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Abstract 
Explanations often highlight inductively rich relationships that 
support further generalizations: learning that the knife is sharp 
because it is for cutting, we correspondingly infer that other things 
for cutting might also be sharp. When do children appreciate that 
explanations are good guides to generalization? We report a study in 
which 108 4- to 7-year-old children evaluated mechanistic, 
functional, and categorical explanations for the properties of objects, 
and subsequently generalized those properties to novel objects on 
the basis of shared mechanisms, functions, or category membership. 
Older children, but not younger children, were significantly more 
likely to generalize when the explanation they had received matched 
the subsequent basis for generalization (e.g., generalizing on the 
basis of a shared mechanism after hearing a mechanistic 
explanation). These findings shed light on how explanation and 
generalization are coordinated over development, as well as the role 
of explanations in young children’s learning. 
 

Keywords: explanation, generalization, inductive inference, 
prediction, mechanistic, functional, teleological, categorical, formal 
 

A fidget spinner is an object with a ball bearing that allows 
it to spin with the flick of a finger, helping the user to relieve 
nervous energy. For a child encountering this object and its 
properties for the first time, the task of generalizing from a 
single example is fraught with peril. For starters, there are 
multiple relationships to consider: a mechanistic relationship 
between having a ball bearing and spinning, a functional 
relationship between spinning and relieving nervous energy, 
and a categorical (or “formal”) relationship between some of 
these properties and the category membership of the object. 
Each of these relationships has the potential to support 
generalizations to new objects. For instance, other objects 
might spin in a similar way because they have ball bearings 
(the mechanistic relationship), because they are for relieving 
nervous energy (the functional relationship), or because they 
are fidget spinners (the categorical relationship). How do 
children navigate this space of possibilities? 

In the current paper, we test the hypothesis that explanations 
help children generalize from known to novel cases by 
highlighting some relationships as more inductively powerful 
than others. Specifically, the child who learns that the object 
spins “because it has a ball bearing” might be more inclined 
to generalize the property of spinning on the basis of the 
mechanistic relationship than the child who learns that it 
spins “because it is a fidget spinner,” no matter that both 
children know that all three relationships (mechanistic, 
functional, and categorical) in fact hold for the object being 
explained. 

This example suggests that when we explain, we do more 
than identify true claims that happen to be valid in a 
particular case: we highlight generalizable patterns that can 

be extended beyond the particular observation being 
explained. Indeed, this idea has motivated accounts of 
explanation in both philosophy and psychology (Heider, 
1958; Quine & Ullian, 1970). According to the “Explanation 
for Export” proposal developed in Lombrozo and Carey 
(2006), explanations serve the cognitive function of 
supporting generalization beyond the specific case being 
explained. Indeed, empirical work with adults supports the 
idea that explanations guide generalization. Sloman (1994) 
found that whether adults generalize properties from known 
to novel cases depends on how they explain the presence of 
those properties. For instance, participants gave a high rating 
to the claim that “secretaries have a hard time financing a 
house” given that “furniture movers have a hard time 
financing a house” because both claims support the same 
explanation: low wages. Ratings were lower when the claims 
involved different explanations – for instance, “secretaries 
have bad backs” (from sedentary work) given that “furniture 
movers have bad backs” (from heavy lifting).  

Along this line, Vasilyeva and Coley (2013) found that an 
individual’s explanation for a property predicted subsequent 
generalizations of that property, with the additional finding 
that different types of explanations corresponded to different 
types of generalizations. In their study, participants were 
prompted to generalize the properties of living things (e.g., if 
substance B6 is found in ducks, what else is likely to have 
substance B6?). In doing so, participants often generated 
spontaneous explanations for why the property held. When 
participants generated category-based explanations (e.g., 
ducks have it because “it’s a bird thing”) or functional 
explanations (e.g., because “it protects them from the cold”), 
they tended to project the property to targets related 
categorically rather than ecologically (e.g., to “other birds” 
rather than “their predators”). However, this tendency was 
flipped for mechanistic explanations (e.g., “they got it from 
their food”). In an experimental task, Lombrozo and Gwynne 
(2014) found that participants who received an explanation 
that was either mechanistic or functional tended to favor 
subsequent generalizations that preserved the kind of 
relationship featured in the explanation. 

A recent study by Vasilyeva, Wilkenfeld, and Lombrozo 
(2017) illustrates the reverse direction of influence: the types 
of generalizations that participants anticipated making 
affected their evaluations of explanations. Participants were 
led to expect that they would make later inferences about the 
presence or absence of a target property based on information 
about causal mechanisms, functions, or category 
membership. This manipulation in turn affected how highly 
participants rated mechanistic, functional, and categorical 
explanations, respectively, suggesting that participants 
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favored explanations based on the kind of generalization that 
would support their subsequent judgments. 

Although there is good evidence that adults can use 
explanations of different types to guide generalization, it is 
unclear when this ability emerges and how it develops. Do 
young children coordinate explanations and generalizations 
from the moment they appreciate the distinctions between 
different kinds of explanations? Or is this an ability that 
develops more gradually, as children learn that explanations 
are related to inductive potential? In the current paper, we 
investigate whether 4- to 7-year-old children are more likely 
to generalize a property on the basis of a given feature (a 
causal mechanism, function, or category membership) after 
they previously heard an explanation underwritten by a 
generalization congruent with that feature (i.e., mechanistic, 
functional, or categorical). 

Examining how the coordination between explanation and 
generalization develops is important because it offers insights 
into one of the most basic questions in cognitive 
development: how children learn so much from limited input. 
Specifically, how do children constrain the range of 
hypotheses they entertain when generalizing from the known 
to the unknown? Receiving explanations from adults or peers 
could be one source of constraint, directing children to the 
generalizations that are most likely to be useful. Indeed, a 
large literature suggests that seeking, generating, and 
receiving explanations is a powerful basis for learning (e.g., 
Chi, de Leeuw, Chiu, & LaVancher, 1994; see Lombrozo, 
2012 and Wellman, 2011, for reviews). The link between 
explanations and inductive potential could be one reason 
explanation has such powerful effects. 

The development of explanation and generalization 
 

Children’s early explanatory sophistication suggests that 
the coordination between explanation and generalization 
could be in place by age 4 or 5. Children as young as 2 years 
of age provide and seek explanations (Callanan & Oakes, 
1992; Hickling & Wellman, 2001), and they begin to 
differentiate explanations from non-explanations by age 3 
(Frazier, Gelman, & Wellman, 2009). There is also evidence 
that explanation is coordinated with other representations and 
judgments from an early age. Three- to 4-year-olds invoke 
domain-appropriate mechanisms in their explanations, for 
example explaining biological phenomena by appeal to 
biological factors (Hickling & Wellman, 2001; Inagaki & 
Hatano, 2002; Schult & Wellman, 1997).  

Prior work also suggests that young children differentiate 
between different types of explanations (mechanistic, 
functional, and categorical). By age 4, children request 
explanations of different types in different domains (Greif, 
Kemler Nelson, Keil, & Gutierrez, 2006), successfully 
generalize the form of an explanation (i.e., mechanistic 
versus functional) to novel cases (Lombrozo, Bonawitz, & 
Scalise, 2018), and appreciate when formal (categorical) 
explanations are appropriate (Haward, Wagner, Carey, & 
Prasada, In Prep). There is also evidence that through grade 
school, children favor functional over mechanistic 
explanations (Kelemen, 1999; Kelemen & DiYanni, 2005; 

but see Keil, 1994, 1996; Lombrozo, Bonawitz, & Scalise, 
2018).  

Finally, there is a great deal of evidence demonstrating that 
receiving and generating explanations can affect learning and 
subsequent inferences (e.g., Wellman & Lagattuta, 2004; 
Walker, Lombrozo, Legare, & Gopnik, 2014; Walker, 
Lombrozo, Williams, Rafferty, & Gopnik, 2017). Repeatedly 
prompting 3-year-old children to explain a character’s 
behavior in a false-belief vignette, for example, can 
accelerate their understanding of theory of mind (e.g., 
Amsterlaw & Wellman, 2006). As another example, Walker 
et al. (2014) found that prompting 3- to 5-year-old children to 
explain why objects made a machine go led them to privilege 
invisible properties and category membership, as opposed to 
appearance, as a basis for subsequently generalizing a causal 
property. 

Despite this evidence of explanatory sophistication in the 
preschool years, a handful of findings suggest that 
explanation is somewhat quarantined from prediction, at least 
until age 4. Specifically, several studies have found an 
“explanation advantage,” such that successful explanation 
precedes accurate prediction. For instance, children are able 
to explain why someone did not choose to eat a contaminated 
food before they can predict the same event (Amsterlaw & 
Wellman, 2006; Bartsch & Wellman, 1989; Legare, 
Wellman, & Gelman, 2009). Wellman (2011) explains this 
progression in terms of the difference between postdiction 
and prediction: in the former case an additional piece of 
information (the actual outcome) is known. As a form of 
postdiction, explanation could involve a lower cognitive 
burden and serve as a stepping stone to later prediction.  

By age 8, children are capable of generating sophisticated 
and context-appropriate explanations and predictions, but 
they do not yet show adult-like coordination between 
explanations and generalization. For example, one child in 
Vasilyeva and Coley (In Prep) explained why a zebra and 
savannah grass are both “sick” with the same disease by 
appeal to causal transmission from grass to zebra: “because it 
eats grass.” Yet when asked what else might be sick with the 
same disease, the child relied on a completely independent 
basis for generalization, saying “a werewolf, because both 
zebras and werewolves have a tail.” (Admittedly, this was a 
demanding paradigm that required children to generate their 
own explanations and predictions from prior domain 
knowledge, so it could be that task demands masked existing 
competence.) 

Summing up this research, there are good reasons to expect 
that even young children can effectively learn from 
explanations, suggesting some level of coordination between 
explanation and subsequent generalizations. At the same 
time, the coordination of explanation and prediction is 
tenuous at age 4 (as reflected in the “explanation advantage” 
and other evidence of explanation-prediction asymmetries, 
see Nancekivell & Friedman, 2017), and still fragile at age 8 
(Vasilyeva & Coley, in prep). In the present study, we thus 
focused on 4- to 7-year-olds as an age range during which we 
might expect to see developmental change in the 
coordination of explanation and generalization.  
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Experiment  
 

The goal of this study was to investigate when and how 
children begin to use explanations as a guide to subsequent 
generalizations. Children evaluated a mechanistic, functional, 
or categorical explanation for the property of a novel object, 
and then guessed whether that property would generalize to a 
hidden object, knowing only that it shared a mechanism, 
function, or category membership with the initial object. 

The main manipulation concerned the “congruence” 
between the explanation that was presented, on the one hand, 
and the feature that was shared by the two objects, on the 
other. On congruent trials, the same feature that was invoked 
in the explanation of the property was shared by both objects. 
For example, a participant might hear a mechanistic 
explanation (e.g., “Why is it sticky? It is sticky because it has 
a special tape on one side”), and then be presented with a 
hidden object sharing the same mechanism invoked in the 
explanation (“it has a special tape on one side…do you think 
it is sticky?”). On incongruent trials, the explanation 
mentioned one feature (e.g., mechanistic, “because it has a 
special tape”), but the hidden object shared a different feature 
(e.g., functional, “it can pick up marbles”). 

We tested children aged 4 to 7, with the expectation that 
with age children would become increasingly likely to use 
explanations to guide subsequent generalizations, as reflected 
in higher generalization ratings on congruent versus 
incongruent trials. The study design also allowed us to 
examine whether effective coordination depends on the type 
of explanatory relationship involved (i.e., mechanistic, 
functional, or categorical). Coordination might emerge earlier 
for the kinds of relationships that are most widely applicable 
(arguably mechanistic), for those that figure in favored kinds 
of explanations (arguably functional; Kelemen, 1999, 2005), 
or for those that dominate children’s early generalizations 
(arguably categorical; Coley, 2012). 

Method 
Participants We recruited 54 4- and 5-year-olds (mean age 5 
years 2 months; range 4.00-5.98 yrs) and 54 6- and 7-year-olds 

(mean age 6 years 11 months; range 6.00-7.96 yrs) from local 
museums and preschools. Data from an additional eight 
children were not included due to a failure of video-recording 
equipment (six children) or experimental error (two 
children).  
Materials, Design and Procedure 

Each participant completed three trials. Each trial involved 
a learning phase, an explanation phase, and a generalization 
phase (see Table 1).  

In the learning phase, the experimenter introduced a novel 
type of object (base object; e.g., a “dax”) and presented three 
features in the form of a causal chain (e.g., has special tape 
on one side à is sticky à can pick up marbles). Each object 
and each feature was represented with a color illustration 
printed on a laminated card; the feature cards were laid out 
one by one, illustrating each feature as it was introduced. The 
causal chain was then repeated once.  

In the explanation phase, the experimenter laid out a black-
and-white silhouette of the same type of object, and asked a 

why-question about the middle feature in the causal chain 
(e.g., “Why is it sticky?”), addressing a puppet on a laptop 
screen. In a short video clip, the puppet provided an 
explanation. The child was then asked to evaluate the 
explanation using a two-step, four-point thumb scale ranging 
from “really bad” to “really good.” After the explanation-
evaluation, the experimenter repeated the explanation and 
removed all the pictures from the table. 

In the generalization phase, the experimenter presented a 
closed box tied with a ribbon. On top of the box was a 
transparent pocket with a face-down card representing an 
object feature. The experimenter then said that Julia (another 
puppet) wanted to know if the object in the box had a certain 
feature (always the middle feature from the causal chain, e.g., 
being “sticky”). The experimenter stated that she did not 
know the answer, but that they could check what the box 
said. The experimenter flipped the card on top of the box to 
reveal a picture representing one of the features (either a 
mechanism, function, or category membership feature), and 
asked the child to make a guess (“Do you think it is sticky or 
not sticky?”). This was followed by a further rating (“For 
sure [sticky / not sticky], or maybe [sticky / not sticky]”?) to 
obtain a 4-point rating. Then the box was removed, and the 
experimenter moved on to the next trial. 

 
Table 1. Sample script from an incongruent trial (mechanistic 
explanation, function-based generalization). Arrows were not presented.   
 

Learning phase: 

  

Explanation phase: 
 

Here’s one. Why is it sticky? Let’s ask my friend Mike. Mike 
sometimes says things that are smart, and sometimes says things 
that are silly. Let’s see what Mike thinks! Mike, why is this sticky? 

 
 
 
 
Mike says it is sticky 
because it has special tape 
on one side.  

[Explanation rating]  
What do you think about Mike’s explanation?  
Is it a good explanation or is it a bad explanation? 
Is it really [good/bad] or is it kinda [good/bad]? 
Ok, remember, Mike said it is sticky because it has special tape on one side.  

Generalization phase: 
 

Now, There is something in this box. Julia wants to know if it 
is sticky. I don’t know. But let’s see what the box says. 
[Experimenter flips the label on top]. It says that it can pick 
up marbles.  
[Generalization rating] Do you think it is sticky or not 
sticky?�Is it for sure (not) sticky or maybe (not) sticky? 
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Table 2. Mechanistic, functional, and categorical explanations.  
 

Why-
Question 

Mechanistic 
explanation  

Functional  
explanation  

Categorical 
explanation  

Why is this 
sticky? 

Because it has special 
tape on one side. 

Because that way it’s 
easy to pick up marbles. 

Because it is a 
dax. 

Why does 
this glow  
in the dark? 

Because it is covered 
with special paint. 

Because that way it’s 
easy to spot it at night. 

Because it is a 
zark. 

Why is this 
bouncy? 

Because it has a 
spring on one side. 

Because that way it can 
go higher. 

Because it is a 
wug. 

 

Trials varied in the object introduced in the learning phase, 
in the explanations offered in the explanation phase, and in 
the generalizations solicited in the generalization phase. The 
explanations were either mechanistic (citing the preceding 
feature in the causal chain), functional (citing the final 
feature in the causal chain), or categorical (citing category 
membership). Across trials, each participant evaluated one 
explanation of each type.   
The solicited generalizations were based on a shared 

mechanism feature, function feature, or category membership 
feature, and they were coded as either “congruent” (on one 
trial) or “incongruent” (on two trials). On congruent trials, 
the generalization target and the base object shared the same 
feature that was invoked in the preceding explanation. For 
instance, if a functional explanation was offered in the 
explanation phase, a congruent generalization trial would 
involve generalizing from the presence of the function 
feature. On the remaining two trials, participants were 
presented with “incongruent generalization” tasks, combining 
an explanation of one type and a generalization task of a 
different type (e.g., mechanism-based generalization 
following a categorical explanation).  

The pairing between the three objects, three explanation 
types, and three generalization types was counterbalanced 
using a Latin square design, producing nine unique conditions. 
Across participants, each explanation type was thus paired 
with each object and with each generalization type. 
Results  

Children’s explanation ratings were recoded onto a four-
point scale (corresponding to “really bad,” “kind of bad,” 
“kind of good,” and “really good”). The generalization 
ratings were also recoded onto a four-point scale 
(corresponding to “for sure does not have,” “maybe does not 
have,” “maybe has,” and “for sure has” the target property). 

Explanation evaluation. A 2 (age group: younger, older) 
x 3 (explanation type: mechanistic, functional, categorical) 
mixed ANOVA on explanation evaluation ratings1 revealed a 
main effect of age group, F(1,105)=13.00, p<.001, ηp

2=.110: 
younger children gave higher ratings (M=3.45) than older 
children (M=3.06). There was also a main effect of 
explanation type, F(2,210)=22.08, p<.001, ηp

2=.174:   
mechanistic explanations (M=3.56) were rated higher than 
functional explanations (M=3.33, p=.027), which were rated 
higher than categorical explanations (M=2.88, p<.001; causal 

                                                        
1 Due to an experimental error or audio/video equipment failure, 

data from one explanation trial and four generalization trials were 
lost (from two younger and two older children). For a given 
analysis, participants with any missing data were excluded.  

 
Figure 1: Mean explanation evaluation ratings as a function of explanation 
type and age group. Error bars correspond to 1 SEM; *p < .05. 

 

vs. categorical p<.001). However, these effects were qualified 
by a significant interaction (see Figure 1), F(2,210)=4.23, 
p=.016, ηp

2=.039. Older children differentiated among all 
three explanation types, rating mechanistic explanations 
higher than functional (p=.033), and functional higher than 
categorical (p<.001). Younger children rated mechanistic 
explanations higher than categorical (p=.009), but their 
ratings of functional explanations did not differ from either 
mechanistic (p=.112) or categorical explanations (p=.316). 
Additional one-sample t-tests showed that both age groups 

rated all explanations above the scale midpoint (all p’s>.001), 
except the older children’s ratings of categorical explanations 
(M=2.5, p>.999). 

Property generalization. Collapsing across the initial 
explanations, a 2 (age group: younger, older) x 3 
(generalization type: cause-based, function-based, category-
based) mixed ANOVA on generalization ratings revealed no 
significant effects. This suggests that the stimuli were well-
matched across generalization types, providing an even 
playing field on top of which the preceding explanations 
might exert some effect. Additional one-sample t-tests 
showed that both age groups rated all generalizations above 
the scale midpoint (all ps>.001). 

Relationship between explanation and property 
generalization. To test for a relationship between rated 
explanations and subsequent generalizations, we first 
examined whether generalization ratings were reliably higher 
for congruent trials relative to incongruent trials. 

Generalization ratings were first analyzed in a 2 
(congruence: congruent trial, incongruent trial) x 2 (age group: 
younger, older) mixed ANOVA. The analysis revealed a main 
effect of congruence, F(1,106)=9.87, p=.002, ηp

2=.085, with 
higher generalization ratings on congruent trials (M=3.63) than 

 
 
 
 
 
 
 
 
 
 

 
Figure 2: Mean generalization ratings as a function of congruence and 
age group. Error bars correspond to 1 SEM; *p < .05. 
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Figure 3. Mean generalization ratings as a function of age group, 
congruence, and generalization type. Error bars correspond to 1 SEM.  
 
on incongruent trials (M=3.44). This effect was qualified by a 
marginal interaction with age group, F(1,106)=3.78, p=.054, 
ηp

2=.034. Planned contrasts revealed a developmental change in 
the relationship between explanation and generalization: the 
older children rated congruent generalizations significantly 
higher than incongruent generalizations, p<.001; the younger 
children did not show a significant effect of congruence, 
p=.399 (see Figure 2).  

To evaluate whether some kinds of explanations fostered 
congruent generalizations more effectively than others (or 
equivalently, whether some kinds of generalizations were more 

susceptible to the effect of a congruent explanation), we 
conducted three 2 (congruence: congruent, incongruent) x 2 
(age group: younger, older) ANOVAs, one for each kind of 
generalization (mechanism-, function-, or category-based; see 
Figure 3).  

Mechanism-based generalization was affected by 
congruence, F(1,102)=4.57, p=.035, ηp

2=.043; this effect was 
qualified by a marginal interaction with age, F(1,102)=3.77, 
p=.055, ηp

2=.036. The older children (p=.003), but not the 
younger children (p=.809), favored congruent generalizations.  

Function-based generalization was likewise influenced by 
congruence, F(1,101)=5.32, p=.023, ηp

2=.050. Although the 
interaction with age was not significant, F(1,101)=.64, 
p=.426, we conducted planned pairwise comparisons; again, 
only the older children showed a significant effect of 
congruence (pold=.029, pyoung=.293).  

Category-based generalization was not affected by 
congruence or by age group, all ps≥.567. Finally, the main 
effect of age group was not significant in any of the analyses 
reported in this section, ps ≥.125. 

Effects of explanation quality. The preceding analyses 
suggest that for older children, congruent explanations indeed 
guide subsequent generalization. We next investigated 
whether this effect was moderated by the perceived quality of 
the rated explanation. That is, were children more likely to 
generalize a property on the basis of some feature when they 
found an explanation that appealed to that feature good 
versus bad? For this analysis, we recoded2 explanation ratings 

                                                        
2 We originally intended to perform a median split of explanation 

ratings, but the median for both age groups was 4, so we used the 
next closest split between ratings of 3 and 4. Splitting the scale in 
the middle (between 2 and 3) produced the same pattern of results, 
but also resulted in highly uneven group sizes (8 vs. 46, 14 vs. 40), 
making the statistical tests less reliable. 

as “high quality” if an explanation received the highest 
possible rating of 4, and as “low quality” otherwise. Older 
children were significantly more likely to generalize on 
congruent trials if they rated the preceding explanation as 
“high quality” than “low quality” (Mhigh=3.83, Mlow=3.48, 
t(49.26)=2.34, p=.023, Cohen’s d=.62). In contrast, the 
younger group showed no relationship between their ratings 
of explanation quality and subsequent generalizations 
(Mhigh=3.61, Mlow=3.75, t(52)=-.66, p=.515).  
 

Discussion 
 

The primary aim of this study was to document the 
emergence of coordination between explanation and 
generalization. We found that by age 6-7, children were 
significantly more likely to generalize a property on the basis 
of some feature if they had previously heard an explanation 
for that property appealing to the same feature. Moreover, the 
effect of the explanation was greater for children who judged 
it to be a good explanation. Neither of these effects was 
found for children aged 4-5. 

We also found a developmental shift in how strongly 
children differentiated explanations of different kinds. While 
6- and 7-year olds reliably favored mechanistic explanations 
over functional explanations, and functional explanations 
over categorical explanations, the preferences of 4- and 5-
year-olds were less robust. 

We also found potential differences in the relationship 
between explanation and generalization depending on the 
type of relationship involved. By age 6-7, mechanistic and 
functional explanations reliably boosted congruent 
generalizations, but there was no such relationship between 
categorical explanation and category-based generalization. 
The latter is surprising given evidence that young children 
readily engage in category-based inference when category 
labels are provided (Gelman & Coley, 1990), and that adults 
can successfully coordinate categorical explanations and 
generalizations (Vasilyeva & Coley, 2013; Vasilyeva, 
Wilkenfeld, & Lombrozo, 2017). Along with the finding that 
older children’s coordination between explanation and 
generalization was moderated by perceived explanation 
quality, the moderating effect of explanation type speaks 
against the idea that children were simply following a low-
level strategy of providing higher ratings when a 
generalization “matched” what came before.  

Our findings prompt a variety of follow-up questions. 
What changes between ages 4-5 and 6-7, such that we see 
greater coordination between explanation and generalization 
alongside greater differentiation between different types of 
explanations? Are we right to suggest that congruent 
explanations promote generalization, or could it be that 
incongruent explanations suppress generalization? 

Another open question concerns the role of pedagogy in 
our task. Rather than presenting children with an explanation 
from an authoritative source, children in our study were 
presented with an explanation from a puppet who 
“sometimes says things that are silly,” and they were then 
asked to evaluate the explanation themselves. It is plausible 
that presenting an expert explanation in a pedagogical 
context would have a stronger effect on subsequent 

*p < .05 
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generalizations. It’s also possible that such explanations 
would not only encourage some generalizations, but actively 
restrict others, much like pedagogical demonstrations can 
discourage children from more open-ended exploration 
(Bonawitz, Shafto, Gweon, Spelke, & Goodman, 2011). This 
could be the “dark side” of explanation’s positive inductive 
role: by encouraging learners to favor some inductive 
hypotheses over others, an explanation could restrict some 
forms of exploration or inference (see also Legare, 2012). 

In sum, our findings capture an important developmental 
transition: from generalization unconstrained by explanation, 
to generalization guided by it. As children master the 
coordination of explanation and generalization, they can 
benefit from the advantages enjoyed by adults, including the 
ability to effectively constrain a range of inductive 
hypotheses to the most relevant and plausible subset, and to 
generate flexible inferences from the same observation 
depending on one’s context (Vasilyeva & Coley, 2013) and 
goals (Vasilyeva, Wilkenfeld, & Lombrozo, 2017). At the 
same time, greater constraint does not come without costs – 
children could lose some of the advantages of unconstrained 
exploration and an undifferentiated hypothesis space. To 
borrow a metaphor from computer science, explanation could 
guide the transition from “low-temperature search” to “high-
temperature search” (Gopnik, Griffiths, & Lucas, 2015), 
driven by a growing appreciation for the high inductive 
potential of the relationships that good explanations extract 
from the world. 
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