
Lawrence Berkeley National Laboratory
LBL Publications

Title
A Unified Approach to Building Accelerator Simulation Software for the SSC

Permalink
https://escholarship.org/uc/item/2c58d4vw

Authors
Paxson, V
Aragon, C
Peggs, S
et al.

Publication Date
1989-03-01

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2c58d4vw
https://escholarship.org/uc/item/2c58d4vw#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

LBL-27174 0_~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Engineering Division

Presented at the IEEE Particle Accelerator Conference,
Chicago, IL, March 20-23, 1989

A Unified Approach to Building Accelerator
Simulation Software for the SSC

V. Paxson, C. Aragon, S. Peggs, C. Saltmarsh,
and L. Schachinger

March 1989

,.

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

"'

'

-~ !U [)
mrro
ro ro lJ
:c-1!1-<

'"

tO
1-'

0..
!.0
c

tli
IS!

r
r..:.
cr '·)
-t 0)

!); D
~· "'<)

"'< . n)

r !
IJ:I ' r- '
!

f(i
--...! :,
-!":'-

_/r;

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

A Unified Approach to Building Accelerator
Simulation Software for the SSC

Vern Paxson,* Cecilia Aragon, Steve Peggs, Chris Saltmarsh,
and Lindsay Schachinger

SCC Central Design Group**
c;o Lawrence Berkeley Laboratory

Berkeley, California 94720

*Engineering Division
Lawrence Berkeley Laboratory

1 Cyclotron Road
Berkeley, California 94720

March 1989

LBL-27174

A Unified Approach to Building Accelerator Simulation Software
for the sse

Vern Paxson•, Cecilia Aragon, Steve Peggs,
Chris Saltmarsh, and Lindsay Schachinger

SSC Central Design Group••
e I 0 Lawrence Berkeley Laboratory

Berkeley, CA 94720

Abstract

To adequately simulate the physics and control of a complex
accelerator requires a substantial number of programs which
mlist present a uniform interface to both the user and the in
ternal representation of the accelerator. If these programs are
to be truly modular, so that their use can be orchestrated as
needed, the specification of both their graphical and data inter
faces must be carefully designed. We describe the state of such
sse simulation software, with emphasis on addressing these uni
form interface needs by using a standardized data set format and
object-oriented approaches to graphics and modeling.

Introduction

For the SSC to work requires thorough simulation of different
designs and operational procedures[l) . Without detailed un
derstanding of the machine's physics and how to deal with its
various sources of error, it will prove impossible to effectively
operate the accelerator. We are therefore developing a large
software system to simulate the machine.

The goals of the simulation are three-fold: (1) to study the
physics of different designs of the accelerator, (2) to develop
high-level operational experience of controlling the machine in
the face of anticipated errors, and (3) to build the simulation
in such a way that it can later be used with the real accelera
tor, transcending pure simulation. For the SSC, the programs
embodying the physics for the simulation span a large range of
different types of models of the accelerator, different input and
output formats, and different hardware. In addition, the simula
tions include highly graphical interfaces to enable the physicist
using them to visualize aspects of the machine's behavior and
thereby build intuition. The more effective these interfaces, the
more effective the simulation.

When trying to develop a large, unified body of simulation
software such as this, a number of software engineering issues
arise:

• How do the different parts of the simulation talk to one
another? Different modeling programs written by different
people will have different input and output formats. Large
quantities of data must be somehow coherently managed
and accessible across heterogeneous networks. How does
one deal with this without being overwhelmed with un
wieldy ASCII files, cryptic command sequences, and error
prone drudgery?

• How to avoid spending all one's time trying to write ef
fective interactive graphics for the simulation? How to
sustain a uniform user-interface across the different sim
ulations? The benefits of being able to visualize and di
rectly manipulate the simulation's workings are enormous,
but the software investment can be very large. One can't

• Law~nce &rk.,ley Laboratory. Work supported in put by the United
Stat.ee O..pvtm.,nt of En.,rgy under Contract Number DE-AC03-76SF00098.
•• Operated by the Universities Resevch Aaaociation, Inc. for the U. S.
O..partment of Energy.

simply build a general high-level graphics library and ex
pect to then quickly piece together whole interfaces from
it. Effective user-interfaces tend to be .similAr to one an
other but not identiCIIl, making pre-canned solutions such
as libraries inadequate. Often one winds up copying code
from existing interfaces and then modifying it somewhat
to suit the task at hand, leading to the horrific problems
of maintaining a mass of almost-but-not-quite-duplicated
code.

• How to design the simulation so that in the future it .can
operate on different models of the accelerator? What hope
can one have of truly "plugging in" to the real machine,
and turning the simulation into high-level control? Unless
one begins early with these goals in mind, the simulation
programs run a great danger of having wired into their in
nards all the global variables of the one modeling program
currently at hand.

The body of this paper expands on the following approaches
to addressing these issues:

To deal with the problem of interconnecting disparate pro
graiD:S and transparently moving distributed data across hetero
geneous networks, we have developed a standard data format in
which data objects are "self-describing," i.e., contain informa
tion about their structure as well as the actual data. Coupled
with a distributed database[2

) , this will provide the ba.Ckbone of
a .softwAre bu.t-a common, machine-independent protocol which
different programs can be plugged into to talk to one another.

The problem of being able to rapidly create new user-interfaces
by specifying differences between them and existing ones, and
to sustain a uniform user-interface across the ~tire host of sim
ulation software, is especially amenable to object-oriented ap
proaches. Rather than building a graphics subroutine library,
we are developing a hierarchy of graphics clu~e~, which can be
readily extended and modified without duplicating code.

Finally, the general problem of developing model-independent
simulations is also very well-suited to an object-oriented ap
proach. By using classes to abstract the components of the
accelerator simulation, we can build a system which will, with
out change, work with today's modeling program, tomorrow's
modeling program, and, eventually, the real accelerator.

Taken together, these building blocks can provide the basis for
a highly effective and flexible simulation system.

Standardized Data Sets

An integral part of our software system architecture is a uni
form way to represent and communicate data. The solution must
address several needs:

• data must be .self-de~cribing. That is, it must contain an
internal description of its format, both low-level ("array

of 512 doubles") and high-level ("aggregate named 'Twiss
parameters', consisting of ... ");

• the format must impose minimal overhead. Reading large
data sets should be as fast or nearly as fast as directly
reading binary data. The data must retain maximum pre
cision;

• data must be readily transportable across heterogeneous
networks, and in a transparent fashion (no explicit data
conversions or network manipUlations necessary};

• the data format must not be specific to .disk files, but al
. low for alternate representations such as database entities,

shared memory, and distributed access.

To this end we have developed an initial design and imple
mentation of a Self-de8cribing DtJta Standard (SDS[a) }, which
meets the above needs. The SDS library is callable from C, FOR
TRAN, and C++ programs, and currently supports Vax, 68000,
and SPARC binary data formats. The first part of an SDS de
scribes the byte-ordering, data types, and records in the data
set. The remainder holds binary data, which is not converted to
a "generic" format but remains in its native representation along
with enough information to convert it to other representations.

To date SDS has been used: to take turn-by-turn data on
the Tevatron for analysis on Sun workstations; to take magnet
quench data on Vax computers running VMS, also for analysis
on Suns (running Unix); and to represent the SSC lattice op
tics and multipole errors for communication between the thin

element Teapot (•J modeling program and the differential-algebra

XJ.\1AP (s) modeling program. '!'he da~a sets can reside on disk
or tape, in the distributed database, in shared memory, or in
process memory. Tools exist to list the contents of data sets,
move them from one representation (e.g., disk) to another (e.g.,
shared memory), perform data transformations (e.g., FFT}, pro
vide graphical representations (various forms of plots), and to
automatically generate data sets from a list of FORTRAN com-
mon blocks. ·

Our use of SDS will grow dramatically in the near future. We
plan for it to become the medium of choice for all our data
communication, thus providing a uniform way for disparate pro
grams to communicate with one another. More SDS-related
tools will be developed, such as a browser for exploring the
high-level structure of a data set, filters for selecting parts of
data sets and/or combining data sets, and additional transfor
mation and analysis tools. Further work is also needed for mak
ing SDS-access fully transparent with respect to representation
and networking.

An Object-Oriented Approach to Graphics

Having developed three generations of graphical interfaces for
accelerator control [6) (i] (s) , we have come to appreciate how much
effort one can spend writing and maintaining effective inter
faces and how difficult it can be to directly reuse or build on
large portions of existing ones. The last of these generations
endeavoured to facilitate reuse by building a hierarchy of graph
ical "packages," each level of which supported the operations
of lower levels plus additional functionality. For example, the
vindov package implemented a simple window with an integer
coordinate system and some line and text drawing functions.
These windows had concepts of alignment with other windows,

2

font sizes; colors, and mouse-clicks. The next level in the· hi
erarchy, world window, was a "window" plus the concept of
a world (floating-point) coordinate system. Similarly, split
world window extended these to have a wrap-around point in
the coordinate system, useful for representing objects such as
accelerator rings where the beginning and end are at the same
point. With this hierarchical approach, simple concepts such
as "window" could branch out into different types of refinement,
each of which could support the same basic functions (like "draw
a line"). When writing new interfaces, one would select the nec
essary set of packages and then write the code to interconnect
them.

We learned that trying to build such a hierarchy without sup
port for it directly in the language (we 'Were using C) is very diffi
cult. One either winds up with a tangle of similar-sounding-but
different routine names (window-draw-line(); world-window
draw-line(); split-world-window-draw-line() ...), or pack
ages which are second-class citizens-they don't support all the
functionality of the package on which they're built, making in
terconnecting different packages very painful.

These problems cry out for object-oriented solutions. In an
object-oriented language, the analog for a package is a cl48s.
Classes encapsulate both data associated with a concept (such
as the coordinate system of a window) and functions (such as
"draw a line"). An instance of a class is an object; one oper
ates on objects by sending them messages telling them which
function to perform on themselves, altering their internal state.
Given some concept represented by a class, one can refine the
concept by deriving a subclass fro1;0 the original. Derived classes
inherit all of their parent's functionality and state, plus they
can introduce additional functionality. These extended classes
are full-fledged citizens; any operation which can be performed
on the base class can. be performed on the extension. Further
more, they can change how functions defined in the parent work
for themselves. For example, a world window class can specify
that iu "draw a line" function means "same as for window ex
cept use the floating point coordinate system", overriding the
previous definition. Then any routine written to deal with win
dow's can be handed world window's as well. When the routine
tells the object to draw a line, the correct version of the func
tion is automatically used. Thus we gain two enormously useful
advantages:

• New concepts can be created simply by specifying the dif
ferences between them and an existing concept; and,

• Routines can be written which will automatically work
with future, unforeseen extensions to current classes, with
out requiring modification.

Passing messages around and automatically figuring out the
right routines to call sounds potentially very inefficient. Fortu
nately there are object-oriented languages which are designed to
maximize efficiency. One of these, C++ [9] , is upwardly compat
ible with C and delivers the same high performance. Better still
for our purposes, a graphical toolkit written in C++ is available
for use under X Windows(IO) (and possibly other platforms in

the future), which gives immediate portability advantages[ll] .

Called InterViews[l2) , the toolkit provides roughly 75 classes
for writing user interfaces. The classes are all highly extensi
ble (as one would hope!). We are now redesigning the graphical
interfaces to all our accelerator simulation software to use In
terViews. By using one common toolkit we can ensure uniform

I

J

;•I

~ ' ..

'" I •

us~ interfaces throughout the entire body of graphics software.
To date classes have been written for interactive data plots, in
cluding zooming, panning, selection of points of interest, differ
ent styles of plotting, and fitting curves to data points; and for
simple ways to create buttons, menus, cursors, dialog boxes, and
text messages (all derived from niore general Inter Views classes).
Using these classes we have developed interfaces for interactive
chromaticity plotting and correction; decoupling; beta, eta, and
closed-orbit plots; and viewing turn-by-turn plots, phase space
plots, and smear plots of tracking data. (See elsewhere in these
proceedings[!] for examples.) Already our collection of classes
enables us to rapidly construct interfaces. As the class library
grows we anticipate being able to create more and more elabo
rate interfaces just as easily.

An Object-Oriented Approach to Simulation

One of the boons of using object-oriented graphics is that in
the process it becomes apparent how well-suited the approach
is to otheD software problems. In particular, the ability to de
fine a concept as a class and then refine the concept in different
ways meshes extremely well with the goal of creating flexible
simulation software. We are presently developing a set of "Ma
chine" classes which abstract the models used to simulate the
accelerator. So far, classes representing tracking data have been
developed, and the beginning of a class encapsulating the gen
eral functionality of the modeling programs (such as "compute
tune", "get/set multipole strength", etc.) is underway. The
former have been used to develop-programs to compute smear
and graphical interfaces for exploring tum-by-turn data; the lat
ter now replace explicit calls to modeling program routines in
simulation programs.

Once all simulations are written in terms of the modeling pro
gram class, we will be able to transparently "plug" different
modeling programs into the entire simulation, and, ultimately,
the database and control system of the actual accelerator. With
this approach, we can develop simulation software for immedi
ate use which will also be directly applicable to the subsequent
high-level control of the real machine.

Summary

We are now developing a large body of software to simulate
the physics and high-level operation of the sse. If this software
is to form a unified and flexible whole, we must solve a num
ber of software engineering problems that will otherwise render
the system so bulky as to become effectively useless. To this
end, we envision (1) the Self-describing Data Standard as pro
viding a "software bus" on which programs can be plugged in to

view, the user can select an object, be it low-level such as an in
dividual magnet or high-level such as a non-linear chromaticity
curve, and then summon a list of relevant operations, or query
the object regarding its status, its history, and its meaning, fol
loWing cross-ties to related objects. The user can attach objects
to "clip-boards" for later reference, or move them between views
to see them from different simulation perspectives (for example,
select the working point achieved by a modeling program using a
linear model of the machine, send it to a different program which
includes nonlinea.rities to see if it can also achieve it; take the
results from both, drop them into the Twiss parameters view to
see how the optics are effected; or drop them into the Tracking
view and, once tracked, into the FFT view to see what the ac
tual tunes are). The goal would be to liberate the user from the
drudgery that makes mixing simulation programs tedious and
error-prone, and to give the user different visual pex:spectives of
the simulation, that they might synthesize t~e, different mod
els of the machine and build better intuition as to the overall
picture.

On the surface this vision seems far-fetched, perhaps over
whelmingly expensive to implement. But given a software bus,
an approach for developing extensible, uniform interfaces, and
a way to abstract modeling programs to render simulation soft
ware independent of them, the cornerstones are all in place. On
this foundation such a unified system can truly be built and
turned into reality. ,. ''::\''''

References _;'~!!:..:·

. t2~~~;~
1. L. Schachinger, et. al., "Modeling the SSC," these proceed.i?\!:

ings.

2. E. Barr, S. Peggs, C. Saltmarsh, "Relational Databases for __
SSC Design and Control," these proceedings. . •:.:::~

3. C. Saltmarsh, "SDS usage documentation," SSC report in~¥£';
preparation, Berkeley. ·

4. L. Schachinger and R. Talman, "TEAPOT. A Thin Element~t~,
Accelerator Program for Optics and Tracking," Particle Ac
celerators 22, 35 (1987).

5. J. Irwin and S. Peggs, "Application of Multiva.riable Maps to
Lattice Design and Analysis," these proceedings.

6. V. Paxson, et. al., "A Scientific Workstation Operator In
terface for Accelerator Control," 1987 IEEE PAC, p. 556,
Washington, D.C.

7. L. Schachinger, "Interactive Global Decoupling of the SSC
Injection Lattice," Proceedings of the European Particle Ac
celerator Conference, Rome, August 1988.

8. V. Paxson, S. Peggs, and L. Schachinger, "Interactive First
Tum and Global Closed Orbit Correction in the SSC," Pro
ceedings of 'the European Particle Accelerator Conference,
Rome, August 1988. talk with one another and data transparently moved across het

erogeneous networks; (2) a library of InterViews-based graphics
classes to provide a way to rapidly create new interfaces and to
ensure uniformity across all our interfaces; and (3) a library of
model/machine classes to enable us to generalize our simulation 10.
to a variety of models of the accelerator, and, ultimately, to the
actual machine.

9. B. Stroustrup, "The C++ Programming Language," Addison
Wesley, Reading, Massachusetts, 1986.

R. Scheifler, J. Gettys, "The X Window System," ACM Trans
actions on Graphics, No. 63, 1986.

11. V. Paxson and E. Theil, "Towards Portability in Model-Based
Control Software," LBL-24i23, November 1987. We have a vision of how a truly effective accelerator simulation

and high-level control system might look. In it, the user orches
trates a suite of interactive simulation programs, calling forth
those rel~vant to the task currently at hand. With each such

12. M. Linton, et. al., "The Design and Implementation of Inter
. Views," Proceedings of the USENIX C++ Workshop, Santa
Fe, New Mexico, November 1987.

3

-
Y' - . .,.

LA~NCEBERKELEYLABORATORY

TECHNICAL INFORMATION DEPARTMENT
1 CYCLOTRON ROAD

BERKELEY, CALIFORNIA 94720

~-.It'·-. .-"-.:;•

