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Problem definition: Professional sports leagues may be suspended due to various reasons such as the

recent COVID-19 pandemic. A critical question the league must address when re-opening is how to appro-

priately select a subset of the remaining games to conclude the season in a shortened time frame. Aca-

demic/practical relevance: Despite the rich literature on scheduling an entire season starting from a

blank slate, concluding an existing season is quite different. Our approach attempts to achieve team rank-

ings similar to that which would have resulted had the season been played out in full. Methodology: We

propose a data-driven model which exploits predictive and prescriptive analytics to produce a schedule for

the remainder of the season comprised of a subset of originally-scheduled games. Our model introduces novel

rankings-based objectives within a stochastic optimization model, whose parameters are first estimated using

a predictive model. We introduce a deterministic equivalent reformulation along with a tailored Frank-Wolfe

algorithm to efficiently solve our problem, as well as a robust counterpart based on min-max regret. Results:

We present simulation-based numerical experiments from previous National Basketball Association (NBA)

seasons 2004–2019, and show that our models are computationally efficient, outperform a greedy benchmark

that approximates a non-rankings-based scheduling policy, and produce interpretable results. Managerial

implications: Our data-driven decision-making framework may be used to produce a shortened season with

25-50% fewer games while still producing an end-of-season ranking similar to that of the full season, had it

been played.

Key words : COVID-19 pandemic; sports scheduling; rankings; concordance; predictive analytics; stochastic

optimization; Frank-Wolfe algorithm; min-max regret

1. Introduction

The global COVID-19 pandemic that began in December 2019 quickly led to unprecedented quar-

antines, lockdowns, and travel restrictions. Worldwide, professional sports leagues ceased activity,

with the National Basketball Association (NBA) being the first major league in the US to suspend

games, pausing the season as of March 11, 2020 (NBA 2020a). Fans eagerly followed media specu-
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lation on the possible actions the NBA would take: whether the 2019–20 regular season would be

resumed, and how it would be concluded. The main directions the NBA could have taken were:

1. Cancel Everything. Cancel the remaining regular-season games and the playoffs. Determine

the champion using information already available (e.g., either the top-ranked team as of the

suspension is crowned champion, or votes from players, coaches, and the public are solicited

in a manner similar to how individual player awards are selected).

2. Skip to Playoffs. Cancel the remaining regular-season games. The top-ranked teams as of

the suspension date qualify for the playoffs, which begin immediately.

3. Full Season. Resume the regular season and play all 259 scheduled games, followed by the

playoffs as usual. The season will end late in the year.

4. Shortened Season. Select a subset of the remaining 259 regular-season games to be played,

followed by the playoffs.

Full
Season

Games	played	before	the	suspension

Games	to	play	after	resuming	the	season

Remaining	games	that	are	canceled

0

0

82	games15 30

15

. 	. 	.

Suspension!

. 	. 	.

Suspension!

Shortened	Season

1.	LAL
2.	MIL
3.	TOR
4.	BOS
5. 	... 

1.	MIL
2.	LAL
3.	TOR
4.	LAC
5. 	...

Figure 1 Two strategies to conclude the league: full season vs. shortened season after resuming the league

Options 1 and 2 would be unfair for several reasons. Indeed, teams may differ in the number of

games played by the suspension date, along with the relative difficulties of the opponents they

played. Options 3 and 4, which we compare extensively throughout the paper, are illustrated in

Figure 1. Note that the rankings of the teams (by number of wins over the played games) depends

on the specific set of games that are played, as well as the outcomes of those games.

Our focus in this paper is to propose a method which chooses a subset of games to conclude a

shortened season that remains an asymmetrical round-robin tournament while producing end-of-

season rankings that are as close as possible to the rankings that would result had the full season

been played (i.e., no games canceled). There are, of course, many considerations that come into

play when constructing a sports schedule. While our approach is less detailed than constructing

a full timetable that incorporates not only the set of games to play but also their sequence (and

corresponding travel schedule), our model is sufficiently general to allow for logical constraints on

the subset of games chosen, which may be driven by specific practical considerations.

At a high level, our model selects which games to include in the remainder of the season. To make

these decisions, we develop several model components. First, we use a predictive model to estimate
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the likelihood of each game outcome for all games in the season that have not yet been played.

Then, we generate one or more scenarios, and for each scenario we produce a “target ranking”

which ranks the relative performance of the teams if all games in the remainder of the season were

played. We then use a prescriptive model to select a subset of games so that, in expectation, the

ranking we get from our shortened season is as close to the target ranking as possible.

Note that our methodology may be applied broadly to any sports league requiring schedule

adjustments due to a suspension (i.e., pause in game play, typically for multiple games over an

extended period). Our approach is most applicable when the league combines a round-robin regular

season with an elimination postseason (“playoffs”), which is the case for most major sports leagues

in North America, including the NBA, National Football League (NFL), National Hockey League

(NHL), and Major League Baseball (MLB). Table 1 lists the number of suspensions in the NBA,

NFL, NHL, and MLB from 1946–2021, along with the number of suspensions that led to shortened

seasons. In summary, suspensions are an occasional occurrence of significant consequence, and our

methodology can be applied to resuming a league’s regular season from any such suspension.

League NBA NFL NHL MLB

Number of Suspensions 6 8 4 9
Suspensions with Shortened Seasons 4 2 2 3

Table 1 The number of disruptions to regular season games.

Our paper is organized as follows. We review related works in §2, and mathematically define our

problem in §3. In §4 we introduce our predictive and prescriptive models (binary classifiers and

stochastic optimization models, respectively), and in §5 we develop solution techniques (one based

on the Frank-Wolfe algorithm) for solving our prescriptive models efficiently. Our best prescriptive

model extends our base model using the concept of min-max regret, and produces shortened seasons

that perform well while being robust to (predictive) model misspecification and overfitting. Next,

in §6 we use Monte Carlo simulation to evaluate our models, and show that not only do the

shortened seasons produced by our best model have rankings that are close to the counterfactual

end-of-season ranking, but our rankings are in high agreement with respect to the teams that make

the playoffs (95.65%), the teams that get home court advantage in the playoffs (92.28%), and the

teams that receive double-digit lottery odds in the rookie draft (91.36%). We also provide a model

extension that ensures each team’s strength-of-schedule is not materially impacted by our choice

of shortened season. Finally, we conclude our paper in §7.
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2. Literature Review

A distinct feature of our study is the two-phase analytics approach that combines predictive and

prescriptive models. We review existing literature in both streams: predicting single-game outcomes

and end-of-season rankings, and scheduling sports leagues using algorithms and optimization.

Predictive models for single-game outcomes. There is an extensive literature on predicting

the outcome of a single sports game using historical data. On the one hand, there is an inherent

difficulty in making such predictions, as the outcome of a game depends both on luck and skill

(Aoki et al. 2017), and there is a limit to how much one can disentangle team/player skills from

randomness (Martin et al. 2016). On the other hand, with ever-growing access to sports data and

advancements in the fields of data analysis and machine learning, there has been a growing interest

in predicting the outcomes of sporting events, both among researchers and for-profit organizations

(e.g., FiveThirtyEight 2022). Existing models analyze the outcomes of sporting events using (i)

Bayesian inference and rule-based reasoning (Miljković et al. 2010), (ii) Markov chain modeling

(Kvam and Sokol 2006, Brown and Sokol 2010), (iii) machine learning (Magel and Melnykov 2014,

Prasetio et al. 2016), or (iv) wisdom of crowds (Halberstadt and Levine 1999). A key differentiator

of our approach stems from the fact that we do not only predict the outcome of the next game to

be played using all historical data available prior to that game. Instead, we predict the outcomes

of all post-suspension games using only data from the pre-suspension period.

Predictive models for end-of-season rankings. A few researchers have developed models

to directly predict end-of-season team rankings given historical data of game play up to a certain

(e.g., suspension) date. To the best of our knowledge, the first such paper is Van Haaren and Davis

(2015), who study the final league rankings in European football leagues both before the start of

the season and during the course of the season. A body of research also focuses on determining the

true ranking of individuals or teams in competitive sports based on network-based ranking systems

(Motegi and Masuda 2012, Bozóki et al. 2016). More recently, inspired by the COVID-19 suspension

in the European football leagues, researchers Van Eetvelde et al. (2021) and Csató (2021a) studied

the suspended season problem (also known as “incomplete round robin league”) with the aim of

predicting the final team ranking without additional games being played (i.e., if put into practice,

this model would declare the league champion directly without resuming the season or playing any

additional games). These studies use descriptive and predictive models based on historical data

from all games played prior to the suspension, to obtain a measure of strength for each team in

the league and a measure of toughness of schedule. Using these two measures, the authors produce

a projected final ranking and evaluate the accuracy of their proposed ranking using Monte Carlo

simulation. A key differentiator of our approach is our substantial prescriptive component. These

papers do not predict outcomes of individual games and instead directly predict end-of-season
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rankings, which could be used to declare league standings without playing any additional games.

In contrast, our predictive model produces predictions for each game that we then feed into our

prescriptive model to determine the subset of games to play in our prescribed shortened season.

Prescriptive models for scheduling sports games. Within the sports scheduling literature,

there are articles that focus on a primary objective (e.g., broadcast TV or travel logistics, fairness

considerations), and others that propose multi-objective models. Among those that use optimiza-

tion to schedule basketball games, Bean and Birge (1980) consider travel costs and player fatigue

as the main goals, Weiss (1986) studies schedule bias between the regular season and post-season,

while Westphal (2014) focuses on venue availability and broadcasting considerations. To propose a

schedule for NCAA basketball games, Nemhauser and Trick (1998) and Henz (2001) apply integer

programming and constraint programming, respectively. Other papers develop tailored algorithms,

often based on graph theory, for scheduling basketball games, see Briskorn and Drexl (2009). We

suggest the survey paper Rasmussen and Trick (2008) for an overview of round-robin scheduling.

For a comprehensive list of articles in the broader scope of analytical methodologies applied to

sports, including optimization and probabilistic modeling, see Fry and Ohlmann (2012a,b). Mixed-

integer programs have been used to schedule games in different leagues: Fleurent and Ferland

(1993) in hockey, Goossens and Spieksma (2009) in soccer, Jiaqi Xu et al. (2019) in baseball, and

Cocchi et al. (2018) in volleyball.

In contrast to the existing literature that schedules an entire season from a blank slate, the

problem we consider compresses the remainder of an already-started season by selecting to play

a subset of previously-scheduled games. To the best of our knowledge, this problem has not been

previously studied. A significant novelty in our approach is our objective function, which attempts

to achieve rankings similar to those that would have resulted had the season been played in full;

this motivates us to introduce several model components which are novel in the context of sports

scheduling, including ranking-based objectives, related stochastic optimization models, and finally

predictive models for estimating the parameters of our stochastic optimization models.

3. Problem

In this section, we first describe an NBA season and explain why a team’s end-of-season ranking

is important. We then frame the conclusion of the season as a problem of selecting a subset of the

remaining games, which leads us to introduce several ranking similarity metrics.

3.1. Background

The NBA is composed of 30 teams, divided into 2 conferences of 3 divisions with 5 teams each; for

details, see Figure 2. In a regular season spanning approximately 180 days from October through

April, each team plays 82 games according to the following formula: four games against the other
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four division opponents (4 × 4 = 16 games), four games against six (out-of-division) conference

opponents (4×6 = 24 games), three games against the remaining four conference teams (3×4 = 12

games), and finally two games against teams in the opposing conference (2×15 = 30 games). A five-

year rotation determines which out-of-division conference teams are played only three times. After

5 seasons, each team will have played 20 games against each in-division opponent, 18 games against

each out-of-division opponent, and 10 games against each team from the opposing conference.

●●

●●●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
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●●
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Golden State Warriors

 (GSW)

Los Angeles Clippers

 (LAC)

Los Angeles Lakers

 (LAL)

Phoenix Suns

 (PHX)

Sacramento Kings

 (SAC)

Denver Nuggets

 (DEN)

Minnesota Timberwolves

 (MIN)

Oklahoma City Thunder

 (OKC)

Portland Trail Blazers

 (POR)

Utah Jazz

 (UTA)

Dallas Mavericks

 (DAL)
Houston Rockets

 (HOU)

Memphis Grizzlies

 (MEM)

New Orleans Pelicans

 (NOP)

San Antonio Spurs

 (SAS)

Atlanta Hawks

 (ATL)

Charlotte Hornets

 (CHA)

Miami Heat

 (MIA)

Orlando Magic

 (ORL)

Washington Wizards

 (WAS)

Milwaukee Bucks

 (MIL)

Chicago Bulls

 (CHI)

Cleveland Pacers

 (CLE)

Indiana Pacers

 (IND)

Detroit Pistons

 (DET)

Brooklyn Nets

 (BKN)

Boston Celtics

 (BOS)

New York Knicks

 (NYK)

Philadelphia 76ers

 (PHI)

Toronto Raptors

 (TOR)

Division

Northwest

Pacific

Southwest

Central

Atlantic

Southeast

No Team

Figure 2 The Eastern Conference is comprised of the Central, Atlantic, and Southeast divisions, while the

Western Conference consists of the Northwest, Pacific, and Southwest divisions.

In our paper, we assume the regular-season standings directly determine the teams that advance

to the playoffs. This follows the practice prior to the 2020–21 season, in which the 8 top-ranked

teams in each conference (16 in the league) advance to the playoffs. However, starting with the

2020–21 season, only the top 6 teams in each conference automatically advance to the playoffs,

with teams ranked 7 through 10 competing in a play-in tournament to determine who is seeded 7th

and 8th and who is eliminated; for details, see NBA.com (2023). Note that the new format doesn’t

materially change our models or testing methodology, and since our problem instances are all from

pre-COVID seasons, we exclude the play-in tournament from our analysis.

Once the standings are finalized, the playoffs begin. In each conference, the ith-ranked team

is initially matched to the (9− i)th-ranked team, for i ∈ {1 . . .8}. All playoff matchups are best-

of-seven series, i.e., a team needs to win four out of seven games against the same opponent to

win the matchup and progress to the next round (the loser of the matchup is eliminated). All

matchups occur within-conference until the final matchup, which pits the winning team of the

Eastern conference against the winning team of the Western conference. It is also important to

note that the higher-ranked team in each matchup is awarded home court advantage; this means
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it hosts games 1, 2, 5, and 7, while the lower-ranked team hosts games 3, 4, and 6 (with games 5–7

played only if needed). Note that due to how teams are matched, the 4 top-ranked teams in each

conference are given home court advantage in the first round of the playoffs.

There is a strong connection between a team’s regular-season ranking and its playoff performance.

Examining the history of 76 completed NBA seasons from 1946–2021, we find that (i) over 75%

of playoff series were won by the team with home court advantage, (ii) in only 5 seasons did an

8th-ranked team win a playoff series against a 1st-ranked team, and strikingly (iii) of the 76 NBA

champions, 73 were ranked among the top 3 teams in the league at the end of the regular season.

To the extent that end-of-season rankings give teams preferential treatment in the playoffs which

boost a team’s chances of winning a championship, it is in the league’s best interest to ensure

that the ranking is fair, i.e., reflects to the greatest extent possible which teams are truly the best.

Fairness can be in question when the season ends early. This is because when only a shortened

season is played, it is possible for some teams to be matched with relatively easy-to-beat teams

while others are matched with harder-to-beat teams, and this may result in a ranking that is quite

different than one which would have resulted had the season been played in full. (We assume the

full season’s ranking is fair, since the league constructs the full season schedule in a balanced and

equitable manner, and in general the public accepts the ranking at the end of the full season).

Finally, the order in which teams pick rookie players in the annual NBA draft is also tied to the

final ranking, with the lowest-ranked teams given a higher chance of drafting the best rookie player.

Therefore, the ranking of teams outside of the top 8 in each conference is also important. The

quality of the players in the draft varies from season to season, but some first-pick rookie players

have included generational talents such as LeBron James, Magic Johnson, and Hakeem Olajuwon,

who have had huge impacts in leading their respective teams to win multiple championships.

3.2. Problem Description

At the time of the 2019–20 COVID-19 suspension, 971 games in the 1230-game season were played

leaving 259 games remaining; see Figure 3 for the ranking at the time of suspension. Given a target

number of games each team should play in the full season, we wish to select a subset of the remaining

259 games that satisfies these targets. Typically, each of the 30 teams plays 41 home and 41 away

games for a total of 82 games in the season. Shortening the season involves reducing the target from

82 games/team to a lower number (e.g., 70), with half the games at home and half away. Since the

results of the 259 remaining games are uncertain, both the ranking produced by playing the full 82

game/team season and the ranking produced by playing a shortened (e.g., 70 game/team) season

are uncertain. Our problem is to select a subset of games that minimizes the expected dissimilarity

between the ranking of the full season and the ranking of the shortened season. Before we introduce

our models, we introduce several metrics that may be used for measuring the similarity of rankings.
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  Western Conference       Eastern Conference    

League West  Wins Losses Win%  League East  Wins Losses Win% 

2 1 Los Angeles Lakers 49 14 0.778 
 

1 1 Milwaukee Bucks  53 12 0.815 
4 2 Los Angeles Clippers  44 20 0.688 

 
3 2 Toronto Raptors  46 18 0.719 

6 3 Denver Nuggets  43 22 0.662 
 

5 3 Boston Celtics  43 21 0.672 
7 4 Utah Jazz  41 23 0.641 

 
8 4 Miami Heat  41 24 0.631 

9 5 Oklahoma City Thunder 40 24 0.625 
 

11 5 Indiana Pacers  39 26 0.600 
10 6 Houston Rockets  40 24 0.625 

 
12 6 Philadelphia 76ers  39 26 0.600 

13 7 Dallas Mavericks  40 27 0.597 
 

15 7 Brooklyn Nets  30 34 0.469 
14 8 Memphis Grizzlies  32 33 0.492 

 
16 8 Orlando Magic  30 35 0.462 

17 9 Portland Trail Blazers 29 37 0.439 
 

22 9 Washington Wizards  24 40 0.375 
18 10 New Orleans Pelicans 28 36 0.438 

 
23 10 Charlotte Hornets  23 42 0.354 

19 11 Sacramento Kings  28 36 0.438 
 

24 11 Chicago Bulls  22 43 0.338 
20 12 San Antonio Spurs 27 36 0.429 

 
25 12 New York Knicks 21 45 0.318 

21 13 Phoenix Suns  26 39 0.400 
 

26 13 Detroit Pistons  20 46 0.303 
28 14 Minnesota Timberwolves  19 45 0.297 

 
27 14 Atlanta Hawks  20 47 0.299 

30 15 Golden State Warriors 15 50 0.231 
 

29 15 Cleveland Cavaliers  19 46 0.292 
 

Figure 3 NBA ranking at the time of suspension on March 11, 2020.

3.3. Measures of Similarity/Dissimilarity between Rankings

We represent a ranking of n teams as a vector, with components 1 through n permuted in order

from the highest to the lowest percentage of games won during the regular season. Throughout the

paper, we follow the convention that r̂ represents a ranking resulting from playing all games in the

full season, while r represents a ranking resulting from playing a specific subset of the remaining

games (i.e., the shortened season case). Furthermore, when we wish to distinguish between multiple

rankings in the shortened season case, we use a superscript. For example, r(1) and r(2) represent

two distinct rankings resulting from concluding a shortened season with two different sets of games.

Two widely used measures of similarity/dissimilarity between rankings are Concordance, and

Euclidean distance. We now define these metrics, using the following small example.

Example 1: Assume there are only four teams in the league: LAL, MIL, LAC, and BOS. Table 2

contains the full-season ranking r̂, and two alternative rankings r(1) and r(2).

Teams Ranking (r̂) Ranking (r(1)) Ranking (r(2))

LAL 1 1 4
BOS 2 4 1
MIL 3 2 3
LAC 4 3 2

Table 2 Example 1: Three different rankings.

3.3.1. Concordance. Concordance is a metric used to measure the ordinal association

between two measured quantities, each with n elements. Intuitively, concordance is high when

observations in two variables have similar ranks, and it is low when observations have dissimilar

(opposite) ranks. Concordance, as a metric, is inspired by Kendall’s rank correlation coefficient, or

simply Kendall’s τ , introduced in Kendall (1938). For a given pair of team rankings (r, r̂), we call

a pair of teams (i, j) concordant if either i is above j in both rankings (i.e., r̂i > r̂j and ri > rj) or

i is below j in both rankings (i.e., r̂i < r̂j and ri < rj). Conversely, we say a pair of teams (i, j) is
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discordant if their relative positions in the two rankings do not agree (i.e., either r̂i > r̂j and ri < rj,

or alternatively r̂i < r̂j and ri > rj). If r̂i = r̂j or ri = rj, the pair of teams is neither concordant nor

discordant. Following our example, when we compare rankings r̂ and r(1) from Table 2, the pair

(LAL, BOS) is concordant, since in both rankings LAL stands higher than BOS. The pair (BOS, MIL)

however is discordant, since BOS has the higher rank in r̂, while MIL is higher in r(1).

Using the number of concordant pairs given two rankings, concordance (τC) is defined as

τC =number of concordant pairs. (1)

Note that τC is a number between 0 and
(
n
2

)
. Continuing our example, concordance is τC(r

(1), r̂) = 4

between (r(1), r̂) and is τC(r
(2), r̂) = 2 between (r(2), r̂).

3.3.2. Euclidean distance. The (squared) Euclidean distance between two rank vectors is

another metric used to measure dissimilarity between two alternative rankings, defined as

dE(r, r̂) = ∥r− r̂∥2 =
∑

i∈T
(ri − r̂i)

2, (2)

where T denotes the set of all the teams in the league. It can be easily verified that dE(r̂, r
(1)) = 6

and dE(r̂, r
(2)) = 14, which is consistent with our conclusion based on concordance τC that r(1), with

shorter distance to r̂, is the most similar to r̂. We remark that Euclidean distance is equivalent to

Spearman’s Rank Correlation Coefficient (Spearman 1904) through an affine transformation with

negative coefficient. We also note the following relationship between concordance and Euclidean

distance of two rankings, which implies that highly concordant rankings have low Euclidean dis-

tance, and vice versa. In our experiments, the lower bound on dE(r, r̂) in particular, proves to be

very tight. Proof of this proposition uses the Durbin-Stuart inequality (Durbin and Stuart 1951)

and Diaconis-Graham inequality (Diaconis and Graham 1977) and together with other proofs are

provided in Appendix B.

Proposition 1. For arbitrary rankings r and r̂, the following relationship holds:

4

3n

(
n(n− 1)

2
− τC(r, r̂)

)(
n(n+1)

2
− τC(r, r̂)

)
≤ dE(r, r̂)≤ 2

(
n(n− 1)

2
− τC(r, r̂)

)2

. (3)

3.3.3. Measuring ranking similarity/dissimilarity across time. It is interesting to plot

how our metrics change over the course of an NBA season, as we compare daily team rankings (r)

to the end-of-season ranking (r̂). Note that with 30 teams in the NBA, the maximum concordance

is
(
30
2

)
= 435. Figure 4(a) plots concordance over time, while Figure 4(b) plots Euclidean distance.

The red line is the mean over 14 NBA seasons from 2004–2018, while the grey band illustrates

the range of values over these 14 seasons. As we approach the end of the season, concordance

approaches its maximum of 435 while Euclidean distance converges to its minimum of 0.
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Figure 4 Measuring ranking similarity/dissimilarity across time; grey area shows the range across 14 NBA seasons.

4. Models

Our two-phase modeling approach (c.f., Figure 5) falls under the “predict-then-optimize” paradigm

(Mǐsić and Perakis 2020). To choose the best subset of games for our shortened season, we need

estimates of the outcomes of all remaining games. Hence, in our first (“predictive”) phase, we use

historical data from all regular-season games played before the suspension to predict which teams

win the remaining games. More specifically, we train binary classification models that incorporate

game-related features (e.g., win percentage, point differential, and home-away indicator, among

others). In our second (“prescriptive”) phase, we determine which games to include and which

games to cancel in the shortened season. We minimize the expected dissimilarity between the

shortened season’s ranking and the full season’s ranking, where this expectation is taken over

multiple possible scenarios that reflect the random chance each team has for winning each game.

Specifically, we treat game outcomes as Bernoulli random variables whose parameters are estimated

in the first (“predictive”) phase, and formulate our prescriptive models as stochastic optimization

problems.

Phase	I:	Predictive	Model

Predicting	outcome	of	the	remaining	games
using	a	binary	classification	model

Phase	II:	Prescriptive	Model

Selecting	a	subset	of	the	remaining	games	to
include	in	the	shortened	season,	using

stochastic	optimization

Figure 5 The two main phases of our methodology.

4.1. Predictive Models

We now present our models for predicting the outcomes of games postponed due to the suspension.

Since the response variable (i.e., whether the home team wins or loses) is binary, we model our



Hassanzadeh, Hosseini, Turner: How to Conclude a Suspended Sports League?
Article submitted to Manufacturing & Service Operations Management; manuscript no. (MSOM-22-558) 11

prediction problem as a binary classification task. More specifically, given a set of games G from

the pre-suspension period, each data point g ∈ G used for training our model consists of a vector

of D features x⃗g = (xg,1, . . . , xg,D) and its binary class label yg, where yg = 1 if the home team wins

and yg = 0 otherwise. Our goal is to learn a discrimination rule p : RD → [0,1] representing the

probability that a data point with feature vector x⃗ belongs to class 1 (“home team wins”).

We numerically evaluate 8 popular binary classification models from the literature. These include

Support Vector Machine (SVM; Cortes and Vapnik 1995), random forest (RF; Breiman 2001),

bootstrap aggregating (Bagging; Breiman 1996), eXtreme Gradient Boosting (XGBoost; Chen and

Guestrin 2016), Extreme Learning Machines (ELM; Huang et al. 2006), logistic regression (Logit),

Gaussian Näıve Bayes (NB), and Multilayer Perceptron (MLP, also known as artificial neural

network); see Hastie et al. (2009) for descriptions of the last three. The explanatory variables in

our dataset and specific features we use in our models are documented in §6.1 and Appendix E.

Most binary classifiers initially estimate the class probability function p(x⃗). For each data point

x⃗, they then apply a threshold (e.g., 0.5) to assign labels to observations: label 1 is assigned if

p(x⃗)> 0.5, and 0 otherwise. One notable exception is traditional SVM, which directly assigns each

data point to one of the two classes; here, to get probability estimates we follow common practice

and employ a sigmoid calibration function (Platt et al. 1999, Niculescu-Mizil and Caruana 2005).

We perform model selection by evaluating our binary classification models using a performance

metric, and choosing the best one. Two applicable categories of performance metric are (1) those

that compare predicted class (which is binary) with actual outcomes (also binary), and (2) those

that compare predicted probability with actual outcomes. The most natural criterion in the first

category is misclassification loss (the complement of accuracy, or the rate of correctly classified

data points). But, since we are primarily interested in class membership probabilities rather than

zero-one labels, we adopt a performance metric from the second category. Specifically, we use proper

scoring rules, which measure the quality of predicted probabilities (Gneiting and Raftery 2007).

For observations drawn from the distribution F , a scoring rule is called proper if its expectation

is maximized when the forecaster issues the probabilistic forecast F . Moreover, if F is the unique

maximizer, the scoring rule is strictly proper. Examples of strictly proper scoring rules include

the logarithmic, quadratic, and spherical scoring rules. Brier score and LogLoss, which measure

the distance between estimated and true outcomes, are the complements of the quadratic and

logarithmic scoring rules, respectively. For details, see Bickel (2007) and Johnstone et al. (2011).

According to Bickel (2007), the logarithmic scoring rule favors sharper probability values (i.e.,

those that are closer to zero or one). As suggested by Johnstone et al. (2011), sharper probabil-

ity values are preferred when the end use of estimated probabilities is a stochastic optimization

problem, as we have in our second phase. This is because they reduce variance by focusing on the
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most likely scenarios. Hence, we use the logarithmic scoring rule as our model selection criterion

to select the best-performing of our binary classifiers. In line with machine learning terminology,

we henceforth use LogLoss defined below, which is the negative of the logarithmic scoring rule:

LogLoss =− 1

|G|
∑

g∈G

(
yg log(pg)+ (1− yg) log(1− pg)

)
, (4)

where {pg}g∈G is the vector of predicted probabilities and {yg}g∈G is the vector of true outcomes.

We compare the predictive performance of candidate models according to LogLoss in §6.2.

4.2. Prescriptive Models

In a league with n teams, let T denote the set of teams. Assume that at the time of suspension, a

set G of regular-season games remain to be played, and each team i∈ T has won a total of y0
i games

before the suspension. We represent each game g ∈G with a tuple g= (i, j, k), where i(g)∈ T and

j(g) ∈ T denote the host and guest teams, respectively, and k(g) indexes the kth match between

these two teams (recall two teams may play each other more than once). We also define Gh
i ⊂G

and Ga
i ⊂G as the set of remaining home and away games for team i, respectively.

We model the outcome of game g using the Bernoulli random variable Wg, which is one if the

host team i(g) wins, and zero if the guest team j(g) wins. For each game g, we estimate the

parameter pg = P (Wg = 1) using historical data as discussed in §4.1. Formally, we denote the set of

all possible outcomes of all games in the remainder of the full season by Ξ, and use ξ ∈Ξ to index

a specific realization of all games’ outcomes. When helpful, we explicitly write Wg(ξ) to indicate

Wg’s dependence on ξ. For a given outcome ξ ∈Ξ, the win percentage of team i (total wins divided

by games played) after playing all remaining games (i.e., at the end of the full regular season) is

ŷi(ξ) =
1

m̂

(
y0
i +

∑
g∈Gh

i

Wg(ξ)+
∑

g∈Ga
i

(1−Wg(ξ))

)
, (5)

where m̂ is the number of games played by each team in the full season (e.g., 82 for the NBA). We

will continue to use the caret (̂ ) to denote quantities that correspond to the full regular season.

For each game g ∈ G, we define a binary decision variable xg that we set to one if game g is

included in the shortened season, and zero otherwise. Note that these x-decisions are made before

knowing the realization of ξ. We define X as the set of feasible solutions, i.e., restrictions placed

on the x-variables to express tactical/fairness considerations such as each team having the same

number of home/away games in the season, as well as binary requirements on the x-variables, i.e.,

X =


∑

g∈Gh
i
xg =mh

i , ∀i∈ T∑
g∈Ga

i
xg =ma

i , ∀i∈ T

xg ∈ {0,1}, ∀g ∈G

 , (6)

where mh
i and ma

i denote the target number of home and away games for team i, respectively. For

instance, if team i has played 33 home and 31 away games so far before the suspension, and we
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decide to conclude the season with a total of 72 games for each team, then this team must play

an additional mh
i =

72
2
−33 = 3 home and ma

i =
72
2
−31 = 5 away games. Another alternative would

be to combine the constraints on the number of home/away games for each team into a single

constraint of the form
∑

g∈Gh
i ∪Ga

i
xg =mh

i +ma
i that sets a target for the total number of games to

play without specific home/away sub-targets.

For a given shortened season x ∈X and realization ξ ∈Ξ, we denote the win percentage of team

i at the end of the shortened season as yi(x , ξ), where

yi(x , ξ) =
1

m

(
y0
i +

∑
g∈Gh

i

Wg(ξ)xg +
∑

g∈Ga
i

(1−Wg(ξ))xg

)
, (7)

and m is the target total number of games for each team in the shortened season (e.g., 72).

Let d(y(x , ξ), ŷ(ξ)) be a measure of dissimilarity between the vectors y(x , ξ) and ŷ(ξ), i.e., a

measure that compares the win percentage of each team at the end of the full season with the win

percentage of each team at the end of the shortened season, for a specific shortened season x and

outcome ξ. Note that there is a one-to-one correspondence between ŷ(ξ) and the team rankings

at the end of the full season, and between y(x , ξ) and team rankings at the end of the shortened

season. Therefore, d(y(x , ξ), ŷ(ξ)) can also be viewed as a dissimilarity measure between these

rankings, and our goal is to find a shortened season x that minimizes the expected value of this

dissimilarity. That is, we are interested in solving stochastic optimization problems of the form

min
x∈X

Eξ[d(y(x , ξ), ŷ(ξ))], (8)

for different choices of the dissimilarity measure d. We now introduce two such formulations.

4.2.1. Maximizing concordance. For a given outcome ξ, let r̂(ξ) and r(x , ξ) denote the

ranking vector we get when the full season is played, and respectively, when the shortened season

x is played. We solve the following stochastic optimization problem to maximize the expected

similarity between these two rankings using the average concordance metric:

max
x∈X

Eξ [τC (r(x , ξ), r̂(ξ))] . (9)

While this formulation is compact, its objective function is highly nonlinear; consequently, we

linearize it as follows. First, we define a parameter ẑij(ξ) which takes value one if team i is above

team j in the full-season ranking r̂(ξ), and zero otherwise. Similarly, we introduce a binary variable

zij(x , ξ) which takes value one if team i is above team j in the shortened-season ranking r(x , ξ),

and zero otherwise. Since zij(x , ξ) + zji(x , ξ) = 1, we introduce only the zij-variables where i < j

and use 1− zij(x , ξ) in place of zji(x , ξ) whenever it is needed. As well, we introduce continuous

variables yi(x , ξ), i ∈ T , to keep track of the win percentage of team i in the shortened season x
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under realization ξ. Finally, since it is clear that the solution to this optimization problem encodes

a single x-vector, we henceforth suppress the x-argument for the y- and z-variables, and restate

problem (9) as the following stochastic Mixed Integer Linear Program (MILP):

[PC] max
x ,y ,z

Eξ

[∑
i∈T

∑
j∈T :j>i

(zij(ξ)ẑij(ξ)+ (1− zij(ξ))(1− ẑij(ξ)))

]
(10)

s.t. yi(ξ) =
1

m

y0
i +

∑
g∈Gh

i

Wg(ξ)xg +
∑
g∈Ga

i

(1−Wg(ξ))xg

 ∀i∈ T,∀ξ ∈Ξ (11)

zij(ξ)− 1≤ yi(ξ)− yj(ξ)≤ zij(ξ) ∀i, j ∈ T : i < j,∀ξ ∈Ξ (12)

zij(ξ)∈ {0,1} ∀i, j ∈ T : i < j,∀ξ ∈Ξ (13)

x ∈X. (14)

The objective function (10) counts the expected number of concordant pairs. Constraint (11)

computes the win percentage for each team under each realization as defined by equation (7), and

constraints (12) establish the relationship between win percentages and relative positions of teams.

4.2.2. Minimizing Euclidean distance between win percentages. We now consider the

Euclidean distance between win percentages at the end of the shortened season y(x , ξ) and win

percentages at the end of the full season ŷ(ξ). To minimize this dissimilarity measure, we solve the

following stochastic mixed integer quadratic program:

[PW] min
x ,y

Eξ

[∑
i∈T

(yi(ξ)− ŷi(ξ))
2
]

(15)

s.t. yi(ξ) =
1

m

y0
i +

∑
g∈Gh

i

Wg(ξ)xg +
∑
g∈Ga

i

(1−Wg(ξ))xg

 ∀i∈ T,∀ξ ∈Ξ (16)

x ∈X. (17)

While PW does not directly measure Euclidean distance between rankings, which is more closely

tied to league outcomes than win percentages (see §3.3.2), it has several computational advantages.

First, PW does not require binary variables zij(ξ) and associated linking constraints, making it

a lighter formulation than PC. Moreover, as we shall show in §5.1, we may derive a closed-form

expression for the expected value in the objective function (15), which results in a much simpler

deterministic equivalent problem, despite the objective being quadratic rather than linear.

Proposition 2. Let L be the least common multiple of m and m̂. There exists a constant D≤
n(n2−1)

3
L2 such that dE(r(x , ξ), r̂(ξ))≤D

∑
i∈T (yi(x , ξ)− ŷi(ξ))

2 ∀x ∈X,∀ξ ∈Ξ.

This proposition formally shows that PW effectively minimizes the expected Euclidean distance

between rankings. Obviously, the opposite does not necessarily hold (i.e., we can have identical

rankings but different win percentages).
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5. Solution Methodology

There are several practical considerations that we address here. Given that both PC and PW con-

tain 2|G| realizations of ξ, each with their own sets of second-stage decision variables and constraints,

we begin by devising more tractable reformulations of these stochastic optimization models. In

§5.1, we introduce an exact deterministic reformulation of PW, termed PW-DQIP. Although PW-

DQIP forms the foundation for our subsequent models, we also introduce two benchmark solution

methods for approximately solving PC. As defined in Appendix A, PC-MVP and PC-SAA, respec-

tively, replace the random variables of PC with (i) their means and (ii) a small finite number of

samples. Next, in §5.2, we present a fast tailored algorithm for approximately solving PW-DQIP

based on the Frank-Wolfe method, named PW-FW. Finally, to reduce the impacts of (predictive)

model misspecification and overfitting, in §5.3 we develop a robust optimization reformulation of

PW-DQIP which uses as input (i) an ensemble of candidate predictions as well as (ii) optimal

values computed from multiple runs of PW-FW.

5.1. Equivalent Deterministic Reformulation

We now show how the stochastic problem PW from §4.2.2 can be solved using an equivalent

deterministic problem. We will use the notation V to refer to the variance of a random variable.

Theorem 1. The stochastic model PW can be solved using the following equivalent deterministic

linearly-constrained convex quadratic mixed-integer optimization problem:

[PW-DQIP] min
x ,µ,v

∑
i∈T

(
(µi − µ̂i)

2
+ vi

(
1− 2m

m̂

)
+ v̂i

)
(18)

s.t. µi =
1

m

(
y0
i +

∑
g∈Gh

i

pgxg +
∑

g∈Ga
i

(1− pg)xg

)
∀i∈ T (19)

vi =
1

m2

∑
g∈Gh

i ∪Ga
i

pg(1− pg)xg ∀i∈ T (20)

x ∈X, (21)

where the decision variables, in addition to x = {xg, g ∈ G}, include µi and vi which encode the

mean and variance, respectively, of the win percentage of team i in the shortened season. Moreover,

the following parameters represent the mean and variance, respectively, of the win percentage of

team i in the full season:

µ̂i =Eξ [ŷi(ξ)] =
1

m̂

(
y0
i +

∑
g∈Gh

i

pg +
∑

g∈Ga
i

(1− pg)

)
(22)

v̂i =Vξ [ŷi(ξ)] =
1

m̂2

∑
g∈Gh

i ∪Ga
i

pg(1− pg). (23)

We note that PW-DQIP can be solved using an off-the-shelf Mixed Integer Quadratic Program-

ming (MIQP) solver such as Gurobi, but doing so is less efficient for large problem instances. In

the following, we present a fast tailored algorithm that leverages the combinatorial properties of

this problem.
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5.2. Frank-Wolfe Algorithm

For the purpose of developing an efficient way to solve PW-DQIP, we now turn our attention to

the combinatorial structure of PW-DQIP’s feasible region.

Proposition 3. The coefficient matrix of the set of feasible schedules X is totally unimodular.

Proposition 3 is based on the fact that incidence matrix of bipartite multigraphs are totally

unimodular (Yannakakis 1985). As a result, and given that the right-hand-side values in X (i.e.,

{mh
i } and {ma

j}) are integral, optimizing a linear function over the continuous relaxation of X

(denoted X̄) using the Simplex method yields an integral optimal solution. This property of PW-

DQIP lends itself well to the Frank-Wolfe (FW) method (Frank and Wolfe 1956, Jaggi 2013). FW is

an algorithm for solving non-linear convex optimization problems of the form minx∈X̄ f(x ), where

f is a smooth convex function and X̄ is a compact convex set. At each iteration t, FW replaces f

with its linear approximation at an incumbent point x (t) ∈ X̄, to produce an “atomic” solution

x̂ (t) = argmin
x∈X̄

∇f(x (t))⊤x , (24)

and then performs a line search between x (t) and x̂ (t) to produce the next iterate x (t+1) ∈ X̄.

Algorithm 1 in Appendix D presents our implementation of the FW algorithm for solving the

continuous relaxation of PW-DQIP. Our FW implementation is particularly efficient, since f is a

convex quadratic function, and so (i) its gradient is easily computed, and (ii) the line search step

admits closed-form optimal solution via the first-order optimality conditions. Moreover, given that

the atomic solution x̂ (t) produced by solving the transportation problem (24) is a feasible integer

solution, it provides an upper bound on the optimal value of PW-DQIP. As the FW algorithm

iterates, x (t) converges to the optimal fractional solution and the upper bound x̂ (t) becomes pro-

gressively tighter. Upon terminating at a finite iteration t, we use the best integer-feasible point

x̂ (t) found thus far, over iterations 1 . . . t, as a near-optimal integer solution to PW-DQIP. We also

note that we may produce a sub-optimality bound for the solution of FW as described in Appendix

D. Henceforth, we will use PW-FW to refer to producing a PW solution using FW.

5.3. Robust Optimization Reformulation

In the data science literature, there are many examples of successful ensemble models, which

combine the results of multiple predictive models to produce more robust results (c.f., Sagi and

Rokach 2018). With this in mind, we derive a Min-Max Regret (MMR) formulation that combines

the predicted probabilities from several of our predictive models, allowing our prescriptive model’s

results to be more robust to misspecification and model overfitting.

Given a set L of candidate predictions indexed by l, we define the following parameters: (i) p(l)g

is the probability that the home team wins game g under candidate l; (ii) θ(l) is the optimal value
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(or, alternatively, a lower bound on the optimal value) of PW-DQIP when solved using candidate

l; and (iii) µ̂
(l)
i and v̂

(l)
i correspond to the parameters defined by (22) and (23), respectively, when

p(l)g is used in place of pg. In addition to xg, the MMR counterpart of our PW model has decision

variables µ
(l)
i and v

(l)
i , which are the candidate-specific versions of µi and vi from (19) and (20),

respectively. Finally, θ is a decision variable that captures the maximum regret over using all

candidate win-probability vectors in the PW objective. Minimizing this maximum regret yields

the following convex mixed-integer quadratically-constrained program, which can be solved using

a commercial solver such as Gurobi:

[PW-MMR] min
x ,µ,v ,θ

θ (25)

s.t. θ≥
∑

i∈T

((
µ
(l)
i − µ̂

(l)
i

)2

+ v
(l)
i

(
1− 2m

m̂

)
+ v̂

(l)
i

)
− θ(l) ∀l ∈L (26)

µ
(l)
i =

1

m

(
y0
i +

∑
g∈Gh

i

p(l)g xg +
∑

g∈Ga
i

(1− p(l)g )xg

)
∀i∈ T, l ∈L (27)

v
(l)
i =

1

m2

∑
g∈Gh

i ∪Ga
i

p(l)g (1− p(l)g )xg ∀i∈ T, l ∈L (28)

x ∈X. (29)

6. Computational Experiments

In this section, we (1) evaluate our predictive models and choose the best one(s) to use in our

prescriptive phase (“model selection”), and (2) solve all variants of our prescriptive models using

the home-team win-probabilities estimated during our predictive phase, and evaluate the quality

of the shortened seasons produced by our prescriptive models. All models (predictive and prescrip-

tive) were coded in Python 3.8.8. For our predictive models, we used the scikit-learn package

(Pedregosa et al. 2011), and for solving our mixed integer programs in our prescriptive models

we used Gurobi 9.5.0 with all solver settings left at their default values. All experiments were

conducted on a computer with a 2.6 GHz Intel Core i7 CPU and 16 GB of memory.

6.1. Dataset Description

We use historical data from 14 NBA seasons (2004–2010, 2012–2018), which are the years with

the same regular season structure as today; i.e., 30 teams, each playing 82 games with schedules

constructed in the manner described in §3.1. We omit the shortened seasons 2010–11 and 2020–21,

and do not consider data prior to 2004 as back then the NBA had fewer teams. We used the

box score datasets publicly available on the NBA’s official website (NBA 2020b) which contains

detailed information for each game, team and player. From this, we created 56 datasets that in

turn consider, for each of the 14 seasons, 4 alternative hypothetical suspension dates (i.e., days 80,

100, 120, 140 of the season). Note that each regular season spans between 170–180 days.
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In our experiments, we fixed the number of games per team in the shortened season so approx-

imately half the post-suspension games are scheduled and the other half cancelled (alternative

targets can easily be achieved by adjusting the parameters mh
i and ma

i , but we felt that varying the

suspension day in our experiments already provides sufficient sensitivity analysis). Table 3 provides

some summary statistics of our instances. For each suspension day, we list the number of Games

per Team (GT ) we wish to have in the shortened season, the average number of Games Played

(GP ) per team prior to suspension, the average number of Games we will Schedule (GS) per team

post-suspension, and the number of Games we will Cancel (GC) per team post-suspension. Note

that (i) GP +GS+GC = 82 since a full season has 82 games per team; and (ii) GP +GS =GT .

Suspension GT GP GS GC

Day 80 62 38.4 23.6 20

Day 100 66 48.6 17.4 16

Day 120 70 56.4 13.6 12

Day 140 74 66.0 8.0 8

Table 3 Summary statistics of our problem instances, averaged over all teams and all 14 NBA seasons.

6.2. Predictive Model Results

In this subsection, we describe the explanatory features used in our predictive models, the pre-

processing we performed on our datasets, and the cross-validation we used to assess our predictive

models. Finally, we compare the predictive performance of the 8 binary classifiers described in §4.1.

6.2.1. Experimental setup. We use the basic and advanced statistics published in the box

score datasets (NBA 2020b) to curate four groups of explanatory features, including i) overall

team performance, ii) basic team-level statistics, iii) advanced team-level statistics, and iv) player-

level statistics. When taken together, this results in 128 features, the details of which we provide

in Appendix E. In our independent exploratory analysis, we have found that the features that

tend to be the most important are, ranked in order from most to least important: i) overall team

performance measured primarily by win percentage, ii) style of play metrics such as pace and

number of possessions created, iii) shooting efficiency, iv) offensive fire power measured by metrics

such as effective field goal percentage, true shooting percentage, points in the paint, and offensive

rating in general, v) rebounding, and finally vi) assists and ball movement. We first normalize

all features to the [0,1] range, and then use Principal Component Analysis (PCA) to eliminate

multicollinearity and prevent overfitting. We retain only the first 25 principal components with

highest eigenvalue, which explain more than 90% of the total variance in our training data.

We use 5-fold cross-validation to tune our predictive models’ hyper-parameters. For this, we

partition our data into training, validation, and test datasets. Pre-suspension games are divided
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into training and validation sets through 5 folds at random, with the validation dataset having the

same size (30% of the of pre-suspension dataset) across all folds. Post-suspension games comprise

the test dataset. On each fold, we fit each classifier using a training dataset and evaluate its

performance using the corresponding validation dataset. Then, we measure the performance of

each predictive model using the average LogLoss across the five folds. We reserve the test datasets

for evaluating the combined performance of our predictive and prescriptive models.

As is well-known in machine learning, not all classification models produce unbiased class proba-

bilities. Therefore, we employ Platt scaling (Platt et al. 1999), which involves transforming the home

team’s win probabilities using a sigmoid calibration function to recover unbiased win probability

estimates. For this, we use the Python package scikit-learn, which uses multiple randomly-

generated held-out samples from the training dataset to compute the calibrated probabilities.

6.2.2. Predictive performance. We evaluate the performance of our predictive models using

LogLoss as defined in (4), which is a strictly proper scoring rule (see §4.1 for details). We also

report the accuracy and the Area Under the receiver operating characteristic Curve (AUC), which

are not proper scoring rules but are widely used for evaluating the performance of binary classifiers.

Accuracy measures the proportion of correctly predicted class labels. AUC summarizes the trade-off

between true positive rate and false positive rate when the threshold to predict class labels changes

(see e.g., Fawcett 2006). Larger AUC values generally correspond to better predictive performance.

The LogLoss metric plays a crucial role in three distinct elements of our predictive phase. First, it

serves as the internal loss function for all but three of our binary classifiers, with notable exceptions

being SVM, Näıve Bayes, and Random Forest, which utilize hinge loss, Gini impurity, and no

specific loss function, respectively; see (Shen 2005) for additional details. Second, LogLoss guides

our hyper-parameter optimization process across all eight predictive models. Lastly, we use it as

our model selection criterion to identify the most effective of our eight candidate models.

Figure 6 depicts, for 4 choices of suspension day and 9 classifiers, the distributions of accuracy,

AUC, and LogLoss across 14 NBA seasons. In addition to the 8 classifiers described in §4.1, we also

define “Best” as a composite classifier that, for each season, employs the lowest-LogLoss classifier

among the 8 classifiers tested. Each boxplot’s underlying distribution corresponds to 14 values (one

per season), where each season’s performance is taken as an average of the model’s performance

over the five validation datasets (cross-validation folds). Box heights correspond to Inter-Quartile

Ranges (IQR), with medians marked by dark horizontal lines inside each box. Whiskers mark the

most extreme-valued data points within 1.5IQR units above and below the boundary of the box,

and any points lying outside this range are marked as outliers.

As seen in Figure 6, the Logit, ELM, SVM and MLP models generally have the lowest LogLoss

values, which indicates their superiority in predicting well-calibrated and unbiased probabilities.
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Figure 6 Accuracy, AUC, and LogLoss for 9 different classifiers. The distributions are measured using the vali-

dation datasets across 14 NBA seasons.

The same four models also outperform the other models according to accuracy and AUC, with

Logit being the better model overall. It is worth noting that our best predictive models achieve an

accuracy over 75%, which is in line with the accuracy of models that predict the outcome of the

next game to be played (see, for example Kvam and Sokol (2006), Brown and Sokol (2010)).

We conjecture that two factors drive the performance of our predictive models: the level of league

competition and how early we suspend the season. In a more competitive season, it becomes more

difficult to predict game outcomes, since teams are more evenly-matched. Second, as we increase

the suspension day from 80 to 140, the pre-suspension dataset grows and as a result, our predictive

models generally perform better in all three metrics depicted in Figure 6, both in terms of the

average value as well as the variation across seasons (i.e., length of the boxplot).

In general, since different predictive models perform better in different seasons, we use our

composite “Best” classifier to produce the home-team win-probabilities for the post-suspension

games used by our prescriptive models. That is, for each season and suspension day, we select

the lowest-LogLoss of the 8 classifiers as measured by 5-fold cross-validation on our validation

dataset, and then train the selected classifiers on all pre-suspension games to produce home-team

win-probabilities for all post-suspension games.

6.3. Prescriptive Model Results

We now evaluate our prescriptive models and provide practical insights that apply to their use.

6.3.1. Experimental setup. We measure the runtimes and solution quality of all prescriptive

models discussed in §4.2 (i.e., PW-DQIP, PW-FW, and PW-MMR), as well as the two introduced
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Model Objective Solution Method

PW-DQIP Min. distance of win percentages Deterministic equivalent Quadratic Program

PW-FW Min. distance of win percentages Produce near-optimal solution for PW-DQIP using Frank-Wolfe

PW-MMR Min. distance of win percentages A Robust reformulation of the PW-DQIP model

PC-MVP Max. concordance of rankings Replace random variable Wg with its expected value pg for each game g ∈G

PC-SAA Max. concordance of rankings Replace distribution Ξ with sample S, and expected value with sample average

Table 4 Summary of prescriptive models.

in Appendix A (i.e., PC-MVP and PC-SAA); results are summarized in Table 5. As described in

detail in Appendix A.4, the trade-off between solution quality and runtime of SAA is balanced at 50

scenarios. Thus, we use 50 scenarios for our PC-SAA model. As well, to improve the computational

efficiency of our PC model, we introduce variable fixing techniques (see Appendix A.3) to deduce

and fix many z-variables at their optimal values. As detailed in Table 8 in Appendix A.3, our

method eliminates 75% of the z-variables in PC-MVP and 60% in PC-SAA, which is significant, as

it translates to closing the optimality gap at a faster rate (e.g., for suspension day 80, after 3,600

seconds of running PC-SAA the gap is 2.02% with variable fixing, and 6.93% without).

We implement two benchmarks. First, we are interested to know how well our models perform

relative to an approach that does not explicitly optimize the end-of-season ranking when selecting

the games in the shortened season. For this, we implement a greedy heuristic (henceforth known

as “Greedy”) that selects games according to their original scheduled dates, with earlier games

assigned first until the target number of games for each team are met. Second, we are also interested

to know how much better we can do by playing our optimally-chosen shortened season relative to

not playing any more games after the suspension (the “Status Quo” ranking).

In line with previous studies in sports analytics (e.g., Van Eetvelde et al. 2021, Chater et al.

2021, Csató 2021b, Sziklai et al. 2022), we evaluate the expected performance of our models using

Monte Carlo simulation. More specifically, we draw the outcomes of each post-suspension game

from a Bernoulli distribution with home-team win-probability estimated by our “Best” predictive

model. To measure the expected performance, we generate a sample of 10,000 game outcomes from

these Bernoulli distributions. Each realization yields two rankings, one at the end of the shortened

season, and the other at the end of the full season with all games played. We then compare these

rankings using our primary performance metric, the number of concordant pairs between rankings.

Note that we use estimated home-team win-probabilities in both our prescriptive models and

our simulation. To ensure robustness of our testing methodology, we use some unseen data points

to estimate the home-team win-probabilities for our simulation. To this end, we hold out 20% of

the pre-suspension data at random when we estimate the parameters pg, g ∈G, used as home-team

win-probabilities in our prescriptive models, and use the entire pre-suspension dataset to estimate

the home-team win-probabilities used by our simulation.
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Finally, as an additional robustness check, we also ran simulations with probabilities estimated

using multiple evaluator models with different functional forms. For each season and suspension

day, we compared PW-FW to Greedy using all combinations of prescriptive model parameters

pg, g ∈G, and simulation Bernoulli probabilities estimated by our 8 classifiers from §4.1 (for a

total of 64 combinations). As illustrated in Appendix F.1, all PW-FW solutions outperformed the

Greedy solutions by a considerable margin.

6.3.2. Prescriptive performance. Table 5 summarizes the results of running all four pre-

scriptive models on the instances described in Table 3, averaged over 14 seasons. The “Time”

column reports runtimes in seconds, while “Conc.” is concordance (τC) measured by our simulation.

PC-MVP solved all instances to optimality, while the optimality gap of PW-DQIP was never more

than 10−3. For PC-SAA and PW-MMR, no instance converged to optimality by the 3600-second

time limit. We report the percentage optimality gap for PC-SAA, while for PW-MMR we provide

the absolute optimality gap (UB − LB). The latter metric is more appropriate for PW-MMR,

since its lower bound is always zero. For PW-FW, we report the sub-optimality gap defined in

Appendix D, and observe that this gap is typically very low (less than 2% on average).

Comparing our prescriptive models, we observe the following. PC-MVP is fastest, but solution

quality (concordance) is lowest. PC-SAA produces higher-quality solutions than PC-MVP, but is

slow. All PW-based models generate high-quality solutions. While PW-DQIP typically produces

slightly higher-quality solutions than PW-FW, our Frank-Wolfe algorithm is over a thousand

times faster than the integer program of PW-DQIP. With regard to PW-MMR, it is interesting

that although its solutions are more robust, overall solution quality is comparable to the other

PW methods. While runtimes of PW-MMR are slower as we solve a mixed-integer quadratically-

constrained program, it is worth pointing out that it may be possible to extend our Frank-Wolfe

method to PW-MMR (see our comment at the end of Appendix D; we leave the details to future

work). Finally, we also observe that as the season is suspended later, there are fewer games to

choose from, and all models perform better as the solution space shrinks.

Sus. Day PC-MVP PC-SAA PW-DQIP PW-FW PW-MMR

(GT) Time Conc. Time Gap Conc. Time Conc. Time Sub. Gap Conc. Time Abs. Gap Conc.

80 (62) 0.08 413.35 3600 4.98% 414.24 3600 415.96 0.39 1.19% 415.86 3600 0.00037 415.84

100 (66) 0.09 414.60 3600 1.66% 415.80 3600 417.94 0.24 1.32% 417.83 3600 0.0002 417.87

120 (70) 0.10 417.43 3600 1.49% 418.55 934.11 419.96 0.12 1.48% 419.88 3600 0.00015 419.92

140 (74) 0.06 420.64 3600 1.03% 421.45 82.33 422.24 0.05 1.66% 422.20 3600 0.00012 422.26

Table 5 Performance of the prescriptive models, averaged over 14 seasons

As different seasons unfold in different ways, it is interesting to compare our prescriptive models

on a per-season basis. Figure 7 plots concordance as measured by our simulation for each of the
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Figure 7 Simulation results for prescriptive models (concordance) across 14 NBA seasons.

14 NBA seasons and 4 suspension days. The three PW models (i.e., PW-DQIP, PW-FW, and

PW-MMR) have very similar solution quality and thus we combine their plots. From Figure 7, we

see that all five proposed models outperform the benchmark greedy algorithm on all instances (i.e.,

for all seasons and suspension days). Typically, PW dominates PC-SAA and PC-MVP as well. We

remark that the results in Figure 7 and subsequent simulation-based results correspond to mean

values estimated using 10,000 simulation replications. The standard errors of these estimates are

negligible (i.e., within 0.1% of the means), and therefore we omit plotting confidence intervals for

these figures.

We provide a few comments to explain the differences in performance across these models, which

all approximate our stochastic optimization model PC in distinct ways. First, we note that although

both PC-MVP and PC-SAA maximize concordance directly, PC-MVP uses only the means of the

random variables while PC-SAA samples a small number of scenarios. Because PC-SAA more faith-

fully represents PC, it is not surprising that it typically outperforms PC-MVP. On the other hand,

it is interesting to observe that the PW models, which take a different approach to approximating

PC, outperform PC-SAA. Instead of sampling from the distributions of the random variables, the

PW models approximate the ranking-based concordance objective with a win-percentage-based

objective which allows us to formulate the problem as a deterministic equivalent. PW outper-

forms in practice because PC-SAA either suffers from (i) too few SAA scenarios causing a loose

approximation of PC, or (ii) too many SAA scenarios resulting in combinatorial explosion and

poor convergence (see Appendix A.4). Because PW is represented as a deterministic equivalent, it

sidesteps this difficulty as it does not require sampling from the distributions.

Next, we illustrate the incremental value of playing a shortened season, relative to the “Status

Quo” case of halting the season at the suspension date. Figure 8 compares our top-performing pre-

scriptive model (i.e., PW) with “Status Quo”. First, we note that the concordance of “Status Quo”
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differs substantially across instances. Indeed, sometimes the ranking on the suspension date is close

to the end-of-season ranking (e.g., 2009-10 with suspension day 80 and 2008-09 with suspension

day 100), while in other cases the “Status Quo” ranking is far from the end-of-season ranking (e.g.,

2013-14 with suspension day 80 and 2017-18 with suspension days 80 and 100). Second, we observe

that playing additional games as chosen by PW significantly improves concordance, regardless of

season and suspension date. And finally, as noted previously, as the season is suspended later, all

models’ rankings converge to the end-of-season ranking, leading to both higher concordance and

lower variability in outcomes. Finally, it is important to note that our methodology is very different
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Figure 8 Comparing the best-performing prescriptive model with the suspension day concordance (Status Quo)

across 14 NBA seasons.

from one that takes the ranking at the suspension date and tries to sustain this ranking through

the end of the shortened season (had this been the case, the rankings from “Status Quo” and

PW would be similar, and their concordance with the end-of-season ranking as plotted in Figure 8

would be much closer). Indeed, although our predictive model uses pre-suspension data to estimate

our prescriptive model’s parameters, a team with a high win rate pre-suspension will not neces-

sarily have a high win rate post-suspension. The nature of the shortened season and its impact

on rankings is complex, owing to the relative difficulty of the schedule before and after suspension

(i.e., precisely when a team faces easy or hard-to-beat competitors). Because our prescriptive model

aims to produce a shortened season with ranking similar to that of the full season, if a team had

an easy schedule pre-suspension it would generally have a comparatively difficult schedule post-

suspension, and our prescriptive model will naturally attempt to maintain this difficulty gradient

in the shortened season post-suspension. Moreover, it is also interesting to note that the games

that PW chooses also tend to be the more “competitive” games with uncertain outcomes, which

are precisely the games that spectators enjoy watching (see Appendix C for details).



Hassanzadeh, Hosseini, Turner: How to Conclude a Suspended Sports League?
Article submitted to Manufacturing & Service Operations Management; manuscript no. (MSOM-22-558) 25

Appendix F.4 provides an illustration of a shortened season produced by our two-phase approach,

which is the result of applying our methodology to the suspended 2019-20 NBA regular season.

6.3.3. Practical implications. We now measure the performance of our shortened seasons

using several metrics directly tied to a team’s ranking. In doing so, we verify that our PW-MMR

model produces solutions that not only have high concordance, but are also practically appealing.

As discussed in §3.1, at the end of the regular season, within each conference the top 8 teams

make the playoffs and the top 4 receive home court advantage. Moreover, the 5 bottom-ranked

teams are given the highest (i.e., double-digit) lottery odds in next year’s draft for rookie players.

Thus, we define 3 categories of metrics: (i) “Playoff teams” (the top 8 teams in each conference),

(ii) “Teams with home court advantage” (the top 4 teams in each conference), and (iii) “Teams

with double-digit lottery odds” (the bottom 5 teams overall). Using the same 10,000 simulation

replications described in §6.3.1, for each of these 3 metric categories we calculate the proportion

of teams in the shortened season that agree with the full season. By agree, we mean that we check

to see how many teams fall into that category in both the shortened season and the full season.

For example, imagine that in one particular realization the 5 bottom-ranked teams in the

full-season are {Warriors, Cavaliers, Timberwolves, Hawks, Pistons}, while the 5 bottom-

ranked teams in the shortened-season produced by PW-MMR are {Warriors, Cavaliers,

Timberwolves, Hawks, Knicks}, and finally the 5 bottom-ranked teams in the shortened-season

produced by Greedy are {Warriors, Cavaliers, Timberwolves, Bulls, Knicks}. Here, the

PW-MMR model selected 4
5
= 80% of the bottom-5 teams correctly while for the Greedy ranking

only 3
5
= 60% of the bottom-5 teams match those of the full-season. For this realization, we say

models PW-MMR and Greedy have 80% and 60% agreement with the full season, respectively.

Table 6 compares the mean agreement percentage of our PW-MMR model with that of Greedy

and Status Quo; agreement percentages have been averaged over all 4 suspension dates, 14 seasons,

and 10,000 Monte Carlo replications. We can see that if we do not play a shortened season but

instead select playoff teams based on the ranking as of the suspension date (Status Quo), then

on average 88.96% of teams that would have made the playoffs if the full season was played do

in fact advance to the playoffs; i.e., 88.96% of playoff teams are chosen correctly. Instead, if we

play a shortened season but it is a Greedy rather than optimal one, then on average 94.27% of the

teams that advance to the playoffs are chosen correctly. Finally, if we use PW-MMR to construct

a shortened season, on average 95.65% of the teams advancing to the playoffs would also have

been in the playoffs had the full season been played. The other two metrics also indicate significant

improvements from using PW-MMR over Greedy and Status Quo. For further details, see Appendix

F.2, which includes boxplots that show the distributions of the three agreement metrics over the

14 NBA seasons, for each of the 4 suspension days.
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Agreement criteria PW-MMR Greedy Status Quo

Playoff teams 95.65 94.27 88.96

Teams with home court advantage 92.28 89.83 79.10

Teams with double-digit lottery odds 91.36 89.24 78.10

Table 6 Mean agreement percentages on simulation for shortened seasons computed using three models.

To further validate the practical performance of our models, we also measured their performance

using actual post-suspension game outcomes (i.e., we ran a backtest). In this experiment, for each

season and suspension day, instead of 10,000 simulation replications we have only a single sample

path. While this is a good robustness check, the backtest is susceptible to producing noisy outcomes.

We find that, in terms of concordance between the shortened seasons and the full seasons, PW-

MMR outperforms Greedy 65% of the time. Furthermore, when PW-MMR outperforms Greedy,

it does so by a larger margin than when Greedy outperforms PW-MMR. Specifically, whenever

PW-MMR beats Greedy, its concordance is higher by an average of 3.68 concordant pairs. This is

more than twice the number of concordant pairs by which Greedy outperforms PW-MMR (1.57).

Finally, Table 7 compares the backtest results for the PW-MMR, Greedy, and Status Quo models

using the agreement criteria discussed earlier.

Agreement criteria - Backtest PW-MMR Greedy Status Quo

Playoff teams 95.64 94.87 90.62

Teams with home court advantage 90.62 91.07 82.59

Teams with double-digit lottery odds 87.14 83.21 78.57

Table 7 Mean agreement percentages on backtest for shortened seasons computed using three models.

6.3.4. Strength of schedule extension. A practically appealing extension to our prescrip-

tive model incorporates constraints that additionally ensure a Strength of Schedule (SoS) for each

team that is not materially reduced from its full-season measure. There are several mathematical

definitions of SoS (see NBAstuffer 2023), but essentially SoS is used by each team to quantify the

difficulty of its remaining schedule of games. Pundits on television use SoS for arguments such as,

“Although the Lakers are currently higher-ranked than the Clippers, the Clippers have a higher

SoS and so are likely to make up some of this slack and could come out ahead by the end of the

season.” League managers may wish to assure each team that their SoS is not materially impacted

by the shortened season being selected; this motivates the prescriptive model in this subsection.

As far as we know, there is limited related work on incorporating SoS in a prescriptive model, and

the few articles that use such a measure take a dynamic scheduling approach where the schedule

is updated according to certain criteria including SoS; see Bouzarth et al. (2020). As our approach

is based on mathematical programming, we choose the Opponent’s Win percentage (OW) as our

SoS metric, as it is both simple to understand and linear in our decision variables.
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Following our notation from §4.2, let ȳ0
i =

y0i
m0

i
denote the win percentage of team i at the time

of suspension, where m0
i is the number of games played by team i pre-suspension. We define team

i’s strength of schedule in the remainder of the shortened season and full season, respectively, as:

OWi =
1

m−m0
i

∑
g∈Gh

i

xgȳ
0
j(g) +

∑
g∈Ga

i

xgȳ
0
i(g)

 ∀i∈ T (30)

ÔW i =
1

m̂−m0
i

∑
g∈Gh

i

ȳ0
j(g) +

∑
g∈Ga

i

ȳ0
i(g)

 ∀i∈ T. (31)

The above expressions estimate the average win percentage of all opponents of team i in the

remainder of the shortened season and full season, respectively. With slight abuse of notation, i(g)

refers to the home team in game g, and should not be confused with the focal team i. A larger

value for OWi or ÔW i implies a more difficult remainder of the season for team i, as this means

future opponents are harder to beat.

Using the two quantities defined in (30) and (31), we modify our PW-DQIP formulation, (18)–

(21), by adding the constraint (32) below, which ensures that for each team i, the strength of

schedule (i.e., average opponents’ win percentage) in the remainder of the shortened season is not

materially higher than in the remainder of the full season, i.e., within ϵ of the full-season SoS. We

refer to ϵ in percentage terms for ease of communication and to emphasize its relative scale. An

extension to our PW-DQIP model incorporating strength-of-schedule constraints is as follows:

[PW-SoS] min
x ,µ,v

∑
i∈T

(
(µi − µ̂i)

2
+ vi

(
1− 2m

m̂

)
+ v̂i

)
s.t.

OWi − ÔW i

ÔW i

≤ ϵ ∀i∈ T (32)

(19)–(21), (30).

Note that in the above, OWi is an auxiliary decision variable as it depends on the choice of

shortened season, while ÔW i is a constant since the full season is fixed.

To assess the strength of schedule in our solutions and given we are only interested in cases where

the strength of schedule in the shortened season is larger than that of full season, we introduce

the metric “Strength of Schedule Discrepancy (SSD)” which takes the positive difference between

strength of schedule in the shortened and full seasons, defined as:

SSD=
1

n

∑
i∈T

max

{
OWi − ÔW i

ÔW i

,0

}
. (33)

Figure 9 compares models PW (without SoS constraints), Greedy and PW-SoS with 4 choices

for ϵ ranging from 2% to 10%. The left panel plots concordance as measured in our Monte Carlo
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Simulation Concordance SSD
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Figure 9 Comparison of PW-SoS (with 4 different values for ϵ) to PW and Greedy based on simulation concor-

dance (left panel), and SSD (right panel).

simulation over 10,000 replications. Here, we see that the addition of SoS constraints sacrifices some

amount of concordance, but in general PW-SoS still performs significantly better than Greedy. In

the right panel, we investigate the sensitivity to the ϵ parameter, and show that for ϵ below 3%

we can produce solutions using PW-SoS that have better (lower) SSD than both PW and Greedy.

Each dot in Figure 9 represents an average value across 14 NBA seasons. Appendix F.3 includes

the corresponding plots for individual NBA seasons.

7. Conclusions and Future Research

Professional sports leagues may be suspended due to various reasons, requiring the league to select

which games to play in a shortened season. In this paper, we proposed a two-phase analytics

approach for this problem. In phase one, we predicted game outcomes using a composite binary

classifier, with a particular functional form for each season and for each suspension day, chosen

based on LogLoss values. In phase two, we used stochastic optimization techniques to prescribe a

data-driven decision which maximizes the expected similarity between the ranking at the end of

the shortened season and the full season had it been played in full.

To solve one of our stochastic optimization problems (PW), we proposed three solution method-

ologies: i) a deterministic equivalent reformulation (i.e., PW-DQIP), ii) a Frank-Wolfe decompo-

sition algorithm (i.e., PW-FW) which significantly reduces the running time of PW-DQIP while

maintaining similar solution quality, and iii) a robust reformulation of PW-DQIP designed to han-

dle misspecification in the input data (i.e., PW-MMR). For our second model (PC), we proposed

approximation schemes (MVP and SAA), as well as variable fixing techniques. Our PC-SAA model

approximates the distributions in PC but has an exact objective, while our PW models use the

exact distribution but approximate PC’s objective.

We evaluated our models’ solutions using Monte Carlo simulation. Our computational experi-

ments show PW outperforms PC-SAA even for reasonably-large 50-scenario instances. This sug-

gests that PW (and specifically the PW-MMR variant) is the recommended prescriptive model
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to maximize concordance. Finally, we verified that the higher-concordance solutions provided by

PW-MMR outperform our benchmarks, leading to a higher agreement between shortened season

and counterfactual full season in terms of the number of teams that (a) make the playoffs, (b)

receive home court advantage, and (c) receive double-digit rookie draft lottery odds. We ran a

backtest as a robustness check, and also provided a model extension (PW-SoS) that ensures each

team’s strength-of-schedule is not materially impacted by our choice of shortened season.

We envision several directions for future research. First, one potential improvement could come

from considering more sophisticated loss functions for the predictive models that are custom-

tailored to the specific needs of the downstream prescriptive models. Second, apart from concor-

dance, other considerations (e.g., generated revenue, travel cost and distances, broadcasting restric-

tions, venue availability) may also be relevant, suggesting an alternative multi-criteria decision-

making approach. Third, when faced with multiple stoppages during a single season, selecting

the optimal subset of games between any two stoppages can be modeled as a dynamic stochas-

tic optimization problem with a learning component. Finally, large-scale stochastic optimization

techniques (e.g., progressive hedging) may be designed to tackle SAA with a larger sample.
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Appendix A: Solution Methods for the Stochastic Model PC

In this section, we introduce two solution methodologies based on model PC, introduced in §4.2.1. Before

elaborating on the solution methodologies, we remark that our formulation PC may be viewed as a stochastic

program with recourse, where the x-variables are first-stage variables (for which there is only one choice to be

made) and the y- and z-variables are second-stage “recourse” variables (for which there is one such variable

for each possible outcome ξ). Note, however, that in our application there is no true recourse. Rather, y

and z are auxiliary variables whose purpose is to linearize the objective function. In the next section, as

the full stochastic optimization problems are too large to solve directly, we introduce two methods which

approximately solve PC.

A.1. Mean Value Approximation

Replacing all random parameters in a stochastic optimization problem by their expected values yields a

deterministic problem known as the Mean Value Problem (MVP). In our case, we may produce MVP for PC

by replacing the random variables Wg which represent the outcome of each game g with their means pg =

E[Wg]. The y-variables are then interpreted as expected values over all outcomes ξ ∈Ξ, given the shortened

season x , and z variables capture relative positions of teams according to y. The MVP corresponding to PC

is:

[PC-MVP] max
x ,y,z

∑
i∈T

∑
j∈T :j>i

(zij ẑij +(1− zij)(1− ẑij)) (34)

s.t. yi =
1

m

y0i +
∑
g∈Gh

i

pgxg +
∑
g∈Ga

i

(1− pg)xg

 ∀i∈ T (35)

zij ≥ yi− yj ≥ zij − 1 ∀i, j ∈ T : i < j (36)

zij ∈ {0,1} ∀i, j ∈ T : i < j (37)

x ∈X. (38)

A.2. Sample Average Approximation

Sample Average Approximation (SAA) is a Monte Carlo simulation-based technique for approximating

stochastic optimization problems (Kleywegt et al. 2002), Let S = {ξ(1), ξ(2), . . . , ξ(|S|)} be an independently

and identically distributed random sample of ξ. SAA reduces the size of the problem by approximating

the expected value in the objective function with the sample average function. We use the superscript s

to reference the second-stage variables and random parameters under scenario s ∈ S. For instance, under

scenario s, W (s)
g refers to the outcome of game g, ŷ

(s)
i refers to the win percentage of team i at the end of

the full season, and y
(s)
i refers to the decision variable for the win percentage of team i at the end of the

shortened season. We construct the SAA counterpart of the stochastic program PC by replacing the full set

of outcomes Ξ with the sample set S.

[PC-SAA] max
x ,y,z

1

|S|
∑
s∈S

∑
i∈T

∑
j∈T :j>i

(
z
(s)
ij ẑ

(s)
ij +(1− z

(s)
ij )(1− ẑ

(s)
ij )

)
(39)

s.t. y
(s)
i =

1

m

y0i +
∑
g∈Gh

i

W (s)
g xg +

∑
g∈Ga

i

(1−W (s)
g )xg

 ∀i∈ T,∀s∈ S (40)
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z
(s)
ij ≥ y

(s)
i − y

(s)
j ≥ z

(s)
ij − 1 ∀i, j ∈ T : i < j,∀s∈ S (41)

z
(s)
ij ∈ {0,1} ∀i, j ∈ T : i < j,∀s∈ S (42)

x ∈X. (43)

As the sample size increases, the optimal solution and the optimal value of the SAA problems converge to

their ‘true’ stochastic counterparts with probability one (Kleywegt et al. 2002).

A.3. Variable Fixing and Preprocessing

We may improve the computational efficiency of both the SAA and MVP counterparts of PC by fixing

certain variables at their optimal values and eliminating redundant constraints, as described by the following

proposition.

Proposition 4. Let ξ̃ be an arbitrary realization or expected value of ξ. For each team i, sort Gh
i and

Ga
i in non-decreasing order of W (ξ̃). Let Uh

i and Lh
i be the summation of Wg(ξ̃) values corresponding to

the first and last mh
i games in Gh

i , respectively. Similarly, let Ua
i and La

i be the summation of Wg(ξ̃) values

corresponding to the first and last ma
i games in Ga

i , respectively. Define yUi = 1
m
(y0i + Uh

i +ma
i − La

i ) and

yLi = 1
m
(y0i +Lh

i +ma
i −Ua

i ) to be the optimistic and pessimistic win percentages of team i under ξ̃, respectively.

For each pair of teams (i, j):

(i) If yLi − yUj > 0, then zij(ξ̃) = 1, and the corresponding linking constraints are redundant.

(ii) If yUi − yLj < 0, then zij(ξ̃) = 0, and the corresponding linking constraints are redundant.

Proof. Using the definition of the z-variables, the statements follow from zij(ξ̃)≥ yi(ξ̃)−yj(ξ̃)≥ yLi −yUj >

0, and 0> yUi − yLj ≥ yi(ξ̃)− yj(ξ̃)≥ zij(ξ̃)− 1, respectively. □

Table 8 summarizes the results of applying our variable fixing technique, introduced in Proposition 4, in

PC variants. The high percentages under the columns “Percentage” in Table 8 highlight the effectiveness of

the variable fixing technique in eliminating a large proportion of the z-variables across different scenarios

in both MVP and SAA. More importantly, the technique is able to eliminate between 8,000–17,000 binary

variables in the SAA problems with 50 scenarios. We also observe that as the suspension day increases (i.e.,

the season is suspended later), more pairs of teams become impossible to switch ranking positions, given the

limited number of remaining games. For instance, when the season is suspended on day 140, PC-SAA has

control over only 20% of these binary variables in a 74-game shortened season, with the remaining 80% of

the variables fixed (i.e., eliminated).

A.4. Tuning the Sample Size for SAA

Here we analyze the impact of the number of scenarios on our PC-SAA model. Figure 10 presents the per-

formance of PC-SAA across six choices of sample size |S| ∈ {5,10,25,50,100,200}. Each boxplot corresponds

to 14 values for 14 NBA seasons, assuming a suspension day 100 and 66 as the target number of games in

the shortened season. The concordance values are obtained after evaluating the solution x proposed by each

model on 1,000 randomly-generated scenarios. The panel on the right presents the optimality gaps of the

SAA problems after reaching a time limit of 3600 seconds. As the number of scenarios increases, one should

expect to obtain a closer approximation of the true stochastic problem via SAA. However, a larger sample
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Sus. Day MVP SAA

(GT) Percentage Variables Percentage Variables

80 (62) 62.9% 273.7 38.6% 8,393.0
100 (66) 70.1% 304.9 53.9% 11,722.8
120 (70) 79.6% 346.4 65.5% 14,240.7
140 (74) 88.1% 383.2 80.1% 17,423.0

Average 75.2% 327.1 59.5% 12,944.9

Table 8 Number of z-variables eliminated by our variable fixing technique, reported for different suspension

days (80, 100, 120, 140) and target number of games/team (62,66,70,74). Results are averaged over 14 seasons.
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Figure 10 Performance of the SAA algorithm across different choices of sample size.

amounts to solving a more challenging SAA problem. As depicted in Figure 10, initially as the sample size

increases, the quality of the solution improves in the simulation phase. However, after surpassing 50 sce-

narios, the SAA becomes computationally intractable, leading to larger optimality gaps and a degradation

in the quality of the solution. Hence, the trade-off between the quality of the solution and the runtime is

balanced at 50 scenarios. Thus, we select 50 scenarios for the SAA counterpart of our PC model in our main

experiments.

Appendix B: Proof of Theorems and Propositions

Proof of Proposition 1. The first inequality in (3) is a direct result of the Durbin-Stuart inequality

(Durbin and Stuart 1951, Theorem 2). To prove the second inequality, let us define the Manhattan distance

between rankings r and r̂ as dM(r, r̂) =
∑

i∈T |di|, where di = ri− r̂i. We first show the following:

dE(r, r̂)≤
1

2
d2M(r, r̂). (44)

Observe that
∑

i∈T di =
∑

i∈T ri−
∑

i∈T r̂i = 0. Using the triangle inequality, this implies that for each i∈ T :

|di|= | −
∑

j ̸=i
dj | ≤

∑
j ̸=i
|dj |= dM(r, r̂)− |di| ⇒ dM(r, r̂)≥ 2|di|.

By multiplying the two sides of the last inequality above by |di| and summing across all teams i ∈ T , we

establish (44) by expanding d2M(r, r̂) as follows:

d2M(r, r̂) = dM(r, r̂)
∑

i∈T
|di| ≥ 2

∑
i∈T
|di|2 = 2

∑
i∈T

d2i = 2dE(r, r̂).
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Finally, by the Diaconis-Graham inequality (Diaconis and Graham 1977, Theorem 2), we obtain

dM(r, r̂)≤ 2

(
n(n− 1)

2
− τC(r, r̂)

)
. (45)

Inequalities (44) and (45) establish the second inequality in (3) and complete the proof. □

Lemma 1. Maximum quadratic Euclidean distance between any two permutations of {1, . . . , n} is n
3
(n2−

1).

Proof. Let P denote the set of all permutations of N := {1, . . . , n}. Our goal is to find permutations p∈ P

and q ∈ P which maximize
∑

i∈N (pi− qi)
2. Note that, without loss of generality, we can fix p= (1,2, . . . , n),

and restate the problem as

max
q∈P

∑
i∈N

(qi− i)2. (46)

We first note that setting q = (n,n − 1, . . . ,1) (i.e., the exact reverse of p) yields
∑

i∈N (qi − i)2 =∑
i∈N ((n+1− i)− i)2 =

∑
i∈N (2i−n− 1)2 = 4

∑
i∈N i2 − 4(n+1)

∑
i∈N i+n(n+1)2 = n

3
(n2− 1).

Next we use LP duality to show that this lower bound is tight. Note that we may state (46) as the following

assignment problem

max
x

∑
i∈N

∑
j∈N

xi,j(i− j)2

s.t.
∑

j∈N
xi,j = 1 ∀i∈N∑

i∈N
xi,j = 1 ∀j ∈N

xi,j ≥ 0 ∀i, j ∈N,

which can be stated in the dual form as

min
α,β

∑
i∈N

αi +
∑

j∈N
βj

s.t. αi +βj ≥ (i− j)2 ∀i, j ∈N.

It is not difficult to verify that setting

αi = βi =

{
1
2
(n− i)2 if i≤ n

2
1
2
(i− 1)2 if i > n

2

∀i∈N

satisfies αi+βj = αi+αj ≥ (i− j)2 for each i and j, and yields
∑

i∈N αi+
∑

j∈N βj = 2
∑

i∈N αi =
n
3
(n2−1).

Hence, by strong duality, the optimal value for (46) is n
3
(n2− 1). □

Proof of Proposition 2. The statement holds when win percentages are identical, which results in 0 on

both sides. Now, assuming that win percentages are not identical, there exists team j such that yj(x , ξ) ̸=

ŷj(ξ). Note that ŷj(ξ) ∈ {0, 1
m̂
, 2
m̂
, . . . ,1} ⊆ {0, 1

L
, 2
L
, . . . ,1}, since ŷj(ξ) is the number of wins for team j in

the full season divided by m̂. Similarly, yj(x , ξ) ∈ {0, 1
m
, 2
m
, . . . ,1} ⊆ {0, 1

L
, 2
L
, . . . ,1}. Therefore, the closest
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that yj(x , ξ) and ŷj(ξ) can get and still be different is 1
L
; thus for non-identical win percentage vectors we

have

1

L2
≤
∑

i∈T
(yi(x , ξ)− ŷi(ξ))

2 . (47)

On the other hand, by Lemma 1 we have

dE(r(x , ξ), r̂(ξ))≤
n

3
(n2− 1). (48)

Multiplying both sides of (47) and (48) and rearranging the resulting inequality yields

dE(r(x , ξ), r̂(ξ))≤
n

3
(n2− 1)L2

∑
i∈T

(yi(x , ξ)− ŷi(ξ))
2 ,

which shows existence of constant D≤ n(n2−1)

3
L2. □

Proof of Theorem 1. Using identity E[X2] =E[X]2 +V[X], with V(·) denoting variance, we obtain

Eξ

[∑
i∈T

(yi(ξ)− ŷi(ξ))
2
]
=
∑
i∈T

Eξ

[
(yi(ξ)− ŷi(ξ))

2
]
=
∑
i∈T

Eξ [yi(ξ)− ŷi(ξ)]
2 +

∑
i∈T

Vξ [yi(ξ)− ŷi(ξ)] .

Clearly, Eξ [yi(ξ)− ŷi(ξ)] = µi− µ̂i. Moreover, given the definition of yi(ξ) and ŷi(ξ), we have

yi(ξ)− ŷi(ξ) =(
1

m
− 1

m̂
)y0i +

∑
g∈Gh

i

Wg(ξ)

(
1

m
xg −

1

m̂

)
+
∑

g∈Ga
i

(1−Wg(ξ))

(
1

m
xg −

1

m̂

)
⇒Vξ [yi(ξ)− ŷi(ξ)] =

∑
g∈Gh

i ∪Ga
i

pg(1− pg)

(
1

m
xg −

1

m̂

)2

, (49)

where we have used Vξ [Wg(ξ)] =Vξ [1−Wg(ξ)] = pg(1− pg). Given that xg ∈ {0,1}, we have(
1

m
xg −

1

m̂

)2

=
1

m2
x2
g −

2

mm̂
xg +

1

m̂2
=

xg

m2

(
1− 2m

m̂

)
+

1

m̂2
, (50)

where we have used x2
g = xg. Replacing (50) into (49) yields

Vξ [yi(ξ)− ŷi(ξ)] =
∑

g∈Gh
i ∪Ga

i

pg(1− pg)

(
xg

m2

(
1− 2m

m̂

)
+

1

m̂2

)
=

(
1− 2m

m̂

)
1

m2

∑
g∈Gh

i ∪Ga
i

pg(1− pg)xg +
1

m̂2

∑
g∈Gh

i ∪Ga
i

pg(1− pg) =

(
1− 2m

m̂

)
vi + v̂i,

which completes the proof. □

Proof of Proposition 3. As illustrated in Figure 11, the set X corresponds to a bipartite multigraph with

2n nodes (n home teams and n away teams) and each game g ∈G corresponds to an edge of unit capacity

between home team i(g) and away team j(g). The coefficient matrix of X is the incidence matrix of this

bipartite multigraph, which is totally unimodular (see e.g., Yannakakis 1985). □
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Figure 11 Set of feasible schedules X corresponds to a bipartite multigraph.

Appendix C: Analysis of the PW-DQIP Model

Let us take a closer look at the mathematical formulation of the PW-DQIP model, and its objective function

in particular. As discussed in §5, PW-DQIP approximates the objective function in equation (8) while

formulating a deterministic quadratic integer program. Once, we expand the objective function in PW-DQIP,

(12), the resulting expression consists of i) L2 Norm of the difference between the vector of win percentages

in the shortened season and a target value (i.e., win percentages in the full season), ii) variance of the

win percentages in the shortened season multiplied by a constant factor (α), and iii) variance of the win

percentages in the full season. Note that the last term v̂i is constant, as it does not include any decision

variables.

Eξ

[∑
i∈T

(yi(ξ)− ŷi(ξ))
2
]
=
∑

i∈T

(
(µi − µ̂i)

2 + vi

(
1− 2m

m̂

)
+ v̂i

)
(51)

=
∑

i∈T


L2 Norm︷ ︸︸ ︷

(µi − µ̂i)
2+

Constant α︷ ︸︸ ︷(
1− 2m

m̂

) Variance︷︸︸︷
vi +

Constant︷︸︸︷
v̂i

 . (52)

Omitting the third (constant v̂i) term in (52), the model PW-DQIP equivalently optimizes the following

function: ∑
i∈T

(
(µi− µ̂i)

2 + αvi
)
, (53)

where:

α= 1− 2m

m̂
. (54)

Note that the number of games per team in the full regular season is fixed at 82 per the structure of the NBA

(i.e., m̂= 82). Depending on the target number of games in the shortened season (m), parameter α could be

positive, negative, or zero. According to (54), parameter α is zero when m= m̂
2
= 82

2
= 41. In other words,

when the target number of games in the shortened season is exactly half of the length of the full season,

the coefficient of the variance term in the objective function disappears. The variance term has a positive

coefficient when m< m̂
2

(shortened season is “short”), and a negative coefficient when m> m̂
2

(shortened

season is “long”). Given the shortened season is long (m > m̂
2
) in all of the suspension instances in our
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Target # games (m) Shortened season Variance coefficient (α) Desired games by the model PW-DQIP

m< m̂
2

Short Positive One-sided matchups

m> m̂
2 Long Negative Evenly matched games

Table 9 Comparing short vs. long shortened seasons and the practical implications in the model PW-DQIP.

experiments (m∈ {62,66,70,74}), the PW-DQIP model favors games with higher variance, as the objective

function in (53) is to be minimized and the coefficient of the variance term (α) is negative.

Now, let us revisit our argument focusing on individual games and how the inclusion or exclusion of a

game contributes to the variance term in the objective function. The objective function in PW-DQIP can

be reformulated as:∑
i∈T

(
(µi− µ̂i)

2 + vi

(
1− 2m

m̂

)
+ v̂i

)
=
∑
i∈T

v̂i +
∑
i∈T

(µi− µ̂i)
2 +2

(
1− 2m

m̂

)
1

m2

∑
g∈G

pg(1− pg)xg.

For a game g ∈ G, the variance for the predicted probability pg, following the Bernoulli distribution, is

pg(1− pg). It is not difficult to see that the variance term is maximized when our estimated pg is closer to

0.5. We can also define a sharpness metric as max{pg,1−pg} to assess how sharp the estimated probabilities

are. A higher variance in game outcomes leads to lower sharpness and vice versa. In other words, higher

variance in the predicted probabilities will favor more evenly matched games, while a lower variance will

favor more one-sided matches. Table 9 summarizes our discussion in this section.

To see the effect of suspension day on the average variance of the outcomes of the selected games compared

to the average variance of the excluded games, we further note that:∑
i∈T

v̂i +
∑
i∈T

(µi− µ̂i)
2 +2

(
1− 2m

m̂

)
1

m2

∑
g∈G

pg(1− pg)xg =
∑
i∈T

v̂i +
∑
i∈T

(µi− µ̂i)
2 +2

(
1− 2m

m̂

)
G1

m2
v̄

where G1 is the number of post-suspension games included in the shortened season (note that G1 =

1
2

∑
i∈T (m

a
i +mh

i ) =
∑

g∈G xg for any feasible shortened season x ∈ X), and v̄ is the average variance of

these games, i.e.:

v̄=
1

G1

∑
g∈G

pg(1− pg)xg.

Thus the coefficient 2
(
1− 2m

m̂

)
G1

m2 governs the trade-off between the contribution of the average variance

of the selected games and the L2 term to the objective function. As depicted in Figure 12, this coefficient

increases (its magnitude decreases) as suspension day increases. As a result, relative to the L2-norm compo-

nent of the objective function, the variance term has a lower weight, and one should expect lower variance

in the selected games for later suspension days.

Incidentally, we can find a signature of this behaviour aligned with the summarized conclusions in Table 9 in

our computational experiments. Figure 13 illustrates the variance (top row) and the sharpness (bottom row)

of the predicted probabilities in i) all remaining games (blue), ii) selected games (green), and iii) excluded

games (pink) in our shortened seasons. As we can see, the sharpness of the selected games for suspension

days 80 and 100 is typically lower (and the average variance v higher) than that of the excluded games.

Moreover, for later suspension days (i.e., 120 and 140), the pattern for sharpness and variance dissipates due

to the fact that less weight is being put on the variance term later in the season (recall Figure 12).
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Figure 12 Distribution of the variance coefficients in model PW-DQIP across 14 NBA seasons
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Figure 13 Comparing the average variance and sharpness of the predicted probabilities between

selected/excluded games in the shortened season.

Appendix D: Frank-Wolfe Algorithm

Algorithm 1 presents the FW algorithm for solving instances of continuous relaxation of PW-DQIP, in which

X̄ is the continuous relaxation of X, and the objective function f is of the form

f(x ) =
∑

i∈T

(
(µi(x )− µ̂i)

2 + vi(x )

(
1− 2m

m̂

)
+ v̂i

)
, (55)

where µi(x ) and vi(x ) are defined in equations (19) and (20), respectively. We remark that, since f is a

convex quadratic function, its gradient can be computed easily, and a closed-form optimal solution to the

line search problem (57) can be found using the first-order optimality conditions.

Given that the atomic solution x̂ (t) produced by solving the transportation problem (56) is a feasible

integer solution, it provides an upper bound on the optimal value of PW-DQIP. As the algorithm iterates,

x (t) converges to the optimal fractional solution, and x̂ (t) yields a tighter upper bound. Consequently, the

best atomic solution (i.e., x̂ ∗) can be used as a near optimal integer solution to PW-DQIP. Henceforth, we

refer to this procedure of producing the shortened season x̂ ∗ using FW (Algorithm 1) as PW-FW.
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Algorithm 1 PW-FW: Frank-Wolfe algorithm for solving continuous relaxation of PW-DQIP

1: Let t← 0, and find an integer solution x (0) ∈X.

2: Let x̂ ∗← x (0)

3: while not converged do

4: Compute gradient d(t)g =∇fxg(x (t)) for each g ∈G

5: Find the integer solution x̂ (t) by solving the following transportation problem

[Transportation Problem] x̂ (t) = argminx∈X̄

∑
g∈G

d(t)g xg. (56)

6: if f(x̂ (t))< f(x̂ ∗) then

7: x̂ ∗← x̂ (t)

8: end if

9: Compute the step-size γ(t) using the following line search

[Line Search] γ(t) = argminγ∈[0,1] f
(
(1− γ)x (t) + γx̂ (t)

)
. (57)

10: Update x (t+1) = (1− γ(t))x (t) + γ(t)x̂ (t), and set t← t+1.

11: end while

We would like to remark that our implementation of FW algorithm (Algorithm 1) solves the continuous

relaxation of PW-DQIP to optimality, and produces an integer solution as a byproduct thanks to the feasible

region of PW-DQIP being totally unimodular.

Sub-optimality bounds for Algorithm 1. We first note the following property of iterates of FW based

on convexity of f :

f(x̄ ∗)≥ f(x (t))−∇xf(x
(t))⊤(x (t)− x̂ (t)),

which is tight for x (t) = x̄ ∗. Consequently, we can construct a lower bound on the optimal value of the

continuous relaxation of PW-DQIP as

f =max
t

{
f(x (t))−∇xf(x

(t))⊤(x (t)− x̂ (t))
}
.

Let x̂ ∗ be the best integer solution produced by FW (i.e., x̂ ∗ = argminx̂ (t) f(x̂ (t))), and x ∗ be the (unknown)

integer optimal solution to PW-DQIP. Noting that f ≤ f(x̄ ∗)≤ f(x ∗)≤ f(x̂ ∗) we derive the following relative

sub-optimality gap

GapFW =
f(x̂ ∗)− f

f
, (58)

which upper-bounds the optimality gap with respect to f(x ∗). More precisely, rewriting the numerator in

Eq. (58) as

f(x̂ ∗)− f =

Primal gap︷ ︸︸ ︷
f(x̂ ∗)− f(x ∗)+

Dual gap︷ ︸︸ ︷
f(x ∗)− f, (59)
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the gap computed in Eq. (58) captures the compound effect of quality of the solution produced by FW and

formulation strength of PW-DQIP. Nonetheless, as illustrated in Figure 14, the sub-optimality gap in Eq.

(58) is typically very low. For comparison, we also present the absolute gaps as in Eq. (59). Note that our

implementation of FW converges to the optimal continuous solution after a few iterations (i.e., f = f(x̄ ∗)).
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Figure 14 Upper bounds on the optimality gap of solutions produced by FW. Left: Relative sub-optimality gap

(Eq. 58). Right: Absolute sub-optimality gap (Eq. 59).

Finally, we remark that the FW algorithm may be extended to produce near-optimal solutions for PW-

MMR as well. However, given the non-smooth min-max (i.e., ℓ∞) objective in PW-MMR, a direct imple-

mentation of FW may not converge to an optimal continuous solution of PW-MMR (c.f. Nesterov 2018, for

a counterexample); instead, we may minimize a smooth ℓp-approximation of ℓ∞ for some large p or minimize

the Moreau envelope of the objective function (c.f., Parikh and Boyd 2014).

Appendix E: Explanatory Features for Predictive Modeling

In this section, explanatory variables are categorized into four groups: overall team performance, basic team-

level statistics, advanced team-level statistics, and player-level statistics.

E.1. Overall Team Performance

The most important variable which carries the largest explanatory weight among all the features is win

percentage of home and guest teams which indicates the relative performance of both teams at the time they

play against each other. We also include two variables of the same nature, percentage of home games won by

the home team, and percentage of away games won by the guest team, to capture performance variability

due to home/away condition. Table 10 lists all four overall performance features.

E.2. Basic Team–Level Statistics

An obvious choice for an explanatory variable to predict the outcome of basketball games is team-level raw

statistics. Over a stretch of games, we can consider average team-level statistics by each team (e.g., average

number of points, rebounds, assists, blocks, steals) as explanatory features. Table 11 shows the list of such

variables for the home team. Note that using a prefix oppt before each variable in Table 11 results in the

same variable for the guest team, and using a prefix diff for the same set of variables results in the difference

between performance of home and guest teams with respect to each variable.
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Overall Team Performance Definition

WPCT home team win percentage

opptWPCT guest team win percentage

WPCTh home team win percentage at home

opptWPCTg guest team win percentage on the road

Table 10 Overall Performance Features for home and guest teams.

Basic Team Features Definition

PTS Average number of points per game scored

REB Average number of rebounds per game

AST Average number of assists per game

OREB Average number of offensive rebounds per game

DREB Average number of defensive rebounds per game

STL Average number of steals per game

BLK Average number of blocks per game

TOV Average number of turnovers per game

PF Average number of personal fouls per game

FGM Average number of field goals made per game

FG% Average field goal made percentage

3PM Average number of 3-point field goals made per game

3P% Average 3-point shot percentage

FTM Average number of free throws made per game

FT% Average free throw made percentage

PITP Average number of points in the painted area per game

FBPs Average number of fast–break points per game

2ndPTS Average number of second chance points per game

PTSOFFTO Average number of points off of opponent’s turnovers per game

Poss Average number of possessions per game

Table 11 Team–level statistics used as explanatory features.

E.3. Advanced Team–Level Statistics

These are advanced features calculated based on the raw data shown in Table 11. The goal of introducing

and using these advanced features is to highlight strengths and weaknesses of each team adjusted by their

style of play (e.g., reliance of each team on 3-point shots, defensive style of play). For instance, FG% and 3P%

are two basic statistics while effective field goal percentage, denoted by eFG%, computes a weighted average

field goal percentage, applying a weight of 2 to regular field goals and a weight of 1 to 3-point shots, scaled

by the number of field goal attempts. Table 12 contains the list of advanced team-level statistics. The same

set of variables are defined for the guest team (identified by prefix oppt) and the difference of each variable

between the two teams (identified by the prefix diff).

E.4. Player-Level Statistics

Each of the features introduced in §E.2 can be defined for an individual player as well. With some adjustments,

all the features introduced in §E.3 can also be defined for individual players. Given there are 15 players on

the roster for any NBA team, with at least 9 playing considerable minutes each night, the total number
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Advanced Team Features Definition

OffRtg Offensive rating, which is the number of points scored per 100 possessions
DefRtg Defensive rating, which is the number of points allowed per 100 possessions
NetRtg Net rating of a team is calculated by subtracting DefRtg from OffRtg

AST% An estimate of the percentage of field goals assisted by team players per game
AST/TO Assists per turnover ration, which is the number of assists per team divided by the

number of turnovers the team has committed in a game
ASTRatio Average number of assists per 100 possessions
OREB% Offensive rebound percentage, which is an estimate of the percentage of available

offensive rebounds a team grabs per game
DREB% Defensive rebound percentage, which is an estimate of the percentage of available

defensive rebounds a team grabs per game
REB% Total rebound percentage which is an estimate of the percentage of total available

rebounds a team grabs per game
TOV% Turnover percentage, which is the percentage of plays that end in a player or team

turnover
eFG% Effective field goal percentage, which measures field goal percentage adjusting for

made 3-point field goals being 1.5 times more valuable than made 2-point field goals.
TS% True shooting percentage, a measure of shooting efficiency which differentiates

between the number of points awarded by a regular field goal, a 3-point field goal,
and a free throw.

Table 12 Advanced Team–level statistics calculated based on raw features from Table 11.

of features will grow substantially large, should we choose to define player-level features corresponding to

team-level features in Tables 11 and 12. To tackle this issue, there are alternative ways to represent the

efficiency of individual players using a combination of raw data. Efficiency rating introduced by Manley

(1986) is one way to combine individual statistics into a single number. The formula is the following:

EFF= PTS+ REB+ AST+ STL+ BLK−Missed FG−Missed FT− TOV. (60)

We calculate the EFF rating for each player according to (60) (using all the games prior to the game

under study), and we represent the home and guest teams by their top 10 players, sorted according to their

EFF values. Let hpi denote the EFF rating for the ith best player of the home team, and let gpi denote the

EFF rating for the ith best player of the guest team, i ∈ {1,2, . . . ,10}. We can use the mean and standard

deviation of these 10 numbers to represent overall efficiency of players on each roster and the discrepancy

of EFF ratings between players. Let (EFF-mean, EFF-std) and (opptEFF-mean, opptEFF-std) represent the

average EFF and standard deviation of EFF values for home and guest teams, respectively.

Lastly, we would like to highlight the importance of including player-level statisics in our model’s appli-

cation to suspension scenarios such as the NBA lockouts, where no games were played initially. To address

this, we propose a modified approach using player-level statistics from previous seasons to create team-level

features. This method accounts for off-season player movements, ensuring our predictions remain relevant for

the upcoming season. By aggregating individual player performances, such as points and assists, we can effec-

tively simulate team capabilities despite the absence of current season games. This adaptation demonstrates

our model’s flexibility and its ability to provide accurate predictions in a variety of scenarios, including those

without any pre-season games.
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Appendix F: Supplementary Results

F.1. Cross Simulation

Figure 15 illustrates the simulation results for different choices of predictive models in the prescriptive and

simulation phases. Each point corresponds to the concordance value between the shortened and full seasons

averaged over 14 seasons.
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Figure 15 Cross comparison of simulation results based on different choices of predictive models used for the

prescriptive phase (rows) and predictive models used for the simulation phase (columns).

F.2. Practical Implications: Comparing PW-MMR, Greedy the Status Quo Models

In §6.3.3, we introduced three metrics to gauge the practical implications of various shortened season plans

and we compared our best performing prescriptive model (i.e., PW-MMR) with two benchmarks: Greedy

and Status Quo in overall agreement. In this section, we plot the agreement distributions for each of the

4 suspension dates for models PW-MMR and the baseline Greedy in Figure 16, and similar distributions

for PW-MMR and the baseline Status Quo in Figure 17. Our best-performing solution method, PW-MMR,

outperforms both baseline solutions in all three success rate metrics both in terms of average percentage

and the variation across 14 NBA seasons. Similar to the simulation results presented in Figure 7, as the

suspension day increases, the margin of improvement with respect to the Status Quo model gets smaller.
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Figure 16 Agreement distributions for PW-MMR and Greedy.
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Figure 17 Agreement distributions for PW and Status Quo.

F.3. Strength of Schedule Extension: Comparison Across Seasons

In §6.3.4, we introduced model PW-SoS which amends the model PW-DQIP (presented in §4.2) by adding a

constraint making sure that the strength of schedule discrepancy (SSD) in the shortened season is no larger

than ϵ% compared to the SSD metric in the full season. In our experiments, we tested 4 different choices

of the parameter ϵ including (0.02, 0.03, 0.05, 0.1). Figure 9 in §6.3.4 illustrates the comparison between

PW-SoS models as well as PW and Greedy using values averaged across 14 seasons. The following two figures

in this section present the same comparison in terms of the metric SSD for individual seasons as lineplots.

Figure 18(a) plots SSD according to PW and the our benchmark Greedy as well as the best choice of PW-SoS

(with ϵ = 0.02). Figure 18(b) plots the SSD values in individual seasons for 4 choices of ϵ. We can easily

conclude that the model PW-SoS with ϵ = 0.02 has the lowest overall SSD, thus performing better than

the other three. Note that we tested the results according to a few other definitions of strength of schedule,
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(a) Comparing SSD values in PW-SoS, PW and Greedy based on Figure 9.
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(b) SSD values for PW-SoS with various choices for parameter ϵ based on Figure 9.

Figure 18 Comparing Strength of Schedule Discrepancy (SSD) values across 14 NBA seasons.

including Relative Percentage Index (RPI) as defined in NBAstuffer (2023), and the same conclusion stands.

F.4. Suggestions for the 2019–20 Season

In this section, we present the results of our two-phase analytics approach applied to the 2019–20 NBA

regular season which was suspended on March 11, 2020 due to the COVID-19 pandemic. We consider 74

games per team as the target length of the shortened season, thus canceling 8 games per team from the

remainder of the season. As a result, out of 259 remaining games, we select 139 games to be played in the

shortened season using the PW-FW model. The set of selected and canceled games are shown in Figure 19.

According to the NBA’s resumption plan announced on June 26, 2020 (NBA 2020), 22 teams (the top 13

teams from the west and top 9 teams from the east) were invited to Orlando, Florida to play 8 more games

each to conclude the 2019–20 NBA regular season. In effect, the invited teams will have a shortened season

ranging from 71 to 75 games in total, and this variation is a consequence of some teams having played a few

more games than others as of the suspension date. We compare the shortened season plan shown in Figure

19 to the NBA’s resumption plan. Using the same Monte Carlo simulation approach described in §6.3.2, we

evaluated our proposed solution and the NBA’s return plan using 1,000 scenarios and computed the average

concordance relative to the full season ranking. The concordance for our proposed solution is 404.7, while it

is 392.25 for the NBA’s resumption plan. As a result, on average, our proposed solution predicts the relative

positioning of at least 12 additional pairs of teams correctly, compared the the NBA’s return plan.
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Figure 19 Selected/canceled games for the remainder of the 2019–20 season according to PW-FW.
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