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Abstract

Hydraulic Bores Propagating into Shear Flow

Joshua Novins

Internal bores, also know as internal hydraulic jumps, can develop from

phenomena in both oceanic and atmospheric situations. Classical approaches

handle these bores in cases when density differences between the two layers

are large, and more sophisticated approaches can now predict the bore height

and propagation velocity in certain cases when the two layers have similar den-

sities. These two-layer models, which conserve mass separately in each layer

while conserving momentum across both layers, can generate reasonable pre-

dictions for bore velocity if the up and downstream layer heights are known.

Traditionally, these models have needed to make assumptions about restricting

the energy loss to either the upper or lower layer, but these assumptions are

made unnecessary by utilizing conservation of vorticity. Within this work we

propose utilizing vorticity conservation to first close the system of equations;

after doing so, the energy drop across the bore can be calculated analytically.

If we then enforce conservation of energy a predicted downstream layer height

for bores can be generated that fits our analytical assumptions. By using this

method we compare these model predictions to two-dimensional direct numer-
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ical simulations and find that it is possible to predict bore velocity, geometry,

and to a lesser extent downstream behavior based on initial conditions only.

iv



Chapter 1

Analytical models for

Boussinesq internal jumps

Existing models of two-layer internal bores tend to focus on the case of a

bore propagating into still water. While Klemp et al. (1997) do present several

cases of Boussinesq internal jumps propagating into shear, their conclusion

that the classical approach to assuming energy loss is confined to the lower

layer is unsatisfactory.

In order to make the problem of bore propagation more analytically tractable

several assumptions have classically been made (Rayleigh, 1914): the bore

propagates at a steady velocity U , the pressure field far up- and downstream

of the front is hydrostatic, and viscous effects are negligible. Hydraulic bores

1



Figure 1.1: Bore propagating into still fluid in the bore reference frame. The bore itself is
stationary in this frame. The x axis is oriented parallel to the channel; the y axis is

oriented perpendicular to the channel. The bore is moving with some velocity U in the lab
reference frame; the other velocities are in the bore reference frame (and so the bore in

this reference frame is stationary).

of this state are said to be conjugate if the up and downstream layers are

smooth and they can be linked via a permanent front. Looking at a control

volume around the front of the jump and assuming no entrainment as seen in

figure 1.1, any model must enforce the conservation of mass within each layer,

along with the conservation of overall streamwise momentum

(U + U1)hf = Uha, (1.1)

(U + U2)(H − hf ) = U(H − ha), (1.2)

∫ H

0

(Pu + ρ(y)U2) dz =

∫ H

0

(Pd + ρ(y)Ur(y)2) dz, (1.3)

where U is the bore velocity, U1 and U2 are the layer velocities far downstream

of the bore, Ur(y) is the downstream fluid velocity as a function of y, and Pu
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and Pd indicate the hydrostatic pressure plus the pressure at the top of the

channel (P ′u and P ′d) at streamwise locations far up- and downstream of the

front. As discussed in Borden and Meiburg (2013), Klemp et al. (1997), Wood

and Simpson (1984), and any paper attempting to deal with hydraulic bore

propagation, these three equations are insufficient to solve for the three un-

knowns U , U1, and U2 because (1.3) introduces another unknown: the pressure

drop along the top wall of the channel, P ′u−P ′d. While prior work made an as-

sumption about the location of the energy loss to achieve a solvable system of

equations, Borden and Meiburg (2013) utilized conservation of vorticity rather

than momentum conservation as the third equation. In the Boussinesq range,

the vorticity conservation equation does not include any pressure term and

thus no energy assumptions need to be made. Following the circulation-based

approach therein, it should be possible to analyze the propagation of hydraulic

jump into shear flow.
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Chapter 2

Analytical models for

Boussinesq internal jumps

propagating into shear

2.1 Continuous shear

Consider a reference frame moving with a hydraulic bore with the same

geometric parameters ha, hf , H as in figure 1.1 but allow there to be a contin-

uous shear profile upstream of the bore, with the flow achieving a maximum

velocity of U+ ∆U
2

along the bottom of the channel and a minimum velocity of

U − ∆U
2

at the top of the channel as shown in figure 2.1. We will call this case
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Figure 2.1: Bore propagating into a continuous shear profile in the bore reference frame.
The bore itself is stationary in this frame. The x axis is oriented parallel to the channel;

the y axis is oriented perpendicular to the channel. The bore is moving with some velocity
U in the lab reference frame; the other velocities are in the bore reference frame (and so

the bore in this reference frame is stationary).

CS for continuous shear from here on. In this CS case, the velocity profiles of

the fluid upstream of the bore are

Ui(y) = U +
∆U

H
(
H

2
− y) (2.1)

while the lower/upper layer velocity profiles downstream of the bore are

U1(y) = U1(hf ) +
∆U

H
(hf − y) (2.2)

U2(y) = U2(hf ) +
∆U

H
(hf − y) (2.3)

respectively, where y is defined as the height above the bottom of the control

volume. It is important to note that the U1(hf ) and U2(hf ) are respectively
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the bottom and top layer velocities after the bore at the interface in the lab

reference frame.

This leaves us with 3 unknowns, the bore velocity U and the interface

velocities after the bore U1(hf ) and U2(hf ). To facilitate analysis we will solve

for U + U1(hf ) and U + U2(hf ) rather than U1(hf ) and U2(hf ) directly. We

use mass conservation for both the upper and lower layers to generate two

equations:

∫ ha

0

U +
∆U

H
(
H

2
− y)dy =

∫ hf

0

U + U1(hf ) +
∆U

H
(hf − y)dy (2.4)

∫ H

ha

U +
∆U

H
(
H

2
− y)dy =

∫ H

hf

U + U2(hf ) +
∆U

H
(hf − y)dy. (2.5)

Now, we will follow the methodology in Borden et al. (2013) by integrating

the vorticity equation

u · ∇ω = −g′∂ρ∗
∂x

+ ν∇2ω (2.6)

over the control volume to obtain a governing relation

∮
ωu · n dS =

∫∫
−g′∂ρ∗

∂x
dA+

∮
1

Re
∇ω · n dS. (2.7)
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where ω is the vorticity normal to the flow, ν the kinematic viscosity, and

ρ∗ = ρ−ρ2
ρ1−ρ2 is the Boussinesq density. After following the simplifications in

Borden and Meiburg (2013) and neglecting viscosity we generate a vorticity

relation

1

2
((U + U2(hf ))

2 − (U + U1(hf ))
2) = g′(hf − ha), (2.8)

with a Boussinesq reduced gravity g′ = g ρ1−ρ2
ρ

, and a Boussinesq reference

density ρ0 ≈ ρ1 ≈ ρ2. Using the nondimensional terms R =
hf
ha

and r =

ha
H

and nondimensionalizing all velocities by
√
g′ha so that ∆U̇ = ∆U√

g′ha
and

nondimensionalizing all lengths by ha, equation 2.8 becomes

1

2
((U̇ + U̇2(R))2 − (U̇ + U̇1(R))2) = R− 1. (2.9)

Additionally, expanding equations 2.4 and 2.5 and solving for U̇ + U̇1(R) and

U̇ + U̇2(R) results in

U̇ + U̇1(R) =
U̇

R
+

∆U̇

2
(

1

R
− r

R
− rR) (2.10)

U̇ + U̇2(R) = U̇
1− r

1−Rr
+

∆U̇

2

(1 + r(−1 + r − 2R + rR2))

1−Rr
. (2.11)
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Again defining some intermediate variables

B1 =
1

2
(

1

R
− r

R
− rR), (2.12)

B2 =
1

R
, (2.13)

B3 =
1

2

(1 + r(−1 + r − 2R + rR2))

1−Rr
, (2.14)

B4 =
1− r

1−Rr
, (2.15)

and inserting 2.10 and 2.11 into 2.8, a quadratic equation is generated:

U̇2(B2
4−B2

2)+U̇(2∆U̇(B3B4−B1B2))+(∆U̇2(B2
3−B2

1)−2(R−1)) = 0. (2.16)

We can solve for U̇1(R) and U̇2(R) by inserting the solution U̇ into 2.10 and

2.11.

Looking at figure 2.2 we can see a contour plot of the resulting bore veloc-

ities for fixed values of r. Of note is the “saddle” behavior of the velocity, as

well as the regions (in the top left and bottom right on the figure) where the

bore velocity is predicted to be negative.
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Figure 2.2: Velocity contour plots for the continuous shear case. r = 0.1, r = 0.2, r = 0.5
from top to bottom. ∆U̇ is on the y axis, R is on the x axis. The light grey shaded region

has a predicted energy drop across the bore; the dark grey shaded region violates the
assumption that the bore is moving with a positive velocity.
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2.2 Shear jump at interface

Consider a hydraulic bore with the same geometric parameters as above

in figure 1.1, but this time allow the velocity of the upper and lower layer

upstream of the bore in the lab reference frame to be −∆U
2

and +∆U
2

respec-

tively. We will call this case SJ for shear jump from here. Following the same

approach as in section 2.1, the resulting equations governing the flow become:

(U +
∆U

2
)ha = (U1 + U)hf (2.17)

(U − ∆U

2
)(H − ha) = (U2 + U)(H − hf ) (2.18)

U ·∆U − g′(hf − ha) = (U1 − U2)(U +
U1 + U2

2
) (2.19)

where ∆U is the shear between the layers upstream of the jump. These three

equations are solvable for the unknowns U , U1, and U2. We can once again

nondimensionalize lengths by ha to get R =
hf
ha

, r = ha
H

and velocities by
√
g′ha

giving U̇ = U√
g′ha

and ∆U̇ = ∆U√
g′ha

. We can then generate a quadratic equation

of the single variable U̇

U̇2A1(1+
A3

2
)+ U̇∆U̇(

A1A4

2
+A2(1+

A3

2
))+∆U̇2A2A4

2
+(R−1) = 0. (2.20)
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Figure 2.3: Bore propagating into a shear jump profile in the bore reference frame. The x
axis is oriented parallel to the channel; the y axis is oriented perpendicular to the channel.
The bore is moving with some velocity U in the lab reference frame; the other velocities
are in the bore reference frame (and so the bore in this reference frame is stationary).

Several new variables are introduced, but they are functions of the geometric

parameters of the problem

A1 =
1

R
− 1− r

1−Rr
(2.21)

A2 =
1

2R
+

1− r
2(1−Rr)

(2.22)

A3 =
1

R
+

1− r
1−Rr

− 2 (2.23)

A4 =
1

2R
− 1− r

2(1−Rr)
(2.24)

After solving (2.20) for U̇ , U̇1 and U̇2 can be found from

U̇1 = (U̇ +
∆U̇

2
)

1

R
− U̇ (2.25)
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U̇2 = (U̇ − ∆U̇

2
)

1− r
1−Rr

− U̇ . (2.26)

Once again, we have generated a closed-form expression for U̇ , U̇1, and U̇2

without making any assumptions about energy.

If we look at figure 2.4 which is a velocity contour plot of the above results,

we see some similarities to the CS case seen in figure 2.2. In both cases, there

are regions where the predicted velocity is negative. As we will see in section 3,

this does not change much in practice: regions with very high shears upstream

of the bore generate large Kelvin-Helmholtz instabilities which prohibit bore

development. Also, rather than saddle-type behavior we see that the behavior

appears to have a “hump” where the predicted velocities are largest for mid-

dling values of R while larger/smaller values of R generate slower velocities.
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Figure 2.4: Velocity contour plots for the shear jump case. r = 0.1, r = 0.2, r = 0.5 from
top to bottom. ∆U̇ is on the y axis, R is on the x axis. The light grey shaded region has a

predicted energy drop across the bore; the dark grey shaded region violates the
assumption that the bore is moving with a positive velocity.
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Chapter 3

Comparison of model

predictions to simulation results

In order to assess the validity of the predictions made by the circulation

model, we will present comparisons with two-dimensional DNS results. These

are obtained by our simulation code TURBINS (Nasr-Azadani and Meiburg,

2011), which employs a finite-difference discretization combined with a frac-

tional projection method and TVD-RK3 time integration. A brief outline of

the approach to the simulation will be found below; further numerical details

and result validation can be found in Nasr-Azadani and Meiburg (2011) and

Nasr-Azadani et al. (2013).
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Fluid motion is handled with the Navier-Stokes equations with the Boussi-

nesq approximation

∇ · U̇ = 0,

∂U̇

∂t
+ U̇ · ∇U̇ = −∇Ṗ +

1

Re
∇2U̇ + ρ̇eg,

where U̇ represents the fluid velocity vector, eg and Re represent the gravity

unit vector and the Reynolds number Re = ubH
ν
, respectively, where ub, H,

and ν are the buoyancy velocity, total channel height, and kinematic viscosity.

The density field ρ̇(ẋ, ṫ) is described utilizing a continuum description and

evolving it in an Eulerian manner by

∂ρ̇

∂ṫ
+ U̇ · ∇ρ̇ =

1

ReSc
∇2ρ̇.

Where Sc represents the Schmidt number associated with the diffusion of the

density field, Sc = ν
D

, where ν is the kinematic viscosity and D is the mass

diffusivity. Generally Sc >> 1, although trial simulations suggest the precise

value of Sc has only a weak influence on results so long as Sc ≥ O(1) (Hartel

et al., 2000). For this reason Sc = 6 in all simulations.

The domain mesh uses a channel of varying sizes, with inflow and outflow

boundaries in the horizontal direction. The grid is uniformly spaced with
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∆ẋ = 0.2 and ∆ẏ = 0.0083. The top and bottom walls use the free-slip

boundary conditions for velocity and no-flux conditions for the density field,

and all flow variables q̇ are convected out of the domain at the outlet via the

outflow boundary condition

∂q̇

∂ṫ
+ ˙̄U

∂q̇

∂ẋ
= 0,

where ˙̄U represents the maximum fluid velocity in the domain.

The initial conditions for the simulation are generated as follows. First,

the bore front is placed at some ẋ′. The initial location of the bore varies

from simulation to simulation, depending on both the size of the domain and

whether the bore tends to move up- or down-stream of the initial location.

From there, a concentration field is generated using a sharp interface with the

shape of an error function of the form

hs(ẋ) =
1

2
· (hf − ha) · (1 + erf((ẋ− ẋ′) ∗ 2)) + ha. (3.1)

Where hs(ẋ) is the height of the interface and ẋ′ is the initial location of

the bore center. In this case 2 is a constant that is used to shape the error

function; changing this value (within reasonable bounds) has no effect on the

long-term behavior.
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Next, the velocity field is generated: the velocity field is generated such

that to the left (upstream) of the interface the velocity field is equivalent to

the far upstream layer velocities and to the right (downstream) of the interface

the velocity field is equal to the downstream layer velocity. There is a sharp

transition between the two regions. The initial horizontal velocities are set to

the predictions made by the circulation model; the initial vertical velocity is

zero throughout the domain.

There is an initial period of transient behavior while the bore shapes itself.

In cases that converge to smooth steady-state behavior, this transient behavior

(and the initial conditions) does not affect the long term behavior of the bore

as we will see later. Instead, cases with the same upstream conditions but

different initial conditions converge to the same long-term behavior. In these

cases, the initial conditions do not matter.

Upon initialization, the velocity field adjusts itself to a new bore shape.

Initially, Kelvin-Helmholtz vortices form downstream of the current front, as

seen in figure 3.1. In some the other figures showing the bore development in

time the Kelvin-Helmholtz instabilities have already been washed downstream

and/or dissipated by the first shown timestep. Depending on the Reynolds

number of the flow, these Kelvin-Helmholtz waves can either be washed down-

stream or the flow can remain turbulent (and thus unstable) (Huerre and

17



Figure 3.1: Concentration field development of a bore with parameters r = 0.2,
Rinitial = 3.0, and propagating into CS with ∆U̇ = 0.6. Notice the initial disturbances

being washed downstream, reaching a new steady layer height.
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Monkewitz, 1990), with larger Re-values favoring instability. The formation

of these instabilities provides an upper limit to Re in our simulation: initially,

we would like a nearly-steady flowfield to compare to our model so the vortices

to be washed out of the domain. This conflicts with our desire to choose Re as

large as possible to minimize the effects of viscosity and diffusion, which the

vorticity model does not address. These considerations resulted in us applying

intermediate Re values ranging from 1500-2500 for cases that exhibit smooth

behavior, depending on the specific parameters chosen. A more detailed in-

vestigation on the effects of Re number on the results can be found below in

section 5.4. In some cases the shear at the interface is too large even for smaller

Reynolds numbers, and so smooth nonturbulent behavior is not possible.

To facilitate analysis, our model made several notable assumptions, namely

that the layer heights up and downstream of the bore were constant, had

minimal mixing of the top and bottom layers, and that the bore achieves a

steady state with a constant velocity. These assumptions are met among a

special type of bore called conjugate state bores. To this end, the majority

of the simulations analyzed in this section will be these conjugate state bores;

other types of bores that do not meet our assumptions will be noted.

After running the simulations some notable parameters of the bore can be

calculated. The dimensionless bore position ẋb is defined to be the location in
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the domain where the dimensionless depth-integrated height ḣb of the lower

layer is equal to
r+ 1

R

2
, which is the average of the up and downstream lower layer

heights. Once the bore position is found, the bore velocity in the simulation

reference frame is ∆ẋb
∆ṫ

over the time frame where the bore has achieved steady

behavior. We can also calculate the bore height by looking at the layer height

downstream of the bore. There is some difficulty in measuring this height: in

some cases, the layer height downstream of the bore is not constant. In these

instances the height of the bore is defined to be the maximum layer height in

the area immediately after the bore.

3.1 Continuous shear case

Returning to our analysis of the vorticity model as applied to a hydraulic

jump propagating into flow with a continuous shear in section 2.1, we can

generate a predicted bore velocity for any given r, initial R, and ∆U̇ . These

predicted velocities can be seen in figure 2.2. Within these tables it is impor-

tant to note that the simulation bore velocity is relative to a reference frame

moving with a velocity matching the vorticity model’s predicted velocity. This

means that the difference between this simulation reference frame velocity and

the predicted velocity gives the bore’s velocity relative to a stationary reference

frame. To validate these predictions we ran a series of simulations for the cases

20



∆U̇
Initial
R

Final
R

Simulation
Bore
Velocity

Initial R
Model
Velocity

Lab Frame
Simulation
Velocity

Final
R
Velocity

Final R
Velocity
Difference

Conjugate State

0.8 5.4 5 0.0749 1.4634 1.3885 1.5032 0.1147 K-H instabilities

0.8 5.8 5.01 0.0356 1.4079 1.3723 1.5024 0.1301 K-H instabilities

0.6 5.3 4.83 0.0675 1.4905 1.423 1.5362 0.1132 K-H instabilities

0.6 5.7 4.6 0.0398 1.4345 1.3947 1.5502 0.1555 K-H instabilities

0.4 5.1 4.79 0.0695 1.5309 1.4614 1.561 0.0996 K-H instabilities

0.4 5.5 4.7 0.037 1.4781 1.4411 1.5679 0.1268 K-H instabilities

0.2 4.9 4.66 0.0714 1.5722 1.5008 1.5944 0.0936 K-H instabilities

0.2 5.3 4.66 0.0373 1.5225 1.4852 1.5944 0.1092 K-H instabilities

0.0 4.8 4.55 0.0661 1.6045 1.5384 1.628 0.0896 K-H instabilities

0.0 5.2 4.5 0.0322 1.5539 1.5217 1.632 0.1103 K-H instabilities

-0.2 4.6 4.42 0.0674 1.6488 1.5814 1.665 0.0836
Small K-H
downstream

-0.2 5.0 4.42 0.0353 1.6013 1.566 1.665 0.099
Small K-H
downstream

-0.4 4.5 4.25 0.0631 1.6847 1.6216 1.7069 0.0853
Small K-H
downstream

-0.4 4.9 4.27 0.0312 1.6362 1.605 1.7053 0.1003
Small K-H
downstream

-0.6 4.3 4.17 0.0651 1.7323 1.6672 1.7435 0.0763
Small K-H
downstream

-0.6 4.7 4.14 0.0348 1.6866 1.6518 1.7459 0.0941
Small K-H
downstream

-0.8 4.2 4.07 0.06 1.7719 1.7119 1.7835 0.0716
Small K-H
downstream

-0.8 4.6 4.01 0.0309 1.7252 1.6943 1.7883 0.094
Small K-H
downstream

-1.0 4 3.93 0.0623 1.8227 1.7604 1.8286 0.0682
Small K-H
downstream

-1.0 4.4 3.93 0.0339 1.779 1.7451 1.8286 0.0835
Small K-H
downstream

-4.0 2.5 2.18 0.0539 2.6549 2.6167 2.6802 0.0635
No K-H instabil-
ities

-4.0 4.0 2.18 0.0505 2.3484 2.6201 2.6802 0.0601
No K-H instabil-
ities

Table 3.1: Simulation behavior for the CS case with r = 0.1. The simulation bore
velocity is the velocity of the bore in a reference frame moving with the vorticity model’s
predicted velocity for the initial parameters (the model predicted velocity). The lab frame
simulation velocity is bore’s velocity to a stationary observer. The simulation bore velocity
is then equal to the difference between the simulated and predicted velocity. The lab frame

velocity is then compared to the predicted velocity when using the steady-state R value
found in column 3, and that difference can be seen in column 8. The last two entries are

the exception; the simulation velocity was set to 2.6706 to minimize the bore’s movement.

21



∆U̇
Initial
R

Final
R

Simulation
Bore
Velocity

Initial R
Model
Velocity

Lab Frame
Simulation
Velocity

Final
R
Velocity

Final R
Velocity
Difference

Conjugate
State

1.0 2.9 3 0.0434 1.0185 0.9751 1.0035 0.0284 Yes

1.0 3.2 3.01 -0.0081 0.9641 0.9722 1.0018 0.0296 Yes

0.8 2.8 2.89 0.0407 1.0365 0.9958 1.0236 0.0278 Yes

0.8 3.1 2.9 -0.0079 0.9847 0.9926 1.0224 0.0298 Yes

0.6 2.7 2.78 0.0381 1.0566 1.0185 1.046 0.0275 Yes

0.6 3 2.8 -0.0078 1.0069 1.0147 1.0431 0.0284 Yes

0.4 2.6 2.67 0.0359 1.0787 1.0428 1.07 0.0272 Yes

0.4 2.9 2.69 -0.0078 1.0309 1.0387 1.0673 0.0286 Yes

0.2 2.5 2.56 0.0337 1.1031 1.0694 1.0961 0.0267 Yes

0.2 2.8 2.58 -0.0079 1.057 1.0649 1.0935 0.0286 Yes

0.0 2.4 2.45 0.0321 1.1299 1.0978 1.124 0.0262 Yes

0.0 2.7 2.47 -0.0077 1.0851 1.0928 1.1219 0.0291 Yes

-0.2 2.3 2.34 0.031 1.1591 1.1281 1.1549 0.0268 No (Undular)

-0.2 2.6 2.36 -0.0073 1.1156 1.1229 1.1526 0.0297 Yes

-0.4 2.1 2.22 0.0378 1.1983 1.1605 1.1887 0.0282 No (Undular)

-0.4 2.4 2.24 0.0071 1.1656 1.1585 1.1867 0.0282 Yes

-0.6 2 2.1 0.0373 1.2319 1.1946 1.2248 0.0302 No (Undular)

-0.6 2.3 2.15 0.008 1.2006 1.1926 1.2199 0.0273
Layer height
after bore ris-
ing

-0.8 1.9 1.99 0.0377 1.2679 1.2302 1.2622 0.032 No (Undular)

-0.8 2.2 2.06 0.0096 1.238 1.2284 1.2558 0.0274
Layer height
after bore ris-
ing

-1.0 1.8 1.88 0.0379 1.3062 1.2683 1.3018 0.0335 No (Undular)

-1.0 2.1 1.97 0.0126 1.278 1.2654 1.2941 0.0287
Layer height
after bore ris-
ing

Table 3.2: Simulation behavior for the CS case with r = 0.2. The simulation bore
velocity is the velocity of the bore in a reference frame moving with the vorticity model’s
predicted velocity for the initial parameters (the model predicted velocity). The lab frame
simulation velocity is bore’s velocity to a stationary observer. The simulation bore velocity
is then equal to the difference between the simulated and predicted velocity. The lab frame

velocity is then compared to the predicted velocity when using the steady-state R value
found in column 3, and that difference can be seen in column 8.
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when r = 0.1 and r = 0.2. For the case when r = 0.1 (the results of which

can be seen in table 3.1), the large shears at the downstream interface meant

that the majority of simulations did not generate a conjugate state bore. For

the case when r = 0.2, the results can be seen in table 3.2.

Looking first at the case when r = 0.1, it is notable that the vast majority

of simulations generate Kelvin-Helmholtz instabilities due to the high shear at

the downstream interface. This violates our model assumption that the down-

stream layer heights should be constant and the layers should remain separate,

which means that our predicted velocities for these simulations should be less

accurate than cases where the simulations are smooth. This is generally what

is seen. We will investigate these results further in section 6.1. To try to

achieve a conjugate state result, the particular case of ∆U̇ = −4.0, r = 0.1

was chosen to generate a final downstream lower layer height that was closer

in height to the upstream lower layer height (and thus would not have as large

of a shear jump at the downstream interface).

There are some difficulties in analyzing the accuracy of the predictions

made by the vorticity model. In theory, using the steady-state parameter R

should generate the most accurate velocity predictions. However, the difference

in the predicted velocity between this R and the initial R is not large, and

instead the difference between these two values is very small. To try to alleviate
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Figure 3.2: Concentration field development of a bore with parameters r = 0.1,
Rinitial = 2.5 on the left and Rinitial = 4.0 on the right, propagating into CS with

∆U̇ = −4.0. The simulation was set up with a reference frame velocity of 2.6706. The
dashed line is at a height 2.33. Although not shown, the simulation domain stretches from

0 to 120 in the streamwise direction and from 0 to 10 in the spanwise direction; the
shortened domain is chosen to better visualize the bore front. At the final time step the

downstream layer heights were steady and achieved a constant layer height downstream of
the bore.
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this difficulty, we ran simulations with Rinitial = 4.0 far away from the steady-

state R along with a case with the same upstream conditions (r = 0.1,∆U̇ =

−4.0) but with an initial height (R = 2.5) closer to the final height. These

results can be seen in figure 3.2. For this simulation, the predicted bore velocity

was set to be U̇ = 2.6706 for both cases (so that the bore did not move too

far upstream or downstream). Just on initial visual inspection a few things

are notable. Firstly, both the case starting near the steady-state R and the

case further away have initial transient behavior. It’s obvious that the case

with the larger R has much more vigorous behavior initially, but surprisingly

the development in time is very similar after this initial instabilities wash

downstream. The steady-state bore behavior achieved by both cases is almost

identical - both achieve a depth-integrated downstream lower layer height of

2.37 at x = 60 when T = 149.8. Using this height in the vorticity model

generates the predicted steady-state velocity of U̇ = 2.6674 for both cases.

Using the same methodology as earlier to track the bore velocity, the actual

simulation velocities were U̇ = 2.6167 and U̇ = 2.6201 for the smaller and

larger initial lower layer heights respectively. Comparing these two velocities

to the velocities predicted using the initial heights R = 2.5 and R = 4.0

(U̇ = 2.6549 and U̇ = 2.3484 respectively), we see that once again there is

not much improvement when using the final heights rather than the initial
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heights when the two heights are close to each other. However, looking at

the case with initial conditions far away from the steady state parameters the

model’s predicted velocity is far more accurate: the error using the final layer

heights is 20% of the error as compared to using the initial layer heights in

the circulation model. This shows that there could be a large improvement in

accuracy for the general case with a predicted value for the downstream layer

heights.

Looking next at the case when r = 0.2, there is a larger range of parameters

where our assumptions are not violated. Intuitively, this is because the lower

layer does not need to “speed up” as much to insure mass conservation when

the upstream lower layer depth is thicker. When we look at the model’s

predicted velocity from the initial conditions against the velocities achieved

by the bore in simulations with conjugate state bores, we see that the model’s

predicted velocity varies from the simulation velocity by 5% or less. However,

we see a consistent pattern of deviations from our model: looking at the cases

with the same r and ∆U̇ but different initial R, we see that the simulation

velocities are very similar. The cases with the higher R values tend to be

faster than predicted, and the cases with the lower R tend to be slower than

predicted, and these velocities are extremely similar to each other.
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If we look further into the simulation results we can see a reason for this: the

cases with the same upstream parameters ∆U̇ and r converge to simulations

with a similar R value. In the simulation visualized in figure 3.2, the final

bore layer heights converge to nearly identical heights (less than 0.1 percent

difference) despite a large difference in initial downstream layer heights; when

we look at table 3.2 it can be seen that this is true for all the conjugate state

cases with the same r and ∆U . When this final height is used to predict the

bore velocity, we see an improvement in the precision of the model’s prediction,

though surprisingly there are cases where the predictions decrease in accuracy.

Almost every prediction using the steady-state bore R predicts a faster velocity

than what is seen in the simulation by 0̃.028, which might point to some

consistent mechanism in every case. This could be from a variety of reasons,

but it is important to note that the way we defined the height of the bore

(the height of the leading edge of the bore) is generally the highest point the

downstream layer achieves. If smaller values for the height of R are used

(which is what would happen if the height is defined further downstream) the

predicted velocities would increase.

Ultimately, if there was a way to predict the height to which the bore would

grow/shrink, it would be possible to improve our predictions of the bore’s

velocity. As we see in the cases where the bore downstream layer heights
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were far from the steady-state behavior, using the final bore parameters is

much more accurate than using the initial parameters. More importantly,

the similarities in the steady-state behavior for cases with different initial

downstream layer heights would point to there being a single steady-state

conjugate state bore with the given upstream parameters.

3.2 Shear jump case

For the SJ case we see similar bore behavior to the CS case. Applying

the circulation model by using the initial conditions generates velocities that

are within 5% of predicted for conjugate state bores as can be seen in table

3.2. This accuracy is somewhat improved when the final height of the bore is

used; the bore velocities predicted by the model using the final downstream

layer height of the bore improves the predicted velocity so that the error is less

than 3% in cases that are conjugate state. However, once again we see that

the predicted velocities are not uniformly more accurate when the steady-

state bore R is used. As discussed before, this is only the case when the

initial parameters were not far from the steady-state parameters. For cases

when Rinitial is far away from the steady-state R we would expect a large

improvement on predicted velocity by using the steady-state R in our model.
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∆U̇
Initial
R

Final
R

Simulation
Bore
Velocity

Initial R
Model
Velocity

Lab Frame
Simulation
Velocity

Final R
Velocity

Final R
Velocity
Difference

Conjugate
State

1.0 3.4 3.5 -0.0183 1.1596 1.1413 1.1425 0.0012
No (K-H
Instabilities)

1.0 3.8 3.53 0.052 1.0714 1.1234 1.1367 0.0133
No (K-H
Instabilities)

0.8 3.2 3.27 -0.0242 1.1519 1.1277 1.1411 0.0134 Yes

0.8 3.6 3.3 0.056 1.0692 1.1252 1.136 0.0108 Yes

0.6 3 3.07 -0.026 1.1452 1.1192 1.1352 0.016 Yes

0.6 3.4 3.08 0.0484 1.0674 1.1158 1.1336 0.0178 Yes

0.4 2.8 2.86 -0.0274 1.1394 1.112 1.1315 0.0195 Yes

0.4 3.2 2.87 0.0448 1.066 1.1108 1.1301 0.0193 Yes

0.2 2.5 2.65 -0.0393 1.144 1.1047 1.1283 0.0236 Yes

0.2 2.9 2.66 0.0189 1.0868 1.1057 1.127 0.0213 Yes

0.0 2.3 2.45 -0.0413 1.1385 1.0972 1.1244 0.0272
No (Undu-
lar)

0.0 2.7 2.45 0.0133 1.0851 1.0984 1.1244 0.026 Yes

-0.2 2.1 2.22 -0.0444 1.1337 1.0893 1.1242 0.0349
No (Undu-
lar)

-0.2 2.5 2.26 0.0065 1.084 1.0905 1.1199 0.0294 Yes

-0.4 1.8 1.95 -0.0542 1.1325 1.0783 1.1266 0.0483
No (Undu-
lar)

-0.4 2.2 2.06 -0.0181 1.0996 1.0815 1.1173 0.0358 Yes

-0.6 1.6 1.69 -0.0626 1.1275 1.0649 1.1262 0.0613
No (Undu-
lar)

-0.6 2 1.93 -0.0269 1.0987 1.0718 1.1078 0.036 Yes

-0.8 1.4 1.41 -0.0771 1.1229 1.0458 1.1231 0.0773

No (Un-
dular/
Upstream
Dip)

-0.8 1.8 1.72 -0.0366 1.0983 1.0617 1.1081 0.0464

No (Un-
dular/
Upstream
Dip)

-1.0 1.2 N/A N/A 1.1187 N/A 1.0987 N/A No bore

-1.0 1.6 1.51 -0.0469 1.0987 1.0518 1.1089 0.0571

No (Un-
dular/
Upstream
Dip)

Table 3.3: Simulation behavior for the SJ case with r = 0.2. The initial R is what the
simulation is initiated with; the simulation bore velocity is the velocity of the bore in a

reference frame moving with the vorticity model’s predicted velocity for the initial
parameters (the model predicted velocity). The lab frame simulation velocity is simulated
bore’s velocity to a stationary observer. The simulation bore velocity is then equal to the

difference between the simulated bore velocity and the circulation model’s predicted
velocity. The simulation’s lab frame velocity is then compared to the model’s predicted

velocity when using the steady-state R value found in column 3, and that difference can be
seen in column 8.
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We continue to see that cases with the same upstream parameters tend

towards the same downstream layer heights (and unsurprisingly have very

similar final velocities). Unsurprisingly the vorticity model’s predictions re-

main strongest in cases where the bore is conjugate state, as compared to

cases with Kelvin-Helmholtz instabilities or undular bores.
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Chapter 4

Energetics

Although we were able to predict the velocity for a bore with given ge-

ometric parameters, we have seen that the predicted behavior is dependent

upon final parameters which are not necessarily close to the initial conditions.

Ideally, we would like to determine a bore’s velocity from an initial setup,

without having to resort to referencing later geometric parameters. Using the

assumptions made above, it is relatively simple to calculate the energy loss

across a control volume moving with the bore velocity for a given geometry

and bore velocity. It might be possible to use this energy analysis to determine

what parameters a steady-state bore would tend towards.
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For the CS case (looking at the top (EU) and bottom (EL) layer energy

losses separately) we generate

∆ELCS
=

∫ ha

0

(P ′u + ρ1gy +
1

2
ρ1(U +

∆U

H
(
H

2
− y))2)(U +

∆U

H
(
H

2
− y))dy

−
∫ hf

0

(P ′d + ρ1gy +
1

2
ρ1(U1d(hf ) +

∆U

H
(hf − y))2)(U1d(hf )

+
∆U

H
(hf − y))dy (4.1)

∆EUCS
=

∫ H

ha

(P ′u + ρ2gy +
1

2
ρ2(U +

∆U

2
− ∆U

H
y)2)(U +

∆U

2
− ∆U

H
y)dy

−
∫ H

hf

(P ′d + ρ2gy +
1

2
ρ2(U2d(hf ) +

∆U

H
(hf − y))2)(U2d(hf )

+
∆U

H
(hf − y))dy (4.2)

where P ′u is the upstream top-wall pressure and P ′d is the downstream top-

wall pressure. After simplifying the expressions using the continuity relation

and the Boussinesq approximation as well as some algebra, it is apparent that

we need to consider the top wall pressure drop; using x-momentum conserva-

tion across the same control volume generates an expression for the top-wall

32



pressure drop.

∫ H

0

(Pu(y) + ρu(y)Uu(y)2)dy =

∫ H

0

(Pd(y) + ρd(y)Ud(y)2)dy (4.3)

where Pu(y), ρu(y), Uu(y) are the upstream pressure, density, and velocity

profiles respectively and Pd(y), ρd(y), and Ud(y) are the downstream pressure,

density, and velocity profiles. After some algebra, an expression for
P ′
d−P

′
u

ρ
can

be found:

P ′d − P ′u
ρ

=
1

4H2(H − hf )hf
(ha − hf ) ∗

(∆U2(H − ha − hf )(−h2
a − h2

f +H(ha + hf ))

+4U∆UH(H − ha)ha

+2U2H(g′hf (−H + hf )(ha + hf ) + 2H(ha − hf ))) (4.4)

Returning to the expression for the layer energy loss across our control

volume and nondimensionalizing energy by Ė = E

ρg′
3
2 h

5
2
a

we are left with
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∆ĖLCS
= − −1 +R

16R2(−1 + rR)
(∆U̇(−1 + r)− 2U̇) ∗

( 4R2(−1 + rR)(−2 + r + rR)

+∆U̇2(−1 + r + rR)(1 +R + r(−1 +R(−3− 2R + r(3 +R2))))

−4u∆U̇(−1 + r)(−1 +R(−1 + r(3 +R)))

−4u2(1 + (1 + r(−3 +R))R) ) (4.5)

∆ĖUCS
=

(r − 1)(R− 1)

16R(Rr − 1)2
(∆U̇r − 2U̇) ∗

( 4R(1 +R)(Rr − 1)2

+∆U̇2(−1 + r + rR)(2− r(1 +R)(2 +R) + r2R(3 +R2))

−4U̇∆U̇(2 +R(−2 +R(−4 + r(3 +R))))

−4U̇2(2 + r(−3 +R)R) ). (4.6)

Both of these expressions converge at the limiting case of ∆U̇ = 0 to the

expressions found in Li and Cummins (1998).
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Developing the same expressions for the SJ case, we are left with

P ′d − P ′u
ρ

= (U − ∆U

2
)2(1− ha

H
)(
ha − hf
H − hf

)

+ (U + ∆U ′)2ha
H

(
hf − ha
hf

) +
g′

2H
(h2

a − h2
f ), (4.7)

∆ĖLSJ
= (1−R)(U̇ +

∆U̇

2
)(

1

2
(U̇2 + ∆U̇2)(

3Rr − 1−R−R2r

(1−Rr)R2
)

+ (U̇
∆U̇

2
)(

3Rr − 1−R− 4R2r2 + 3R2r

(1−Rr)R2
)

+
1

2
(2− r −Rr)), (4.8)

∆ĖUSJ
=

1

2
(1− r)(1−R)(U̇ − ∆U̇

2
)((U̇2 + (

∆U̇

2
)2)(− −3Rr +R2r + 2

R(1− 2Rr +R2r2)
)

− (U̇∆U̇)(
5Rr2 +R2r2 − 4R2r3 − 2r

Rr(1− 2Rr +R2r2)
)− 1−R). (4.9)

By adding these expressions together (∆ĖCS = ∆ĖLCS
+∆ĖUCS

or ∆ĖSJ =

∆ĖLSJ
+ ∆ĖUSJ

) the total energy drop across the control volume is found for

the CS or SJ cases.
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Now that we have predictions for energy loss for a given bore velocity, it is

possible to determine the energy-preserving set of parameters for a bore with

given upstream flow conditions.
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Chapter 5

Comparison of energy analysis

to DNS results

Up to this point, we have been making the assumption that the bore is

propagating between flat layers of fluid both up and downstream of the bore,

which is often called conjugate state behavior. This assumption that the layers

are flat will not always hold; we will discuss such cases in section 6.

Working within this assumption, we will now employ the above theoretical

energy analysis in order to investigate first an interesting result from the case

of a bore propagating without shear, and then progress to the SJ and CS cases.

Later, we will compare these theoretical predictions against DNS simulations,

paying close attention to the influence of the inflow conditions on the velocity
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and energy loss of the bore using the same dimensionless quantities defined as

above.

Importantly, our energy analysis looks only at the effect from the change

in fluid velocity and layer height over the bore and ignores other methods of

energy dissipation. Later, we will look into the effect of incorporating other

energy losses; this will be more important in the cases where our assumption

of conjugate state behavior does not hold.

5.1 No-shear case

Before continuing the analysis into the CS and SJ cases, it is interesting to

look at the implications of applying the circulation model to a hydraulic bore

propagating into still flow. Using the analysis developed by Li and Cummins

(1998) for a hydraulic bore propagating with a constant, arbitrary velocity, an

energy drop of

Ėnoshear =
1

2
(−1 +R)2U̇(1− (1 + r(−2 +R)R)U̇2

R2(−1 + rR)2
) (5.1)

is found for some arbitrary U̇ . Taking the bore velocity predicted by the

circulation model
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U̇noshear = (
2R2(Rr − 1)2

R− 2Rr + 1
)1/2 (5.2)

and inserting that bore velocity (equation 5.2) into the arbitrary U̇ in equation

5.1 we can generate a closed-form expression for the energy loss for a bore

propagating into shear-free conditions:

Ėnoshear =
(−1 +R)2

√
2

√
R2(−1 +Rr)2

1 +R− 2Rr
(1− 2(1 + r(−2 +R)R)

1 +R− 2Rr
(5.3)

These results are plotted in figure 5.1. It is notable that when there is no

shear upstream of the bore cases with R = 1
2r

(corresponding to equal layer

heights after the bore) conserve energy across a control volume encompassing

the hydraulic bore (again, when other forms of energy dissipation/transfer are

ignored). Looking at the remainder of figure 5.1, the R = 1
2r

(equivalently

hf
H

> 1
2
) line splits the diagram into two sections: one with

hf
H

> 1
2

that

predicts an energy increase across the bore and another with
hf
H
> 1

2
that has

a predicted energy drop across the bore. We can thus see that for values of R

greater than 1
2r

, the model predicts that there is a net energy gain across the

bore: values of R larger than 1
2r

are predicted to require an external energy
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Figure 5.1: Energy contour plot on a log-log scale for the no-shear case. The topmost
0-contour line corresponds to the lower layer growing to the full channel height after the
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2 ). Note that this is a plot of energy loss, so positive
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input and are nonphysical. Alternatively, only values of R less than or equal

to 1
2r

are predicted to be energetically allowable.

Prior work has shown that smooth, steady bores such as we’re analyzing

tend be stable when the layer heights are equal after the bore (Stastna and

Lamb, 2002). This result could also point to a relationship between gravity

currents and hydraulic bores: similar behavior is also seen in gravity currents

where a gravity current propagating into fluid without shear is stable (and

has no change in energy) when the gravity current is half the channel height

(Nasr-Azadani and Meiburg, 2015).

The question naturally arises as to what will happen in cases with an initial

setup that is predicted to have an energy drop across the bore (or an energy

gain across the bore). Within a control volume exhibiting steady behavior

energy needs to be balanced between the input, output, and any possible

sources or sinks. This would mean that we would expect either some form of

energy dissipation and/or the bore will not be stable and it will adapt itself if

there is a predicted energy drop across the bore (corresponding to cases where

R ≤ 1
2r

). As we are (for now) ignoring other forms of energy dissipation, the

only other way a bore could achieve steady behavior would be for it to adapt

its geometric parameters. Specifically, because the inflow shear and upstream

layer heights are fixed, we would expect the bore to adjust itself to a case where
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the energy input is equal to the energy output plus any dissipation. This would

mean that in the absence of energy sinks such as viscous dissipation we would

expect the bore to adapt to the energy-preserving case where the layer heights

after the jump are equal.

To verify this hypothesis a set of simulations were run with ∆U̇ = 0, r =

0.2, and R = 2.25, 2.5, and 3; the development of the bore is seen in figure 5.2.

The simulations are set in a reference frame moving with the velocity predicted

by the circulation model whenR = 2.5. This is the height that we would expect

the bore to grow/shrink towards, and so using the velocity predicted using R =

2.5 should generate a simulation with less upstream/downstream movement

of the bore. The inflow conditions are r = 0.2 and ∆U̇ = 0 (with the inflow

velocities being the predicted bore velocity). Looking at the early behavior, we

see that the bores behave somewhat similarly - there are instabilities generated

that are then washed downstream. After these instabilities are convected out of

the domain, we can see that the steady-state behavior becomes nearly identical

and the downstream layer heights adapt themselves so that they are equal

heights. This corresponds to the energy-preserving case in our predictions.

Because the bores behave differently initially, if we look at figure 5.3 we can see

that the bores shift different amounts relative to our control volume. Once that

initial behavior is over we see that the bore velocities relative to the reference
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frame are nearly identical: the largest difference in velocities (between the

R = 2.35 and R = 3.0 cases) is less than 0.2%. These velocities in turn

differ by less than 2.0% from the model’s predicted velocity for the case when

R = 2.5.

For these simulations the R values were chosen so that the bore remains

conjugate state; later in section 6.2 we will investigate the case when R = 2.0,

which is not a set of parameters that generates a conjugate state bore. From

the simulation results we see that the bore grows (or shrinks) to the zero-energy

case (R = 2.5) from the initial conditions of the simulation. This matches the

what we would expect if the bore achieves an energy balance from our earlier

analysis and the results from prior papers that we discussed earlier. The steady

conjugate-state behavior of a bore propagating into a flow without shear is for

the layer heights after the bore to achieve equal heights and for the bore to

move with the velocity predicted by the circulation model for a bore with the

given r and R = 1
2r

.
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Figure 5.2: Development of three bores propagating into a flow without shear. The
inflow condition is identical for all three cases: r = 0.2, ∆U̇ = 0. The initial height after

the jump is R = 2.35, 2.5, 3 respectively from left to right. The dotted line is at the
half-channel height R = 2.5. The shaded region is the depth-integrated height. Note that

for the R = 2.35 case the starting location is downstream of the R = 2.5 and R = 3.0 cases.
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Figure 5.3: Positions in time of three bores propagating into a flow without shear. The
inflow condition is identical for all three cases: r = 0.2, ∆U̇ = 0. The initial height after
the jump is R = 2.35, 2.5, or 3 (next to their respective labels on the plot). The case of

R = 2.35 is translated by 8 to aid comparison.

5.2 Shear jump case

If we keep the layer velocities constant but allow for a shear jump at the up-

stream interface, we can see some interesting impacts. Looking initially at the

features of the energy plot in the SJ case in figure 5.4, we see that the region

where bores are physically allowable is bounded. Initially this limitation comes

from our model’s predicted velocity: returning back to the velocity contour

plot in figure 2.4, beyond a certain positive and negative shear the predicted

bore velocity is negative (the bore is travelling to the right). This violates our

assumption that the bore is moving to the left. Furthermore, these regions

do not generate conjugate-state behavior: simulations started in these regions

have large Kelvin-Helmholtz instabilities both up and downstream of the bore
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Figure 5.4: Energy contour plots for the shear jump case. r = 0.1, r = 0.2, r = 0.5 from
top to bottom. ∆U̇ is on the y axis, R is on the x axis. The light grey shaded region has a

predicted energy drop across the bore; the dark grey shaded region violates the
assumption that the bore is moving with a positive velocity.
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Figure 5.5: Energy contour plots for the shear jump case. r = 0.1, r = 0.2 from top to
bottom. ∆U̇ is on the y axis, R is on the x axis. The light grey shaded region has a

predicted energy drop across the bore. Each point represents the result of a numerical
simulation from Ogden and Helfrich (2016). × = fully turbulent jump, ◦ = undular bore,

M= smooth front turbulent jump, and � = conjugate state.
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even at low Reynolds numbers because of the high shear magnitudes. It is im-

portant to note though that these instabilities occur even at significantly lower

magnitudes of ∆U̇ than the velocity-limiting value and simulations started in

conditions with large enough |∆U̇ | do not generate conjugate state bores.

Similarly to the case without shear, we can further limit the physically

allowable region for SJ bores. For any given value of ∆U̇ bores with a predicted

energy drop exist only for cases with R below some limiting value. When

∆U̇ = 0, this value is 1
2r

for all values of r as discussed earlier. As shear

increases, we can see that this limiting R also increases; similarly, as shear

decreases, we see that this limiting R value decreases.

First looking at the case when r = 0.5 in figure 5.4, we can see that no

bores are energetically favorable when ∆U̇ ≤ 0. This makes intuitive sense:

R must be larger than 1 by the way we defined the bore, so when r = 0.5 the

lower layer must be greater than half the channel height after the jump (and

thus has a predicted energy gain across the bore). Allowing for upstream shear

changes this though: when the upstream shear ∆U̇ > 0, it no longer remains

the case that there are no bores predicted that are energy-preserving: there

should be conjugate state bores with
hf
H

larger than 1
2

that are energetically

favorable. Just as we saw in the case without shear, if we alter the initial

value of R such that the predicted energy change across the bore is nonzero,
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the bore adapts itself to the energy-preserving set of parameters and moves

with the velocity predicted for that set of parameters.

More changes on the energy contour plot when we shift our attention to the

smaller values of r (0.1 and 0.2) as seen in figures 5.4. The general behavior

remains the same - there is some maximum value of R beyond which bores of

a given r and ∆U̇ are energetically unfavorable. However we see that rather

than all cases below that particular value of R having a predicted energy

drop across the bore, there are regions (with large ∆U̇ and small R) with a

downstream layer height less than the energetically limiting value that have a

predicted energy jump across the bore. These regions are not as interesting

as they appear: the large shear in these regions mean that Kelvin-Helmholtz

instabilities prevent bores from forming, and so we must ignore these cases in

our analysis.

Returning to conditions which generate conjugate state bores, we can com-

pare our energy analysis to prior work (Ogden and Helfrich, 2016). It’s im-

portant to note that their work used the simulation final downstream layer

heights, so the results seen are of bores that have achieved an energy balance.

Within that paper, several regimes of bores are outlined. Thus far within this

paper we have focused on conjugate state bores that are steady and have a

fixed height up and downstream of the jump. In figure 5.5, we can see that in
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their simulations conjugate state behavior bores tend to settle with a down-

stream lower layer height very close to the energy preserving values of R that

our analysis found for both the r = 0.1 and r = 0.2 cases. However, cases

further away from the zero-energy line do not behave as conjugate-state bores.

This makes intuitive sense - cases with a large energy drop would need some

other way to dissipate energy, which can result in more complicated behavior

and doesn’t meet all of our assumptions. Interestingly, the conjugate state

bores that develop in their simulations move to a set of parameters that would

generate a small predicted energy drop across the bore as compared to our

energy analysis. However, our analysis does not incorporate other forms of

energy dissipation. If we assume there is some dissipation in energy across

the bore that we are ignoring from viscous dissipation, then the actual energy

change will be lower than that found through our analysis. This unaccounted-

for energy change will tend to shift the zero-energy line towards smaller values

of R than our naive predictions. If we return to figure 5.5, we can see that in

the Ogden and Helfrich (2016) simulations the conjugate state bores settled

with values of R slightly smaller than the predicted zero-energy loss R from

our analysis. This is what we would expect if viscous dissipation increases the

energy drop across the control volume.
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To corroborate these results, we ran a series of simulations where r = 0.2.

As opposed to the simulations in Ogden and Helfrich (2016), we know both

the initial and final set of bore parameters, the results of which can be seen

in figure 5.6 and table 3.2. In general, we see similar results in the two sets of

simulations - conjugate state bores achieve stable behavior with values of R

slightly below the zero energy line.

Going into more detail, we can turn our attention to figure 5.6 which shows

the initial and final states of the bores in our simulation. Immediately notable

is that the conjugate state bores continue to achieve a steady state with values

of R corresponding to very small energy drops. As mentioned earlier, this fits

our hypothesis. Likewise, cases that do not achieve steady state bores tend

to be further away from the zero energy line, which corresponds to a larger

energy drop. These sorts of bores have more ways to dissipate energy, which

means that they should need to be further into the energy drop region. There

are a handful of anomalous results though for the cases with negative shears.

These cases appear to achieve a steady state in regions corresponding to a

small energy gain across the bore. However, these bores also do not tend to

have perfectly flat downstream layer heights. It is possible that over time these

bores will shrink to be in the energy region; alternatively, it is possible that
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Figure 5.6: Simulations starting/ending downstream layer height ratio R = 0.2 along
with the SJ upstream layer shear ∆U̇ . The initial heights are labelled with an x; the

steady state heights are labelled with circles, diamonds, +, and squares. Cases with circles
develop downstream Kelvin-Helmholtz instabilities; cases with + develop undular waves

propagating at a slower velocity than the leading wave; cases with diamonds develop into
conjugate state bores; cases with squares form smooth bores that do not have a constant

downstream layer height. For all cases bores with a larger initial R and the same ∆U̇ have
a larger (or equal) final R (then the case with the same initial ∆U̇).
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the height of the bore is being miscalculated because the downstream layer

heights are growing.

It appears that we can generally predict whether a bore will be a conjugate

state case or not based on how large the predicted energy change is. For cases

with R slightly smaller than the zero-energy line R (at relatively low Reynolds

numbers) the bore will tend toward conjugate state behavior. Furthermore, for

cases further away (with smaller R values) undular bores will tend to develop

in the absence of Kelvin-Helmholtz instabilities. Likewise, cases with an R

that has a predicted energy jump across the bore will tend toward the zero

energy R. The layers downstream of the bore will adjust themselves to a

configuration that preserves energy.

Earlier, we mentioned that it seemed that bores with identical upstream

parameters tended towards an identical steady-state downstream lower layer

height ratio R. So far, it seems that the value for R can generally be predicted

by using our energy analysis; by using this coupled with the circulation model

it appears that we can generally predict bore geometry and velocity with

minimal knowledge of the downstream conditions.
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Figure 5.7: Energy contour plots for the continuous shear case. r = 0.1, r = 0.2, r = 0.5
from top to bottom. ∆U̇ is on the y axis, R is on the x axis. The light grey shaded region

has a predicted energy drop across the bore; the dark grey shaded region violates the
assumption that the bore is moving with a positive velocity.
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5.3 Continuous-shear case

For the CS case the energetically possible cases remain strongly dependent

on shear. Looking at figure 5.7, there is again some maximum R beyond

which the energy analysis predicts an energy gain across the bore for a given

upstream layer height r and shear ∆U̇ . Similarly to the SJ case, this maximum

height varies strongly with ∆U̇ : as ∆U̇ increases or decreases, so too does the

maximum R.

Many of the conclusions drawn from the SJ analysis can be applied to the

CS case. First recalling the analysis for the case without shear in section 5.1,

we found that lower layer heights greater than half the channel height after

the shear are energetically unfavorable. This can be seen in figure 5.7; for all

three lower layer heights upstream of the bore, downstream lower layer heights

larger that R = 1
2r

fall in the region with a predicted energy jump (if shear is

zero). While (as expected) ∆Ė = 0 when R = 1
2r

, for cases where the shear

is nonzero that no longer remains the case. Increasing the shear makes higher

values of R energetically feasible: for cases with positive shear, it is possible

to have a bore with a downstream lower layer height greater than half the

channel height.

This can be seen within figure 5.7: for the case when r = 0.5 there are no

cases that do not require energy input along the ∆U̇ = 0 line (when R = 1
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there is no bore). However, like the SJ analysis, in cases with a positive shear

there are bores that are predicted to be energetically feasible with R larger

than 1
2r

. Looking back at figure 5.7 to see what happens when r = 0.1 or

r = 0.2, we see generally similar behavior to the SJ case (and the r = 0.5

case). As ∆U̇ increases, the predicted energy-preserving case corresponds to

a larger R; as ∆U̇ decreases, the opposite occurs.

Similarly to the SJ case there are regions (dark grey in figure 5.7) where

our assumption that the bore is moving right to left is violated. This occurs

for all three cases when R is large alongside strong negative ∆U̇ = 0; in

the cases where r = 0.1, 0.2 this occurs when there is a very large positive

∆U̇ and small values of R as well. This will be discussed further below in

section 6, but neither of these cases results in a steady bore: the large positive

shear upstream of the bore results in Kelvin-Helmholtz instabilities that do

not achieve statistically steady behavior. Unlike the SJ case though there is no

natural upper/lower limit on the shear beyond which the bore velocity violates

our assumption. However, this does not change the analysis for the conjugate

state behavior - at sufficient shear Kelvin-Helmholtz instabilities are generated

which mean that the layer heights are not constant with a sharp interface.

A series of simulations were run for the cases when r = 0.1 and r = 0.2,

the results of which can be seen in figure 5.9 and in figure 3.1 from section 3.1
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as well as in table 5.3. In these we can see that the bore shifts the downstream

lower layer heights before it achieves steady state behavior, similarly to the

no-shear and SJ cases. This steady group of parameters is again very close to

the predicted zero-energy case that was calculated in section 4 and moves with

the velocity the circulation model predicts for these parameters. This would

seem to verify our earlier analysis. Additionally, one interesting case will be

presented where the downstream lower layer height is greater than half the

channel height, a situation that earlier we showed is only possible for bores

with upstream shear.

If we look first at figure 5.9, we initially see that the general behavior of

different initial downstream conditions achieves very similar steady-state ge-

ometries. For the case when r = 0.1, we see that all of the cases chosen gener-

ate large enough shears at the downstream interface so that Kelvin-Helmholtz

instabilities form. In these cases, the bores achieve a steady state in the phys-

ically predicted region. However, the steady state geometries have a smaller

R than would be predicted if we ignored all sources of dissipation. This makes

sense; the Kelvin-Helmholtz instabilities should introduce exactly the sort of

dissipation that we ignored in our earlier analysis.

All of the cases plotted in figure 5.9 exhibit Kelvin-Helmholtz instabili-

ties downstream of the bore. Earlier, a case was investigated with upstream
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geometry r = 0.1 and ∆U̇ = −4.0 (figure 3.1). In this instance, two differ-

ent initial downstream geometries resulted in the same steady state geometry

(R = 2.33) and exhibited conjugate state behavior. In this instance, R = 2.33

corresponded exactly to the case where there is no expected energy loss in our

naive analysis. As mentioned earlier, this case also illustrates the indepen-

dence of the steady-state geometries from the initial downstream conditions

for conjugate state bores.

Moving our attention to the case where r = 0.2, the steady-state behavior

is closer to our expectations. For the cases (diamonds) that acheive a conjugate

state bore we can see that the steady-state geometries tend towards values of

R that are very close and slightly smaller than the value that would generate

no energy jump across the bore according to the naive analysis earlier. For

several of the cases with negative shear, we see that bores established with

values of R smaller than that which would generate no loss across the bore

generate undular bores. In these cases we see that the value of R for the

undular bores tends to be smaller than that of conjugate state bores. As

the undular bores transmit some energy away from the bore front (the group

velocity of the waves is less than the phase velocity of the leading wave of the

bore) we would expect this sort of behavior. Returning to the conjugate state

cases, if we look at the case when ∆U̇ = 0.4 an extra simulation was run with
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initial downstream conditions further away from the steady-state geometry.

Even in this instance, we see that the bore develops towards similar steady-

state geometries; in fact, the final bore geometry is nearly identical for both

cases that start with values for R greater than the steady-state value.

Finally switching our attention to the case with a downstream lower layer

height greater than half the total channel height (figure 5.8), we see some in-

teresting behavior. Initially, we can see that the bore is undular; as mentioned

before, this violates our assumption that the downstream layer height is con-

stant. However, despite this deviation we can still see that the downstream

lower layer height reaches a steady state at a value higher than half the total

channel height (which is what is seen in all cases without shear). The final

bore height is visibly very close to the upper dotted line corresponding to the

energy-preserving value for R, supporting our earlier analysis. Although the

ratio R = 1.3 is not large, there theoretically are energy-preserving cases with

a smaller value for r that are also energetically stable. In these cases though

the large shear at the downstream interface generates Kelvin-Helmholtz in-

stabilities. Importantly, increasing the shear leads to downstream lower layer

heights that are predicted to be greater than half the channel height and de-

creasing the shear leads to ones less than half the channel height, which is

what is seen.

59



Concentration field at T=0.0

x

0 5 10 15 20 25 30 35 40 45 50

B
o

re
 H

e
ig

h
t

0

1

2

Concentration field at T=5.0

x

0 5 10 15 20 25 30 35 40 45 50

B
o

re
 H

e
ig

h
t

0

1

2

Concentration field at T=25.0

x

0 5 10 15 20 25 30 35 40 45 50

B
o

re
 H

e
ig

h
t

0

1

2

Concentration field at T=50.0

x

0 5 10 15 20 25 30 35 40 45 50

B
o

re
 H

e
ig

h
t

0

1

2

Concentration field at T=125.0

x

0 5 10 15 20 25 30 35 40 45 50

B
o

re
 H

e
ig

h
t

0

1

2

Concentration field at T=400.0

x

0 5 10 15 20 25 30 35 40 45 50

B
o

re
 H

e
ig

h
t

0

1

2

Figure 5.8: Time development of a bore’s concentration field with initial parameters
r = 0.5, R = 1.3, and CS ∆U̇ = 1.0. This set of parameters is predicted to have no energy

change across the bore. The contour lines are set at 1
6 , 2

6 , 3
6 , 4

6 , and 5
6 . The bore moves

downstream over time; the difference between the predicted bore velocity of 0.7535 is
0.0452.
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Figure 5.9: Simulations start/ending downstream layer height ratio R along with the CS
upstream layer shear ∆U̇ . The initial heights are labelled with an x; the steady state

heights are labelled with circles, diamonds, and +. Cases with circles develop downstream
Kelvin-Helmholtz instabilities; cases with + develop undular waves propagating at a

slower velocity than the leading wave; cases with diamonds develop into conjugate state
bores. For all cases bores with a larger initial R and the same ∆U̇ have a larger (or equal)

final R (then the case with the same initial ∆U̇). For the case when r = 0.2, ∆U̇ = 0.4,
and an initial R = 3.5, the final R = 2.69. This is identical to the case when r = 0.2,

∆U̇ = 0.4, and an initial R = 2.9. The shaded region is the region with a predicted energy
drop across the jump; the central line is the predicted zero-energy line.
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Earlier, we conjectured that predicting the steady-state downstream bore

parameters from the upsteam parameters would allow us to improve predic-

tions for bore velocity, and thus up to this point we have primarily focused

on the steady-state geometry of the bore. We will now proceed to check the

accuracy of predicted bore velocities that only use the upstream conditions r

and ∆U̇ by using the energy-predicted value for the downstream lower layer

height ratio R. Focusing on cases that remain conjugate state, we can com-

pare our velocities predicted using only upstream parameters to the velocities

seen in simulations. The results of this comparison is presented in table 5.3.

It’s important to note that the predicted velocities in the table were done so

without any information from the downstream lower layer height ratio R; the

predicted R is the value that would generate a bore without any energy loss

from our analysis earlier. For this reason the predicted R values are the same

for cases with the same upstream parameters; likewise the velocities are also

the same for these cases with the same upstream parameters. Focusing on the

predicted velocities versus the simulation velocities, we see that the predicted

velocities are very close to the simulation velocities. Earlier we saw similar

deviations in velocities from when we used the simulation value for R; it ap-

pears that using the predicted values for R in the vorticity model can generate

accurate predictions for bore velocity using only the upstream parameters.
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∆U̇ Initial R
Energy
Predicted
R

Final R R Difference
Simulation
Velocity

Energy
Predicted
Velocity

Energy
Predicted
Velocity
Difference

1.0 2.9 3.0455 3.00 0.04 0.9751 0.9957 0.0206

1.0 3.2 3.0455 3.01 0.03 0.9722 0.9957 0.0235

0.8 2.8 2.9402 2.89 0.05 0.9958 1.0158 0.02

0.8 3.1 2.9402 2.90 0.04 0.9926 1.0158 0.0232

0.6 2.7 2.8324 2.78 0.05 1.0185 1.0381 0.0196

0.6 3 2.8324 2.80 0.03 1.0147 1.0381 0.0234

0.4 2.6 2.7227 2.67 0.05 1.0428 1.0625 0.0197

0.4 2.9 2.7227 2.69 0.03 1.0387 1.0625 0.0238

0.4 3.5 2.7227 2.69 0.03 1.0259 1.0625 0.0366

0.2 2.5 2.6117 2.56 0.05 1.0694 1.0892 0.0198

0.2 2.8 2.6117 2.58 0.03 1.0649 1.0892 0.0243

0.0 2.4 2.5000 2.45 0.05 1.0978 1.118 0.0202

0.0 2.7 2.5000 2.47 0.03 1.0928 1.118 0.0252

-0.2 2.3 2.3883 2.34 0.05 1.1281 1.1492 0.0211

-0.2 2.6 2.3883 2.36 0.03 1.1229 1.1492 0.0263

-0.4* 2.1 2.2773 2.22 0.06 1.1605 1.1825 0.022

-0.4 2.4 2.2773 2.24 0.04 1.1585 1.1825 0.024

-0.6* 2 2.1676 2.10 0.07 1.1946 1.218 0.0234

-0.6 2.3 2.1676 2.15 0.02 1.1926 1.218 0.0254

-0.8* 1.9 2.0598 1.99 0.07 1.2302 1.2558 0.0256

-0.8 2.2 2.0598 2.06 -0.00 1.2284 1.2558 0.0274

-1.0* 1.8 1.9544 1.88 0.07 1.2683 1.2956 0.0273

-1.0 2.1 1.9544 1.97 -0.02 1.2654 1.2956 0.0302

Table 5.1: This table represents the simulation results for various ∆U̇ with r = 0.2.
Cases with a * on the shear represent that the simulation generated an undular bore. As

before, ∆U̇ is the upstream shear, the initial R is the downstream layer ratio that the
simulation is initiated with, the final R is the steady-state value for that ratio. In this

instance the energy predicted R is the value of R that would generate zero energy loss in
our naive analysis based on the upstream parameters. R difference is the difference

between these two values of R. The simulation velocity is the nondimensional velocity we
found from the simulation, whereas the energy predicted velocity is the nondimensional

velocity predicted by the vorticity model using the energy-predicted R. Finally the energy
predicted velocity difference is the difference between these two velocities.
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Ultimately, the general behavior of CS bores is very similar to the be-

havior of SJ bores. For cases with initial downstream layer heights either

slightly smaller than energy-preserving layer heights or with a predicted en-

ergy increase across the bore, we see that the bore remains conjugate state

and adapts towards the energy-preserving parameters. Comparing a case with

more shear to one with less shear, we again see that the steady lower layer

height downstream of the bore is larger for the case with greater shear. Lastly,

by putting the parameters of the predicted energy-preserving case into the ve-

locities predicted by the circulation model in section 2.1 we can get excellent

agreement between model predictions and simulation behavior without any

reference to information downstream of the bore.

5.4 Influence of Reynolds number

The vorticity model assumes inviscid flow conditions and vanishing diffu-

sion. Alternatively, the DNS simulations employ finite Reynolds and Schmidt

numbers; this leads to diffuse interfaces and viscous dissipation. Consequently,

we would expect some differences between the model predictions and DNS re-

sults. For cases with nonzero viscosity, the zero-energy line in the energy

analysis will overestimate the actual energy downstream of the bore; within

the simulation, there would be a net energy drop across the bore. To investi-
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Figure 5.10: Bore front location with r = 0.2, R = 3, and a shear jump of ∆U̇ = 0.447.
The bore front is determined by where the depth-integrated height of the lower layer is the

average of ha and hf . At Re=5000, Kelvin-Helmholtz instabilities develop and slow the
bore; at Re=2000, the bore is slightly slower than predicted; at Re=500, the bore height
after the jump shrinks, with the new velocity matching the model’s predicted velocity for

the new parameters; at Re=100, the bore shrinks further (and has a corresponding
increase in velocity).
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Figure 5.11: Time- and depth- averaged bore height with r = 0.2, R = 3, and a shear
jump of ∆U̇ = 0.447. The bore height is determined by taking an average of the

time-averaged height from t = 60 to t = 80 downstream of the bore.
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gate this effect, we ran multiple simulations for the same set of parameters for

a range of Reynolds numbers (Re=100, 500, 2000, 5000), the results of which

can be seen in figure 5.10. For the given initial geometry, the vorticity model

predicted that there would be no change in energy across the bore (again ig-

noring possible energy sinks or other ways to take energy out of the system),

thus the geometry would not change. We would expect the simulation results

to match our model the closest in the cases with less viscosity (higher Re) so

long as the bore remains conjugate state. Because the simulation reference

frame is moving with the predicted bore velocity, the positions in figure 5.10

are the differences between predicted and simulated positions unless otherwise

stated. However, the velocities given are the velocities from the lab reference

frame (the velocities are not relative to the bore velocity).

Looking at figure 5.10, we see that the bore velocity of the Re=2000 case

matches the model velocity very closely; the velocity differs by less than 1
2
%.

If we look at figure 5.11, we can furthermore see that the bore height is very

close to what is predicted: R develops to be 2.9510 rather than 3. Even this

slight deviation makes sense: as mentioned earlier, the predicted zero energy

line completely neglects viscosity, so in a simulation we would expect our

estimates to consistently be slightly larger than what is seen.
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However, for the higher Re case (Re=5000) we see that the bore slows.

For this case, Kelvin-Helmholtz instabilities are generated which effect both

the energy analysis and violate the assumptions that were made to predict the

bore velocity; we will look further at such cases later in section 6.1.

What we see for the cases with greater viscous energy dissipation is that

the bore shrinks when compared to cases with less viscous dissipation. The

original set of parameters would need a net external energy input to be sta-

ble (to overcome this dissipation) so the resulting flow adapts to a different

energetically stable condition. This corresponds to an energy drop across the

entire domain of figures 5.4 and 5.7, which shifts the energy-preserving contour

to the left (corresponding to a smaller R.). Looking at figure 5.11, the bore

shrinks in both the Re=500 and the Re=100 case, though the bore shrinks

further for the Re=100 case (corresponding to a greater needed external en-

ergy input) as can be seen in figure 5.11. For this particular set of parameters

(r = 0.2, R = 2.5,∆U̇ = 0.447) a drop in R corresponds to a faster bore veloc-

ity (and a larger drop corresponds to a greater increase in velocity). Returning

to our simulation results, we see that the conjugate-state cases with a lower

Re (which shrink) move faster than cases with a higher Re. Furthermore,

the bore sees a subsequent increase in velocity as it shrinks further. However,

even in the simulation with the most viscous dissipation (Re = 100), the bore
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velocity predicted by our model was less than 2% away from our predicted

velocity. If we look at figure 2.4 we can see that moving small amounts to

the left of the zero energy loss line (a small decrease in R) results in a small

increase in bore velocity. Turning our attention to the simulation results and

looking at the Re = 500 case, the bore shrinks to R = 2.8576; if this number is

used in the velocity prediction for the circulation model the bore is predicted

to move with a velocity U̇ = 1.1394. This is faster than the U̇ = 1.1290 seen

in the simulation. Likewise, the predicted velocity for the bore as it develops

in the Re = 100 case is U̇ = 1.1579 as compared to the U̇ = 1.1412 we see

in our simulations. These two simulations move with a velocity within 1% of

predictions if the changing R is accounted for.

5.5 Conjugate state conclusions

Focusing on bores that are close to the zero-energy line (and thus behave

as conjugate state bores and match our earlier assumptions) we would expect

that within any simulations that energy coming into the control volume is bal-

anced by energy coming out of the control volume, ignoring the small amount

of viscous dissipation. A steady bore needs to achieve an energy balance:

energy into the control volume needs to either dissipate or exit the control

volume. Continuing to ignore the viscous dissipation of energy, a bore will
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achieve an energy balance by changing to a new set of geometric parameters.

Of the parameters governing the bore, the shear upstream of the bore (mag-

nitude and type) as well as the height of the fluid layers upstream of the bore

are fixed by the inflow condition; the only free variable governing the flow is

R, which relates to the downstream layer heights. Thus, in conjugate state

bores with initial conditions that are not energy preserving, we would expect

the bore to grow or shrink towards an energy-conserving set of parameters.

The bore should shift left or right in the parameter space seen in figures 5.4

and 5.7 to the point where the energy change is zero. This will generate two

interesting predictions for conjugate state bores. The first is that a given set

of inflow parameters (∆U̇ and r) will generate bores that converge to the same

height, regardless of the initial starting height after the bore (assuming that the

heights are suitably close to the zero energy line that the bore remains a conju-

gate state bore). The second is that a case with more positive/negative shear

upstream of the bore will be larger/smaller than an equivalent case without

shear (as the zero energy line shifts towards larger R for larger ∆U̇). In other

words, a bore propagating into positive (negative) shear, either a shear jump or

a continuous shear gradient, will have a larger lower layer height downstream

of the bore than one propagating without shear. This second prediction has

been seen in earlier work (Stastna and Lamb, 2002). Furthermore, although
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we ignored viscous losses in our energy analysis, the circulation model coupled

with the energy analysis gave accurate predictions for the bore velocity even

in simulations with significant viscous losses. Ultimately, our work can accu-

rately predict conjugate state bore velocities because our analysis predicts the

steady state downstream layer heights.

Until this point in the paper we have been neglecting other methods of

energy dissipation; returning to cases that have some viscous dissipation, the

net result would be to shift the zero energy line from our naive analysis to the

left (smaller values of R). Although this will result in the bore adjusting itself

to layer heights that conserves energy which are smaller than predicted (the

lower layer height downstream of the bore will shrink as compared to cases

without significant viscous dissipation), the general behavior will be the same:

conjugate state bores will have a set of geometric parameters that conserve en-

ergy, and conjugate state bores that initially do not conserve energy will have

the layer heights upstream of the bore change until this energy-preserving set

of parameters is reached. Even in this instance though the naive implemen-

tation of the energy analysis in Section 4 in coordination with the velocities

predicted by the circulation model for the energy-preserving set of parameters

can accurately predict the bore velocity.
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Chapter 6

Non conjugate state behavior

Earlier, we focused on conjugate state behavior because it matches the

assumptions we made in our analysis. In the following sections, we will analyze

cases where these assumptions are violated either because there is significant

turbulent mixing or because there are multiple wavefronts following the bore.

This latter is called an undular bore.

6.1 Turbulent behavior

Earlier, we showed that the initial conditions do not have a large effect on

the steady-state behavior of a conjugate state bore: different initial conditions

converge to the same behavior. However, the same is not true of turbulent

bores, which makes it more difficult to compare simulation results to theory.

71



Moreover, in turbulent bores many of our assumptions are violated - there is

significant viscous mixing, and the downstream layer heights are decidedly not

smooth.

In previous simulations, we purposefully kept the Reynolds number low to

try to prevent Kelvin-Helmholtz instabilities from forming. In section 5.4, we

investigated the effect lowering the Reynolds number had on a bore. Within

that section, we briefly mentioned that Kelvin-Helmholtz instabilities devel-

oped at the highest Reynolds number we looked at (Re=5000). If we look

at figures 5.10 and 5.11, we see that increasing the Reynolds number to the

point where Kelvin-Helmholtz instabilities form has an effect on the behavior

of the bore by slowing the bore down. Furthermore, increasing the Reynolds

number further generates larger instabilities, which will further alter the bore’s

behavior. In this instance, we can see that for cases with relatively “small” in-

stabilities the circulation model makes a good prediction for the bore velocity

despite violations of some of our initial assumptions. Interestingly, even for

cases with large instabilities we still see that the velocity predictions made by

the circulation model are not poor.

However, applying our earlier methods to predict bore geometry and be-

havior are not appropriate to bores exhibiting turbulent behavior; different
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initial conditions lead to different bore behavior and geometry. This means

that wider generalizations are difficult.

6.2 Undular bores

Earlier, we touched upon the necessity of starting simulations close to the

zero energy line (with smaller R) to see conjugate state behavior. For cases

with high shear, this was necessary because Kelvin-Helmholtz instabilities are

generated downstream of the bore, which in turn effect the bore’s behavior.

This is further investigated in section 6.1. However, for cases with relatively

low downstream shear alternate bore behavior occurs that violates our as-

sumptions of constant layer heights. If we look at figure 5.8, we can see that

there appears to be a propagation of waves downstream of the bore. This is an

example of an undular bore, which occured in both the SJ and CS cases. As

the bore develops in time, we see that the longer wavelengths remain closer to

the bore front, while shorter wavelengths are transported downstream. This

ultimately leads to a group velocity of the wave packet that is less than the

velocity of the leading edge of the wave (the bore) which results in a net

transport of energy away from the bore.

Included in several earlier tables were the results of cases that generated

undular bores. We see that while cases with undular bores see a difference
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Figure 6.1: Energy contour plots for the shear jump case. r = 0.1, r = 0.2 from top to
bottom. ∆U̇ is on the y axis, R is on the x axis. The light grey shaded region has a

predicted energy drop across the bore. Each point represents the result of a numerical
simulation from Ogden and Helfrich (2016). × = fully turbulent jump, ◦ = undular bore,

M= smooth front turbulent jump, and 3 = conjugate state.
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in R compared to their conjugate state counterparts with the same upstream

parameters, the bore velocities predicted using the simulation downstream

layer height ratio R predicts the velocities for undular bores roughly as well

as the velocity of conjugate state bores. Using the energetically predicted

value for R decreases slightly the accuracy of the prediction, but the energy

predicted velocity is still roughly correct. This is interesting; it suggests that

if there were a way to predict R for undular bores in the same way as for

conjugate state bores, we could predict their ultimate velocity. The difficulty

arises in the development of these undular bores: we see that the same initial

conditions can lead to two different outcomes (undular or conjugate state) de-

pending on whether the downstream layer height ratio is above or below the

energy-preserving value. More confusingly, undular bores develop to look like

conjugate state bores as the shorter wavelengths are convected downstream,

and if these waves are convected out of our domain it is not certain that

our simulations are valid. Finally, multiple steady undular bores can develop

that have the same upstream parameters: in figure 6.1 we can see the results

from Ogden and Helfrich (2016), which show multiple steady undular bores

at constant r and ∆U̇ . Each of these cases can achieve steady behavior with-

out violating any of our assumptions because different amounts of energy can

be transported by the waves downstream, but it makes it difficult to apply
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our model for conjugate state bores to bores that start with a parameter R

significantly smaller than the conjugate state steady value.
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