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ABSTRACT OF THE DISSERTATION

Photophysics of Organic Molecules under the Polariton regime

by

Luis Ángel Martínez Martínez

Doctor of Philosophy in Chemistry

University of California San Diego, 2021

Professor Joel Yuen-Zhou, Chair

The advent of efficient light-confining platforms marked the burgeoning of the field of

Cavity Quantum Electrodynamics (Cavity QED), which brought along the realization of exotic

phenomena that emerges under extreme light-matter interaction regimes.

On the other hand, in chemistry, the interaction between light and matter is at the core of

invaluable spectroscopic techniques and a number of photo-induced chemical processes. From a

theoretical standpoint, light-matter interaction in those scenarios can be treated perturbatively,

such that molecules and light preserve their individual identity. This picture breaks down when

we consider one photonic mode interacting with molecules such that the energy of this interaction

surpasses their respective linewidths. This so-called strong coupling (SC) regime has been

xi



accomplished in microsetups which can sustain confinement comparable to the wavelength of

light that promotes molecular excitations. Under the SC regime, the excitations sustained by

the device are no longer of purely material character but rather exhibit a hybrid molecular and

photonic nature, and are usually known as polaritons.

The recent observation of the slowing down of chemical reactions in the SC regime has

incentivized communities of different backgrounds to converge in order to understand the range

of possibilities the regime has to offer on the control of molecular processes.

In this dissertation, a combination of quantum optics and chemical rate theory is used

to understand the emergent dynamics of molecules embedded in an strongly confined electro-

magnetic environment. More specifically, an analysis of the tunability of chemical reactivity of

realistic polariton setups in the dark (i.e. in the absence of any driving source) is presented. Later

on, it is shown that Singlet Fission and Reverse-Intersystem Crossing, two photophysical pro-

cesses of technological relevance, represent an ideal testing ground to explore the rich dynamics

afforded under the polariton regime. In the latter phenomena, special emphasis is cast upon the

fleeting nature of the electromagnetic environment, as well as on its implications on the degree of

control on molecular processes.
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Chapter 1

Introduction

During the 1980s, the technological development of lasers and advances in our under-

standing of quantum theory introduced unprecedented theoretical perspectives on the leverage

of coherent electromagnetic (EM) fields for the manipulation of molecular and atomic pro-

cesses. The central notion behind the original proposals was to take advantage of the spatial

and temporal coherence of the fields afforded by lasers to imprint their features on a material,

that ultimately would lead, for instance, to coherently-enhanced photodissociation in molecules,

adiabatic population transfer, and molecular deposition and alignment, just to name a few [1].

However, the realization of the numerous schemes proposed for control of molecules with

coherent EM fields is hindered to a significant extent by the fact that the molecular and atomic

systems are not isolated but rather their information content spreads continuously across their

surroundings (decoherence) [1], such that the relative phase-information contained in matter and

light (essential for the success of coherent control) can be short-lived, even at room temperature.

As it is usually the case, in the history of chemistry and physics, the emergence of new

areas of research is closely related to the existence of technological platforms and/or experimental

observations that call out for a confluence of researches of different backgrounds. Similarly to the

case with lasers during the 1980s, a myriad of novel perspectives and observations for light-matter
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interactions were possible during the 1990s and 2000s [2] due to the development of photonic

devices that accomplish an efficient confinement of light within a spatial nanoscale. Those

structures placed previously unattainable regimes of light-matter interaction within reach, without

the need of very large EM amplitudes. The existence of these platforms, like microresonators

that are generically denominated microcavities, has incentivized a deeper understanding of light-

matter interaction, and as a result, new areas of research have emerged aiming to the control of a

plethora of atomic and photonic phenomena.

Among the most striking phenomena that arises within these devices, we have the experi-

mentally detectable consequences of the non-vanishing variance of EM fields (so-called quantum

fluctuations) hosted in the latter, even in the absence of photons. Those manifest as an attractive

force between the conducting planes that constitute the microcavity (Casimir-Polder effect) [3],

but also can be used to generate photons out of the vacuum by means of non-adiabatic modulation

of the spacing between the microcavity [4].

Other counterintuitive picture that can be accomplished by microcavities (and other

platforms that allow strong confinement of EM fields) is the possibility to design devices where

light can interchange energy with a material inside the resonator at a higher frequency than the

one associated to the decay of the excited states of both entities. When this is the case, the

usual physical picture of separate and independent identities of the material and light degrees of

freedom breaks down, and the excitations sustained by these setups are of hybrid matter-light

character, usually called polaritons [5].

Theoretical formulations of the aforementioned hybrid states date back to the 1950s and

the experimental realization in atomic and solid-state cavity-polaritons ocurred in the 1980s

and 1990s, respectively. Surprisingly, probably due to the decoherence problem faced by the

coherent-control proponents during the 1980s, the exploration of chemical dynamics within

confined EM fields was not a subject of interest until recent reports of modification of molecular

photoisomerization rates with the aid of microcavities [6]. Further evidence of cavity-assisted

2



N 
molecules

Figure 1.1: Cartoon that illustrates the difference in the spatial extent of molecules and a
typical wavelength of the EM modes hosted in an optical microcavity.

modifications of molecular processes, such as nucleophilic substitution reactions [7], and long-

range energy transfer [8, 9], ignited the interest of experimentalists and theorist alike.

Those observations revived the efforts of coherent control of molecules with the aid of

EM fields [10], and prompted theorists to come up with models to account for the experimental

results, as well as to explore the new avenues that these devices have yet to offer on molecular

manipulation.

One of the key features of the experiments in organic polaritonic devices is that they

afford the polariton regime by confining a macroscopic number of molecules in microcavities,

which support EM modes with wavelengths that range usually from the IR to optical frequencies.

The need of a large number of molecules can be understood based on the difference in length

scales of molecules and the confined EM modes (see Fig. 1.1). This difference permit the latter to

couple to a coherently enhanced dipole moment of the molecular ensemble, thus introducing Rabi

oscillations between a (superradiant) matter state and a photonic one, whose frequency scales as

the square root of the molecular concentration inside the effective volume of the EM mode [11].

Furthermore, the reduced density of photonic states on these platforms (for the case of a planar

resonator, we can think of its supported photonic modes as a 2D boson gas) compared with a

non-confined scenario, gives room to the feasibility of relatively long-lived Rabi oscillations.

3



Even though Agranovich and Litinskaya [12, 13] introduced the first works exploring the

dynamics of polariton modes in organic microcavities; Galego et. al. [14, 15]and Herrera [16]

proposed the first models to understand their implications on photochemical processes. The latter

shed light on the collective nature of light-matter coupling and the role of delocalization of the

molecular excitations to modify the potential energy surfaces associated to the process of interest.

However, one important drawback on those works is the absence of decoherence mech-

anisms that must be important for polariton setups, as light confined in these devices can be

sustained for timescales as short as a few femtoseconds [17]. The latter is comparable (or even

faster) that the timescales of photophysical processes themselves. In this dissertation, the previous

facet of the polariton dynamics problem, is addressed.

Another issue that seems to preclude the tunability of cavity-assisted molecular processes

is that the vast majority of the excitations hosted by an organic polariton device are of purely

molecular character (see Fig. 5.15). Those can be understood as linear combinations of excited

molecular states with a non-symmetric spatial permutational symmetry, which turns them into

vanishing-dipole-moment states. Dark states may be populated as a result of vibrational relaxation

of polariton modes [13], and given their high density of states with respect to the latter [18, 19, 9],

the polaritonic excitations tend to be quickly depleted as dark states are entropically favored.

These issues call out for the models that specifically include the mentioned dissipative

channels and that would shed light on strategies to mitigate their detrimental effects on molecular-

processes manipulation.

1.1 Summary of contents

This dissertation is focused on the development of generic effective models to identify

the most significant time and energy scales that come into play in the photophysics and chemical

reactivity of organic molecules in highly confined EM environments. A special emphasis is

4
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Figure 1.2: a) When a single photonic state interchanges amplitude with a dense manifold
of (energy-disorder free) N molecular transitions (assuming N molecules, each treated as a
two-level system) and for sufficiently large light-matter coupling strengths, we can spectrally
resolve a single lower (upper) polariton with frequency ωLP (ωUP). The rest N− 1 molecular
states do not interchange amplitude with the photonic state, as they feature a vanishing dipole
moment (in quantum optics literature, they are usually referred to as subradiant states). b)
Dark states can be understood as the analogous of non-bonding orbitals that result from the
formulation of symmetry-adapted linear combination of atomic orbitals in molecular orbital
theory.

deposited on the dissipative mechanisms that compete with the molecular processes of interest.

One of the main advantages of the developed models with respect to an ab initio approach is

that the former allow an explicit treatment of a macroscopic ensemble of molecules. That is a

consequence of the fact that only the most relevant degrees of freedom of realistic setups are

included such that the essential physics of the dynamics is captured. Furthermore, this allows us

to get an analytical insight of the degree of molecular control that polariton setups can offer.

Chapter 2 presents the general theoretical framework to model light-matter interaction

when molecules are spatially confined within an (also spatially constrained) EM field. The most

important approximations that permit a few-mode description of the photonic and molecular

degrees of freedom are laid out.

Chapter 3 introduces the implications of the so-called ultrastrong coupling regime on

chemical reactivity (more precisely, an isomerization processes) in the electronic ground state of

organic molecules. The motivation of this exploration relies on the observation that for sufficiently

high light-matter energy scales (comparable to that of a typical electronic molecular transition),

the global ground state of the hybrid molecular-photonic system is no longer purely material but

acquires a non-vanishing photonic character. In this chapter the implications of this dressing on

5



the isomerization process is discussed.

Chapter 4 elaborates on the importance of the dissipative nature of polariton modes

afforded by SC when molecules that undergo the photochemical process known as singlet-fission

(SF) [20] are employed. SF is of contemporary technological relevance as it has been shown

to significantly enhance the efficiency of organic photovoltaic devices [21]. For that end, the

toolkit of open-quantum-systems [22] was used to develop a kinetic model that reveals different

kinetic pathways that are absent in a cavity-free scenario [19]. Furthermore, the insight shed by

this approach allowed to propose ideal-candidate molecular features to boost SF under strong

light-matter coupling (SC).

Chapter 5 follows a similar approach to the previous one, to get insight on the process

known as Reverse-Intersystem-Crossing (RISC) under SC. In this photochemical process, an

exciton of electronic triplet character undergoes a transition to a singlet-exciton as a result of

spin-orbit coupling. RISC, in spite of being a very slow transition in organic materials, can

be employed to harvest (non-luminescent) triplet excitons which subsequently transition into

singlet excitons that emit light, before the former are lost as heat as a result of radiationless

decay. Thus, this chapter explores the benefits of the SC regime for RISC, and strategies to

circumvent the delocalized character of polariton modes. For that end, a generalization of a

variational approach to the dynamics of open-quantum systems, previously used to describe

multichromophoric exciton transport [23] and photoluminescence of polaritons [24], is developed

and implemented numerically.

Finally, in Chapter 6 a general perspective of the accomplished results are presented, as

well as the likely routes that can be followed to get further insight on the molecular dynamics

under SC.
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Chapter 2

Theoretical Framework

This chapter describes the theoretical foundations of this dissertation. Firstly, the electro-

magnetic field sustained by dielectric structures is cast in quantized form. Even though most of the

chapters that follow rely on parameters that correspond to typical organic Fabry-Perot resonators

(see Fig. 2.1), it is instructive to describe a general framework (valid for any linear isotropic

dielectric platform) that introduces a distinction between what we denote as system photon modes

(those that exhibit certain degree of confinement under the presence of dielectrics) and the rest

of the universe (bath photon modes). The latter approach allows a few-mode approximation for

the electromagnetic (EM) field, which is one of the basis for the effective coarse-grained models

defined throughout this dissertation.

Later, the coupling of the confined electromagnetic modes with molecular degrees of

freedom (DOFs) is introduced, as well as the most important approximations that permit the

exploration of the emergent chemical dynamics in these setups.

2.1 Few mode approach to the electromagnetic field

One of the key ingredients to accomplish a strong interaction between light and matter

is confinement of EM fields. In practice, this is achieved through a variety of platforms that

7



Figure 2.1: Pictorial representation of a molecular ensemble embedded in a Fabry-Perot res-
onator.

include, for instance, Fabry-Perot resonators and plasmonic nanostructures. Nowadays, devices

that feature sharp resonances (i.e. with very small linewidths) in their scattering spectra are

within reach [25, 17, 26]. When this is the case the system can be modeled as a set of EM

modes supported by the device and weakly coupled to external ones. Nevertheless, for platforms

operating at optical frequencies (which are the ones usually employed in the systems considered

in this dissertation) it is usually the case that they exhibit broad resonances and/or overlapping

modes, which precludes an straightforward choice of system modes [17]. Fortunately, this issue

has been recently addressed in Ref. [27] and constitutes one of the basis (along Ref. [28]) for the

framework outlined below.

Before proceeding to the quantum-mechanical formulation of EM fields, it is worthy to

remark the salient analogies between the Maxwell and Schrödinger equations: their solutions

feature oscillations in space and time, and in lossless media, they preserve energy. As pointed out

in Ref. [29], all wave equations can be written abstractly as

∂tw = D̂w+ s (2.1)

8



where w is a vector field characterizing the solutions, D̂ is a linear operator, and s is a vector

source. The key property of D̂ is that it is antihermitian (under a defined inner product), a trait

from which follows the oscillatory characteristics of the solutions and energy conservation. To see

this, we note that the harmonic mode solutions of Eq. (2.1) are of the form w(r, t) = W(r)e−iωt ,

such that, in the absence of a source (s = 0) we have

ωW(r) = iD̂W

where, if D̂ is antihermitian such that (w, D̂w′) = (D̂†w,w′) =−(D̂w,w′), it follows that iD̂ is a

hermitian operator. The latter conclusion has the consequences that the eigenvalues ω are real (i.e.

the solutions are lossless) and the harmonic solutions W constitute a complete basis.

To make the connection with electromagnetic theory, we note that the source-free

Maxwell’s equations in presence of matter (sometimes called macroscopic Maxwell equations)

∇ ·D = 0

∇ ·B = 0

∂tD = ∇×H

∂tB =−∇×E

and assuming for simplicity an isotropic and linear dielectric media, such that the constitutive

relations

D = ε(r)E

B = µ(r)H = H

are satisfied [ε(r),µ(r) are the relative permittivity and magnetic permeability of the dielectric,

9



respectively. Hereafter, we will use ~= c = 1, unless stated otherwise]; can be written in the form

∂t

E

B

=

 0 1
ε
∇×

−1
µ∇× 0


E

B

 (2.2)

= Ô

E

B

 (2.3)

We define the inner product as an integral over space at a fixed time (w = [E B])

(w,w′) =
1
2

∫
dr
[
E∗ · (εE′)+B∗ · (µB′)

]
and we can verify that (w, Ôw′) =−(Ôw,w′). Thus, iÔ is a Hermitian operator, and the harmonic

field solutions w(r, t) are complete.

The quantization of the EM field is carried out by defining the vector potential, choosing

a gauge and later promoting the canonical coordinates to operators. We have

B = ∇×A

E =−∇Φ−∂tA

where Φ is the scalar potential. Under the absence of free-charges (such that Φ = 0) the gauge

can be chosen by requiring ∇ · [ε(r)A] = 0 which implies a transversality condition on D [∇ ·

[ε(r)∂tA] = 0]. The equation of motion of the potential vector A is given by

∂tE = ε(r)−1
∇×B = ε(r)−1

∇×∇×A =−∂
2
t A =⇒ ε(r)∂2

t A+∇×∇×A = 0 (2.4)

From here, we can derive a Lagrangian that reproduces the equation of motion (2.4) and by

10



carrying out a Legendre transformation of the former we arrive at the Hamiltonian

H =
1
2

∫
dr
[

Π(r, t)2

ε(r)
+(∇×A)2

]
(2.5)

where the canonical momentum

Π(r, t) =−D(r, t)

is directly related to the displacement field, rather than to the electric one. We can carry out an

expansion of the vector potential

A(t,r) = ∑
k

Qk(t)fk(r) (2.6)

and similarly for

Π(r, t) = ∑
k

Pk(t)ε(r)f∗k(r) (2.7)

in terms of vectors fk(r) which satisfy

ε(r)ω2
kfk(r)−∇×∇× fk(r) = 0 (2.8)

as well as ∇ · [ε(r)fk] = 0, together with the boundary conditions required for the particular

problem.

By introducing fk(r) = ε(r)−1/2gk(r), we note that the previous equation can be cast in

the form

ω
2
kgk(r)− ε(r)−1/2

∇× [∇× ε(r)−1/2gk] = 0

and in view of the Hermiticity of the operator ε(r)−1/2∇×∇× ε(r)−1/2 , {gk} are orthonormal

fields. It then follows that

(fk, fk′) =
∫

dr3
ε(r)f∗k · fk′ = δk,k′. (2.9)

Next, we have that by requiring the vector field A(t,r) to be hermitian (which is due to the

11



requirement of real magnetic and electric fields) the following must be satisfied

∑
k

Qkfk = ∑
k

Q†
kf∗k .

Introducing a projection on ε(r)f∗m(r) on both sides of the equation and integrating over space,

we obtain, by using Eq. (2.9):

∫
dr3

ε(r)∑
k

Qkf∗m(r) · fk(r) = Qm = ∑
k

Q†
k

∫
dr3

ε(r)f∗m(r) · f∗k(r)

= ∑
k

Q†
kU∗k,m. (2.10)

The matrix U∗k,m satisfies unitarity:

∑
k′

Uk,k′U
∗
k′′,k′ = ∑

k′

∫
dr3

∫
dr′3ε

∗(r)ε(r′) fk′,α(r) f ∗k′,β(r
′) fk,α(r) f ∗k′′,β(r

′)

=
∫

dr3
ε
∗(r) fk,α(r) f ∗k′′,α(r) = δk,k′′

where fn,α denotes the scalar αth component of fn and used the Einstein summation convention.

Furthermore, we have

δ
ε

αβ
(r,r′) = ∑

k
fk,α(r) f ∗k,β(r

′)

which can be though of as a completeness property for the subspace of transverse fields, since it

satisfies

∫
dr′3ε(r′)δε

αβ
(r,r′)XT

β
(r′) = XT

α(r)∫
dr′3ε(r′)δε

αβ
(r,r′)XL

β
(r′) = 0

XT (r) (XL) being a transverse (longitudinal) vector field, i.e ∇ ·XT (r) = 0 (∇×XL = 0). We can

carry out the previous arguments developed for the vector field A and apply them to the transverse
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electric field Π(r, t) in Eq. (2.7) to conclude that

P†
k = ∑

k′
Pk′U

∗
k′k. (2.11)

Importantly, the reason that explains why the matrix U∗k,k′ appears in this generalized quantization

approach for (linear) dielectric profiles and it is absent in the usual quantization approach in free

space, is that in the former case, the harmonic mode fieldsfk(r) are in general not orthonormal

to their time-reversal counterparts f∗k′(r), (in other words, harmonic mode fields with different

boundary conditions are not necessarily orthonormal.)

Substitution of Equations (2.6) and (2.7), together with the relations (2.10) and (2.11) in

the Hamiltonian (2.5) yields

H =
1
2 ∑

k
(P†

k Pk +ω
2
kQ†

kQk)

where the Maxwell equations can be recovered from the Heisenberg equations of motion assuming

that the usual commutation relations for the canonical variables Pk and Qk are satisfied:

[Qk,Qk′] = [Qk,Q
†
k′] = [Pk,Pk′] = [Pk,P

†
k′] = 0

[Qk,Pk′] = i~δk,k′

with the important difference with respect to the free-space quantization procedure that

[Qk,P
†
k′] = i~U∗k,k′

However, this does not preclude the definition of a diagonal Hamiltonian in terms of creation and

annihilation operators. By introducing bosonic ladder operators ak, a†
k that satisfy [ak,a

†
k′] = δk,k′ ,
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we have that the definitions

Qk =

(
~

2ωk

)1/2

(ak +∑
k′

U∗k,k′a
†
k′)

Pk = i
(
~ωk

2

)1/2

(a†
k−∑

k′
Uk,k′ak′)

satisfy the relations (2.10) and (2.11):

∑
k

Q†
kU∗k,m = ∑

k

(
~

2ωk

)1/2

(a†
kU∗k,m +∑

k′
U∗k,mUk,k′ak′)

=

(
~

2ωk

)1/2

∑
µ
(a†

µU∗µ,m +∑
k′

U∗µ,mUµ,k′ak′)

=

(
~

2ωk

)1/2

(∑
µ

a†
µU∗µ,m +am)

= Qm

where in the first line we made use of the crucial observation that Uk,k′ ∼ δk,k′ and therefore the

index µ runs over the labels of the degenerate manifold at frequency ωk. Therefore, the quantized

form of Eq. (2.6) is given by

A(t,r) = ∑
k

(
~

2ωk

)1/2

[akfk +h.c.] (2.12)

Which in integral form is given by (2.6)

A(t,r) = ∑
m

∫
dωQ̂m(ω, t)fm(r,ω)

= c∑
m

∫
dω

(
~

2ω

)1/2

[am(ω)fm(r,ω)+h.c.]

where we added a label m to distinguish between the degenerate modes for a given frequency ω.
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We also have that [am(ω),a
†
m′(ω

′)] = δm,m′δ(ω−ω′), and (fm(ω), fm′(ω
′)) = δm,m′δ(ω−ω′).

Similarly, from Eq. (2.7) we have

(r, t) = ∑
m

∫
dωPm(ω, t)ε(r)f∗m(r,ω)

= iε(r)∑
m

∫
dω

(
~ω

2

)1/2

(a†
m(ω)f

∗
m(r,ω)−am(ω)fm(r,ω))

Thus, by taking into account the continuum nature of the space of fields fm(r,ω), we rewrite the

Hamiltonian in presence of a dielectric medium as

Hrad =
1
2 ∑

m

∫
dω

[
P̂†

m(ω, t)P̂m(ω, t)+ω
2Q̂†

m(ω, t)Q̂m(ω, t)
]

= ∑
m

∫
dωωa†

m(ω)am(ω)+C (2.13)

What was outlined here is a formalism that quantizes the electromagnetic field in presence

of dielectrics (for instance, mirrors when considering a microcavity). However, as pointed out at

the beginning of this chapter, the models described later in this dissertation rely on a definition of

EM modes confined spatially within a dielectric structure coupled to a photonic reservoir.

Ref. [27] introduces a powerful approach to perform the aforementioned partition, based

on a Feshbach projection [27]on the harmonic modes fm(r,ω) introduced above, by defining an

arbitrary system ΛQ subspace. It is not an intend of this section to provide a detailed account on

this approach, but for completeness, the main features of the procedure are summarized below,

adopting for simplicity in the notation purposes, the correspondence fm(r,ω)→ | fm(r,ω)〉 [i.e.

ignoring the vectorial character of the field, and considering a one-dimensional scenario, whose

generalization to three dimensions is straightforward]. Under this conditions, we can cast Eq.

(2.8) into a Schrödinger-equation-like form

(
−1

2
∂2 fm(r,ω)

∂r2

)
+

ω2
k

2
[1− ε(r)] fm(r,ω) = HM fm(r,ω) =

ω2
k

2
fm(r,ω) (2.14)
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where the potential V =
ω2

k
2 [1− ε(r)] is frequency dependent and it is only non-zero for regions

of space where permittivity is different from that of the vacuum. The close analogy between the

stationary Schrödinger equation and the Maxwell-wave equation (2.14) hints the application of a

Feshbach projection approach already developed for scattering problems [28] into the problem at

hand.

The aforementioned projection scheme relies on the definition of operators P and Q that

satisfy:

P2 = P Q2 = Q P+Q = 1

where Q corresponds to the projection on what we define as system subspace, and P to the bath

subspace. In other words

Q = ∑
λ∈ΛQ

|χλ〉〈χλ|

It is further required for the latter states to be eigenstates of the projected total Hamiltonian

HQQ = QHQ:

HQQ|χλ〉= Eλ|χλ〉. (2.15)

In analogy, the bath states as those that are the eigenstates of the Hamiltonian projected on the P

subspace:

PHP|ψm(ω)〉= HPP|ψm(ω)〉= E(ω)|ψm(ω)〉 (2.16)

Furthermore, since both HQQ and HPP are hermitian [under the inner product shown in Eq. (2.9)],

their respective non-degenerate eigenstates are orthogonal. The full eigenmodes fm(r,ω) of the

Hamiltonian HM can therefore be written as

| fm(r,ω)〉= Q| fm(r,ω)〉+P| fm(r,ω)〉

= ∑
λ∈ΛQ

αλm(ω)|χλ〉+∑
m′

∫
dω
′
βm,m′(ω,ω

′)|ψm′(ω
′)〉
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where αλm(ω) = 〈χλ| fm(ω)〉, βm,m′(ω,ω
′) = 〈ψm′(ω

′)| fm(r,ω)〉. It can be shown that the her-

miticity of HM in addition to the requirements (2.15) and (2.16) are sufficient conditions to

formulate the Hamiltonian of the EM field (2.13) in terms of the system and bath modes as [27]

Hrad =
1
2 ∑

λ

[
P†

λ
Pλ +ω

2
λ
Q†

λ
Qλ

]
+

1
2 ∑

m

∫
dω

[
P†

m(ω)Pm(ω)+ω
2Q†

m(ω)Qm(ω)
]

+
1
2 ∑

m
∑
λ

∫
dω

[
Wλ,m(ω)Q

†
λ
Qm(ω)+h.c.

]
(2.17)

= ∑
λ

ωλaλa†
λ
+∑

m

∫
dωωb†

m(ω)bm(ω) (2.18)

+∑
m

∑
λ

∫
dω

1
2
√

ωλω

[
Wλ,m(ω)a

†
λ
bm(ω)+Vλ,m(ω)aλbm(ω)+h.c.

]
(2.19)

where Wλ,m(ω)= 〈χλ|HM|ψm(ω)〉, Vλ,m(ω)= 〈χ∗λ|HM|ψm(ω)〉, and aλ [bm(ω)] is the annihilation

operator for the λth system mode (the mth bath mode with frequency ω).

The matrix elements Wλ,m(ω), Vλ,m(ω) can be conveniently computed by following an

orthogonalization procedure of the free-continuum to the ΛQ subspace as discussed by Domcke

[28]. The latter relies on the calculation of the modes |ψm(ω)〉 as scattering eigenstate solutions

of the Hamiltonian HPP = KPP +VPP. The latter can be written as

[E(k)−KPP] |ψm(k)〉=VPP|ψm(k)〉

and its solutions are given by the Lippmann-Schwinger equation

|ψm(k)〉= |k(±)〉+[E(k)−KPP± iη]−1VPP|ψm(k)〉

= |k(±)〉+ Ĝ(±)
0 VPP|ψm(k)〉 (2.20)

where KPP|k(±)〉= E(k)|k(±)〉. The calculation of |ψm(k)〉 is eased with the introduction of so-
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called separable expansions for the potential VPP ≈∑i, j PV |yi〉Y−1
i, j 〈y j|V P, Yi, j = 〈yi|V |y j〉, where

P|yi〉= |yi〉, Q|yi〉= 0, and becomes exact when the potential is of the form V = ∑
M
j=1 |y j〉〈y j|.

The advantage of this expansion is that the integral problem (2.20) is rendered into an algebraic

one:

V (m,k)
n = 〈yn|V |k(±)〉+∑

j

[
∑

i
〈yn|V Ĝ(±)

0 V |yi〉Y−1
i, j

]
V (m,k)

j

= 〈yn|V |k(±)〉+∑
j

Gn, jV
(m,k)
j

where we can solve for V (m,k)
n = 〈yn|V |ψm(k)〉, once we compute the matrix elements 〈yn|V |k(±)〉

and Gn, j, which in turn can be conveniently calculated by solving for KPP|k(±)〉= E(k)|k(±)〉.

2.2 Molecules in a confined EM environment

Having discussed a framework to formulate an EM environment in presence of dielectrics

as a sum of a system and bath contributions, a brief account on the theoretical formulation of

molecular DOFs is useful. For that end, a short summary of the approximations for the latter,

which permit a coarse-grained formulation of the models used throughout this dissertation, is

presented. Later, the scenario of molecules interacting with confined EM fields is addressed.

2.2.1 Molecular Hamiltonians

Considering a polyatomic molecule, the Hamiltonian operator of the latter has the general

form [20]

Hmol = Tel +Vel−nuc +Vel−el +Tnuc +Vnun−nuc (2.21)
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where Tel (Tnuc) is the kinetic-energy operator for the electrons (nuclei). The Coulomb electron-

electron, electron-nuclei and nuclei-nuclei interaction are included in Vel−el , Vel−nuc and Vnuc−nuc,

respectively. The specific form of each term is unimportant for the purposes of this dissertation

and can be found elsewhere [20].

On the other hand, the so-called Born-Oppenheimer approximation (BOA), which relies

on the clear separation of time-scales of motion between electrons an nuclei, is of central relevance.

Under this approximation, many-body electronic stationary solutions are changed adiabatically as

a function of the nuclear coordinates, which allows us to have

|ψa,M(r;R)〉= Xa,M(R)φa(r;R) Hmol|ψa,M(r;R)〉= Ea,M|ψa,M(r;R)〉 (2.22)

where r(R) denotes the coordinates of all the electrons (nuclei) of the molecule. In Eq. (2.22)

Xa,M(R) are time-independent solutions of [20]

Ha(R)Xa,M(R) = [Tnuc +Ua(R)]Xa,M(R) = EXa,M(R) (2.23)

and φa(r;R) are solutions of the electronic Hamiltonian that features a parametric dependence on

the nuclear coordinates R:

Hel(R)φa(r;R) = [Tel +Vel−nuc +Vel−el]φa(r;R) = Ea(R)φa(r;R).

In Eq. (2.23) Ua(R) is the effective potential generated by the mutual Coulomb interaction of the

nuclei and the interaction of the latter with the electronic charge distribution corresponding to

configuration R. In other words, the stationary nuclear wavefunctions under the BOA correspond

to the solutions of the time-independent Schrödinger Equation where the potential energy term

is given by the Potential Energy Surfaces (PESs) Ua(R). In general, it is possible to perform an

harmonic approximation and normal mode analysis on the different PESs Ua(R), which consists
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on carrying out the expansion

Ua(R)≈Ua(R(a))+
1
2

3Nnuc

∑
m,n

κ
(a)
mn∆R(a)

m ∆R(a)
n

around the global minimum nuclear configuration R(a), for small deviations ∆R(a)
n = R(a)

n −Rn.

The molecular Hamiltonian is thus given by

Hmol ≈∑
a

[
Ua(R(a))+ T̂nuc +

1
2

3Nnuc

∑
m,n

κ
(a)
mn∆R(a)

m ∆R(a)
n

]
|φa〉〈φa|

= ∑
a

[
Ua(R(a))+

1
2 ∑

E

(
p2

a,E +ω
2
a,E q2

a,E

)]
|φa〉〈φa|

= ∑
a

Ha(qa)|φa〉〈φa| (2.24)

where the second line is obtained after introducing a linear transformation

∆R(a)
m = ∑

E
M−1/2

n A(a)
n,E qa,E ,

that renders the vibrational Hamiltonian Ha(R) in terms of the normal mode vibrational coordi-

nates qa,E .

2.2.2 Interaction with an EM field

To account for the interaction of molecules with a confined EM environment, the coupling

of charged particles (due to the electrons and nuclei of the former) to the latter, must be considered.

The discussion that follows is based on Ref. [30].

In the discussion that follows it is worthy to point out that the quantization of the EM

field outlined above was carried out within a macroscopic approach, as the microscopic details

of the dielectric structure that permits the EM confinement is unimportant. On the other hand,
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hereby the coupling between the molecules confined within a dielectric structure and the EM field

sustained by the latter, is treated within a microscopic formalism.

Considering an ensemble of identical molecules confined within a dielectric structure like

the one depicted in Fig. 2.1, the total Hamiltonian is given by [30]

H = ∑
i

1
2mi

[pi−qiA(ri)]
2 +

1
2 ∑

i6= j

qiq j

|ri− r j|
+Hrad (2.25)

= ∑
i

1
2mi

[pi−qiA(ri)]
2 +Hrad +

1
2 ∑

m
∑

α 6=α′

qm,αqm,α′

|rm,α− rm,α′|
+

1
2 ∑

m 6=m′
∑
α,α′

qm,αqm′,α′

|rm,α− rm′,α′|
(2.26)

= ∑
i

1
2mi

[pi−qiA(ri)]
2 +Hrad +Vintra +Vinter (2.27)

where pi, qi, mi and ri denote the momentum, charge, mass and position of particle i; and Hrad

is the EM Hamiltonian, taking into account the dielectric structure [see Eq. (2.17) for the one-

dimensional version]. The material variables satisfy [r(α)i ,r(β)j ] = [p(α)i , p(β)j ] = 0 , [r(α)i , p(β)j ] =

iδi, jδα,β; α,β = x,y,z. In the second line of Eq. (2.25) we carried out a partition of the Coulomb

interaction between the charged particles that comprise the molecular ensemble, in terms of

the individual identities of the molecules which are indexed by the m, m′ labels. When this is

introduced, an intra- and inter-molecular Coulomb interaction term can be identified.

In view of the partition of the EM modes described above, the vector potential features a

system and a bath contribution:

A(r) = Asys(r)+Abath(r)

Asys(r) = ∑
λ

√
1

2ωλ

[aλ~χλ +h.c.]

Abath(r) = ∑
m

∫
dω

√
1

2ω
[bm(ω)~ψm(r,ω)+h.c.]

where we conferred back the vectorial character to the partitioned EM field described in the section

21



above. We can partition the Hamiltonian (2.25) in a purely material, field and field-material part.

The latter corresponds to

Hint = ∑
i

1
2mi

[
−qipi ·A−qiA ·pi +q2

i A2]
= ∑

i

1
2mi

[
−2qipi ·A+q2

i A2]
where we used the fact that in the Coulomb gauge, which is the one considered here,

[p ·A−A ·p]φ(r) =−i~∇ · (Aφ(r))+ i~A ·∇φ(r)

=−i~(∇ ·A)φ(r) = 0

and it follows that p ·A=A ·p. Hint can be significantly simplified as a result of the partition of the

vector field outlined in the section above. Depending on the platform on which the confinement

of molecules and EM fields is carried out, it is possible, as an approximation, to choose a finite

number of system modes and disregard the coupling of charges to the continuum of the bath [27],

such that

Hint ≈∑
i

1
2mi

[
−2qipi ·Asys +q2

i A2
sys
]

However, the interaction in terms of the vector potential is inconvenient given that

optical experiments are given in terms of response to electrical fields. One way to represent the

Hamiltonian in terms of the latter is accomplished by introducing a canonical transformation to

the Hamiltonian eiSHe−iS, where

Ŝ =
∫

dr3P̂(r) ·Asys(r)

P̂(r) being the polarization field (which in classical EM theory corresponds to the induced average

dipole moment per unit volume upon the application of an external electric field) and it is defined
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according to

P̂(r) = ∑
m

P̂m(r)

ρ̂m(r) = ∑
α

qmαδ(r− rm,α) = ρ0(m,r)−∇ · P̂m(r) ρ0(m,r) = ∑
α

qαmδ(r−Rm)

where ρ̂m(r) is the charge-density operator for molecule m, and ρ0(m,r) is the charge-density at

the center of charge of the molecule, which for neutral molecules is zero.

In a quantum mechanical treatment, polarization can be framed in terms of the volume-

averaged adiabatic current of a dielectric in response to a slow turning-on of an external perturba-

tion. This current admits a multipolar expansion, and given the difference in length scales of the

system EM modes −→χ λ(r) (which at optical frequencies it is of the order of 500 nm) and the size

of molecules (in the order of tens of Angstroms), it is a good approximation to to keep only the

dipole contributions to polarization:

P̂d(r) = ∑
m

µmδ(r−Rm) µm = ∑
α

qm,α (r̂m,α−Rm)

Under the dipolar approximation, it can be shown [30] that the following relationships hold

eiŜpm,αe−iŜ = pm,α−qm,αAsys(rm,α)

eiŜaλe−iŜ = aλ− i

√
1

2ωλ

∫
dr3P̂d(r) ·~χλ(r)

eiŜ
Πsyse−iŜ = iΠsys−∑

λ

∫
dr3P̂d(r) ·ℜ [~χλ(r)

∗~χλ(r)]

= Πsys−Pd
⊥

where Πsys and Pd are the system electric field and the dipolar polarization field operators,
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respectively. Thus, the light-matter Hamiltonian upon this unitary transformation can be written

as

e−iŜHeiŜ = ∑
m,α

1
2mm,α

p2
m,α +Vintra +Vinter +H ′rad

where

H ′rad =
1
2

∫
dr3
[
(Πsys +Pd

⊥(r))
2 +B2

sys

]
+H(B)

rad+

+
1
2 ∑

m
∑
λ

∫
dω

[
Wλ,m(ω)Q

†
λ
Qm(ω)+h.c.

]
=

1
2

∫
dr3 [

Π
2
sys +B2

sys
]
+

∫
dr3c−1

Πsys ·Pd
⊥(r)+

1
2

∫
dr3|Pd

⊥|
2 +H(B)

rad

+
1
2 ∑

m
∑
λ

∫
dω

[
Wλ,m(ω)Q

†
λ
Qm(ω)+h.c.

]
,

H(B)
rad being the continuum photonic bath and its coupling to the system modes were also included

[see Eq. (2.17)].

Finally, we can write the total Hamiltonian in this dipolar gauge as

H̃ = Hmol +Hmol−light +Hrad

where

Hmol = ∑
m,α

1
2mm,α

p2
m,α +Vinter +Vintra

= ∑
m

H(m)
mol +Vinter

Hmol−light =
∫

dr3
Πsys ·Pd

⊥(r)+
1
2

∫
dr3|Pd

⊥|
2 (2.28)
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and the field-dependent part of the Hamiltonian is given by

Hrad = ∑
i=sys,bath

∫
dr3 [

Π
2
i +B2

i
]
+

1
2 ∑

m
∑
λ

∫
dω

[
Wλ,m(ω)Q

†
λ
Qm(ω)+h.c.

]

Further simplifications can be incorporated when we neglect the self-dipole coupling term

1
2
∫

dr3c−2|Pd
⊥|

2 in Eq. (2.28), which is relevant for scenarios where retardation effects are impor-

tant [31]. Furthermore, since this dissertation is focused on polariton platforms operating at optical

frequencies (where the energy of electronic transitions of organic molecules with high oscillator

strength lie) we can formulate the dipolar field in Eq. (2.28) in the electronic basis of the molecules

that constitute the molecular ensemble [see Eq. (2.24)]: µm = ∑a6=b

(
µ(m)

a,b |φa〉〈φb|+h.c.
)

, (as-

suming a vanishing permanent dipole moment) to obtain

Hmol−light ≈∑
λ

∑
m

gλ
m ∑

a6=b
(|φa〉〈φb|+h.c.)

(
a†

λ
−aλ

)

where gλ
m = i

(
ωλ

2

)1/2
[
µ(m)

a,b ·
−→
χ λ(Rm)

]−→
χ λ(Rm) ·

∫
dr3−→χ λ(r) ≈ i

(
ωλ

2V

)1/2 µ(m)
a,b · eλ (eλ being the

polarization vector of the λth system mode), is the single light-matter coupling. The scal-

ing of the latter with V−1/2, V being the volume spanned by the system modes −→χ λ ∼ V−1/2,

results after assuming that the length scales of the system electric field is such that it can

be considered homogeneous from the molecular perspective: µ(m)
a,b ·
−→
χ λ(Rm) ≈ V−1/2µ(m)

a,b · eλ;
−→
χ λ(Rm) ·

∫
dr3−→χ λ(r)≈V−1 ∫ dr3 = 1.
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Chapter 3

Ground-State chemical reactions under the

ultrastrong coupling regime

3.1 Introduction

As introduced in Chapter 1, the advent of nano- and microstructures which enable strong

confinement of electromagnetic fields in volumes as small as 1×10−7λ3 [32], λ being a charac-

teristic optical wavelength, allows for the possibility of tuning light-matter interactions that can

“dress" molecular degrees of freedom and give rise to novel molecular functionalities. Several

recent studies have considered the effects of strong coupling (SC) between confined light and

molecular states, and its applications in exciton harvesting and transport [33, 34], charge transfer

[16] and Bose-Einstein condensation [35, 36, 37] among many others.

Organic dye molecules are good candidates to explore SC effects due to their unusually

large transition dipole moment [38, 39, 40, 41]. The underlying reason for these effects is that the

SC energy scale is comparable to that of vibrational and electronic degrees of freedom, as well as

the coupling between them [14]; this energetic interplay nontrivially alters the resulting energetic

spectrum and dynamics of the molecule-cavity system. It is important to emphasize that in these
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examples, SC is the result of a collective coupling between a single photonic mode and N� 1

molecules; single-molecule SC coupling is an important frontier of current research [42], but our

emphasis in this chapter, and most of this dissertation, will be on the N molecule case. Since the

energy scale of this collective coupling is larger than the molecular and photonic linewidths, the

resulting eigenstates of the system have a mixed photon-matter character.

While prospects of photochemical control seem promising, it is still a relatively unexplored

question whether ground-state chemical reactivity can be altered via polaritonic methods, although

recently, George and coworkers have shown a proof of concept of such feasibility using vibrational

SC [7].

Along this line, ultrastrong coupling regime (USC) seems to also provide the conditions

to tune the electronic ground-state energy landscape of molecules and in turn, modify not only

photochemistry, but ground-state chemical reactivity. Roughly speaking, this regime is reached

when Ω/~ω0 ≥ 0.1, Ω being the (collective) SC of the emitter ensemble to the electromagnetic

field and ~ω0 the energy gap of the molecular transition [43]. Under USC, the “nonrotating"

terms of the light-matter Hamiltonian acquire relevance and give rise to striking phenomena such

as the dynamical Casimir effect [4, 44]and Hawking radiation in condensed matter systems [44].

Furthermore, recent experimental advances have rendered the USC regime feasible in circuit QED

[45], and molecular systems [46, 47], thus prompting us to explore USC effects on ground-state

chemical reactivity.

In this chapter, we address how this reactivity can be influenced in the USC by studying

a reactive model system consisting of an ensemble of thiacyanine molecules strongly coupled

to the plasmonic field afforded by a metal, where each of the molecules can undergo cis-trans

isomerization by torsional motion. The theoretical model for the photochemistry of the single

thiacyanine molecule has been previously studied in the context of coherent control [48]. As we

will show, the prospects of controlling ground-state chemical reactivity or nonadiabatic dynamics

involving the ground state are not promising for this particular model, given that the alterations of
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the corresponding PES are negligible on a per-molecule basis. However, we notice the existence

of salient quantum-coherent features associated with concerted reactions that might be worth

considering in models featuring lower kinetic barriers.

3.2 Theoretical model

To begin with, we consider a thiacyanine derivative molecule (Fig. 3.1c) and approximate

its electronic degrees of freedom as a quantum mechanical two-level system. To keep the model

tractable, this electronic system is coupled to only one vibrational degree of freedom R, namely,

the torsion along the bridge of the molecule (Fig. 3.1c) along which cis-trans isomerization

occurs. The mathematical description of the PES of the ground and excited states (Fig. 3.1a) as

well as the transition dipole moment as a function of the reaction coordinate (Fig. 3.1b) have

been obtained from Ref. [48]. The adiabatic representation of the electronic states is given by,

|g(R)〉= cos [θ(R)/2] |trans〉+ sin [θ(R)/2] |cis〉 (3.1)

|e(R)〉=−sin [θ(R)/2] |trans〉+ cos [θ(R)/2] |cis〉

where |e(R)〉 and |g(R)〉 are the R-dependent adiabatic excited and ground state respectively.

|trans〉 and |cis〉 are the (R-independent) crude diabatic electronic states that describe the localized

chemical character of each of the isomers. The ground-state PES has a predominant trans (cis)

character to the left (right) of the barrier (θ(0) = 0, θ(π) = π) in Fig. 3.1a.

Our USC model consists of a setup where an orthorhombic ensemble of thyacyanine

molecules is placed on top of a thin spacer which, in turn, is on top of a metallic surface that hosts

surface plasmons (SPs) [49] (see Fig. 3.2). The coupling between molecular electronic transitions

and plasmons in the metal give rise to polaritons that are often called plexcitons [50, 49]. The
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b)

Figure 3.1: a) Adiabatic potential energy surfaces (PESs) of the ground and first excited elec-
tronic states of the thyacynine-like model molecule. b) Transition dipole moment (µ(R)) of the
model molecule in the adiabatic basis. c) Thiacynine molecule. There exist two geometrical
isomers of the molecule, a cis- and a trans-like configuration. The cis-trans isomerization of
thiacynine-like molecules occurs via a photo-induced torsion along the bridge which connects
the aromatic rings.
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Figure 3.2: Plexciton setup. The model consists of a surface-plasmon (SP) metal layer whose
width Wm can be considered infinite in comparison with the relevant length scales of the struc-
ture. The thiacynine molecular ensemble is separated from the metallic surface by a spacer of
width z0; the balls and sticks represent the molecules, while the arrows denote their transition
dipole moments. The molecular layer has a height Wz and is extended along the x and y planes.

ensemble is comprised of Nz single-molecule layers. The location of each molecule can be defined

by the Cartesian coordinates n+(0,0,zs) where n = (∆xnx,∆yny,0) and zs = z0 +∆zs for the

s-th layer. Here, the spacing between molecules along the i-th direction is denoted by ∆i, and

z0 is the width of the spacer (see Fig. 3.2). The Hamiltonian of the plexciton setup is given by

H = Hel +Tnuc, where Tnuc = ∑i
P2

i
2Mi

is the nuclear kinetic energy operator and

Hel(R) =∑
k
~ωka†

kak +∑
n,s

(~ωe(Rn,s)−~ωg(Rn,s))b†
n,s(Rn,s)bn,s(Rn,s)

+∑
k

∑
n,s

gn,s
k (Rn,s)

(
a†

kbn,s(Rn,s)+akb†
n,s(Rn,s)+akbn,s(Rn,s)+a†

kb†
n,s(Rn,s)

)
+∑

n,s
~ωg(Rn,s),

(3.2)

corresponds to the Dicke Hamiltonian [51]. Here a†
k (ak) is the creation (annihilation) operator

for the SP mode with in-plane momentum k which satisfies [ak,a
†
k′] = δk,k′ , and R = {Rns} is an

N-dimensional vector that describes the vibrational coordinates of the N = NxNyNz molecules

of the ensemble, where Ni is the number of molecules along each ensemble axis. ~ωg(Rn,s)
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accounts for the ground-state energy of the molecule whose location in the ensemble is defined

by n and s. We introduce the (adiabatic R-dependent) exciton operator b†
n,s(Rn,s)(bn,s(Rn,s)) to

label the creation (annihilation) of a Frenkel exciton (electronic excitation) with an energy gap

~ωe(Rn,s)−~ωg(Rn,s) on the molecule located at n+ zsẑ. The coefficients ~ωk and gn,s
k (Rn,s)

stand for the energy of a SP with in-plane momentum k and the coupling of the molecule

located at n+ zsẑ with the latter, respectively. The dipolar SP-matter interaction is described

by gn,s
k (Rn,s) = hk(Rn,s) fk(zs), where hk(Rn,s) = −µn,s(Rn,s) ·Ek(n) is the projection of the

molecular transition dipole µn,s(Rn,s) onto the in-plane component of the SP electric field Ek(n)

and fk(zs) = e−ηkzs is the evanescent field profile along the z direction, with ηk being the decay

constant in the molecular region (z > 0). The quantized plasmonic field Êk fk(zs) has been

discussed in previous works [50, 49, 52] and reads Êk(n) fk(zs) =
√

~ωk
2ε0SLk

akχ̂keik·ne−ηkz +h.c.

where ε0 is the free-space permittivity, S is the coherence area of the plexciton setup, χ̂k = k̂+ i |k|
ηk

ẑ

is the polarization and Lk is the quantization length. This last quantity determines the plasmonic

confinement length scale in the molecular region of the plexciton setup: for |k| ≈ 0 the plasmon

field is light-like and spatially spans the whole molecular slab; on the other hand it monotonically

decreases for higher |k| values and the field is effectively coupled to a smaller number of

molecules.

Note that the parametric dependence of the exciton operators on Rn,s yield residual non-

adiabatic processes induced by nuclear kinetic energy that may be relevant to the isomerization

in question. We also highlight the fact that Eq. ( 3.2) includes both rotating (“energy conserv-

ing”) terms (a†
kbn,s and akb†

n,s) where a photon creation (annihilation) involves the concomitant

annhilation (creation) of an exciton; and counterrotating (“non-energy conserving”) terms ( akbn,s

anda†
kb†

n,s) where there is a simultaneous annhilation (creation) of photon and exciton. These

latter terms are ignored in the widely used Rotating Wave Approximation (RWA) [53], where

light-matter coupling is weak compared to the transition energy. Since we are interested in the

USC, we shall keep them throughout.
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For simplicity, we assume that all the transition dipoles are equivalent and aligned along

x, µn,s(Rn,s) = µ(Rn,s) = µ(Rn,s)x̂; a departure of this perfect crystal condition does not affect the

conclusions of this chapter. Furthermore, it is convenient to first restrict ourselves to the cases

where all nuclei are fixed at the same configuration (R = R̃, which denotes Rn,s = R for all n

and s), so that we can take advantage of the underlying translational symmetry to introduce a

delocalized exciton basis where the in-plane momentum k is a good quantum number. The creation

operator of this delocalized state is defined by b†
k(R) =

1√
Nk(R)

∑n ∑s fk(zs)hk(R)b
†
n,s(R), and

the normalization squared is given by Nk(R) = ∑n ∑s |hk(R)|2| fk(zs)|2 which, in the continuum

limit, can be seen to be proportional to ρ, the number density of the molecular ensemble. In this

collective basis, the previously introduced Hel(R) reads

Hel(R̃) = ∑
k
~∆(R)b†

k(R)bk(R)+∑
k
~ωka†

kak

+∑
k

√
Nk(R)

(
a†

kbk(R)+akb†
k(R)+akb−k(R)+a†

kb†
−k(R)

)
+∑

k
Hdark,k(R)+∑

k
Hunklapp,k(R)+N~ωg(R)

= ∑
k

Hk(R)+∑
k

Hdark,k(R)+∑
k

Hunklapp,k(R)+N~ωg(R),

(3.3)

where ∆(R) = ωe(R)−ωg(R) is the exciton transition frequency.

Hdark,k(R) = ~∆(R)Pdark,k(R) (3.4)

accounts for the energy of the (Nz−1)-degenerate exciton states with in-plane momentum k that do

not couple to SPs, and are usually known as dark states. The latter are orthogonal to the bright exci-

ton b†
k(R)|Gm(R̃)〉 that couples to the SP field, where |Gm(R̃)〉 is the bare molecular ground-state

(bk(R)|Gm(R̃)〉= 0). More specifically, Pdark,k(R) = Iexc,k(R)−b†
k(R)bk(R) is a projector opera-

tor onto the k-th dark-state subspace, with Iexc(R) = ∑n,s b†
n,s(R)bn,s(R) = ∑k,s b†

k,s(R)bk,s(R) =
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Figure 3.3: Upper: Polariton dispersion that results from the interaction of a molecular en-
semble with the plasmonic field; we chose ρ = 1.0×109µm−3. Lower: Collective SP-exciton
coupling at equilibrium geometry

√
Nk(0) as a function of |k|, assuming µ(R = 0) and k are

parallel to the x axis. We consider a slab with Wz = 120 nm and compute couplings as a func-
tion of varying molecular densities ρ. The range of the resulting couplings is well above the
plasmonic linewidth of the order of 10 meV [50], indicating the polaritonic onset of strong and
ultrastrong light-matter coupling.

∑k Iexc,k(R) being the identity on the exciton space, and b†
k,s(R) =

1√
NxNy

∑n e−ik·nb†
n,s(R). Fi-

nally,

Hunklapp,k(R) = ∑
q=( 2πqx

∆x ,
2πqy
∆y )

√
Nk+q(R)

(
a†

k+qbk(R)+a†
k+qb†

−k(R)+h.c.
)

(3.5)

stands for the coupling of excitons with momentum k to SP modes with momentum beyond the

first excitonic Brillouin zone. We also note that the normalization constant
√

Nk(R) in Eq. 3.3

is precisely the collective SP-exciton coupling. As mentioned in the introduction, the condition√
Nk(R)/~∆(R)> 0.1 is often used to define the onset of USC [43], and it is fulfilled with the

maximal density considered in our model (see Fig. 3.3) taking into account that the largest ~∆(R)

is 3 eV (See Fig. 3.1a). We note, as will be evident later, that our main results do not vary

significantly by considering ratios
√

Nk(R)/~∆(R) below the aforementioned threshold.

A Bogoliubov transformation [54] permits the diagonalization of the Bloch Hamiltonian
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Hk in Eq. 3.3 by introducing the polariton quasiparticle operators

ξ
j
k(R)≈ α

j
kak +β

j
kbk(R)+ γ

j
ka†
−k +δ

j
kb†
−k(R), (3.6)

where j =U,L and U (L) stands for the upper (lower) Bogoliubov polariton state. Notice that

this canonical transformation is valid for a sufficiently large number of molecules N, where the

collective exciton operators bk(R), b†
k(R) are well approximated by bosonic operators [55]. We

also stress that Eq. (3.6) is formally an approximate definition since it does not take into account

mixing with photonic modes beyond the exciton first Brillouin zone, as described in Eq. (3.5).

However, given the large off-resonance between the SP energy and the exciton states for high |k|,

Eq. (3.6) is a good approximation.

The bare molecular ground-state with no photons in the absence of light-matter coupling

|Gm(R̃);0〉, (ak|Gm(R̃);0〉 = bk(R)|Gm(R̃);0〉 = 0 for all k) has a total extensive energy with

molecular contributions only 〈Gm(R̃);0|Hel(R̃)|Gm(R̃);0〉 = N~ωg(R). Upon inclusion of the

counterrotating terms, the ground-state becomes the dressed Bogoliubov vacuum |G(R̃)〉d , charac-

terized by ξ
j
k(R)|G(R̃)〉d = 0 for all k and j, with total energy d〈G(R̃)|Hel(R̃)|G(R̃)〉d = E0(R̃),

where the zero-point energy is given by

E0(R̃) = N~ωg(R)+
1
2 ∑

k

(
∑

j=U,L
~ω j,k(R)−~ωk−~∆(R)

)
, (3.7)

{~ω j,k(R)} being the eigenvalues of the Bogoliubov polariton branches given by

ωU
L
,k(R) =

√√√√(∆(R))2 +ω2
k±
√(

ω2
k−∆(R)2

)2
+16N 2

k (R)∆(R)ωk

2
. (3.8)

The sum in Eq. 3.7 accounts for the energy shift from the bare molecular energy N~ωg(R) due to

interaction with the SP modes of the different photonic Brilloun zones of the setup. Using Eq.
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(3.8), it is illustrative to check that this shift vanishes identically when the non-RWA terms are

ignored.

In order to obtain converged quantities in our calculations of Eq. (3.7), we captured the energetic

effects due to Hunklapp,k(R) by summing over SP modes beyond the first Brillouin zone. This

approach is justified in view of the large off-resonance between the bare molecular energy and

the double excited manifold of the system compared to the
√

Nk(R) magnitudes, which allows

for a perturbative treatment of the light-matter interaction part of Eq. (3.3). In the Appendix we

show that Eq.(3.7) can be approximated as a second order energy correction to the molecular

vacuum, non restricted to the first Brilloun zone.

A hallmark of the SC and USC regimes is the anticrossing splitting of the polariton energies at

the k value where the bare excitations are in resonance, ∆(R) = ωk [56] (see Fig. 3.3).

It is worth describing some of the physical aspects of the Bogoliubov ground-state |G(R̃)〉d .

With the numerically computed wavefunctions, we can use the inverse transformation of Eq. 3.6

to explicitly evaluate its SP and exciton populations [54],

nSP
k = d〈G(R̃)|a†

kak|G(R̃)〉d = ∑
j
|γ j

k|
2, (3.9a)

nexc
k = d〈G(R̃)|b†

kbk|G(R̃)〉d = ∑
j
|δ j

k|
2, (3.9b)

which give rise to humble O(10−3) values per mode k, considering a molecular ensemble with

ρ = 3×108µm−3 and Wz =120 nm; this calculation is carried out using N = 8×107, although

results are largely insensitive to this parameter as long as it is sufficiently large to capture the

thermodynamic limit. The consequences of the dressing partially accounted for by Eq. (3.9)

(partially since there are also correlations of the form d〈G(R̃)|bka−k|G(R̃)〉d) are manifested

as energetic effects on |Gm(R̃);0〉: E0(R̃)−N~ωg(R) can be interpreted as the energy stored in

|G(R̃)〉d as a result of dressing; it is an extensive quantity of the ensemble, but becomes negligible
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when considering a per-molecule stabilization. For instance, in molecular ensembles with the

aforementioned parameters we find E0(0̃)−N~ωg(0) = O(102) eV, which implies a O(10−5) eV

value per molecule; our calculations show that this intensive quantity is largely insensitive to

total number of molecules. This observation raises the following questions: to what extent does

photonic dressing impact ground-state chemical reactivity? What are the relevant energy scales

that dictate this impact?

With these questions in mind, we aim to study the polaritonic effects on ground-state single-

molecule isomerization events. To do so, we map out the PES cross section where we set one

“free" molecule to undergo isomerization while fixing the rest at Rn,s = 0 . This cross section,

described by E0(Rn0,0,0, · · · ,0)≡ E0(Rn0,0, 0̃′) (Rn0,0 being the coordinate of the unconstrained

molecule), should give us an approximate understanding of reactivity starting from thermal

equilibrium conditions, since the molecular configuration R̃ = 0̃ still corresponds to the global

minimum of the modified ground-state PES, as will be argued later. By allowing one molecule

to move differently than the rest, we weakly break translational symmetry. Rather than numeri-

cally implementing another Bogoliubov transformation, we can, to a very good approximation,

account for this motion by treating the isomerization of the free molecule as a perturbation

on Hel(0̃). More precisely, we write Hel(Rn0,0, 0̃′)|G(Rn0,0, 0̃′)〉d = E0(Rn0,0, 0̃′)|G(Rn0,0, 0̃′)〉d ,

where Hel(Rn0,0, 0̃′) is the sum of a translationally invariant piece Hel(0̃) plus a perturbation due

to the free molecule,

Hel(Rn0,0, 0̃
′) = Hel(0̃)+V (Rn0,0). (3.10)

The perturbation is explicitly given by
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V (Rn0,0) = Hel(Rn0,0, 0̃
′)−Hel(0̃) (3.11a)

= ~∆(Rn0,0)b
†
n0,0(Rn0,0)bn0,0(Rn0,0)−~∆(0)b†

n0,0(0)bn0,0(0) (3.11b)

+∑
k

{
gn0,0

k (Rn0,0)

[
bn0,0(Rn0,0)+b†

n0,0(Rn0,0)

]
(3.11c)

−gn0,0
k (0)

[
bn0,0(0)+b†

n0,0(0)

]}[
ak +a†

k

]
(3.11d)

+~ωg(Rn0,0)−~ωg(0). (3.11e)

Notice that we have chosen the free molecule to be located at an arbitrary in-plane location n0

and at the very bottom of the slab at s = 0, where light-matter coupling is strongest as a result of

the evanescent field profile along the z direction.

Before showing the details of our calculation approach, we remark that a perturbative treatment

of the terms in Eq. (3.11b) is expected to fail in view of the dramatic change in character of

the ground state with R after the avoided crossing featured in the molecular energy landscape.

Fortunately, we can take advantage of the symmetries of the system which permit a perturbative

treatment in completely different electronic-character regions as long as we change the zeroth

order Hamiltonian properly. More specifically, we compute the energetic changes perturbatively

in the region R ∈ [0,π/2] (R ∈ [π/2,π]) pertaining to the reactant (product) by considering Hel(0̃)

(Hel(π̃)) as the zeroth order Hamiltonian. In the Appendix, we provide a more detailed analysis

of this symmetries and the validity of our approach.

V0(Rn0,0 ∈ [π/2,π]) =Vπ(Rn0,0 ∈ [0,π/2]), (3.12)

under the permutation |trans〉 ↔ |cis〉, where V0(Rn0,0) is
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We write an expansion of the PES cross section as

E0(Rn0,0, 0̃
′) =

∞

∑
q=0

E(q)
0 (Rn0,0, 0̃

′),

where q labels the O(V q) perturbation correction. The zeroth order term is the Bogoliubov vacuum

energy associated to every molecule being at the equilibrium geometry E(0)
0 (Rn0,0, 0̃′) = E0(0̃) as

in Eq. (3.7). The O(V ) correction corresponds to ~ωg(Rn0,0)−~ωg(0), merely describing the

PES of the isomerization of the bare molecule in the absence of coupling to the SP field. The

contribution of the SP field on the PES cross-section of interest appears at O(V 2), and it is given

by

E(2)(Rn0,0, 0̃
′)≈ ∑

k1≤k2
i, j=UP,LP

|〈k1, i;k2, j|V (Rn0,0)|G(0̃)〉d|2

E0(0̃)−E(0)
k1,k2,i, j

, (3.13)

where |k1, i;k2, j〉 ≡ ξ
i†
k1
(0)ξ† j

k2
(0)|G(0̃)〉d and E(0)

k1,k2,i, j = ~(ωi,k1(0)+ω j,k2(0)). As shown in

the Appendix, the approximation in Eq. (3.13) consists of ignoring couplings between |G(0̃)〉d

and states with three and four Bogoliubov polariton excitations, since their associated matrix

elements become negligible in the thermodynamic limit compared to their double excitation

counterparts. The remaining matrix elements can be calculated by expressing the operators

ak, a†
k, bn0,0(Rn0,0), b†

n0,0(Rn0,0) in Eq. (3.11) in terms of the Bogoliubov operators ξ
j
k(0), ξ

† j
k (0)

(see Eq. (3.6)), leading to

〈k1, i;k2, j|V (Rn0,0)|G(0̃)〉d = Fk2(Rn0,0)Dk1

(
−δ

i
−k1

α
j
k2
+δ

i
−k1

γ
j
−k2
−β

i
k1

γ
j
−k2

+β
i
k1

α
j
k2

)
+Fk1(Rn0,0)Dk2

(
−δ

j
−k2

α
i
k1
+δ

j
−k2

γ
i
−k1
−β

j
k2

γ
i
−k1

+β
j
k2

α
i
k1

)
,

(3.14)

where Fk(R)= cos(θ(R))gn0,0
k (R)−cos(θ(0))gn0,0

k (0) depends on the mixing angle that describes
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the change of character of b†
n0,0(R) as a function of R (see Equation (3.1)); it emerges as a

consequence of coupling molecular states at different configurations. The prefactor

Dk = 〈Gm(R̃);0〉|bn0,0(0)b
†
k(0)|Gm(R̃);0〉= 1√

NxNy

√
1− e−2ηk∆z

1− e−2ηk∆zNz

accounts for the weight of a localized exciton operator in a delocalized one, such as the participa-

tion of b†
n0,0(0) in b†

k(0). Eq. (3.14) reveals that the maximal contribution of each double-polariton

Bogoliubov state to the energetic shift of the considered PES cross section E(Rn0,0, 0̃′) is of the

order of g
n0,0
k (0)√

NxNy
. Considering macroscopic molecular ensembles with large N ≈ 107, we computed

Eq. 3.13 by means of an integral approximation over the polariton modes k.

3.3 Results and discussion

3.3.1 Energetic effects

We carry out our calculations with ρ in the range of 106 to 109 molecules µm−3 keeping

Wz = 120nm (see Fig. 3.4); to obtain results in the thermodynamic limit, our calculations take

N = 8×107, even though the exact value is unimportant as long as it is sufficiently large to give

converged results. The results displayed in Fig. 3.4 show that the second order energy corrections

to the isomerization PES E(2)(Rn0,0, 0̃′), and in particular E(2)(Rn0,0 = R∗, 0̃′)≈−0.25meV, are

negligible in comparison with the bare activation barrier Ea = ~ωg(R∗)−~ωg(0)= ~ωg(R∗)≈ 1.8

eV, where R∗ ≈ 1.64 rad corresponds to the transition state. From Fig. 3.1b, we notice that there is

a substantial difference in SP-exciton coupling between the equilibrium (Rn0,0 = 0) and transition

state geometries (Rn0,0 = R∗). Since the perturbation in Eq. (3.11) is defined with respect to the

equilibrium geometry, |E(2)(Rn0,0, 0̃′)| maximizes at the barrier geometry.

To get some insight on the order of magnitude of the result, we note that the sum shown in Eq.
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3.13 can be very roughly approximated as

E(2)(Rn0,0, 0̃
′) = O

[
− ∑

k1≤k2

[gn0,0
k1

(Rn0,0)]
2D2

k2
+[gn0,0

k2
(Rn0,0)]

2D2
k1

(~ωk1 +~ωk2)/2+~ωe(Rn0,0)

]

= O

[
− 1

NxNy
∑

k1≤k2

[gn0,0
k1

(Rn0,0)]
2 +[gn0,0

k2
(Rn0,0)]

2

(~ωk1 +~ωk2)/2+~ωe(Rn0,0)

]

= O

[
−∑

k

[gn0,0
k (Rn0,0)]

2

~ωk +~ωe(Rn0,0)

]
(3.15)

= O(ELS(Rn0,0)) .

In the first line, we used the fact that

〈k1, i;k2, j|V (Rn0,0)|G(0̃)〉d ≈ [gn0,0
k1

(Rn0,0)]
2D2

k2
+[gn0,0

k2
(Rn0,0)]

2D2
k1

and averaged the Bogoliubov polariton excitation energies. In the second line, assuming that

the k� 0 values contribute the most, we have Dk ≈ 1√
NxNy

. Finally, in the third line, we have

used the fact that the sum of terms over k1,k2 is roughly equal to NxNy times a single sum over

k of terms of the same order. The reason why we are interested in the final approximation is

because it corresponds to the Lamb shift of a single isolated molecule, which can be calculated to

be ELS(0) = 0.16meV. Typically, Lamb shift calculations require a cutoff to avoid unphysical

divergences [57]; we stress that in our plexciton model, this is not necessary due to the decaying

|gn0,0
k (Rn0,0)| as a function of |k|. The fact that the corrections E(2)(Rn0,0, 0̃′) have a similar order

of magnitude to single-molecule Lamb shifts give a pessimistic conclusion of harnessing USC to

control ground-state chemical reactions.

We have, however, from calculations in Fig. 3.4, that there is variability in E(2)(Rn0,0, 0̃′)

as a function of molecular density (since density alters the character of the Bogoliubov polaritons),

although the resulting values are always close to ELS(0). The molecular density cannot increase

without bound, since there exists a minimum molecular contact distance determined by a van der
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a)

b)

Figure 3.4: (a) Second order energy correction E(2)(Rn0,0, 0̃′) of PES for one molecule iso-
merizing along the torsional coordinate Rn0,0; the rest of the molecules are fixed at the equi-
librium geometry. Calculations are displayed for various densities ρ, keeping Wz = 120 nm.
Energy corrections are due to SP-exciton (see Eq. 3.13). Note also that the energy scale of
this correction is negligible in comparison with the energy barrier of the reaction (see Fig.
3.1a). (b) Same plot as in (a), but for the 2D-ground-isomerization PES of two molecules,
keeping the configuration of the other molecules at equilibrium (E(2)(R0,R1, 0̃′)|); the density
ρ = 3×108 molecules/µm3.

Waals radius of the order of 0.3nm for organic molecules [58], giving a maximum density of

ρ≈ 1010 molecules/µm3.

The results discussed so far describe the energy profile of the isomerization of a single

molecule keeping the rest at equilibrium geometry. It is intriguing to inquire the effects of the SP

field in a concerted isomerization of two or more molecules, while keeping the rest fixed at equi-

librium geometry. Generalizing Eqs. (3.11)–(3.14) to a two-molecule perturbation V (Rn0,0,Rn1,0),

we computed the second order energetic corrections to the 2D-PES that describe the isomerization

of two neighbouring molecules at n0 and at n1 ≡ n0 +∆xx̂, keeping the other molecules fixed at
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Rn,s = 0. The results are reported in Fig. 3.4 for ρ= 3×108 molecules/µm3, although outcomes of

the same order of magnitude are obtained for the other densities considered in the one-dimensional

case. The two-dimensional PES cross-section E(2)(Rn0,0,Rn1,0,0, · · · ,0)≡ E(2)(Rn0,0,Rn1,0, 0̃′)

shows the existence of an energetic enhancement for the concerted isomerization with re-

spect to two independent isomerizations, i.e. E(2)(Rn0,0 = R∗,Rn1,0 = R∗, 0̃′) ≈ 4E(2)(Rn0,0 =

R∗, 0̃′). This enhacement is due to a constructive interference arising at the amplitude level,

〈k1, i;k2, j|V (Rn0,0 = R∗,Rn1,0 = R∗)|G(0̃)〉d ≈ 2〈k1, i;k2, j|V (Rn0,0 = R∗)|G(0̃)〉d for values

of k1, k2 � 1
∆x

, such that the phase difference between the isomerizing molecules is negli-

gible. Interestingly, choosing the neighbouring molecules along the x direction is important

for this argument; if instead we consider neighbours along z (molecular positions n0 and

n0 + ∆zẑ), these interferences vanish and we approximately get the independent molecules

result E(2)(Rn0,0 = R∗,Rn0,1 = R∗, 0̃′)≈ 2E(2)(Rn0,0 = R∗, 0̃′).

In light of the nontrivial energetic shift of the two-molecule case, it is pedagogical to

consider the SP effects on the cross-section of the concerted isomerization of the whole ensemble,

even though it is highly unlikely that this kinetic pathway will be of any relevance, especially

considering the large barrier for the isomerization of each molecule. Notice that the conservation

of translational symmetry in this scenario allows for the exact (nonperturbative) calculation of

the energetic shift E0(R̃)−N~ωg(R) by means of Eq. 3.7. Our numerical calculations reveal

an energetic stabilization profile, which is displayed in Fig. 3.5 for a molecular ensemble

with ρ = 3× 108 molecules µm−3. As expected, we observe a stabilization of reactant and

product regions of the ground-state PES. This is a consequence of the transition dipole moment

being the strongest at those regions, as opposed to the transition state, see Fig. 3.1b. However,

even though these energetic effects are of the order of hundreds of eV, they are negligible in

comparison with the total ground-state PES N~ωg(R), or more specifically, to the transition

barrier NEa = N~ωg(R∗) for the concerted reaction.

Importantly, the change in activation energy per molecule in the concerted isomerization
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Figure 3.5: Main: profile of the energy stabilization of the concerted isomerization (ES(R) =
E0(R̃)−N~ωg(R), see Eq. 3.7) of the whole molecular ensemble discussed in the main text,
due to the interaction with the plasmonic field. We consider a molecular macroscopic ensemble
(N = 8×107) with density ρ = 3×108 molecules/µm3. Inset: molecular-density dependence
of the the energy shift of the energy barrier per molecule |∆Ea| (see main text) due to the
plasmonic field, in this concerted scenario.

with respect to the bare case |∆Ea|=
∣∣∣(E0(R̃∗)−E0(0̃)

N −Ea

)∣∣∣≈ 0.009meV is more than one order

of magnitude smaller than the corresponding quantity of 0.025 meV for the single-molecule

isomerization case, see Fig. 3.4 and inset of Fig. 3.5. We believe that the reason for this trend

is that the isomerization of n molecules, n� N, translates into a perturbation which breaks the

original translational symmetry of the molecular ensemble. This symmetry breaking permits the

interaction of the molecular vacuum with the polaritonic k-state reservoir without a momentum-

conservation restriction. This is reflected in Eq. 3.13, where the sum is carried out over two not

necessarily equal momenta. In contrast, in the case of the concerted isomerization of N molecules,

the translational symmetry of the system is preserved, which in turn restricts the coupling of the

vacuum |G(0̃)〉d to excited states with kexc =−kphot.

Another intriguing observation is that, for this concerted isomerization, the SP energetic

effect per molecule E0(R̃)
N diminishes with the width of the slab Wz. This is the case given that the

SP quantization length Lk decays quickly with |k| so that only the closest layers interact strongly

with the field. When we divide the total energetic effects due to the SP modes by N = NxNyNz,
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we obtain that E0(R̃)
N = O( 1

Nz
) for large Wz.

The energetic shifts in all the scenarios discussed above are negligible with respect to

the corresponding energy barriers and the thermal energy scale at room temperature which,

unfortunately, signal the irrelevance of USC to alter ground-state chemical reactivity for this

isomerization model. Although there is an overall (extensive) stabilization of the molecular

ensemble ground state, this effect is distributed across the ensemble, giving no possibility to

alter the chemical reaction kinetics or thermodynamics considerably. However, we highlight the

intriguing interferences observed in the concerted isomerization processes. Even though they

will likely be irrelevant for this particular reaction, they might be important when dealing with

reactions with very low barriers, especially when considering that these concerted pathways are

combinatorially more likely to occur than the single-molecule events in the large N limit.

3.3.2 Effects on non-adiabatic dynamics

Finally, we discuss the importance of the nonadiabatic effects afforded by nuclear kinetic

energy. Previous works have considered the nonadiabatic effects between polariton states at

the level of SC [14, 59]. Alternatively, the consideration of nonadiabatic effects in USC for a

single molecule in a cavity was provided in Ref. [60]; here, we address these issues for the

many-molecule case and consider both polariton and dark state manifolds. One could expect

significantly modified non-adiabatic dynamics about nuclear configurations where the transition

dipole moment magnitude |µn,s(Rn,s)| is large, given a reduction in the energy gap between the

ground and the lower Bogoliubov polariton state. However, as we show below, this energetic

effect is not substantial due to the presence of dark states.

We consider the magnitude of the non-adiabatic couplings (NACs) for the isomerization

of a single molecule with reaction coordinate Rn0,0. For a region about R̃ = 0̃, we estimate the
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magnitude of the NAC between |G(0̃)〉d and a state |k, i〉= ξ
i†
k (0)|G(0̃)〉d as:

|Ak,i;g(0)|=
∣∣∣∣〈k, i∣∣ ∂

∂Rn0,0

∣∣G(0̃)〉d
∣∣∣∣ (3.16)

≈
∣∣∣∣βi

kDk

〈
en0,0(0)

∣∣∣∣ ∂

∂Rn0,0

∣∣∣∣gn0,0(0)
〉∣∣∣∣ ,

where |gn0,0(0)〉(|en0,0(0)〉) is the ground (excited) adiabatic state of the single molecule under

consideration (see Eq. (3.1)) and we have ignored the derivatives of βi
k and Dk with respect to

Rn0,0, assuming they are small at R̃ = 0̃, where the chemical character of the Bogoliubov polariton

states does not change significantly with respect to nuclear coordinate. This is a consequence

of the slowly changing transition dipole moment of the model molecule around Rn0,0 = 0, see

Fig. 3.1b. Notice that we have also assumed 〈k, i|en0,0(0)〉 ≈ βi
kDk, where we have used the

fact that βi
k� γi

k, thus ignoring counterrotating terms, which as we have seen, give negligible

contributions. The time-evolution of a nuclear wavepacket in the ground-state will be influenced

by the Bogoliubov polariton states, each of which will contribute with a finite probability of

transition out of
∣∣G(0̃)〉d . From semiclassical arguments [61], we can estimate the transition

probability |Ci
k(0)|2 for a nuclear wavepacket on the ground-state PES at R̃ = 0 to the state |k, i〉,

|Ci
k(0)|2 ≈

∣∣∣∣ ~vnucAk,i;g(0)
~ωi,k(0)−~ωg(0)

∣∣∣∣2 (3.17)

=

∣∣∣∣ ~vnucβi
kDk

~ωi,k(0)−~ωg(0)

∣∣∣∣2
×
∣∣∣∣〈en0,0(0)

∣∣∣∣ ∂

∂Rn0,0

∣∣∣∣gn0,0(0)
〉∣∣∣∣2 ,

vnuc being the expectation value of the nuclear velocity. However, the Bogoliubov polariton

k-states are only a small subset of the excited states of the problem. As mentioned right after Eq.

3.3, the plexciton setup contains Nz−1 dark excitonic states for every k (eigenstates of Hdark,k(0),

see discussion right after Eq. 3.3); we ignore the very off-resonant couplings considered in
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Hunklapp,k(0). The dark states also couple to
∣∣G(0̃)〉d non-adiabatically, with the corresponding

transition probability out of the ground state being,

|Cdark
k (0)|2 ≈∑

Q

∣∣∣∣~vnucAk,Q;g(0)
~∆(0)

∣∣∣∣2 (3.18)

≈ Pbare(0)
(

1
NxNy

−|Dk|2
)
,

Here, we have summed over all dark states Q for a given k and used

Pbare(0) =
∣∣∣∣ vnuc

∆(0)

∣∣∣∣2 ∣∣∣∣〈en0,0(0)
∣∣∣∣ ∂

∂Rn0,0

∣∣∣∣gn0,0(0)
〉∣∣∣∣2 (3.19)

to denote the probability of transition out of the ground state in the absence of coupling to the

SP field. In Eq. (3.18) we used the fact that the projection |en0,0(0)〉 onto the dark k manifold

of exciton states is
∣∣Pdark,k(0)|en0,0(0)〉

∣∣2 = 〈en0,0(0)|Iexc,k(0)|en0,0(0)〉− |Dk|2 = 1
NxNy
−|Dk|2,

with Pdark,k(0) being the corresponding projector (see Eq. (3.4)). We noticed that when |k| → 0,

the quantization length Lk of the plasmonic field spans all the molecular-ensemble volume

resulting in completely delocalized bright and dark exciton states across the different layers

of the slab,
∣∣Pdark,k|en0,0(0)〉

∣∣2 = Nz−1
N , and the dark states give the major contribution to the

nonadiabatic dynamics. On the other hand, when |k| → ∞, the plasmonic field interacts with the

molecular layer at the bottom of the slab only and
∣∣Pdark,k|en0,0(0)〉

∣∣2→ 0. The dark states do

not participate, because the molecule located at n0 only overlaps with the bright state which is

concentrated across the first layer of the slab (the dark states, being orthogonal to the bright one,

are distributed in the upper layers, and do not overlap with |en0,0〉). With these results, we can

compute the probability of transition out of the ground-state Pout as

Pout(0) = ∑
k

[
∑

i
|Ci

k(0)|2 + |Cdark
k (0)|2

]
. (3.20)
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In view of the large off-resonant nature of most SP modes with respect to ~∆(0) (see Fig. 3.3)

and Eq. (3.18), we have ∑i |Ci
k(0)|2 ≈ Pbare(0)|Dk|2, such that Pout(0)≈ Pbare(0). In our model,

this is the case, since the plexciton anticrossing occurs at small |k| and the SP energy quickly

increases and reaches an asymptotic value after that point (see Fig. 3.3). Using the parameters in

Ref. [48], we obtain 〈e(Rn0,0)| ∂

∂Rn0,0
|g(Rn0,0)〉 ≈ 0.01Å

−1
, where we have assumed an effective

radius of 1 Å for the isomerization mode of the model molecule. We get an estimate of vnuc ≈ 1Å

ωnuc = 1Å
√

kBT
m = 9×1010 Ås−1 using kB = 8.62×10−5 eVK−1, T = 298K and m = 2.5amu

Å
2
. Finally, applying ∆(0) = 3 eV gives Pbare(0)≈ 10−7, which is a negligible quantity. A more

pronounced polariton-effect is expected close to the PES avoided crossing. However, the rapid

decay of the transition dipole moment in this region (see Fig. 3.1a) precludes the formation

of polaritonic states that could have affected the corresponding nonadiabatic dynamics. To

summarize this part, even when the USC effects on the nonadiabatic dynamics are negligible for

our model, the previous discussion as well as Eq. (3.20) distill the design principle that controls

these processes in other polariton systems: the plexciton anticrossings should happen at large k

values to preclude the overwhelming effects of the dark states. This principle will be explored in

future work in other molecular systems.

The negligible polariton effect on the NACs, and the magnitude of the energetic effects on

the electronic energy landscape are strong evidence to argue that the chemical yields and rates of

the isomerization problem in question remain intact with respect to the bare molecular ensemble.

3.4 Conclusions

We showed in this chapter that, for the ground state landscape of a particular isomerization

model, there is no relevant collective stabilization effect by USC to SPs which can significantly

alter the kinetics or thermodynamics of the reaction, in contrast with previous calculations which

show such possibilities in the Bogoliubov polariton landscapes [15, 16]. The negligible energetic

47



corrections to the ground-state PES per molecule can be approximated and interpreted as Lamb

shifts [57] experienced by the molecular states due to the interaction with off-resonant plasmonic

modes. The key dimensionless parameter which determines the USC effect on the ground-state

PES is the ratio of the individual coupling to the transition frequency gn,s
k /~∆. This finding is

similar to the conclusions of a recent work [14, 62]. In particular, it is shown in Ref. [62]that the

rotational and vibrational degrees of freedom of molecules exhibit a self-adaptation which only

depends on light-matter coupling at the single-molecule level. Therefore, more remarkable effects

are expected in the regime of USC of a single molecule interacting with an electric field. To date,

the largest single molecule interaction energy achievable experimentally is around 90 meV [42]

in an ultralow nanostructure volume. This coupling strength is almost two orders of magnitude

larger that those in our model. Also, previous works have shown [45, 63] that this regime is

achievable for systems with transition frequencies on the microwave range. Additionally, the

experimental realization of vibrational USC has been carried out recently [47]. The latter also

suggests the theoretical exploration of USC effects on chemical reactivity at the rotational or

vibrational energy scales, where the energy spacing between levels is significantly lower than

typical electronic energy gaps.

We highlighted some intriguing quantum-coherent effects where concerted reactions can feature

energetic effects that are not incoherent combinations of the bare molecular processes. These

interference effects are unlikely to play an important role in reactions exhibiting high barriers

compared to kBT . However, they might be important for low-barrier processes, where the number

of concerted reaction pathways becomes combinatorially more likely than single molecule

processes. On the other hand, we also established that, due to the large number of dark states in

these many-molecule polariton systems, nonadiabatic effects are not modified in any meaningful

way under USC, at least for the model system explored. We provided a rationale behind this

conclusion and discussed possibilities of seeing modifications in other systems where the excitonic

and the electromagnetic modes anticross at large k values. To conclude, the present work
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highlights the limitations but also possibilities of USC in the context of control of chemical

reactions using polaritonic systems.

This chapter, in full, is adapted from the material as it appears in “Can ultrastrong

coupling change ground-state chemical reactions?” Martínez-Martínez L. A., Ribeiro R. F.,

Campos-González-Angulo J. and Yuen-Zhou J. ACS Photonics, 5, 167 (2018). The dissertation

author was the primary investigator and author of this material.
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Chapter 4

Polariton-assisted Singlet Fission in Acene

Aggregates

4.1 Introduction

Singlet fission (SF) is a spin-allowed process undergone by select materials that permits

the conversion of a singlet exciton into a triplet-triplet (TT) state with an overall singlet character,

which later decoheres and forms two triplet excitons. This process has been used to enhance

the efficiency of organic solar cells [21, 64] by allowing a single absorbed photon to produce

more than one exciton. This subsequently increases the external quantum yield, which is defined

as the number of charge carriers produced per absorbed photon. In this chapter we explore the

influence of strong light-matter coupling (SC) on the TT yield of acenes. As discussed in previous

chapters, this regime can be achieved at room-temperature, for example, in optical microcavities

enclosing densely packed organic dyes. Under these conditions, the energy of interaction between

the microcavity photonic modes and the molecular degrees of freedom of the material is larger

than their respective linewidths.

By developing a microscopic model for the relevant dynamical processes, we address the
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effects of SC on the TT yield in aggregates of acene dyes (tetracene, pentacene and hexacene)

and determine the important molecular parameters that rule this yield. Our starting point is a

kinetic model based on a Pauli master equation formalism to describe the population dynamics of

the states that take part in SF [65]. We then use this model to elucidate the circumstances under

which polaritons can enhance SF under realistic dissipative conditions.

4.2 Theoretical model

We consider a simplified one-dimensional acene aggregate comprised of N identical

molecules emdedded in a microcavity and strongly interacting with a single electromagnetic

mode supported by the latter. The Hamiltonian of the model is given by

H = HS +HB +HS−B +Hp +Hp−S +HT T +HT T−B +HT T−S, (4.1)

where HS (HT T ) is the electronic singlet (TT) molecular Hamiltonian of the aggregate given by

(~= 1)

HS = ∑
n

ωe|n〉〈n|, (4.2a)

HT T =
N−1

∑
n=0

ωT T |TnTn+1〉〈TnTn+1|, (4.2b)

where |n〉 is a localized singlet (Frenkel) exciton [66] at the nth site (molecule), and |TnTn+1〉

denotes a TT state delocalized over sites n and n+1. Here ωe = ωe +∑i ωiλ
2
S,i (ωT T = ωT T +

2∑i ωiλ
2
T,i) is the vertical singlet (TT) excitation frequency, where ωe (ωT T ) and λS,i (λT,i) are the

0-0 excitation frequency and the square root of the Huang-Rhys factor [20] for the ith vibrational

mode coupled to the transition |G〉 → |n〉 (|G〉 → |TnTn+1〉), respectively, and|G〉 is the state
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corresponding to all molecules in the electronic ground state. HB = ∑n,i ωib
†
n,ibn,i accounts for

the vibrational degrees of freedom of the ensemble, where b†
n,i (bn,i) is the creation (annihilation)

operator of the i-th harmonic vibrational degree of freedom with frequency ωi on site n. The

singlet (TT) vibronic couplings are encoded in HS−B (HT T−B), given by

HS−B = ∑
n,i
|n〉〈n|ωiλS,i(bn,i +h.c.), (4.3a)

HT T−B =
N−1

∑
n=0
|TnTn+1〉〈TnTn+1|

×∑
i

ωiλT,i(bn,i +bn+1,i +h.c.). (4.3b)

The singlet-TT electronic coupling is (assuming periodic boundary conditions |T−1T0〉=

|TN−1T0〉): [67]

HT T−S =
VT T−S

2

N−1

∑
n=0

[
(|TnTn+1〉+ |Tn−1Tn〉)〈n|+h.c.

]
. (4.4)

Finally the photonic degree of freedom is included in Hp = ωpha†a where a†(a) is the creation

(annihilation) operator of the cavity photonic mode. Its interaction with the singlet excitons is

described by the light-matter Hamiltonian

Hp−S = ∑
n

g
(
a†|G〉〈n|+h.c.

)
=
√

Ng
(

a†|G〉〈k = 0|+h.c.
)

(4.5)

=
Ω

2

(
a†|G〉〈k = 0|+h.c.

)

where in the second line we have introduced a delocalized Fourier basis for the singlet excitons

|k〉 = 1√
N ∑n eikn|n〉 k = 2πm

N , m = 0,1,2, . . . ,N − 1. The
√

Ng term in (4.5) is the collective
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Figure 4.1: a) Bare triplet-triplet (red) and singlet (blue) vibronic energies of the different
molecules considered. From left to right: tetracene, pentacene and hexacene. For clarity only
the vibrational mode with highest frequency is shown. The SF dynamics is schematically
shown for bare case (b) and the SC scenario (c). In (c) the fastest decay constant α≈ 100 ps−1

is due to vibrational relaxation, γ is the dressed SF rate, κ is the cavity-photon leakage rate
and f+( f−) is the exciton fraction in the upper (lower) polariton. k f is the singlet fluorescence
decay rate. Continuous arrows denote radiative decay. Thicker lines indicate larger density of
states. Approximate SF and relaxation rates for pentacene interacting with a resonant photonic
mode are included. The decay timescale for the triplet-triplet state is significantly longer than
the timescales considered here.

light-matter coupling and Ω is the so-called Rabi splitting. Importantly, the singlet excitons are

optically bright, in contrast to the dark TT states [67]. Because of this property, our model does

not feature a TT term analogous to Eq. (4.5).

In our approach we consider the reduced population dynamics of the manifold of TT

states ({|TnTn+1〉}), the two polariton states (|±〉) and the so-called dark states ({|d〉= |k 6= 0〉})

that emerge from SC (see Fig. 4.1), where

|+〉= c+ph|G〉⊗ |1ph〉+ c+ex|k = 0〉⊗ |0ph〉, (4.6a)

|−〉= c−ph|G〉⊗ |1ph〉+ c−ex|k = 0〉⊗ |0ph〉. (4.6b)
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with (zeroth-order) eigenenergies given by

ω± =
ωe +ωph

2
±

√(
ωe−ωph

2

)2

+
(√

Ng
)2
, (4.7)

In Eq. (4.6), |nph〉 is the state with n photons in the photonic space and |+〉 (|−〉) is the upper

(lower) polariton state. Meanwhile, c±ph and c±ex are the Hopfield coefficients for the photon and

exciton components of the polariton states [5]. The reduced dynamics is described by means

of a Pauli master equation derived using the Redfield formalism under the secular and Markov

approximations [65] (see SI). The kinetic model can be summarized by the following equations,

∂tP±(t) =− f±
α(ω±D)

N
(N−1)P±+ f±

α(ωD±)

N
Ptotal

D (4.8a)

− f±
γ(ωT T,±)

N
(N)P±+ f±

γ(ω±,T T )

N
Ptotal

T T

−
(

f±kc(ω±)+ f p
±kphot

)
P±,

∂tPtotal
D (t) = f+α(ω+D)P+− f+

α(ωD+)

N
Ptotal

D (4.8b)

+ f−α(ω−D)P−− f−
α(ωD−)

N
Ptotal

D

− γ(ωT T,D)Ptotal
D + γ(ωD,T T )Ptotal

T T

− kc(ωD)Ptotal
D ,

∂tPtotal
T T (t) = f+γ(ωT T,+)P+− f+

γ(ω+,T T )

N
Ptotal

T T (4.8c)

− γ(ωD,T T )Ptotal
T T + γ(ωT T,D)Ptotal

D

+ f−γ(ωT T,−)P−− f−
γ(ω−,T T )

N
Ptotal

T T ,
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Table 4.1: Summary of bare material-dependent parameters. The values for VT T−S
2 and ∆G =

ωT T −ωe were taken from [64]. Based on these, we calculate the bare SF rates kSF and bare
TT yields εT T . Importantly, εT T is calculated assuming that SF competes with the fast singlet
decay process (charge production) kCT = 17 ps−1, discussed in the main text.

Molecule VT T−S/2 (meV) ∆G (meV) kSF (ps−1) εT T (%)
Tetracene 41.5 150 0.01 0.01
Pentacene 42 -110 17 100
Hexacene 22 -630 6 48

where P+(t) (P−(t)) is the population in the |+〉 (|−〉) state and Ptotal
D (Ptotal

T T (t)) is the total

population in the dark (TT) state manifold. f p
± = |c±ph|

2 and f± = |c±ex|2 ; ωD = ωe and ωab =

ωa−ωb. In Eqs. (4.8a)-(4.8c), we phenomenologically introduce the rate constant kc(ω) to

account for the contribution to the decay rate of the dressed states due to their singlet exciton

fraction. kc(ω) can be for instance radiative relaxation of the singlet to the ground electronic state

via modes that are weakly-coupled to light (e.g. leaky modes or surface plasmon-polaritons in

DBR and metal cavities, respectively), non-radiative decay, or its conversion into charges at the

interface with charge acceptors, which is the case in donor-acceptor blends used for organic solar

cells. The various cases are treated in more detail below.

The α(ω) transfer rates appearing in Eqs. (4.8a)-(4.8c) are calculated in terms of a

spectral density and thermal populations at frequency ω. The γ(ω) rates are computed by means

of a Bixon-Jortner-like [68] equation adapted to the SC regime. For sake of simplicity, in the

calculation of the latter the vibrational bath is treated by using an effective high (low) frequency

ωh (ωl) that satisfies ωh� 1/β (ωl� 1/β), to which we associate a so-called inner (outer) sphere

reorganization energy [69]. We refer the reader to the SI for details of the derivation and other

relevant parameters employed in the calculation of α(ω) and γ(ω). Finally, ∆G = ωT T −ωe, and

VT T−S/2 are treated as material-dependent; they are taken from Ref. [64] and are summarized in

Table 4.1.
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4.3 Discussion of results

We first consider the population dynamics of bare (cavity-free) systems containing one of

the acene molecules,

dPS(t)
dt

=−
(
kSF + kc(ωD))PS(t)+ kT FPT T (t) (4.9a)

dPT T (t)
dt

= kSFPS(t)− kT FPT T (t) (4.9b)

where PS(t) (PT T (t)) is the population of the singlet (TT) electronic state of a given acene, kSF is

the bare SF rate, and kT F is the bare triplet fusion rate, which corresponds to the reverse process to

SF. kSF and kT F are calculated by means of the Bixon-Jortner equation [68], with the parameters

in Table (4.1). For all cases we compute PS(t) and PT T (t) assuming PS(0) = 1, PT T (0) = 0 (see

Fig. 4.2). Under these conditions, we define the TT yield

εT T (t∗� 0) = 200%×PT T (t∗) (4.10)

as the relevant figure of merit for our subsequent analysis where t∗ was chosen to reach a stationary

PT T (t) value for pentacene and hexacene. We notice that when kc(ω) = k f = O(10−4) ps−1 (

fluorescence rate) pentacene an hexacene are expected to exhibit a 200% TT yield in view of

kSF � k f and kT F = eβ∆GkSF � kSF (detailed balance, where β is the inverse temperature). This

contrasts with tetracene, in view of its higher TT energy compared to the singlet, i.e. ωT T > ωe,

so that kSF � kT F and the TT population decays to zero for long t). The experimental TT yield

of tetracene is well above zero [70, 71], which is in contrast with our findings (see Fig. 4.2). The

reason is that the mechanism that leads to this unexpected yield is not considered in our model

and related to entropic gain [72]. We opted to analyze the results that follow from our model,

which should be valid in a similar energetic singlet and TT arrangement and in the absence of the
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Figure 4.2: Time evolution of populations in the singlet (blue) and TT electronic states (red)
of the molecules considered in this chapter in the bare case. We consider the initial conditions
that follow from pumping the singlet state at t = 0 (PS(t = 0) = 1PT T (t = 0) = 0), for all the
molecules in question. Inset: time evolution of PT T (t) for tetracene.

aforementioned entropic mechanism.

In organic solar cells TT yield is typically below 200% because the processes of singlet

migration and charge separation are fast enough to compete with kSF [21]. To consider a similar

situation, we assume that the singlet state quickly decays to a charge-transfer state. In our model,

this would correspond to a scenario where there is a charge-acceptor next to each of the acene

molecules of the chain. For simplicity and for the purpose of showing the possibilities of control

of TT yield by polaritonic means, we assume kc(ω) = δωD,ωkCT , (δi, j being the Kronecker delta

function) where kCT is equal to the bare pentacene rate kSF = 17 ps−1. The form introduced

for kc(ω) is approximately correct as long as the spectral density describing the singlet-charge-

transfer state is peaked around ωD and decays quickly with ω. The aforementioned kCT value is

experimentally reasonable as it has been observed in solar cells with a thin slab of SF material

[21].

We use Eq. (4.10) to compute the εT T values summarized in Table 4.1 in the presence of

kCT . Our definition of yield is thus different from that obtained in steady-state, but follows the

spirit of many experiments that measure SF using time-domain spectroscopy techniques.

Turning now to the polariton-assisted SF case, the non-trivial dynamics that emerge are

due to differences in the density of states (DOS) between the polariton and exciton manifolds, as
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Figure 4.3: TT yield as a function of ∆/ωh =(ωph−ωe)/ωh and Ω/ωh featured by a) tetracene,
b) pentacene and c) hexacene. The upper (lower) plot considers the initial conditions of pump-
ing the upper (lower) polariton, i.e. P+(0) = 1,Pa 6=+(0) = 0 (P−(0) = 1, Pa 6=−(0) = 0) .

well as to the photonic character of each polariton state. These traits are encoded in the prefactors

f±, f p
±, N and 1/N in Eqs. (4.8a)-(4.8c). Notably, in the N � 1 limit, the transfer rates from

Ptotal
D and Ptotal

T T to the polariton manifold are largely suppressed. This is a consequence of the

large DOS of the former (which act like a population sink) and the small DOS of the latter (which

is spectrally isolated). The reverse transfers are fast as they have single-molecule relaxation

scalings and correspond to going into the population sink. Similar findings are reported in Ref.

[73], in the context of the dynamics of molecular vibrations under the SC regime and in [12, 13]

for exciton polaritons. Therefore, once population reaches the dark and TT states, it is no longer

transferred to the polariton manifold, and the subsequent dynamics is determined by transfer rates

between dark and TT states. We stress, however, that the suppression of transfer rates between

Ptotal
D , Ptotal

T T and the polariton manifold is approximate as we are ignoring the polariton bandwidth

that emerges from the many photonic modes hosted by the microcavity, which yields non-zero

transfer rates between the aforementioned manifolds [9].

We performed numerical simulations of the dynamics of the polariton-assisted scenario by
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assuming two different initial conditions: pump of the upper polariton (UP)
(
P+(0) = 1,Pa6=+(0)

)
and of the lower polariton (LP)

(
P−(0) = 1,Pa6=0(0)

)
for all molecules. We denote ε̃T T the

polariton-assisted TT yields. They were calculated using the same criteria as in Eq. (4.10).

From a comparison of εT T (Table 4.1) and ε̃T T (∆,Ω) values (Fig. 4.3), where the detuning

∆ = ωph−ωD, we notice enhancement in the TT yield for hexacene, especially for the pumping

of the lower polariton. Under these conditions and high ∆ values, the state |−〉 is almost

purely excitonic ( f− ≈ 1), and the rate of the channel associated to photon leakage is supressed.

Moreover, ω− becomes closer to resonance with the third vibrational state of the TT manifold

(with frequency ωh) for a given range of Ω. Thus population transfer |−〉 → {|TnTn+1〉} is faster

than the bare SF, as the energetic barrier is lower in the former. Finally, there is no competition

between the previous transfer process and the decay channel associated to kc, as kc(ω−) = 0,

under the assumptions of our model. The enhancement considering pumping of the UP for the

same molecule is weaker since the fast rate of the transfer |+〉 → {|d〉} competes with the rate of

|+〉 → {|TnTn+1〉}.

Pentacene shows a similar behavior: when pumping the UP and if ∆ ≈ −ωh, then |+〉

is mainly excitonic and population of the TT states is mainly determined by transfer from the

dark state manifold, since f+α(ω+D)� γ(ωT T,+) i.e. the population from the upper polariton is

quickly transferred to dark states before transfer to TT states is carried out. Hence, noting that

γ(ωT T,D)≈ kSF , we recover (the bare) pentacene εT T . Notice however that for large detunings

ε̃T T (∆ ≈ −3ωh,Ω ≈ 1.6ωh) > εT T because a phonon blockade prevents fast decay into dark

states and also the charge-transfer decay channel is suppressed (kc(ω+) = 0). On the other hand,

for the pump of the LP ε̃T T values are higher as a consequence of a slower transfer rate (α(ω−D))

to the dark statesrates in such a way that the predominant transfer process is from |−〉 to TT

states.

Tetracene shows a distinct behavior in view of the bare energetic arrangements of its singlet

and TT states (see Fig. 4.1). More concretely we have f−γ(ωT T,−), f+γ(ωT T,+),γ(ωT T,D)�
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Figure 4.4: TT yield as a function of ∆/ωh = (ωph−ωe)/ωh and Ω/ωh featured by a molecule
with VS−T T = 44 meV , ∆G = −630 meV, and an outer reorganization energy of 5 meV. We
consider the initial conditions of pumping the lower polariton (P−(0) = 1, Pa 6=−(0) = 0). In
this case is that the only competing decay channel with SF is fluorescence.

γ(ωD,T T ) for most of the explored (∆,Ω) values. This translates into a rapid depletion of the

population of the TT manifold during the considered timescale; which is a consequence of

the energy of the TT states lying above the dark state energy, in such a way that the rate of

population depletion of TT states towards the dark states outcompetes the rate of the inverse

process (in view of detailed balance) as well as rates from the polariton manifold to the TT states.

The largest ε̃T T values are reached when pumping the UP and parameters (∆,Ω) which yield a

predominant excitonic character to |+〉 and a sufficiently high rate for |+〉 → {|TnTn+1〉} process,

such that it can better compete with the rates associated to |+〉 → {|d〉} and {|TnTn+1〉} → {|d〉}.

Considering the pumping of the LP, the maximal ε̃T T values are lower in view of ωT T −ω− > 0,

which greatly diminishes the rate for the transfer |−〉 → {|TnTn+1〉}.

So far, we have predicted results on SF materials that feature high TT yields by default

in the absence of fast quenching mechanisms. We wonder if anything interesting remains if the

latter mechanisms are absent, i.e., if we set kc(ω) = k f = 2.5× 10−4 ps−1 as an approximate

fluorescence slow decay rate. To address this, we consider a poor SF material with an outer sphere
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reorganization energy of 5 meV, keeping the rest of the parameters as for hexacene. This situation

could correspond to hexacene in a solvent that significantly increases the outer sphere SF energy

barrier, in which case we find εT T = 18%. For this case and the initial conditions that derive

from pumping the LP, we observe ε̃T T > εT T for values (∆,Ω) (see Fig. 4.4) which correspond

to a transfer process |−〉 → {|TnTn+1〉} whose rate competes with the rate of |−〉 → {|d〉}. This

occurs when ω− is close to resonance with one of the high-frequency vibronic states of the TT

states and |−〉 is predominantly excitonic. This system would give a straightforward verification

of polariton assisted SF in the absence of a fast quenching process.

4.4 Conclusions

To summarize, in this chapter, we have shown that when SF materials are subjected to

SC with a microcavity mode, the photonic leakage of the resulting polariton states constitutes an

important decay channel that can decrease TT production compared to the bare case. However,

the rates associated with this competing decay channel can be tuned by modifying the ratio ∆/Ω

(see Fig. 4.3), in such a way that the dynamics are dictated by the energy differences and the DOS

of the dressed states involved in SF. Given the large DOS of the dark state manifold and TT states,

the TT state must lie lower in energy with respect to the singlet so as to avoid population leakage

towards the dark state manifold. Remarkably, while hexacene is a poor SF candidate in the bare

case (and in presence of quenchers), it is the material which features the highest enhancement by

means of the proposed polaritonic approach and can even outcompete the bare pentacene TT yield

under the conditions considered in this work. Similarly, we notice the introduction of TT yield

enhancement for pentacene, although the improvements are modest in comparison with those

obtained for hexacene. Finally, we have also considered the putative scenario of a SF material

with low TT yield, where the SF rate competes with fluorescence. In this case, our model predicts

(for acene-like molecules) that ∆G� 0 is required to introduce enhancement in TT yields by
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polariton methods.

This chapter, in full, is adapted from the material as it appears in “Polariton-Assisted

Singlet Fission in Acene Aggregates” Martínez-Martínez L. A., Du M., Ribeiro R. F. and Yuen-

Zhou J., J. Phys. Chem. Lett., 9, 1951 (2018). The dissertation author was the primary investigator

and author of this material.
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Chapter 5

Triplet harvesting in the polaritonic

regime: a variational polaron approach

5.1 Introduction

In addition to the applications discussed in the previous chapters, polariton setups have

also emerged as promising candidates to boost the efficiency and versatility of light-emitting

diodes (LEDs) [74] and organic photodiodes (OPDs) [75]. As a proof of concept, electrical

injection of carriers into inorganic polariton architectures has been shown to modulate light-

matter coupling [76], thus opening new avenues towards polariton-based optoelectronic switches.

Similarly, organic LEDs have been demonstrated utilizing molecular dyes in the ultrastrong

coupling regime [77, 78, 79] and it has been recently shown that materials operating in the

latter can feature a complete inversion of molecular dark and light-emissive states [80]. These

exciting applications prompt the development of theoretical models to account for experimental

observations of the molecular SC regime [73, 15, 16, 81], as well as to rationally design new

polaritonic setups that could enhance chemical processes of contemporary interest [19].

In this chapter, we explore the triplet electroluminescence efficiency of a microcavity
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containing molecules which feature a range of electronic parameters and couplings to the con-

densed phase vibrational bath. The developed model aims to describe polaritonic OLEDs like

those reported in [38, 79], so we consider that (optically dark) triplet excitons are generated

upon electrical injection and the latter can transition into fluorescent singlet states that emit light.

Our approach relies on a master equation operating in a variationally optimized polaron frame,

originally introduced by Silbey and Harris [82, 83] with generalizations due to Pollock [23], Wu

[24], and their respective coworkers. The foundation of this method lies on the application of a

unitary transformation to the total Hamiltonian which yields renormalized system and system-bath

interactions that are weak enough to be perturbatively treated.

The outline of this chapter is summarized as follows. In section 5.2, we introduce our

quantum mechanical model and the variational approach to address its dynamics. Next, in section

5.3, we give a formal definition of the triplet electroluminescence efficiency and describe our

approach to calculate the time-evolution of populations in the relevant chemical states of the

system. Then, in section 5.4, we apply our approach to systems in two regimes of coupling

to vibrational degrees of freedom. In section 5.5, we identify the main limitation that must be

overcome to reach a polariton-enhanced triplet-harvesting regime and propose an approach to

circumvent this drawback. Finally, in section 5.6 we summarize this study and conclude with an

outlook of how polaritons could enhance the optoelectronic properties of molecular materials.

5.2 Theory

We consider an ensemble of N identical molecules embedded in an optical microcavity

and interacting with the electromagnetic modes supported by the latter; for simplicity, we describe

a single photonic mode interacting with the molecular ensemble, a coarse-graining approximation

which is based on the much larger density of states (DOS) of the molecular degrees of freedom

compared to the photonic ones [73, 84]. Thus, N should not be interpreted as the total number
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of molecules in the cavity, but rather as the average number of molecules that couple to a single

photon mode.

The Hamiltonian of our model can be written as

H =HS +HB +HS−B +Hph

+HS−ph +HT +HT−B +HS−T . (5.1)

Each molecule is modeled as a three-level electronic system, namely a singlet electronic ground

state and two excited states with singlet and triplet spin characters, respectively. The energetics of

the latter are correspondingly described by HS and HT . Assuming electrical pumping in the linear

regime, we can restrict the Hamiltonian to the single excitation manifold such that,

HS =
N−1

∑
n=0

εS|n〉〈n|, (5.2a)

HT =
N−1

∑
n=0

εT |Tn〉〈Tn|. (5.2b)

Here, |n〉 (|Tn〉) denotes a localized singlet (triplet) exciton at the nth molecular site and εS (εT ) is

the vertical singlet (triplet) electronic excitation energy, while (~= 1)

HB = ∑
v

N−1

∑
n=0

ωvb†
v,nbv,n (5.3)

accounts for the vibrational degrees of freedom in the condensed phase environment, where b†
v,n

(bv,n) is the creation (annihilation) operator for an excitation in the v-th harmonic mode with

frequency ωv on site n. The mode-dependent singlet (triplet) vibronic couplings g(v)S (g(v)T ) are

included in HS−B (HT−B):
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HS−B = ∑
v

∑
n
|n〉〈n|g(v)S (bv,n +h.c.), (5.4a)

HT−B = ∑
v

∑
n
|Tn〉〈Tn|g

(v)
T (bv,n +h.c.). (5.4b)

The singlet-triplet intersystem crossing electronic coupling is given by

HS−T =VST ∑
n
(|n〉〈Tn|+h.c.) . (5.5)

Finally, the photonic microcavity degree of freedom is encoded in

Hph = ωph|G,1ph〉〈G,1ph|, (5.6)

where |G,1ph〉 accounts for the state of all molecules in the electronic ground state and one

excitation in the photonic mode and its interaction with singlet excitons (in the rotating wave

approximation, RWA) is described by

HS−ph = ∑
n

g
(
|G,1ph〉〈n|+h.c.

)
, (5.7)

g being a single-molecule dipolar coupling. To describe the emergent dynamics upon electrical

pumping of the optically dark triplet states, we employ a variational polaron transformed master

equation. The latter has proven to reproduce reliable quantum dynamics in a wide range of

coupling strengths between electronic degrees of freedom and phononic reservoirs [85], while

being computationally inexpensive compared to more accurate approaches such as path integral

[86, 87], multi-configuration time-dependent Hartree [88, 89], hierarchical equations of motion

[90], linearized density matrix evolution [91], surface-hopping [92, 93, 94] and exact factorization

[95] formulations. In particular, we consider a similar multi-site approach to the one developed
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by Pollock and coworkers [23], who considered a variational polaron transformation to compute

population dynamics in exciton networks with local phonon reservoirs. Furthermore, we adapt

a generalization introduced by Wu and coworkers [24] who treated the photon-exciton and

exciton-vibration on equal footing to describe the photoluminiscence and vibrational dressing in

polaritonic setups. As a first step towards the development of a master equation, the Hamiltonian

in Eq. (5.1) is transformed to the so-called polaron frame, for which we introduce the unitary

transformation eP, where

P =
N−1

∑
n=0

∑
v
|n〉〈n|

[
∑

l
(b†

v,n+l−bv,n+l)
f (v)l
ωv

]
(5.8)

+
N−1

∑
n=0

∑
v
|G,1ph〉〈G,1ph|

[
(b†

v,n−bv,n)
h(v)

ωv

]

+
N−1

∑
n=0

∑
v
|Tn〉〈Tn|(b†

v,n−bv,n)
f (v)T
ωv

≡
N−1

∑
n=0

[
|n〉〈n|D̂(n)

S + |G,1ph〉〈G,1ph|D̂ph + |Tn〉〈Tn|D̂
(n)
T

]

is partially based on previous works [24, 96]. According to the ansatz in Eq. (5.8), the electronic

and photonic degrees of freedom are dressed with vibrational bath excitations to an extent

quantified by the set of parameters { f (v)l , f (v)T ,h(v)} which are variationally determined, as will be

explained below. The summation over l in Eq. (5.8) assumes that the vibrational deformation can

be extended over all sites in the singlet excited manifold (large polaron limit) as a result of the

interaction of all optically bright singlet excitons to the same photon mode. Since the electronic

triplet states do not directly interact with the photonic mode, the vibrational deformation of the

triplet excited manifold is expected to be more localized (small polaron limit). In the polaron

frame we have
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ePHe−P = H̃0 + H̃I +HB, (5.9)

where

H̃0 =∑
n

ε̃S|n〉〈n|+∑
n

ε̃T |Tn〉〈Tn|+ ω̃ph|G,1ph〉〈G,1ph|

+gηS−ph ∑
n

(
|n〉〈G,1ph|+h.c.

)
+VST ηST ∑

n
(|n〉〈Tn|+h.c.) .

=H̃0,k=0 + ∑
k 6=0

H̃0,k (5.10)

and

H̃0,k=0 =ε̃S|k = 0〉〈k = 0|+ ε̃T |Tk=0〉〈Tk=0|

+ ω̃ph|G,1ph〉〈G,1ph|

+
Ω

2
ηS−ph

(
|k = 0〉〈G,1ph|+h.c.

)
+VST ηST (|k = 0〉〈Tk=0|+h.c.) , (5.11a)

H̃0,k 6=0 =ε̃S|k〉〈k|+ ε̃T |Tk〉〈Tk|+VST ηST (|k〉〈Tk|+h.c.) . (5.11b)

In Eqs. (5.10-5.11) we introduced a delocalized Fourier basis for the singlet |k〉= 1√
N ∑n eikn|n〉

and triplet excitons |Tk〉 = 1√
N ∑n eikn|Tn〉, with k = 2π

N , m = 0,1,2, . . . ,N−1. In this basis, the

state |k = 0〉 couples to the photonic mode with a superradiantly enhanced strength given by
√

Ng = Ω/2. The renormalized on-site energies in (5.10) are given by
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ε̃S = εS +∑
v

(
∑

l

f (v)2l
ωv
−2g(v)S

f (v)0
ωv

)
(5.12a)

ε̃T = εT +∑
v

(
f (v)2T
ωv
−2g(v)T

f (v)0
ωv

)
(5.12b)

ω̃ph = ωph +∑
v

N
h(v)2

ωv
(5.12c)

and the renormalization constant ηST (ηS−ph) is the thermal average of the relative displacement

operator between the singlet and triplet (photonic) harmonic potential energy surfaces,

ηS−ph = 〈eD̂(n)
S e−D̂ph〉

= exp

[
−1

2 ∑
l,v

(
( f (v)l −h(v))2

ω2
v

)
coth(βωv/2)

]
,

ηST = 〈eD̂(n)
S e−D̂(n)

T 〉

= exp
{
− 1

2 ∑
v

[
( f (v)0 − f (v)T )2

ω2
v

+ ∑
l 6=0

| f (v)l |
2

ω2
v

]
coth(βωv/2)

}
,

where 〈A〉= TrB{Ae−βHB}
ZHB

, TrB{·} denoting a trace over the vibrational degrees of freedom, β being

the inverse temperature, and ZHB = TrB{e−βHB} being the vibrational partition function. Notice

that by taking f (v)l = g(v)S δl,0 in Eq. (5.12a), we recover the full-polaron transformation for the

singlet excitation, and RS =−λS =−∑v(g
(v)
S )2/ωv, where λS is the reorganization energy of the

singlet excited state. In Eqs. (5.10)–(5.11), we also introduced a partition of the Hamiltonian

into the molecular contribution that is totally symmetric under site permutations H̃0,k=0 and the

non-totally-symmetric one ∑k 6=0 H̃0,k. Since [H̃0,k=0,∑k 6=0 H̃0,k] = 0, the eigenstates of H̃0 can be
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found by independent diagonalization of each contribution:

H̃0,k=0 = ε̃UP|UP〉〈UP|+ ε̃MP|MP〉〈MP|+ ε̃LP|LP〉〈LP|, (5.14)

where we define the upper (UP), middle (MP) and lower (LP) polariton states | j〉 = c j
S|k =

0〉+ c j
T |Tk=0〉+ c j

ph|G,1ph〉, j = UP, MP, LP. On the other hand,

∑
k 6=0

H̃0,k = ∑
k

[
ε̃+|k(+)〉〈k(+)|+ ε̃−|k(−)〉〈k(−)|

]
(5.15)

describes mixed singlet-triplet eigenstates |k(±)〉= c±S |k〉+ c±T |Tk〉 with no photonic component,

whose eigenenergies are given by ε̃± = ε̃S+ε̃T
2 ± 1

2

√
(ε̃S− ε̃T )2 +4V 2

ST η2
ST . These states are

commonly known as dark or exciton reservoirs [12, 13]. For clarity, we refer to the highest

(lowest) energy eigenstates in Eq. (5.15) as the upper (lower) dark states. Notice that since we are

ignoring inter-site couplings, we neglect the dispersive character of the exciton in the calculation

of the eigenenergies (5.15), a valid assumption in view of the flat exciton dispersion relation

compared to the photonic one in the k range of interest. The residual interaction Hamiltonian in

Eq. (5.9) is

H̃I = ṼS +ṼT +Ṽph +ṼS−T +ṼS−ph, (5.16)

which has been written as a sum of different contributions defined as follows,
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ṼS =∑
v

∑
n
|n〉〈n|

[
(g(v)S − f (v)0 )(b†

v,n +bv,n)

−∑
l 6=0

f (v)l (b†
v,n+l +bv,n+l)

]
, (5.17a)

ṼT =∑
v

∑
n
|Tn〉〈Tn|

[
(g(v)T − f (v)T )(b†

v,n +bv,n)
]
, (5.17b)

Ṽph =−∑
v

h(v)|G,1ph〉〈G,1ph|∑
n

(
b†

v,n +bv,n

)
, (5.17c)

ṼS−T =∑
n

VST

[
eD̂(n)

S −D̂(n)
T −ηT S

]
|n〉〈Tn|+h.c., (5.17d)

ṼS−ph =∑
n

g
[

eD̂(n)
S −D̂(n)

ph −ηS−ph

]
|n〉〈G,1ph|+h.c.. (5.17e)

The calculation of the parameters { f (v)l , f (v)T ,h(v)} is carried out by taking advantage of the

Feynman-Bogoliubov inequality F ≤ F ′0 + 〈H̃I〉H̃ ′0 [82, 83], where F (F ′0) is the free energy of

the system governed by H (H̃ ′0 = H̃0 +HB) and 〈A〉H̃ ′0 = Tr{Ae−βH̃ ′0}[Tr{e−βH̃ ′0}]−1 where Tr{·}

denotes the trace over the eigenstates of H̃ ′0 . Notice that by construction 〈H̃I〉H̃ ′0 = 0, and the

leading correction to the exact equilibrium reduced density matrix is O(H̃2
I ) [85], which justifies

the (second order) perturbative treatment in H̃I . It follows that the parameters { f (v)l , f (v)T ,h(v)}

can be found by minimizing F ′0 =−β−1Tr{e−βH̃0}, which amounts to solving ∂F ′0
∂ f (v)i

=
∂F ′0

∂h(v)
= 0.

In our calculations, we consider a continuum vibrational bath limit, which is described in terms

of the spectral densities Ji(ω) = ∑v |gi
v|2δ(ω−ωv) = ai

ω3

ω2
c
e−ω/ωc , i = S,T , where ωc is a cutoff

frequency, and ai is the dimensionless parameter that encodes the strength of coupling between

the excited electronic state with character i to the vibrational bath. In the discussion that follows,

we focus on the calculation of the population dynamics of the chemically relevant species as well

as of the electroluminescence efficiencies.
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5.3 Dynamics in the polaron frame and definition of triplet

electroluminescence efficiency

The open-quantum system dynamics associated with the Hamiltonian in Eq. (5.1) can be

described in terms of the time evolution of the reduced density matrix (RDM) ρ(t) = TrB{ρtot(t)},

(ρtot(t) is the total density matrix), governed by the Liouville equation in the Schrödinger picture

dρ(t)
dt

= Lρ(t)−{Γnrad +Γph,ρ(t)},

where Lρ(t) = −iTrB{[H,ρtot(t)]}, and {ρ(t),Γi} = ρ(t)Γi + Γiρ(t); Γrad , Γnrad , Γph phe-

nomenologically account for the dissipative processes associated with the radiative and non-

radiative decay of excitons [97], and photonic leakage, respectively. We define the triplet

electroluminescence efficiency

ε = 2
∫

∞

0
Tr
{

Γphρ(τ)
}

dτ, (5.18)

where the trace is taken over all the degrees of freedom, namely, the electronic, vibrational, and

photonic. Eq. (5.18) is analogous to the integrated probability used to define the efficiency of

energy trapping in chromophoric complexes [97], but in the present context, acquires the meaning

of the efficiency of emission of a photon. Here, we define Γnrad =
kS

nrad
2 ∑n |n〉〈n|+

kT
nrad
2 ∑n |Tn〉〈Tn|

and Γph =
κ

2 |G,1ph〉〈G,1ph|, ki
nrad being the nonradiative decay rate of electronic state i = S,T ,

and κ being the cavity photon leakage rate. Since

Tr{Γphρtot(t)}=Tr{Γphe−P
ρ̃tot(t)eP}

=Tr{Γphρ̃tot(t)}, (5.19)
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ε is an invariant quantity under the polaron transformation. This last condition permits the com-

putation of Eq. (5.18) in the polaron frame, where the time evolution of the polaron transformed

RDM ρ̃(t) = TrB{ρ̃tot} can be described in terms of second-order perturbation theory on H̃I

within the secular Born-Markov approximation. This procedure guarantees that the long-time

evolution of the polaritonic system properly thermalizes into the reduced equilibrium state due

to H̃0 which, due to the optimization of the variational parameters according to the Feynman-

Bogoliubov bound (see Sec. 5.2), provides a good description of the equilibrium state of the full

system involving electronic states, vibrations, and photon.

For the calculation of ε, we assume that the initial RDM corresponds to an incoher-

ent mixture of localized excitations in the triplet electronic manifold, i.e., ∑n〈Tn|ρ̃(0)|Tn〉 = 1,

∑n〈Tn|ρ̃(0)|n〉 = ∑n〈Tn|ρ̃(0)|G,1ph〉 = ∑n〈n|ρ̃(0)|n〉 = 〈G,1ph|ρ̃(0)|G,1ph〉 = 0. Under these

assumptions, the initial RDM in the polaron frame can be written as

~̃ρ(0)≈



〈UP|ρ̃(0)|UP〉

〈MP|ρ̃(0)|MP〉

〈LP|ρ̃(0)|LP〉

∑k 6=0〈k+|ρ̃(0)|k+〉

∑k 6=0〈k−|ρ̃(0)|k−〉


≈



0

0

0

|c+T |2

|c−T |2


, (5.20)

where the approximation is the result of considering a localized initial state, which in the

delocalized polaron picture translates into the population distributed uniformly among the dark

and polariton states. Since the former feature a larger DOS than the latter, the population is

predominantly concentrated in the dark states. We can rewrite Eq. (5.18) as

ε =
∫

∞

0
κPph ·~̃ρ(τ)dτ, (5.21)
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where the vector

Pph =

[
|cUP

ph |
2 |cMP

ph |2 |cLP
ph |2 0 0

]

accounts for the photonic character of the different chemical species that take part in the population

dynamics. The time evolution of ~̃ρ(τ) is described in terms of a Pauli master equation in the

secular Markovian approximation, where

d~̃ρ(t)
dt

= M~̃ρ(t). (5.22)

For simplicity in the calculations and interpretation, we consider the evolution of the total popu-

lation in the dark state manifolds ∑k 6=0〈k±|ρ̃(t)|k±〉 rather than dissected among the individual

populations {〈k±|ρ̃(t)|k±〉}. The matrix M is given by

Mi j =


ki← j i 6= j

−∑l 6=i kl←i−κphot |〈i|G,1ph〉|2 i = j

−kT
nrad〈i|IT |i〉− kS

nrad〈i|IS|i〉

(5.23)

where k j←i is the rate of transfer from the state/manifold |i〉 to | j〉, and IT = ∑n |Tn〉〈Tn|, IS =

∑n |n〉〈n|. Using Eq. (5.22) together with Eq. (5.21), we have that

ε =−κPphM −1~̃ρ(0). (5.24)

To get further insight into the contributions of the different pathways of population transfer to ε,

we consider a Green’s function partition approach [97], under which

M −1 = M −1
npol−M −1

npolMpolM −1, (5.25)
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where we let M = Mpol +Mnpol , Mpol being the rate matrix that accounts for the feed and

depletion of polariton states only, which amounts to considering the rates ki← j where either i or

j ∈ {|UP〉, |MP〉, |LP〉} while setting the other entries of M to 0. Using Eqs. (5.24) and (5.25),

ε = εdir + εindir

where εdir = κPphM −1
npolMpolM −1~̃ρ(0), εindir =−κPphM −1

npol
~̃ρ(0), and ε can be written as a sum

of a contribution due to polariton-participating processes and another one where they do not play

a role.

5.4 Results and discussion

Based on the approach above, we are particularly interested in the dependence of ε with

Rabi energy Ω and detuning between the cavity photon and the vertical singlet energy transition

(∆ = ωph− εS), considering molecular emitters which feature different regimes of interaction

with the vibrational bath degrees of freedom (DOFs). For that purpose, we introduce two cases

based on parameters chosen to represent a wide range of organic molecular emitters.

First, we consider (large) strengths of coupling to the vibrational environment aS = 10,

aT = 15, and a frequency cutoff ωc = 0.01 eV. The corresponding reorganization energy of the

singlet electronic state is given by λS =
∫

∞

0
JS(ω)

ω
dω = 0.2 eV and the analogous quantity for the

triplet is λT =
∫

∞

0
JT (ω)

ω
dω = 0.3 eV. The assumption of a single vibrational reservoir coupled to

both the singlet and triplet states allows for the calculation of the reorganization energy of the

singlet-triplet transition λST , which for this specific case amounts to 0.01 eV. For simplicity, we

do not consider high frequency vibrational bath modes (those which feature frequencies ω� β−1)

in our calculations. Furthermore, we assume an energy gap between the equilibrium vibrational

configurations of the triplet and singlet ∆G = (εT − λT )− (εS− λS) = −0.1 eV and a weak

intersystem crossing coupling amplitude VST = 2×10−5 eV. These parameters are typical for
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organic molecules that undergo thermally activated delayed fluorescence (TADF) [98, 99, 100],

where the population in the dark triplet states transfers to the bright singlets, with a R-ISC rate

that depends on a thermal energy barrier between the latter. We also consider a relatively slow

nonradiative decay of the triplet kT
nrad = 2×10−7 ps−1 [99]. Since the characteristic timescale

of relaxation of the vibrational environment ω−1
c � ~/|VST |, we expect a fast relaxation of the

latter into its equilibrium configuration before R-ISC ensues, a scenario termed ’fast bath’ in the

literature [85]. This is the behaviour expected in the limit Ω→ 0 (small polaron formation before

electronic transition) which was confirmed in our numerical calculations.

The second case we considered is the opposite to the previous one, in which the vibrational

DOFs of the environment are sluggish in comparison to the R-ISC transition time scale (VST �ωc),

a scenario identified as ’slow bath’ [85], which corresponds to molecular emitters with sizable

singlet-triplet mixing via spin-orbit coupling or hyperfine interaction. For this case, we also

chose large strengths of coupling to the vibrational environment aS = 10, aT = 30, while setting

a small cutoff frequency ωc = 5× 10−3 eV (which translate into λS = 0.01 eV, λT = 0.03 eV

and λST = 0.1 eV). Furtheremore, we set VST = 0.05 eV and ∆G = −0.01 eV, parameters that

are qualitatively aligned with molecules that exhibit fast singlet-fission [64], which exhibit large

electronic couplings, comparable to the energy gaps between the singlet and the (two-body) triplet

state. For this case, if kT
nrad is small as above, the cavity-free triplet electroluminescence efficiency

ε≈ 1 and placing it in the cavity is not productive; hence, we assume that the molecule is such

that it features a fast nonradiative triplet decay kT
nrad = 2×10−3 ps−1 , such that we explore the

possibility to outcompete it by cavity-assisted processes. The temperature T = 300 K is assumed

for both cases.

For reference, we computed electroluminescence efficiencies in the cavity-free (bare

molecules) case which are ε = 0.027 for the fast bath case, and ε = 0.062 for the slow one. The

latter are calculated using Eq. (5.18), substituting Γph with Γrad =
kS

rad
2 IS , where kS

rad = 10−2

ps−1, a typical fluorescence rate for organic molecules.
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Upon coupling to a cavity photon mode, the emergent dynamics are changed as a result of

the modification of the bare molecular energy landscape and the reorganization energies between

the polariton states. In the polaron frame, the former contribution is encoded in the energy

spectrum introduced in Eqs. (5.14-5.15), whereas the latter is accounted for in the reorganization

energies λi− j, i 6= j, i, j ∈UP,MP,LP,±, where the subindices± denote |k±〉 states (in our model,

the reorganization energies λi−(±) are independent of the momentum of the dark states). The

polaron frame picture of the dynamics in both the slow and the fast bath case is schematically

illustrated in Fig. 5.1 and the variation of the electroluminescence efficiency with ∆ and Ω for the

two different molecular emitter cases is shown in Fig. 5.2.

For the discussion in this section, we limit ourselves to the N = 102 case, postponing the

important analysis of larger N values for the next paragraphs.

Fast bath scenario.- For the fast bath molecule, we find that for weak light-matter cou-

plings (Rabi splittings Ω� λS), ε(∆,Ω) is below the cavity-free scenario (for the resonant case

∆ = 0, see inset in Fig. 5.3a). In the polaron frame, this observation can be explained in terms

of thermally-activated transfer of population from the triplets to the photonic potential energy

surface (PES) via the singlets (see Fig. 5.1a-I). Since this process involves passage through

two thermal energy barriers, the time needed to reach the photonic PES is longer that the triplet

lifetime and therefore ε� 1. On the other hand, when Ω/2λS ≈ 2/3, our calculations predict

an abrupt increase in ε (compare inset and main plot in Fig 5.3a). This is a manifestation of

polaron decoupling [81, 96] that is expected for sufficiently large Rabi splittings [16, 96], under

which the polariton PESs are essentially undisplaced with respect to the electronic ground PES.

The intuition behind this decoupling is that the exchange of energy between photon and singlet

excitons is much faster than that between vibrations and singlet excitons. Importantly, while this

regime was previously predicted for Ω� λS [101] for a single high-frequency mode, we hereby

numerically demonstrate that this stringent condition can be relaxed to smaller Rabi splittings

in the case of a continuum of low-frequency modes. In this polaron decoupling regime, our
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Figure 5.1: Scheme of polaron frame population dynamics which emerge upon injection of
optically dark triplet excitons into molecules confined in an optical microcavity. For simplicity,
we depict only one vibrational mode and represent its harmonic potential energy E as a function
of its coordinate Q, in the photonic state (molecular ground state with one photon, yellow
thin curve), and corresponding harmonic potential manifolds for singlet (blue thick curve) and
triplet (red thick curve) excited states due to N molecules. We consider molecules which
feature (a) fast and (b) slow vibrational environment (see main text), compared to the R-ISC
timescale defined by the singlet-triplet coupling ~/VST . For each case, we find qualitatively
different mechanisms of population transfer among states for (I) weak and (II) strong light-
matter coupling. The most significant mechanisms are depicted: multiphonon or Marcus-like
processes with straight arrows, and single-phonon or Redfield-like processes with jagged ones.
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Figure 5.2: Triplet electroluminescence efficiency ε as a function of cavity detuning ∆ =
ωph− εS and Rabi splitting Ω for (a) the fast bath case, where vibrational equilibration occurs
before a slow R-ISC and b) the slow bath case, where the opposite is true (where the emitters
feature strong singlet-triplet mixing, see main text). The yields outside of the cavity are (a)
ε = 0.027 for the fast bath and (b) ε = 0.062 for the slow one. The effective number of
molecules per photon mode is: (i) N = 102, (ii) N = 104 and (iii) N = 106.
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Figure 5.3: Partition of triplet electroluminescence efficiencies as a function of Rabi splitting
Ω at light-matter resonance ωph = εS (for ∆ = 0) for a) a fast bath and b) a slow bath molecule;
we show the case for N = 100. The triplet electroluminescence efficiency ε (labeled as po-
laritonic) can be partitioned into a fraction that accounts for the direct and indirect population
transfer from dark triplets into polaritons, where indirect means that population passes through
other dark states before it reaches the polaritons. In b), we do not explicitly show the indi-
rect contribution since it is negligible for featured Rabi splitting ranges. Inset in (a) zooms into
smaller Rabi splitting ranges. For comparison, the yields outside of the cavity are (a) ε = 0.027
for the fast bath and (b) ε = 0.062 for the slow one.

calculations predict that λ(−)−UP = λ(−)−MP = λ(−)−LP = λ(+)−(−) > λST [where the equality

among the previous quantities is a result of the ansatz in Eq. (5.8), which for Ω/2λS > 2/3,

corresponds to f (v)l = f (v) = O(
g(v)S
N ), for all l. In other words, the singlet exciton PESs are

negligibly displaced with respect to the ground state PES when N is large]. As a consequence,

the R-ISC energy barrier can either decrease or increase with respect to the bare molecules by

tuning the Rabi splitting. In fact, we notice that as Ω increases (see Figs. 5.2a-i and 5.1a-II), ε

increases and then decreases with respect to the cavity-free value, given that the smallest R-ISC

to polariton energy barrier decreases and then increases as this rate goes from normal to inverted

Marcus regimes. Notice that Fig. 5.3a only shows an increasing behavior in ε because the plotted

range of Rabi splittings is small.

Slow bath scenario.- For the slow bath case, we observe a significantly different ε(∆,Ω).

In Fig. [5.2b-i], we show that there is no need to invoke Rabi splittings beyond the reorganization

energy to observe an enhancement in electroluminescence efficiency.

Similarly to the previous fast bath scenario, our calculations reveal two qualitatively
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different pictures of the population dynamics in the polaron frame depending on the magnitude of

Ω. For sufficiently weak light-matter coupling, the initial state is comprised of approximately

equally populated lower and upper dark state manifolds since |c+S |2 ≈ |c
−
S |2 [see Eq. (5.20)

and Fig. 5.1b-I], a consequence of the prevalence of the electronic coupling VST over the weak

coupling of the R-ISC transition to the phonon environment. In this regime, ε can be explained in

terms of a Marcus picture where the photonic PES receives population from the upper and lower

dark-state manifolds with a rate proportional to a diabatic coupling of order |g|2, corresponding

to single-molecule light-matter coupling [see Eq. (5.17e) and Fig. 5.1b-I]. High and small

R-ISC energy barriers can be obtained by scanning across ∆, thus decreasing and increasing ε,

respectively; for the computed range of ∆ values, the dominant R-ISC pathway is the one starting

from the upper dark states (they are closer in energy to the photonic PES, see Fig. 5.1b-I). In fact,

for sufficiently small increase in Ω, the triplet electroluminescence efficiency ε also rises because

|g|2 increases; see Fig. 5.3b, which shows a cut of ε at light-matter resonance ∆ = 0. In this

plot, this mechanism is operative up to a first maximum in ε at Ω≈ λ, upon which light-matter

coupling changes from weak to moderate and ε decreases. This effect can be understood as

follows: as Ω increases, it can compete with VST , thus reducing the magnitude of the dressed ṼST ,

and concomitantly reducing the mixing between singlets and triplets. The result is that the lower

and upper dark states become more triplet and singlet-like, respectively. Therefore, the initial

triplet population has more probability of residing in the lower dark states, but these feature a

much larger energy barrier to the photonic mode, thus leading to slower R-ISC and lower ε.

Keeping our discussion around Fig. 5.3b, our model predicts a sharp change in the

dynamics under strong light-matter coupling starting at Ω ≈ 4λS, with ε increasing with Ω,

featuring a second maximum in ε at Ω≈ 6λS, and then decreasing for larger Ω. An intriguing

feature of this regime is that, for the chosen parameters, the upper and lower dark states have

largely triplet and singlet characters, respectively; that is, the configuration of minimal energy

of the vibrational DOFs coupled to the singlet and triplet states in the polaron frame is such
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that their energy ordering is inverted with respect to that in the original frame (Fig. 5.1b-II)

where εS−λS > εT −λT . This effect is due to the slow relaxation of the bath that renders the

vibrational dressing of the states at nonequilibrium nuclear configurations close to those accessed

by vertical transitions from the ground state. Under these circumstances, population is primarily

initialized in the upper dark states and transfers to the MP (Fig. 5.1b-II) which is closer in

energy than the other polaritons or dark states. Notice that in contrast to the weak light-matter

coupling case, MP has significant singlet, triplet, and photonic characters and the population

transfer mechanism can be essentially dissected into sizable contributions from multiphonon (a

Marcus-like contribution due to displacement between the upper dark states and MP harmonic

potentials) and one-phonon (Redfield-like) processes. In our example, a steady boost in ε is given

by the Redfield processes which dominate over the Marcus-like ones, given the large activation

energy barriers to be surmounted in the latter. These Redfield processes are primarily due to

the triplet character in both upper dark states and MP. After the second maximum in ε, further

increase of Ω leads to a phonon blockade and a concomitant decrease in ε: the MP energy keeps

lowering but no one-phonon process is available to mediate the transfer from the upper dark states

(the vibrational DOS decreases exponentially as a function of frequency in our chosen spectral

density).

5.5 The large N issue

So far, we have addressed the N = 100 case in detail. In fact, strong light-matter coupling

with such small number of molecular emitters has been reported using plasmonic nanoparticle

environments [102, 103]. However, most microcavity systems have much larger N values. We

thus proceed to comment on the ε behavior for increasing values of N, while keeping Rabi

splittings Ω fixed (and hence energy barriers and energy differences between states, see Fig. 5.2).

For weak light-matter coupling, both fast (a) and slow (b) baths yield insensitive changes of ε
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Figure 5.4: Relative R-ISC rates from triplet manifold to polariton states (at light-matter reso-
nance ωph = εs) in the polaron frame with respect to the cavity-free case, for (a) the fast bath
scenario and (b) the slow bath case, as a function of Rabi splitting, considering N = 102. The
profile observed in (a) (where the bare R-ISC rate is kS←T = 5.4×10−9 ps−1), can be explained
in terms of a multiphonon Marcus theory process from triplets to singlets (see Fig. 5.1a-II),
where the lowest activation barrier between triplets and polaritons decreases (normal regime)
and then increases (inverted regime). In (b) (where the bare R-ISC rate is kS←T = 4.6× 10−6

ps−1), the trend is different since the dominant R-ISC channel is a one-phonon process from
triplets to the MP state (see Fig. 5.1b-II) and significantly depends on the triplet character of
the latter. The asymptotic behavior of the rate reflects the increase in triplet character of the
(MP) polariton state with Rabi splitting and the suppression of the energy gap between the
latter and the triplet states. However, in this asymptotic limit, the photonic component of the
MP vanishes and this channel does not longer contribute to the cavity electroluminescence ef-
ficiency. Finally, since the kPol←T rates shown here scale as 1/N, the rates expected at different
N can be calculated by scaling the values displayed accordingly.
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to increase of N. This is due to the fact that changing N does not alter the energy barriers to be

surmounted in the R-ISC process.

For strong light-matter coupling, the overall electroluminescence efficiency is damped

as a result of the ratio of triplet to polariton states increasing. For the fast bath case (a), since

both dark and polariton states feature the same reorganization energies in the polaron frame, ε is

determined by the competition between the nonradiative triplet decay and transfer to the polariton

state closer in energy, that is because the latter channel features a lower activation energy barrier

compared to the dark states [see Fig. 5.1a-II)]. However, at light-matter resonance, the R-ISC rate

to the final polariton state scales as 1
N , given that the polariton is delocalized across N singlets

and only one of them can undergo coupling to a given triplet. Importantly, for N ≥ 104 the rate

of transfer to the polaritons falls below the cavity-free R-ISC rate for the entire (∆,ω) range

displayed (see Fig. 5.2 top panels and 5.4a). The conclusion is similar for the slow bath case

(b). While for small N values, high efficiencies are obtained (see Fig. 5.2b-i and 5.2b-ii), the

assistance of polariton modes decreases with increasing N. This is because the ratio of rates (dark

states→ polariton)/(polariton→ dark states) scales as 1
N given the delocalization of the polariton

state; this implies that the backward process polariton→ dark states becomes more relevant as N

increases, an effect which is detrimental to ε. Finally, the decrease of photon character in the MP

for ∆ < 0 [see Fig. 5.1b-II)] together with a fast back transfer to the denser manifold of upper

dark states for larger N, explains the drop of ε at ∆ < 0, specially for N > 104 (see Fig. 5.2 lower

panels and 5.4b).

Based on the discussion above, a pressing question is the characterization of an optimal

scenario that overcomes the deleterious effects of cavity R-ISC rates as N increases, the latter

being as large as 107 [84]. Here, we propose a case where the energy tunability of the polaritons

introduces an increase of many orders of magnitude relative to the cavity-free R-ISC rate, and

this enhancement can outcompete the suppression due to the low polariton DOS. The scenario

is built upon the fast bath case studied above, but assuming a sufficiently large singlet-triplet
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energy gap and weak couplings of the electronic states to the bath (small aS and aT parameters).

Under these conditions, the reduced dynamics of transfer in the polaron frame in the cavity-free

scenario corresponds to the inverted-Marcus regime (for the singlet to triplet transition), where

the population of the triplet manifold needs to overcome an enormous energy barrier to reach

the singlet state (see Fig. 5.5). Upon confinement to a microcavity, the emergent lower polariton

could introduce a much smaller energy barrier from the triplet states. Our results and the precise

parameters used in our calculations are shown in Fig. 5.5, which show that polariton-assistance

introduces four orders of magnitude enhancement relative to the bare R-ISC rate.

On the other hand, we note that the polariton-assisted R-ISC rate is upper-bounded by
V 2

ST
N

√
πβ

λT−pol
, which must be higher than kT

nrad to lead to harvesting of triplets. If we take N = 106

, and use the parameters above for the fast bath scenario (knrad = 2× 10−7 ps−1), we need a

very small λT−pol = 10−17 eV. Therefore, in order to obtain a sizable ε, emitters with negligible

couplings to a vibrational environment are required (small reorganization energies λST and λS);

that is, poor R-ISC molecules (i.e., the opposite of TADF materials) will obtain most benefit from

polaritonic effects.

For the slow bath case, there is no possibility to enhance electroluminescence for large N

because the associated R-ISC processes via polaritons happen via one-phonon vibrational relax-

ation (Redfield) processes, rather than multiphonon (Marcus) processes that exhibit exponential

sensitivity on energy barriers. Hence, the only option for enhancement of electroluminescence

for that case is to use samples with small N values.

5.6 Conclusions

In this chapter, we have developed a variational model for the prediction of electrolumi-

nescence efficiency of molecular emitters interacting with a photonic mode of a microcavity. The

latter can describe the emergent dynamics on a range of Rabi splittings that extend from the weak
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Figure 5.5: Ideal case to maximize the rate of transfer from the triplet state manifold (blue
thick curve) to polariton states, with respect to the cavity free triplet-to-singlet (R-ISC) transfer
rate. (I) Energy diagrams in the polaron frame. Left: a molecular emitter in which the singlet
(blue) and triplet (red) states have similar equilibrium nuclear configurations and the dynamics
between them falls within the Marcus inverted regime. (I) Right: upon strong coupling to
a photon mode and in the polaron frame, the energy barrier between the triplet states and
the lower polariton (in this case, the lower polariton) quickly decreases with Rabi splitting,
giving rise to orders of magnitude increase in the kT→LP rate, thus avoiding the wash-out effect
of delocalization of the singlet of interest among N molecules. (II) Cavity mediated R-ISC
enhancement kT→LP/kT→S. Note that the cavity provides a realization of the various regimes of
Marcus theory, from normal to inverted, as a function of Rabi splitting. The specific parameters
for the vibrational bath are aS = 0.5, aT = 1 and ωc = 0.01 eV (see section 5.2), which accounts
for a singlet reorganization energy λS = 0.01 eV and λT = 0.02 eV. We also assumed that the
number of molecules per photon mode is N = 106, ∆G = (εS−λS)−(εT −λT ) = 0.2 eV, where
we recall that εS (εT ) is the vertical singlet (triplet) transition energy; and the singlet-triplet
electronic coupling VT S = 1×10−5 eV.
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to the the strong coupling regime.

Our calculations indicate that the main limitation to polariton-assist the electrolumines-

cence process is the delocalized character of polaritons: the probability of a triplet state to R-ISC

into the latter is strongly suppressed by a 1
N factor, similarly to results discussed in previous

works [19, 9, 80]. There are two approaches that could overcome the detrimental delocalization

effect and therefore introduce a polariton-enhanced electroluminescence with respect to the

cavity-free scenario: 1) for fast and slow bath cases (i.e. for chromophores with weak and strong

singlet-triplet mixing), as Figs. 5.2a-i and 5.2b-i show, strong coupling with a small number of

molecules per photonic mode N introduces significant electroluminescence yield enhancements

with respect to the bare molecular case. This regime should be feasible in the context of plasmonic

nanoparticles coated with organic dyes, where N can be more than 3 orders of magnitude smaller

than those needed in a microcavity to attain the strong coupling regime [102, 103, 104]. 2) The

second approach only works for the fast bath case and consists on tuning of polariton energies

and taking advantage of the exponential sensitivity of R-ISC rates with respect to energy barriers.

Therefore, a high thermal energy barrier for the R-ISC transition in the bare molecular case trans-

lates into the possibility of its partial or total reduction via a triplet to polariton R-ISC transition,

thus potentially outcompeting the delocalization effect, and introducing a net electroluminescence

enhancement. For a molecular emitter the previous requirement is equivalent to an inverted

Marcus regime for the singlet→triplet ISC transition. This mechanism is also reminiscent to a

recently proposed catalysis of thermally-activated reactions under vibrational strong coupling,

where a sufficient decrease in activation energy can outcompete the large activation entropy of

the dark states [105]. An inverted Marcus regime being the ideal scenario to introduce polariton

assistance has also been found in [19] for singlet fission and in [106], the latter in the context of a

single-molecule charge transfer process assisted by a photon mode.

On the other hand, for the scenario of a slow vibrational bath, the efficiencies are largely

determined by the energetic proximity of the polariton and dark state resonances. The increase
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of Rabi splitting in this case diminishes the rate of transition of the triplet to the polariton state

closer in energy, because the vibrational DOS that can assist the transition decreases exponentially

with the energy gap betwen them. Therefore, for the slow phonon bath scenario considered in

this work, approach 1) is the only alternative to minimize the polariton-delocalization effect on

efficiencies.

This chapter, in full, is adapted from the material as it appears in “Triplet harvesting in

the polaritonic regime: A variational polaron approach” Martínez-Martínez L. A., Eizner E.,

Kéna-Cohen S. and Joel Yuen-Zhou, J. Chem. Phys., 151, 054106 (2019). The dissertation author

was the primary investigator and author of this material.
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Figure 5.6: Scheme that illustrates the delocalization of a singlet electronic excitation (de-
noted as a faint blue on N molecules) in a polariton mode under strong coupling to a confined
electromagnetic environment (denoted as yellow). The localized nature of a triplet state (red)
precludes a fast transfer to the polariton modes, in view of the local character of R-ISC and the
dilution of probability of the R-ISC transition among N molecules. As elaborated in section
5.5 of this chapter, this rate suppression can be overcome by 1) coupling fewer molecular emit-
ters to each photon mode while preserving strong light-matter coupling (using e.g. plasmon
nanoparticle systems); and/or ii) harnessing strong coupling of molecules with singlet→triplet
transition in the Marcus inverted regime, which feature very large R-ISC energy barriers, such
that introduction of a polariton channel may decrease this barrier and possibly compete effec-
tively against the many dark-state channels.
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Chapter 6

Conclusions

This dissertation presents effective coarse-grained models that provide insight on the

dynamical nuclear and electronic processes of molecules when confined in a spatially localized

electromagnetic environment.

One of the first works to explore chemical reactivity in the dark under the ultrastrong

light-matter coupling (USC) regime reached in plasmonic setups, is presented in Chapter 3. It is

shown that for the adiabatic ground state nuclear energy landscape of a particular isomerization

model, there is no significant modification that could alter the kinetics or thermodynamics of

the reaction. As was highlighted in Chapter 1 of this dissertation, vacuum fluctuations of the

electromagnetic field induce (small) renormalization of molecular transition energies, known

as Lamb shifts. It is therefore shown that the changes of the isomerization potential energy

landscape experienced by the nuclei upon confinement in a plasmonic field can be understood as

(nuclear-position dependent) Lamb shifts [57].

Furthermore, it is shown that the adiabatic nuclear energy barrier for isomerization, albeit

slightly changed, decrease rather than the opposite. An increase of the barrier would be the

more intuitive conjecture based on the fact that reactants feature a non-vanishing dipole moment

in contrast with the transition geometry (see Fig. 3.1). This observation can be understood as
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follows: the potential energy corresponding to a single molecule (i.e. local) isomerization process

at its transition geometry corresponds to N−1 molecules coupled to the plasmonic EM field (N

being the total number of molecules in the ensemble) and one molecule uncoupled to the former.

This leads to a slight energy increase of the global plasmonic-molecular system (compared to that

of all molecules in their reactant geometry) that translates into a reduction of the energy barrier.

In spite of the negligible tunability of this type of reactions in the ultrastrong coupling regime, it

is highlighted the existence of quantum-coherent effects where concerted reactions occur. These

interference effects are unlikely to play an important role in reactions exhibiting high energy

barriers compared to kBT . However, they might be important for low-barrier processes, where

the number of concerted reaction pathways becomes combinatorially more likely than single

molecule processes.

This dissertation was also focused on two photophysical processes of technological

importance. On one hand it is shown that when singlet-fission (SF) materials are subjected to a

strong coupling with a microcavity mode, the photonic leakage of the resulting polariton states

constitutes an important decay channel that can decrease the production of triplets when compared

to the bare case. In order to counteract this deleterious dissipation channel, it is proposed that

the the competition between SF and the photon leakage rate could be tuned by modifying the

ratio between the detuning (frequency difference of the singlet molecular transition and the cavity

photon mode) and the collective light-matter coupling. When this approach is implemented, it is

shown the possibility to favor the material character of the polariton modes and the subsequent

suppression of photonic leakage. Remarkably, it is shown that hexacene is a poor SF candidate

in a cavity-free scenario (and in presence of quenchers), but it is the material (among the ones

considered in this dissertation, see Chapter 4) which features the highest enhancement by means

of the proposed polaritonic approach and can even outcompete the bare pentacene TT yield under

the conditions considered in this work. One question of significance is: what are the ideal features

a molecule must posses in order to boost the efficiency of SF transitions when confined in a
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microcavity? Based on the findings explained in Chapter 4, it is shown that the ideal material

would feature a highly exergonic SF process together with a low reorganization energy associated

to the low-frequency mode of the SF transition.

On the the other hand, similar queries were addressed for the related photophysical

process known as Reverse Intersystem Crossing (R-ISC), which is the main ingredient for

electroluminescence of organic materials. More specifically, the degree of tunability of the

electroluminescence by means of microcavity devices is considered. In order to treat the problem

with the same footing from the weak through the strong light-matter interaction regime, a

variational model for the dynamics of transitions between the singlet and triplet electronic states

was developed.

The calculations suggest that the main limitation to polariton-assist the electrolumines-

cence process is the delocalized character of polaritons: the probability of a triplet state to R-ISC

into the latter is strongly suppressed by a 1
N factor, similarly to results discussed in previous works

[19, 9, 80].

To overcome the detrimental delocalization effect and therefore introduce a polariton-

enhanced electroluminescence with respect to the cavity-free scenario and for typical organic

molecules it is proven the need of the R-ISC transition to be in the so-called inverted Marcus

regime, where it is shown that when this is the case, there is a possibility for the direct triplet-lower

polariton kinetic channel to outcompete the rate transfer to the dense density-of-states manifold

of the dark states.

To conclude, even though the presence of dark states and short cavity photon lifetimes

render the control of molecular processes inside microcavities difficult, there is still room to

cavity-assist the funneling of energy from molecular processes, as it was shown recently in Ref.

[107].

To further advance our understanding of molecular polariton dynamics, the development

of theoretical tools to aid the interpretation of nonlinear spectroscopy of polariton setups is of
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high relevance. Molecular cavity-induced phase-transition possibilities, as well as theoretical

perspectives on molecular dynamics in extreme regimes of light-matter intraction are also fertile

ground for exploration of novel phenomena that microcavities and other platforms could offer.
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