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Abstract. We say that the families F1, . . . ,Fs+1 of k-element subsets of [n] are cross-
dependent if there are no pairwise disjoint sets F1, . . . , Fs+1, where Fi ∈ Fi for each i. The
rainbow version of the Erdős Matching Conjecture due to Aharoni and Howard and indepen-
dently to Huang, Loh and Sudakov states that mini |Fi| ⩽ max

{(
n
k

)
−
(
n−s
k

)
,
((s+1)k−1

k

)}
for n ⩾ (s+ 1)k. In this paper, we prove this conjecture for n > 3e(s+ 1)k and s > 107.
One of the main tools in the proof is a concentration inequality due to Frankl and Kupavskii.
Keywords. Extremal set theory, Erdos matching conjecture, rainbow version
Mathematics Subject Classifications. 05D05

1. Introduction

Let [n] stand for the set {1, . . . , n}. For a set X , let 2X and
(
X
k

)
stand for the families of all

subsets and all k-element subsets of X , respectively. A family is any collection of sets. For a
family F , denote by ν(F) its matching number, that is, the largest m such that F contains m
pairwise disjoint sets. One of the most famous open problems in extremal set theory is the Erdős
Matching Conjecture, which is about the largest size of a family F ⊂

(
[n]
k

)
with ν(F) ⩽ s. Fix

integers n, k, s and consider the following families:

A :=
{
F ∈

(
[n]

k

)
: [s] ∩ F ̸= ∅

}
,

B :=

(
[(s+ 1)k − 1]

k

)
.

The Erdős Matching Conjecture states the following.
∗The research was in part funded by the grant of the Russian Science Foundation N 21-71-10092, https:
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Conjecture 1.1 (Erdős Matching Conjecture [Erd65]). If n ⩾ (s+ 1)k and a family F ⊂
(
[n]
k

)
satisfies ν(F) ⩽ s, then |F| ⩽ max{|A|, |B|}.

There are numerous papers devoted to the Erdős Matching Conjecture, or EMC for short.
The case s = 1 is the classical Erdős–Ko–Rado theorem [EKR61] which was the starting point
of a large part of ongoing research in extremal set theory. The cases k ⩽ 3 were settled in a
series of papers [EG59], [FRR12], [LM14], [Fra17a].

For larger values of k, there has been several improvements on the range of parameters for
which the EMC is valid. Erdős [Erd65] proved it for n ⩾ n0(k, s). Bollobás, Daykin and Erdős
[BDE76] established it for n ⩾ 2k3s. Huang, Loh and Sudakov [HLS12] proved the EMC
for n ⩾ 3k2s. Frankl [Fra13] proved the EMC for n ⩾ (2s + 1)k − s. Most recently, Frankl
and Kupavskii [FK22] showed that there is an absolute constant s0 such that the EMC is valid
for n ⩾ 5

3
sk − 2

3
s and s ⩾ s0. They also obtained a Hilton–Milner type stability result for the

range n ⩾ (2 + o(1))sk, along with some applications [FK19].
In the results above, A is the extremal family. An easy, but tedious, computation shows

that |A| > |B| already for n ⩾ (k + 1)(s + 1). For n close to (s + 1)k, however, B is larger.
For n = (s+ 1)k the EMC was implicitly proved by Kleitman [Kle68]. This was extended by
Frankl who showed that the family B is extremal for all n ⩽ (s + 1)(k + ε),
where ε = kO(−k) [Fra17b].

The EMC is related to several other exciting problems in combinatorics and probability, and
we refer to [AFH+12], [FK22] for the survey of different developments. One of the common
and fruitful directions in extremal combinatorics is extending classical extremal statements to
a rainbow (multipartite) setting. The following conjecture that generalizes the Erdős Matching
Conjecture was proposed by Aharoni and Howard [AH09] and independently by Huang, Loh
and Sudakov [HLS12].

Conjecture 1.2. Fix F1, . . . ,Fs+1 ⊂
(
[n]
k

)
. If there are no pairwise disjoint F1, . . . , Fs+1,

where Fi ∈ Fi for every i = 1, . . . , s+ 1, then

min
i∈[s+1]

|Fi| ⩽ max{|A|, |B|}.

We call such families cross-dependent, and refer to this conjecture as the rainbow EMC. The
reason for the colorful terminology is that one can think of the families as color classes, and
then we are actually looking for a rainbow matching. In the paper [HLS12], the authors proved
it for n ⩾ 3k2s. Keller and Lifshitz in [KL19] verified the rainbow EMC for n > f(s)k with a
very quickly growing f(s) as an application of the junta method. Frankl and Kupavskii [FK20],
using their junta approximation for shifted families, proved it for n ⩾ 12sk log(e2s). Recently,
Gao, Lu, Ma and Yu [GLMY21] verified the rainbow EMC for k = 3 and n ⩾ n0 and Lu, Wang
and Yu [LWY20] verified it for any k, n > 2sk and s > s0(k). The last two works use absorption
method, which implies that the lower bounds on n (and s) are extremely large w.r.t. k. Finally,
in a very recently published result (which was announced some years ago), Keevash, Lifshitz,
Long and Minzer [KLLM21] verified the rainbow EMC for n > Csk with some absolute (but
very large and unspecified) C as an application of their recent hypercontractivity inequality.

The goal of this article is to prove the rainbow EMC with concrete and reasonable depen-
dencies between the parameters (albeit for relatively large s). The proof develops on the ideas
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from [FK22] and [KK21] that used a certain concentration result for intersections of families
and matchings, and another goal is to demonstrate an application of this method.

Theorem 1.3. There exists s0 such that Conjecture 1.2 is true for any integers n, s, k such
that s > s0 and n > 3e(s + 1)k. More precisely, if F1, . . . ,Fs+1 ⊂

(
[n]
k

)
are cross-dependent

then
min

i∈[s+1]
|Fi| ⩽ |A|

and the inequality is strict unless F1 = . . . = Fs+1 = A.

Remark 1.4. We can take s0 = 2 · 106 in the present proof. Together with the result of Frankl
and Kupavskii [FK20] cited above, we can get that the EMC holds for any s, k and n > 200sk.
This can clearly be significantly improved using the present method but requires more tedious
calculations that we decided to avoid. We have managed to reduce the present bound to s0 > 700
in the assumption n > 30sk. Altogether, this would imply the result for any s and for n > 100sk
and any s, k. Anything significantly better seems to be difficult to get using the present method.

We also note that there were several other developments related to the EMC. Let us mention
the following two. First, a rainbow version of the EMC for multipartite hypergraphs was proved
by Kiselev and Kupavskii in [KK21] for all s ⩾ 500. Second, Frankl and Kupavskii [FK21]
studied a common generalization of the EMC and the Complete t-Intersection Theorem.

2. Sketch of the proof

This proof follows the strategy of the proof of the EMC due to Frankl [Fra13] and its extension
due to Frankl and Kupavskii [FK22]. First, let us recall the strategy of Frankl. The first step of
the proof is to reduce the problem to shifted families and decompose the family F ⊂

(
[n]
k

)
into

parts
F(X, [s+ 1]) := {F \X : F ∩ [s+ 1] = X,F ∈ F}.

An easy calculation shows that, in order to verify the EMC, it is sufficient to check that

|F(∅, [s+ 1])|+
s+1∑
i=1

|F({i}, [s+ 1])| ⩽ s

(
n− s− 1

k − 1

)
.

Next, Frankl shows that |F(∅, [s + 1])| ⩽ s|F({s + 1}, [s + 1])| using the fact that ν(F) ⩽ s.
Finally, the last step is an averaging argument that verifies

(s+ 1)|F({s+ 1}, [s+ 1])|+
s∑

i=1

|F({i}, [s+ 1])| ⩽ s

(
n− s− 1

k − 1

)
.

The argument goes by verifying the corresponding inequality for a random almost-perfect match-
ing M. The proof crucially relies on the fact that F({s + 1}, [s + 1]) ⊂ F({i}, [s + 1]) for
any i ∈ [s].
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One important ingredient added by Frankl and Kupavskii at the third step of the proof is that,
for most matchings M, the intersection of a family F({s+1}, [s+1]) with M has roughly the
same density as the family F({s+ 1}, [s+ 1]) itself. (See Theorem 3.6 below.)

There were two obstacles to extending the approach described above to the rainbow EMC,
which were previously believed to be unsurpassable (cf. e.g. [FK20]). First, since none of
the families F1, . . . ,Fs+1 in the rainbow EMC has to have matching number at most s, there
was no known analogue of the inequality |F(∅, [s + 1])| ⩽ s|F({s + 1}, [s + 1])|. We man-
aged to find the right property to work with and got such an analogue, essentially contained in
Lemma 3.5. Second, and probably most importantly, since we look at rainbow matchings, the
property F({s+ 1}, [s+ 1]) ⊂ F({i}, [s+ 1]) is of little use for our situation, and there is no
analogue for the case when the families from the inclusion are subfamilies of different Fi,Fj .

Our proof follows the rough outline of the proof by Frankl and by Frankl and Kupavskii. We,
however, need several additional ingredients. First, the case when all families are very close to A
is dealt with separately, in the same vein as it was dealt with in the paper [FK20]. In case when
some of the families are far from A, we use the same decomposition of Fi into Fi(X, [s + 1])
and aim at the same inequality for Fi({j}, [s + 1]) as before. We make strong use of the afore-
mentioned concentration result (Theorem 3.6), in a way that it essentially allows us to conclude
that in almost all random matchings the proportions of each of the considered family is correct,
and so we can connect the densities of these families with the number of sets from a random
matching that lie in these families. We then identify a group of families that must satisfy the
analogue of the inequality |F(∅, [s + 1])| ⩽ s|F({s + 1}, [s + 1])|, and aim to prove that one
of them must be small. Recall that both [Fra13] and [FK22] also reduced the situation to the
analysis of what happens on a random matching. Our analysis, however, is different and inspired
by [KK21]. It uses the following simple fact that follows from the König–Hall theorem: if for
some matching M we have |Fi ∩M| ⩾ i for each i = 1, . . . , s + 1 then F1, . . . ,Fs+1 contain
a rainbow matching.

3. Proof of Theorem 1.3

Let F1, . . . ,Fs+1 ⊂
(
n
k

)
be cross-dependent and such that |Fi| ⩾ |A| for all i. Recall that F is

called shifted if whenever A ∈ F and B is obtained from A by replacing some larger elements
with smaller, then B ∈ F . It is standard that we can w.l.o.g. assume that each of the families is
shifted (see, e.g., [Fra13]). We make this assumption throughout the proof.

The first step of the proof, which is not strictly necessary but convenient, is to reduce the
case of general n to the case of the smallest n satisfying the requirements.

The following proposition implies that it is sufficient to prove Theorem 1.3 for
n = ⌈3e(s+ 1)k⌉.

Proposition 3.1. Assume that n ⩾ (s + 1)k. If for any cross-dependent families
G1, . . . ,Gs+1 ⊂

(
[n]
k

)
we have mini |Gi| ⩽

(
n
k

)
−

(
n−s
k

)
, then for any cross-dependent families

F1, . . . ,Fs+1 ⊂
(
[n+1]

k

)
we have mini |Fi| ⩽

(
n+1
k

)
−
(
n+1−s

k

)
.

Proof. Consider an (s + 1)-tuple of cross-dependent families F1, . . . ,Fs+1 ⊂
(
[n+1]

k

)
such

that mini |Fi| is maximal and each family is inclusion-maximal. We may w.l.o.g. assume that Fi
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are shifted. Let us put Gi := {A ∈ Fi : n+1 /∈ A} and G ′
i := {A\{n+1} : A ∈ Fi, n+1 ∈ A}.

The families G1, . . . ,Gs+1 are cross-dependent, and, by our assumption, mini |Gi| ⩽
(
n
k

)
−
(
n−s
k

)
.

Let us assume that, say,

|G1| ⩽
(
n

k

)
−
(
n− s

k

)
.

We claim that |G ′
1| ⩽

(
n

k−1

)
−

(
n−s
k−1

)
.

For a family H ⊂
(
[n]
k

)
let us put ∂H to be upper shadow of H, i.e., the family of all (k+1)-

sets that contain at least one of the sets from H.
It is a standard application of the properties of shifting that G ′

1, . . . ,G ′
s+1 are cross-dependent.

Therefore, the families G ′
1 ∪ ∂G ′

1, . . . ,G ′
s+1 ∪ ∂G ′

s+1 are cross-dependent as well. This and the
inclusion-maximality of the families F1, . . . ,Fs+1 implies that ∂G ′

1 ⊂ G1.
Assume that |G ′

1| >
(

n
k−1

)
−

(
n−s
k−1

)
. The Kruskal–Katona theorem [Kru63, Kat87] stated in

terms of the upper shadow for a ground set of fixed size implies that the upper shadow is mini-
mized if the family G ′

1 consists of lexicographically first |G ′
1| sets.1 In particular, the inequality

on |G ′
1| implies that |∂G ′

1| >
(
n
k

)
−
(
n−s
k

)
, a contradiction with our assumption on |G1|. Therefore,

|G ′
1| ⩽

(
n

k−1

)
−
(
n−s
k−1

)
and |F1| = |G1|+ |G ′

1| ⩽
(
n+1
k

)
−
(
n+1−s

k

)
, which concludes the proof.

In what follows, we assume that n = ⌈3e(s+1)k⌉. Put n′ := n− s− 1 and X := [s+2, n].
Let us put t :=

⌊
n′

k

⌋
and note that t < 3e(s+ 1). Note also that

t > 7(s+ 1) + 2 for s > 10. (3.1)

In the proof we often omit floors and ceiling signs whenever they do not affect the calculations.

3.1. The families that are all close to A

The next lemma deals with the case when all families are very close to A. Recall the following
notation for two sets S, Y such that S ⊂ Y ⊂ [n] and a family G ⊂ 2[n]:

G(S, Y ) := {A \ S : A ∈ G, A ∩ Y = S} (3.2)

For shorthand, we also use the following notation for 1 ⩽ i, j ⩽ s+ 1.

G(j) := {A \ {j} : A ∈ G, A ∩ [s+ 1] = {j}}, (3.3)
G(∅) := {A ∈ G : A ∩ [s+ 1] = ∅}. (3.4)

Lemma 3.2. We have mini∈[s+1] |Fi| <
(
n
k

)
−
(
n−s
k

)
if

|Fi({s+ 1})| < s−4

(
n− s− 1

k − 1

)
for all i ∈ [s+ 1] (3.5)

and at least one of Fi does not coincide with A.
1To see this, replace each set in the family by its complement. Then the upper shadow corresponds to the normal

shadow, and lexicographic order on the initial family corresponds to the colexicographic order on the resulting
family.
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In what follows, for a family G ⊂
(
[n]
ℓ

)
we denote by ∂G its (lower) shadow,

i.e., ∂G = ∪X∈G
(

X
ℓ−1

)
.

Proof. Recall that F1, . . . ,Fs+1 are shifted. This implies that Fi(s+1) ⊃ ∂Fi(∅). Indeed, we
can replace any element of A ∈ Fi(∅) by s+1 and get a set from the family. At the same time,
a local LYM argument implies that

t|∂Fi(∅)| ⩾ |Fi(∅)|.

Let us sketch the argument. Consider a regular bipartite graph with parts
(
X
k

)
and

(
X
k−1

)
, where

edges connect pairs of sets in which one contains the other. Then the degree of each vertex in
the first and second part is k and n′ − k + 1, respectively. Note that n′−k+1

k
< t. Now consider

the family Fi(∅) as a subset of the part
(
X
k

)
. Its neighborhood in the graph is precisely ∂Fi(∅).

A simple double counting implies that (n′−k+1)|∂Fi(∅)| ⩾ k|Fi(∅)|, which, in turn, implies
the claimed bound.

Combining the displayed inequality with (3.5), we conclude that for any i ∈ [s+ 1] we have

|Fi(s+ 1)|+ |Fi(∅)| ⩽ (t+ 1)s−4

(
n− s− 1

k − 1

)
.

Next, we adapt the argument from [FK22, Theorem 21, p.15] for this case.
Assume that, among i ∈ [s+ 1], the density αi := |Fi(∅, [s])|/

(
n−s
k

)
is the largest for i = 1

and put βl
i := |Fi({l}, [s])|/

(
n−s
k−1

)
for each i ∈ [2, s+1] and l ∈ [s]. We may assume that α1 > 0,

otherwise Fi ⊂ A for all i ∈ [s + 1]. For a finite set Y , a family G ⊂
(
Y
k

)
and an integer u,

k ⩽ u ⩽ |Y |, let ∂̄uG be the collection of all sets in
(
Y
u

)
that contain at least one set from G.

The following analytic corollary of the Kruskal–Katona theorem [Kru63, Kat87] was proved by
Bollobás and Thomason [BT87]:(

|∂̄uG|/
(
|Y |
u

))|Y |−k

⩾
(
|G|/

(
|Y |
k

))|Y |−u

.

We apply it to F1(∅, [s]) with Y = [s+ 1, n] and u = 2(n− s+ k)/3 and conclude that

α′
1 :=

|∂̄2(n−s+k)/3F1(∅, [s])|(
n−s

2(n−s+k)/3

) ⩾ α
1/3
1 .

At the same time, for any bijection π : [s] → [2, s + 1], the families Fπ(j)({j}, [s]), j ∈ [s],
and ∂̄2(n−s+k)/3F1(∅, [s]) are cross-dependent. Since 2(n− s+ k)/3 + s(k − 1) < n− s− 1,
we may take a random ordered matching consisting of s sets M1, . . . ,Ms of size k − 1 and one
set Ms+1 of size 2(n−s+k)/3. Due to cross-dependency of the aforementioned families, in any
such matching there are at most s indices j ∈ [s+1] such that: Mj ∈ Fπ(j)({j}, [s]) for j ∈ [s],
or Mj ∈ ∂̄2(n−s+k)/3F1(∅, [s]) for j = s+ 1. Computing the expectation of the number of such
indices, we get

α′
1 +

s∑
j=1

βj
π(j) ⩽ s.
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Therefore, there exists i ∈ [2, s + 1], such that
∑s

j=1 β
j
i ⩽ s − α′

1. Comparing Fi to A, we
conclude that at least α′

1

(
n−s
k−1

)
sets intersecting [s] in a single element are missing from Fi, and,

at the same time, αi

(
n−s
k

)
sets in Fi do not intersect [s] and thus are not present in A. This

implies that

|Fi| ⩽
(
n

k

)
−

(
n− s

k

)
− α′

1

(
n− s

k − 1

)
+ αi

(
n− s

k

)
⩽

(
n

k

)
−

(
n− s

k

)
− α

1/3
1

(
n− s

k − 1

)
+ α1

(
n− s

k

)
⩽

(
n

k

)
−

(
n− s

k

)
−
(
α
1/3
1 − n− s− k + 1

k
α1

)(n− s

k − 1

)
<

(
n

k

)
−

(
n− s

k

)
,

where the last inequality is due to our choice of parameters. Indeed, we need to verify that
n−s−k+1

k
α
2/3
1 < 1. Recall that α1 < (t+ 1)s−4. We have

n− s− k + 1

k
α
2/3
1 < (t+ 1)α

2/3
1 < (t+ 1)5/3s−8/3.

The latter expression is smaller than 1 provided s8/5 > t+ 1, which holds for s ⩾ 50.

In view of Lemma 3.2, in what follows we may assume that

|Fi(s+ 1)| ⩾ s−4

(
n− s− 1

k − 1

)
for at least one i ∈ [s+ 1] (3.6)

3.2. Shadows of cross-dependent families: an analogue of s|∂F| ⩾ |F|

In this section we shall use that F1, . . . ,Fs+1 ⊂
(
[n]
k

)
are cross-dependent and shifted, as well

as that |Fi| ⩾ |A|.
We will need the following lemma that in our context replaces the result of Frankl stating

that s|∂G| ⩾ |G| for any G ⊂
(
[n]
k

)
with no s+ 1 pairwise disjoint sets.

Lemma 3.3. There is a set U ⊂ [s + 1] of indices, |U | = 2(s + 1)/3, such that for each i ∈ U
we have

|Fi(∅)| ⩽ (3s+ 2)|Fi(s+ 1)|. (3.7)

Proof. Recall that F1, . . . ,Fs+1 are cross-dependent and shifted. A well-known corollary of
these two properties is that for any F1 ∈ F1, . . . , Fs+1 ∈ Fs+1 there exists ℓ such that∑s+1

i=1 |Fi ∩ [ℓ]| ⩾ ℓ+ 1 (see, e.g. [Fra87]). Let us denote by βi the largest rational number
such that for any Fi ∈ Fi there exists ℓ such that |Fi ∩ [ℓ]| ⩾ βiℓ. Note that the property we
mentioned implies that

s+1∑
i=1

βi > 1. (3.8)

We shall need the following technical lemma.
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Lemma 3.4. If βi >
4

3(s+1)
for some i ∈ [s+ 1] then |Fi| < |A|.

Proof of Lemma 3.4. Assume that for some i ∈ [s+1]we have βi >
4

3(s+1)
.As usual, we assume

that 3
4
(s + 1) is an integer (this does not affect the validity of the argument below, but makes

notation cleaner). The setG := {3
4
(s+1), 2· 3

4
(s+1), . . . , k · 3

4
(s+1)} /∈ Fi, because forG there

is no ℓ such that |G∩ [ℓ]| > 4
3(s+1)

ℓ. This is sufficient to check only for those ℓ that satisfy ℓ ∈ G,
and for such ℓ it is straightforward. Therefore, shiftedness implies that for any A ∈ Fi there is
a positive integer p such that |A ∩

[
3
4
(s + 1)p − 1

]
| ⩾ p. Let us put s′ := 3

4
(s + 1). By taking

the largest such p for a set A, we conclude that for any A ∈ Fi there is a positive integer p such
that |Fi ∩ [ps′ − 1]| = p. Therefore,

|Fi| ⩽
k∑

p=1

(
s′p− 1

p

)(
n− s′p+ 1

k − p

)
.

Using (in the penultimate inequality below) that (k−δ)s′

n−δs′
< ks′

n
for any 0 < δ ⩽ k and n > ks′,

we have the following for any 2 ⩽ p ⩽ k:(
s′p−1

p

)(
n−s′p+1

k−p

)(
s′(p−1)−1

(p−1)

)(
n−s′(p−1)+1

k−(p−1)

)
=

(p− 1)!(k − (p− 1))!

p!(k − p)!
· (s′p− 1)!(s′(p− 1)− p)!

(s′(p− 1)− 1)!(s′p− p− 1)!
·

· (n− s′p+ 1)!(n− s′(p− 1) + 1− (k − (p− 1)))!

(n− s′(p− 1) + 1)!(n− s′p+ 1− (k − p))!

=
k − p+ 1

p
·
∏s′−1

j=0 (s
′p− j − 1)∏s′−1

j=1 (s
′p− p− j)

·
∏s′−1

j=1 (n− s′(p− 1)− (k − (p− 1))− j + 2)∏s′−1
j=0 (n− s′(p− 1)− j + 1)

=
(k − p+ 1)(s′p− 1)

p(n− s′(p− 1) + 1)
·
s′−1∏
j=1

(
1 +

p− 1

s′p− p− j

)(
1− k − (p− 1)− 1

n− s′(p− 1)− j + 1

)

⩽
(k − p+ 1)s′

n− s′(p− 1)
·
s′−1∏
j=1

(
1 +

p− 1

s′p− p− j

)
⩽

(k − p+ 1)s′

n− s′(p− 1)
·
(
1 +

p− 1

s′p− p− s′ + 1

)s′−1

⩽
ks′

n
·
(
1 +

1

s′ − 1

)s′−1

⩽
eks′

n
.

The last expression is at most 1
4
, given that n ⩾ 3ek(s + 1) = 4eks′. With this inequality, we

deduce that

|Fi| ⩽
(
s′ − 1

1

)(
n− s′ + 1

k − 1

) ∞∑
p=1

41−p =
4

3
(s′ − 1)

(
n− s′ + 1

k − 1

)
< s

(
n− s′ + 1

k − 1

)
.
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Note that |A| =
∑s

i=1

(
n−i
k−1

)
. Note that the following holds for any integer i > 0 and k ⩾ 1:(

n− s′ − i− 1

k − 1

)
+

(
n− s′ + i+ 1

k − 1

)
⩾

(
n− s′ − i

k − 1

)
+

(
n− s′ + i

k − 1

)
.

Using this inequality and assuming that s is odd, we get

s

(
n− s′ + 1

k − 1

)
⩽

(
n− s′ + 1

k − 1

)
+

(s−1)/2∑
i=1

((n− s′ + 1 + i

k − 1

)
+

(
n− s′ + 1− i

k − 1

))
=

s′−1+(s−1)/2∑
i=s′−1−(s−1)/2

(
n− i

k − 1

)

<

s∑
i=1

(
n− i

k − 1

)
.

A similar calculation gives the same conclusion for s even. Thus, we get that |Fi| < |A|.

In view of the lemma above, we may assume that βi ⩽ 4
3(s+1)

for all i ∈ [s + 1]. Let
W ⊂ [s + 1] be the set of all indices i such that βi >

1
3(s+1)

. Using (3.8) and our assumptions
on βi, we have

1 <
s+1∑
i=1

βi =
∑
i∈W

βi +
∑

i∈[s+1]\W

βi ⩽ |W | · 4

3(s+ 1)
+ (s+ 1− |W |) 1

3(s+ 1)
=

1

3
+

|W |
s+ 1

,

which implies that |W | > 2
3
(s+ 1).

Arguing similarly to how we argued in the beginning of the proof of Lemma 3.4, we get that
the set G′ := {3(s + 1), 6(s + 1), . . . , 3k(s + 1)} is not in Fi for i ∈ W , and therefore for
any F ∈ Fi there exists a positive integer ℓ such that |F ∩ [3(s+ 1)ℓ− 1]| ⩾ ℓ. We shall prove
the following lemma.

Lemma 3.5. Let n ⩾ 3(s+ 1)k − 1. Fix a family F ⊂
(
[n]
k

)
. Assume that for any A ∈ F there

is a positive integer ℓ such that |A ∩ [3(s+ 1)ℓ− 1]| ⩾ ℓ. Then

(3s+ 2)|∂F| ⩾ |F|.

Lemma 3.5 is a corollary of a more general result due to Peter Frankl (Theorem 4.1), which
we shall state in Section 4. We will use the same technique as that for the proof of Lemma 3.5 in
order to give a simpler proof of that result. Since the result of Frankl requires some extra effort
to grasp and its new proof is of independent interest, we decided to present it in concluding
remarks.

Since Fi(∅) ⊂ Fi, the conditions of Lemma 3.5 hold for Fi(∅), and thus we conclude that
for any i ∈ W we have |Fi(∅)| ⩽ (3s + 2)|∂Fi(∅)| ⩽ (3s + 2)|Fi(s + 1)|. We are only left
to take a subset U ⊂ W of size 2(s + 1)/3. This finishes the proof of Lemma 3.3 modulo
Lemma 3.5.
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Proof of Lemma 3.5. The proof is by induction on n, k. More precisely, we use the statement
for pairs (n − 1, k) and (n − 1, k − 1) in order to deduce it for the pair (n, k). The base cases
are k = 1 and n = 3(s + 1)k − 1. For k = 1 we simply use that F ⊂ {{1}, . . . , {3s + 2}}.
In the case n = 3(s + 1)k − 1 we do not have any restrictions on F and simply use the double
counting bound analogous to (3.11).

Let us justify the induction step. Let us put F ′ := {F \ {n} : n ∈ F, F ∈ F}
and F ′′ := {F : n /∈ F, F ∈ F}. We have |F| = |F ′| + |F ′′|. Moreover, ∂F ⊃ G ∪ ∂F ′′,
where G := {{n} ∪ A : A ∈ ∂F ′} and, clearly, G ∩ ∂F ′′ = ∅ (all sets from the first family
contain n, while the sets from the second family do not). Note that the inductive hypothesis
applies to both F ′ and F ′′. In the first case, this is due to the fact that n ⩾ 3(s + 1)k and thus
for any A ∈ F ′ the ℓ-condition on the set {n} ∪ A must be satisfied for some ℓ ⩽ k − 1. In the
second case, this is simply because F ′′ ⊂ F . By induction, (3s+2)|G| = (3s+2)|∂F ′| ⩾ |F ′|
and (3s+ 2)|∂F ′′| ⩾ |F ′′|. Therefore,

(3s+ 2)|∂F| ⩾ (3s+ 2)|G|+ (3s+ 2)|∂F ′′| ⩾ |F ′|+ |F ′′| = |F|.

This completes the proof of Lemma 3.3.

3.3. The body of the proof

The shiftedness of Fi implies

∂(Fi(∅)) ⊂ Fi(s+ 1) ⊂ Fi(s) ⊂ . . . ⊂ Fi(1). (3.9)

Note that A(S, [s + 1]) =
(

X
k−|S|

)
for any S such that |S| ⩾ 2, and thus Fi(S, [s + 1]) ⊂

A(S, [s+1]) for every such S. Also, note that A(i) =
(

X
k−1

)
if i ⩽ s, and that A(s+1) = ∅ and

A(∅) = ∅. Thus, in order to prove the theorem, it is sufficient to check that for some i ∈ [s+1]
we have

|Fi(∅)|+
s+1∑
j=1

|Fi(j)| ⩽ |A(∅)|+
s+1∑
j=1

|A(j)| = s

(
n′

k − 1

)
. (3.10)

We have already verified in the proof of Lemma 3.2 that

|Fi(∅)| ⩽ t|∂Fi(∅)| ⩽ t|Fi(s+ 1)|. (3.11)

If |Fi(∅)| ⩽ τi|Fi(s + 1)|, then the same analysis as that leading to (3.10) and the fact
that |Fi| ⩾ |A| imply

(τi + 1)|Fi(s+ 1)|+
s∑

j=1

|Fi(j)| ⩾ s

(
n′

k − 1

)
.

In view of (3.11) and Lemma 3.3 we can take τi := 3s + 2 for a set U of 2(s + 1)/3
indices i ∈ [s+ 1] and τi := t for other i.

Denote
αi,j :=

|Fi(j)|(
n′

k−1

)
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and take a uniformly random matching M of size t from
(
[s+2,n]
k−1

)
. Rewriting the penultimate

displayed inequality in terms of the expected intersections with M, for any i ∈ [s+ 1] we have

(τi + 1)tαi,s+1 +
s∑

j=1

tαi,j ⩾ st. (3.12)

Recall the following result from [FK22] (stated with the parameters that are convenient for
us).

Theorem 3.6 (Frankl, Kupavskii [FK22]). Suppose that n′, k, t are positive integers
and n′ ⩾ (k − 1)t. Let G ⊂

(
[n′]
k−1

)
be a family and α := |G|/

(
n′

k−1

)
. Let η be the random

variable equal to the size of the intersection of G with a t-matching M of (k − 1)-sets, chosen
uniformly at random. Then E[η] = αt and, for any positive β, we have

Pr
[
|η − αt| ⩾ 2β

√
t
]
⩽ 2e−β2/2. (3.13)

Using (3.13) with β = 5
√
log s for each Fi(j) and applying the union bound we get that∣∣|Fi(j) ∩M| − αi,jt

∣∣ ⩽ 10
√
t log s := γ (3.14)

for every 1 ⩽ i, j ⩽ s+ 1 with probability at least 1− 2(s+ 1)2 · e−12.5 log s > 1− s−10, where
the last inequality is valid for any s > 20.

We remark here that, in view of the inequality t < 3e(s+ 1), we have

γ + 1 <
s

12
(3.15)

for any s ⩾ 2 · 106. This is essentially where the value of s0 comes from.
We also note that (3.13) can be reproved in a stronger form, where essentially

√
t log s on

the left hand side can be replaced by
√
αt log s (cf. [KK21, Theorem 6] for such a statement in

a related setting). Also, the inequality (3.15) can be weakened for larger n. I.e., for n > 40sk
the bound γ+1 < s

4
is sufficient. Combined together, this will significantly improve the bounds

on s0 (to about s0 = 103), but lead to a more technical proof, so we avoid it.
The following technical lemma exploits (3.12).

Lemma 3.7. (i) For any i ∈ [s+ 1] we have tαi,(s+1)/3 ⩾ s+ 1 + γ or tαi,s+1 ⩾ s+1
3

+ γ.

(ii) For any i ∈ U and j ⩾ (s+ 1)/6 we have tαi,s+1−j ⩾ j + 1 + γ.

Proof. (i) Assume that neither of the inequalities holds for some i. Then we can bound the left
hand side of (3.12) as

(t+ 1)
(s+ 1

3
+ γ

)
+

s

3
t+

2s

3
(s+ 1 + γ) ⩽ (γ + 1)(s+ t+ 1) + s

2s+ 2t

3

⩽ (γ + 1)(s+ t+ 1) +
5st

6
,
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where the last inequality holds provided t ⩾ 6s (cf. (3.1)). The last expression is smaller than st
provided γ + 1 < st

6(s+t+1)
. The right hand side is at least s

7
for t ⩾ 6s. At the same time, we

have γ + 1 ⩽ s+1
12

by (3.15), which shows the validity of the inequality.
(ii) This part has a similar proof, except we use (3.12) with τi = 3s + 2 in this case. If one

of the inequalities fail then we can bound the left hand side of (3.12) by

(3s+ 3 + j)
(
j + 1 + γ

)
+ (s− j)t ⩽ st− jt+ (3s+ j)j + (3s+ 3 + 4j)(1 + γ)

⩽ st− jt

3
+ (3s+ 3 + 4j)(1 + γ),

where the last inequality holds for 2
3
t ⩾ 4s ⩾ 3s + j. If 1 + γ < jt

3(3s+3+4j)
then the last

expression is smaller than st, a contradiction. An easy calculation shows that jt
3(3s+3+4j)

> s+1
11

for j ⩾ s+1
6

and t ⩾ 6s+ 6. Again, using (3.15), we have the desired inequality.

Recall that (3.14) holds for every 1 ⩽ i, j ⩽ s+ 1 with probability at least 1− s−10. Let us
denote this event E1.

Let us also denote E2 the event that Fi(s+1)∩M ≠ ∅ for at least one i. Using (3.5), there
is i ∈ [s + 1] such that αi,s+1 ⩾ s−4, and thus E2 happens (even with that particular i) with
probability at least 1

t
E[Fi(s+ 1) ∩M] = αi,s+1 ⩾ s−4.

3.4. Rearranging the families and failing to find a rainbow matching

For this subsection, M is some fixed matching as above. We rearrange the families accord-
ing to the following rules. The first two rules are as follows. The integer s1 below satisfies
0 ⩽ s1 ⩽ 2(s+ 1)/3. We will later show that s1 > 0.

(R1) For each i ∈ [2(s + 1)/3] the inequality (3.7) holds. This is possible due to Lemma 3.3.
Note that for each such i the conclusion of Lemma 3.7 (ii) holds.

(R2) For all i ∈ [s1] we have tαi,s+1 ⩽ s+1
6

+ γ, and for all i ∈ [s1 + 1, 2(s + 1)/3] we have
tαi,s+1 >

s+1
6

+ γ.

The next rules are in the assumption that E1∩E2 holds for M. Note that E1∩E2 has positive
probability (which is at least s−4 − s−10).

Lemma 3.7 (i) implies that, whenever E1 holds, for any i ∈ [s + 1] we have at least one of
the following: ∣∣Fi

(
(s+ 1)/3

)
∩M

∣∣ ⩾ s+ 1 or |Fi(s+ 1) ∩M| ⩾ s+ 1

3
.

Split the set
[
s1 + 1, s+ 1

]
into two disjoint parts W1 and W2, where

(a) [s1 + 1, 2(s+ 1)/3] ⊂ W1;

(b) the families with i ∈ W1, i > 2(s+ 1)/3, satisfy |Fi(s+ 1) ∩M| ⩾ s+1
3

;

(c) the families with i ∈ W2 satisfy |Fi((s+ 1)/3) ∩M| ⩾ s+ 1.
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Put u = |W1| and note that we might have u = 0. We also have |W2| ⩽ s+1
3

. Note also that
|Fi(s+1)∩M| ⩾ (s+1)/3 for each i ∈ W1. The reason for the condition (a) above is to make
sure that this interval is a part of W1, in case both inequalities displayed above are valid for the
respective family.

Definition 3.8. For each i ∈ [s1] define mi ∈ [s + 1] to be the smallest index j such that
|Fi(j) ∩M| ⩽ s+ 1− j. If |Fi(j) ∩M| > s+ 1− j for all j then put mi = ∞.

By the definition of mi, Lemma 3.7 implies that mi >
5(s+1)

6
for each i.

Rearrange the families so that the following holds.

(R3) We have mi ⩽ mi′ for i > i′, where i, i′ ∈ [s1].

(R4) This condition is only applied if u = 0 and |Fi(s+ 1)∩M| = ∅ for each i ∈ [s1]. (Note
that in this case s1 = 2(s + 1)/3.) We have |Fs+1(s + 1) ∩M| ̸= ∅. (Note that this is
possible since the event E2 holds.)

Let W1 := {w1, . . . , wu}, where w1 > w2 > . . . > wu, and W2 := {v1, . . . , vs+1−s1−u}.
Next, we try to construct a particular rainbow matching inside M and, by failing to do so,

derive some properties of the families F1, . . . ,Fs1 . We employ the following procedure.

(1) for each i = 1, . . . , u include in the candidate rainbow matching a set from
M∩Fwi

(s+ 2− i) that was not used before. If i ⩽ s+1
3

such a set is possible to choose
since

i ⩽
s+ 1

3
⩽ |M ∩ Fwi

(s+ 1)| ⩽ |M ∩ Fwi
(s+ 2− i)|.

If i > s+1
3

then wi ∈ [2(s + 1)/3] and the validity of E1 implies
|Fwi

(s+2− i)∩M| ⩾ tαwi,s+2−i−γ ⩾ i, where the last inequality is due to Lemma 3.7
(ii). Denote this part of the matching R1. If W1 = ∅ then we skip this step.

(1’) If the rule (R3) of ordering the families was applied (and thus W1 = ∅), then let R1

consist of one set, taken from Fs+1(s + 1) ∩ M . Otherwise, put R1 = ∅ and skip this
step.2

(2) Next, attempt to find a rainbow matching R2 that is disjoint with R1 and that covers the
first s1 families. Put r = |R1| and for each i = 1, . . . , s1 try to take a set
from Fi(s+ 2− r − i) ∩M that was not used before.

(2) If the previous step was successful, complete the rainbow matching with the partR3 that is
disjoint from R1∪R2 and that for each j = 1, . . . , s+1−s1−r includes a set from Fvj(j)
that was not taken before. Such sets are always possible to choose since

|Fvj(j) ∩M| ⩾ |Fvj((s+ 1)/3) ∩M| ⩾ s+ 1.

If step (1’) was applied then we exclude the family Fs+1 from this step since one set from
this family was already included in the matching.

2Note that both (1) and (1’) are skipped if W1 = ∅, but (R3) is not applied. Thus, |R| ∈ {1, u}.
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As we have already pointed out, steps (1) and (3) cannot fail by our assumptions on the respec-
tive families. Since we cannot find a rainbow matching, step (2) must fail. Moreover, it must
have failed for 1 ⩽ r + i − 1 < s+1

6
, where the right inequality is due to Lemma 3.7 (ii) and

the validity of E1, and the left inequality is due to E2. The right inequality, in particular, means
that u ⩽ r < s+1

6
, and thus, using property (a) of the definition of W1, we

get s1 > 2(s+1)
3

− s+1
6

= s+1
2

.
Let us focus on the families Fi(s+2− r− i), i = 1, . . . , s1. Recall Definition 3.8. We must

have
|Fi(s+ 2− r − i) ∩M| ⩽ i+ r − 1

for some i, where 1 ⩽ i+ r − 1 < s+1
6

. (This follows from the same inequality two paragraphs
above.) Let R be the smallest such i. Note that R < s+1

6
− r + 1 and that

mR ⩽ s+ 2− r −R ⩽ s,

where the last inequality is due to the fact that R + r ⩾ 2.

3.5. Concluding the proof: averaging over M.

Our ultimate goal is to bound the sum
∑s1

i=1

(
|Fi(∅)|+

∑s+1
j=1 |Fi(j)|

)
. As we have shown, this

sum is at most
∑s1

i=1

(
(3s+ 3)|Fi(s+ 1)|+

∑s
j=1 |Fi(j)|

)
. More precisely, define the random

variable

ξ :=

s1∑
i=1

(
(3s+ 3)|Fi(s+ 1) ∩M|+

s∑
j=1

|Fi(j) ∩M|
)
,

depending on M. We will bound the expectation E ξ, where the expectation is of course taken
w.r.t. a t-matching M chosen uniformly at random, and show that E ξ < s1st. This will imply
that for at least one of i ∈ [s1] the inequality (3.12) fails and thus |Fi| < |A| (cf. (3.10)). Next,
we provide a bound for E ξ.

In case when the event E2 fails we have Fi(s+ 1) = ∅ for all i, and we can write

s1∑
i=1

(
3(s+ 1)|Fi(s+ 1) ∩M|+

s∑
j=1

|Fi(j) ∩M|
)
=

s1∑
i=1

s∑
j=1

|Fi(j) ∩M| ⩽ s1st.

In other words,
E[ξ | E2] ⩽ s1st. (3.16)

In case when the event E2 holds but E1 fails for M, we give a trivial bound

s1∑
i=1

(
(3s+ 3)|Fi(s+ 1) ∩M|+

s∑
j=1

|Fi(j) ∩M|
)
⩽ s1(4s+ 3)t.

Recall that Pr[E1] ⩽ s−10. Thus, we have

E[ξ | E2 ∩ E1] · Pr[E2 ∩ E1] ⩽ s1(4s+ 3)t · Pr[E1] ⩽ s−6. (3.17)
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Here we use a simple bound s1(4s+ 3)t < 3s2t < s4, which is valid for any s ⩾ 40.
Finally, assume that E1 ∩ E2 holds for M. For a moment, we fix M and use notation from

the previous subsection. For i ∈ [R− 1] we use the fact that E1 holds, and thus

|Fi(s+ 1) ∩M| ⩽ tαi,s+1 + γ ⩽
s+ 1

6
+ 2γ <

s+ 1

3
.

(We used the definition of s1 in the penultimate inequality and (3.15) in the last inequality.)
Given this, we apply the trivial bound

(3s+ 3)|Fi(s+ 1) ∩M|+
s∑

j=1

|Fi(j) ∩M| ⩽(3s+ 3)
s+ 1

3
+ st

=st+ (s+ 1)2.

For i ∈ [R, s1] we use the fact that mi ⩽ mR ⩽ s+ 2− r −R for such i.

(3s+ 3)|Fi(s+ 1) ∩M|+
s∑

j=1

|Fi(j) ∩M|

⩽ (3s+ 3 + s+ 1−mi)(s+ 1−mi) + (mi − 1)t

= st− (s+ 1−mi)(t− 4s− 4 +mi)

⩽ st− (s+ 1−mi)(t− 4s− 4)

⩽ st− (r +R− 1)(t− 4s− 4),

provided t ⩾ 4s+ 4.
Recall that R < s+1

6
− r + 1 and s1 ⩾ 2(s+1)

3
− u. Also, r ⩾ u. Therefore,

s1 − R + 1 ⩾ (2
3
− 1

6
)(s + 1) = s+1

2
. Summing the bounds we obtained above and using

this inequality in the third line below, we get the following inequality for the value of ξ for each
such M.

ξ ⩽ (R− 1)
(
st+ (s+ 1)2

)
+ (s1 −R + 1)

(
st− (R + r − 1)(t− 5s− 5)

)
⩽ s1st+ (R− 1)(s+ 1)2 − (s1 −R + 1)(R + r − 1)(t− 5s− 5)

⩽ s1st+ (R− 1)(s+ 1)2 − s+ 1

2
(R + r − 1)(t− 5s− 5)

= s1st− (R− 1)
s+ 1

2

(
(t− 5s− 5)− 2(s+ 1)

)
− r

s+ 1

2
(t− 5s− 5)

⩽ s1st− (R− 1)
s+ 1

2
· 2− r

s+ 1

2
· 2

= s1st− (R + r − 1)(s+ 1)

⩽ s1st− (s+ 1).

The penultimate inequality is due to inequality (3.1) and the last inequality is due to the fact that
R + r ⩾ 2.

Finally, using the last displayed chain of inequalities and (3.16), (3.17), we have



16 Andrey Kupavskii

E ξ = E[ξ | E2] Pr[E2] + E[ξ | E1 ∩ E2] Pr[E1 ∩ E2] + E[ξ | E1 ∩ E2] Pr[E1 ∩ E2]

⩽ s1st · Pr[E2] + s−6 + (s1st− (s+ 1)) Pr[E1 ∩ E2]

⩽ s1st+ s−6 − (s+ 1)
(
Pr[E1]− Pr[E2]

)
⩽ s1st+ s−6 − (s+ 1)(s−4 − s−10)

< s1st.

Thus, for one of i ∈ [s1] the inequality (3.12) fails, which implies |Fi| < |A|. This concludes
the proof of the theorem.

4. Concluding remarks

Let us denote ∂bF to be the b-shadow, i.e., a collection of all (k − b)-sets that are contained in
some set from F . The following is the main result of the paper [Fra91] due to Peter Frankl. We
state it here in a different form.

Theorem 4.1 ([Fra91]). Fix some positive integers n, k, b, such that b ⩽ k, and αb < . . . < αk.
Consider a familyF ⊂

(
[n]
k

)
such that for any setF ∈ F there is i ∈ [b, k] such that |F∩[αi]| ⩾ i.

Then we have

|∂bF| ⩾ min
i∈[b,k]

(
αi

i−b

)(
αi

i

) |F|.

For convenience, let us denote the quantity in front of |F| in the right hand side by β. We
can prove this inequality in a bit simpler way using the same argument as in Lemma 3.5. For
completeness, let us present the proof.

Proof. The proof is by induction on n, k. More precisely, we use the statement for pairs (n−1, k)
and (n − 1, k − 1) in order to deduce it for the pair (n, k). The base cases are k = b, in which
case we simply have 1 set in the shadow and at most

(
αb

b

)
sets in F , and n = αk, in which case

any collection of sets in
(
[n]
k

)
satisfy the condition. We then simply use that |∂bF| ⩾ ( n

k−b)
(nk)

|F|,
which is valid by a simple double counting.

Let us justify the induction step. We put F ′ := {F \ {n} : n ∈ F, F ∈ F} and
F ′′ := {F : n /∈ F, F ∈ F}. We have |F| = |F ′| + |F ′′|. Moreover, ∂bF ⊃ G ∪ ∂bF ′′,
where G := {{n} ∪ A : A ∈ ∂bF ′} and, clearly, G ∩ ∂F ′′ = ∅ (all sets from the first
family contain n, while the sets from the second family do not). Note that the inductive hy-
pothesis applies to both F ′ and F ′′. In the first case, this is due to the fact that n > αk and
thus for any A ∈ F ′ the condition on the set {n} ∪ A must be satisfied for some i ⩽ k − 1
(so we are actually taking minimum over fewer terms). In the second case, this is simply be-
cause F ′′ ⊂ F . By induction, |G| = |∂bF ′| ⩾ β|F ′| and |∂bF ′′| ⩾ β|F ′′|. Therefore,
|∂bF| ⩾ |G|+ |∂bF ′′| ⩾ β|F ′|+ β|F ′′| = β|F|.
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Returning to the main topic of the paper, we note that it is not difficult to modify the proof
of Theorem 1.3 so that it gives a stability result. However, it will only work for shifted families.
Most of the proof actually does not require the families to be shifted. The main obstacle is the
inclusion F({i}, [s + 1]) ⊃ F({s + 1}, [s + 1]) ⊃ ∂Fi(∅, [s + 1]), which is valid for shifted
families only.
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