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Bernal bilayer graphene hosts even denominator fractional quantum Hall states thought to be described by a
Pfaffian wave function with nonabelian quasiparticle excitations. Here we report the quantitative determination
of fractional quantum Hall energy gaps in bilayer graphene using both thermally activated transport and by
direct measurement of the chemical potential. We find a transport activation gap of 5.1K at B = 12T for
a half-filled N = 1 Landau level, consistent with density matrix renormalization group calculations for the
Pfaffian state. However, the measured thermodynamic gap of 11.6K is smaller than theoretical expectations
for the clean limit by approximately a factor of two. We analyze the chemical potential data near fractional
filling within a simplified model of a Wigner crystal of fractional quasiparticles with long-wavelength disorder,
explaining this discrepancy. Our results quantitatively establish bilayer graphene as a robust platform for probing
the non-Abelian anyons expected to arise as the elementary excitations of the even-denominator state.

Non-Abelian anyons[1] are thought to enable fault toler-
ant topological quantum bits through their non-trivial braiding
statistics[2]. In an ideal scenario, the error rate of such qubits
is limited only by the density of thermally excited quasipar-
ticles present in the system. Such processes—analogous to
quasiparticle poisoning in superconducting qubits—are expo-
nentially suppressed at low temperature by an Arrhenius law,
nqp ∝ exp (−∆qp/2kBT ), where ∆qp is the energy gap for
non-Abelian quasiparticles and T is temperature. The energy
gap is thus a key figure of merit for candidate nonabelian
states. According to numerical calculations[3, 4], nonabelian
ground states are the leading candidates to describe the even
denominator fractional quantum Hall (FQH) states observed
in the second orbital Landau level of single-component sys-
tems such as GaAs quantum wells[5]. While these numeri-
cal results are thought to be reliable, the small energy gaps
measured for these states in GaAs[6–8] have hampered ex-
perimental efforts to directly probe nonabelian statistics via
fusion and braiding of individual quasiparticles.

Within the simplest model of bilayer graphene, the N = 0
and N = 1 orbital levels are both pinned to zero energy[9].
Combined with the spin- and valley degeneracies native to
graphene quantum Hall systems[10], this produces an eight-
fold degeneracy—a seemingly inauspicious arena for the
single-component physics of nonabelian FQH states. How-
ever, as a wealth of experimental work has shown, all of these
degeneracies are lifted by the combination of electronic in-
teractions and the applied displacement field[11–21]. In par-
ticular, broad domains of density and displacement field are
characterized by partial filling of a singly degenerate N = 0
or N = 1 Landau level. In the N = 1 regime, an incom-
pressible state is observed at half-integer filling[16, 19–21],
which calculations show should be described by a nonabelian

Pfaffian ground state[20, 22–24]. Prior measurements of en-
ergy gaps have found activation gaps as large as 1.8K at
B = 14T; however, precise comparisons of activation and
thermodynamic gaps to theoretical expectations have not been
previously reported.

Here we report energy gaps for both odd- and even-
denominator FQH states in bilayer graphene using both trans-
port and chemical potential measurements. Thermally acti-
vated transport measures the energy cost of creating a physi-
cally separated quasiparticle-quasihole pair. We measure acti-
vated transport using a Corbino-like geometry[25, 26], which
directly probes the conductivity of the gapped, insulating bulk.
Chemical potential measurements record a jump at incom-
pressible filling factors known as the thermodynamic gap,
which—in the clean limit—measures the difference between
adding charge ±e to the gapped system. We measure the ther-
modynamic gap using a direct-current charge sensing tech-
nique based on a double-layer device[27, 28]. Combining
these techniques, we find several new features, including weak
FQH states at ν = 5/11, ν = 6/11 and ν = 5/9 of a par-
tially filled N=1 Landau level. Moreover, both schemes show
an energy gap for a half-filled single component Landau level
that is several times larger than reported to date for a can-
didate nonabelian state in any system [6–8, 20, 21, 29–31].
Notably, these measurement schemes effectively average over
∼ 10µm2 sized areas, a testament to the exceptional unifor-
mity of the electron gas in bilayer graphene.

Fig. 1A shows a schematic of the experimental geometry
used to measure the chemical potential µ. A graphene bi-
layer hosting the FQH system of interest is separated by a
62 nm-thick hexagonal boron nitride (hBN) dielectric from a
graphene monolayer that functions as a sensor. Both layers
are encapsulated by additional hBN dielectrics and graphite
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FIG. 1: Chemical potential and inverse compressibility of bilayer graphene fractional quantum Hall states. (A) Device schematic
showing the hBN layers (blue), top and bottom graphite gates (dark grey), monolayer graphene detector layer connected to Corbino contacts,
and bilayer graphene sample layer. (B) Optical image of the Corbino contacts to the monolayer graphene detector. White dashed lines show
the trajectory of a chiral edge state along trenches etched through the device, which ensures contact between the metal and dual gated sample
bulk. (C) The top panel shows the measured µ at B = 13.8T and T = 50mK in the partially filled N=0 level spanning 0 < ν < 1. The
bottom panel shows the inverse compressibility, dµ/dν, calculated by numerically differentiating the data in the top panel. (D) The same as
C, but for the partially filled N=1 orbital Landau level spanning −1 < ν < 0.

gates, creating a four plate geometry that allows independent
control of the carrier density on both the monolayer detector
and bilayer sample layer. We measure Corbino transport in
the detector layer, where a FQH state functions as a sensi-
tive detector of the local potential. An optical image of the
Corbino contacts is shown in Fig. 1B. As described in detail
in the supplementary information, monitoring transport in the
sensor layer allows us to precisely determine µ of the bilayer
sample. An advantage of our technique is that it avoids finite-
frequency modulation of the carrier density, allowing us to
accommodate charge equilibration times as large as a second.

Figs. 1C-D show µ and dµ/dν measured in our bilayer
graphene device at B = 13.8T. In the N = 0 Landau level,
incompressible spikes are observed at fillings corresponding
to the two- and four-flux ‘Jain’ sequence[32], with denomina-
tors as high as 17. In the N = 1 orbital, a different hierarchy
is observed, including a prominent state at ν +1 = 1/2 along
with states at 8/17 and 7/13 filling. This sequence is consis-
tent with a Pfaffian state at half filling and abelian ‘daughter’
states built from its elementary excitations[20, 33]. Additional
peaks are observed at fillings consistent with the four-flux Jain
sequence, at 3/5 and 2/5, and finally several weaker states
at 5/11, 6/11 and 5/9 which were not previously reported.
Away from these incompressible fillings, the compressibility
is negative throughout the partially filled Landau level[34].
Additional negative compressibility is observed near the in-
compressible states, associated with the formation of Wigner
crystals of fractionally charged quasiparticles at low quasipar-
ticle density.

Fig. 2A shows the two terminal conductance (G) measured
at B = 12T in a second sample consisting of a dual gated bi-
layer with Corbino-like geometry (see supplementary). Mea-

surements are taken at B = 12T in a partially filled N=1 Lan-
dau level corresponding to filling factors 0.25 ≲ ν+3 < 0.75
(see supplementary information). The three most prominent
FQH states, at ν + 3 = 1/3, 1/2, and 2/3, all show vanish-
ing conductance at the lowest temperatures. Fig. 2B shows
the minimal conductance for ν + 3 = 1/2 and 2/3 as a
function of temperature, along with fits to an Arrhenius law
G ∝ nqp ∝ e−∆qp/2kBT . For the 1/2 state, the activation gap
is found to be ∆act

qp = (5.1 ± 0.2)K at B = 12T, consider-
ably larger than previous measurements in graphene[20, 21]
or other two-dimensional electron systems[6–8, 30, 31].

We may compare the result for the activation gap with a
numerical calculation that accounts for the microscopic de-
tails of bilayer graphene, accomplished using the density
matrix renormalization group (DMRG) [35, 36]. Following
Ref. [20], these calculations are conducted on an infinite cylin-
der within a 4-band model of BLG and account for mixing
between the N = 0 and 1 Landau levels, screening from
the gates, and—crucially–screening due to inter-Landau level
transitions, which is treated within the random phase approx-
imation (see supplementary information). We obtain a charge
gap ∆DMRG

qp = 0.011EC , where the Coulomb energy scale
EC depends on both the magnetic field and the dielectric con-
stant for hBN, which we take as ϵhBN =

√
ϵxyϵz = 4.5[28].

The calculated gap is 5.6K at 12T, within 10% of the exper-
imental value.

The jump in chemical potential at fractional filling, ∆µ,
provides an alternative measurement of the FQH energy gaps,
as shown in Figs. 2C-D measured at B = 13.8T. In the clean
limit, ∆µ corresponds to the energy cost of adding a whole
electron to the gapped system, and is expected to be e/e∗

times larger than the quasiparticle gap, where e∗ is the quasi-
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FIG. 2: Comparison of activation and thermodynamic gap sin a
partially filled N = 1 Landau level. (A) Two terminal conductance
measured in a Corbino geometry as a function of filling factor at
B = 12T for different temperatures. The temperature spacing is
5mK. (B) Activation gap from the Arrhenius fit for ν = −3 + 1/2
(red) and ν = −3+2/3 (blue). (C) Chemical potential measurement
near ν0 = −1 + 1/2 (red dots) at B = 13.8T. Theory fit using
the Wigner crystal model in the clean limit (light red line) and in
the disordered limit (red line). (D) Chemical potential measurement
near ν0 = −1+2/3 (blue dots) at B = 13.8T. Theory fit using the
Wigner crystal model in the clean limit (light blue line) and in the
disordered limit (blue line).

particle charge. At ν = −1/2, where e/e∗ = 4, the quasi-
particle gap ∆µ

qp = ∆µ/4 = 2.9K implied by the measured
thermodynamic is significantly smaller than ∆act

qp ≈ 5.1K,
even before accounting for the small difference in B between
Figs. 2A and C. A similar discrepancy is seen at ν+1 = 2/3,
where ∆act

qp = (7.6 ± 0.5)K but the quasiparticle gap from
thermodynamic measurements is ∆µ

qp = 5.2K. For compari-
son, at ν = 1 + 2/3 ∆DMRG

qp = 11.7K.
We attribute the discrepancy to the contrasting role of disor-

der on the thermodynamic and activation gaps. In the simplest
model for activated transport[37] disorder does not affect the
activation gap (though in more involved models the activation
gap becomes sensitive to the spatial correlations of the disor-
der potential[38, 39]). The thermodynamic gap, on the other
hand, is sensitive to the presence of disorder-induced localized
states which lead directly to a finite compressibility. To assess
this hypothesis, we compare our data against a phenomeno-
logical model for µ(ν) that accounts for both the disorder and
quasiparticle interactions. Our model assumes that the com-
pressible states adjacent to the incompressible FQH states are
Wigner crystals of fractionally charged quasiparticles[34, 40].
As a starting point, we compute the energy density E(ν) of
this pristine Wigner crystal under the assumption that the frac-
tional point charges e∗ form a triangular lattice and interact

through an effective Coulomb potential which accounts for
screening from the gates as well as the dielectric response of
the parent gapped state. In the disorder-free limit, we obtain
theoretical µ(ν) curves in which an infinitely-sharp jump of
∆µ = e

e∗∆qp is flanked by the negative compressibility of
the screened Wigner crystal (see supplementary information).
As shown in Figs. 2C-D, we find this disorder-free model pro-
vides a good fit to the data at moderate quasiparticle densities,
where the compressibility is strongly negative.

To account for disorder, we make the assumption that the
disorder potential varies slowly in comparison with both the
inter-quasiparticle distance and the distance to the gates. As
described in the supplementary material, this allows us to
make a local density approximation; µ(ν) can then be solved
for explicitly given the interaction energy density E(ν) and the
disorder distribution P [VD], which we assume to be a Gaus-
sian of width Γ. We note that these assumptions may not be
correct. For example, it will not be the case if the disorder
arises from dilute Poisson-distributed charge impurities in the
hBN. Nevertheless, it results in a tractable model that accounts
for the competition between disorder and interactions.

Fits to this model are shown in Fig.2C-D near ν = −1+1/2
and ν = −1+2/3. The fit is parameterized by the quasiparti-
cle gap ∆fit

qp, a phenomenological parameter χ which accounts
for the dielectric response of the parent state, and the disor-
der broadening Γ (see supplementary information). We find
quantitative agreement between the Wigner crystal model and
experiment, providing strong evidence for a Wigner crystal of
fractionalized quasiparticles. From the fit we infer ∆fit

qp = 7K

for the 1/2 state, within 20% of ∆DMRG
qp = 6.0K. The same

analysis for the ν0 = −1 + 2/3 gives ∆fit
qp = 11.6K, again

within 20% of the ∆DMRG
qp = 11.7K. For both fillings, we

find Γ = (1.0± 0.5)meV, consistent with previous estimates
for the Landau level broadening [25, 26]. The comparison
between experimental and theoretical gaps is summarized in
Table I.

Filling
ν + 1

B ∆act
qp ∆µ

qp ∆fit
qp ∆DMRG

qp

1

2

12T 5.1K − − 5.6K

13.8T − 2.9K 7.0K 6.0K

2

3

12T 7.6K − − 10.8K

13.8T − 5.2K 11.6K 11.7K

TABLE I: Comparison of the quasiparticle gaps at 1/2 and 2/3 fill-
ing in the N = 1 Landau level as determined by DMRG calculations
∆DMRG

qp , thermally activated transport ∆act
qp , the chemical potential

jump ∆µ
qp, and from the fit to the Wigner crystal model ∆fit

qp.

Given the rather large discrepancies between experiment
and numerics in GaAs[41]—particularly at half filling—the
level of agreement we find for both activated and thermody-
namic gaps with numerical modeling is encouraging. We note
that several sources may account for the remaining quantita-
tive discrepancies in our work. These including differences
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in inter-Landau level screening strength at ν ∼ −3 relative
to ν ∼ −1[42], as well as possible spin textures in the ex-
citation spectrum, which can lower the activation gap but are
not accounted for in our modeling. For ∆fit

qp, moreover, the
phenomenological nature of our model for disorder may not
capture the microscopic physics at a quantitative level.

Fig. 3A shows the µ measured at different temperatures
near the ν + 1 = 1/2 gap. We focus on the strong temper-
ature dependence of ∆µ, plotted for several incompressible
filling factors in Fig. 3B (see also the supplementary infor-
mation). We fit the low temperature limit of ∆µ(T ) using the
Sommerfeld expansion ∆µ(T ) = ∆0 − bT 2 + · · · , which is
justified so long as the quasiparticles experience short-range
repulsion. The fitted values ∆0 and b are reported in Figs. 3C
and D, respectively.

Notably, the ν = −1+1/2 state shows anomalously strong
temperature dependence, manifesting as a large value of the
b parameter. According to the Maxwell relation | dµdT |n =

−| dsdn |T , this suggests an anomalous contribution to the en-
tropy in the dilute quasiparticle limit. Anomalous entropy is
expected in the vicinity of non-Abelian states[43] owing to the
topological degeneracy of a dilute gas of nonabelian anyons.
However, this contribution is considerably smaller than the
anomalous entropy we observe. To see this, we assume the
quasiparticles are Ising anyons, endowing the ground state
with an anomalous entropy of Stopo = kBNqp ln

(√
2
)

[43].
Accounting for this contribution adds a linear-in-T term to the
low-temperature expression, ∆µ(T ) = ∆0−4 ln(2)T−bT 2+
· · · . Refitting the 1/2 state to account for this modification re-
duces the best-fit b to (36 ± 3)K−1–still larger than b for all
odd-denominator states.

This analysis implies that the anomalous entropy near ν =
1/2—at least at the filling factors corresponding to the ex-
trema in µ—does not arise solely from the topological degen-
eracy. Notably, these extrema occur at a density of quasipar-
ticles where the average inter-quasiparticle distance is larger
than the distance to the gate. Disorder is expected to dominate
this regime, as inter-quasiparticle interactions are screened.
Crudely, if disorder is more important than the long-range
Coulomb interaction, we expect b ∝ (e/e∗)2/Γ, where Γ is
the strength of the disorder. However, determining the prefac-
tor requires understanding the thermodynamics of a Coulomb
glass of fractionalized particles in an unknown disorder distri-
bution, a challenge we leave to future work.

In closing, we note that a related manuscript reports scan-
ning tunneling microscopy to study the same bilayer graphene
FQH states studied here[48]. In that work, the gate volt-
age δVg over which the FQH gaps appear provides a local
measurement of the thermodynamic gap. Those authors find
4∆STM

qp = 30K for the 1/2 state at B = 14T. This result is
consistent with the intrinsic gap inferred from our WC model,
4∆WC

qp ∼ 28K, as expected for a local measurement that
probes the chemical potential at length scales smaller than the
disorder correlation length. The large intrinsic gaps manifest-
ing across several experimental techniques show that bilayer
graphene is an ideal platform to explore the intrinsic physics

of nonabelian anyons in the solid state.

FIG. 3: Temperature dependent µ near fractional filling at
B=13.8T. (A) Chemical potential near half filling of an N = 1 Lan-
dau level at several different temperatures. (B) Chemical potential
jump across the incompressible states as a function of temperature
for different filling factors in an N = 1 LL (dots). The solid lines
are a low temperature fit, ∆µ(T ) = ∆0− bT 2. (C) Chemical poten-
tial jump ∆0 extracted from the fit for different fractional states in
the N=0 (ν̃ = ν, red dots) and (N=0 orbital) and N = 1 (ν̃ = ν +1,
orange dots) orbital Landau levels. (D) Temperature decay parame-
ter b extracted from the fit same states.
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Supplementary information

EXPERIMENTAL METHODS

Sample preparation

The van der Waals heterostructure is assembled using a polycarbonate based dry stacking technique. An image of the final
heterostructure is shown in Fig S1A together with all the different hBN thicknesses, measured by atomic force microscopy. Two
subsequent lithography steps are performed: first, we define holes in the top gate (Fig. S1B); then we define smaller holes in
a ‘Pac-Man’ shape within the top gate holes to expose the graphene edge (Fig. S1C). The etching is realized with a RIE using
CHF3/O2 gas. Another etch is done to define trenches in the monolayer, so that the quantum Hall edge states are connected
to the bulk of the device (Fig. S1D). Metal deposition of Cr/Pd/Au (3nm/15nm/120nm) makes electrical contact to the bilayer
graphene, monolayer graphene, and gate layers (Fig. S1E). In order to connect the isolated graphene contacts without shorting
them to the exposed top gate edges, we use overdosed PMMA bridges (Fig. S1F). Finally the graphene contacts are connected
to macroscopic leads. The finished device shown in Fig. S1G.

For the Corbino transport measurements, the sample consists of a dual-graphite gated, hBN encapsulated Bernal bilayer
graphene layer, shown in Fig. S1H. The top hBN thickness is 48.9nm and the bottom hBN thickness is 37.2nm. A transport
phase diagram from this sample is shown in Fig. S4B.

FIG. S1: Sample fabrication chronological steps. (A) Optical microscope image of the final heterostructures with the layer borders high-
lighted with colors (B) Holes are defined in the top gates. (C) Smaller hole in a Pac-Man shape to the monolayer are etched within the top gate
holes. (D) Contact trenches are defined together with openings to contact all the layers. (E) Metal deposition to make contact to the different
layers. (F) Overdose PMMA is used to define bridges on top of the exposed top gate edges. (G) Final image of the chemical potential device.
(H) Final image of the Corbino transport device.

Chemical potential measurements

A schematic of the chemical potential measurement scheme is shown in Fig. S2A. A graphene monolayer transducer is placed
on top of the bilayer sample in a dual graphite gated device. We tune the monolayer density to a sharp conductance minima
defined at fractional filling ν = −2 + 7/9 with the top gate voltage, as shown in Fig. S2B. While the bilayer is grounded, its
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density is adjusted using the back gate voltage. The chemical potential shift of the bilayer can then be detected via the shift of
the monolayer conductance minima on the top gate axis.

FIG. S2: Measurement principle. (A) Device schematic showing the dual graphite gated sample with a graphene monolayer detector
capacitively coupled to the bilayer graphene sample of interest. (B) Monolayer detector conductance as a function of top gate voltage at
B=13.5T. The four flux fractional state conductance minima ν = −2 + 7/9, highlighted with the red arrow, is used as a sharp detector of the
chemical potential change in the bilayer graphene sample.

We model our system as a four plate capacitor model which accounts for the chemical potential of the bilayer and of the
monolayer detector. The system electrostatics are described by the relation:

Ĉ(V⃗ + µ⃗/e) = −en⃗, (S1)

Where Ĉ is the geometric capacitance matrix, V⃗ are the applied voltages, n⃗ is the vector of charge carrier densities, and µ⃗ is
the chemical potential of the layers which we take to be fixed for the top and bottom gates but is a (density dependent) quantity
for the sample and detector layers.

Ĉ =


−ctd ctd 0 0
ctd −ctd − cds cds 0
0 cds −cds − csb csb
0 0 csb −csb

 , V⃗ =


Vt

Vd

Vs

Vb

 , µ⃗ =


0

µd(nd)
µs(ns)

0

 , n⃗ =


nt

nd

ns

nb

 (S2)

Here, cij is the geometric capacitance between the layers i and j, with i, j = t, d, s, b, indicating the top gate, detector layer,
sample layer, and bottom gate, respectively. Note that cij = cji.

In our experiment, we vary the bottom gate voltage by ∆Vb, while leaving the sample at constant voltage so that ∆Vs = 0.
We then find the top gate voltage ∆Vt such that the detector density δnt = 0, which in turn implies ∆µt = 0. Under these
conditions, we have the relation

∆V +∆µ/e =


∆Vt

0
∆µs/e
∆Vb

 . (S3)

Using Eq. (S1), the second row of the matrix gives

ctd∆Vt + cds∆µs/e = −e∆nd = 0 (S4)

∆µs = −e∆Vt
ctd
cds

(S5)

Giving the bilayer chemical potential shift from the measured shift on the top gate. The third row of Eq. (S1) gives an
expression for the density of the sample layer ∆ns,

∆ns = −(csd + csb)∆µs/e+ csb∆Vb (S6)
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Using the relations above requires accurate knowledge of the geometric capacitances. Particularly the ratios cd,t

cd,s
and cs,d

cs,b
.

This is done by tracking the conductance minima as a function of various gate voltage as shown in Fig. S3. In these experiments,
a fixed density feature in the detector layer is tracked through a region where the sample layer is incompressible (for example,
in the ν = 4 integer quantum Hall gap) or in the middle of the compressible Landau level. This allows the relevant capacitance
ratios to be measured directly with high accuracy.

FIG. S3: Capacitance ratio. (A) Monolayer conductance map as a function of bilayer gate and top gate. (B) Derivative of the top gate shift as
a function of bilayer gate. The black dashed line shows the value of the capacitance ratio cds/ctd = 0.58. (C) Monolayer conductance map as
a function of back gate and top gate across ν = 4. (D) Derivative of the top gate shift as a function of back gate. The black dashed line shows
the value of the capacitance ratio csbcds

(csb+cds)ctd
= 0.26.

A final electrostatic consideration for bilayer graphene is the displacement field D, which modifies the precise nature of
the filled Landau level orbitals, favoring valley polarization at large D. We obtain the displacement field from the relation
D = 1

2ϵ0
(csd(Vd − Vs) − csb(Vb − Vs)). While we do not map the entire phase diagram of our bilayer sample as a function of

D, this phase diagram is highly reproducible across devices[20]. In Fig. S4A, we show the trajectories in this phase diagram
acquired on another device (Device B of reference [20]) corresponding to the data shown in the main text. Also, the transport
phase diagram showing where the activation gaps have been measured is shown in Fig. S4B.

FIG. S4: Capacitance and transport phase diagram of bilayer graphene. (A) Capacitance map from Device B of Ref. [20] at B=14T.
The green (N=0 orbital) and red (N=1 orbital) dashed lines correspond to trajectories shown in the main text Figs 1C and 1D, respectively. (B)
Conductance map from the bilayer Corbino device at B=12T. The red dashed line correspond to the line cut where the main text data shown in
Fig 2A has been measured.
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COMPUTATIONAL METHODS

DMRG calculation of the charge gaps

To find the charge gaps at the incompressible fractional quantum Hall (FQH) states in bilayer graphene (BLG), we first use
infinite density matrix renormalization group (iDMRG) on a cylinder to obtain the ground state at the corresponding fractional
fillings ν, following the formulation developed in Ref. 20. In the DMRG calculation, we always assume full isospin polarization,
which is justified experimentally in Ref. 18, 20. Compared to the conventional lowest Landau level (LLL) in GaAs, the “zeroth”
Landau level (ZLL) in bilayer graphene has an additional N = 1 orbital, consisting of a mixture of conventional n = 0 and
n = 1 LLs. We keep both the N = 0 and N = 1 orbitals within the ZLL and write the ZLL-projected density operator as

nZLL(q) =

1∑
N,N ′=0

FN,N ′(q)ρ̄NN ′(q) (S7)

where ρ̄NN ′(q) is the usual density operator projected into N,N ′ orbitals and F are the BLG “form factors” defined in Ref. 20.
The remaining |N | ≥ 2 LLs are separated from the ZLL by at least the cyclotron gap ℏωc, whose main effect is to screen the
interaction via inter-LL virtual excitations which can be captured by the effective interaction discussed below.

The bare Coulomb interaction is screened by the encapsulating hBN, the graphite gates, and inter-Landau level (LL) transition.
Screening from the hBN and the graphite gates can be captured by

V 0(q) = ECℓB
4π sinh (βdt|q|) sinh (βdb|q|)

sinh (β (dt + db) |q|) |q|
(S8)

where EC = e2/4πϵ0ϵhBNℓB is the Coulomb scale, dt (db) are the distance from the sample to the the top (bottom) graphite
gate. Here ϵhBN =

√
ϵ⊥ϵ∥ and β =

√
ϵ∥/ϵ⊥ are defined with the out-of-plane (in-plane) dielectric constant ϵ⊥ (ϵ∥) of hBN. In

all DMRG calculations we stick to dt = db = 60nm mimicking the device geometry. The precise dielectric constants of hBN
have been subject to debate, but we pick ϵ⊥ = 3.15 and ϵ∥ = 6.6 from Ref. 45 and our own measurement.

The static dielectric response due to inter-LL virtual excitations can be obtained within the random phase approximation
(RPA),

VRPA(q) =
V0(q)

1− V0(q)Πν(q, ω = 0)
(S9)

where the polarizability Πν(q) sums over all inter-LL transitions m → n except for 0 ↔ 1.

Πν(q) =
∑

−Λ<m,n<Λ

νm (1− νn)Πm,n(q) (S10)

where m,n label LLs, νm is the filling of mth LL, and Λ ≫ 1 is a high energy cutoff. For simplicity, we follow Ref. 46 by
calculating Πm,n(q) within a two-band model of BLG assuming only γ0, γ1 ̸= 0. We use inter-layer bias U = 8meV, with
orbital filling in the order of |K ′ ↓ 0⟩ , |K ′ ↓ 1⟩ , |K ↓ 0⟩ , |K ↓ 1⟩ , |K ′ ↑ 0⟩ , |K ′ ↑ 1⟩ , |K ↑ 0⟩ , |K ↑ 1⟩ at B > 12T where
|τ, s,N⟩ labels the valley, spin, and LL [18, 21]. We note that any transition 0 ↔ 1 within the ZLL is disregarded since the
DMRG calculation automatically accounts for such transitions by keeping both the N = 0 and N = 1 orbitals. The sum in
Eqn. S10 converges slowly with the cutoff Λ, so we scale the cutoff from Λ = 110 to 170 and extrapolate to Λ → ∞ [28].
We show the resulting polarization function Πν(q) in Fig. S5, which agree with the commonly used phenomenological form
Πtanh at large q and small q limit but deviate at intermediate q [18, 20, 23]. The deviation, which depends on both the filling and
displacement field, has a quantitative effect on the charge gaps.

After obtaining the FQH ground states in BLG, we use the “defect” DMRG method to compute the quasiparticle gaps [35],
which is implemented for multicomponent quantum Hall systems in Ref. 36. The key idea is to enforce a single anyonic
excitation a to exist in some large central region on an infinite cylinder using a “topological boundary condition” [l, r], which
means fixing the ground state sector to the left and right of the central region. We determine the energy of anyon a by comparing
the energy of this particular configuration to that of the vacuum. The quasiparticle gap is the energy required to create and
separate a pair of lowest-lying quasiparticle and quasihole ∆ = Ee∗+E−e∗ . In Table S1, we show the lowest-lying quasiparticles
and quasiholes at varioud FQH states and the corresponding “topological boundary conditions” required to trap them in “defect”
DMRG.

The accuracy of the calculation is primarily controlled by three parameters. The most important parameter is the cylinder
circumference Ly used in iDMRG. Due to the absence of local curvature on the cylinder, there are no geometric corrections
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FIG. S5: Dielectric function in BLG at B = 14T with V 0(q) shown in Eqn. S8. We show the one obtained with the calculated polarization
function Πν(q) in Eqn S10 with U = 8meV and ν = 0 and the one obatined with the phenomenological polarization function Πtanh(q) in
Eqn. S13.

lowest-lying charge excitation topological boundary condition [l, r]

Jain sequence ν = p
2p+1

e∗ = e
2p+1

quasiparticle [“01 · · · 010”, “01 · · · 001”]

e∗ = − e
2p+1

quasihole [“01 · · · 010”, “1001 · · · 0”]

Pfaffian-like state ν = 1
2

e∗ = e
4

quasiparticle [“0110”, “1010”]

e∗ = − e
4

quasihole [“0110”, “0101”]

TABLE S1: Lowest lying charge excitations and the corresponding topological boundary conditions at various FQH states. Here we label
different ground state sectors by their root configurations. “01 · · · ” means “01” repeating p− 1 times.

typically seen in FQH numerics on the sphere [36]. The Coulomb interaction is screened by the gates on two sides such that at
sufficiently large Ly , we expect the interaction energy Emadelung between the anyon and its images around the cylinder to vanish
exponentially. In practice, however, the gate distance d = 60nm is comparable to the accessible range of 12ℓB ≤ Ly ≤ 24ℓB ,
so we still need to manually subtract off Emadelung. For simplicity, we approximate the anyon on the cylinder by a point charge
at y = 0, then Emadelung can be computed by

Emadelung(Ly) =
(e∗)2

2

∑
n∈Z,n̸=0

VRPA(nLy) (S11)

where e∗ is the charge of the anyon, and the mirror images locate at y = nL with n being a non-zero integer due to the periodic
boundary condition along the y axis. In the calculation of the charge gaps we consider a pair of quasiparticle and quasihole, each
contributing to one copy of the interaction energy Emadelung. In Fig. S6, we show the quasiparticle gaps computed by DMRG.
After subtracting of two copies of Emadelung, the resulting gaps exhibit vanishing Ly dependence, except for at ν = 3/7 and
ν = 1/2 which requires a larger Ly to stablize the ground states. At these two states, we perform an exponential extrapolation
in Ly by ∆(Ly) = ∆+ δe−Ly/Ly0 and report ∆.

Another obvious parameter is the bond dimension χ within DMRG, which determines the maximum allowed entanglement
in the system. In practice, the charge gaps change negligibly with bond dimension χ ≥ 1600 up to the largest cylinder
circumference Ly = 24ℓB for all the FQH states we examine. A more subtle but equally important parameter is the number of
orbitals Ndefect in the central region in “defect” DMRG. The “defect” DMRG algorithm functions by introducing Ndefect tensors
in the middle of two infinite matrix product state (MPS) ground states on two sides, and then optimizing this configuration
with a finite DMRG algorithm. It is crucial for the corresponding physical span 2π

Ly
× Ndefect to exceed the anyon radius ξa,

which is typically a few ℓB . We stick to Ndefect = 128 which turns out to be sufficient up to the largest cylinder circumference
Ly = 24ℓB for all FQH states except for at ν = 1/2 where Ising anyons have a much longer tail. At ν = 1/2, we extrapolate
the span Ndefect = 64 to 128 and restrict ourselves to Ly ≤ 18ℓB .
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(b) (c)

(e) (f)

(d)(a)

FIG. S6: Quasiparticle gap at various FQH states in BLG calculated by DMRG. We subtract off Emadelung for the dark dots, which exhibit
vanishing Ly dependence except for at ν = 3/7 and ν = 1/2.

Quasiparticle Wigner crystal model

We model the compressible states adjacent to the incompressible fractional quantum Hall states as Wigner crystals of frac-
tionally charged quasiparticles. We start by thinking of electron Wigner crystals, whose energy can be evaluated as

EWC =
∑
i̸=j

∑
{Ri}

1

2

⟨Ψ |V (|Ri −Rj |)|Ψ⟩
⟨Ψ | Ψ⟩

≈ Ne

2

∑
Ri ̸=0

VH (|Ri|) (S12)

where Ne is the number of the electrons, V (R) is the effective interaction in Eqn. (S9), and Ri spans the triangular lattice of
the Wigner crystal. Here we plug in the zeroth Landau level (ZLL) wavefunctions (which include both the N = 0, 1 LLs) and
expand up to terms that contain two of the R’s, neglecting all Fock terms [47]. There is a simple relation between VH(R) and
V (R) in Fourier space, i.e. VH(q) = V (q) |F (q)|4 with F (q) = e−q2ℓ2B/4 being the LLL form factor.

The classical treatment of the WC is valid as long as the electrons are sufficiently far away from each other R ≫ ℓB , then we
can neglect quantum statistics, which always holds in the filling range of interest.

The relevant energy that determines the chemical potential in the experiment is the WC energy relative to the charging energy
of a classical capacitor,

Eint = EWC − e2N2

2Cg
(S13)

where Cg is the geometric self capacitance of the bilayer graphene plate. Then the desired chemical potential µ(ν) in the clean
limit is given by µint(ν) = ∂ν(Eint/Nϕ) with Nϕ being the number of fluxes.

The formulation discussed so far has primarily focused on Wigner crystals of electrons, which have predicted a chemical po-
tential in excellent agreement with experimental results near integer quantum Hall states in monolayer graphene [20]. However,
our main focus is on Wigner crystals of quasiparticles. These fractional quasiparticles carry a charge of e∗ and possess their
own Landau levels, where the magnetic length is effectively increased to ℓ̃B =

√
ℏ/e∗B. Within the composite-fermion picture,

the quasiholes, such as those in the ν = 1
3 state, even exhibit identical wavefunctions to the lowest Landau level but with ℓB

replaced by ℓ̃B . In the filling range of interest in this study, these quasiparticles are sufficiently far apart from each other that
their interactions are expected to be be reasonably well approximated as those of electric monopoles, therefore ignoring details
of the charge distribution. Therefore, a rough estimate of the chemical potential adjacent to the fractional quantum Hall states
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can be made by substituting e with e∗ and ℓB with ℓ̃B . One additional complication comes from the screening from composite
Fermion Λ levels. To capture this effect, we use a phenomenological model of the RPA polarizability Πν(q) [18, 20, 23],

Πχ(q) =
4 log(4)

2π
tanh

(
χ|q|2ℓ2B

) 1

ℏωc
(S14)

where the phenomenological RPA parameter χ controls the strength of the screening. If we only consider virtual transitions
between LLs, matching the small q and large q behavior of Πν=0(q) in Eqn. S10 gives χ = 0.62. Including transitions between
Λ levels will result in a larger χ, which is turned into a fitting parameter for quasiparticle WC. We note that in DMRG this
treatment is unnecessary since it keeps all microscopic electron degrees of freedom, while here we are working directly with
quasiparticles. Using the effective interaction which include both the gate and RPA-screening, the WC energy of Eq.(S12) is
then evaluated numerically as described further in [28]. We note that the chemical potential of the quasiparticle µqp computed
here is related to the electron chemical potential µ measured in the experiment by µ = e

e∗µ
qp.

Slow-varying disorder model

One tractable limit to account for disorder is when the disorder potential varies slowly in comparison with both the inter-
quasiparticle distance in the Wigner crystal and the gate-sample distance. In this limit we can take the local density approxima-
tion (LDA) such that the total energy can be expressed as a local functional of the slowly-varying charge density n(r),

E[n] =

∫
d2E(n(r)) =

∫
d2r

[
Eint(n(r)) +

e2n(r)2

2cg
+ n(r)eVD(r)− n(r)eVg

]
(S15)

where Eint ≡ Eint

2πℓ2BNϕ
is the interaction energy density, cg = Cg/A is the geometric self capacitance per unit area, VD(r) is the

disorder potential, and Vg is the bias on the gate. We note that the disorder model does not care about the microscopic degrees
of freedom in the system, which is fully characterized by Eint, so we pick the convention such that n(r) is the electron number
density. The key approximation here is the LDA which neglects the gradient ∇n dependence of the energy functional E[n].
Optimizing the energy functional Eint[n] determines the local charge density n(Vg − VD) at each point,

µint(n(Vg − VD)) +
e2n(Vg − VD)

cg
= eVg − eVD (S16)

If we consider a disorder distribution P (VD) with zero mean ⟨VD⟩P = 0, we find

µ̄int(Vg) +
e2n̄(Vg)

cg
= eVg (S17)

where µ̄int(Vg) =
∫
dVDP (VD)µint(n(VD)) is the disorder averaged chemical potential and n̄(Vg) =

∫
dVDP (VD)n(Vg−VD)

is the average charge density. In the following we will show µ̄int(Vg) is precisely the chemical potential measured in the
experiment.

As before, the experimentally relevant energy Ēint is defined relative to a classical capacitor

Ēint(Ne) = E[n]− e2N2
e

2Cg
+NeeVg (S18)

Here the number of electrons Ne = n̄A is determined by the average charge density n̄. Then the chemical potential measured in
the experiment is

µexpt(Ne) =
∂Ēint

∂Ne
=

1

A

∫
d2r

∂n

∂n̄

∂

∂n
E(n(r))− e2Ne

Cg
+ eVg = −e2n̄

cg
+ eVg = µ̄int(Vg) (S19)

where the integral vanishes because ∂nE(n) = 0. In practice, we first numerically find the gate bias Vg required to reproduce
the electron filling in the experiment using Eq. (S17), and then compute the disorder averaged chemical potential µ̄int assuming
a Gaussian disorder distribution P (VD) = 1√

2πΓ
exp

(
−V 2

D/2Γ2
)
.

The chemical potential µint we have discussed so far sorely comes from the quasiparticle Wigner crystal, where at the FQH
fillings ν0 there is an additional contribution from the correlated FQH gaps,

µint → µFQH
int =

{
1
2∆+ µint(ν − ν0), ν > ν0

− 1
2∆+ µint(ν − ν0), ν < ν0

(S20)
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∆ (meV) Γ (meV) χ

ν = −1 + 1/2 2.4± 0.1 1.0± 0.5 0.85

ν = −1 + 2/3 3.0± 0.1 1.2± 0.3 0.92

TABLE S2: Fitting parameters of the disordered Wigner crystal model at 1/2 and 2/3 filling in the N = 1 LL.

where ∆ = e
e∗∆qp is the thermodynamic gap at ν0. The quasiparticle Wigner crystal model does not break the particle hole

symmetry, so we can obtain the chemical potential at ν < ν0 by µint(∆ν) = −µint(−∆ν). As shown in Fig. 2, we fit the
disorder-averaged chemical potential µ̄FQH

int to the experiment data with three free parameters: the thermodynamic gap ∆, the
disorder scale Γ and the screening parameter χ. We summarize these fitting parameters at ν = −1 + 1/2 and −1 + 2/3 in the
N=1 LL in Table S2.

EXTENDED DATA AND FIGURES
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FIG. S7: Chemical potential jump as a function of temperature for the Jain states in N=0 at B = 13.8T. The data (dots) are fitted using the
low temperature Sommerfeld expansion (solid lines).
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Filling ν ∆µ
qp (K) ∆fit

qp (K) ∆DMRG
qp (K)

1/3 7.6K 17.7K 13.5K

2/5 3.6K 7.7K 6.3K

3/7 1.9K 5.7K 4.5K

4/9 0.9K 3.4K −
5/11 0.4K 2.1K −
6/11 0.4K 2.1K −
5/9 1.0K 3.5K −
4/7 2.1K 6.0K −
3/5 4.4K 10.5K −
2/3 10.5K 21.2K 14.3K

2/7 0.9K 4.3K −

TABLE S3: Comparison of the quasiparticle gaps at the Jain sequence in the N = 0 LL at B = 13.8T as determined by DMRG calculations
∆DMRG

qp , the chemical potential jump ∆µ
qp, and from the fit to the Wigner crystal model ∆fit

qp.
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