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Economic and biophysical limits to seaweed 
farming for climate change mitigation

Julianne DeAngelo    1  , Benjamin T. Saenz2, Isabella B. Arzeno-Soltero    3, 
Christina A. Frieder4, Matthew C. Long    5, Joseph Hamman6, 
Kristen A. Davis    1,7 & Steven J. Davis    1,7 

Net-zero greenhouse gas (GHG) emissions targets are driving interest 
in opportunities for biomass-based negative emissions and bioenergy, 
including from marine sources such as seaweed. Yet the biophysical 
and economic limits to farming seaweed at scales relevant to the 
global carbon budget have not been assessed in detail. We use coupled 
seaweed growth and technoeconomic models to estimate the costs of 
global seaweed production and related climate benefits, systematically 
testing the relative importance of model parameters. Under our most 
optimistic assumptions, sinking farmed seaweed to the deep sea to 
sequester a gigaton of CO2 per year costs as little as US$480 per tCO2 on 
average, while using farmed seaweed for products that avoid a gigaton of 
CO2-equivalent GHG emissions annually could return a profit of $50 per 
tCO2-eq. However, these costs depend on low farming costs, high seaweed 
yields, and assumptions that almost all carbon in seaweed is removed 
from the atmosphere (that is, competition between phytoplankton and 
seaweed is negligible) and that seaweed products can displace products 
with substantial embodied non-CO2 GHG emissions. Moreover, the 
gigaton-scale climate benefits we model would require farming very large 
areas (>90,000 km2)—a >30-fold increase in the area currently farmed. 
Our results therefore suggest that seaweed-based climate benefits may be 
feasible, but targeted research and demonstrations are needed to further 
reduce economic and biophysical uncertainties.

Reaching net-zero CO2 emissions will entail drastically reducing fossil 
fuel emissions and offsetting any residual emissions by removing carbon 
from the atmosphere (that is, negative emissions)1–5. Biomass-based 
technologies may help in both fronts by supplying carbon-neutral 
alternatives to fossil fuels6,7 and providing negative emissions via 
enhancement of natural sinks8 and/or bioenergy with carbon capture 
and storage9. However, numerous studies have questioned whether 
terrestrial biomass can provide either energy or negative emissions at 

the scales required in many climate mitigation scenarios, often owing 
to limited land and water resources10–12. This has driven surging interest 
in ocean-based carbon dioxide removal, including via cultivated mac-
roalgae (seaweed), which would not require inputs of land or freshwater 
and might have environmental co-benefits (for example, see refs. 13–21). 
Seaweed products might also help to lower greenhouse gas emissions, 
for example by reducing methane emissions from ruminants22, and 
replacing fossil fuels23 and emissions-intensive agricultural products24.
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model two idealized scenarios: an ‘ambient’ nutrient scenario that 
computes growth on the basis of observed climatological surface 
nitrate concentrations, and a ‘limited nutrient’ scenario that computes 
growth rate on the basis of ambient nitrate concentrations but limits 
algal biomass increases so as not to exceed the magnitude of local 
natural (upward) nitrate supply as estimated by a high-resolution 
simulation of the Community Earth System Model35. On the basis of 
the simulated yields, we then calculate spatially explicit costs per ton 
of seaweed harvested and either costs per ton of greenhouse gas (GHG) 
emissions avoided (when used as food, feed or for biofuels) or costs 
per ton of carbon removed from the atmosphere as a carbon dioxide 
removal (CDR) strategy. Given the large uncertainty in technoeconomic 
parameters, we perform a Monte Carlo simulation with n = 5,000 for 
each nutrient scenario, assuming uniform distributions of each vari-
able. Technoeconomic variables include (1) farming costs (for example, 
capital cost, harvest costs), (2) for carbon sequestration, the fraction of 
sunk seaweed carbon sequestered for >100 yr in the deep sea and (3) for 
GHG emissions mitigation, the net cost and net emissions of seaweed 
transported and converted into a product (Table 1; see Supplementary 
Tables 1 and 2 for listings of all variables and relevant sources). We test 
model sensitivity to seaweed yield by sampling from a normal distri-
bution of seaweed yield uncertainty for each Monte Carlo simulation. 
Additionally, because seaweed draws carbon from the surface ocean 
dissolved inorganic carbon pool (which does not maintain instantane-
ous equilibrium with the atmosphere) and because large-scale seaweed 
farming can reduce natural carbon uptake by phytoplankton via nutri-
ent competition, we include a variable representing the net efficiency 
of seaweed growth in reducing atmospheric CO2 (‘atmospheric removal 
fraction’; Supplementary Table 1). Our approach is predicated on large 
uncertainties associated with most of the variables we analyse, not only 
in the future but also the present (the relatively few costs reported in the 

Seaweed has been successfully farmed in some places for cen-
turies, and used for food, animal feed, and in more modern times, 
cosmetics, medicine, fertilizer and biofuels25–28. Production of seaweed 
for food increased 6% per year in 2000–201829 and harvest totalled 
~1 million tons of carbon worldwide in 201829. In comparison, climate 
scenarios that limit warming to 1.5 ° or 2 °C generally require more 
than 1 gigaton of carbon (that is >3.67 GtCO2) to be removed annually 
from the atmosphere in the year CO2 emissions reach net-zero3. To 
contribute to such climate goals, seaweed farming must therefore 
expand tremendously, and in turn contend with large uncertainties in 
the productivity of different types of seaweed in different places, the 
net costs of farming, the magnitude of emissions avoided or carbon 
sequestered, and the potential for undesirable ecological impacts. 
Recent studies of seaweed farming have examined localized opportu-
nities and dynamics in particular regions15,16,30, made rough estimates 
of the global potential13,14,31,32 and modelled the Earth system response 
to gigaton-scale production19. Yet the productivity, costs and poten-
tial climate benefits of such farming are spatially heterogeneous and 
scale-dependent, and the key sensitivities and trade-offs important to 
investors and decision-makers have not been comprehensively evalu-
ated. Here we use coupled biophysical and technoeconomic models 
to systematically assess the economic costs and potential climate ben-
efits of seaweed farming, testing their sensitivity across large ranges 
in individual variables and comparing different product pathways.

Details of our analytic approach are described in Methods. In 
summary, we use outputs from a newly developed biophysical model 
(G-MACMODS)33,34 to estimate potential harvest of four different sea-
weed types (tropical red, tropical brown, temperate red and temper-
ate brown; Supplementary Fig. 1) at a resolution of 1/12° (~9 km at the 
equator) globally. Nutrients are a key constraint on seaweed growth. 
G-MACMODS assumes that nitrogen is the limiting nutrient and we 

Table 1 | Ranges of selected variables used in our technoeconomic analysis

Variable Unit Model range Values reported in literature

Capital costs US$ km−2 yr−1 10,000–1,000,000 929,676 (ref. 40)
550,000–950,000 (ref. 62)
375,910 (ref. 61)
210,580 (ref. 41)

Seeded line cost (includes hatchery costs) $ m−1 0.05–1.45 1.38 (ref. 40)
0.13 (ref. 41)

Harvest costs (includes harvest labour, 
excludes harvest transport)

$ km−2 per 
harvest

120,000–400,000 381,265 (ref. 41)
138,000 (ref. 40)

Transport cost per ton of material (includes 
loading/unloading costs)

$ t−1 km−1 0.1–0.35 0.225 (ref. 40)

Transport emissions per ton of material tCO2 t−1 km−1 0–0.000045 0.00003 (ref. 28)

Maintenance boat emissions tCO2 km−1 0–0.0035 0.0023653 (calculated using methods from refs. 28, 56)

Atmospheric removal fraction fraction 0.4–1 0.4–0.75 (ref. 46)
0.5 (global average, from preliminary experiment by authors using 
ref. 35 informed by ref. 15)

Seaweed market value for product end-use $ tDW−1 400–800 Food: 500–800 (dried seaweed wholesale price from ref. 63)
Feed: 400–500 (values per ton dry animal feed and soybean meal 
from refs. 40, 64, assuming direct replacement with dry seaweed)
Fuel: 430 (dried seaweed price for bioethanol production, 
calculated on the basis of bioethanol yield per ton seaweed (0.25) 
and average of 2021–2022 historical E85 fuel prices ($3.76 per 
gasoline gallon equivalent, GGE) from ref. 65, modelled range 
400–500)
Not product-specific: 400 (dried seaweed market price of 
$400 tDW−1 from ref. 25)

GHG emissions avoided by replacement with 
seaweed product

tCO2-eq tDW−1 0.7–6.0 Food: 1–6 (considering global average emissions from GHGs per kcal 
for pulses, vegetables, fruits, oil crops and cereals, from ref. 24)
Feed: 1–3.1 (considering global average emissions from GHGs per 
kcal for oil crops and cereals, ±50% uncertainty, from ref. 24)
Fuel: 0.7–1 (assuming 3.2–3.5 tCO2 t−1 fossil fuel by fuel type from 
ref. 66 and 0.25 t bioethanol per tDW yield from ref. 59, and energy 
density equivalence conversions by fuel type)

http://www.nature.com/natureplants
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literature are location- and/or species-specific), as well as our primary 
goal of informing future research by identifying relative differences, 
sensitivities and trade-offs that are robust across our simulations.

Results
Seaweed production cost
The maps in Fig. 1 show the range of modelled seaweed production 
costs (that is, US$ per ton of harvested dry weight (DW) before trans-
port) in different regions under the ambient-nutrient scenario and 
assuming the most productive type of seaweed is grown in each grid 
cell (Supplementary Fig. 2 shows analogous costs for a limited-nutrient 
scenario). Minimum modelled costs (Fig. 1a,d) thus reflect high levels 
of seaweed growth (ambient nutrients) and very low assumed costs 
of farming, whereas the maximum costs in Supplementary Fig. 2c,f 
reflect lower levels of seaweed growth in most areas (limited nutri-
ents) and high-end cost assumptions. Since our ability to accurately 
assess the role of nutrient constraints as a determinant of yield is a 
major driver of total uncertainty in cost, our results are thereby likely 
to encompass a wide range of outlooks, including substantial future 
reductions in farming costs related to technological breakthroughs, 
returns to scale and boosted productivity (for example, autonomous 
farms, depth cycling, artificial upwelling and offshore integrated mul-
titrophic aquaculture36,37).

Although the spread in average cost in the 1% of ocean area where 
costs are lowest (labels beneath each panel) ranges from $190 to $2,790 
per ton of dry weight (tDW) seaweed yield, regional patterns of produc-
tion costs are relatively consistent across cost simulations (Fig. 1). For 
example, the equatorial Pacific, Gulf of Alaska and southeastern edge of 
South America are consistently among the lowest cost areas to produce 
seaweed (yellow and green shading in Fig. 1), and there are large swaths 
of ocean that cannot produce seaweed for <$2,000 tDW−1 in any case 

(areas shaded blue in Fig. 1). These patterns reflect the combination of 
seaweed productivity and the associated number of harvests (Supple-
mentary Figs. 3 and 4, respectively). Higher harvest costs can erode the 
cost advantage of highly productive areas: for example, despite having 
much lower seaweed yields per unit area, the North Pacific’s lower har-
vest costs lead to production costs that are often similar to those in the 
Equatorial Pacific (Fig. 1 and Supplementary Fig. 3). Moreover, because 
transportation of harvested seaweed is not included in the at-farm 
production costs but rather in the post-cultivation costs (Methods), 
some areas of open ocean far from ports have low at-farm production 
costs. On average, the costs of seeded line, total harvest costs and capi-
tal costs (including mooring costs) dominate total production costs, 
representing 56 (32–92)%, 19 (4–38)% and 17(3–33)% across seaweed 
types, respectively (Supplementary Fig. 5).

Finally, since global seaweed yield is reduced in simulations that 
limit nutrient availability to natural vertical nutrient fluxes, the pro-
duction costs in the 1% of ocean area with the lowest cost are much 
higher ($350–$7,150 tDW−1; Supplementary Fig. 2) than in simulations 
in which seaweed is allowed to use all ambient nutrients. This suggests 
that without methods to enhance nutrient availability (for example, 
depth cycling, artificial upwelling, or offshore integrated multitrophic 
aquaculture36,37), limiting seaweed yields to maintain surface ocean 
nutrient levels might be cost-prohibitive except in the most optimistic 
technoeconomic scenarios.

Net cost of climate benefits
The maps in Fig. 2 show net costs of different climate benefits from 
farmed seaweed. We choose to show costs when propagating the most 
optimistic assumptions (5th percentile costs) from ambient-nutrient 
simulations to reflect low-cost results that might be achieved with 
economies of scale (Supplementary Figs. 6 and 7 show results under 

ba cMedianMinimum

S Atlantic

N Atlantic

N Pacific

S Pacific S Atlantic

N Atlantic

N Pacific

S Pacific

$880 tDW–1$190 tDW–1 $2,790 tDW–1

$860 tDW–1$200 tDW–1 $3,620 tDW–1$830 tDW–1$200 tDW–1 $2,970 tDW–1

$670 tDW–1$160 tDW–1 $2,200 tDW–1$820 tDW–1$200 tDW–1 $2,940 tDW–1

ed f

Global
lowest cost 1%

S Atlantic

N Pacific

S Pacific

N Atlantic

$ tDW–1

3,0002,5002,00015,001,0005000

Maximum

Regional
lowest
cost 1%

Fig. 1 | Seaweed production costs. a–f, Estimated seaweed production costs 
vary considerably depending on assumed costs of farming capital, seeded 
lines, labour and harvest (excluding transport of harvested seaweed). Across 
ambient-nutrient simulations, average farming cost in the 1% of global ocean 

areas with lowest cost ranges from $190 tDW−1 (a) to $2,790 tDW−1 (c), with a 
median of $880 tDW−1 (b). Regional insets (d–f) reveal small-scale features 
in particularly low-cost areas. Supplementary Fig. 2 shows maps for limited-
nutrient simulations.
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limited nutrients and for median net costs, respectively). We define the 
cost to sequester carbon via sinking seaweed as the $ per tCO2 removed 
from the atmosphere for at least 100 yr, assuming no other economic 
value. In contrast, costs of emissions avoided by using produced sea-
weed for food, feed or biofuel are given in units of $ per tCO2-eq and in 
each case reflect seaweed production, transportation and conversion 
costs, and the product’s market value as well as the CO2-equivalent GHG 
emissions (CH4 and N2O assuming Global Warming Potential (GWP)100) 
displaced by the product net of any emissions related to transpor-
tation and processing (Methods). When calculating GHG emissions 
avoided, we assume that products made from seaweed can directly 
replace conventional food (pulses, vegetables, fruits, oil crops and 
cereals), feed (oil crops and cereals) and fuels, thereby avoiding GHG 
emissions from industrial agriculture practices or CO2 emissions from 
fossil fuel combustion24. For example, if seaweed is used for food and 
replaces some amount of vegetables in a person’s diet, then the GHG 
emissions associated with the production of those vegetables that the 
seaweed replaces are counted as avoided emissions.

In the lowest-cost 1% ocean areas, the average cost is much higher 
per ton of carbon sequestered by sinking seaweed ($540 per tCO2) 
than per ton of CO2-eq emissions avoided, regardless of whether the 
seaweed is used for food ($20 per tCO2-eq), animal feed ($140 per 
tCO2-eq) or biofuel ($320 per tCO2-eq). The substantial cost difference 
between sequestration by sinking and emissions avoided by products 
is most influenced by the products’ market value and the potential to 
avoid non-CO2 GHGs, despite the higher cost and emissions required 
to transport harvested seaweed to port.

In particular, the non-CO2 GHG emissions that could be avoided by 
using seaweed for either food consumed by humans or feed consumed 

by animals effectively multiply the potential climate benefits of a ton 
of seaweed carbon, whereas the climate benefits of either sinking or 
converting seaweed to biofuels are constrained by the carbon present 
in the seaweed itself. Yet carbon sequestration is nonetheless favoured 
in some locations given the high costs of transporting seaweed back 
to the nearest port (for example, areas of the equatorial Pacific that 
are shaded yellow and green in Fig. 2a and blue in Fig. 2c; see also Sup-
plementary Fig. 8).

Key sensitivities
Figure 3 shows the relative importance of all variables in generating 
spread in our Monte Carlo estimates of production costs and net costs 
of climate benefits, focusing on the lowest-cost areas (Supplementary 
Fig. 9 shows the same results for limited-nutrient simulations). These 
results emphasize which variables are most important to achieving 
very low costs. Low production costs are most sensitive to seaweed 
yields, followed by the cost of seeded line (secondary line with seaweed 
seedlings that is wrapped around a structural rope, or nets for some 
temperate red seaweeds; yellow in Fig. 3a) and capital costs (for exam-
ple, boats, harvest machines, buoys, anchors and other lines; green 
in Fig. 3a). Together, seaweed yield and seeded line cost account for 
>89% of the uncertainty in production costs in the places where costs 
are lowest, and costs are never below $400 tDW−1 in simulations where 
seeded line is assumed to cost >$1 m−1.

Costs of carbon sequestered are quite sensitive to production 
costs (including all parameters shown in Fig. 3a), but the most impor-
tant parameter aside from production costs and yield is the fraction 
of the seaweed carbon that corresponds to equivalent carbon removal 
from the atmosphere (light green in Fig. 3b). Although this fraction 
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(GHG avoided)
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lowest cost 1%

$ per tCO2 or
$ per tCO2-eq

3,0002,5002,0001,5001,0005000

$20 per tCO2-eq$540 per tCO2
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Fig. 2 | Net cost of potential seaweed climate benefits. a–d, Costs of using 
farmed seaweed to sequester carbon or avoid GHG emissions vary in space 
according to estimated production costs as well as spatially explicit differences 
in the costs and net emissions of transportation, sinking or conversion, and 
replacement of conventional market alternatives with seaweed products. 
Differentiation between seaweed product groups (b–d) is based on emissions 
avoided by seaweed products and market value for each product type. Maps 

show costs when propagating the most optimistic assumptions (5th percentile 
costs) from ambient-nutrient simulations. Average cost in the 1% of global ocean 
areas with lowest cost ranges from $20 per tCO2-eq avoided when seaweed 
is used for food (b) to $540 per tCO2 sequestered by sinking seaweed (a). 
Supplementary Figs. 6 and 7 show maps for limited-nutrient simulations and 
median costs, respectively.
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has generally been assumed to be 1, recent studies have shown that 
air–sea fluxes of CO2 may not keep pace with carbon uptake by grow-
ing seaweed and, among other mechanisms that reduce efficiency, 
nutrient competition from farmed seaweed may diminish natural 
carbon uptake and export accomplished by phytoplankton15,19. The 
atmospheric removal fraction accounts for >24% of the variation in 
sequestration costs in the places where costs are lowest, and costs are 
never below $400 per tCO2 sequestered unless the removal fraction is 
assumed to be >0.6 (Fig. 3b,e).

Our estimates of cost per GHG emissions avoided are most sensi-
tive to the assumed magnitude of CO2-equivalent emissions avoided 
by a seaweed product (light blue in Fig. 3c). The product-avoided emis-
sions account for >38% of the variation in costs per emissions avoided 
in the places where costs are lowest, and costs are never more than 
$700 per tCO2-eq avoided in simulations where the product-avoided 
emissions are assumed to be >4.25 tCO2-eq tDW−1 seaweed (Fig. 3c,f). 
Yet production costs remain important, and low costs of emissions 
avoided (<$200 per tCO2-eq) can be achieved even when the avoided 
emissions are <1 tCO2-eq tDW−1 if seaweed production costs are very 
low (Fig. 3c,f).

Costs and benefits of large-scale seaweed farming
Figure 4 shows the cumulative potential of GHG emissions avoided 
or carbon sequestered in the 1% of ocean areas with the lowest costs, 
shaded with costs per ton on the basis of the 5th percentile of 5,000 
ambient nutrient–cost simulations (that is, reflecting optimistically 
high seaweed yield, low farming costs and large climate benefits from 
replacement of agricultural products; Supplementary Figs. 10 and 11  
show results for median costs and limited-nutrient scenario). No 
matter the scenario or percentile, in the 1% of areas with the lowest 
costs, the costs per ton of CO2 sequestered are always higher than 
the costs per ton of CO2-eq emissions avoided. In the optimistic case 

depicted in Fig. 4, 1 Gt of CO2-eq emissions might be avoided or 1 Gt of 
CO2 sequestered by farming 0.025% and 0.110% of lowest-cost ocean 
areas, respectively (roughly 90,000 km2 and 400,000 km2 or close to 
the areas of Portugal and Zimbabwe, respectively), at an average profit 
of $50 per tCO2-eq emissions avoided or at an average cost of $480 per 
tCO2 sequestered. In limited-nutrient simulations with optimistic cost 
assumptions (Supplementary Fig. 11a,b), the lowest-cost ocean area 
that might be required to reach 1 GtCO2-eq avoided emissions or 1 GtCO2 
sequestered annually is 0.035% and 0.100% for avoided emissions and 
sequestration, respectively, or roughly 130,000 km2 and 360,000 km2, 
with associated costs of $30 per tCO2-eq avoided and $830 per tCO2 
sequestered. Average costs at the median of Monte Carlo simulations 
for both nutrient scenarios rise substantially to $110–310 per tCO2-eq 
emissions avoided or $1,120–$2,090 per tCO2 sequestered, respectively 
(Supplementary Figs. 10 and 11a,b). These costs increase to $140–420 
per tCO2-eq at 3 GtCO2-eq avoided and to $1,190–2,280 per tCO2 at 
3 GtCO2 sequestered annually, requiring ocean areas of 0.085–0.100% 
and 0.285–0.410% for avoided emissions and sequestration, respec-
tively (roughly 310,000–360,000 km2 and 1,030,000–1,480,000 km2). 
Moreover, climate benefits increase approximately linearly with area 
up to 1% of ocean area, reaching totals of >29 GtCO2-eq avoided or 
>9 GtCO2 sequestered annually in the ambient-nutrient simulations 
and >19 GtCO2-eq avoided or >8 GtCO2 sequestered annually in the 
limited-nutrient simulations.

Supplementary Fig. 12 shows the locations of the lowest cost areas 
in Fig. 4, which, for sequestration, are concentrated in the equatorial 
Pacific and Gulf of Alaska, and for avoided emissions products include 
additional areas offshore of Argentina, the Korean Peninsula and New 
Zealand as well as areas of the North and Norwegian Seas. Importantly, 
we estimate that perhaps 10–15% of lowest cost areas for sequestration 
and 40–45% of lowest cost areas for avoided emissions are either in 
highly trafficked shipping lanes or part of existing marine protected 
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carbon that corresponds to an equivalent amount removed from the atmosphere 
and the assumed emissions avoided by seaweed products, respectively, in 

addition to seaweed yield and seeded line cost. d–f, Kernel density plots for the 
most important parameters in the cheapest 1% ocean areas, showing that the 
lowest production and climate benefit costs depend upon seaweed yield being 
at or above the median of potential seaweed yields (d), an assumed atmospheric 
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Supplementary Fig. 9 shows cost sensitivities in limited-nutrient simulations.
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areas (Methods), which could present challenges for seaweed farming 
in these areas.

Despite being a small percentage of global ocean area, farming 
0.025% of the global ocean area (~90,000 km2) would represent over 
a 30-fold increase in the area of current seaweed farming (~2,700 km2; 
refs. 29, 38, 39). Thus, producing seaweed in the lowest cost areas 
to reach 1 GtCO2-eq of emissions avoided or 1 GtCO2 sequestered by 
2050 would entail increasing the area farmed by roughly 12% or 18% 
per year, respectively, compared with the 2000–2018 seaweed farm-
ing industrial growth rate of 6%29. Achieving the same level of climate 
benefits from seaweed by 2030 increases the implied expansion rate of 
farms to roughly 42% or 64% per year for emissions avoided or carbon 
sequestered, respectively. Note that these areas and industry growth 
rates reflect the minimum that might be required for gigaton-scale 
climate impact, since the ambient-nutrient scenario assumes that 
all surface ocean nutrients are available for seaweed growth. In the 
limited-nutrient scenario, reaching 1 GtCO2-eq of emissions avoided 
in the lowest-cost areas by 2050 might require ~130,000 km2, which 
would represent a nearly 50-fold increase in the area currently farmed 
and would entail a 14% annual growth rate.

Discussion
Our results suggest that it might be possible to sequester >1 GtCO2 at 
costs as low as $480 per tCO2 if nearly all seaweed carbon corresponds 
directly to an amount of CO2 removed from the atmosphere, production 
costs are reduced to near the lowest published costs40,41 (for example, 
seeded line and capital costs of < $0.40 m−1 and $3,300 ha−1, respec-
tively), and/or seaweed yields are high (for example, >6,000 tDW km−2 
for tropical reds and >2,000 tDW km−2 for temperate browns). Nonethe-
less, $480 per tCO2 is comparable to the $500–600 t per CO2 costs of 
direct air capture (DAC) reported by the company Climeworks42 (but 
much more than the $94–$232 DAC costs estimated in ref. 43). Seques-
tration costs also rise sharply if the assumed atmospheric removal 
fraction or seaweed yield decreases or if production costs increase 
(Supplementary Figs. 7 and 10, and Fig. 3e). In comparison, >1 GtCO2-eq 
emissions might be avoided at a profit of $50 per tCO2-eq if similarly low 
production costs are achieved and seaweed products avoid emissions 
of >3 tCO2-eq tDW−1 (for example, by displacing vegetables, legumes, 
or soy from some regions). Although the cost per emission avoided is 

typically higher if seaweed is instead used for biofuels (Fig. 2, and Sup-
plementary Figs. 6 and 7), such fuels may command a substantial ‘green 
premium’ as countries seek to decarbonize aviation and long-distance 
transportation of freight4,7,44,45.

Although it is thus conceivable that farmed seaweed could fea-
sibly deliver globally relevant climate benefits, our modelling and 
cost estimates are subject to important caveats and limitations. First, 
modelled economic parameter ranges are broad, spanning a relatively 
small number of divergent data points from publicly available datasets 
and scientific literature. In some cases, these ranges were extended 
downward to reflect potential future cost reductions that were not 
represented by existing data. Better constraining these cost ranges for 
both current and future scenarios would improve the model and reduce 
uncertainty. Similarly, future work could analyse in greater detail the 
specific types and scale of agricultural or energy product that might be 
displaced by seaweed and their GHG emissions. Although the relative 
benefits of avoiding different GHG emissions versus sequestering car-
bon for different periods of time are beyond the scope of our analysis, 
they may be important to investors and decision-makers. For example, 
in many potentially low-cost seaweed production regions, the time 
scale of sunk carbon that remains ‘sequestered’ in the deep ocean is 
less than 100 yr8; if CDR accounting requires multi-century sequestra-
tion, the cost of seaweed-based CDR may become prohibitively high.

There are also large sources of uncertainty that deserve further 
exploration in the future. For example, we find that estimated costs per 
ton of CO2-eq emissions avoided or CO2 sequestered are highly sensi-
tive to both the nutrient scenario (ambient vs. limited nutrients, Fig. 2 
and Supplementary Fig. 6) and yield uncertainty within each nutrient 
scenario. Nutrient reallocation from competition between farmed 
seaweed and phytoplankton is also a critical dynamic that warrants 
analysis in the context of a fully coupled earth system model, since 
farming seaweed at gigaton scales would probably diminish natural 
carbon uptake by phytoplankton and therefore reduce the net draw-
down of atmospheric CO2

46. Moreover, our climate benefit calculations 
do not include particulate seaweed biomass that may be exported to 
the deep sea before harvest (analogous to sinking ~5% of the harvested 
biomass21), and we also do not consider any potential non-CO2 GHG 
emissions from the seaweed cultivation process. The G-MACMODS 
model also assumes that nitrogen is the limiting macronutrient for 
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Fig. 4 | Cumulative potential climate benefits of large-scale seaweed farming. 
a,b, Total GHG emissions avoided (a) or carbon sequestered (b) each year could 
reach gigaton scales if seaweed were farmed over large areas of the ocean. Bars 
show the potential climate benefits as a function of the lowest-cost ocean area 
(0.1% of ocean area is roughly 360,000 km2, nearly the area of Germany and 

130 times the total area of current seaweed farms), and colours indicate the 
average cost (or profit) per tCO2-eq emissions avoided or tCO2 sequestered using 
optimistically low net costs (5th percentile) from ambient-nutrient simulations. 
Supplementary Figs. 10 and 11 show cumulative potential and costs at the median 
and in limited-nutrient simulations.
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seaweed growth (and micronutrients are supplemented by farming 
techniques), and while nitrogen limits production in large parts of the 
ocean, phosphorus might be more limiting in some regions. Finally, we 
must continue to evaluate potential consequences to ocean ecosystems 
and biogeochemical cycles before seriously considering farming and/
or sinking gigatons of seaweed19.

Despite these uncertainties and limitations, our analysis supports 
continued research, development and demonstration of the potential 
for seaweed farming to produce meaningful climate benefits. Specifi-
cally, our model highlights the most important targets for research and 
innovation. Biophysical factors such as death (including disease, pests, 
weather events) and exudation rates are not well-established and may 
substantially alter projected seaweed yields33; regional biogeochemi-
cal and Earth system feedbacks could similarly undermine the efficacy 
of sinking seaweed carbon; and low or narrow demand for seaweed 
products could limit the potential to offset land-use and fossil GHG 
emissions. Finally, although some seaweed innovators are focused 
on farm designs that reduce labour and transportation costs, our 
results suggest that the keys to maximizing yield with low production 
costs are seeded line and basic farm equipment such as boats, buoys 
and anchors. However, even if seed and capital costs are minimized, 
seaweed CDR seems likely to be more expensive than alternatives such 
as direct air capture, and it is not clear that there are viable and large 
markets for seaweed products. These factors, combined with the chal-
lenges inherent in verification and monitoring as well as the potential 
for ecosystem disruption, suggest that expansion of seaweed cultiva-
tion should be approached with caution. The outlook for a massive 
scale-up of seaweed climate benefits is thus decidedly murky, but our 
findings can help direct research, investments and decision making 
to clear the waters.

Methods
Monte Carlo analysis
Seaweed production costs and net costs of climate benefits were esti-
mated on the basis of outputs of the biophysical and technoeconomic 
models described below. The associated uncertainties and sensitivities 
were quantified by repeatedly sampling from uniform distributions 
of plausible values for each cost and economic parameter (n = 5,000 
for each nutrient scenario from the biophysical model, for a total 
of n = 10,000 simulations; see Supplementary Figs. 14 and 15)47–52. 
Parameter importance across Monte Carlo simulations (Fig. 3 and Sup-
plementary Fig. 9) was determined using decision trees in LightGBM, 
a gradient-boosting machine learning framework.

Biophysical model
G-MACMODS is a nutrient-constrained, biophysical macroalgal growth 
model with inputs of temperature, nitrogen, light, flow, wave condi-
tions and amount of seeded biomass30,53, that we used to estimate 
annual seaweed yield per area (either in tons of carbon or tons of dry 
weight biomass per km2 per year)33,34. In the model, seaweed takes up 
nitrogen from seawater, and that nitrogen is held in a stored pool before 
being converted to structural biomass via growth54. Seaweed biomass 
is then lost via mortality, which includes breakage from variable ocean 
wave intensity. The conversion from stored nitrogen to biomass is 
based on the minimum internal nitrogen requirements of macroalgae, 
and the conversion from biomass to units of carbon is based on an 
average carbon content of macroalgal dry weight (~30%)55. The model 
accounts for farming intensity (sub-grid-scale crowding) and employs 
a conditional harvest scheme, where harvest is optimized on the basis 
of growth rate and standing biomass33.

The G-MACMODS model is parameterized for four types of mac-
roalgae: temperate brown, temperate red, tropical brown and tropical 
red. These types employed biophysical parameters from genera that 
represent over 99.5% of present-day farmed macroalgae (Eucheuma, 
Gracilaria, Kappahycus, Sargassum, Porphyra, Saccharina, Laminaria, 

Macrocystis)39. Environmental inputs were derived from satellite-based 
and climatological model output mapped to 1/12-degree global resolu-
tion, which resolves continental shelf regions. Nutrient distributions 
were derived from a 1/10-degree resolution biogeochemical simulation 
led by the National Center for Atmospheric Research (NCAR) and run 
in the Community Earth System Model (CESM) framework35.

Two nutrient scenarios were simulated with G-MACMODS and eval-
uated using the technoeconomic model analyses described below: the 
‘ambient nutrient’ scenario where seaweed growth was computed using 
surface nutrient concentrations without depletion or competition, and 
‘limited nutrient’ simulations where seaweed growth was limited by an 
estimation of the nutrient supply to surface waters (computed as the 
flux of deep-water nitrate through a 100 m depth horizon). For each 
Monte Carlo simulation in the economic analysis, the technoeconomic 
model randomly selects either the 5th, 25th, 50th, 75th or 95th percen-
tile G-MACMODS seaweed yield map from a normal distribution to use 
as the yield map for that simulation. Figures and numbers reported in 
the main text are based on the ambient-nutrient scenario; results based 
on the limited-nutrient scenario are shown in Supplementary Figures.

Technoeconomic model
An interactive web tool of the technoeconomic model is available at 
https://carbonplan.org/research/seaweed-farming.

We estimated the net cost of seaweed-related climate benefits by 
first estimating all costs and emissions related to seaweed farming, up 
to and including the point of harvest at the farm location, then estimat-
ing costs and emissions related to the transportation and processing of 
harvested seaweed, and finally estimating the market value of seaweed 
products and either carbon sequestered or GHG emissions avoided.

Production costs and emissions. Spatially explicit costs of seaweed 
production ($ tDW−1) and production-related emissions (tCO2 tDW−1) 
were calculated on the basis of ranges of capital costs ($ km−2), operat-
ing costs (including labour, $ km−2), harvest costs ($ km−2) and transport 
emissions per distance travelled (tCO2 km−1) in the literature (Table 1, 
Supplementary Tables 1 and 2); annual seaweed biomass (tDW km−2, for 
the preferred seaweed type in each grid cell), line spacing and number 
of harvests (species-dependent) from the biophysical model; as well 
as datasets of distances to the nearest port (km), ocean depth (m) and 
significant wave height (m).

Capital costs were calculated as:

ccap = ccapbase + (ccapbase × (kd + kw)) + csl (1)

where ccap is the total annualized capital costs per km2, ccapbase is the 
annualized capital cost per km2 (for example, cost of buoys, anchors, 
boats, structural rope) before applying depth and wave impacts, kd and 
kw are the impacts of depth and waviness on capital cost, respectively, 
each expressed as a multiplier between 0 and 1 modelled using our 
Monte Carlo method and applied only to grid cells with depth >500 m 
and/or significant wave height >3 m, respectively, and csl is the total 
annual cost of seeded line calculated as:

csl = cslbase × psline (2)

where cslbase is the cost per metre of seeded line, and psline is the total 
length of line per km2, based on the optimal seaweed type grown in 
each grid cell.

Operating and maintenance costs were calculated as:

cop = cins + clic + clab + copbase (3)

where cop is the total annualized operating and maintenance costs 
per km2, cins is the annual insurance cost per km2, clic is the annual cost 
of a seaweed aquaculture license per km2, clab is the annual cost of 

http://www.nature.com/natureplants
https://carbonplan.org/research/seaweed-farming


Nature Plants | Volume 9 | January 2023 | 45–57 52

Article https://doi.org/10.1038/s41477-022-01305-9

labour excluding harvest labour, and copbase is all other operating and 
maintenance costs.

Harvest costs were calculated as:

charv = charvbase × nharv (4)

where charv is the total annual costs associated with harvesting sea-
weed per km2, charvbase is the cost per harvest per km2 (including harvest 
labour but excluding harvest transport), and nharv is the total number 
of harvests per year.

Costs associated with transporting equipment to the farming 
location were calculated as:

ceqtrans = ctransbase ×meq × dport (5)

where ceqtrans is total annualized cost of transporting equipment,  
ctransbase is the cost to transport 1 ton of material 1 km on a barge, meq is 
the annualized equipment mass in tons and dport is the ocean distance 
to the nearest port in km.

The total production cost of growing and harvesting seaweed was 
therefore calculated as:

cprod =
(ccap) + (cop) + (charv) + (ceqtrans)

sdw
(6)

where cprod is total annual cost of seaweed production (growth +  
harvesting), ccap is as calculated in equation (1), cop is as calculated in 
equation (3), charv is as calculated in equation (4), ceqtrans is as calculated 
in equation (5) and sdw is the DW of seaweed harvested annually per km2.

Emissions associated with transporting equipment to the farming 
location were calculated as:

eeqtrans = etransbase ×meq × dport (7)

where eeqtrans is the total annualized CO2 emissions in tons from trans-
porting equipment, etransbase is the CO2 emissions from transporting 1 
ton of material 1 km on a barge, meq is the annualized equipment mass 
in tons and dport is the ocean distance to the nearest port in km.

Emissions from maintenance trips to/from the seaweed farm were 
calculated as:

emnt = ((2 × dport) × emntbase × (nmntamnt
)) + (emntbase × dmnt) (8)

where emnt is total annual CO2 emissions from farm maintenance, dport is 
the ocean distance to the nearest port in km, nmnt is the number of main-
tenance trips per km2 per year, amnt is the area tended to per trip, dmnt is 
the distance travelled around each km2 for maintenance and emntbase is 
the CO2 emissions from travelling 1 km on a typical fishing maintenance 
vessel (for example, a 14 m Marinnor vessel with 2 × 310 hp engines) at 
an average speed of 9 knots (16.67 km h−1), resulting in maintenance 
vessel fuel consumption of 0.88 l km−1 (refs. 28, 56).

Total emissions from growing and harvesting seaweed were there-
fore calculated as:

eprod =
(eeqtrans) + (emnt)

sdw
(9)

where eprod is total annual emissions from seaweed production (growth 
+ harvesting), eeqtrans is as calculated in equation (7), emnt is as calculated 
in equation (8) and sdw is the DW of seaweed harvested annually per km2.

Market value and climate benefits of seaweed. Further transpor-
tation and processing costs, economic value and net emissions of 
either sinking seaweed in the deep ocean for carbon sequestration 

or converting seaweed into usable products (biofuel, animal feed, 
pulses, vegetables, fruits, oil crops and cereals) were calculated on the 
basis of ranges of transport costs ($ tDW−1 km−1), transport emissions 
(tCO2-eq t−1 km−1), conversion cost ($ tDW−1), conversion emissions 
(tCO2-eq tDW−1), market value of product ($ tDW−1) and the emissions 
avoided by product (tCO2-eq tDW−1) in the literature (Table 1). Mar-
ket value was treated as globally homogeneous and does not vary by 
region. Emissions avoided by products were determined by compar-
ing estimated emissions related to seaweed production to emissions 
from non-seaweed products that could potentially be replaced by 
seaweed (including non-CO2 greenhouse gas emissions from land 
use)24. Other parameters used are distance to nearest port (km), 
water depth (m), spatially explicit sequestration fraction (%)57 and 
distance to optimal sinking location (km; cost-optimized for maximum  
emissions benefit considering transport emissions combined with 
spatially explicit sequestration fraction; see ‘Distance to sinking point 
calculation’ below). Each Monte Carlo simulation calculated the cost 
of both CDR via sinking seaweed and GHG emissions mitigation via 
seaweed products.

For seaweed CDR, after the seaweed is harvested, it can either 
be sunk in the same location that it was grown, or be transported to 
a more economically favourable sinking location where more of the 
seaweed carbon would remain sequestered for 100 yr (see ‘Distance to 
optimal sinking point’ below). Immediately post-harvest, the seaweed 
still contains a large amount of water, requiring a conversion from dry 
mass to wet mass for subsequent calculations33:

sww = sdw
0.1 (10)

where sww is the annual wet weight of seaweed harvested per km2 and 
sdw is the annual DW of seaweed harvested per km2.

The cost to transport harvested seaweed to the optimal sinking 
location was calculated as:

cswtsink = ctransbase × dsink × sww (11)

where cswtsink is the total annual cost to transport harvested seaweed 
to the optimal sinking location, ctransbase is the cost to transport 1 ton of 
material 1 km on a barge, dsink is the distance in km to the economically 
optimized sinking location and sww is the annually harvested seaweed 
wet weight in t km−2 as in equation (10).

The costs associated with transporting replacement equipment 
(for example, lines, buoys,

anchors) to the farming location and hauling back used equip-
ment at the end of its assumed lifetime (1 yr for seeded line, 5–20 yr 
for capital equipment by equipment type) in the sinking CDR pathway 
were calculated as:

ceqtsink = (ctransbase × (2 × dsink) ×meq) + (ctransbase × dport ×meq) (12)

where ceqtsink is the total annualized cost to transport both used and 
replacement equipment, ctransbase is the cost to transport 1 ton of material 
1 km on a barge, meq is the annualized equipment mass in tons, dsink is 
the distance in km to the economically optimized sinking location and 
dport is the ocean distance to the nearest port in km. We assumed that 
the harvesting barge travels from the farming location directly to the 
optimal sinking location with harvested seaweed and replaced (used) 
equipment in tow (including used seeded line and annualized mass of 
used capital equipment), sinks the harvested seaweed, returns to the 
farm location and then returns to the nearest port (see Supplementary 
Fig. 16). These calculations assumed the shortest sea-route distance 
(see Distance to optimal sinking point).

The total value of seaweed that is sunk for CDR was therefore 
calculated as:
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vsink =
(vcprice − (cswtsink + ceqtsink))

sdw
(13)

where vsink is the total value (cost, if negative) of seaweed farmed for 
CDR in $ tDW−1, vcprice is a theoretical carbon price, cswtsink is as calcu-
lated in equation (11), ceqtsink is as calculated in equation (12) and sdw is 
the annually harvested seaweed DW in t km−2. We did not assume any 
carbon price in our Monte Carlo simulations (vcprice is equal to zero), 
making vsink negative and thus representing a net cost.

To calculate net carbon impacts, our model included uncertainty in 
the efficiency of using the growth and subsequent deep-sea deposition 
of seaweed as a CDR method. The uncertainty is expected to include the 
effects of reduced phytoplankton growth from nutrient competition, 
the relationship between air–sea gas exchange and overturning circu-
lation (hereafter collectively referred to as the ‘atmospheric removal 
fraction’) and the fraction of deposited seaweed carbon that remains 
sequestered for at least 100 yr. The total amount of atmospheric CO2 
removed by sinking seaweed was calculated as:

eseqsink = katm × kfseq ×
tC
tDW × tCO2

tC (14)

where eseqsink is net atmospheric CO2 sequestered annually in t km−2, katm 
is the atmospheric removal fraction and kfseq is the spatially explicit 
fraction of sunk seaweed carbon that remains sequestered for at least 
100 yr (see ref. 57).

The emissions from transporting harvested seaweed to the opti-
mal sinking location were calculated as:

eswtsink = etransbase × dsink × sww (15)

where eswtsink is the total annual CO2 emissions from transporting har-
vested seaweed to the optimal sinking location in tCO2 km−2, etransbase 
is the CO2 emissions (tons) from transporting 1 ton of material 1 km 
on a barge (tCO2 per t-km), dsink is the distance in km to the economi-
cally optimized sinking location and sww is the annually harvested 
seaweed wet weight in t km−2 as in equation (10). Since the unit for 
etransbase is tCO2 per t-km, the emissions from transporting seaweed to 
the optimal sinking location are equal to etransbase × dsink × sww , and  
the emissions from transporting seaweed from the optimal sinking 
location back to the farm are equal to 0 (since the seaweed has  
already been deposited, the seaweed mass to transport is now 0). Note 
that this does not yet include transport emissions from transport  
of equipment post-seaweed-deposition (see equation 16 below and 
Supplementary Fig. 16).

The emissions associated with transporting replacement equip-
ment (for example, lines, buoys, anchors) to the farming location and 
hauling back used equipment at the end of its assumed lifetime (1 yr 
for seeded line, 5–20 yr for capital equipment by equipment type)28,41 
in the sinking CDR pathway were calculated as:

eeqtsink = (etransbase × (2 × dsink) ×meq) + (etransbase × dport ×meq) (16)

where eeqtsink is the total annualized CO2 emissions in tons from trans-
porting both used and replacement equipment, etransbase is the CO2 
emissions from transporting 1 ton of material 1 km on a barge, meq is 
the annualized equipment mass in tons, dsink is the distance in km to the 
economically optimized sinking location and dport is the ocean distance 
to the nearest port in km. We assumed that the harvesting barge travels 
from the farming location directly to the optimal sinking location with 
harvested seaweed and replaced (used) equipment in tow (including 
used seeded line and annualized mass of used capital equipment), sinks 
the harvested seaweed, returns to the farm location and then returns 
to the nearest port. These calculations assumed the shortest sea-route 
distance (see Distance to optimal sinking point).

Net CO2 emissions removed from the atmosphere by sinking sea-
weed were thus calculated as:

eremsink =
(eseqsink − (eswtsink + eeqtsink))

sdw
(17)

where eremsink is the net atmospheric CO2 removed per ton of seaweed 
DW, eseqsink is as calculated in equation (14), eswtsink is as calculated in  
equation (15), eeqtsink is as calculated in equation (16) and sdw is the annu-
ally harvested seaweed DW in t km−2.

Net cost of climate benefits
Sinking. To calculate the total net cost and emissions from the pro-
duction, harvesting and transport of seaweed for CDR, we combined 
the cost and emissions from the sinking-pathway cost and value mod-
ules. The total net cost of seaweed CDR per DW ton of seaweed was 
calculated as:

csinknet = cprod − vsink (18)

where csinknet is the total net cost of seaweed for CDR per DW ton  
harvested, cprod is the net production cost per DW ton as calculated 
in equation (6) and vsink is the net value (or cost, if negative) per ton 
seaweed DW as calculated in equation (13).

The total net CO2 emissions removed per DW ton of seaweed were 
calculated as:

esinknet = eremsink − eprod (19)

where esinknet is the total net atmospheric CO2 removed per DW ton of 
seaweed harvested annually (tCO2 tDW−1 yr−1), eremsink is the net atmos-
pheric CO2 removed via seaweed sinking annually as calculated in equa-
tion (17) and eprod is the net CO2 emitted from production and harvesting 
of seaweed annually as calculated in equation (9). For each Monte Carlo 
simulation, locations where esinknet is negative (that is, net emissions 
rather than net removal) were not included in subsequent calculations 
since they would not be contributing to CDR in that location under the 
given scenario. Note that these net emissions cases only occur in areas 
far from port in specific high-emissions scenarios. Even in such cases, 
most areas still contribute to CO2 removal (negative emissions), hence 
costs from locations with net removal were included.

Total net cost was then divided by total net emissions to get a final 
value for cost per ton of atmospheric CO2 removed:

cpertonsink =
csinknet
esinknet

(20)

where cpertonsink is the total net cost per ton of atmospheric CO2 removed 
via seaweed sinking ($ per tCO2 removed), csinknet is total net cost per 
ton seaweed DW harvested as calculated in equation (18) ($ tDW−1) and 
esinknet is the total net atmospheric CO2 removed per ton seaweed DW 
harvested as calculated in equation (19) (tCO2 tDW−1).

GHG emissions mitigation. Instead of sinking seaweed for CDR, 
seaweed can be used to make products (including but not limited 
to food, animal feed and biofuels). Replacing convention products 
with seaweed-based products can result in ‘avoided emissions’ if the 
emissions from growing, harvesting, transporting and converting 
seaweed into products are less than the total greenhouse gas emissions 
(including non-CO2 GHGs) embodied in conventional products that 
seaweed-based products replace.

When seaweed is used to make products, we assumed it is trans-
ported back to the nearest port immediately after being harvested. The 
annualized cost to transport the harvested seaweed and replacement 
equipment (for example, lines, buoys, anchors) was calculated as:
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ctransprod =
(ctransbase × dport × (sww +meq))

sdw
(21)

where ctransprod is the annualized cost per ton seaweed DW to transport 
seaweed and equipment back to port from the farm location, ctransbase is 
the cost to transport 1 ton of material 1 km on a barge, meq is the annual-
ized equipment mass in tons, dport is the ocean distance to the nearest 
port in km, sww is the annual wet weight of seaweed harvested per km2 
as calculated in equation (10) and sdw is the annual DW of seaweed 
harvested per km2.

The total value of seaweed that is used for seaweed-based products 
was calculated as:

vproduct = vmkt − (ctransprod + cconv) (22)

where vproduct is the total value (cost, if negative) of seaweed used for 
products ($ tDW−1), vmkt is how much each ton of seaweed would sell 
for, given the current market price of conventional products that 
seaweed-based products replace ($ tDW−1), ctransprod is as calculated in 
equation (21) and cconv is the cost to convert each ton of seaweed to a 
usable product ($ tDW−1).

The annualized CO2 emissions from transporting harvested sea-
weed and equipment back to port were calculated as:

etransprod =
(etransbase × dport × (sww +meq))

sdw
(23)

where etransprod is the annualized CO2 emissions per ton seaweed DW to 
transport seaweed and equipment back to port from the farm location, 
etransbase is the CO2 emissions from transporting 1 ton of material 1 km 
on a barge, meq is the annualized equipment mass in tons, dport is the 
ocean distance to the nearest port in km, sww is the annual wet weight 
of seaweed harvested per km2 as calculated in equation (10) and sdw is 
the annual DW of seaweed harvested per km2.

Total emissions avoided by each ton of harvested seaweed DW 
were calculated as:

eavprod = esubprod − (etransprod + econv) (24)

where eavprod is total CO2-eq emissions avoided per ton of seaweed 
DW per year (including non-CO2 GHGs using a GWP time period of 
100 yr), esubprod is the annual CO2-eq emissions avoided per ton sea-
weed DW by replacing a conventional product with a seaweed-based 
product, etransprod is as calculated in equation (23) and econv is the annual 
CO2 emissions per ton seaweed DW from converting seaweed into 
usable products. esubprod was calculated by converting seaweed DW 
to caloric content58 for food/feed and comparing emissions intensity 
per kcal to agricultural products24, or by converting seaweed DW 
into equivalent biofuel content with a yield of 0.25 tons biofuel per 
ton DW59 and dividing the CO2 emissions per ton fossil fuel by the 
seaweed biofuel yield.

To calculate the total net cost and emissions from the produc-
tion, harvesting, transport and conversion of seaweed for products, 
we combined the cost and emissions from the product-pathway cost 
and value modules. The total net cost of seaweed for products per ton 
DW was calculated as:

cprodnet = cprod − vproduct (25)

where cprodnet is the total net cost per ton DW of seaweed harvested for 
use in products, cprod is the net production cost per ton DW as calculated 
in equation (6) and vproduct is the net value (or cost, if negative) per ton 
DW as calculated in equation (22).

The total net CO2-eq emissions avoided per ton DW of seaweed 
used in products were calculated as:

eprodnet = eavprod − eprod (26)

where eprodnet is the total net CO2-eq emissions avoided per ton DW of 
seaweed harvested annually (tCO2 tDW−1 yr−1), eavprod is the net CO2-eq 
emissions avoided by seaweed products annually as calculated in 
equation (24) and eprod is the net CO2 emitted from production and 
harvesting of seaweed annually as calculated in equation (9). For each 
Monte Carlo simulation, locations where eprodnet is negative (that is, 
net emissions rather than net emissions avoided) were not included 
in subsequent calculations since they would not be avoiding any emis-
sions in that scenario.

Total net cost was then divided by total net emissions avoided to 
get a final value for cost per ton of CO2-eq emissions avoided:

cpertonprod =
cprodnet
eprodnet

(27)

where cpertonprod is the total net cost per ton of CO2-eq emissions avoided 
by seaweed products ($ per tCO2-eq avoided), cprodnet is total net cost 
per ton seaweed DW harvested for products as calculated in equation 
(25) ($ tDW−1) and eprodnet is total net CO2-eq emissions avoided per ton 
seaweed DW harvested for products as calculated in equation (26) 
(tCO2 tDW−1).

Parameter ranges for Monte Carlo simulations
For technoeconomic parameters with two or more literature values 
(see Supplementary Table 1), we assumed that the maximum litera-
ture value reflected the 95th percentile and the minimum literature 
value represented the 5th percentile of potential costs or emissions. 
For parameters with only one literature value, we added ±50% to the 
literature value to represent greater uncertainty within the modelled 
parameter range. Values at each end of parameter ranges were then 
rounded before Monte Carlo simulations as follows: capital costs, 
operating costs and harvest costs to the nearest $10,000 km−2, labour 
costs and insurance costs to the nearest $1,000 km−2, line costs to the 
nearest $0.05 m−1, transport costs to the nearest $0.05 t−1 km−1, trans-
port emissions to the nearest 0.000005 tCO2 t−1 km−1, maintenance 
transport emissions to the nearest 0.0005 tCO2 km−1, product-avoided 
emissions to the nearest 0.1 tCO2-eq tDW−1, conversion cost down to 
the nearest $10 tDW−1 on the low end of the range and up to the nearest 
$10 tDW−1 on the high end of the range, and conversion emissions to 
the nearest 0.01 tCO2 tDW−1.

We extended the minimum range values of capital costs to 
$10,000 km−2 and transport emissions to 0 to reflect potential future 
innovations, such as autonomous floating farm setups that would 
lower capital costs and net-zero emissions boats that would result in 0 
transport emissions. To calculate the minimum value of $10,000 km−2 
for a potential autonomous floating farm, we assumed that the bulk 
of capital costs for such a system would be from structural lines and 
flotation devices, and we therefore used the annualized structural line 
(system rope) and buoy costs from ref. 41 rounded down to the near-
est $5,000 km−2. The full ranges used for our Monte Carlo simulations 
and associated literature values are shown in Supplementary Table 1.

Distance to optimal sinking point
Distance to the optimal sinking point was calculated using a weighted 
distance transform (path-finding algorithm, modified from code in  
ref. 60) that finds the shortest ocean distance from each seaweed 
growth pixel to the location at which the net CO2 removed is maxi-
mized (including impacts of both increased sequestration fraction 
and transport emissions for different potential sinking locations) 
and the net cost is minimized. This is not necessarily the location in 
which the seaweed was grown, since the fraction of sunk carbon that 
remains sequestered for 100 yr is spatially heterogeneous (see ref. 57).  
For each ocean grid cell, we determined the cost-optimal sinking point 
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by iteratively calculating equations (11–20) and assigning dsink as the 
distance calculated by weighted distance transform to each potential 
sequestration fraction (0.01–1.00) in increments of 0.01. Except for 
transport emissions, the economic parameter values used for these 
calculations were the averages of unrounded literature value ranges; 
we assumed that the maximum literature value reflected the 95th per-
centile and the minimum literature value represented the 5th percentile 
of potential costs or emissions, or for parameters with only one litera-
ture value, we added ±50% to the literature value to represent greater 
uncertainty within the modelled parameter range. For transport and 
maintenance transport emissions, we extended the minimum values 
of the literature ranges to zero to reflect potential net-zero emissions 
transport options and used the mean values of the resulting ranges. The 
dsink that resulted in minimum net cost per ton CO2 for each ocean grid 
cell was saved as the final dsink map, and the associated sequestration 
fraction value that the seaweed is transported to via dsink was assigned to 
the original cell where the seaweed was farmed and harvested (Supple-
mentary Fig. 19). If the cost-optimal location to sink using this method 
was the same cell where the seaweed was harvested, then dsink was 0 km 
and the sequestration fraction was not modified from its original value 
(Supplementary Fig. 18).

Comparison of gigaton-scale sequestration area to previous 
estimates
Previous related work estimating the ocean area suitable for mac-
roalgae cultivation13 and/or the area that might be required to reach 
gigaton-scale carbon removal via macroalgae cultivation13,19,36 has 
yielded a wide range of results, primarily due to differences in model-
ling methods. For example, Gao et al. (2022)36 estimate that 1.15 million 
km2 would be required to sequester 1 GtCO2 annually when considering 
carbon lost from seaweed biomass/sequestered as particulate organic 
carbon (POC) and refractory dissolved organic carbon (rDOC), and 
assume that the harvested seaweed is sold as food such that the carbon 
in the harvested seaweed is not sequestered. The area (0.4 million km2) 
required to sequester 1 GtCO2 in our study assumes that all harvested 
seaweed is sunk to the deep ocean to sequester carbon.

Additionally, Wu et al.19 estimates that roughly 12 GtCO2 could be 
sequestered annually via macroalgae cultivation in approximately 20% 
of the world ocean area (that is, 1.67% ocean area per GtCO2), which 
is a much larger area per GtCO2 than our estimate of 0.110% ocean 
area. This notable difference arises for several reasons (including 
differences in yields, which in Wu et al. are around 500 tDW yr−1 in the 
highest-yield areas, whereas yields in our cheapest sequestration areas 
from G-MACMODS average 3,400 tDW km−2 yr−1) that arise from differ-
ences in model methodology. First, Wu et al. model temperate brown 
seaweeds, while our study considers different seaweed types, many of 
which have higher growth rates, and uses the most productive seaweed 
type for each ocean grid cell. The G-MACMODS seaweed growth model 
we use also has a highly optimized harvest schedule, includes luxury 
nutrient uptake (a key feature of macroalgal nutrient physiology) and 
does not directly model competition with phytoplankton during sea-
weed growth. Finally, tropical red seaweeds (the seaweed type in our 
cheapest sequestration areas) grow year-round, while others, such 
as the temperate brown seaweeds modelled by Wu et al., only grow 
seasonally. These differences all contribute to higher productivity in 
our model, leading to a smaller area required for gigaton-scale CO2 
sequestration compared with Wu et al.

Conversely, the ocean areas we model for seaweed-based CO2 
sequestration or GHG emissions avoided are much larger than the 48 
million km2 that Froehlich et al.13 estimate to be suitable for macroalgae 
farming globally. Although our maps show productivity and costs eve-
rywhere, the purpose of our modelling was to evaluate where different 
types of seaweed grow best and how production costs and product values 
vary over space, to highlight the lowest-cost areas (which are often the 
highest-producing areas) under various technoeconomic assumptions.

Comparison of seaweed production costs to previous 
estimates
Although there are not many estimates of seaweed production costs 
in the scientific literature, our estimates for the lowest-cost 1% area 
of the ocean ($190–$2,790 tDW−1) are broadly consistent with previ-
ously published results: seaweed production costs reported in the 
literature range from $120 to $1,710 tDW−1 (refs. 40, 41, 61, 62), but are 
highly dependent on assumed seaweed yields. For example, Camus 
et al.41 calculate a cost of $870 tDW−1 assuming a minimum yield of 
12.4 kgDW m−1 of cultivation line (equivalent to 8.3 kgDW m−2 using 
1.5 m spacing between lines). Using the economic values from Camus 
et al. but with our estimates of average yield for the cheapest 1% pro-
duction cost areas (2.6 kgDW m−2) gives a much higher average cost 
of $2,730 tDW−1. Contrarily, van den Burg et al.40 calculate a cost of 
$1,710 tDW−1 using a yield of 20 tDW ha−1 (that is, 2.0 kg m−2). Instead 
assuming the average yield to be that from our lowest-cost areas (that 
is, 2.6 kgDW m−2 or 26 tDW ha−1) would decrease the cost estimated by 
van den Burg et al. (2016) to $1,290 tDW−1. Most recently, Capron et al.62 
calculate an optimistic scenario cost of $120 tDW−1 on the basis of an 
estimated yield of 120 tDW ha−1 (12 kg m−2; over 4.5 times higher than 
the average yield in our lowest-cost areas). Again, instead assuming 
the average yield to be that in our lowest-cost areas would raise Capron 
et al.’s production cost to $540 tDW−1 (between the $190–$880 tDW−1 
minimum to median production costs in the cheapest 1% areas from 
our model; Fig. 1a,b).

Data sources
Seaweed biomass harvested. We used spatially explicit data for 
seaweed harvested globally under both ambient and limited-nutrient 
scenarios from the G-MACMODS seaweed growth model33.

Fraction of deposited carbon sequestered for 100 yr. We used data 
from ref. 57 interpolated to our 1/12-degree grid resolution.

Distance to the nearest port. We used the Distance from Port V1 
dataset from Global Fishing Watch (https://globalfishingwatch.org/
data-download/datasets/public-distance-from-port-v1) interpolated 
to our 1/12-degree grid resolution.

Significant wave height. We used data for annually averaged signifi-
cant wave height from the European Center for Medium-range Weather 
Forecasts (ECMWF) interpolated to our 1/12-degree grid resolution.

Ocean depth. We used data from the General Bathymetric Chart of 
the Oceans (GEBCO).

Shipping lanes. We used data of Automatic Identification System 
(AIS) signal count per ocean grid cell, interpolated to our 1/12-degree 
grid resolution. We defined a major shipping lane grid cell as any 
cell with >2.25 × 108 AIS signals, a threshold that encompasses most 
major trans-Pacific and trans-Atlantic shipping lanes as well as major 
shipping lanes in the Indian Ocean, the North Sea, and coastal routes 
worldwide.

Marine protected areas (MPAs). We used data from the World Data-
base on Protected Areas (WDPA) and defined an MPA as any ocean 
MPA >20 km2.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data from this study are publicly available through Dryad at https://
doi.org/10.7280/D13H59.
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Code availability
Code was run using Python 3.9 and is publicly available through Zenodo 
at https://doi.org/10.5281/zenodo.7262015.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
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Data collection Model code was developed by B. Saenz, S. J. Davis, and J. DeAngelo. Python version 3.9. Code available via Zenodo: https://doi.org/10.5281/
zenodo.7262015.

Data analysis Data analysis code was developed by B. Saenz and J. DeAngelo using Python 3.9. Full code available via Zenodo: https://doi.org/10.5281/
zenodo.7262015.  Details: Code for Random Forest analysis was modified from open-source "Random Forest in Python" tutorial by Towards 
Data Science. Distance to the optimal sinking point was calculated using a weighted distance transform (path-finding algorithm, modified from 
code by Omar Richardson (2020). Citation: Richardson, O. weighted_distance_transform, <https://github.com/0mar/weighted-distance-
transform> (2020).
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data is available to download from Dryad: https://doi.org/10.7280/D13H59 .
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We developed a technoeconomic model of costs and net emissions associated with farming seaweed for climate benefits at scales 
relevant to the global carbon budget. Given the large uncertainty in the technoeconomic model parameters, we performed a Monte 
Carlo analysis, sampling uniformly across parameter ranges to produce 5,000 unique simulations of cost per ton of CO2 sequestered 
or avoided in any given location for each seaweed nutrient scenario. We then assessed the 5th, 25th, 50th, 75th, and 95th percentile 
Monte Carlo results globally, as well as the lowest-cost 1% areas for each scenario. Finally, we performed a LightGBM analysis of 
model parameters for the lowest-cost regions to determine variable importance across the Monte Carlo simulations. 

Research sample * Seaweed biomass harvested: We use spatially-explicit data for seaweed harvested globally under both ambient and flux-limited 
nutrient scenarios from the G-MACMODS seaweed growth model, presented in Arzeno-Soltero et al. (https://doi.org:https://
doi.org/10.31223/X52P8Z).  
* Fraction of deposited carbon sequestered for 100 years at seafloor depth: We use data from Siegel et al. (2021) interpolated to our 
1/12-degree grid resolution. 
* Distance to nearest port: We use the Distance from Port V1 dataset from Global Fishing Watch (https://globalfishingwatch.org/
data-download/datasets/public-distance-from-port-v1) interpolated to our 1/12-degree grid resolution. 
* Significant wave height: We use data for annually-averaged significant wave height from the European Center for Medium-range 
Weather Forecasts (ECMWF) interpolated to our 1/12-degree grid resolution. 
* Ocean depth: We use data from the General Bathymetric Chart of the Oceans (GEBCO). 
* Shipping lanes: We use data of Automatic Identification System (AIS) signal count per ocean grid cell, interpolated to our 1/12-
degree grid resolution. We define a major shipping lane grid cell as any cell with >2.25 x 10^8 AIS signals, a threshold that 
encompasses most major trans-Pacific and trans-Atlantic shipping lanes as well as major shipping lanes in the Indian Ocean, North 
Sea, and coastal routes worldwide. 
* Marine Protected Areas (MPAs): We use data from the World Database on Protected Areas (WDPA) and define a MPA as any ocean 
WDPA >20 km^2.

Sampling strategy Due to the lack of existing data for the technoecomoic variables in our model, we assumed a uniform distribtion across uncertainty 
ranges and sampled randomly across those ranges for each variable. Seaweed yield was sampled from a normal distribution 
according to uncertainty analysis from Arzeno-Soltero et al. (https://doi.org:https://doi.org/10.31223/X52P8Z). 

Data collection Data files were recorded and saved as netCDF files throughout model runs, and statistical metadata was saved as .csv files. Data was 
compiled and analyzed by J. DeAngelo, using code developed by B. Saenz and J. DeAngelo (Python version 3.9). 

Timing and spatial scale We produced 5,000 simulations for each seaweed nutrient scenario for our Monte Carlo analysis. Each simulation represents the 
potential cost per ton of carbon sequestered or avoided by either growing and sinking seaweed or using seaweed to replace 
emissions-intensive products. These costs assume that the maximum seaweed biomass could be grown annually in the G-MACMODS 
seaweed growth model (Arzeno-Soltero et al., https://doi.org:https://doi.org/10.31223/X52P8Z). G-MACMODS is a global, spatially-
explicit seaweed growth model; our technoeconomic model is also global and spatially-explicit in assessing the costs and net 
emissions associated with farming the seaweed represented by G-MACMODS.  

Data exclusions We excluded negative cost values from our LightGBM analysis of the lowest-cost areas from Monte Carlo simulations, because there 
were too few negative values for the algorithm to be statistically robust at predicting values below zero. 

Reproducibility Attempts to repeat the Monte Carlo and LightGBM analyses were sucessful.

Randomization Training and test groups for LightGBM analyses were sampled randomly using 100 decision trees, with random state set to 42. 

Blinding Blinding was not relevant to our study.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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