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We measure the branching fraction for the flavor-changing neutral-current process B! Xs‘
�‘� with

a sample of 89 � 106 ��4S� ! BB events recorded with the BABAR detector at the PEP-II e�e� storage
ring. The final state is reconstructed from e�e� or ���� pairs and a hadronic system Xs consisting of
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081802-4
one K� or K0
S and up to two pions, with at most one 
0. We observe a signal of 40 � 10�stat� � 2�syst�

events and extract the inclusive branching fraction B�B! Xs‘
�‘�� 	 �5:6 � 1:5�stat� �

0:6�exp syst� � 1:1�model syst��� 10�6 for m‘�‘� > 0:2 GeV=c2.

DOI: 10.1103/PhysRevLett.93.081802 PACS numbers: 13.20.He, 11.30.Er, 12.15.Ji
The rare decay B! Xs‘
�‘�, which proceeds through

the b! s‘�‘� transition, is interesting because the study
of its rate and charge asymmetry could lead to indirect
observation of physics beyond the standard model (SM).
This transition is forbidden at lowest order in the SM but
is allowed at higher order via electroweak penguin and
W-box diagrams. This implies that non-SM physics in
these loops would contribute at the same order as the SM
[1,2]. Recent SM calculations of the inclusive branching
fractions predict B�B! Xse

�e�� 	 �6:9 � 1:0� � 10�6

[�4:2 � 0:7� � 10�6 forme�e� > 0:2 GeV=c2] and B�B!
Xs�

���� 	 �4:2 � 0:7� � 10�6 [1,3]. Although the
branching fraction measurement for inclusive decays is
more challenging than for exclusive decays, it is moti-
vated by smaller theoretical uncertainties. Exclusive B!

K�
�‘�‘� (‘ 	 e;�) decays have been observed by Belle
and BABAR [4,5]. Belle has also reported a measurement
of the inclusive B! Xs‘�‘� branching fraction [6].

The data sample used in this analysis was collected
with the BABAR detector [7] at the PEP-II asymmetric-
energy e�e� storage ring at the Stanford Linear
Accelerator Center. The sample consists of 89 � 106 BB
events recorded at the ��4S�, corresponding to an inte-
grated luminosity of 81:9 fb�1.

We study the B! Xs‘�‘� process by fully recon-
structing a subset of all possible final states. The recon-
structed hadronic systems Xs consist of one K� or K0

S and
up to two pions, with at most one 
0. This approach
allows approximately half of the total inclusive rate to
be reconstructed. If the fraction of modes containing aK0

L

is assumed equal to that containing a K0
S, the missing

states represent �30% of the total rate. To compute the
inclusive branching fraction, we account for missing
modes and selection efficiencies using a B! Xs‘

�‘�

decay model constructed as follows. For mXs <
1:1 GeV=c2, exclusive B! K�
�‘�‘� decays are gener-
ated with a b! s‘�‘� decay model according to [1,8].
The remaining decays, for mXs > 1:1 GeV=c2, are gener-
ated according to a quark-level calculation [1,9] and the
b-quark Fermi motion model of [10]. JETSET [11] is then
used to hadronize the system consisting of a strange quark
and a spectator quark.

The full reconstruction method exploits the strong
kinematic discrimination provided by mES 	������������������������
E2

beam � ~p2
B

q
and �E 	 EB � Ebeam, where Ebeam is the

beam energy and EB ( ~pB) is the reconstructed B-meson
energy (three-momentum). These quantities are eval-
uated in the e�e� center-of-mass (c.m.) frame.
Clean identification of the B decay products is impor-
tant for minimizing the backgrounds. Electron candi-
dates are required to have a laboratory-frame
momentum p‘ > 0:5 GeV=c and are identified with mea-
surements from the tracking systems and the electromag-
netic calorimeter. Bremsstrahlung photons are recovered
by combining an electron with up to three photons within
a small angular region around the electron direction [12].
Muon candidates are required to have p‘ > 1:0 GeV=c
and are identified as penetrating charged particles in the
instrumented flux return. Charged kaon identification
relies on measurements performed with the Cherenkov
ring-imaging detector and the tracking systems. The K0

S
candidates are required to have jm
�
� �mK0

S
j<

11:2 MeV=c2, a decay length greater than 2 mm, and
cos� > 0:99, where � is the angle between the K0

S mo-
mentum vector and a line that connects the primary
vertex with the K0

S vertex. Charged tracks that do not
satisfy tight e� or K� identification are considered to be
pions. Neutral pions are required to have a laboratory-
frame energy greater than 400 MeV, a photon daughter
energy greater than 50 MeV, and jm�� �m
0 j<
10 MeV=c2.

The B candidates are reconstructed by first selecting
the e�e� or ���� pair with the largest value of jp‘�j �
jp‘�j. Then, B! Xs‘

�‘� candidates are formed by add-
ing any of the following hadronic topologies: K�, K�
0,
K�
�, K�
�
0, K�
�
�, K0

S, K0
S


0, K0
S


�, K0
S


�
0,
and K0

S

�
�. (We name one member of a pair of charge-

conjugate states to refer to both, unless we specify other-
wise.) A limit is imposed on the number of pions because
the expected signal-to-background ratio drops signifi-
cantly with increasing multiplicity.

With loose selection criteria, the average number of B
candidates per event is five in the signal simulation. A
likelihood function for the signal is constructed based on
the simulated distributions of �E, log�PBvtx�, and cos�B,
where PBvtx is the fit probability for the B vertex con-
structed from charged daughter particles and �B is the
angle between ~pB and the e� beam axis. We select the
candidate with the largest signal likelihood before further
cuts are applied. This approach entails a loss of 8% in
signal efficiency but reduces the overall background by
34% in the final sample.

Combinatorial backgrounds from nonsignal BB and
continuum e�e� ! q  q (with q 	 u; d; s; c) events are
reduced by requiring mXs < 1:8 GeV=c2, 5:20<mES <
5:29 GeV=c2, and �0:2< �E< 0:1 GeV. We impose a
limit onmXs because the signal-to-background ratio drops
as mXs increases.
081802-4
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FIG. 1 (color online). Distributions of mES for selected
(a) B! Xs‘

�‘� (‘ 	 e;�) and (b) B! Xse
�� candidates.

The solid lines represent the result of the fits and the dashed
line represents the background component under the signal
peak.

TABLE I. Signal yield, significance, efficiency, and branch-
ing fraction in the electron and muon channels, as well as for
the electron � muon average (first, second, and third rows,
respectively). For the signal yield, the first error is statistical
and the second error is systematic. For the signal efficiency, the
first error corresponds to the experimental systematic uncer-
tainty arising from detector modeling, hadronization, and
Monte Carlo statistics, whereas the second error corresponds
to the uncertainties in the signal model. For the branching
fraction, the errors correspond to statistical, experimental
systematic, and signal model systematic uncertainties.

Nsig S + (%) B �10�6�

29:2 � 8:3 � 1:3 4.0 2:74 � 0:27 � 0:49 6:0 � 1:7 � 0:7 � 1:1
11:2 � 6:2 � 0:9 2.0 1:26 � 0:12 � 0:25 5:0 � 2:8 � 0:6 � 1:0
40:1 � 10:4 � 1:7 4.3 2:00 � 0:19 � 0:37 5:6 � 1:5 � 0:6 � 1:1
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The dominant background producing a peak in mES at
the B mass originates from B! J= X,  �2S�X decays
with J= ! ‘�‘� and  �2S� ! ‘�‘�. This charmonium
background is suppressed by vetoing B candidates with
dilepton mass in the ranges 2:70<me�e� < 3:25, 2:80<
m���� < 3:20, 3:45<me�e� < 3:80, and 3:55<
m���� < 3:80 GeV=c2. In the electron channel, the veto
is applied before and after bremsstrahlung recovery to
allow for imperfect recovery. The potential peaking
background from B! Xs� decays with conversion of
the photon into an e�e� pair in the detector material is
removed by requiring me�e� > 0:2 GeV=c2. This cut also
serves to reduce contributions from b! se�e� transi-
tions in which the e�e� pair originates from a photon.

The final suppression of the combinatorial background
is achieved with a likelihood based on nine variables:
(i) �E, (ii) �EROE, (iii) mROE

ES , where ROE refers to the
rest of the event (all charged tracks and photon candidates
not included in the B candidate), (iv) the separation �z
between the two leptons along the beam direction mea-
sured at their points of closest approach to the beam axis,
(v) log�PBvtx�, (vi) cos�miss, where �miss is the angle
between the missing momentum vector for the whole
event and the z axis in the c.m. frame, (vii) cos�B,
(viii) j cos�T j, where �T is the angle between the thrust
axes of the B candidate and the ROE in the c.m. frame,
and (ix) the ratio R2 of the second and zeroth-order Fox-
Wolfram moments [13]. The variables �E, �EROE, and
mROE
ES are most effective at rejecting BB background,

especially for events with two semileptonic decays that
have large missing energy. The event-shape variables
j cos�T j and R2 are most effective at suppressing contin-
uum events. A likelihood value is computed as the prod-
uct of nine independent probability density functions
(PDF) for the signal, BB, and continuum background
components. Using simulated B! Xs‘

�‘� decays, we
choose cuts on the ratio LR 	 Lsignal=�Lsignal �LBB �
Lcont� to maximize the statistical significance of the
signal. This optimization is performed separately for
081802-5
electron and muon channels in the regions mXs < 0:6,
0:6<mXs < 1:1, and 1:1<mXs < 1:8 GeV=c2, and re-
sults in progressively harder LR cuts for increasing mXs .

After applying all selection criteria, we obtain a sam-
ple of 349 (222) events in the electron (muon) channel.
According to the simulation, the remaining background
consists mostly of BB events.

We perform an extended unbinned maximum-
likelihood fit to the mES distribution to extract the signal
yield Nsig as well as the combinatorial background shape
and yield. The likelihood function consists of four com-
ponents: signal, charmonium peaking background, had-
ronic peaking background (see below), and combinatorial
background.

The shapes of the signal and charmonium peaking
background are described by the same Gaussian PDF,
with a width of 2.80, 2.61, and 2:74 MeV=c2 in the
electron, muon, and electron � muon channels, respec-
tively. The Gaussian mean and width are determined
from signal-like B! J= X,  �2S�X decay candidates
satisfying all selection criteria but failing the charmo-
nium veto (charmonium-veto sample). The charmonium
peaking background is estimated from the simulation to
contribute 0:4 � 0:2 (1:4 � 0:5) events in the electron
(muon) channel. The size and shape of the hadronic
peaking background component arising from B!

D�
�n
 (n > 0) decays with misidentification of two
charged pions as leptons are derived directly from data
by performing the analysis without the lepton identifica-
tion requirements. Taking the 
! ‘ misidentification
rates into account, we estimate the hadronic peaking
background to be <0:1 and 2:4 � 0:8 events in the elec-
tron and muon channels, respectively. The error on the
misidentification rates derived from data control samples
dominates the uncertainty. The PDF for the combinatorial
background arising from continuum and BB events is an
ARGUS function [14] with an end point equal to Ebeam.
081802-5
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The fit results are presented in Fig. 1(a) and Table I. The

statistical significance is S 	
�����������������������������������
2 ln�Lmax=L

0
max�

p
, where

Lmax is the maximum likelihood for the fit and L0
max is

that for a fit with signal yield fixed to zero. The B!
Xs‘

�‘� signal yield is obtained from a fit to the com-
bined electron and muon data. Figure 1(b) shows the mES
distribution of B! Xse

�� candidates selected using
the nominal criteria but requiring leptons of different
flavor. An ARGUS function fits this distribution well,
consistent with that sample being pure combinatorial
background.

The branching fraction is B 	 Nsig=�2NBB+�, where
NBB 	 �88:9 � 1:0� � 106 is the number of BB pairs
and + is the signal efficiency. The yield Nsig includes a
contribution from events containing a true B! Xs‘

�‘�

decay but having a selected B candidate with incomplete
or wrong decay products (cross-feed events). We estimate
the cross-feed contribution to the signal yield to be 1:5 �
1:5 (0:6 � 0:6) events in the electron (muon) channel by
including in the fit a component whose shape and nor-
malization are taken from simulation. The corresponding
uncertainties are estimated with an ensemble of simu-
lated data-sized experiments. The signal efficiency is
adjusted to reflect this contribution. Figure 2 shows the
B! Xs‘�‘� differential branching fraction as a function
of mXs and m‘�‘� , obtained by applying the nominal
likelihood fit procedure to the data in bins of mXs and
m‘�‘� . We use the nominal Gaussian shape for all bins, as
we found no significant shape dependence on mXs or
m‘�‘� .

We evaluate the systematic uncertainties in the signal
yield by varying the signal Gaussian parameters (mean
and width) and the signal shape (using asymmetric signal
shapes) within the constraints allowed by the
charmonium-veto sample. The amount of charmonium
and hadronic peaking background is varied, as well as the
shape of the latter.

Uncertainties in the signal efficiency originate from the
detector modeling and from the simulation of signal
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FIG. 2 (color online). Differential branching fraction as a
function of (a) hadronic mass and (b) dilepton mass, averaged
over electron and muon channels for data (points) and signal
Monte Carlo (histogram). The outer (inner) error bars corre-
spond to the total (statistical) uncertainties.
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decays. From control data samples we find uncertainties
of 1.3% per track (0.8% per
�) in the tracking efficiency;
0.85% per electron, 1.55% per muon, 1.0% per K�, and
1.4% per 
� in the charged-particle identification effi-
ciency; 1.5% perK0

S and 5.6% per
0 in the reconstruction
efficiency. We check the efficiency of the cut in LR with
the charmonium-veto sample and take the discrepancy
with the simulation (3.7%) as the uncertainty. The frac-
tion of signal cross feed included in the signal Gaussian is
varied by �100%. Altogether, the uncertainty from de-
tector modeling is 8.3%.

The dominant source of uncertainty (18%) arises from
the decay model. The fractions of B! K‘�‘� and B!
K
‘�‘� decays are both increased (or decreased) to-
gether by the theoretical uncertainties [1], resulting in
the largest contribution (16%). Parameters of the Fermi
motion model are varied within limits allowed by mea-
surements of hadronic moments in semileptonic B decays
[15] and the photon spectrum in inclusive B! Xs� de-
cays [16]. The transition point (in mXs) between the B!

K
‘�‘� and b! s‘�‘� decay models is varied by
�0:1 GeV=c2.

Hadronization uncertainties affecting the regionmXs >
1:1 GeV=c2 total 4.9% and are evaluated as follows. The
ratio between the generator yield for decay modes con-
taining a K0

S and that for modes containing a charged
kaon is varied within the range 0:50 � 0:05, to allow for
isospin violation. Similarly, the ratio between modes with
one and no 
0 is varied within the range 1:0 � 0:5, and
the ratio between two-body and three-body hadronic sys-
tems is varied within the range 0:5 � 0:3. Uncertainties
in the last two ratios are set by the level of discrepancy
between data and simulation as measured in [17]. The
uncertainty in the fraction of modes with pion or kaon
multiplicities different from those used in this analysis, or
with photons that do not originate from 
0 decays but
rather from ,, ,0, !, etc., is estimated by varying these
different fractions by �50%.

Table I summarizes the results of the analysis. For the
combined B! Xs‘�‘� branching fraction we assume
TABLE II. Partial branching fractions in bins of dilepton and
hadronic mass averaged over electrons and muons. The first
error is statistical and the second error is systematic.

m‘�‘� B mXs B
(GeV=c2) �10�6� (GeV=c2) �10�6�

0.2–1.0 0:08 � 0:36�0:07
�0:04 0.4–0.6 0:53 � 0:17 � 0:04

1.0–2.0 1:6 � 0:6 � 0:5 0.6–0.8 0:32 � 0:24 � 0:04
2.0–mJ= 1:8 � 0:8 � 0:4 0.8–1.0 0:64 � 0:40 � 0:08
mJ= –m 0 1:0 � 0:8 � 0:2 1.0–1.8 3:5 � 2:1�1:1

�0:9
m 0–5.0 0:64 � 0:32�0:12

�0:09

1.0–2.45 1:8 � 0:7 � 0:5
3.8–5.0 0:50 � 0:25�0:08

�0:07
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equal branching fractions in the electron and muon chan-
nels, and average over both channels. Table II shows the
partial branching fractions in several dilepton and had-
ronic mass ranges.

We search for CP violation in the B! Xs‘�‘� decay
by performing separate fits to B and B final states, where
the final state flavor is determined by the kaon and pion
charges (modes with Xs 	 K0

S, K0
S


0, or K0
S


�
� are not
used). We find NB

sig 	 14:7 � 6:5�stat� and NB
sig 	 22:9 �

7:4�stat�, corresponding to an asymmetry ACP � �NB �

NB�=�NB � NB� 	 �0:22 � 0:26�stat�. The systematic
uncertainty is taken to be the statistical uncertainty in
the asymmetry measured in the charmonium-veto sam-
ple Ac  cs

CP 	 �0:005 � 0:016�stat�.
In summary, we observe a signal of 40 � 10�stat� �

2�syst� B! Xs‘
�‘� events with a statistical signif-

icance of 4:30. The corresponding branching fraction
B �B! Xs‘�‘�� 	 �5:6 � 1:5 �stat� � 0:6 �exp syst� �
1:1�model syst��� 10�6 for m‘�‘� > 0:2 GeV=c2 agrees
well with predictions [1] and a previous measurement [6].
In restricted dilepton mass ranges below and above the
charmonium region (see bottom of Table II), the partial
branching fractions also agree with predictions [18]. At
low hadronic mass, the partial branching fractions are
consistent with existing B! K�
�‘�‘� measurements
[4,5]. We determine the direct CP asymmetry to be
ACP 	 �0:22 � 0:26�stat� � 0:02�syst�, in agreement
with a predicted asymmetry of �0:19�0:17

�0:19� � 10�2 in the
SM [19]. Overall, we find no evidence for contributions
from physics beyond the SM.
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