offer a sneak current reduction compared to the

existing bipolar-based structure and takes advantages of a 3D vertical crossbar array structure

to increase memory utilization per unit area for high-density applications. As compared to the

state-of-the-art PIM design based on the bipolar switching mode, our design achieves 3.1× lower

energy consumption and 84% area savings. We also extend our cell-based PIM design for very

long byte processing by using a multi-block parallelizing method. Proposed design saves 51×

energy consumption and 16% area compared to the state-of-the-art PIM accelerators with a

cell-efficiency of 45% that is comparable to commodity DRAM.
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Chapter 1

Introduction

Today’s tremendous advances in technology have resulted in massive amounts of data

being produced. The advent of Internet of Things (IoT) has further increased the amount of data

and movement, which has created serious challenges for limited device resources. Today’s IoT

applications typically process raw data using a machine learning algorithm at the data center.

Sending all the data to the cloud is not scalable, does not guarantee real-time response, and is

not preferable due to privacy and security concerns. Therefore, a portion of data needs to be

processed on the devices at the edge of the internet. However, running data-intensive workloads

with large datasets in traditional cores leads to massive data movement between memory and

processing units, resulting in high power consumption and slow processing speed. Although

new processor technologies have evolved to perform complex tasks using a variety of advanced

technologies, they are not sufficient to handle the data throughput required by the IoT system.

A major challenge to large amounts of data processing is memory access. To date,

memory technologies have evolved to improve performance by increasing bandwidth, resulting

in a bandwidth of hundreds of MB/s in the latest high-bandwidth memory modules [19]. However,

future memory products are expected to demand multiple TB/s of memory bandwidth requiring

more than the limit of bandwidth that current DRAM devices can provide.

This thesis explores memory technology to overcome the limitations of this extreme

data processing requirements. To address the extreme data movement, we first propose novel
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processing-in-memory (PIM) technology. Our proposed technologies are based on emerging non-

volatile memory (NVM). Although most of our evaluations are based on memristor devices, the

proposed techniques can be extended to other resistive memories such as Spin-Transfer-Torque

Random Access Memory (STT-RAM) and Phase-Change Random Access Memory (PCRAM). We

thoroughly analyze existing state-of-the-art PIM technologies based on NVMs and identify their

limitations. We then propose technologies that can overcome those limitations. We have focused

on minimizing the overhead caused by the technologies, along with the effects of the proposed

technologies, and demonstrate the novelty of addressing the problems above the architecture

with low-level contributions such as circuit and device. We also optimized memory architecture

to effectively implement PIM technology as well as PIM logic itself. What distinguishes this

study from the previously published research is that it finds hidden parallelism while making full

use of resources of commodity memory architectures. The following subsections explain the

background needed for understanding the main contributions of this thesis.

1.1 Non-volatile memory (NVM)

Emerging NVM technologies, such as spin-torque-transfer random-access memory (STT-

RAM, or MRAM), phase-change random-access memory (PCRAM), and resistive random-access

memory (ReRAM) offer fast random access, high storage density, and nonvolatility [1]. They

ultimately pursue a universal memory that spans a wide range of highly latency-optimized

microprocessor caches to highly density-optimized secondary storage. More detailed description

of the characteristics of different NVM technologies follows below.

Spin-torque-transfer random access memory (STT-RAM)

STT-RAM uses a magnetic tunnel junction (MTJ) as memory storage and utilizes changes

in magnetic direction to represent information. As shown in Fig. 1.1, MTJ consists of two

ferromagnetic layers. One ferromagnetic layer has a fixed magnetization direction and is called

a reference layer. Another ferromagnetic layer has a free magnetization direction, called the
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Figure 1.1. Illustration of a STTRAM cell. (a) Structural view. (b) Schematic view (BL = bitline,
WL = wordline, SL = sourceline). [1]

free layer, which can change the direction by passing the current. The relative magnetization

direction of the two ferromagnetic layers determines the resistance of the MTJ. The relative

magnetization direction of the two ferromagnetic layers determines the resistance of the MTJ. If

the direction of the ferromagnetic layers is the same, the MTJ has a low resistance and represents

a state of ‘1’. If the directions of the two layers are different, the MTJ has high resistance

and expresses a state of ‘0’. In Fig. 1.1, ‘0’ writing (RESET switching) is performed when a

positive bias is applied between SL and BL, and ’1’ writing (SET switching) is performed in

the opposite case. Although the non-volatile nature of STT-RAM has the advantage of lower

static power consumption compared to conventional DRAM, its high write power and the large

cell size result in poor density [20]. However, compared to PCRAM and ReRAM, STTRAM

exhibits much better read / write performance and energy characteristics and also has better write

endurance [20]. As a result, STT-RAM is primarily used as SRAM substitute in on-chip cache,

not main memory.

Phase change random access memory (PCRAM)

PCRAM uses chalcogenide material (e.g. GST) as memory storage. The chalcogenide

material utilizes heat to perform state changes between the crystalline phase (SET state) and the

amorphous phase (RESET state). The crystalline phase has low resistance and the amorphous
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Figure 1.2. (a) Thermal-induced switching of the phase-change material, (b) I-V curves of both
the crystalline and amorphous state. [2]

phase has high resistance. As shown in Fig. 1.2(a), SET switching crystallizes GST by applying

more heat than crystallization temperature (TC), and RESET switching converts GST into the

amorphous state by melting GST followed by rapid quenching. RESET switching requires a

high-power pulse since GST needs to be heated above Tc to melt, and SET switching requires a

longer duration pulse with intermediate power between Tm and Tc [2]. Today, PCRAM aims to

replace Flash memory. However, its set switching latency, energy consumption, and endurance

characteristics are still not enough to replace DRAM in main memory [21].
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Resistive random access memory (ReRAM)

Resistive memory (ReRAM) is attracting attention as a basic device for high-performance

and high-density applications [22]. ReRAM uses a variety of access devices, but CMOS-based

transistors are most widely used to enable fast switching and reduce power consumption [3].

The general structure is the Metal/Oxide/Metal structure as shown in Fig. 1.3. It has metal

layers (e.g. Pt) on the top and bottom, and oxide layers based on Tantalum (Ta), Hafnium (H f ),

Titanium (Ti) in the middle. The electrical behavior of the metal/oxide interfaces depends on

the oxygen vacancy concentration of the oxide layer [1]. In general, the metal/oxide interface

exhibits Ohmic behavior in the case of high doping and rectifying behavior in the case of low

doping. The oxygen vacancies of the metal oxide layer act as n-type dopants. When the voltage

is applied to the memristor cell, the dopant profile changes due to the movement of oxygen

vacancies, and cell switching occurs under proper conditions. For example, in case of bipolar

memristor, SET switching (OFF→ ON) occurs when a negative bias is applied to a cell and

RESET switching (ON → OFF) occurs when a positive bias is applied. Compared to other

memories such as STT-RAM and RCRAM, ReRAM is the most promising candidate for the

next-generation non-volatile memory due to its simple structure, high switching speed(∼ 1ns)

and high scalability(∼ 10nm) [23]. Conclusively, PCRAM is the most advanced in the industry

such as IBM, Intel, Hitachi and Samsung compared to ReRAM and STTRAM [24].

1.2 NVM-based computation

Most modern computing systems are designed based on the von Neumann architecture,

which performs spatial operations on the computation and storage of data. Therefore, data must

transfer through a limited bandwidth between processor and memory. This data movement is

becoming the biggest bottleneck in modern computing systems in terms of performance and

energy. Several approaches have been proposed to address the issue of data movement. Near

data computing (NDP) brings the computing unit close to the memory to avoid data transfer
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Figure 1.3. The working mechanism of ReRAM structure [3].

across the hierarchy [25, 26]. Such designs need extra processing units near main memory.

Some implementations put processing cores in different layers of 3D stacked memories to

reduce the data transfer overhead. For example, high bandwidth memory (HBM) uses vertically

stacked memory chips interconnected by microscopic wires called “through-silicon vias (TSVs)”.

However, this increases the energy consumption of the system, while the data still needs to be

transferred to the additional processing units.

Processing in memory (PIM) is a promising way to address the data movement issue.

Instead of sending all data to the on-chip cache, it offloads a portion of computations near

the memory side or directly inside the memory. There have been several proposals to enable

computing capabilities inside DRAM. However DRAM is inherently destructive during read

operations, that is, the stored bits are invalidated after the read. Thus, the original data should

be backed up to another cell before any computation is performed, causing undesired overhead.

On the other hand, NVMs are good candidates for PIM due to their high density, scalability,

and low power consumption [27, 28]. However, the supported functionality in most of the

PIM designs is limited to either bitwise operations or operations derived from basic bitwise

operations which require multiple cycles. For example, the work in [29, 9] proposed a sensing

circuit to implement the basic bitwise operations such as AND, OR, and INV. However, they
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Figure 1.4. Overview of ReRAM array structures: (a) MOSFET accessed structure; (b) access-
device-free crossbar structure; (c) diode-accessed crossbar structure [4].

do not support addition and multiplication, which are the key arithmetic functions involved in

many applications such as machine learning algorithms and image processing [30]. This thesis

identifies problems of existing designs and suggests PIM techniques that improve them. Through

Chapter 3 and Chapter 4, we present a new PIM design enabling single-cycle addition, and

significantly improve the performance of multiplication. Also, we present a new design offering

a sneak current reduction compared to the existing PIM designs and takes advantages of a 3D

vertical crossbar array structure for high-density applications.

1.3 State-of-the-art NVM architecture

This thesis also investigates the optimizing method of the architecture environment to

achieve maximum performance of PIM function as well as PIM logic. We first examine the

current NVM architectures through the following sub-chapters.
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1.3.1 Array Architecture

1T1R Structure

ReRAM cells can be organized in 1T1R structure and crossbar structure at the array level.

The cell structure is selected considering the energy/delay/cost in the memory system. Fig. 1.4(a)

shows the conventional structure in which each cell is connected to one transistor, called ‘1T1R’

structure. This structure is similar to DRAM. When a row is activated, each transistor in the

selected row provides exclusive access to the cell without interference from other cells. Due to

the complete isolation between the cells by the access transistors, the 1T1R structure is more

energy efficient and has shorter operating latency than other structures. However, compared

with DRAM, NVM requires high current, hence it requires a large area of the access transistors.

This is a critical challenge in the high-density applications NVM is targeting. In addition, since

the WL of 1T1R structure is connected to the gate of a transistor that is responsible for turning

drivers on and off, PIM operations using analog strategies cannot be performed.

Crossbar Structure

Fig. 1.4(b) and (c) show a crossbar structure in which all cells are connected without

access transistors. Due to the absence of access transistors, the crossbar structure has a cell size

of 4F2, which is regarded as the smallest area in the two-dimensional structure. In addition, since

the ReRAM fabrication is completely different from the silicon-based transistor process, the

crossbar structure can maximize the area efficiency by allowing the lower layer of the cell to be

used as a peripheral circuit configuration such as decoders or drivers. The crossbar structure is

also an optimal structure for PIM design. Its two-terminal node scheme allows floating BLs to be

used to propose many PIM designs utilizing the analog characteristics of current passing through

the resistors. However, in the case of the crossbar structure, the selected cell is not isolated from

the unselected cells, so there maybe various sneak current paths that cause additional power

consumption. Also, it is not easy to predict the current path in a large number of cells. To

overcome this problem, we implemented PIM logic using unipolar switching mode instead of
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bipolar switching, which is presented in Chapter 3.

1.3.2 Bank-level Architecture

Modern processors typically have on-chip memory controllers. Each memory controller

is connected to off-chip memory modules via one or two memory channels. According to the

JEDEC standard, each channel has a 64-bit data bus, a 17-bit row / column address bus, and an

8-bit command bus [31]. Dual in-line memory modules (DIMMs) can be accessed by a single

memory channel and controller. Each DIMM consists of multiple ranks, each rank consisting of

multiple chips. We adopt an x8 ReRAM chip configuration with a DDR3-compatible interface

and 64-bit internal prefetch width, which is distributed to 32 mats in a subarray of the banks.

We used the architecture model of [4] as the baseline bank structure of this thesis. As shown in

Fig. 1.5, WL and BL are selected by the WL decoder and BL multiplexer, respectively, and the

cell at the intersection of these is selected. Then, the information of the selected cells is moved

through the I/O buffer. We used a hierarchical WL structure to minimize delay in cell addressing

in high-density cell structure. The hierarchical WL structure is composed of global wordlines

(GWLs) using the upper metal layer and lower sub-wordlines (SWLs) using poly silicon. A

GWL is selected first by the GWL decoder in Fig. 1.5(a), and a SWL of Fig. 1.5(b) which is

directly connected to the cell is selected by the local decoder. In the NVM cell structure, one cell

can be selected by applying appropriate potentials to WL and BL connected to the desired cell.

Therefore, unlike a DRAM that stores all the cells of one row into a buffer and reads the desired

cell, NVM does not have an over-fetch problem. The mat size of our design is 1024 WLs× 1024

BLs, which is considered the maximum size constrained by parasitic resistance and capacitance.

1.4 Thesis contribution

This thesis explores various ways to maximize performance improvement by addressing

the physical and technical limitations of NVM-based PIM designs. We address and improve

the problems of existing PIM researches through the range of approaches such as device level
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Figure 1.5. (a) Bank structure; (b) Mat organization; (c) Sense amplifier and write driver (CSL:
column select line; GWL: global wordline; GDL: global dataline; LBL: local bitline; LWL: local
wordline; LDL: local dataline) [4].

as well as an architecture. The following subsections describe our contributions over on the

hierarchy of devices, circuits, and architecture.

1.4.1 Device level

Emerging Non-planar Transistor Application

Vertical Nanowire-FET (VNFET) is a promising candidate to succeed in industry main-

stream due to its superior suppression of short-channel-effects and area efficiency. However,

CMOS is not an appropriate solution for logic gate design due to the process incompatibility

with VNFET, which creates a technical challenge for mass production. In this thesis, we present

a novel VNFET-based logic design, called VnanoCML (Vertical Nanowire Transistor-based

Current Mode Logic), which addresses the process issue while significantly improving power

and performance of diverse logic designs. Unlike the CMOS-based logic, our design exploits

current mode logic to overcome the fabrication issue. Furthermore, we reduce the drain-to-

source resistance of VnanoCML, which results in higher performance improvement without

compromising the subthreshold swing. In order to show the impact of the proposed VnanoCML,

10



we present key logic components including SRAM, full adder and multiplier, and also evaluate

the application-level effectiveness of digital designs for image processing and mathematical

computation. Our proposed design improves the fundamental circuit characteristics including

output swing, delay time, and power consumption compared to conventional planar MOSFET

(PFET)-based circuits. Our architecture-level results show that VnanoCML can enhance the

performance and power by 16.4× and 1.15×, respectively compared to PFET-based designs.

Details of this study are described in Chapter 2.

Implementing Unipolar Memristor PIM

Prior techniques [5, 32, 33, 34, 35] that enable the computation in non-volatile memory

(NVM) are designed for a bipolar switching mode, which suffers from a high sneak current

in a crossbar array (CBA) structure. In this thesis, we present a unipolar-switching logic for

high-density PIM applications, called UPIM. Our design exploits a unipolar-switching mode of

memristor devices which can be operated in 1D1R structure hence suppresses the sneak current

that exists in prior PIM technologies. Our evaluation on a wide range of applications shows

that the UPIM achieves up to 31.3× energy saving and 113.8× energy-delay product (EDP)

improvement as compared to AMD R390 GPU [36]. As compared to the state-of-the-art PIM

design based on the bipolar switching mode [5, 6, 7], our design achieves 3.1× lower energy

consumption. Details of this study are described in Chapter 3.

1.4.2 Circuit level

Current-based Efficient Adder Design

We also propose LUPIS (Latch-Up based Processing In-memory System) for NVM.

Unlike existing PIM techniques [9, 29, 32, 35], which mainly focus on bitwise operation

based computations and involve considerable latency and area penalty, our design facilitates

computations like addition and multiplication with very low latency. This makes the system

faster and more efficient as compared to state-of-the-art techniques. We evaluate LUPIS at both
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circuit-level and application-level. Our evaluations show that LUPIS can enhance performance

and energy efficiency by 62× and 484× respectively as compared to AMD Southern Island GPU,

Radeon HD 7970 device [37]. Compared to the state-of-the-art PIM accelerator [8], our design

presents 12.7× and 20.9× improvement in latency and energy consumption with an insignificant

overhead of 21% for area increase and one cycle for latency delay. Details of this study are

described in Chapter 4.

Enabling Multi-bit Parallel Execution in NVM

Many prior studies have enabled various PIM operations on non-volatile memory (NVM)

by modifying sense amplifiers (SA) [9, 10, 29]. They exploit a single sense amplifier to handle

multiple bitlines with a multiplexer (MUX) since a single SA circuit takes a much larger area than

an NVM 1-bit cell. This limits potential parallelism that the PIM techniques can ideally achieve.

In this thesis, we present MAPIM, mat parallelism for high-performance processing in non-volatile

memory architecture. Our design carries out multiple bit-lines (BLs) requests under a MUX

in parallel with two novel design components, multi-column/row latch (MCRL) and shared SA

routing (SSR). The MCRL allows the address decoder to activate multiple addresses in both

column and row directions by buffering the consecutively-requested addresses. The activated

bits are simultaneously sensed by the multiple SAs across a MUX based on the SSR technique.

The experimental results show that MAPIM is up to 339× faster and 221× more energy efficient

than a modern GPGPU, AMD Radeon R9 390 GPU with 8GB memory [36]. As compared to

the state-of-the-art PIM designs [9, 10], our design is 16× faster and 1.8× more energy efficient

with an insignificant area overhead. Details of this study are described in Chapter 5.

1.4.3 Architecture level

Excavating Hidden Parallelism using Multi-mat Execution Techniques

Today’s emerging computations such as DNN and graph processing require large amounts

of data processing with very long words. This inevitably requires an effort to maximize perfor-
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mance with limited hardware capacity and energy. We have reduced the cost of data movement

through PIM technology and maximized the efficiency of long word operations through the

technique of concurrently computing data distributed in several memory mats. In Chapter 6, we

present a novel PIM architecture, called Multi-mat Parallelized Execution for Hyper-dimensional

Computing (MAPLE).

Hyperdimensional (HD) computing is an energy-efficient brain-inspired alternative to

traditional computing. Instead of computing with numbers, HD computing uses hypervectors

(HVs) that are high-dimensional (i.e. D=10,000). Due to the requirement of massive data access,

HD computing needs a memory-centric architecture, which motivates us to utilize processing-in-

memory (PIM) architecture. However, the existing memory architecture has physical limitations

to fully support the PIM execution for HD computing. To compute over 10,000-bit words

corresponding to the dimensions of an HV, tens of memory mats consisting of only 1K bit-rows

need to be simultaneously activated. This conflicts with the operation in conventional memory

architecture, which executes 8 to 64-bit words, so each mat is designed to be accessed in

sequential order. Our design works as both memory and PIM within the same cell array. In

memory mode, OpHD follows the conventional read/write access pattern, with consecutive

requests to each mat. In PIM mode, it enables concurrent activation of all mats in a bank

using our proposed global decoder bypass (GDP), enabling a single cycle operation of 10,000-

dimensional HVs. We also propose a global wordline (WL) search for the nearest hamming

distance, to facilitate a one-shot search for an HV whose bits are located across multiple mats.

The experimental results show that OpHD is up to 10× faster and 51× more energy efficient

than state-of-the-art HD accelerators [11] with an insignificant area overhead. Details of this

study are described in Chapter 6.
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Chapter 2

High-Performance Design with Vertical
MOSFETs

Resistive RAM (ReRAM) has been extensively researched due to its potential for a

solution to the scaling issue of charge-trapping based memory [38]. The crossbar structure of

ReRAM can realize 4F2 which is considered as the minimum cell size in two dimensions. It

has also enabled a variety of PIM technologies utilizing the analog property by means of a two

terminal access approach [9, 29, 32]. To realize this, the access device needs also be able to

implement the 4F2 structure. Vertical bipolar junction transistor (BJT) and diode have been

attempted as access devices with 4F2 density, respectively [39, 40]. However, they exhibit

higher leakage currents and are complicated in the process when implemented in CMOS logic.

Therefore, the most appropriate way to implement 4F2 density is to integrate memory cells into

vertically stacked MOSFETs. In this chapter, we design vertical nanowire field effect transistors

(VNFETs) directly in current mode logic to improve their performance and energy compared to

conventional planar-FETs, as well as their area efficiency.

2.1 Introduction

Conventional planar transistors, called PFET, face the challenge in further scaling due

to: (i) short channel effects on transistors and (ii) physical limitations of design rules such as

complexity of metal routing and shortage of the distance from the metal contact to the gate [41].
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To scale down the transistor, the fabrication process should address the inherently shortened

distance between a gate and a contact (source/drain). In addition, the degradation of subthreshold

swing (SS) should be also addressed due to the increase of the leakage current and latency.

To overcome the scaling issue, three dimensional (3D) gate structures such as FinFET [42,

43] and Nanowire-FET [44] have been proposed. Nanowire FET (NWFET) has many excellent

characteristics for scaling such as low power, high density and steeper SS [45]. NWFET can be

classified into two groups, called lateral and vertical scheme, according to the physical structure

as depicted in Fig. 2.3a. Vertical-NWFET (VNFET) has higher area efficiency and better device

performance especially at sub 7nm technology node than the lateral NWFET [46]. Thus, VNFET

is considered a promising candidate to succeed in the industry mainstream.

A conventional way to create logic is CMOS-based design. However, since the CMOS

logic requires NMOS and PMOS on a single die, this leads to process incompatibility issue of

VNFET, e.g., different dopants of NMOS and PMOS and gate overlap mismatch [47]. In this

chapter, we present a novel VNFET-based logic design, called VnanoCML, that mitigates the

incompatibility issue by exploiting current mode logic (CML) [48]. Since the CML only uses

NMOS transistors for logic implementation unlike the conventional CMOS design, the proposed

VnanoCML scheme highly reduces the fabrication overhead. In addition, utilizing the high

density of VNFET, we dramatically decrease the resistance of VNFET so that the proposed

design can operate with low supply voltage. The proposed design improves the logic performance

and also saves static power consumption which has been considered as an intrinsic limitation of

CML. In order to show the effectiveness of our proposed design in diverse architecture layers,

we present two key logic designs, SRAM and Arithmetic Logic Units (ALUs), and evaluate

additional ASIC designs which exploit the VnanoCML logic. In our experiments, we show that

the proposed VnanoCML improves performance and power consumption significantly for circuit

and application levels.

The main contributions of this work are listed as follows:
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• To the best of our knowledge, this is the first design which addresses the process compati-

bility of VNFET devices by employing CML logic which uses only NMOS transistors.

• Our VnanoCML design resolves the power penalty of conventional CML circuits by using

the multiplication of VNFET which reduces supply voltage for a given operation current

and makes VnanoCML more efficient.

• Our experimental results show that for the same operating condition,

VnanoCML can provide 16.4× speedup and 1.15× lower power consumption as compared

to PFET-based logic. In addition, we show that the proposed design can be also a good

candidate for approximate computing.

2.2 An overview of nanowire

The visionary works of Wagner and Ellis in the 1960s have predicted the evolution

of microwire growth and their doping when they stated “Controlled growth can be obtained

through appropriate use of impurities in patterns of films on substrate surfaces and on single-

crystal seeds of many substrates. P-N junctions and heterojunctions can be made” [49]. In the

years that followed, Si[50], Ge[51], and their axial heterostructures[52], as well as compound

semiconductors such as GaAs, GaP, InAs [53, 54], and their alloys of InGaAs, GaAsP have

already been realized in the period of 1960-1980. The first device on a 1D nanowire (NW) was

fabricated in 1991 by Haraguchi et al. who formed p-n junctions from GaAs whiskers grown

using selective area metal-organic chemical vapor deposition [55]. A global renaissance in NW

growth occurred in 1998 when A.M. Morales and C.M. Lieber utilized VLS to prepare Si and Ge

NWs with diameters of 3-20 nm and lengths of 1-30µm [56]. This led to fascinating progress in

the formation of axial [57] and radial [58] heterostructure growth with efficient size [59] and al-

loy [60] bandgap engineering enabling new frontiers in crystal engineering [61], and applications

in diverse areas such as electronics, photonics, thermoelectrics, chemical sensing, biosensors,
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Figure 2.1. (a)-(c) VLS NW growth. (d) Bulk phase diagram (e) NW growth rate (f) Ge
composition in Au (g) Suppression of the liquidius line. Copyright American Chemical Society.

and biostimulants to name a few. Semiconductor NWs can be synthesized using a variety of

growth techniques including organo-metallic vapor phase epitaxy (OMVPE) [62], selective area

OMVPE (SA-OMVPE) [63], molecular and chemical beam epitaxy, wafer annealing, chemical

vapor deposition (CVD), laser ablation, and low temperature solution methods. In the presence of

foreign catalytic metal particles that seed NW growth, their evolution is interpreted to occur via

the Vapor-Liquid-Solid (VLS) growth mechanism. In the absence of foreign metal particles, their

growth is interpreted via group-III catalyzed VLS growth, oxide-assisted growth, ligand-aided

solution-solid (LSS) growth, reactive Si-assisted growth, and dislocation-driven growth.
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Figure 2.2. SEM image of an array of Ge NWs (d=70nm) grown epitaxially on a Ge(111)
substrate from a Au-Ge alloy particle.

The most applicable growth mechanism for semiconductor NWs is the VLS growth

mechanism that is briefly overviewed in Fig. 2.1(a)-(c). It is centered around the formation of a

supersaturated eutectic droplet that facilitates the NW growth in a layer-by-layer fashion. The

prerequisite conditions for epitaxial NW growth include the formation of liquid solution between

the metal seed and the material to be grown (Fig. 2.1a) and must usually have a large contact

angle (95-120◦) with the growth substrate to enable its rise above the surface. The chemical

reactions, whether homogeneous or heterogeneous, should be thermodynamically possible but

not favored kinetically so that the catalytic and adsorption properties of the liquid growth seed

become effective in precursor decomposition and incorporation (Fig. 2.1b) and consequently

in the one-dimensional NW growth. In addition, high supersaturations in the growth seed are

required especially in the initial stages of growth to enable its rise above the substrate surface,

which must be oxide free to enable the vertical epitaxial growth. In steady state, the rate of

adatom incorporation at the liquid-solid interface (Fig. 2.1b, R3) is equal to the rate of precursor

decomposition and incorporation at the vapor-liquid interface (Fig. 2.1b, R1). The diffusion

through the liquid particle (Fig. 2.1b, R2) is not rate limiting. The above requirements determine
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the temperature ranges over which NW growth is preferred, which are typically 100-200◦C

lower than those used in thin film growth. Within the NW growth temperature window, low

temperatures may not allow the formation of the liquid growth seed alloy and oxide desorption,

whereas high temperatures increase the material solubility in the liquid nanoparticle (NP) and

reduce its supersaturation and consequently the NW nucleation and growth rates. Fig. 2.2 shows

a scanning electron microscope (SEM) image of an array of Ge NWs with 70 nm diameter grown

epitaxially by CVD on a Ge(111) substrate from a 20 nm thick pre-patterned Au disc by electron

beam lithography. The experimental growth regimes for Ge and Si NWs are highlighted under

the liquidius line of the bulk Au-Si and Au-Ge binary phase diagram in Fig. 2.1(d).

The driving force for growth, supersaturation ∆µ = µν −µs ∼= µl−µs is the change in

the chemical potential during the phase transformation from the liquid droplet to the solid NW.

If Φ is the thermodynamic potential, and N is the number of atoms in the crystal during growth,

then ∆µ = δϕ/δN. One can compute the changes in δϕ in terms of the variation of the system

free energy −πr2δL∆µ0/Ω where r is the NW radius, δL is the incremental change in the NW

length, assuming a cylindrical NW, Ω is the atomic volume of the NW material in the growth

seed, and µ0 is the supersaturation without surface considerations, i.e., in the bulk limit. For

every δL in the NW, there is an increase in the surface free energy πrδLανs where ανs is the NW

surface energy density. Therefore, δϕ =−πrδL∆µ/Ω+2πrδLανs and with δN = πr2δL/Ω,

one can therefore write:

∆µ = ∆µ0−
4Ωαvs

d
or

∆µ

kT
=

∆µ0

kT
− 4Ωαvs

kT
1
d

(2.1)

which is pressure and temperature dependent (∆µ0) and inversely proportional to diameter d.

Alternatively, one can utilize the Gibbs-Thompson effect for the rise of partial pressure at small

sizes according to [64]

P0 = P∞e
4Ωαvl
kT ·d ≈ P∞e

4Ωαvs
kT ·d (2.2)
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to reach Eq. 2.1 by substituting ∆µ = kT ln(Pin/P0) where P0 and P∞ are the equilibrium partial

pressures of the grown material in bulk and NW forms, respectively, and Pin is the gas precursor

input partial pressure.

If the adatoms have negligible diffusion along the NW sidewalls, the axial growth velocity

can be empirically related to supersaturation with ν = b(∆µ/kT )2 where b is a temperature

independent kinetic coefficient of crystallization [42,43]. Thus, using Eq. 2.1, one can write an

equation of the growth velocity as a function of supersaturation as

√
ν =
√

b
∆µ0

kT
−
√

b
4Ωανs

kT
1
d

(2.3)

from which L = t ·b · (∆µ0/kT −4Ωανs/kT d)2 can be obtained.

Using these equations, one can summarize the thermodynamic dependencies on the

growth in Fig. 2.1(e), which shows enhanced supersaturations and normalized growth rates for

higher overdrive pressures and lower temperatures.

One can also deduce from Eq. 2.2 that the phase diagram in Fig. 2.1(d) does not apply to

NW growth where for a given temperature, the equilibrium compositions are higher in NWs at

smaller d compared to their bulk counterparts. Using in-situ transmission electron microscopy

(TEM) heating experiments, one can quantify the equilibrium composition of the growth seed

in the absence of any input precursor [65]. Indeed, the experimental measured data follow

qualitatively Eq. 2.3 or its composition equivalent by invoking Henry’s law to obtain,

C0 =C∞exp(k4Ωανs/dkT ) (2.4)

where k is a fit parameter that accounts for the triple-phase curvature changes with temperature.

This force-balance at the triple-phase boundary is governed by σlcosβ = σscosα−σls− τ/r0

where β is the contact angle at the solid-liquid interface, α is the angle between the liquid-

solid interface and the sidewall of the nanostructure (α=90◦ for NW), σl , σs, and σls are the
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liquid-vapor, solid-vapor, and liquid-solid surface energy densities, τ is the droplet surface line

tension, and r0 is the radius of its contact cross-section or the NW radius. τ/r0 is negligible

compared to the other terms [66]. In the Au-Ge material system, σls (460 ◦C)=0.319 J/m2

and σls (584 ◦C)=0.211 J/m2 while l (460 ◦C)=0.798 J/m2 and σl (584 ◦C)=0.765 J/m2. This

indicates a smaller contact angle with higher temperatures (higher compositions) which in this

case changes from 113.56◦ at 460-106◦ at 584 ◦C. This trend is qualitatively in agreement

with what is observed experimentally in Ge NWs, where the composition is fit using Eq. 2.4 in

Fig. 2.1(f) and the NW phase diagram relative to bulk is constructed in Fig. 2.1(g). It is clear that

the liquidius line is suppressed compared to that of bulk [67]. Liquid Au-Ge particles have been

observed at temperatures that are 120 ◦C lower than the bulk eutectic temperature, signifying

these effects and the applicability of the VLS mechanism at deep sub-eutectic temperatures.

2.3 Related Work

The innovation of the transistor structure has led to performance improvements. The

FinFET structure, which takes up three-dimensional gates, exhibits better static noise margin at

lower supply voltage [68, 69], and has been successfully commercialized in industry. As the next

generation of technology, NWFET, also known as Gate-All-Around (GAA) FET, is the most

promising candidate for sub 10nm scale due to its excellent electrostatic property. Device-level

characterization of NWFET has been widely investigated in [70, 71], demonstrating better

suppression of the short channel effects than FinFET and PFET. For example, [71] compares

NWFET to FinFET, and presents that NWFET shows improved SS and reduced Drain-Induced-

Barrier-Lowering. Prior research has studied characteristics of VNFET as a future transistor for

sub 7nm, since VNFET has a significantly higher density than lateral NWFET [46].

Despite of the superior characteristics of VNFET, it has not been used for circuit/system

design because of not being compatible with mass production. A nanowire fabrication method

suitable for the mass production is top-down etching process as a counterpart of bottom-up growth
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process, since the top-down method can yield uniform dimension, better alignment between

layers and shorter process time [72]. However, to produce the CMOS logic based on VNFET,

the most challenging issue is junction formation due to harsh implantation process and the high

variation during subsequent dopant activation [47]. Since the CMOS logic requires both NMOS

and PMOS, each doping step which creates a junction should be processed separately. Inevitably,

for processing the gate formation, this incurs gate overlap mismatch to channel regions between

N/PMOS transistors. Worse still, the mismatch is more severe since the dopant of each N and P

has different diffusion length variations.

To address this issue, we present a novel design which allows process compatibility of

VNFET devices. Instead of using the CMOS-based design, we exploit current mode logic which

only requires NMOS-type transistors. Since our design utilizes high density of VNFET, the

proposed VnanoCML improves the performance of circuits significantly and also mitigates the

power issue which has been considered as the main limitation of CML.

2.4 Proposed VnanoCML

2.4.1 Current mode logic

In our design of VnanoCML, we utilize current mode logic, in short CML, to address

the fabrication issue of CMOS-based design. Current mode logic is a technology to construct

integrated circuits. Unlike CMOS circuits, CML requires only NMOS transistors to build logic.

This fact significantly mitigates the process incompatibility which happens in CMOS-based

design. As discussed in Section 2.3, using complementary logic creates two major fabrication

issues, gate overlap mismatch and dopant variation. However, when producing one type of

transistor, i.e., NMOS, only a single doping step is required for junction formation, and the

subsequent gate process does not incur gate mismatch variations since the same dopant can be

exploited for all transistors. The performance of CML is in general better than the complementary

logic since the output swing voltage is lower, thus providing faster switching speeds [48].
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Figure 2.3. Nanowire-FET structures and current mode logic schematic

To better describe these advantages, Fig. 2.3b shows a simple CML schematic. A CML

consists of three key parts: (1) load resistance (Rload), (2) constant current source (Ic), and (3)

pull-down logic designed using NMOS transistors which handle the inputs (In and In). The CML

operates based on current differentials of the branch pairs which corresponds to an output voltage,

i.e., Out and Out. For example, when current flows through branch 1, the electric potential

of Out is Vdd −∆V where ∆V = Ic×Rload , while the other branch keeps Out by Vdd . Since

the output voltage swing of a CML, i.e., ∆V, is less than Vdd , the dynamic power consumption

P =C∆V 2 f is lower and the switching speed is consequently faster than a CMOS logic which

produces the full swing range of Vdd .

One known issue of CML is the relatively high static power consumption, since the

current of a constant amount, IC, keeps flowing through at least one branch during the operation,

consuming Pstatic = Vdd × IC. A number of strategies have been proposed to overcome this

issue. For example, [73] presented a new circuit design, called near-threshold circuits, which

operates in a region of low voltage. However, this approach makes two subsequent problems for

PFET-based CML. First, as the supply voltage lowers, the voltage difference between 1 and 0

becomes smaller. Since an output swing range of CML is narrow, the small voltage difference is
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difficult to distinguish in sensing circuits. Furthermore, since NMOS transistors of the pull-down

logic are serially connected to each other, the potential at output node, i.e., Vdd−∆V , is split into

each transistor. Hence, the applied voltage to each transistor is insufficient to operate them in the

device saturation region.

2.4.2 CML integration with VNFET

The two issues discussed above are mitigated in our proposed VnanoCML due to VNFET

characteristics. Fig. 2.4a illustrates the comparison of SS between PFET and VNFET, while the

drain-to-source voltage is at 0.5V. Vgs is the applied voltage to the gate of a transistor, and Ids is

the current from drain to source. When using one nanowire (NW) for a VNFET transistor, the

SS of the VNFET is steeper than PFET. The high on-off current ratio coming from the better

SS allows CML to have a higher differential capability. Moreover, VNFET can run at relatively

small voltage due to its low resistance. Fig. 2.4b shows Ids−Vds characteristics for different

drain-to-source voltages, Vds, when the Vgs is 0.5V. Compared to the PFET, we can obtain enough

Ids to operate in CML, since the resistance of VNFET is smaller.

In our VnanoCML design, we further utilize the characteristics of VNFET so that logic

is more compatible with CML. The main advantage of VNFET is its high density. Thus, for the

same area of the conventional PFET, we can implement multiple NWs (MNW) to provide smaller

resistance, i.e., higher operational current at a given voltage. This provides various advantages,

e.g., better output swing, reduced delay, and less power consumption. For example, Fig. 2.5

shows the comparison of PFET and the MNW-based VNFET design. In our experimental setup,

that uses GPDK45 PEFT model, 25 NWs can be implemented in the area taken by a single PFET.

In the integration of CML logic, we create a serial connection in the pull-down logic. Fig. 2.6

illustrates an example structure which integrates two transistors in top and vertical views. A

MNW is connected to a silicon (Si) and a metal that form the source and drain respectively1.

1Schottky contact issue can be eliminated by either the silicide process or appropriate metal selection whose
work-function is similar to silicon ('4.05eV) [74, 75].
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(a) Vg-Id (b) Vd-Id

Figure 2.4. Transfer curve analysis of PFET and VNFET

The MNW is surrounded by a gate in the channel region. As shown in Fig. 2.4b, the MNW with

25 nanowires can drop drain-to-source resistance (Rds) by 1/25. In addition, the increase of the

number of nanowires does not change the characteristic of SS. The significant increase in the

operation current makes VnanoCML more efficient due to two main advantages, i) higher output

swing in CML, and ii) higher speed by the general characteristic of integrated circuits, T ∝ 1/IC

where T is the cycle period.

2.4.3 VnanoCML SRAM and ALU

VnanoCML SRAM A single CMOS SRAM consists of two inverters and two pass

transistors [76]. In our VnanoCML SRAM design, we replace all the six transistors of the

CMOS SRAM with the VNFET transistors. Fig. 2.7a shows the design of a VnanoCML inverter.

As discussed in Section 2.4.2, since the proposed VnanoCML has steep SS and high operation

current due to the wire multiplication, the SRAM which uses the VnanoCML inverters has high

differential ability, i.e., high static noise margin. In Section 2.5.2, we evaluate the static noise
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Figure 2.5. Layout comparison between PFET and VNFET

margin of the proposed SRAM design in detail.

VnanoCML ALU Fig. 2.7b and c show the design of a VnanoCML one-bit full adder

(FA). The one-bit FA has two components, sum and carry-out. Fig. 2.7 shows the design of each

part based on VnanoCML. In the pull-down logic, three stacked transistors and current source

Ic are serially connected. For both sides of sum and carry-out, 300KΩ resistors are loaded into

the pull-up network (denoted R) to balance the resistance of the pull-down logic. Based on the

one-bit FA, we designed an n-bit FA and an n-bit multiplier. For the n-bit FA, we serially put the

one-bit FAs as shown in Fig. 2.7d. Fig. 2.7e illustrates the n-bit multiplier design which uses a

shift logic gate beside an n-bit FA. Given two n-bit operands, the shift gate takes each bit of the

first operand and produces n bits of either shifted n bits of the second operand or all 0s. Then,

the n-bit FA accumulates the output of the shift logic to compute the final output. We verify the

detailed operation of the designed VnanoCML ALUs with a comparison with PFET-based CML

in Section 2.5.2.
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Figure 2.6. VNFET structure used in VnanoCML

2.4.4 Application design using VnanoCML

Since the VnanoCML circuits are compatible with CMOS-based logic in terms of the

logic functionalities, VnanoCML can be easily integrated with various system components such

as memory and processors. In addition, as discussed in Section 2.4.1, the use of CML mitigates

the fabrication issues, and thus the VnanoCML can be a practical and viable solution for general

architecture designs. To investigate how the VnanoCML circuits perform in the architecture

level, we design VnanoCML -based ASICs. For many ASIC designs, which mostly compute

and assimilate a stream of data adder, the adders and multipliers are the main building blocks.

In addition, more complex arithmetic computation, e.g. square root, also can be approximated

using the blocks. Thus, we replaced the logic gates of the ASICs using VnanoCML ALUs.

An important aspect that we have also considered for designing circuits is process

variation which most of today’s technology suffers. In small feature size, process variation

degrades the stability of the design and increases the failure rates. To avoid the impact of process
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Figure 2.7. VNANOCML ALU design

variation on computation accuracy, designers consider the variation bounds to guarantee the

correct functionality even in the worst-case scenarios. To take explicitly into account the process

variation, we use Monte Carlo simulation with 10% Gaussian distribution (3σ = 10%) on the

transistor gate length and diameter. In circuit and logic structures, the output signals are sampled

in a specific moment defined by the clock frequency. Thus, given the process variation, we set

the clock frequency, fre f , so that it guarantees the correct functionality even for the circuit which

has the longest output delay.

Note that, increasing the clock frequency above fre f may result in incorrect signal

sampling for a part of circuits, thus degrading the accuracy of application outputs. However, for

error-tolerant applications, such accuracy degradation would be acceptable and compensated
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by the speedup. For example, in multimedia and vision applications, the accuracy is limited by

the human ability to perceive and respond. In addition, there are some applications which are

stochastic in nature, e.g., machine learning algorithms [77, 11]. To explore this feasibility of

application approximation, in Section 2.5.3, we also evaluate the ASIC designs by relaxing the

design constraint.

2.5 Experimental Results

2.5.1 Experimental Setup

We used BSIMCMG model [78] for VNFET and GPDK45 model [79] for the con-

ventional PFET to estimate power and performance. We compute performance and energy

consumption of the proposed design from circuit-level simulations with Cadence Virtuoso and

Spectre simulators. For both technologies, we use gate length of 45nm. For a fair comparison, the

gate width and diameter of VNFET is set to 120nm and 40nm respectively. In this configuration,

a VnanoCML transistor can have 25 NWs at most as discussed in Section 2.4.2. One minor issue

of VnanoCML fabrication would be the formation of multiple NWs since the edge line of an

NW array may not be well-formed due to dry etch damage caused by the reactive ion etching

process. However, several solutions such as inserting the sacrificial wire and optical proximity

correction method [80] can highly minimize the damage. Moreover, even considering a severe

case that the last rows of NW array are damaged, only around 15% of the resistance degradation

occurs, still providing sufficiently lower resistance compared to PFET-based design.

We evaluate the efficiency and functionality of the proposed VnanoCML circuits, com-

pared to the PFET-based CML logic. In order to better show the practical value of the VnanoCML

design, we also experiment with four ASIC designs running different applications: Sobel, Robert,

Blackscholes and FFT. For image processing applications (Sobel and Robert), the input data have

been randomly chosen from Caltech 101 Library [81]. For the other applications (Blackscholes

and FFT), the input data are given by streaming randomly generated data. Each ASIC design
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has been implemented using the VnanoCML circuits in Verilog RTL. We extract performance,

switching activity and accuracy of each application during post-synthesis simulations with

ModelSim.

2.5.2 Circuit-level efficiency of VnanoCML

As discussed in Section 2.4.1, one technical challenge in using CML is that it has

lower output swing than CMOS logic, making voltage sensing difficult. To understand how

the proposed VnanoCML exhibits differential ability for the output voltage swing at the circuit

level, we first evaluate the static noise margin (SNM) of VnanoCML SRAM described in 2.4.3.

Fig. 2.8a shows that VnanoCML SRAM has higher SNM than the circuits using PFET for all the

evaluated range of supply voltage. To explain the SNM difference in detail, Fig. 2.8b and 2.8c

demonstrate the transfer curves of PFET-based CML and the VnanoCML SRAM, respectively.

The results show that the PFET-based SRAM circuit has no SNM with Vdd=0.5V. In contrast,

a VnanoCML SRAM shows sufficient SNM for the same Vdd , and the SNM is still acceptable

even at Vdd=0.4V.

We also verify the differential ability of the VnanoCML full adder. Fig. 2.9 presents the

transmission waveforms of the carry-out circuit. For all simulations we use the input waveforms

illustrated in Fig. 2.9a. In order to quantify the sensing ability of different design approaches,

we define a distance between the lowest upper and highest lower signal as Output Swing (W

denoted in Fig. 2.9b). The larger the output swing, the better their differential ability. As shown

in Fig. 2.9b, PFET-based circuit shows the output swing of 4.63mV at Vdd=0.4V. In full adder

design which uses one NW, it shows a slightly better output swing of 16.25mV for the same Vdd .

In our VnanoCML design which uses 25 NWs, the output swing is 344mV for the same Vdd , i.e.,

guaranteeing sufficient sensing resolution.

Fig. 2.10 shows the comparison of PFET-based CML and VnanoCML. Fig. 2.10a sum-

marizes the results of the output swing. The results show that to achieve the same output swing

of 100mV, the available supply voltage Vdd are 0.58V and 0.47V, and 0.36V for the PFET-based,
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Figure 2.8. SNM comparison of CML-based SRAM

one NW-based, and VMTCML circuits, respectively. In Fig. 2.10b, we compare the constant

current, Ic, for PFET-based CML and VMTCML. The proposed adder has higher Ic value than

PFET-based adder due to its lower drain-to-source resistance. Note that, in CML circuits, the

performance increases as the current grows. Thus, this result implies that the VMTCML design

exhibits better performance than PFET-based CML. This fact is observed in Fig. 2.10c which

presents the delay from an input signal to an output signal of the carry-out circuit, which is the

critical path delay of the full adder. The results show that VnanoCML achieves lower delay than

PFET-based circuit due to the lower device resistance which is a key factor in signal delay. The

VMTCML adder achieves 45.6× lower delay time on average for the tested Vdd range. The

performance improvement enables better power efficiency. Fig. 2.10d illustrates this observa-

tion. For example, to drive the same current level, Ic=4uA, i.e., same performance, VnanoCML

presents 1.16× better power efficiency than the PFET case. Table 2.1 summarizes the perfor-

mance comparison of VnanoCML with different technologies including CMOS and FinFET.

Our result shows that VnanoCML outperforms all other technologies in terms of performance.
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Figure 2.9. Waveform of transmission in CML Full Adder

2.5.3 VNFET Efficiency in Application

In this section, we evaluate the impact of VnanoCML on the architecture level using four

ASIC designs. We compare to PFET-based design for two scenarios, i) when both technology

consume the same power ii) provide the same performance. Fig. 2.11a first shows the comparison

for the same power consumption. We adjust Vdd to produce the same power consumption. The

results show that VnanoCML -based ASICs achieves significantly higher performance than the

designs which use PFET-based CML. This advantage is due to lower resistance of VNFET which

provides higher IC current at lower supply voltage. For example, the proposed VnanoCML

ASICs can achieve on average 16.4× performance speedup compared to the PFET-based design

at the same power consumption. This significant performance improvement stems from the low
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Figure 2.10. Comparison of VnanoCML to PFET-based CML for full adder design

resistance characteristic of our design, which creates high operation current and consequent high

speed. Fig. 2.11b compares the power efficiency of the two designs when the performance is

controlled to the same level by adjusting Vdd . The result shows that VnanoCML can also achieve

higher power efficiency than the PFET-based design. For example, our design can provide

1.15× improvement in terms of average power consumption for the four applications. Since the

proposed design provides better SS and lower resistance than PFET, the device can work on

lower supply voltage while providing the same current.

As discussed in Section 2.4.4, although ASICs can be performed precisely under fre f

which considers the worst-case circuit delay, we may further improve the design efficiency

for error-tolerant applications by relaxing the clock frequency constraint. Fig. 2.12 compares
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Figure 2.11. Normalized energy consumption and execution time of PFET-based design and
VnanoCML at the same performance and power consumption.

the energy-delay product (EDP) of the four ASICs on the supply voltage of 0.6V for different

error rates adjusted by increasing the clock frequency above fre f . Since the process variation

simulation creates a distribution function of the circuit delay, we define the error rate α% by

upper (100−α) percentile of the distribution function. The clock frequency is chosen by the

delay at the percentile.

Our evaluation shows that, using the precise ASICs which set the clock frequency by

fre f , the EDP of VnanoCML -based design dramatically outperforms the PFET-based design, by

38.5× on average for the four ASICs. In addition, if we allow the application approximation at

α = 10%, the EDP improvement is 48.3×.

Table 2.1. Performance Comparison of VnanoCML with different device technologies

Vdd (V)
Delay (ns)

CMOS PFET CML PFET CML FinFET VnanoCML
0.5 494.4 207.0 209.3 18.0
0.6 125.9 198.1 149.3 4.9
0.7 44.8 162.6 60.7 2.2
0.8 22.9 83.7 35.4 1.4
0.9 15.2 49.9 25.0 1.0
1 11.5 34.7 19.8 0.9
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Figure 2.12. Impact of error rates on EDP improvement

In fact, our experiment shows that the approximated results would be still acceptable.

Table 2.2 summarizes the quality loss of each application for different approximation levels. For

image processing applications, the quality loss is defined by the Peak Signal-to-Noise Ratio

(PSNR), and for the other applications, Average Relative Error (ARE) is used as a quality loss

metric. It is known that 30dB of PSNR and 10% of ARE are acceptable quality loss [30]. The

results show, for all the four ASIC designs, provide acceptable accuracy when α = 6%. For this

acceptable accuracy, our design achieves 1.6× EDP improvement compared to the precise ASICs

of VnanoCML.

Table 2.2. Quality loss of applications for different levels of approximation.

Error Rate (α) 10% 8% 6% 4% 2% 1%

Sobel 17dB 23dB 32dB 40dB 54dB 59dB

Robert 25dB 34dB 38dB 44dB 51dB 62dB

BlackScholes 13.1% 10.6% 8.3% 5.2% 2.1% 0.9%

FFT 10.5% 7.7% 5.3% 3.3% 2.6% 1.0%
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2.6 Conclusion

We have presented a novel design which allows process compatibility of VNFET devices

by utilizing the current mode logic. The proposed design also addresses the existing power

issues of CML circuits using the high density of VNFET. The experimental results show that, as

compared to conventional design, the proposed logic can achieve 16.4× speedup and 38.5× EDP

improvement for the four ASICs. Furthermore, our design shows an advantage to approximate

computation of error-tolerant applications. Compared to PFET-based approximation, our design

achieves 48.3× EDP improvement while guaranteeing acceptable quality loss. In the following

chapter, we will show how to implement PIM logic with low power consumption using the 4F2

access device presented in this chapter.

This chapter contains material from Joonseop Sim, Mohsen Imani, Yeseong Kim, Tajana

Rosing, “Enabling Efficient System Design Using VerticalNanowire Transistor Current Mode

Logic”, IEEE International Conference on Very Large Scale Integration (VLSI-SoC), 2017. The

dissertation author was the primary investigator and author of this paper.

This chapter contains material from Shadi Dayeh, Renjie Chen, Yungoo Ro, Joonseop

Sim, “Progress in doping semiconductor nanowires during growth” Materials Science in Semi-

conductor Processing, 2017. The dissertation author was the fourth author of this paper.
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Chapter 3

Unipolar Switching Logic for High Density
PIM Applications

In the previous chapter, we presented a CMOS-type access device used in a crossbar array

structure. In this chapter, we present how to implement PIM logic in crossbar stucture with low

power consumption using this 4F2 access device. Prior studies show that non-volatile memories

(NVMs) have great potential to enable the PIM functionality by exploiting analog characteristics

of the memory devices [5, 6, 8, 9, 82, 83]. The various PIM technologies can be divided into

two types. The first approach is a cell-based computation in which the result of the operation

of multiple input cells is stored in the output cell as a resistance value. Another method is to

implement the logic function by modifying the current sensing circuit of the NVM in addition

to the function of determining the 0 and 1 of the data. The cell-based computation does not

require peripheral circuits in the computation process, but massive column parallel computation

is possible. However, the crossbar structure, in which cell-based computation mainly operates,

consumes more power than the 1T1R structure and becomes more vulnerable as density increases.

In this chapter, we first analyze power consumption factors in existing cell-based computation

and then present a new PIM technology that can overcome it through novel device technology.
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3.1 Introduction

There are several approaches to address the issue of data movements between the pro-

cessor and memory. One notable way, often referred to near-data computing (NDC), is to

integrate extra computing units close to the memory in order to locally process the data [84, 85].

However, this approach demands considerable costs to implement the additional logic stack

into the memory stack, including e.g. Through Silicon Vias(TSVs), micro-bumps, etc. As

an alternative solution of the NDC, several works proposed PIM architectures which migrate

computation in the memory without using additional CMOS processing cores. There have been

several proposals to enable computing capabilities inside DRAM [86, 87, 26, 88, 89]. However

DRAM is inherently destructive in read operations, that is, the stored bits are invalidated after

the read operations. Thus, the original data should be backed up to another cell before any

computations, causing undesired overhead in PIM operations [26].

NVMs are good candidates for PIM due to their high density, scalability, and low power

consumption [28, 27]. The existing NVM-based PIM designs enable essential logic functions in

a crossbar array (CBA) structure which is suitable for memristor devices due to its small cell size

(4F2). However, when applying their techniques to a large CBA structure, there are two main

drawbacks. First, most of these designs work with a bipolar switching mode, which is vulnerable

to sneak current paths during read and write operations [33]. The sneak current becomes more

serious when the array size increases because it increases the number of unselected cells which

form undesired sneak current paths. Second, to execute arithmetic operations, e.g., addition and

multiplication, they require extra cells to store intermediate computation results with multiple

cycles of bitwise operations [5, 34]. This hinders area efficiency for the high-density applications.

In this chapter, we present UPIM, a novel processing-in-memory architecture, which

enables PIM functions using unipolar-switching mode with 3D-layered structure. Unipolar-

switching behavior of UPIM allows each memristor to be stacked with a diode, commonly known

as 1-diode-1-resistor (1D1R) structure. It significantly reduces the sneak current by rectifying
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reverse-direction current. Our UPIM design implements fundamental Boolean operations,

including NOR, NAND, and NOT, taking the advantages of lower sneak current in the 1D1R

structures. We also show how our PIM logic can be integrated with the 3D CBA structure.

Our design under/over-laps the layer of the computation cells to the memory cells in a vertical

direction to increase the cell density and gain the area efficiency.

The main contributions of this chapter include:

• To the best of our knowledge, this is the first work that supports PIM logic with unipolar-

switching memristors for the 1D1R cell structure. This design offers a sneak current

reduction compared to the existing bipolar-based 1R structure for a high-density CBA.

• We show our proposed design that supports fundamental Boolean operations in the memory,

including NOR, NAND, and NOT. They enable PIM-based arithmetic operations, e.g.,

addition and multiplication.

• We also propose a PIM-enabled 3D vertical crossbar structure to further increase the area

efficiency by overlapping the intermediate cells.

• We evaluate the proposed UPIM design for a wide range of applications. Our experimental

results show that the proposed design achieves up to 31.3× energy saving and 113.8×

EDP improvement, as compared to a recent GPGPU architecture.

3.2 Related Work

The work in [8, 9] modified sensing circuits to implement fundamental bitwise operations,

such as AND and OR. However, they do not support arithmetic operations, e.g. addition

and multiplication, which are the key functions involved in many applications such as deep

learning algorithms and image processing. To support arithmetic operations, several designs

have been also presented in [5, 8, 18]. Their arithmetic PIM operations are computed using

bitwise operations that run on a bipolar switching mode. However, the bipolar memristors

39



Figure 3.1. The overall structure of UPIM design

incur significant static power consumption due to sneak current dissipation. The work in [82]

introduces PIM techniques for unipolar memristors. However, it requires multiple backup stages

to preserve the inputs.

Our proposed UPIM is different from previous work since we enable non-destructive

in-memory processing in unipolar 1D1R crossbar architecture. This significantly reduces the

static energy in PIM operations by eliminating sneak current in the memory. In addition, unlike

the previous work, we integrate our design in 3D CBA to increase the computing density per

area.

3.3 UPIM Design

Fig. 3.1 shows the overview of UPIM. A bank structure in UPIM has multiple memory

blocks, while each memory block consists of memory cells and processing cells. The cells

are integrated with a 3D-layered structure to increase the memory density and minimize area

overhead in supporting PIM functions. Memory and processing layers are connected with

the configurable interconnects which implement shift operations. Each memory cell in UPIM

works with a unipolar-switching mode that exploits a diode to rectify the current direction and

reduce the sneak current. UPIM cells support fundamental Boolean logic, e.g., NOR, NOT and
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Figure 3.2. (a) Unipolar and (b) Bipolar switching mechanisms of memristor

NAND. The arithmetic operations are implemented based on the Boolean logic.1 We implement

arithmetic operations with three key components: partial product generation, fast adder, and final

product generation. The fast adder utilizes shift interconnect and carry save addition (CSA) to

optimize the latency of the addition. We describe the UPIM logic in Section 3.3.2, and show the

3D integration of UPIM for the high-density applications in Section 3.3.3.

3.3.1 Memristor Switching Modes

There are two classes of ReRAM switching mode depending on the applied bias polarity.

One is ’unipolar’, where the switching between high resistance state (HRS) and low resistance

state (LRS) is not relevant to the polarity of the operating voltage as shown in Fig. 3.2(a), and

the other is ’bipolar’, where the reset switching (LRS → HRS) and set switching (HRS →

LRS) take place with the opposite of the bias polarity as shown in Fig. 3.2(b) [90]. Unipolar

switching has following advantages: (i) the symmetric property in polarity which provides an

easier implementation in the memory arrays and (ii) reducing the sneak current and write disturb

by adding a selector device such as a diode [82]. Fig. 3.3 is the schematic of a memory array in

the read operation. Consider an M×N array, there are (N−1)(M−1) sneak current paths (one

of them is shown with a blue line at Fig. 3.3) when a single cell on the black line is intended to

1In this work, we focus on NOR-based PIM arithmetic operations. Note that the NAND-based operations can be
also implemented with minimal modification of the PIM logic.
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Figure 3.3. Sneak current influence on the total current in a memory array

be read. Therefore, the total current includes the summation of sneak current with original cell

current. The overall sneak current can be represented by Eq. (3.1) [33].

ISNEAK =VR×
(

RF

N−1
+

RR

(N−1)(M−1)
+

RF

M−1

)−1

(3.1)

where VR is the applied voltage, and RF and RR are the corresponding resistance when forward

and reverse current flow, respectively. Eq. (3.1) has a significant implication that since majority

cells have sneak current paths in reverse direction, increasing RR to rectify the reverse current is

a critical requirement to suppress sneak current dissipation. In contrast to most prior work which

enables PIM functions in a bipolar device [6, 8, 5], In this chapter, we present a unipolar-based

logic family which can reduce the sneak current and results in static energy saving. In the

following subsections, we explain how the design enables logic functions using unipolar devices.

3.3.2 Unipolar-based logic within NVM

NOR operation design

Fig. 3.4(a) shows the basic structure of the proposed UPIM. To simplify the explanation,

we show a logic that supports two-input NOR operation, but it can be extended to multi-input

logic in a straight-forward way. Each unipolar device consists of a memristor device and a diode.
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The input values are stored in two memristors, RIN1 and RIN2, while the other memresistor, ROUT

stores the computation result. The logical values are stored in each memresistor as resistance

states in the input/output memristors. HRS in either RIN1/2 or ROUT indicates the logical value

of 0, while LRS represents 1. In our experiment, we exploit the model shown in [91], whose

RLRS and RHRS are 10KΩ and 10MΩ, respectively. Our logic also has one additional resistor, RG,

whose resistance is configurable. In this work, we select RG = 300KΩ, a value between RLRS

and RHRS based on the consideration of process variation. We explain the detailed configuration

in Section 3.4.3. All four resistors are connected to the BL. Fig. 3.4(b) shows how to set the

operation voltage, VIN and VOUT , considering VSET . In our design, VIN has a lower voltage than

VSET , and a VOUT is higher than VSET .

To perform the NOR operation, our design first initializes the ROUT to RHRS. We then

apply the VIN1 and VIN2 voltages to the input memristors and VOUT to the output memristor.

Fig. 3.4(c) shows how the proposed logic performs the NOR operation. In the two-input case, the

stored values in the input memristors have four combinations: 00, 01, 10 and 11. When both

inputs have high resistance, i.e., ‘00’, the voltage on the BL (VBL) is almost pulled into ground,

while the voltage across ROUT (VOUT -VBL) is close to VOUT . Since VOUT -VBL is larger than VSET ,

it incurs the SET switching of the ROUT to LRS. Note that the applied voltage across the diode

is negligible as compared to the voltage applied to ROUT since ROUT is previously initialized

as HRS. In all other cases (i.e., 01, 10, and 11), at least one of the input memristors has a low

resistance state. Therefore, the VBL voltage has a higher voltage close to VIN . For instance, if

the case of ‘10’, where RIN1 and RIN2 have LRS and HRS, respectively, the net resistance is

close to RIN1. Since the voltage ratio of RIN1 to RG is close to zero, (≈ 0.03 in our experiment),

VBL is almost VIN . Thus, the ROUT keeps the high resistance state representing the logical 0.

Fig. 3.4(d) shows the resistance behavior of the UPIM NOR gate. ROUT and ROUT ′ indicate

resistance states from the output resistor prior to operation and after applying VIN , respectively.

Except for the case of ’00’ which the SET switching occurs in RG, all the other cases keep the

RG as low resistance state, presenting NOR operation.
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Figure 3.4. Proposed unipolar–based NOR logic: (a) Schematic of the NOR gate (b) Voltage
conditions (c) NOR gate simulation result (d) Resistance behaviors depending on input states

NOT and NAND operation design

The unipolar–based design can support other Boolean logic. For example, a NOT

operation can be performed using one input cell in the same way to the NOR design. Fig. 3.5

shows how we can support the NAND operation. Since input resistors, RIN1 and RIN2, are

connected in series, if at least one resistor has RHRS, VBL is pulled down to ground, and thus

ROUT is switched to the low resistance state. In the other case when both resistors are RLRS,

ROUT maintains the initial high resistance state.
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Figure 3.5. unipolar–based NAND logic

3.3.3 Integration to 3D CBA structure

The proposed design executes arithmetic functions using NOR operations. As discussed

in Section 3.1, existing NOR-based approaches require additional cells to store intermediate

results. The area overhead due to the generated intermediate states is not suitable for high-density

applications. In this work, we utilize a 3D structure to minimize the area cost. Fig. 3.6(a) shows

the conventional 2D logic implemented in a memory array. In this structure, the intermediate

operation results are stored in the same plane while consuming an extra cell area. In contrast,

as shown in Fig. 3.6(b), the 3D structure can store the intermediate results in a different layer.

Therefore, the intermediate cell is hidden under/over the memory cells, increasing chip density

as compared to the 2D case.

Fig. 3.7 presents the comparison diagram of 2D and 3D cases. We denote the area

of memory cells, which is used to store data, by Amemory. Alogic and Ashi f t are the areas of

intermediate cells for storing logic results and the interconnects, respectively. We define cell

efficiency as the ratio of the memory area over the total area. In the 2D design, since the

intermediate cells take chip area, the cell efficiency is represented by Amemory/(Amemory+Alogic+

Ashi f t). In contrast, for the 3D case, the intermediate cells for all arithmetic logic can be
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Figure 3.6. Schematic of (a) Prior 2D and (b) Proposed 3D logic in memory

completely stacked on the top of the memory cells. If the number of layers is n, the cell efficiency

of 3D design is given by (n×Amemory)/(Amemory +Ashi f t). This means that, with the 3D logic

stacking, it can achieve high area efficiency.

Fig. 3.8 shows our integration design of 3D logic-in-memory. The VIN and VOUT are

applied to wordlines connected to memory cells and intermediate cells, respectively. For example,

if the VIN is applied to ’A’ and ’B’ cell, the result of NOR operation is stored at a cell where

the VOUT is applied. As appeared in the figure, the proposed 3D structure can improve the chip

density by storing the intermediate results in a different layer compared to the 2D structure.

Moreover, a memory layer and a computation layer are paired and they can be stacked with

multiple layers. Therefore, our design enables parallel operation with a single input signal. In

case of Fig. 3.8, the UPIM NOR operations of A and B, D and E can be executed in parallel with

a single PIM operation.

Table. 3.1 summarizes the comparison of the proposed UPIM to existing technologies.

Since UPIM performs logic operations in 1D1R cell structure, we achieve higher power efficiency

than other PIM technologies based on the bipolar switching mode. Moreover, when implementing

UPIM into the 3D CBA structure, it further overcomes the issue of the area overhead existing in
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Figure 3.7. Diagram of prior 2D (left) and proposed 3D (right) PIM structures

Figure 3.8. The integrated structure of 3D UPIM

the 2D PIM approaches.

3.4 Experimental Results

3.4.1 Experimental Setup

Performance and energy consumption of the proposed design have been obtained from

circuit-level simulations in a 45nm CMOS process and design kits of Cadence Virtuoso and

Spectre simulators. We use the memristor model [91] for our resistance-based memory design
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and simulation with RLRS and RHRS of 10KΩ and 10MΩ respectively. We implement the diode

model with saturation current (IS), ohmic resistance (RS) and emission coefficient (N) for

1.8e-5A, 1.43Ω and 1.22, respectively.

We test the efficiency of UPIM on six general OpenCL applications including Sobel,

Robert, Fast Fourier transform (FFT), DwHaar1D, Sharpen and Quasi Random. For image

processing, we use random images from Caltech 101 library [81], while for non-image processing

applications inputs are generated randomly. We compare the efficiency of the proposed UPIM

design with AMD R390 GPU and state-of-the-art PIM designs, [5, 6, 7]. We used Hioki 3334

power meter to measure the power consumption of GPU, while we use in-house cycle-accurate

simulator to estimate UPIM energy and performance.

3.4.2 Energy and Performance

As discussed in Section 3.3.1 and 3.3.2, our unipolar-based logic is operated in the 1D1R

structure, which shows lower static power consumption by reducing sneak current dissipation.

Fig. 3.9 presents the static energy saving of 1D1R over 1R structure. The energy has been

estimated with the total energy consumed by three input memristors in read condition (VDD=1V)

during the memristor switching time of 1.1ns. As array size increases, an energy saving of

1D1R over 1R structure is enhanced due to an increase of unselected cells, the sneak current

path. Based on our experimental results in the range of 25∼10K cell array, our estimation shows

that the 1D1R structure achieves up to 100× static energy saving at the 100Mb memory size

compared to the 1R structure.

Table 3.1. Performance of proposed UPIM and other technologies

IMPLY [5] MAGIC [6] 2D-UPIM 3D-UPIM
Cell Structure 1R 1R 1D1R 1D1R

Condition 2(Vcond , Vset) 1(V0) 2(Vin, Vout) 2(Vin, Vout)

Functions IMPLY (False)
OR, NOR, NOT,

AND, NAND
Power High leakage High leakage Low Low

Density Low Low Low High
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Fig. 3.10 shows the energy and energy-delay product (EDP) improvements of running

applications on proposed UPIM and state-of-the-art PIM designs [5, 6, 7], which use 1D1R and

1R cell structures, respectively. All results are normalized to energy and EDP of AMD GPU.

For each application, the size of the input dataset is fixed to 512MB. In traditional cores, the

energy and performance of computation consist of two terms: computation and data movement.

In conventional cores, the data movement is restricted by a small cache size of a transitional

core which increases the number of a cache miss. Consecutively, this degrades the energy

consumption and performance of data movement between the memory and caches. In contrast,

in PIM architecture the dataset is already stored in the memory and computation is a major cost.

Although the memory-based computation is slower than transitional CMOS-based computation

(i.e. floating point units in GPU), in processing the large dataset, the PIM works significantly

faster than GPU. Our evaluation shows that UPIM achieves 31.3× energy efficiency, and 113.8×

EDP improvement as compared to GPU. As compared to the state-of-the-art PIM design based

on the bipolar switching mode, UPIM achieves 3.1× lower energy consumption. The higher

efficiency of the UPIM comes from its more efficient approach in calculating a single NOR

operation as explained in Sec. 3.3.2.

3.4.3 Process Variations

The UPIM design uses a configurable resistor, RG. To make our design robust, we

determine the resistor value with consideration of process variation, which most of today’s

technology suffers. In our experiment, there are two major factors that induce process variation,

memristor dimension, and near-far cell difference. The dimension variation comes from a

diameter deviation during lithograph and etching process in the formation of pillar memristors.

This results in the resistance variation on UPIM, since a memristor resistance with a

cylindrical shape has an inverse dependency with its diameter [92]. The resistance variation

also occurs between near and far cells in a memory array. We consider the near-far effect on

the UPIM operations in a mat array with the size of 1Mb, which is an atomic access unit for a
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Figure 3.9. Static energy saving of 1D1R over 1R (normalized to dynamic energy)

single memory operation [93], as shown in Fig. 3.11(a). When RG and ROUT are located on an

edge of the mat, the resistance recognized from either RG or ROUT is different over near and

far cells. For example, in the case of the far cells, the BL resistance is added to a memristor

resistance. Since VBL is the electrical potential of the point at which RG meets the BL, RIN [1023]

additionally includes the resistance of the BL connected to 1024 cells, while RIN [0] does not

have such an effect.

Fig. 3.11(b) shows VBL characteristic as a function of RG, when input values are 00 and

01, considering the factors of the process variation. All VBL transfer curves are presented with

dimension variation of 10%, denoted as (H). As RG increases, the electrical potential in the

BL increases due to an escalation of the voltage applied to RG. VOUT −VBL has to be higher

than VSET for the case of 00 and lower than VSET for other cases, i.e., 10,01,11. Thus, the gap

between VOUT −VBL@10 and VOUT −VBL@00 needs to be enough wide for operation stability.

The voltage gap, denoted as VBL margin, is tunable by adjusting RG value. Fig. 3.11(c) shows the

simulation results of the VBL margin for different RG. We extract an optimized RG point from

the graph of VBL margin with an RG. Based on this analysis, we choose the optimal RG value,

RG,OPT , by 300KΩ to guarantee computation accuracy, despite existing process instability.
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Figure 3.10. Energy and Energy-delay product improvement of proposed UPIM and state-of-
the-art [5, 6, 7] for different applications.

3.4.4 Evaluation for Area Efficiency

We evaluated the area efficiency of our design as compared to the MAGIC [6], a state-of-

the-art PIM design. The area efficiency of the PIM techniques is mainly dependent on two factors,

i.e., the area overhead for intermediate cells and for interconnects. The two overheads were

defined by ALOGIC/AMEM and AINT/AMEM where ALOGIC and AINT are the area of additional

cells for logic functions and interconnect design, and AMEM is the area of original memory cells.

As shown in Fig 3.12(a), the UPIM outperforms the MAGIC in terms of the logic overhead.

Since the UPIM design stacks the intermediate cells on different layers, it can implement the

arithmetic operations, i.e., addition and multiplications, without area penalty for the logic. On

the other hand, Fig. 3.12(b) shows the effect of 3D-stacked structure on integration density

for the interconnects. The result shows that the interconnects in the 3D-stacked design require

additional overhead for vertical shifts. However, since the UPIM design exploits the vertical

transistors for the interconnects, it occupies less area over the conventional planar transistor. This

makes the interconnect overhead minimal, i.e., only 3.1% compared to the MAGIC design [94].
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Figure 3.11. VBL margin and RG optimization considering process variation

Fig. 3.12(c) shows the area efficiency comparison in terms of the cell size for different 3D stack

decisions. Although the cell size difference between UPIM and MAGIC is less than 5% in a

single layer, the efficiency increases as more stacks are exploited. For the six-layered structure,

the cell size of UPIM reaches 0.67F2, which is much less than 4F2, i.e., the minimum cell size

of any 2D-based memristor design [95].

3.5 Conclusion

In this chapter, we presented an energy efficient and high-density PIM architecture which

enables logic-in-memory based on unipolar-switching memristors. The proposed design resolves

the static power issue due to the sneak current by implementing the logic in the 1D1R cell

structure. Our design also addresses the low cell-density of other PIM technologies due to

extra area consumption for storing computation results by implementing them in 3D CBA. The

experimental results show that our design presents 3.1× and 31.3× improvement in energy
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Figure 3.12. Overhead and cell size comparison between UPIM and MAGIC [6]

consumption compared to the state-of-the-art PIM designs [5, 7, 8] and AMD Radeon 390

GPU [36], respectively. In the following chapter, we address another approach to PIM design,

identifying the existing problems with sense amplifier (SA)-based PIM technology, and present

our technology to overcome this.

This chapter contains material from Joonseop Sim, Saransh Gupta, Mohsen Imani,

Yeseong Kim, Tajana Rosing, ” UPIM : Unipolar Switching Logic for High Density Processing-

in-Memory Applications”, ACM Great lakes symposium on VLSI (GLSVLSI), 2019. The

dissertation author was the primary investigator and author of this paper.

53



Chapter 4

Current-Sensing Adder for PIM Designs

PIM technologies either use a cell-based computation in which the result of the operation

of multiple input cells is stored in the output cell as a resistance value, or implement the

logic function by modifying the current sensing circuit of the NVM. In the previous chapter,

we discussed the cell-based computation, addressing issues in current technology, and we

presented our ‘UPIM’ design as an alternative that solves the power consumption problems

of the technologies using the bipolar switching method. In this chapter, we discuss another

PIM approach, sense amplifier (SA)-based PIM. We analyze existing PIM circuits, point out

the limitations of performance due to their multi-cycle operation, and present our design that

implements single cycle operation using novel device technology.

4.1 Introduction

Although many PIM techniques have been proposed so far, they support limited basic

functionalities such as basic bitwise operations (AND, OR, and IMP), which are only applicable

to specific applications. For example, the designs shown in [9, 29] support bitwise operations

but cannot support arithmetic functions like the addition and multiplication. The techniques

in [96] have been designed exclusively for accelerating neural network algorithms. Many

applications including machine learning algorithms and image processing involve complex

functions [97, 98, 13]. Hence, several techniques have been proposed to perform functions like
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addition and multiplication in NVM architectures [5, 18, 8, 30]. However, they execute these

functions by combining multiple boolean operations (IMP, NOT, NOR). Therefore, they are

inherently slow due to their multi-cycle operation as well as slow processing speed.

In this chapter, we present a new PIM architecture, called LUPIS, which enables the

addition and multiplication in an efficient manner. We design a new sensing circuit which uses

the analog properties of NVM. We simplify computation by exploiting the latch-up effect of

thyristor devices to directly generate the results from the input data without any intermediate

logic. We further leverage the back-down effect at latch-up points of the thyristor to implement

functions with minimal increase in the number of gates. Also, the proposed design performs

the operations in a modified sensing circuit, which is compatible with the conventional current

sense amplifier (CSA). It does not need additional cells to support calculations, thus requires

negligible area overhead. We show that the proposed LUPIS can improve performance and

energy efficiency of many popular applications such as machine learning and data analysis,

which involve a large number of additions and multiplications.

The main contributions of this work are listed as follows:

• We present high performance and low-cost PIM architecture based on the latch-up effect

of thyristors, enabling single-cycle addition (ADD), and significantly improving the

performance of multiplication (MUL).

• Our design requires no additional cell array for processing, hence can be an excellent

candidate for the storage class memory which has been considered as the main application

of memristor-based products.

• Our experimental results show that LUPIS can provide 12.7× speedup and 20.9× energy

efficiency as compared to the state-of-the-art PIM accelerator, APIM [8].
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4.2 Related Work

The emerging nonvolatile memory (NVM) technologies such as phase change memory

(PCM) and resistive RAM (ReRAM) are considered good candidates for PIM due to their high

density, scalability, and low power consumption [28, 27]. However, the supported functionality

in most of the PIM designs is limited to either bitwise operations or operations derived from basic

bitwise operations which require multiple cycles. For example, [29, 9] proposed a sensing circuit

to implement the basic bitwise operations such as AND, OR, and INV. However, they do not

support addition and multiplication, which are the critical arithmetic functions involved in many

applications such as machine learning algorithms and image processing [30]. Several designs

presented in [5, 18, 8, 6] have designed the full adder function based on bitwise operations. Since

these approaches implement the operation by combining multiple basic operations, e.g., NOR

or IMP, they require tens of cycles. They include computing the intermediate outcomes until

obtaining the final results. Thus, these designs pose inevitable timing overheads. In addition, the

considerable area overhead due to the extra processing cell arrays makes them unsuitable for

storage class memory, which demands high-density integration.

4.3 Background and Motivation

4.3.1 NVM Sensing Scheme

Emerging nonvolatile memories such as ReRAM, STT-RAM and PCRAM can be classi-

fied as the resistance-based memories. These technologies store and read the data by changing

the cell resistance, e.g. its high and low resistance states are interpreted as logic 0 and 1 respec-

tively. One of the major differences between NVM and DRAM is the sense amplifier design.

While charge-based DRAM uses a voltage sense amplifier (VSA) which detects the electronic

potential between the bitline (BL) and bitbar-line (BL), NVM uses a different current sense

amplifier (CSA) due to its better distinguish-ability of the resistance difference than the VSA.

Fig. 4.1a shows the sensing scheme of the conventional CSA [99]. The data in a memory cell

56



Figure 4.1. Conventional Sensing Scheme for NVM

is determined by assessing the current from the selected memory cell. When the current from

the selected BL (IBL) and the current from the reference cell (IREF ) are mirrored to (I1) and (I2)

respectively, they are compared to each other and changed to voltage signals (DOUT ) [100]. The

state of RCELL < RREF is considered as logic ”1” and the other case is considered as logic ”0” as

shown in Fig. 4.1b. The conventional CSA is capable of only judging the resistance from the

selected cell higher and lower than reference resistance. In this chapter, we present a current

sensing scheme, which also enables arithmetic functions, i.e., addition and multiplication inside

the memory module, compatible with the conventional sensing scheme.

4.3.2 Thyristor Latch-Up

We exploit a vertical PNPN structure commonly referred to a thyristor [101]. Fig. 4.2a

shows the structure used in our design. The structure has three P-N junctions and is equivalent to

two cross-coupled bipolar junction transistors (BJTs) as shown in Fig. 4.2a. This structure has a
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Figure 4.2. (a) Thyristor Structure and (b) Voltage-Current Behavior

short-circuit path, often referred to as latch-up in CMOS design. When one of the two BJTs gets

forward biased, it feeds the base of the other BJT. This positive feedback increases the current

until it saturates to Ishort .

Fig. 4.2b shows the voltage and the current behaviors of the structure. In the initial state,

a thyristor has high resistance (2MΩ in our experimental setup). When the voltage across the

device (VAB) is increased, the device keeps the high resistance state until VAB reaches the latch-up

voltage (VLU ). Latch-up occurs at VLU and the current through the cell (i.e., from A to B in

Fig. 4.2a) abruptly increases until the applied bias turns back to the latch-down voltage (VLD). In

order to restore the thyristor device resistance to the original state, a reverse bias, VRC, should be

applied to VAB. It moves the minor carriers out from the base regions, and the device is set to the

initial state again. In the rest of the paper, we call this recovery state as the write-back step.

58



Figure 4.3. Proposed Sensing Circuit for Addition

4.4 Proposed Design

4.4.1 Latchup-based Addition

we present a new sensing circuit, which exploits the thyristor latch-up effect, to enable

ADD operation in a cycle. Fig. 4.3 is the schematic of the proposed design. The design consists

of two parts: the current mirror and the adder. Once three rows of a memory block corresponding

to the input values (A,B,Cin) are activated, the total current from the activated rows denoted as

IBL is delivered to the selected BL. The current mirror circuit in Fig. 4.3 copies the IBL to I1 and
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Figure 4.4. Voltage Transfer as an Input Current (IBL)

I2 and delivers them to Carry Out (Cout) and Sum branches, respectively. Our design computes

the outputs by distinguishing the total current amount reached to the sensing circuit.

Fig. 4.4a presents the truth table of a full adder. The sum is the exclusive-or (XOR) result

for the three inputs and the carry out is the “majority” function of the inputs. The three inputs

are interchangeable in that the order of them does not affect the output. In the memristor devices,

the amount of the bitline current is the combination of one Ron and two Ro f f . Based on this

characteristic, there are four different cases depending on the current amount, I000, I100, I110, and

I111, according to the number of high (0) and low (1) resistances in the memristors of activated

rows.

Fig. 4.4b shows how the proposed circuit distinguishes the four current regions to create

the desired Cout and Sum. In our circuit design, there are three major voltage nodes (i.e., V1,

V2, and V3 shown in Fig. 4.3) whose potential determine the final outputs of the Sum and Cout

by the following digital logic gates. The voltage of each node is transferred as a function of

the current in the selected bitline. VT HR is a threshold value which determines whether an

input potential is interpreted as a logic 0 or 1 (i.e., any value less than VT HR is 0 and any value

above VT HR is 1.) Let Rthy be the resistance of the thyristor explained in Section 4.3.2. Then,
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the electric potentials at V1, V2, and V3 are represented by V1 = I1 · (2R), V2 = I2 · (3R) and

V3 = I2 · (2R ·Rthy)/(2R+Rthy), respectively.

As for the carry-out function, V1 node has higher electric potential than VT HR in cases of

I110, I111 when it delivers a logic 1 to Cout through two inverters which strengthen the signal. For

the I000 and I100 cases, V1 node a has a lower potential than VT HR and Cout presents a logic 0.

The Sum function uses branches where V2 and V3 nodes are located. As shown in

Fig. 4.4b, V2 node has a lower potential than VT HR only in case of I000 and its inverted logic 1 is

delivered to the MUX, pulling down the Sum potential to the ground, i.e., logic 0. In the opposite

cases, i.e., I100, I110 and I111, V2 has a logic 1, and the MUX delivers the data from the connection

where V3 is located, so that V3 decides the outputs for the three cases. For the I100 and I110 case,

the V3 shows either logic 0 or logic 1 depending on the input current in a similar way of V1, since

the thyristor is not activated in this region. However, once the current increases and reaches

the I111 range, the latch-up occurs in the thyristor device, and thus the electric potential of V3

abruptly falls below VT HR, making Sum logic 1. With this logic, our design is able to complete

all Sum and Cout results. Once the final outputs are generated, we reset the thyristor for the next

cycle, by invoking the write-back procedure to turn the thyristor resistance back to the original

state. In the case of N-bit addition, Cout is written back to the memory and is used to calculate

the results for the next bit.

In our experimental setup, we assume VT HR = VDD/2 and set R=20kΩ to yield the

described voltage transfer functions. The latch-up also affects the potential of the V2 node.

However, the potential V2 does not drop below VT HR in our design, since the thyristor resistance

on the conductance state is very low compared to 2R, a higher portion of the supply voltage is

applied between V2 and V3. This keeps the V2 over the VT HR and V3 below VT HR with a marginal

window in the case of I111.
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4.4.2 Multiplier Design

Implementing multiplication in memory is challenging due to a large number of parallel

computations and shift operations for each multiplicand bit. The multiplication is performed

in three stages, partial product generation, fast addition, and final product generation. The

partial product generation stage generates n partial products, where n represents the size of the

multiplier. They are propagated to the next stage. The fast addition method used in [8], optimizes

the latency involved in the addition of the generated partial products. They implement tree-based

carry save addition shown in Fig. 4.5 to push carry propagation to the last stage, hence enabling

faster operations. A carry save adder implements half-addition at each bit. It takes in three inputs

and generates two outputs, sum and carry, resulting in a 3:2 reduction. Successive carry save

additions reduce the initial n partial products into two numbers which are then added in the final

stage.

Although we use similar techniques as those in [8] to support multiplication, our work

is different from the implementation perspective. We design novel circuits using a thyristor

device to enable single-cycle computations. For single-bit addition, which is the basic operation

to implement MUL, the design in previous work has larger latency than the proposed design.

Moreover, it uses interconnects to enable shift operations which require a large number of

additional transistors. It induces significant area overhead, which grows exponentially as the

block size increases. Our design generates intermediate results at the sensing circuits and writes

them back for further computations. Hence, the shift operations are dealt with while writing

the results back to the memory. This does not require the expensive interconnects used by the

previous work. Furthermore, we can utilize the thyristor write-back, which happens at the end of

the ADD operation, to hide the write latency.
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Figure 4.5. (a) Carry save addition (b) Tree structured addition of 9 n-bit numbers

4.5 Experimental Results

4.5.1 Experimental Setup

Performance and energy consumption of the proposed design have been obtained from

circuit-level simulations in a 45nm CMOS process and design kits of Cadence Virtuoso and

Spectre simulators. We use VTEAM memristor model [91] for our resistance-based memory

design and simulation with Ron and Ro f f of 10KΩ and 10MΩ respectively. The thyristor device

has been designed and simulated using Silvaco ATLAS TCAD software to investigate the

latch-up effects to the PIM architecture and optimize the process conditions.

To evaluate the efficiency of LUPIS for practical applications by designing a cycle-

accurate simulator which models the memory function. We compare the proposed design

with AMD Southern Island GPU, Radeon HD 7970 device, which is one of the most recent

GP-GPU architectures. We compared the efficiency of LUPIS to the GPU architecture for

four OpenCL applications: Sobel, Robert, Fast Fourier transform (FFT) and DwHaar1D. For

image processing, we used random images from Caltech 101 [81] library, while for non-image

63



processing applications inputs were generated randomly. These applications involve many

additions and multiplications, and we further approximated other common operations such as

square root with the two operations. In the application level, we also modified the source code

of the applications so that applications utilize PIM-based addition/multiplications as much as

possible, e.g., using Taylor expansion.

4.5.2 Device Optimization

In order to optimize the process conditions of a thyristor used in our proposed design, a

device simulation was performed using Silvaco Atlas. As shown in Fig. 4.6a, we used a lateral

PNPN structure consisting of a p-type Si substrate, n+contact, n-well, and p+contact, with doping

concentrations of 1× 1016cm−3, 1× 1020cm−3, 2× 1016cm−3 and 1× 1020cm−3. A width of

0.1 um was used for the 2-dimensional simulation. For the latch-up simulation, 1.0 us was used

for Shockley-Read-Hall life times for both electrons and holes, and the Selberherr model was

applied for the impact ionization. Fig. 4.6(b) illustrates the simulation result with d1=d2=0.2um.

Based on this simulation result, we exploited a VLD of 0.89 V, a VLU of 0.98 V, an RH of 1.9

MΩ, and an RL of 1.7 kΩ, where RL and RH are the resistance of thyristor in the higher and

lower conductance state respectively. As shown in Fig. 4.6c and Fig. 4.6d, RH and VLU can be

easily controlled by changing either the device structure or the doping concentration of the p-

and n- regions. This is because RH and VLU in the high resistance regime are dominated by the

characteristics of the reverse biased PN junction at the central p- and n- regions, so we can tune

them by varying the device structure and/or doping process conditions. Since there is a clear

dependency between RH and VLU , i.e., VLU increases as increasing RH based on our simulation

results, the thyristor ensure stable support of device characteristics that upper circuit and system

design need with marginal process window.
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Figure 4.6. (a) A cross-sectional schematic of the lateral PNPN structure, I-V characteristics of
(b) d1=d2=0.2 um, (c) various d1=d2 for 0.2, 0.22, 0.25, and 0.3 um, and (d) various ND/NA for
1/2×1016, 2/3×1016, 3/4×1016, and 4/5×1016cm−3

4.5.3 Energy and Performance Comparison

Circuit level

Table 4.1 shows the 1-bit addition results of proposed LUPIS and other prior technologies.

As explained in Section 4.2, most of the current PIM approaches including selected ones [8, 5, 7,

18] use bitwise-based logic (i.e. calculating IMP, NOR, NOT) to execute 1-bit addition. Thus,

they require inevitable sub-cycle executions for the intermediate bitwise computations, creating

huge latency bottleneck, e.g., the long latency of SET cycle [8]. In contrast, since our LUPIS

design executes the ADD operation in the sensing circuit in a single cycle, the total latency is

determined only by the sensing circuit delay, without any extra latency from the memristor. Thus,

our proposed design can achieve higher speedup than all the other techniques. Furthermore, our
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Table 4.1. performance of 1-bit adder for LUPIS and other technologies

[5] [18] [8] [7] This work
No. Memristors 3N+5 3N+3 3N+8 N+2 3N
Cell efficiency 38% 50% 27% 33% 100%

Latency 149.6ns 31.9ns 14.3ns 9.9ns 33.3ps
Energy 3237fJ 690fJ 289fJ 214fJ 7.9fJ

design shows superior cell efficiency since it does not require additional cells. This makes our

design a good candidate for NVM-based PIM architectures, in particular, for the storage class

memory which should handle a large amount of data.

Application level

There are several applications which can benefit from the PIM-based addition and

multiplication. Fig. 4.7 shows the speedup and energy efficiency improvement of, i) the proposed

design and ii) a state-of-the-art PIM technique, APIM [8], over the AMD GPU core. The

results present that our proposed design can achieve significantly better energy and performance

efficiency. Apart from the superior efficiency improvement, our evaluation also shows that

LUPIS energy consumption increases linearly with the data set size since the PIM capability

can highly hide the cost of data movements. In contrast, the energy and execution time of the

GPU case do not scale linearly with the data size, as the larger dataset requires higher costs for

the data movements before processing. To sum up, our design can achieve up to 62× speedup

and 484× lower energy consumption than GPU architecture. As compared to APIM, the results

present 12.7× and 20.9× higher efficiency for speedup and energy respectively.

4.5.4 Overhead

Fig. 4.8 shows the area and latency overhead of our design compared to the TC-adder [7],

the most competitive design in cell efficiency, as described in Section 4.5.3. The area overhead

has been estimated by the ratio of the additional number of cells and gates as compared to

the conventional memory design. As shown in Fig. 4.8a, LUPIS has 21% area overhead,
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Figure 4.7. Speedup and Energy Efficiency of Proposed LUPIS and APIM [8] over Different
Applications.

which outperforms the TC-Adder by 10× since it just takes insignificant modifications to the

conventional CSA circuit and no additional cells are required.
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Figure 4.8. The Overhead of Area (a) and Latency (b)

As for the latency overhead, our design requires the write-back step after the sensing

operation to initialize the state of thyristor for the next operations. As shown in Fig. 4.8b, the

overhead caused by the write-back inclusion is one cycle. This is negligible compared to the

latency in the TC-Adder requiring 9 cycles per operation [7]. Furthermore, the overhead due to

the write-back step can be utilized in the MUL operation to hide the latency of shift operations

as explained in Sec. 4.4.2.

4.6 Conclusion

We have presented an ultra-efficient PIM architecture which effectively enables addition

and multiplication inside memory by utilizing the thyristor latch-up effect. The proposed design

also addresses the low cell-efficiency issue of other PIM technologies due to redundant cell

requirements for logic operations by executing the calculations in the sensing circuitry. The

experimental results show that, compared to a state-of-the-art PIM accelerator [8], our design

presents 12.7× and 20.9× improvement of latency and energy consumption. In the following

chapter, we present the memory architecture techniques for maximizing performance through

parallel operation using the PIM techniques covered in Chapter 3 and Chapter 4.

This chapter contains material from Joonseop Sim, Mohsen Imani, Woojin Choi, Yeseong

Kim, and Tajana Rosing. “Current-Sensing Efficient Adder for Processing in Memory Design.”
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Non-Volatile Memory Workshop (NVMW), 2019. The dissertation author was the primary

investigator and author of this paper.

This chapter contains material from Joonseop Sim, Mohsen Imani, Woojin Choi, Yeseong

Kim, and Tajana Rosing. “Current-Sensing Efficient Adder for Processing in Memory Design.”

Non-Volatile Memory Workshop (NVMW), 2019. The dissertation author was the primary

investigator and author of this paper.
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Chapter 5

High Performance Mat-parallelized PIM

In Chapter 3 and 4, we presented technologies that can improve the performance of

NVM-based PIM designs through device and circuit level contributions. To implement these

novel PIM designs in the existing NVM architecture, however, requires further performance

enhancement factors since NVM memory leveraged DRAM or SRAM organization so far instead

of designing architecture that maximizes its strengths. In this chapter and Chapter 6, we present

technologies that can further accelerate PIM designs by optimizing the existing architecture

to maximize NVM and PIM performance. This chapter presents a multi-bit parallel execution

method for local bit acceleration within a mat, while Chapter 6 presents a multi-mat parallel

operation for the very long word execution, maximizing performance improvement of our PIM

designs.

5.1 Introduction

Recent work modifies sense amplifiers (SA) to enable computing [9, 26, 87, 86, 29, 102]

in PIM. Since the NVM uses the current-mode SA, the SA size of the NVM is much larger than

that of the DRAM which senses a voltage difference between the bitlines [9, 103]. As a result,

a SA of the NVM takes charge of multiple BLs, and multiple bits under a single SA cannot

operate in parallel. In the conventional memory, this restriction has not been critical since the

off-chip bandwidth is limited. The work in [104] showed that, since the commodity memory
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hierarchies were designed targeting the processor sector size, increasing atomic size leads to

performance degradation [19]. In a DDR3 channel, for example, the 64-bit I/O interface operates

at 800MHz, providing 12.8GB/s of memory bandwidth. To support this channel bandwidth, with

a memory subsystem that has 8 chips-per-rank, 8 banks-per-chip, 32 subarrays-per-bank and

32 mats-per-subarray, a bank in the memory, which has a 200MHz internal frequency with an

8-bit prefetch, outputs 8 bits at each channel clock. This estimate implies that a mat atom size

is less than 1-bit per single clock frequency, meaning mat-level parallelism does not effect on

system performance due to narrow off-chip bandwidth. In contrast, PIM design needs to execute

multiple BLs in parallel as much as possible since the channel bandwidth is not the bottleneck.

However, the existing NVM-based PIM techniques have to execute each bit connected to a single

MUX sequentially in the mat array due to limitations to the size of SA, resulting in much lower

performance.

In this chapter, we present a high-performance PIM architecture which enables the

simultaneous execution of the PIM operations for multiple BLs. Baseline NVM architecture is

based on the work in [103, 105] whose m×n mat structure is shown in Fig. 5.1(a). A mat is an

atomic access unit for a single memory operation [93]. It has its private SAs and decoders. The

WLs and BLs are paired with the local wordline (LWL) decoder and SA to control which bits

are selected from the array. Compared to DRAM, the most commercialized memory product, a

big difference in NVM design is a SA structure. While in DRAM SA, each BL is connected to

an individual SA circuit, NVM array structure places a multiplexer (MUX) in front of the SA,

which are used to select a BL connecting to a single I/O line from the multiple BLs, denoted as

k lines in Fig. 5.1(a). Therefore, the local BLs tied in a MUX (i.e. 8BLs or 16BLs) cannot be

accessed in parallel but in bit by bit mode.

Our design, called MAPIM (Mat Parallelism for High-Performance Processing in Non-

volatile Memory Architecture), is built with two novel components: multi-column/row latch

(MCRL) and shared SA routing (SSR). Fig. 5.1(b) shows the sensing scheme of the pro-

posed MAPIM. In baseline NVM structure, the number of SAs in a mat ranges from 32 to

71



Figure 5.1. Conventional NVM and proposed MAPIM sensing structures

64, which is similar to the number of bits in a word. MAPIM shares the SAs in a mat and thus en-

ables word-size of multiple bits to be sensed in parallel. The MCRL activates multiple WLs/BLs

at the same time, so that the PIM operations are requested in a row/column-parallel way. The

SSR allows the requested multi-BLs to use multiple SAs across a MUX, thus fully utilizing the

SAs of the mat for the parallel execution in the PIM operations.

Our contribution can be summarized as follows:
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• We show that the SA size is a significant constraint to achieve a further performance of

PIM operations.

• Our MAPIM design parallelizes multiple-BLs execution within a mat. We also show the

detailed circuit-level design with the robustness and sensitivity analysis.

• The proposed MCRL design enables efficient multi-row/column activations. Unlike the

state-of-the-art design, it holds the activation signals with a wide margin of µs order,

allowing to select any target operands for the parallel PIM computations.

• With the SSR technology, the proposed MAPIM fully utilizes the limited number of SAs

located in a mat, when the PIM operations are performed for a large number of rows and

columns.

Our evaluation shows that the proposed MAPIM achieves up to 339× speedup and 221× energy

saving compared to AMD Radeon R9 390 GPU architecture, and 16× speedup and 1.8× energy

saving compared to the state-of-the-art PIM designs [9, 10].

5.2 Related Work

Several works modified the SA to enable the PIM function on the existing architecture [9,

26, 87, 86, 29, 5, 102]. However, the current-mode SA of NVM, which takes a larger area

compared to the voltage-mode SA of DRAM, hinders the local parallelism since the multiple

BLs assigned to a multiplexer should operate in sequence. Our work addresses this lack of

parallelism by proposing a novel design utilizing address latching and SA sharing techniques.

Parallelism at rank [106], bank [107], subarray [108] has been actively studied, but mat-level

parallelism has not been deeply explored since it is not very effective in conventional off-chip

memory due to the boundness of channel bandwidth. However, PIM design can fully utilize the

mat parallelism to performance improvement. In this chapter, we enable mat-level parallelism

with insignificant modification to state-of-the-art NVM architecture.
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Figure 5.2. Mat structure of proposed MAPIM design

5.3 Proposed MAPIM design

5.3.1 Overview

Fig. 5.2 shows the mat structure of MAPIM. Mat is the building block of a bank, a fully-

functional memory unit [1]. It consists of cell arrays, SA, and the local decoder. The figure does

not show the upper bank level design, which remains the same as before [103]. We introduce

two new structures to enable mat-level parallelism: multi-column/row latch (MCRL) and shared

SA routing (SSR). A local bitline (LBL) decoder is placed under a local word-line (LBL) decoder

to ease layout. The decoded signals from the LWL decoder and LBL decoder are transferred to

the WLs and local Y-switch (LYSW), respectively, to activate the corresponding WLs and BLs

as shown in Fig. 5.2. MCRL, denoted as (A) in Fig. 5.2, refers to both multi-column latch and

multi-row latch. It serves as the buffer that keeps the sequentially activated WLs and signals to

the LYSWs from the decoder and enables them simultaneously. SSR, marked as (C), enables

multi-bit execution in parallel by sharing the limited number of SAs in a mat to the requested

BLs. NVM cell is sensed by the resistance difference between a logical 0 and 1, so it is less

sensitive to the BL capacitance as compared to the conventional DRAM. This allows NVM SAs

to be delocalized within a mat and be flexible to associate with segmented BLs.
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Figure 5.3. Timing graph of two requests from two different BLs

5.3.2 Multi-Column/Row Latch (MCRL)

We next discuss each of our design’s components in detail. Fig. 5.2(A) shows a circuit

unit of the proposed MCRL corresponding to a single WL as a representative. It consists of four

components: 1 a discharge transistor, 2 a transfer gate, 3 a driving gate, and 4 a feedback

inverter. First, the discharge transistor resets all WLs to ground. In the second step, the transfer

gate passes the decoded signals from the local decoders to the latch. The transfer gate is made

up of two transistors, an n-channel MOSFET (NMOS) and a p-channel MOSFET (PMOS),

connected in parallel since they need to transfer both 0 and 1 without loss of strength. Following

two inverters, a driving gate and a feedback inverter, drive the decoded signal to ‘L Out’ in a cell

array. When the input signal from the decoder is low, a node ‘L’ potential does not change since

the initial status of the node is low. When the decoded signal is high, i.e., a corresponding WL

is activated, the node ‘L’ potential flips to one and the inverted potential turns the transfer gate

off, so the input signal is latched in the MCRL. The feedback inverter is used to prevent the node

‘L’ from floating when the transfer gate is off. It needs to be weaker compared to the transfer

gate for faster switching. In our experiments, the drivability of the feedback gate is set to 1/3 of

transfer gate for easy signal transference. The circuit evaluation of our MCRL design is shown in

Sec.5.4.2.
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5.3.3 Shared SA Routing (SSR)

As mentioned in Sec.5.3.1, NVM is less sensitive to BL length compared to DRAM.

NVM has a resistance-based operation, so its SA works by detecting current change across the

NVM cells. The work in [1] showed that the current-mode SA has a sub-linear dependency on

BL length, so cells can be sensed out of the cell array. Moreover, NVM read is not destructive

while DRAM’s is. Thus resistances such as MUX can be placed in front of SA. This gives

us more room to increase parallelism with our SSR design. Fig. 5.2(C) shows the proposed

SSR design. Compared to the conventional NVM SA design in which each SA corresponds

to their own LYSW as shown in Fig. 5.1(a), the LYSWs of our design share the SAs within

a mat as shown in Fig. 5.2(C). 16 BLs in an LYSW, described in Fig. 5.2(B), are allocated in

SA[0]∼SA[15]. All other LYSWs in a mat, i.e., LYSW[0]∼LYSW[15], share the SAs in the

same sequence. Consequently, 16BL-sets of all LYSWs in a mat have the same SA allocation

as shown in Fig. 5.2(C). In this work, we have 16 BLs in an LYSW and 16 LYSW in a mat for

illustration purposes. However, the actual array size can be flexible with a typical range of 8

BLs and 8 LYSWs to 32 BLs and 32 LYSWs as a function of the memory granularity. The LBL

decoder has two steps. Pre-decoding selects an LYSW in a mat. A subsequent decoding step

selects a BL in that LYSW. At a given LYSW selected in the pre-decoding, proposed MCRL

holds the consecutively activated BL addresses. Then the multiple signals buffered in the MCRL

enable multiple-columns to activate by turning on NMOS transistors in an LYSW as shown in

Fig.5.2(B). The selected BLs are read out simultaneously. The accessed data is assigned to the

corresponding SAs by our shared-routing method.

The latency of SSR is shown in Fig. 5.3, where tRCD is the row activation time, tRP is

the precharge time, and tCL is the column read time. A read cycle (tRC) is represented as tRC =

tRCD + tCL + tRP. Data restoration time is zero since the NVM is inherently non-destructive in

sensing operation. [109]. We define a new timing parameter, tCIT , the time interval between

sending two consecutive column addresses. The top of Fig. 5.3 presents the timing graph of the
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baseline in which the local BLs are read in sequential mode. The row address activates a WL

and the first column address (Col 1) activates a BL. Then the selected bit is sent to an assigned

SA. As our sensing circuit can perform a 1-bit addition, which will be explained in Sec. 5.3.4,

a carry-out of 1-bit addition is written back to the memory cell in the next bit and a sum is sent

to the cache. Once the Col 1 is activated, 1-bit operation and precharge have completed, during

tCL and tRP, then the Col 2 is activated for the next bit operation.

MAPIM temporarily holds on multiple columns requests, e.g. Col 1 and Col 2 as shown

on the bottom of Fig. 5.3, in the latch and they are activated simultaneously with the MCRL

activation request. While the conventional operation uses two tCL and one tRP for the two-bit

calculation as shown in Fig. 5.3, MAPIM uses one tCL for the same operation, which can accelerate

the requested operation by saving tCL. Note that tCIT is negligible compared to tCL and tRP

since multiple column latches occur inside the decoder logic whereas tCL and tRP are between

the on-chip memory controller and the off-chip memory. In N-bit operation, conventional design

takes N×tCL + (N-1)×tRP, while MAPIM takes tCL + (N-1)×tCIT . Since MAPIM consumes

a fixed amount of time, tCL, as the number of bits increases, the overall speedup of MAPIM

increases due to saving column read and precharge latency.

5.3.4 Sensing Circuits for Arithmetic Operation

Fig. 5.2(D) is the sensing circuit for the arithmetic operation in MAPIM. Our design

modifies a conventional SA [10], which determines the logical 0 and 1 by reading the cell

resistance, to perform 1-bit addition. We exploit 1-bit addition using our sensing circuit since the

addition is a building block of the order of operations for our application test. The current mirror

in Fig. 5.2(D) copies the IBL to I1 and I2 and delivers them to Carry-out (Cout) and Sum nodes,

respectively. IBL is the read current in a BL, accumulated from the selected three bits when three

rows are activated in a cell array. Fig. 5.4 shows how the circuit carries out 1-bit addition. Since

each memristor has two states, 0 and 1, there are four equivalent combinations of IBL: I000, I100,

I110 and I111 in the case of three-bit calculation. There are three voltage nodes: V1, V2, and V3,
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Figure 5.4. Sensing circuit for 1-bit addition

as shown in Fig. 5.2(D), whose potential determines the final outputs of the Sum and Cout . The

voltage of each node is determined as a function of the current, Cout and Sum nodes exhibit the

corresponding values in each case of IBL and finally result in the execution of 1-bit addition. Our

sensing circuit utilizes the thyristor latch-up effect [101] to execute the I111 region to create the

desired Cout=1 and Sum=1.

5.4 Experimental Results

5.4.1 Experimental Setup

We evaluated the performance and energy consumption of the proposed design as com-

pared to the work in [9, 10]. We used VTEAM memristor model [91] for our cell design with Ron

and Ro f f of 10KΩ and 10MΩ respectively. Circuit-level simulations are performed with Cadence

Virtuoso and Spectre based on a 45nm CMOS process. We compared the performance and energy

of MAPIM with AMD Radeon R9 390 GPU with 8GB memory. We modified Multi2sim [110], a

cycle-accurate CPU-GPU simulator, to evaluate the impact of different PIM designs when the

parallelized instructions are performed with the PIM operations. We experimented with four

applications, Sobel, Robert, Fast Fourier transform (FFT) and DwHaar1D.
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5.4.2 MCRL Robustness

Fig. 5.5 presents the result of circuit evaluation of MCRL in MAPIM and comparison to the

state-of-the-art design in [9]. For the latch design in [9], we observe that i) low signal drivability

leads to large area overhead to boost the signal across gates, and ii) the node, which holds the

signal (denoted as ‘L’ at Fig. 5.2(A)), is likely to be floating. These issues may make the latch

unable to hold the signal long enough for the multiple activations due to the leakage-current

dissipation. As shown in Fig. 5.5, the signal of the ‘L’ node in Pinatubo [9] is so weak as

that only 48% of the total signal strength at L In node is transferred. Moreover, the holding

latency is too short as to keep the signal less than a few ns. Considering our experimental setup,

tRC=tRP+tCL+tRP=28ns, the signal holding time in [9] is too low to keep the signal during only

one cycle.

In contrast, MAPIM proposed a robust circuit design for the multiple-addressed activation.

This benefit derives from the following novelties in our design: 1) the transfer gate can deliver

both high(1) and low(0) signals from the decoder without the loss of strength. 2) the feedback

inverter prevents the node inside the latch from floating, which suppresses the static power

consumption. As seen in Fig. 5.5, MCRL holds the activated signal for over 600ns. Although

we show the data for the range of 0∼600ns for easy illustration, our experimental results show

that MCRL retains the activated signal over a few µs without losing signal strength. This allows

MAPIM to keep the signal long enough for the three-row activation which is common in PIM

operation. Furthermore, the signal at the ‘L’ node is as strong as that at L In node in MCRL

design, thus ensuring robustness.

5.4.3 Performance Sensitivity to the Number of Bits

We compare the mat-parallelism in our design with two state-of-the-art PIM designs,

Pinatubo [9] and LUPIS [10], which execute sequential operations in a MUX. Fig. 5.6 presents

the latency improvement of MAPIM for addition and multiplication. The data in Fig. 5.6 is
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Figure 5.5. Circuit evaluation of the multi-activation latch between Pinatubo [9] and MAPIM

normalized to the latency of Pinatubo, set to 1. The latency of addition is evaluated from the

design in Fig. 5.2 while considering the timing parameters shown in Fig. 5.3. The latency of

multiplication is estimated by Eq. in [111],

tMUL ∝ [(M−1)+(N−2)] · tcarry +(N−1) · tsum +(N−1) · tand

where M and N are the multiplicand and multiplier, and tcarry, tsum, and tand are the latencies for

evaluating carry, sum, and AND, respectively. Although the latency improvement of MAPIM is

around 4 times for 2-bit operations, the improvement grows as the size of operands increases,

with 36× improvement for 32-bit operations. Both [9] and [10] use sequential mode in multi-

bit operation, thus having much higher latency. On the contrary, MAPIM buffered all required
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Figure 5.6. Latency improvement of MAPIM for arithmetic operations

addresses and activated them in a single request, so it takes one tCL regardless of the number of

bits, hence much better performance as the number of bit increases.

5.4.4 Parallelism Efficiency in Applications

We evaluate the efficiency of MAPIM with four OpenCL applications. Fig. 5.7 shows

the speedup and the energy efficiency of proposed MAPIM and two state-of-the-art PIM designs,

Pinatubo [9] and LUPIS [10]. All results are normalized to the value of unmodified AMD GPU.

The results show that the three PIM designs outperform the GPU-based computation for the

wide range of the memory size. It is because PIM designs reduce data movement costs. Among

the PIM designs, MAPIM achieves the best performance improvement as compared to the other

PIM techniques [9, 10]. For example, the proposed design is 339× faster and 221× more energy

efficient as compared to the GPU, and 16× faster as compared to the state-of-the-art PIM designs,

Pinatubo[9] and LUPIS[10]. This suggests that utilizing mat-level parallelism is key to designing

highly efficient PIM architectures.

5.4.5 Overhead

MAPIM adds a latch circuit and a routing block to each mat array. The area overhead has

been estimated by the ratio of the additional latch and sharing routing area over the corresponding

cell area. We assume 32 BLs-per-LYSW and 32 LYSWs-per-mat. The area estimates from
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(a) Sobel (b) Robert

(c) FFT (d) DwHaar1D

(e) Sobel (f) Robert

(g) FFT (h) DwHaar1D

Figure 5.7. Speedup and energy efficiency of proposed MAPIM to other PIM architectures [9, 10]
for different applications.
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Cadence p-cell data with 45nm process technology, the overhead incurred in MAPIM occupies an

area of 1.5um2, which is a 0.57% area overhead compared to a corresponding row of sub-array.

This is a very similar value to the work in [9] which has 0.49% area overhead but works for better

performance as shown in Sec. 5.4.2. MAPIM also shows outstanding area efficiency compared to

the work in [108], a state-of-the-art latch design for DRAM, showing an area of 42.9um2.

5.5 Conclusion

In this chapter, we presented a high-performance PIM architecture which enables mat-

level parallel operations. The proposed design accelerates the PIM applications whose perfor-

mance is not restricted by the off-chip channel bandwidth. The experimental results show that

our design presents 16× and 339× performance improvement compared to the state-of-the-art

PIM designs [9, 10] and the GPU architecture [36], respectively. The following chapter will

discuss a multi-mat parallel operation for long byte word processing common to many big-data

algorithms.

This chapter contains material from Joonseop Sim, Minsu Kim, Yeseong Kim, Saransh

Gupta, Behnam Khaleghi and Tajana Rosing, ”MAPIM: Mat Parallelism for High Performance

Processing in Non-volatile Memory Architecture”, IEEE International Symposium on Quality

Electronic Design (ISQED), 2019. The dissertation author was the primary investigator and

author of this paper.

This chapter contains material from Joonseop Sim, Minsu Kim, Yeseong Kim, Saransh

Gupta, Behnam Khaleghi, and Tajana Rosing. ”Multi-bit Parallelized Sensing for Processing

in Non-volatile Memory.” Non-Volatile Memory Workshop (NVMW). 2019. The dissertation

author was the primary investigator and author of this paper.
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Chapter 6

Multi-mat Parallelized Execution for Hy-
perdimensional Computing

Today’s emerging computing techniques, such as deep neural network (DNN) graph

processing and hyper dimensional (HD) computing, are increasingly requiring very large data

operations. This inevitably requires the system to have higher performance and parallelism than

ever before. As of Chapter 5, we are presenting fine-grained parallelism to further accelerate

PIM design through architectural optimization of existing commodity memory. In the previous

chapter, we covered intra-mat parallelism techniques for the acceleration of local bit processing.

In this chapter, we present inter-mat parallelism method for long word processing that can

maximize performance improvement. We present an example of a long word operation used in

HD computing, and demonstrate how to make simple long word read processing possible by

taking full advantage of the existing architecture for each logic operation and searching.

6.1 Introduction

Cognitive systems that have the ability to analyze, interpret, and reason like the human

brain are gaining in popularity. The recent spike of neural networks (NNs) has accelerated

the interest in bio-inspired computing [112]. However, conventional computing based on the

binary number becomes increasingly inefficient due to the computation complexity and limited

resources of embedded devices [113]. Hyperdimensional (HD) computing is a new paradigm of
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brain-inspired computing that emulates the neuron’s activity. Instead of using binary numbers,

it represents information by allocating data points to vectors in a high-dimension space, called

hypervectors (HVs). HD computing has a number of advantages over the existing machine

learning algorithm such as deep neural networks: 1) fast and one-shot learning, 2) simplicity of

calculation, e.g., no need of back propagation, and 3) robust against failure and noise [114].

The HD computing processes the high dimensionality of the hypervectors, e.g., at least

D = 10,000. Thus, the ideal computing platform should offer i) high parallelism for arithmetic

operations and ii) sufficient memory bandwidth. Prior works have implemented HD computing

on various hardware (HW) platforms. For example, the works in [115, 114, 116] discuss the

HD model based on the CPU and FPGA. The work in [117] designed a ReRAM-based HD

accelerator with an error-resilient and energy-efficient architecture. However, high-efficient HD

computing is still challenging even on these cutting-edge platforms. The CPU has a limited

number of cores, thus significantly limiting potential parallelism that the HD computing can

achieve. Although the GPU is an attractive platform in terms of the parallelism, the last-level

cache (LLC) size is limited. For example, when D = 10,000, the cache memory can only store

120 hypervectors, which is insufficient for large size training datasets of practical classification

problems. In FPGA, the cost of the memory accesses dominates the execution time, since it has

to fetch a large amount of data from the main memory of the host systems.

Processing-in-memory (PIM) is a promising solution to address HD’s data movement

issues and offer high parallelism. It places the computation into the memory instead of loading

all data to an on-chip cache side, hence reduces the costly data movement between processor

and memory. Moreover, PIM can parallelize HD operations by utilizing a component-wise

operation [118]. However, an existing memory architecture has restrictions that limit HD’s

efficiency. First, the size of a single mat, the atomic access unit for a single memory opera-

tion [93], is restricted to 1K×1K array because of the physical limitations, parasitic resistance

and capacitance [4, 119]. This clearly limits processing 10,000-dimensional bits of a single HV.

HD inference with k classes and D=10,000 dimensions requires k×D multiplications and addi-
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tions concurrently. Therefore, as shown in Fig. 6.1(b), a single HV needs to be segmented into

multiple mats and sequentially executed in traditional architecture. Second, since the DDR-based

memory operations are designed targeting 64-byte cache-lines, the atomic size in a single mat

array is no more than 2-bits [93]. For these reasons, the existing memory hierarchy is unsuitable

for dealing with a high dimension of HD computing. A simple approach to address this is to

reduce the number of dimensions in a single HV. However, this results in an unacceptable loss of

accuracy [120].

In this chapter, we propose a novel PIM architecture, called Multi-mat Parallelized

Execution for Hyperdimensional Computing (MAPLE ), which enables concurrent activation of

multiple mats corresponding to an HV. By enabling a bypass function to the existing decoder

scheme, our design supports concurrent execution of HD computing with high dimensionality,

resulting in no accuracy loss and latching delay. This provides an impression that multiple mats

participate in executing an HV as if they were a single bank. Consequently, our design improves

latency by up to 10× as compared to the work in [11].

Main contributions of MAPLE are summarized as follows:

• We present a novel design, MAPLE, which enables fast and low-overhead HD computing

whose HVs having thousands of bits in non-volatile memory architecture.

• The proposed global decoder bypass (GDP), a design component of MAPLE, stores a

vector segmented to multiple mats but concurrently executing them during HD training.

• We also propose a global wordline search technique, called shunt via routing (SVR), which

performs a one-shot search across all the mats storing an HV with a simple via contact

implant.

• Our design enables both computation and memory functions to be performed in the same

cell array, unlike most of prior PIM accelerators which needs an extra array for PIM

functions.
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Figure 6.1. (a) HD overview and (b) conventional and proposed MAPLE comparison for HD
PIM

Our evaluation shows that MAPLE achieves up to 10× speedup and 51× energy saving compared

to the state-of-the-art HD accelerators [11].

6.2 Background and Related Work

In this section, we first describe the three step operation of HD computing: encoding,

training, and inference. We next review the related work on the implementation of HD computing

and the parallelism we are aiming at in this study.

6.2.1 Hyperdimensional Computing

Hyperdimensional computing uses high-dimensional vectors with ∼10,000-bits as a

building block of representation [115]. HD computing model has three steps: encoding, training,

and inference as shown in Fig. 6.1(a). The encoder maps input data to the HVs for each class in

the high dimensional space. The encoded HVs are then combined with a training model to create

a single HV standing for the class [114]. This association of multiple HVs involves arithmetic

operations, e.g., binding operation denoted with ‘×’ and bundling operation denoted with ‘+’.

All trained HVs for each class are then stored in the memory and ready for an associative search

with the input query HVs. For inference, the same encoding step maps an unknown input data

to a query HV. The associative memory is then enabled to search the similarity of the query
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HV across all trained HVs. The class HV with the highest similarity to the query HV is the

final result of the inference. The number of classes can vary depending on the application,

which is determined by the user. TCAM is commonly used as a building block for the similarity

check [121]. There are two searching methods used depending on the type of HV, Hamming

distance for binary HVs and cosine similarity for non-binary HVs. In this work, we use binary

HVs and Hamming distance metric for a similarity check to reduce the computational cost.

6.2.2 Related Work

Our research aims to maximize the performance of HD computing through memory

optimization while reducing the cost of moving data by executing a very long byte operation

in memory. Previous studies have successfully implemented HD computing based on various

HW platforms. For example, the work in [122] fabricated an end-to-end HD computing solution

by leveraging CNT-FET and Resistive RAM. They used RAM resistance and variation of the

input current of the CNT-FET to transfer the features of the input data to the query HV. The

work in [117] implements HD computing based on in-memory kernels that enable multiplication,

addition, and permutation by analog operations using 3D vertical RRAM. The author in [123]

implements HD computing with variable model precision, capable of meeting user constraints on

different FPGA platforms. Although the state-of-the-art designs described above have effectively

implemented HD computing using emerging memory and FPGA engines, it is difficult to

overcome the massive data movement problem because computing locations follow traditional

methods. MAPLE addresses this data access challenge of HD computing by implementing a

computing unit inside the emerging NVM.

Many previous studies on memory parallelism have also been carried out. Rank [106],

bank [107] level parallelism have been previously proposed. They placed their own row-

buffers to the rank and bank levels, respectively, to allow for individual operation, thereby

granting parallelism. The work in [103, 108] introduced subarray-level parallelism in the DRAM

architecture. By inserting the row address latches to each sub-array, it can hold an active
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WL and interleave sub-banks to hide memory access latency. To the best of our knowledge,

sub-array parallelism has been the lowest level in the research on the memory parallelism, but

mat-level parallelism has not explored so far. MAPLE is a study on parallelism at mat level,

an atomic access unit in the memory architecture, which has excavated additional performance

enhancements allowed by PIM characteristics. The work in [9] proposes the multiple WL

activation, which possibly can be used to store an HV into a single mat. However, this requires

at least 10 WLs activation, which requires significant circuit overhead for inserting latch to every

mat. Besides, the design in [9] allows parallelism by overlapping a portion of execution to other

executions, like interleaving [124]. In contrast, MAPLE enables the concurrent execution of

multiple mats; hence it makes the system faster without latching delay.

Several works proposed TCAM (ternary content addressable memory)-based design

for associative searching. CMOS-based TCAMs consisting of two SRAM cells show low area

efficiency since their cost per bit is 8X more than SRAM [125]. NVMs are a promising device

for substituting the CMOS design due to their high density and low static power [126, 11]. The

work in [11] exploits Resistive Random Access Memory (ReRAM) for TCAM design. However,

the design is used only for a searching engine, hence incurs additional area overhead to the

memory cell. In contrast, MAPLE is comparable with existing memory design. Our design

utilizes a memristor cell for both memory and TCAM cell by simply switching the operation

mode, whose detail is explained in Sec. 6.3.2.

6.3 MAPLE Architecture

6.3.1 MAPLE overview

Fig. 6.2 shows the bank structure of our design. The figure does not include the upper

bank level architecture which remains the same as the design in [4]. We assume an x8 ReRAM

chip configuration with a DDR3-compatible interface and 64-bit internal prefetch width, which

are distributed to 32 mats in a subarray of the banks. The mat size of our design is 1024 WLs ×
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Figure 6.2. Schematic of the Bank Structure in MAPLE

1024 BLs, which is considered the maximum size due to parasitic resistance and capacitance in

today’s 28nm technology [119]. Hierarchical WL structure [31] addresses multiple mats where

each mat has sub-wordline drivers and local bitline sense amplifiers (SAs). We use a memristor

device as the building block of MAPLE based on the model in [91]. Our memory block can

operate in dual mode: memory and computation. In memory mode, it executes read/write

operations in the same way as the DDR-based memory [127]. For HD computation, we propose

two novel design components: global decoder bypass (GDP) and shunt via routing (SVR). GDP

enables simultaneous activation of multiple mats in a bank for HD training. Then, for speeding

up HD inference, SVR parallelizes associative search of a single HV segmented into the multiple

mats. In the following subsections, we discuss our design components in detail for each step of

the HD computation.

6.3.2 Global Decoder Bypass (GDP) for HD training

Global Decoder Bypass (GDP)

HD training requires massive component-wise calculations, e.g., multiplication and

permutation, to create the class HVs from the multiple HVs. In contrast to existing DDR-based

NVM design, which accesses each mat in sequential order, we propose multi-mat activation
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technique for executing HVs which have 10,000 bits each. Hierarchical WL structure, set as

our baseline, uses two decoding steps to select a bit cell. First, the global decoder selects a mat

in a bank using the column select line (CSL), and then local decoder selects a single bit in the

selected mat. We place OR gate array between the global and local WL decoder, called global

decoder bypass (GDP), as shown in Fig. 6.2. In memory mode, GDP is disabled (en=0). GWL

decoder delivers the original decoded signal to each mat, and it accesses the requested bit to

a particular mat according to the conventional method. In computation mode, however, GDP

is enabled (en=1). All mats corresponding to one row in the bank are activated simultaneously

regardless of the global decoded signals. In the baseline architecture, the address information of

the local decoder is common to all mats corresponding to one subarray row, but when a specific

mat is selected by the CSL, local addressing occurs only in the corresponding mat. Since the

proposed GDP simply bypasses the address information already assigned to the CSL, it does not

require additional address assignment while enabling simultaneous activation of the same WL in

all mats. Then all the bits consisting of the HV can be trained in parallel.

The parallelism benefits of MAPLE are shown in Fig. 6.3, where tRCD is the row

activation time and tRP is the precharge time. To compute an HV in a conventional way, the row

decoder activates the WL only in a single mat. Multiple mats consisting of an HV are accordingly

in a queue during single-mat processing. For example, in Fig. 6.3(a), once the computation is

done in the Mat 1, consuming tRCD and tRP, then the Mat 2 is activated for the next partial bits

operation. In this way, all other mats in charge of a single HV run in sequence. In contrast, as

shown in Fig. 6.3(b), MAPLE executes an HV in a single cycle. By enabling GDP, a single

row-address command activates all mats which have information of an HV. We assume tRCD

includes component-wise execution time. Consequently, MAPLE only consumes a single tRCD

for executing an HV while the conventional access takes k×tRCD + (k-1)×tRP, where k is the

number of bits to be requested.

HD training uses arithmetic operations to combine multiple HVs and generate a single

HV for each class. We use MAGIC [6] to implant logic operations. A memristive memory
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Figure 6.3. Timing graph of a single HV request with multiple mats

processing unit (mMPU) [118] performs logic operations by applying voltage to the input/output

WLs. To perform the operation, two operands located in different rows and aligned in columns

are executed, and their outputs are stored in a separate row. The arithmetic operation is built

using NORs shown in Fig. 6.4(a). When both inputs have high resistance, i.e., 00, the electrical

potential of the shared BL is almost pulled down to ground. The out cell thus keeps the low

resistance representing the logical 1. In all other cases, i.e., 01, 10, and 11, the applied voltage

across the out cell is over than threshold voltage and this incurs 1 to 0 switching. We used

the crossbar adder using NOR logic from [34]. Using the proposed GDP, a concurrent logic

operation is possible by applying voltage to all mat WLs corresponding to an HV. By enabling

GDP, we can simultaneously activate all bits corresponding to a single HV by selecting SWLs in

the same position in all mats. Then, we can operate a HV with a single bias input command, so

we can implement addition and multiplication for HD training by combining NOR operation of

multiple cycles.
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Figure 6.4. Building Block of In-memory Computation

6.3.3 Global WL searching

Shunt Via Routing (SVR) for HD inference

MAPLE exploits TCAM for the search operations in the crossbar array block. Fig. 6.4(b)

shows the TCAM unit in the memory array. Unlike prior TCAM designs [11, 121, 128], which

require additional cell blocks, the cell array of MAPLE can be used both as the memory and

TCAM as shown in the figure. Data is prestored in two memristors, Rn and Rn, according to

their resistances. As shown in the table of Fig. 6.4(b), the case when Rn is high and Rn is low

represents ‘0’, and the opposite case represents ‘1’. During the search, a matching line (ML)

is first initialized to Vdd . The query data is defined as ‘0’ when S0 is 0 and S0 is Vdd , while the

opposite is defined as ‘1’. The matching line (ML) discharges current in case of a mismatch

between the query data and the stored data. Then, CAM SA detects the discharge current and

compares with that of adjacent WL to detect an HV which has higher similarity with the query

data.

Although prior work utilizes the row-parallel execution using NVM devices [129, 11],

their designs have not thoroughly considered the row-directional limitation. For example, the

work in [11] places costly sensing circuits into every mat, and sums the output current at the

end of the subarray to fulfill a single HV. In contrast, MAPLE proposes shunt via routing to

enable global-WL-search, i.e., executing the similarity check in a single cycle while using the
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existing memory architecture. As shown in Fig.6.5, we utilize the existing global wordline

(GWL) by placing a simple via-contact in each mat. SVR uses the same ‘en’ switch with GDP.

By enabling SVR (en=1), the SWLs located in parallel with the activated WL are shunted to the

upper GWL. Then, all SWLs matching to an HV are connected and the total current can be read

simultaneously. Hamming distance search block is then placed only at the end of a global WL

instead of in every mat, resulting in negligible overhead.

The CAM SA in Fig. 6.4(b) performs Hamming distance search between the query data

and the trained class vectors. This Hamming distance search block needs to 1) compare currents

from two WLs to distinguish low current values, which means high similarity, and 2) trace the

WL that has lower current value. The work in [11] used Loser Takes All (LTA) circuit to compare

the Hamming distance of two WLs. Although it is energy efficient and benefits in the area based

on its analog searching technique, we found the following problems. First, when it compares

the Hamming distance between two WLs, LTA identifies a high discharge current, which is

against the purpose of the design to find the lower Hamming distance. Second, LTA can compare

currents between two WLs to distinguish low current values, but cannot identify from which WL

the lower current came. Third, in the cascade structure that searches for the WL closest to the

query data among all the WLs, all other stages are turned on even in one stage operation. In this

work, we propose a new Hamming distance search block, called Take Lower Current (TLC), that

can solve all of the LTA problems mentioned above. Our design compares the discharge currents

on the two WLs to find the lower current and identifies which WL it is coming from. Also, it can

operate independently for each stage, maximizing power efficiency. We next discuss the detail of

TLC implementation.

Tracing a WL with the lowest current

Fig. 6.5 shows the proposed TLC blocks which consist of the following four key com-

ponents: (a) analog search circuit to find a WL with lower current, which is equivalent to high

similarity with the query data, (b) latch circuit based on a cross-coupled inverter, (c) sensing
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Figure 6.5. Global wordline search with shunt-via-routing (SVR) scheme

data block to check the latch status, (d) enable control block to enable the selected WLs. The

searching circuit in Fig. 6.5(a) is responsible for judging similarity in two assigned WLs. Here,

we insert the latching circuit of Fig. 6.5(b) and store each similarity comparison value. These

stored values are used when performing stage isolation in the searching circuit and tracking the

WL with the lowest current in the sensing data block of Fig. 6.5(c), respectively. To explain each

design component, we first summarize the signal names of the figure as follows. The signal EN

is a enable signal for discharging the GWL, where x of EN x is the row number of GWL. In the

signal EC of EC Ax y and EC Bx y, A and B is the lower and upper connected control area in

TLC block, and x is the row number of TLC blocks at the assigned y stage and y is the stage

number of TLC blocks. The DA/DB nodes of DAx y and DBx y follow the same notation as the

signal EC. In the signal ENLB of ENLB x, x is the stage number of TLC blocks. The signal
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Figure 6.6. Sensing Data Blocks

ST RB is used to store the latch data from D A and D B status, and the ‘x’ of STRB x is the

stage number of TLC blocks.

Analog searching circuit in Fig. 6.5(a) identifies the lower discharge current from two

GWLs assigned. Consider the case where IA is larger than IB from the GWL0 and GWL1, as

shown in the timing graph of Fig. 6.5. For comparison of IA and IB, D A and D B nodes are fully

discharged by enabling RESET. Then, enabling EN 0,1 and PRE EN 0, disabling EC A0 and

B0 0 make IA and IB identifiable to the analog searching circuit. Since D A and D B nodes are

cross-connected to two NMOS transistors, the status of D A node changes from low to high and
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D B node bounces a little but keeps low status. The two transistor sizes need to be optimized

for proper operation. If the drivability of the transistors is not sufficient, the status of D B and

D A nodes change from low to high simultaneously and the GWL with a higher current is not

selected. Conversely, if the drivability of the transistors is excessive, the current through the

turned-on NMOS causes excessive power consumption. When ENLB 0 disables and STRB 0

enables, the status of DA0 0 node on Fig. 6.5(b) keeps low and DB0 0 changes low to high due

to the high/low status of D A/D B. Then PRE EN 0 disables, and the status of EC B0 0 keeps

low and EC A0 0 changes low to high due to the low/high status of DA0 0/DB0 0. Once the

operation to search for the GWLs with the lower current is complete, all the addresses of lower

current WL are stored on the latches of each TLC.

Based on the current comparison results of GWLs by the analog searching circuit, the

sensing data block of Fig. 6.5(c) enables the TLC to find the lowest cell current WL. Fig. 6.6

shows the cascaded structure of the block in Fig. 6.5(c) in detail. The sensing data block consists

of three NMOSs from the 0th to 8th stages, and the last 9th stage consists of two NMOSs. The

upper NMOS connects the selected sensing data blocks to the next stage based on the latch status.

The gate node of the NMOS connects to either DA or DB node of the next stage to decide the

connection. For example, if the DA0 9 is low and DB0 9 is high at the 9th stage, the upper

sensing data block of the 8th stage is connected by the high status of DB0 9. In the opposite

case, the lower sensing data block of the 8th stage is connected by the high status of DB0 9. The

middle NMOS serves to enable or disable the stage and its gate node is connected to PRE EN

signal to check the status of the selected sensing data block. The lower NMOS checks the data

of the selected sensing data block and its gate node is connected to DA node of the TLC block.

The sense amplifier (SA) stage in Fig. 6.6 judges the data of the selected sensing block at

each stage. Assuming that GWL0 or 1 is the lowest current GWL as shown at the signal timing

graph in Fig. 6.6, the status of DA0 9 to DA0 1 are all high and DA0 0 is low or high. To check

the DA0 0 status, the SEN nodes connected to the selected sensing data block first need to be

precharged by lowering the PRECHB signal. Then, PRECHB signal changes from low to high
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and PRE EN 0 enables to check the selected sensing data block at 0th stage. In this case, since

the DA0 1 to DA0 9 are high status, SEN0 1 node is connected to the lowest sensing data block.

As shown at the signal timing graph, the status of the connected SEN node is determined by

the DA0 0 node. During the sensing time from PRE EN 0 rising to STORB rising, the status

SEN0 9 is compared to VREF(VDD/2) at the SA stage. ADD OUT is low when SEN0 9 is

discharged below VREF and ADD OUT is high when SEN0 9 keeps high status. As a result, we

can determine the GWL with the lowest current from the status of DA0 0 and ADD OUT. For

example, the GWL0 is the lowest current GWL when DA0 0 is high and ADD OUT is low, and

the GWL1 is the lowest current GWL in the opposite case.

Reducing current dissipation

Although the proposed SVR technique increases the performance, power consumption

issue caused by multi-mat execution still needs to be addressed. Assuming an array with C

rows, TCAM searching blocks with log2C stages of binary tree type are required [11]. For

example, In the case of a TCAM array with an array size of 1024x1024, the first stage is

performed by comparing two WLs in each of 1024 WLs in a row and finding 512 lower current

WLs. Then a WL with the smallest current is traced through total 10(=log21024) stages. As

mentioned in Sec. 6.3.3, LTA circuit in [11] is inefficient during multiple stage operation. When

the searching operation is performed in one stage, the LTA blocks of all other stages are also

turned on resulting in high current consumption. Based on our evaluation, when each cell has

the minimum resistance and the maximum current flow, the current from the stage in operation

and non-operation is at least over 500uA and 300uA, respectively. When all ten stages are turned

on, the total current is estimated over 3.2mA even though we optimized the PMOS header size.

To address current dissipation issue shown in [11], we propose a method to perform

Hamming distance search operations independently for each stage. Our design enables only

the stage in which the operation is performed to be turned on and all other stages are turned

off resulting in a much lower current. We designed a latch circuit with a cross-coupled inverter
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Figure 6.7. Enable Control Blocks

shown in Fig. 6.5(b) in order to enable isolated operation for each stage. As shown in the signal

diagram of Fig. 6.5, DA0 0 and DB0 0 nodes are initially low status. When the PMOS connected

to GWL is enabled by PRE EN 0, the status of ENLB 0 node changes from high to low. Then,

STRB 0 signal is enabled and DA0 0 and DB0 0 nodes store low or high status according to the

status of D A and D B nodes. After storing the status of DA0 0 and DB0 0 nodes, PRE EN0 is

disabled. During the 0th stage operation mentioned above, the TLC blocks from the 1st to 9th

stages are all disabled since both PRE EN and DA/DB nodes are low. As a result, our design

prevents unnecessary current consumption shown in prior LTA circuit [130]. Our evaluation

shows that the proposed design has 62.5% energy savings compared to the LTA circuit [130].
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Figure 6.8. Performance Comparison for the different HW engines (left) and for the different
HD dimensions (right)

We also insert a enable control block as shown in Fig. 6.5(d) to enable the only selected

GWLs, hence maximizing power efficiency. It disables the unselected GWLs during the operation

of tracing the lowest current GWL. Fig. 6.7 shows the entire structure including all the enable

control blocks. The enable control block consists of 4 NAND gates from 0th to 8th stages, and

the last 9th stage consists of 2 NAND gates. In the 0th stage, when PRE ENB 0 is low, EC A0 0

and EC B0 0 nodes have the same status of EC A0 1. In case that PRE ENB 0 is high, if DA0 0

and DB0 0 nodes of the latch are high and low, EC A0 0 node is high and EC B0 0 node follows

the output signal EC A0 1 status. Conversely, if DA0 0 and DB0 0 nodes of the latch are low

and high, EC A0 0 node follows the output signal EC A0 1 status and EC B0 0 node is high.

This is an example of the 0th stage, and the following 1st through 9th stages operate in the same

way. As a result, the node connected to the first GWL is discharged by enabling EN 0 signal

only when EC A0 0 node is low, which can disable the unselected GWLs during the operation.

Table 6.1. Dataset summary (F: the number of features, K: the number of activity classes, Ntrain:
the number of samples in the training data, Ntest : the number of samples in the testing data)

Name Data size (KB) F K Ntrain Ntest Name Data size (KB) F K Ntrain Ntest
cardio 721 21 3 2048 2048 page 482 10 5 4925 548

face 121483 608 2 22441 2494 PAMAP2 7340 27 5 16384 16384
isolet 38543 617 26 6237 1559 shuttle 4640 9 8 43500 14500
mnist 220080 392 10 60000 10000 UCHHAR6 34920 561 12 6213 1554
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6.4 Experimental Results

6.4.1 Experimental Setup

To evaluate MAPLE, we execute the code implemented with Python 2.7 and Numpy

which use C++ backend. We used VTEAM memristor model [91] for designing a memory cell

with Ron and Ro f f of 10KΩ and 10MΩ, respectively. Circuit-level evaluations are performed

with HSPICE simulator based on a 65nm CMOS process and VDD=1.2V. To verify how MAPLE

works for general classification problems, we experimented with eight datasets, covering a

wide range of applications: mnist for image processing, shuttle and page for canonical datasets

commonly evaluated in literature, and practical datasets (cardio for fetal disease diagnosis, face

for face recognition, isolet for voice recognition, and PAMAP2, UCIHAR6 for human activity

recognition) as shown in Table 6.1. We estimated the parallelism efficiency of MAPLE during

HD training compared to the conventional CPU and PIM platforms. Also, we evaluated the

performance and energy consumption of MAPLE in HD inference and compared to the work

in [11] and [12].

6.4.2 Parallelism Efficiency in Training

We compare the efficiency of HD computing in the proposed design with other HW

platforms. Fig. 6.8 (left) presents the log plot of speedup of MAPLE compared with two other

references, HD-on-CPU and HD-on-PIM, respectively, based on the commodity CPU [131] and

memory design [127]. The execution time considers HD training and inference. All results are

normalized to the data of MNIST on CPU. As expected, the results show that HD computing is

faster when using PIM than CPU because PIM reduces data movement costs. Among the PIM

designs, MAPLE achieves better performance compared to the conventional PIM techniques.

For example, in the case of cardio, MAPLE is 10× faster than using the conventional PIM

design. Due to the parallelism effect of GDP, one of the key components of MAPLE explained

in Sec. 6.3.2, MAPLE outperforms the conventional PIM design with insignificant modification
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Figure 6.9. Area efficiency of associative search in energy consumption and searching delay

to existing memory architecture.

Fig. 6.8 (right) shows the speedup improvement of our design for different dimensions

in HD. The result is obtained from the MNIST dataset as a representative. The data shown in

this figure is normalized to HD on the conventional CPU. While the improvement in the case

of HD on PIM almost remains constant as the increase of the HD dimension over the case of

HD on CPU, MAPLE shows an exponential increase of speedup improvement compared to both

HD on CPU and PIM cases. Although, in the low dimensional region, MAPLE does not show a

prominent effect over other platforms, it does in the high dimensional region due to the increase

of the number of mats to be executed in parallel by enabling GDP. As a result, while the latency

improvement of MAPLE is around 4 times for the case of D=1,000, the improvement grows

as the number of dimensions increases, with 87× improvement for the case of D=20,000. This

result shows that MAPLE is more efficient in the dimensions of actual HD computing regions

(D≥10,000).

6.4.3 Inference Scalability

We compare the inference scalability of MAPLE with two state-of-the-art HD searching

designs, D-HAM and A-HAM [11], where CMOS-based and analog-based searching techniques

are used, respectively, as their Hamming distance metric. Fig. 6.9 shows the energy consumption

and searching delay of MAPLE in HD inference as compared to D-HAM and A-HAM, when
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Figure 6.10. Overhead comparison of MAPLE with other PIM designs (D-HAM [11], A-
HAM [11], IMP [12]) and DRAM

D changes from 512 to 10,000. To evaluate the physical scalability of our design, we show the

energy and delay multiplied by area. Compared with D-HAM, A-HAM shows the slower rate of

increase in energy and searching delay as the increase of HD dimensions. This is because A-HAM

adjusts the searching accuracy by modifying the resolution of the LTA blocks, while D-HAM

needs longer interconnection and additional circuits, i.e., counters and comparators. MAPLE

takes on LTA circuits that used in A-HAM design but outperforms that in the high dimensional

region as shown in fig. 6.9. In conventional memory architecture, each mat of A-HAM requires

the LTA circuit block individually. However, the proposed SVR technique in MAPLE enables

having an LTA block only at the end of each subarray row by implementing simple via-contact in

each mat instead. This results in significant area savings, aside from the energy and performance

benefits of A-HAM design. For example, in the D=10,000 region, MAPLE is 51× more energy

efficient and 10× faster compared to A-HAM design under the same area constraint.

6.4.4 Overhead

1) Area: Fig. 6.10(a) shows the area breakdown for each sub-component of MAPLE

and other architectures to implement HD computing. We assume 32 mats-per-subarray and
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32 subarrays-per-bank. The area is estimated from Cadence p-cell data with 45nm process

technology. In this work, we use a cell efficiency, defined by the ratio of the cell area over

the total area of the memory array, as the index to investigate the area overhead. The results

show that prior state-of-the-art work still requires significant area cost. For example, IMP [12]

consumes 67% of the total area for the analog from/to digital converters (ADC, DAC). D-HAM

and A-HAM [11], state-of-the-art HD accelerators, also require over 60% of peripheral circuits

in addition to the cell array. However, MAPLE has a superb cell efficiency of 45% over the total

area, mainly due to a significant savings in the computing logic, 11% less than A-HAM, by using

SVR method. Notably, our design has the same level of cell efficiency as the commodity DRAM

as shown in Fig. 6.10(a).

2) Parasitic Effect: The parasitic effect is inevitable but undesirable in integrated circuit

design. This is mainly caused by parasitic resistance and capacitance, which reduces system

latency and causes performance degradation. In this work, we analyzed the parasitic effect with

the RC delay parameter. We compared MAPLE with A-HAM [11], which basically use the same

search block, to exclude elements not related to the parasitic effect. As shown in Fig. 6.10(b),

MAPLE outperforms A-HAM [11], for the RC delay even in the high dimensional region. For

example, searching for a 10,000-dimensional HV in MAPLE shows 52× less of the RC delay

than only a single mat search of a 1,000 dimension in A-HAM [11],. The GWL, typically run in

the first-level metal layer in commodity memory, uses wide-pitch copper (Cu) as an electrical

wire, while the SWL uses narrow-pitch polysilicon [31]. Since MAPLE utilizes the GWL, which

has much less sheet-resistance (RS) compared to the SWL, it is less affected by the parasitic

components to A-HAM although it has a longer current path during the search.

6.5 Conclusion

We present a novel PIM architecture which enables multi-mat parallel operations for HD

computing with Global-Bypass-Decoding (GDP) and Shunt-Via-Routing (SVR) techniques. The
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proposed design accelerates HD computing, by making minor changes to NVM architecture

while keeping it compatible with existing standards and interfaces. The experimental results show

that MAPLE offers 87× speedup over the conventional PIM design by enabling GDP. Moreover,

the proposed SVR presents 10× performance improvement and 51× energy saving in HD

inference compared to the state-of-the-art HD accelerators [11] with a superior cell-efficiency.

This chapter contains material from Joonseop Sim, Minsu Kim, Mohsen Imani, Yeseong

Kim, Chris Kim and Tajana Rosing, “MAPLE: Multi-mat Parallelized Execution for Hyperdi-

mensional Computing”, which was submitted to ACM Journal of Emerging Technologies in

Computing. The dissertation author was the primary investigator and author of this paper.
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Chapter 7

Summary and Future Work

7.1 Thesis Summary

The advent of the Internet of Things has increased the amount of data, which has seriously

challenged limited device resources. Sending all data to the cloud server is not scalable, does

not guarantee a real-time response, and is not preferable due to causing private concerns and

security. This increases the need to perform operations on a certain amount of data in an edge

device. However, running data-intensive workloads with large datasets in traditional cores

leads to massive data movement between memory and processing units, resulting in high power

consumption and slow processing speed. Processing-in-Memory is a promising solution to

address this bandwidth bottleneck by performing a portion of computation inside the memory.

Previous work has proposed ways to address the issue of data movement between the processor

and memory by supporting basic functionality inside the memory module [5, 8, 9, 13, 18, 29, 30,

96, 97, 98]. The emerging nonvolatile memory technologies are considered as good candidates

for PIM due to their high density, scalability, and low power consumption. However, compared

to the commodity DRAM and SRAM, that is a lack of performance due to device limitations

and immature architecture. To address this, in this thesis, we proposed novel PIM designs and

memory optimization methods for PIM acceleration.
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7.1.1 Overcoming device limitation

Although many PIM techniques have been proposed so far, they support limited basic

functionality such as basic bitwise operations (AND, OR, and IMP). Several techniques have

been proposed to perform functions like addition and multiplication in NVM architectures.

However, they execute these functions by combining multiple boolean operations. Therefore,

they are inherently slow due to their multi-cycle operation as well as slow processing speed.

This thesis proposes a new PIM architecture, which enables the addition and multiplication in an

efficient manner.

In Chapter 2, we first presented a novel access device technique that enables the imple-

mentation of the 4F2 structure. This makes a variety of PIM technologies utilizing the crossbar

structure realizing the minimum cell size in a two terminal access approach. We presented verti-

cal nanowire field effect transistors (VNFETs) directly in current mode logic to improve their

performance and energy compared to conventional planar-FETs, as well as their area efficiency.

In Chapter 3, we presented a unipolar-switching logic for high-density PIM applications. Our

design exploits a unipolar-switching mode of memristor devices which can be operated in 1D1R

structure hence suppresses the sneak current that exists in prior PIM technologies. Moreover,

it takes advantages of a 3D vertical crossbar array structure to increase memory utilization per

unit area for high-density applications. In Chapter 4, we presented a new sensing circuit which

uses the analog properties of NVM. We simplify computation by exploiting the latch-up effect of

thyristor devices to directly generate the results from the input data without any intermediate

logic. We further leverage the back-down effect at latch-up points of the thyristor to implement

functions with minimal increase in the number of gates. In addition, the proposed design per-

forms the operations in a modified sensing circuit which is compatible with the conventional

current sense amplifier. It does not need additional cells to support calculations, thus requires

negligible area overhead. This thesis also addresses power consumption issues that previous PIM

designs have. Prior techniques that enable the computation in non-volatile memory (NVM) are
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designed on a bipolar switching mode, which suffers from a high sneak current in a crossbar

array (CBA) structure.

7.1.2 Memory architecture optimization

Today’s research on NVM has been actively studied from the viewpoint of device and

material, whereas the architecture that constitutes memory cell has brought the existing platform

of DRAM and NAND Flash. Therefore, there are some points that they do not fully utilize the

potential performance of NVM. This thesis suggests novel designs that can fully exploit the

potential of NVM and PIM in the application of existing memory architectures.

Many prior studies have enabled various PIM operations on nonvolatile memory (NVM)

by modifying sense amplifiers (SA). They exploit a single sense amplifier to handle multiple

bitlines with a multiplexer (MUX) since a single SA circuit takes larger area than an NVM 1-bit

cell. This limits potential parallelism that the PIM techniques can ideally achieve. In Chapter 5,

we presented a multi-bit parallelism technique for high-performance processing in non-volatile

memory architecture. Our design carries out multiple bit-lines requests under a MUX in parallel

with two novel design components, multi-column/row latch (MCRL) and shared SA routing

(SSR). The MCRL allows the address decoder to activate multiple addresses in both column and

row directions by buffering the consecutively-requested addresses. The activated bits are then

simultaneously sensed by the multiple SAs across a MUX by the proposed SSR.

We also propose a way to efficiently implement long byte processing required by today’s

emerging computing. Technologies such as deep learning vector operations, graph processing and

brain-inspired computing require the computation of very long words. Due to the requirement

of massive data access, they need a memory-centric architecture, which motivates us to utilize

processing-in-memory (PIM) architecture. However, the existing memory architecture has

physical limitations to fully support the PIM execution in applications such as the HD computing.

To compute over 10,000-bit words corresponding to that word, tens of memory mats consisting

of only 1K bit-rows need to be simultaneously activated. This conflicts with the operation in
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conventional memory architecture, which accesses 8 to 64-bit words. In Chapter 6, we presented

an optimization of processing-in-memory architecture for very long word processing. Our design

works as both memory and PIM within the same cell array. In memory mode, our design follows

the conventional read/write access pattern, with consecutive requests to each mat. In PIM mode,

it enables concurrent activation of all mats in a bank by using our proposed global decoder

bypass, enabling a single cycle operation of over 10,000-bit word. We also propose a global

wordline search for nearest Hamming distance, to facilitate for the search over bits that are

located across multiple mats.

7.2 Future Work

In this thesis, we have developed PIM logic using device physics and proposed a fine-

grained parallelism technique at the sub-bank level for PIM acceleration. However, in order for

this thesis to have more practical utility, more work is needed to combine our technology with the

latest memory products. In this section, we provide future directions for further improvements

on the two topics based on the work of this thesis: 1) Optimizing HBM architecture for extreme

bandwidth system and 2) Locality-aware PIM architecture design.

7.2.1 Optimizing HBM architecture for extreme bandwidth system

Memory products, which have been developed to maximize bandwidth rather than

minimize cost, have brought the bandwidth of the system to its limits. High bandwidth memory

(HBM) [132] has been a key driving force of the continuous performance scaling of commodity

processors, e.g., CPU and GPU, and other parallel processors. HBM has a small form factor

compared to DDR4 or GDDR5 and can consume less energy while achieving higher bandwidth.

It is a three-dimensional structure achieved by stacking several DRAM dies using through-

silicon vias (TSVs) and microbumps. Although HBM2, the next-generation solution of HBM1,

provides world-class performance through higher bandwidth (Up to 256GB/s) and lower power

consumption in comparison to other conventional DRAMs, future memory products are expected
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to demand multiple TB/s of memory bandwidth requiring more than the limit of bandwidth that

current DRAM devices can provide. More research is needed in how to apply the parallelism

technique proposed by this thesis to HBM architecture. There are four data transfer paths on the

HBM architecture: 1) data transfer within a sensing block, 2) data transfer within a chip, 3) data

transfer within a stack and 4) data transfer on an interposer. Prior approaches for maximizing

the bandwidth of HBM have focused on the 3) and 4) direction since most researchers and

companies have been hesitant to hurt the sub-chip level because of concerns to adding overhead

to the architecture that has been optimized over a long period. However, considering the current

situation that limits the development of technology to improve the bandwidth, we are approaching

the point where it is necessary to parallel the technology development at the level below the chip.

The work in Chapter 5 and 6 can be extended to perform parallel operations at sub-chip levels

of HBM since the commodity HBM follows the basic bank design of the existing DDR-based

memory products.

7.2.2 Locality-aware PIM architecture design

Utilizing data locality in the memory is essential for the efficient use of existing cache and

commodity memory hierarchy. Although modern programming models and compiler designs

take into account the physical locality of data, it is difficult for them to approach the level

of locality proposed in this thesis. Many previous studies have been carried out under the

assumption that the distribution of the bits constituting a word in a memory cell is continuous,

but in practice, there may be cases of having a discontinuous distribution. For example, NVM

architecture places a multiplexer (MUX) in front of the SA, which are used to select a BL

connecting to a single I/O line from the multiple BLs [4]. Since it operates with a 64-bit I/O

interface in a typical DDR-based memory system, 8 to 16 bits are read per internal clock on a

single mat [19]. Therefore, instead of reading all the bits in the MUX, only some of the bits in

each MUX are read. Our research on fine-grained parallelism in this thesis needs to be extended

to the study of locality-aware parallelism.
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