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Damage Assessment with State-Space Embedding Strategy and 
Singular Value Decomposition under Stochastic Excitation 

Gang Liu1,2, Zhu Mao3, Michael Todd,3 and Zongming Huang1,2 

Abstract A multivariate time series analysis employing a state-space embedding strategy 
and singular value decomposition is presented in this article to detect infrastructure 
damage. After summarizing the current state space reconstruction method, the univariate 
state-space reconstruction is extended to multivariate (or global) reconstruction for 
observed time series at multiple locations. Under the hypothesis that reconstructed phase 
state geometry will change with damage, a reduced feature based on Mahalanobis 
distance (MD) of the most significant singular value vector, which is calculated from the 
reconstructed trajectory, is proposed. Both the area under receiver operating characteristic 
(ROC) curve and deflection coefficient (DC) are used as comparison metrics to illustrate 
the presence and severity of damage. The advantage of this proposed approach is 
computational efficiency and easy implementation using state-space methodology, since 
it does not require high-dimensional neighbor searches, as previous methods have 
proposed. Validation of the approach is demonstrated using a 6-degree-of-freedom linear 
spring mass system and the IASC-ASCE 4-story benchmark experimental structure. 
Results from both test-beds show that damage occurrence and severity can be 
successfully identified. 

Keywords: structural health monitoring, damage detection, singular value decomposition, 
state-space reconstruction, receiver operating characteristics, deflection coefficient 

1 Introduction 

Aging civil infrastructure inevitably deteriorates under operational loading and 
environmental conditions, and structural failure may result in serious economic, 
performance, or life-safety consequences. The field of structural health monitoring (SHM) 
has evolved rapidly in civil infrastructure assessment, especially using damage 
methodologies relying on in-service measurement of performance such as vibration. This 
category of SHM strategies extracts damage-sensitive features from the dynamic 
response of structures, under the assumption that damage will change the fundamental 
structural characteristics observed in the vibration, such as mass, stiffness, damping, 
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connectivity, etc. A large range of literature about this methodology is reviewed by 
Doebling et al. [1], Sohn et al. [2], and Farrar et al. [3]. 
A major subset of this methodology concerns model-based or model-enhanced 
procedures, including (but not limited to) modal frequency variations, modal shape-
related indices [2], dynamical flexibility [3] and FEM model updating [4]. These dynamic 
models describe global structural characteristics explicitly, but they often fail at 
identifying systems with damage-induced nonlinearities and typically require heavy 
computational/processing loads (especially model updating). Some of these problems are 
reviewed by a comparative study in [5]. Beyond model-based methods, statistical time 
series analysis (data-driven method) comprise another large set of approaches in SHM, 
which extracts damage sensitive features directly from measured data (“data mining”), so 
that the complexity of global system identification is avoided and online damage 
diagnosis can be more easily implemented. Data-based methods have been intensively 
investigated, and many damage detection approaches have been developed based on, for 
example, autoregressive (AR) models [6], auto-regressive moving average (ARMA) 
models [7], auto-regressive model with exogenous input (ARX) [8,9], wavelets [10], and 
the Hilbert-Huang transform [11]. 
A novel suite of damage diagnostic methodologies based on the geometric variation of a 
system’s dynamic state space has been proposed and implemented by Todd, Nichols, 
Trendafoilova, Moniz, Fasel, Torkamani et al. [12-18] in recent years. It is known 
according to the theories of embedology that a dynamic system may be described by its 
reconstructed (from data) state space. Topology changes in the state space, therefore, can 
be regarded as a new category of features that may distinguish different conditions of the 
structure before and after damage. The most widely used features utilizing geometry of 
state space include average local attractor variance ratio [12], auto-prediction error [13], 
cross-prediction error [14], chaotic amplification of attractor distortion, and correlation 
dimension of attractors [15]. Previous studies have demonstrated that this method can 
improve an order-of-magnitude in resolution and robustness over several traditional 
modal-based features [12]. Furthermore, due to independence on underlying physics, 
nonlinearity-induced damage, such as opening and closing of cracks, can be successfully 
detected by such approaches. 
In order to improve sensitivity and avoid the influence of noise, all the above-mentioned 
state-space-based studies use well-tailored chaotic excitations; however, this is often 
impractical or expensive in civil infrastructure applications to apply deterministic and/or 
user-defined input to the system. Nichols et al. tried stochastic excitation conforming to 
the Pierson-Moskowitz wave distribution to detect and quantify damage of offshore 
structures [19]. Overbey et al. explored band-limited stochastic excitation to discern bolt 
loosening in a single-bay steel frame [20]. Nie et al. successively detected and localized 
damage on a circular steel arch test bed under impact excitation [21]. These three 
applications have conceptually demonstrated that the state-space based methodology 
without applied chaotic excitation can also be used to diagnose damage, but it has been 
only implemented on relative simple structures and insufficiently explored for SHM on 
more realistic systems. One of the objectives of this article is to present a state-space 
based feature extraction application under stochastic excitation and to apply the proposed 



feature to diagnose damage in more complicated structures. In this work, the fundamental 
hypothesis is that singular value spectrum of the reconstructed trajectory reveals the 
damage-induced geometric changes to the system, and Mahalanobis distance (MD) of the 
singular value vector from baseline to test case is used as a metric (“feature”) to quantify 
the changes. Two statistical evaluations, namely receiver operating characteristics and the 
deflection coefficient, are then used to determine significance of the change and are 
further interpreted for higher-level evaluation, such as severity.  
The paper is organized as follows: Section 2 gives a brief overview of state space 
reconstruction along with parameter selection methods. Section 3 describes the proposed 
approach and its procedure for damage diagnosis. Section 4 provides a description of a 
simulated 6 degree-of-freedom system and then a realistic test structure (the ASCE 
benchmark test structure). Section 5 and section 6 present discussion of the test results 
and summarize the analysis workflow, respectively. 

2 State-space embedding strategy and parameter selection method 

2.1  Global attractor reconstructions 

Time evolution of multi-degree-of-freedom linear dynamical systems can be typically 
described by the second order differential equation: 

 (1) 

where [M], [C], and [K] are the mass, damping, and stiffness matrices of the system, 
respectively, {u(t)} is the displacement vector, and {F} is the input force vector. From 
the state model point of view, this differential equation can be transformed to a state-
space representation: 

 (2) 

where {x} is the state vector variable, including displacement and velocity of all degrees 
of freedom and {y} is the observed output. Using each variable as a coordinate variable, 
the observed output of Equation (2) will trace out a trajectory in state space when the 
input force is deterministic, and the trajectory will approach the system’s dynamic 
attractor under a steady-state condition. When damage occurs, the matrix A is expected to 
change, the attractor will vary correspondingly. Therefore, the “geometry” change of the 
attractor will reflect the damage-induced changes of the system [19]. 
In practice, of course, it is very difficult to measure each of the system’s state variables 
directly, and usually only scalar data are available from a sensor network. However, the 
state space may be reconstructed via the embedding theorem of Takens using a delay 
coordinate approach if the reconstruction dimension m≥2z+1, where z is the box-counting 
dimension of the dynamic system [22]. The m-dimensional attractor at time i can be 
expressed as, 
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                 (3) 

where is a time delay and y is the measured scalar signal. Mathematically, this 
procedure converts the scalar measured series y into a series of vectors {B}. Under 
stochastic excitation, there is no attractor in theory since the state-space geometry 
(attractor) will be infinite dimensional, but band-limited stochastic excitation can be 
evaluated as low-dimensional deterministic processes. With theoretical foundations of 
stochastic embedding established recently, several works have applied the reconstructed 
attractor under stochastic excitation to identify damages [20].  
When data from l sensor channels can be obtained, equation (3) describing the univariate 
case can be extended to multivariate case for state-space reconstruction [23] in the form 
of: 

         (4) 

where and are time delay and embedding dimension for the i-th sensor channel. The 
global attractor is acquired by combining structural response data measured at multiple 
locations through the above equation and then the global embedding dimension is M=m1 
+ m2 +…+ ml. 

2.2 Optimal embedding parameter selection methods 

From equation (3) and (4), a successful attractor reconstruction requires optimal choice of 
embedding parameters, including time delay and embedding dimension m for each 
sensor channel. There are several proposed methods for optimizing parameter selection, 
and only those universally-used methods will be considered in this paper. 
A proper time delay is chosen to make vector coordinates (columns of the reconstructed 
attractor) linearly uncorrelated; two quantities—autocorrelation function and average 
mutual information (AMI)—are often used to find that optimal time delay. As 
autocorrelation function cannot capture nonlinear relationships among time series, the 
AMI method is adopted in this paper. AMI measures the general dependence of two 
variables by the AMI function [24] and the time scale T corresponding to the first local 
minimum of this function is used as the optimal time delay. 
A proper embedding dimension will geometrically capture the dynamics of a system 
adequately without redundant coordinates. The most commonly used approach is the 
false nearest neighbor (FNN) method [25, 26]. In this FNN algorithm, the false neighbor 
is defined as two neighboring points in the ith dimension of state space, but geometrically 
far away in the (i+1)th dimension. In other words, with an increasing number of projected 
dimensions, the false neighbors will no longer be actual neighbors. Therefore, when the 
adequate minimum unfolding dimension m is reached, the percentage of false nearest 
neighbor projections should decline to zero, and thus the appropriate embedding is 
determined. 

( 1){ } { }, ,...,i i i i mB y y yt t+ + -=

t

1 1 1 2 2

1 1 1 2 2
( 1) ( 1) ( 1){ } { }, ,..., , ,..., ,..., ,...

l l

l l
i i i i m i i m i i mB y y y y y y yt t t t+ + - + - + -=

it im

t



3 The proposed damage detection method 

3.1  Singular value decomposition 

As mentioned, the fundamental hypothesis is that the attractor will change after damage. 
Traditionally, internal variation of the attractor is used as metric to quantify this change, 
such as auto-prediction error and cross-prediction error obtained from a variety of 
mappings between reference and test attractors [20]. These mappings primarily consider 
central tendencies (low-order statistical properties) of the error as indicative of damage, 
but it is investigated in this paper whether some kinds of damage induces more “extreme 
value” behavior in the trajectories, which would be reflected more in changes in the 
boundary of the attractor, whose properties are shown to be related to the resulting 
singular value spectrum when the attractor is mapped through its singular vector matrix. 
To remove the first order homogeneous attractor size changes simply due to global 
signal-to-noise change or excitation amplitude fluctuation, the measured data are 
normalized to zero mean and unit standard deviation before attractor reconstruction. In 
order to capture the periphery variations of the reconstructed attractor before and after 
damage without heavy computation, singular values of the reconstructed attractor are 
extracted by singular value decomposition technique [27]: 

 (5) 
where M is reconstructed attractor and U and V are unitary matrix respectively and is a 
diagonal matrix with all singular values (nonnegative real numbers , ) 
on the diagonal. A heuristic understanding of the proposed damage detection 
methodology is presented in Fig 1 using two-dimension attractor example.  
  

 
(a)                                          (b)                                                   (c) 

Figure 1: Geometry interpretation for the proposed method (a) unit circle (b) scaling (c) 
rotation  

Since V is unitary matrix, each column vector of V describe points on unit circle for a 2D 
case, which is plotted in Fig. 1(a) with red dashed arrows as damaged condition and blue 
arrows as baseline condition respectively. Fig. 1(b) describes operation , which 
can be viewed as scaling the unit circle to ellipse according to each of the singular values 
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(diagonal entries of matrix ). The first singular value (  in Fig. 1(b), 
superscript d and h describe damage and baseline respectively) is the long semi-axis of 
the ellipse. Fig. 1(c) describes operation , which can be interpreted as procedure 
of acquiring the original attractor by rotation. In n-dimension case, the attractor can be 
thought as exploring on average an n-dimension ellipsoid, and  is the length of the i-th 
semi-axis of this ellipsoid. Therefore, singular values are essentially of the dimension of 
periphery of the attractor and can be utilized as metric to identified damage. Moreover, 
advantage of the proposed method is that the algorithm can be executed rapidly and 
efficiently, since internal trajectory information, such as the variation of trajectory 
neighbor points (which can require nearest-neighbor searching in a high-dimensional 
space), is not required, as it was for many of the previous methods referenced above. 

3.2 Damage features and the damage detection procedure 

After the singular values are acquired (resulting in a vector of such values), the 
Mahalanobis distance (MD) is used as dissimilarity measure from the reference condition 
and is proposed as the fundamental damage detection scalar metric. MD is simply the 
distance of the test point from the center of mass divided by the width of the ellipsoid in 
the direction of the test point. The definition of MD is [28] 

             (6) 

where  is a multivariate vector in which  describes the i-th 
singular value; and W are respectively the mean and covariance of a matrix, which is 
composed of singular values when the structure is under the baseline condition. 
In order to measure detection performance of the proposed method, the area under a 
receiver operating characteristic (ROC) curve (AUC) is adopted in this study, which is a 
statistical metric indicating the detection performance of the feature (correct detections or 
classifications vs. false positives) as function of decision threshold. The metric ranges 
from 1, which perfect detection or classification independent of threshold, to 0.5, which 
represents a detection or classification performance equivalent to a random guess. More 
detailed discussions about the theory of AUCs and ROCs can be found in [30]. 
In addition to using AUC for performance comparison, deflection coefficient (DC) is 
used to evaluate damage severity, which is defined by 

                        (7) 

where subscription d and h represent damage and baseline condition respectively, and 
is the average and standard deviation of the MD. In the current formulation of using 

the MD of the singular value spectrum as the feature, increasing damage is expected to 
cause a corresponding mean shift in the MD without significant change in variance 
(without increasing feature evaluation uncertainty), implying that the DC might be useful 
as a severity measure. 
The damage-detection algorithm is summarized in the following steps: 

S 1 1 and d hs s

M UE=

is

1( ) ( ) ( )TMD Ws s s s s-= - -

s 1 2{ , ,..., }Tns s s s= is
s

2 2
d h

h d

DC k k
s s

-
=

+

k
s



1). Populate two databases Xh and Xd from the health and damaged structure respectively. 
2). Divide each database into a series of segments  and  (i=1,2,…,n) while the 
length of each segment is the same, and then regularize each segment to remove all first-
order trends from nonstationarity, such as trend due to environmental conditions. 
3). Reconstruct attractor  and from  and  using proper time delay and 
dimension respectively given by Equation (4). 
4). Compute the singular value vector for each  by singular value decomposition 
technique, and if singular values are zero, they will be discarded. Cluster half of these 
vectors to form a baseline subset  and the others to form reference subset 
respectively (k=1,2,…,n/2). 
5). Calculate the mean and variance of singular value using all baseline subset . 
6). Obtain logarithmic Mahalanobis distance as reference by Equation (6) using the 
reference subset . 
7). Compute the singular value vector just using half number of , and calculate 
logarithmic (k=1, 2,…,n/2) by equation (6) as testing. 
8). Use AUC as statistical metric to quantify the performance of damage detection. 
9). Evaluate damage severity with the DC. 

This procedure of this method executes an eigen-analysis of the embedding matrix, in 
which each dimension (column) is a delayed version of the time series obtained from 
each sensor, and the procedure is similar to the process of finding the periphery of an 
ellipsoid (attractor). Moreover, the logical system of the state-space based method is 
rigorous, so the proposed method is discussed in the framework of the attractor. 

4 Test description 

4.1  Computational model 

Before experimental evaluation, a relatively simple 6-DOF spring-mass system is 
designed to test the proposed method, which is shown in Fig.2. Initial spring stiffness is 
ki=1500 (i=1…6) and mass values is mi=1 (i=1,…,6). The damping matrix C is set as 
Rayleigh damping, C=0.01*K +0.00015 *M, which is a linear combination of stiffness 
matrix K and mass matrix M. 

 
Figure 2: 6 degree-of-freedom mass and spring system 

Stochastic excitation is applied at the right end of the structure, and the acceleration 
responses from m1 to m6 are recorded as multivariable output. Damage is simply 

,h iS ,d iS

,h iA ,d iA ,h iS ,d iS

,h is ,h iA

,b ks ,r ks

,b ks

,h kDM
,r ks

,d is ,d iA
,d kDM

m1 m2 m3 m4 m5 m6

k 1 k 2 k 3
c1

k 5k 4 k 6
c2 c3 c4 c5 c6

Fp(t)



simulated as loss of spring stiffness. Different damage scenarios and the corresponding 
natural frequencies of undamped system are listed in Table 1.Note that the natural 
frequencies do not change drastically until severe damage occurs in the system, such as 
cases 3 and 4. 

Table 1:Damage case and corresponding frequency 
case k w1(Hz) w2(Hz) w3(Hz) 

0 - 1.486 4.372 7.003 
1 k2=0.9k2 1.464 4.356 6.996 
2 k2=0.8k2 1.438 4.337 6.987 
3 k2=0.5k2 1.317 4.252 6.832 
4 k2=0.8k2,k4=0.8k4 1.416 4.223 6.933 

For statistical computation, the simulated data series is divided into 2000 segments. 
Under baseline condition, the first 1000 segments are used as training set to obtain mean 
and variance of MD, and the latter 1000 segments are used to calculate MD indices as 
validation reference. For damaged cases, only the last 1000 segments are used to evaluate 
MD indexes, ending up with the same number of MD indices as baseline case for 
statistical comparison. 

4.2 Experimental structure 

The laboratory experiment from the ASCE benchmark structure [31], which is a 4-story, 
2-bay by 2-bay steel-frame scale-model structure, is shown in Fig. 3 and is subsequently 
used to test the proposed method on a much more realistic testbed. Details about this 
experiment can be found in the website at http://www.ca.cityu.edu.hk/asce.shm/. The 
nominal structure with all braces in place is denoted as baseline condition, and damage is 
simulated by removing various braces in the structure. Damage cases are listed in Table 2.  

Table 2: Damage sceneries of the experiment structure 

case Damage description 
1 Removed braces on 1st floor in one bay on southeast corner 
2 Removed braces on 1st and 4th floors in one bay on southeast corner 
3 Removed braces on all floors in one bay on southeast corner 
4 Removed all braces on east side 

Stochastic excitation was applied by a shaker on top of the structure, and acceleration 
responses were measured by gauges placed near the center column of the frame at each 
floor, DasyLab Acquisition system is used to acquire data and the sampling frequency is 
250 Hz [32]. 



 
Figure 3: Diagram of the ASCE benchmark structure under case 2[31] 

 

5 Test description 

5.1  Computational model results 

5.1.1 Attractor reconstruction parameters 

For optimal time delay selection, since the same result will be acquired by using any 
segment data under healthy and damaged condition, only typical result from one segment 
is shown in Fig. 4(a) for the sake of brevity. As the first minimum of AMI will be 
reached at time delay T= 2 for all sensor channels; hence the delay T is set to 2 for global 
embedding. Fig.4 (b) shows the FNN function of a random selected segment. It shows 
that the percentage of FNN function declines rapidly and firstly approaches zero at M=5 
for sensor channel 1 and 2, while M=6 for others sensor channels. The shape of the FNN 
function imitates the functions from a known deterministic signal (for example, Lorenz 
signal) very well, since they both contain most of their information in the first few 
dimensions. 
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(a)                                                                 (b) 

Figure 4: Optimal embedding parameter selection for simulated data (a) AMI (b) FNN 
In order to investigate the proper embedding dimension for all segments, the average 
optimal dimensions of all segments under baseline condition for all sensors from FNN 
function are listed in Table 3. 

Table 3: Average proper embedding dimension under baseline condition 
Sensor number 1 2 3 4 5 6 

Optimal dimension 5 5 5 5 6 6 

5.1.2 Damage detection performance 

The distributions of the MD index under baseline and damaged condition are both tested 
using Kolmogorov-Smirnov goodness-of-fit hypothesis, and the normal distribution is not 
rejected under significance level 0.05. Therefore, normal distributions of MD from 
damage case 1 to 4 for the numerical simulation study are plotted in Figure 5.  
It is observed that there is a clear separation of MD distribution between baseline and 
damage cases from 2 to 4. The ROC curve is near random guess line under damage case 
1 (AUC=0.7152), indicating that damage detection ability is fair under this situation. 
However, the detection performance will increase significantly as damage grows: for 
example, the AUC increases to 0.8785 under case 2, indicating that the damage can be 
identified successfully by the proposed method. Moreover, Fig. 5(a) shows that the 
variance of MD distribution will decline when damage occurs from one place to two 
places. 
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(a)                                                           (b) 

Figure 5: Damage detection (a) Distribution of MD (b) ROC curve 

If no embedding strategy is adopted, the distributions of MD under different damage 
cases and the corresponding ROC curves are plotted in Fig.6., and then the comparison of 
AUCs is presented in Table 4. For damage cases 3 and 4, the detection is decisive; 
however, for less severe conditions, discrimination of the damaged case from baseline is 
harder, although early warning is critically important for maintenance schedule. This 
phenomenon indicates that damage is almost impossibly discerned just using SVD 
method. 

    
(a)                                                                 (b) 

Figure 6: Damage detection without embedding (a) Distribution of MD (b) ROC curve 
Table 4 shows that the AUCs with embedding will increase under all damage cases in 
contrast to values without embedding, and this indicates that damage detection ability 
will be improved by the proposed method. 
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AUCs (without embedding) 0.5801 0.7184 0.9212 0.9311 
AUCs (with embedding) 0.7151  0.8785  0.9925  0.9986  

Relative increment percent (%) 23.30 22.28 7.84 7.25 

5.1.3 Damage severity identification 

Fig. 7 shows the DC index under different damage levels. It is evidently observed that 
DCs increase almost linearly with damage progression, when embedding strategy is used, 
meaning that relative damage severity can be easily identified even direct quantification 
of damage cannot be achieved. However, DCs with embedded state space greatly 
enhance the sensitivity of detection, and for each damage case, the DC evaluations get 
doubled compared to the DC without embedding. 

 
Figure 7: DCs under different damage severity 

5.1.4 Damage detection with noise 

In order to further investigate the effectiveness of the proposed damage detection method, 
a more stringent test condition is considered. The distributions of MD under damage case 
1 and 3 with different noise levels (artificial contamination) are presented in Fig.8 and the 
AUCs are listed in Table 5, and DCs are plotted in Fig. 7. It is observed that the mean of 
MD distribution will increase to a certain extent with noise data both under reference and 
damaged condition in Fig. 8, the listed AUCs and DCs for different contamination levels 
show no significant changes compared to the performance of noise-free cases, 
demonstrating the noise robustness of this proposed method. 
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(a)                                                                    (b) 

Figure 8: Distribution of MD with noise: (a) case 1 (b) case 3 

Table 5: Area under ROC curve for the benchmark structure 
Noise level 0% 1% 5% 10% 

Case1 0.7152 0.7183 0.7148 0.7100 
Case3 0.9925 0.9928  0.9924  0.9886  

Fig. 9 shows the variation trend of average MD with differential noise level. It is 
observed that the trend between MD and noise level is nonlinear, the average MD 
increases very slowly when the noise level is under 10 percent both at baseline and 
damaged conditions, but it will increase very rapidly when the noise level increases. 
Although the proposed methods cannot detect damage successfully when the magnitude 
of noise is over 20% of the amplitude of measured data, its performance is still quite 
good when noise level is below 10%. 

  
(a)                                                                (b) 

Figure 9: variation trend of average MD with noise, (a) case1 (b) case 3 
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5.2 Experimental data results 

5.2.1 Attractor reconstruction parameters 

The Optimal embedding parameter selection is presented in Fig. 10. Fig. 10 (a) shows 
that AMI function reaches its first minimum at time delay T=2 for each sensor, and Fig. 
10 (b) indicates that FNN functions drop to 0 at dimension 5 for all sensors. Thus the 
time delay is set to 2 and embedding dimension is set to 5 for all sensors for the 
benchmark structure data. 

   
(a)                                                                 (b) 

Figure 10: Optimal embedding parameter selection (a) AMI (b) FNN 

5.2.2 Damage detection performance 

Since the size of data measured from the experiment is insufficient for statistical analysis, 
segments used to reconstructed attractor will overlap with adjacent segments with 50% 
sampling data. The hypothesis that distribution of the MD is normal cannot be rejected 
under significance level 0.05. In order to compare the proposed method with the 
traditional approach that excludes embedding, the normal distribution of MD under 
different damage cases are depicted in Figs. 11 and AUCs are listed in Table 6. 
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(a)                                                                 (b) 

Figure 11: Distribution of MD under different damage cases (a) with embedding (b) 
without embedding 

It is observed that if no embedding strategy is implemented, it is difficult to discern 
damage in all cases in Figs. 11(b) since the MD distribution overlap with the MD 
distribution under baseline. While it can successful detect the damage using the proposed 
method in Figs. 11(a). Moreover, just like the 6 DOF system, the more places in which 
damage occurs, the less the variance of the MD distribution is in Figs. 11(a). Hence, it 
can reasonably be inferred that the number of damage locations can be somewhat, 
although not exactly, estimated. Finally, table 6 shows that the damage detection 
performance will be improved also with embedding under all damage cases. 

Table 6: Area under ROC curve for the benchmark structure 
Damage Case 1 2 3 4 

AUC(without embedding) 0.4991  0.5124  0.5562  0.5559  
AUC(with embedding) 0.8203  0.9943  0.9446  0.9943  

5.2.3 Damage severity 

Fig. 12 shows DCs under different damage levels. DCs increase when the damage goes 
severe, since damage deteriorates from case 1 to 4 in which 1, 2, 4 and 8 braces are 
removed step-by-step. Therefore the approach is successful for identifying the damage 
severity in the benchmark problem. 
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Figure 12: DCs under different damage severity for the benchmark structure 

6 Conclusions 

Observing that boundary of the reconstructed attractor can vary with different system 
states, a multivariate damage detection method was presented in this paper. The 
acceleration time series of all sensor channels under stochastic excitation are embedded 
globally, and Mahalanobis distance of the singular value vectors acquired from the 
reconstructed attractors are used as detection feature. Two statistical indexes, AUC and 
DC, are used as metrics based on Mahalanobis distance to identify the presence and 
severity of damage. Since most state-space-based method can only detect damage 
successfully under deterministic excitations (such as a chaotic input), and this is 
impractical for civil infrastructure applications, the proposed method shows the capability 
of state-space-based damage detection via stochastic excitations. The proposed method is 
also computationally efficient, since seeking neighbor points is no longer needed, as 
required by the conventional state-phase-based methods using attractor predictive error 
features. 
Performance of the proposed method is demonstrated by numerical simulation study of a 
6 degree-of-freedom system and the IASC-ASCE 4-story benchmark experimental 
structure. Results obtained from the 6 degree-of-freedom system demonstrate that the 
damage can be identified satisfactorily by AUC index. Although direct quantification of 
damage cannot be achieved, the increase of DCs can be used to estimate the relative 
severity of the damages. Furthermore, performance of damage detection capability using 
the proposed methodology will not degrade even when extraneous noise level is as high 
as 10%. The same conclusion from the benchmark structure can be made that the 
presence and severity of the damage are identified successfully. 
The proposed method shows reasonable promise, and further study will be focused upon 
embedding parameter selection and in-situ factors influence, including operational and 
environmental uncertainties.  
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