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Abstract

Connectionist models of memory account for recall
behavior using processes which simultaneously access
multiple memory traces and interactively construct the
recalled information. This also allows the models to
account for prototyping phenomena, but seems to predict
retrieval of composite or "blended" information dunng
ordinary recall. By contrast, models that simulate recall as a
probabilistic selection of a single trace would not predict
recall blend errors. To examine memory blending during
recall, three experiments were performed; in each, subjects
read sentences, some sharing words with one other sentence.
They later recalled the sentences given partial-sentence
cues. In all experiments subjects made blend errors,
recalling one word from each of two similar sentences more
often than one word from each of two dissimilar sentences,
as predicted by multiple-trace models. The frequency of
blend errors was relatively low, but a good account of this
and other aspects of the results was provided by a multiple-
trace model based on an Interactive Activation network as
applied to memory retrieval in McClelland (1981).

Introduction

Much of the current interest in connectionist models of
memory stems from their ability to capture not only recall
and recognition behavior, but also the prototyping and
generalization found in concept formation experiments (Knapp
& Anderson, 1984; McClelland, 1981; McClelland &
Rumelhart, 1985). In all of these models, memory retrieval
processes can lead to prototyping because they involve an
activation and synthesis of multiple memory traces to produce
a pattern of activation that may not necessarily correspond to
a single trace as originally stored.

For example, McClelland (1981) outlined a connectionist
model of memory wherein each memory trace consists of one
"instance” unit representing the trace as a whole along with
"property” units for each of that trace's properties (see Figure
1). Property units within a trace reinforce each others'
activation through the centralized instance unit, while
inhibiting the activation of competing property units from
other traces. During retrieval, traces in memory become
active to the extent that they include the properties given as a
recall cue, and to the extent that their properties reinforce one
another. The inhibition between the property and instance
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units of different traces also influences the final state of
activation as traces compete for activation of shared
properties. Properties that ultimately remain active constitute
the recalled information, regardless of whether they all
occurred in the same trace, although mutual reinforcement of
same-trace properties often leads to the retrieval of a single
trace anyway. It would seem that this sort of "multiple-trace”
access model would predict abundant errors during everyday
recall -- "blend" errors, consisting of mixtures of more than
one trace.

Not all theories of memory retrieval assume that recall
involves synthesis of multiple memory traces. Some models
view the recall process as a search through memory to find a
single trace; most memory models before the 1980's had this
character. Without the joint contributions of multiple traces,
single-trace models do not automatically lead to prototyping
or generalization -- and as a side effect, memory blends would
be avoided. Shiffrin's SAM model of associative memory
(Raaijmakers & Shiffrin, 1981; Gillund & Shiffrin, 1984)
provides one example of a more recent single-trace model. In
the SAM model, cued recall proceeds as a probabilistic
selection of a single trace from the collection of all traces.
The probability of selecting a given trace is a function of the
baseline "strength" of the trace as well as the degree of match
between the cue's properties and the trace's properties. Once
selected, all properties of the trace are accessible, and no other
traces will be accessed. Another single-trace model,
Anderson's ACT theory (Anderson, 1976; 1983), represents
related information as being subsumed under a single "trace”
node; the goal of recall is the selection of one of the possible
trace nodes, as a function of the activation of its subsumed
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nodes. As with Shiffrin's model, once a single trace is
selected, all of its constituent information can be retrieved
without interference from other traces.

So the question arises: Do blend errors actually exist? Or
more specifically, do they occur as several memory traces
combine at the time of recall? While memory blends have
been studied in the context of eyewitness testimony (Loftus,
1977, Loftus, Miller, & Burmns, 1978), the procedure used to
induce blending in those and other experiments has left open
the possibility that subjects integrated multiple traces at the
time of encoding rather than retrieval. Both single- and
multiple-trace models can easily account for blending in such
circumstances -- any traces blended during encoding must
necessarily be retrieved as blended information. Therefore, in
order to distinguish single- from multiple-trace models, the
focus of investigation was directed solely to blending of
similar memory traces at the time of retrieval. The present
experiments sought to find evidence for or against the
existence of blend errors using sentence materials based on the
classic studies of Anderson (1976), with methods designed to
minimize the possibility that subjects might integrate
sentences during encoding.

Imagine the situation wherein two sentences share three out
of five content words, and the three shared words are used as a
recall cue. This cue would match the two overlapping
sentences equally well. If a subject were asked to recall the
other two content words from one of the sentences, they could
correctly answer with the two remaining words from gither
overlapping sentence. For example:

#1."The doctor gave the plumber the coat in the lobby.”
#2."The docror gave the plumber the waich in the kitchen."
cue:"The doctor gave the plumber the in the

Assuming that each sentence is encoded as a single trace, with
its constituent words as properties, a multiple-trace model
would predict difficulty for a subject's recall, because the
ambiguous cue would equally activate the traces for both of
the sentences and their constituent properties. As a
consequence, subjects may be prone to making a "cross-over”
intrusion error by responding coat + kitchen, or watch +
lobby, mixing words from each overlapping sentence. By
contrast, a single-trace model would predict that either of the
two traces matching the ambiguous cue would be accessed in
a probabilistic search with equal likelihood, yet the words
from only one of these two traces would be retrieved.
Therefore, a single-trace model would predict no blending of
these highly similar memory traces despite the ambiguous
cues.

In accordance with the logic of this example, the following
experiments used a list of sentences in which half of the
sentences shared several content words with one other
sentence, while the other half served as completely dissimilar
controls. Subjects studied the sentences individually under the
pretense of a cover task, unaware that they would need to later
recall any sentences. They therefore had no reason to
continually rehearse sentences or actively integrate the traces
of overlapping sentences, thereby allowing the experiment to
plausibly investigate blending during retrieval alone. After
subjects learned the list of sentences, a delay task ensured
some degree of temporal separation between encoding and
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retrieval, Finally, subjects were given cues which consisted
of the words corresponding to the positions shared by
overlapping sentences. They were asked to recall the two
missing target words from a single sentence studied earlier in
the experiment.

In all three of the experiments, two general results were of
primary interest, each following a hypothesis of multiple-
trace models concerning recall blends. The first hypothesis
was that subjects should blend similar memory traces, as
evidenced by more cross-over intrusion errors between the
similar overlapping sentences than between the dissimilar
control sentences. If no difference was discovered, the null
hypothesis of single-trace models would be supported. The
second hypothesis was that subjects should be less likely with
overlapping than with control sentences to correctly recall a
complete sentence after having already accessed its trace. This
result would be expected because while the overlapping
sentence traces would continually influence each other during
the independent retrieval of the trace properties, the control
sentence traces would be immune from such post-access
interference. This hypothesis was tested by examining the
conditional probability that a subject would correctly recall
both target words given that they had already correctly recalled
one of the words. If no difference was found in this
conditional probability as a function of sentence similarity,
then single-trace models would be supported. Such models
account for interference effects during the search for a trace,
but once one is accessed, other traces are assumed to be of no
further relevance.

Experiment 1

Thinty-two experimental sentences were randomly created for
every subject. Each sentence included five word-positions
which were filled by random selection (without replacement)
from a prearranged list of words of the appropriate semantic
type. Care was taken to avoid words closely-related across
semantic types, such as "barber" and "barbershop”. Two
sentences from each set of four were selected to become
overlapping sentences, the other two left as matched control
sentences. Three of the word-positions in each set were
randomly chosen for the overlap; any three of the five were
equally likely to be chosen for overlap. The three words in
the overlap positions of one of the two overlapping sentences
were then replaced with the corresponding words from the
other sentence, thereby creating a pair of sentences differing
by only two words. The order of presentation of the 32
sentences was randomized for each subject with the constraint
that a minimum of 12 sentences intervened between any two
matched overlapping or matched control sentences from a
matched set of four.

The random generation of sentences created many unlikely
combinations of sentence constituents, enabling the
experiment to use a convincing cover story: subjects were told
that the experiment was designed to explore how people read
sentences that "sound strange," those in which the content
words do not seem to belong together in real life. They
therefore had no cause to believe that they would later need to
remember anything about the sentences. Subjects read each
sentence and made a judgement about the overall
"plausibility” of the sentence, followed by judgements of how



appropriate each of the five main words seemed, given the
content of the rest of the sentence. First the sentence appeared
along with a prompt to rate it as a whole, then each of the
five words appeared sequentially underneath the sentence along
with a prompt to rate it. The purpose of these ratings was
both to make the cover story more convincing and to ensure
that the subjects paid attention to every sentence and its
primary words, forming memory traces through processing
them at a "deep,” semantic level.

After a 5-minute delay task, subjects were given recall cues
containing all words from a previously-presented sentence
except the two words in the non-overlapping word-positions
(replaced by blanks of a fixed length). Presenting any one
sentence from an overlapping pair in this manner therefore
acted as a cue for gither of the two paired sentences. Subjects
were told that they may have seen two sentences that fit a cue
equally well, but that in those cases, they would have to
remember both of them, one at a time. However, they were
never told that a particular test cue matched two sentences
until they had first already recalled one sentence. It was
stressed that in choosing each response, they should take care
to recall two words from within the same sentence from the
first phase. Therefore, with overlapping sentence cues, after
the subject first recalled two words from one sentence, they
were asked to recall two more words belonging to the other
matching sentence. In this manner, all 16 of the overlapping
sentences from the first phase were tested, along with 8
randomly-selected control sentences, all in a random order.!
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The overall recall performance of the 35 subjects can be

IPost-test questionnaires indicated that most subjects were
unaware of sentence overlapping during the first phase of the
experiment. Only two subjects reported that they had recalled
or integrated overlapping sentences at the time of encoding;
excluding their data from the analyses had no significant
effect. These results held across all three experiments.
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seen in Figure 2. Subject data can be seen in the solid
columns (error bars indicate 95% confidence intervals),
illustrating the proportion of responses for both control and
first overlap conditions as a function of the number of words
correctly recalled. Results of the first hypothesis test
supported a multiple-trace model: subjects made cross-over
errors more often (using a sign test across subjects, p < .01)
when tested in the overlap conditions (5.4% with the first,
2.1% with the second) than in the control condition (0.7%).
The difference between the rates in the second overlap versus
control conditions was not significant (p > .05) while the
difference between the first and second overlap conditions was
significant (p < .05). The greater frequency of intrusions
between overlapping sentences was not simply a result of a
greater tendency to recall words from overlapping sentences,
because words from overlapping sentences intruded into recall
of a matched contro] sentence only 1.4% of the time, words
from control sentences intruded into recall of a matched
overlapping sentence 2.7% of the time.

Results of the second hypothesis test also supported
multiple-trace models: the conditional probability of recalling
two words from the same sentence given the correct recall of
one word was lower in the overlap condition (p = .50, first
overlap, p = .36 second overlap) than with controls (p = .58).
Using a Wilcoxon signed-ranks tests across subjects, the
conditional probability in the control condition was
significantly higher than in either the first overlap (z = 1.81,
p < .05) or the second overlap conditions (z = 4.11, p <
.0001); the conditional probability in the first overlap
condition was significantly higher than in the second overlap
condition (z = 3.10, p < .001).

Experiment 2

It was difficult to know how to best interpret the data from
the two overlap conditions in Experiment 1. The fact that the
first sentence recalled in the overlap condition is likely to be
the stronger of the two, while the second may be
contaminated by the earlier recall of the first, makes
quantitative comparison of the overlap and control conditions
difficult. Experiment 2 was designed (o generate clearer data,
by using unambiguous overlapping-sentence test cues and
thereby allowing only one correct answer in all cases. This
was accomplished by reducing the number of content words
shared among overlapping sentences from three to two, while
continuing to use cues with only two blanks. For example:

#1: "The doctor gave the plumber the coat in the lobby."
#2: "The doctor gave the lawyer the waich in the kitchen.”
cue: "The doctor gave the plumber the in the

Note that this cue only matches the first overlapping sentence
completely, while offering a partial match to the second
sentence. With this experiment, we expected to replicate the
findings of Experiment 1, perhaps with less overall blending
due to the lessened overlap between sentences.

Thirty-six sentences were randomly created for every
subject, 24 overlapping and 12 control. One of the
overlapping sentences in each overlapping pair was also used
as a mate for a control sentence, since it did not share any
content words with the control sentence. The order of
presentation of the 36 sentences was randomized for each



subject by presenting 12 control sentences and 12 overlapping
sentences (the "overlap-test" sentences, one from each pair of
overlapping sentences) as the first 24 sentences, followed by
the rest of the overlapping sentences (the "overlap-
distractors"). This allowed the overlap-distractor sentences to
provide retroactive inhibition, both for the overlapping-test
sentences and the control sentences. The order was then
randomized with the further constraint that a minimum of 12
sentences intervened between overlap-test or control sentences
and their paired overlap-distractor sentence. The 24 test cues
contained all but two words from an overlap-test or control
sentence, and were presented in a completely random order.

Overall, the 38 subjects performed worse than those in
Experiment 1 (see Figure 3.) Perhaps the lower overall level
of performance in this experiment indicates that subjects had
too difficult a time recalling the earlier of the two overlapping
sentences due to the recency of the overlap-distractor sentence.
In fact, fully 9% of subjects’ answers with overlap-target cues
consisted of recalling both words from its paired overlap-
distractor sentence -- a sort of double cross-over intrusion --
despite the fact that the cue unambiguously matched the
overlap-target sentence.
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Figure 3: Experiment 2 Data

Results of the first hypothesis test showed that cross-over
errors were more frequent between matched overlapping
sentences (18 occurrences, or 4.0%) than between overlap-
distractors and their matched controls (6 occurrences, 1.3%).
As in Experiment 1, the difference between the cross-over
error rates of the overlapping and the control sentences was
significant (sign test, p < .05), as predicted by multiple-trace
models.

The test of the second hypothesis supported single-trace
models, however. The conditional recall probability was
essentially the same in both conditions: .43 with overlapping-
test sentences, and .44 with control sentences (z = 1.07, p >
.05). This pattern of results would be expected if there were
no post-access influences from similar memory traces.
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Experiment 3

One potential critique of Experiments 1 and 2 concemns the
evaluation procedure used in the study phase of the
experiments. Subjects had been asked to rate the plausibility
of a whole sentence, and then of gach individual content word;
this latter requirement could conceivably have caused subjects
to encode a separate individual memory trace for each content
word as well as for the whole sentence. If this was the case,
both multiple- and single-trace models might explain the
conflicting pattern of results by proposing that subjects were
occasionally able to exploit associations between traces for
individual words along with more complete traces for the
sentences containing them. Therefore, Experiment 3 was
performed, using the same materials and procedure as
Experiment 1, but with the elimination of subjects' ratings of
individual words during the study phase.
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Overall, the 37 subjects performed worse than the subjects
in the other experiments, no doubt because the new procedure
led subjects to encode the stimuli less rigorously (see Figure
4). No cross-over errors were obtained between control
sentences. Consequently, cross-over errors were significantly
more frequent (sign test, p < .01) in the first overlap
condition (2.4%) than in the control condition. They were
also more frequent (p < .0S) in the second overlap condition
(1.7%) than in the control condition. There was no
significant difference (p > .0S) between the cross-over error
rates in first and second overlap conditions. These differences
again provided support for a multiple-trace model.

The conditional recall probabilities did not significantly
differ (z =-1.16, p > .05) between the first overlap condition
(p = .35) and the control condition (p = .31). On the other
hand, the difference between the conditional probability in the
control and second overlap (p = .16) conditions was
significant (z = 2.78, p < .005), as was the difference between
the first and second overlap conditions (z = 2.93, p < .005).



Models

In all of the experiments, cross-over errors were more frequent
between overlap sentences than controls, supporting the first
hypothesis of multiple-trace models that similar sentence
traces should blend during recall. On the other hand, the
pattern of conditional recall probabilities, indicating the
presence or absence of post-access interference between
sentences, did not consistently support the second hypothesis
of multiple-trace models. However, one important concept
has been missing from the discussion of the models'
predictions thus far: encoding failure. Subjects did not have
perfect memory for every sentence in any of the experiments,
considering the rate of 50% or more recall failure. In any
model of memory, an item cannot be recalled if it was
improperly encoded in the first place. Yet the models as
discussed so far have simply assumed that subjects completely
encoded all sentence information into well-integrated traces.
Therefore, one needs to examine how both multiple- and
single-trace models perform when a significant proportion of
the properties in traces are either missing or too weak to be
recalled,

How would a multiple-trace model deal with encoding
failure? Because of the simultaneous access of all relevant
traces in a multiple-trace model, whenever one of the two
target words in an overlapping sentence had not been
adequately encoded, the corresponding word from the other
overlapping sentence trace should automatically be retrieved
instead, as long as it had been properly encoded itself.
However, multiple-trace models were already predicting blend
errors when encoding failure was not considered; wouldn't they
now predict entirely too many blend errors relative to the
fairly low frequency obtained in the experiments?

In order to discover whether or not a multiple-trace model
could exhibit behavior conforming to that of our subjects, we
devised an interactive activation model based on the simple
connectionist model discussed in McClelland (1981). This
model was adapted for the current experiments by assuming
that the learning of each sentence created a instance unit for
the sentence trace as a whole, linked with bidirectional
excitatory connections to five property units, one for each
major content word in the sentence. All of the instance units
together formed a "pool" of units, as did all of the property
units corresponding to a given sentence position. All units
within a pool were linked by bidirectional inhibitory
connections (using negative weights), reflecting the fact that
the units within them represent mutually-exclusive
information that should not be recalled simultaneously.

Because the overlapping sentences shared words, the
corresponding units in the property unit pools would also be
shared. Simulation of recall proceeded by activating the
property units representing the recall cue words. In the case
of an overlapping sentence, activation from the cued units
would be sent along excitatory connections to the instance
units for both overlapping sentences. The two instance units
would compete for activation, due to their inhibitory
connections; they would also feed back activation to the cue
words, as well as the target words. In the pools containing
the target words, further competition would result from the
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activation of the mutually-inhibitory units. Eventually, the
activation levels of all units will stop fluctuating, after the
network has "settled", and the units with the highest
activations can be chosen as the response. Note that if the
cue had been words from a control sentence then the correct
answer would be retrieved without competition, because
activation would flow to only one word per pool.

Actually, as outlined above, the model would not be able to
settle the competition between overlapping sentence words,
because their inputs and resulting activations would always be
equal. Based on this, the model led us to expect that our
experiments would generate more blend errors than were
actually obtained. However, there is a general problem with
the interactive activation model that has recently been
uncovered in other applications which appears to reflect a
failure to take account of the important role of inherent
variability in processing (Hinton & Sejnowski, 1986). Once
this variability is introduced to the model, several difficulties
are resolved (McClelland, 1991). In the present application,
adding variability causes the model to tend to favor one of two
complete sentence traces rather than a blend; the blend states
represent less-optimal points in the "goodness” landscape of
network states (c.f. Rumelhart et. al., 1986), and variability
allows the network to escape such local minima. McClelland
(1991) indicates that variability may be introduced in a variety
of ways. In this case, we simply injected a small amount of
normally distributed random noise into the input to each unit
at each update.

The addition of intrinsic variability allowed the model to
produce approximately correct blend rates, but tended to
produce too large a difference in the probability of completely
correct recall between the control and overlap conditions.
(This is equivalent to over-predicting the difference in the
conditional probability of recalling both words). The addition
of the assumption of occasional encoding failures allowed the
model to overcome this problem. To capture encoding
failure, we assumed that each link between a property unit and
its associated instance unit had a 20% chance of being absent
entirely, In the experimental data, subjects' errors indicated
that there were some associations between words from
completely different sentences; these associations were
captured by inserting randomly determined, non-negative
weights (M = 0.2, SD = 0.25) between all word and instance
units. The weights on connections within pools of word
units were all set to -1.0, while those within the instance unit
pool were stronger (-2.1), to counterbalance the activation
coming from the three word units and ensure adequate
competition between sentences.

The model networks for each experiment reflected the
materials used in that experiment. For Experiments 1 and 3,
the network therefore contained of a pool of 32 instance units,
two pools of 32 target word units, and three pools of 24 word
units (16 control words + 8 overlap words per pool). For
Experiment 2, the network consisted of 36 instance units, two
pools of 24 overlapping cue units (12 overlap + 12 control),
one pool of 36 non-overlapping cue units, and two pools of
36 target units. Because the differing results from
Experiments 1 and 3 were thought to have been a result of
less rigorous encoding in Experiment 3, the only difference
between the networks for Experiments 1 and 3 rested in



increasing the model's encoding failure rate for Experiment 3
from 20% to 35%. To test recall, external activation was
input to the three cue word units for each of the test
sentences. The response of the computer subject was simply
taken as the unit with the highest activation above a response
threshold (.1) in each target word pool after 100 time cycles,
enough time to allow the network to settle into an
equilibrium and form a reasonable response hypothesis. A
total of 100 computer subjects were run for each computer
simulation;, with each computer subject, a new random set of
stimulus and random association weights was generated. The
performance of each network was fit to the data as shown in
Figures 2 through 4. In so doing, we ensured that the model
not only had the correct overall recall rates, but also the
appropriate performance with respect to both hypothesis tests
— blend rates and post-access interference rates.

In the data fits illustrated in Figures 2 to 4 (in which error
bars reflect 95% confidence intervals), the model's
performance was not statistically different from that of our
human subjects (for Exp.1, y3(7) = 7.0, p = .42; for Exp.2,
22(9) = 159, p = .07; for Exp. 3, x3(7) = 11.2, p = .13).
However, the fit comes close to failing significantly in two of
the three cases. We were able to obtain even closer data fits
by increasing the inhibition between instance units in
Experiments 1 and 3 (to -2.5) and decreasing it for Experiment
2 (to -2.0). Thus, with the use of an additional free parameter
one can achieve a nearly perfect correspondence between the
performance of the model and experimental subjects (for
Exp.1, x2(7) = 1.8, p = 97; for Exp. 2, ¥2(9) = 25, p =
98, for Exp.3, y2(7) = 3.0, p = .89). It is not entirely clear
why that particular parameter should differ between
experiments, though it might reflect subjects’ ability to
strategically increase competitive inhibition between
equivalently-cued overlapping traces in Experiments 1 and 3.

Given the success of our particular multiple-trace model, it
is worth considering how a single-trace model would behave
given similar assumptions about encoding failure. A single-
trace model like Shiffrin's SAM model might also fit the data
if multiple access attempts were allowed in cases where an
initial trace selection resulted in incomplete recall.
Successive attempts proceed just like the first, with the
probability of selecting a given trace based on that trace's
similarity to the cue. Since overlapping sentence traces
equally match the cue, they have an equally good chance for
selection. So if a first attempt accessed an overlapping
sentence trace containing only one of the two target words,
and a second attempt accessed the other overlapping sentence,
the subject could make a cross-over error. It seems plausible
that an account could be given for all aspects of the data based
on such a possibility. However, this kind of extension of the
single-trace model in some sense amounts to turning it into a
multiple-trace account. The primary difference between this
and our account is simply that the multiple traces are accessed
in succession in one case and simultaneously in the other.

Conclusion

In the end, what has been learned here about the nature of
memory blending during recall? The present experiments and
simulations have changed the way we approach multiple-trace
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models in general, as we have abandoned the original notion
of unintended blending of complete traces in favor of the
somewhat less dramatic notion of filling in missing parts of
incompletely encoded traces.

What remains to be studied is how other instantiations of a
multiple-trace model, such as the more superpositional
matrix- or convolution-based models (for example, Knapp &
Anderson, 1984, or Metcalfe, 1990), would manage the task
of simulating the specific patterns of recall performance found
in our experiments. It will be of interest to discover whether
these types of models could produce 3s few blend errors as
were obtained in our studies, given their tendency to blur the
distinctions between traces. Conversely, it will be interesting
to examine whether the prototyping and generalization
properties of these other models can be captured with the
model we have presented here. These complementary studies
may take us some distance toward understanding what governs
the human ability to generalize well and yet preserve
relatively distinct access to particular prior events.
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