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Abstract
Chemicals,	including	some	systemically	administered	xenobiotics	and	their	bio-
transformations,	can	be	detected	noninvasively	using	skin	swabs	and	untargeted	
metabolomics	analysis.	We	sought	 to	understand	the	principal	drivers	 that	de-
termine	whether	a	drug	taken	orally	or	systemically	is	likely	to	be	observed	on	
the	epidermis	by	using	a	random	forest	classifier	to	predict	which	drugs	would	
be	detected	on	the	skin.	A	variety	of	molecular	descriptors	describing	calculated	
properties	of	drugs,	such	as	measures	of	volume,	electronegativity,	bond	energy,	
and	electrotopology,	were	used	to	train	the	classifier.	The	mean	area	under	the	
receiver	operating	characteristic	curve	was	0.71	for	predicting	drug	detection	on	
the	epidermis,	and	the	SHapley	Additive	exPlanations	(SHAP)	model	interpreta-
tion	technique	was	used	to	determine	the	most	relevant	molecular	descriptors.	
Based	on	the	analysis	of	2561	US	Food	and	Drug	Administration	(FDA)-	approved	
drugs,	we	predict	 that	 therapeutic	drug	classes,	 such	as	nervous	system	drugs,	
are	more	likely	to	be	detected	on	the	skin.	Detecting	drugs	and	other	chemicals	
noninvasively	on	the	skin	using	untargeted	metabolomics	could	be	a	useful	clini-
cal	advancement	in	therapeutic	drug	monitoring,	adherence,	and	health	status.

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
A	multitude	of	chemicals	that	an	individual	encounters	in	daily	life	can	be	de-
tected	on	the	skin	surface	using	untargeted	metabolomic	analysis,	including	topi-
cal	and	systemically	administered	xenobiotics.
WHAT QUESTION DID THIS STUDY ADDRESS?
Can	 machine	 learning	 be	 used	 to	 predict	 whether	 systemically	 administered	
drugs	are	observed	on	the	epidermis	and	provide	insights	into	the	complex	un-
derlying	biochemical	processes?
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
Our	machine-	learning	model	found	relevant	molecular	descriptors	related	to	vol-
ume,	electronegativity,	bond	energy,	and	electrotopology	to	be	strong	predictors	
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INTRODUCTION

The	skin	provides	a	physical	and	chemical	barrier	to	en-
vironmental	insults	and	supports	immunological	function	
and	thermoregulation.	Additionally,	the	bacteria,	viruses,	
and	fungi	that	comprise	the	skin	microbiome	provide	an	
essential	 function	 in	protection	against	microbial	patho-
gens,	educating	the	immune	system,	and	breaking	down	
products.1	 Traditionally,	 topical	 formulations	 of	 drugs	
are	 desired	 in	 certain	 medical	 conditions	 to	 either	 de-
liver	drugs	from	the	skin	to	the	systemic	circulation	(e.g.,	
transdermal	 scopolamine)	 or	 to	 deliver	 drugs	 locally	 to	
the	skin	and	minimize	the	systemic	toxicity	of	these	drugs	
(e.g.,	topical	corticosteroids).	Interestingly,	a	recent	study	
demonstrated	systemic	concentrations	above	the	US	Food	
and	 Drug	 Administration	 (FDA)	 safety	 threshold	 of	 the	
sunscreen	compounds	avobenzone,	oxybenzone,	and	oc-
tocrylene	 up	 to	 21  days	 postadministration,	 despite	 the	
widespread	assumption	that	these	commonly	used	topical	
products	are	considered	“safe.”2

Skin	permeation	by	xenobiotics	has	been	investigated	
for	many	years.3	The	majority	of	drugs	permeate	across	
the	 bulk	 of	 the	 epidermis,	 along	 a	 concentration	 gradi-
ent,	 in	 three	 pathways—	intracellular,	 intercellular,	 and	
follicular—	with	 the	 intercellular	 pathway	 believed	 to	
provide	the	principal	route	for	drug	permeation.4	Several	
mechanistic	 studies	have	shown	that	extracellular	 lacu-
nar	 domains	 comprise	 a	 pore	 pathway	 for	 penetration	
of	 polar	 and	 nonpolar	 molecules	 across	 the	 stratum	
corneum.	 Following	 penetration	 across	 the	 stratum	
corneum,	drugs	diffuse	across	 the	viable	epidermis	and	
dermis	and	are	carried	away	into	the	bloodstream	by	the	
capillaries	of	 the	dermis.	 Ideal	drug	candidates	 for	per-
meation	 through	 the	 skin	 include	 those	 with	 low	 mo-
lecular	weight,	solubility	in	water	and	oils	to	achieve	an	
appropriate	concentration	gradient,	an	elevated	but	bal-
anced	 partition	 coefficient,	 and	 a	 low	 melting	 point	 for	
solubility	purposes.5	Currently,	there	exist	several	models	
to	predict	skin	permeability	and	data	resources	of	exper-
imental	skin	permeation	values	and	their	corresponding	
protocols.6

In	contrast,	less	is	known	about	“inverse	penetration”:	
drugs	 moving	 from	 the	 systemic	 circulation	 to	 the	 epi-
dermis.	Patzelt	 et	 al.	 suggested	 five	possible	 inverse	pen-
etration	 pathways,	 consisting	 of:	 (i)	 the	 intracellular;	 (ii)	
intercellular;	and	(iii)	follicular	pathways,	similar	to	topi-
cally	administered	substances;	and	(iv)	inverse	penetration	
via	sweat,	or	(v)	via	the	desquamation	process.7	Based	on	a	
literature	study	of	11	systemically	administered	substances	
and	 their	 recovery	 in	 the	 skin,	 they	 concluded	 that	 lipo-
philic	 substances	 predominantly	 reach	 the	 skin	 surface	
via	 the	 sebum,	 whereas	 hydrophilic	 substances	 utilize	
the	sweat	for	delivery	to	the	skin	surface.	Inverse	cellular	
penetration	 and	 desquamation—	which	 occurs	 on	 longer	
time	scales—	are	less	relevant,	although	no	indication	for	
inverse	 intracellular	 penetration	 was	 found	 in	 the	 liter-
ature.	Concentrations	on	the	epidermis	of	a	few	systemi-
cally	administered	compounds	have	been	reported	in	the	
literature.7,8	For	example,	the	antifungal	agent	fluconazole	
was	detected	in	significantly	higher	concentrations	in	the	
stratum	corneum	than	in	plasma	and	for	a	longer	duration	
after	 cessation	 of	 therapy.9	 Similarly,	 other	 systemically	
administered	antifungal	agents	were	detected	in	high	con-
centrations	on	the	skin	and	exhibited	slow	clearance	from	
both	skin	and	nails.8

Comprehensive	 knowledge	 of	 the	 underlying	 mech-
anisms	 is	 relevant	 in	 the	dermatological	 field,	as	a	mul-
tiplicity	 of	 pharmaceutics	 are	 administered	 systemically	
to	 address	 skin	 disorders,	 and	 would	 enable	 important	
applications	of	xenobiotic	 skin	detection	using	noninva-
sive	methods	 to	determine	adherence	of	drugs,	 for	 ther-
apeutic	 drug	 monitoring,	 the	 extent	 of	 metabolism,	 and	
to	 assess	 organ	 and	 health	 status.	 Skin	 swab	 samples	
have	 previously	 been	 used	 to	 determine	 individual	 skin	
chemistry	profiles,	including	topically	applied	chemicals,	
such	as	avobenzone,	octocrylene,	as	well	as	others	found	
in	soap,	lotions,	cosmetics,	and	anti-	mosquito	sprays	and	
lotions.10	 Furthermore,	 we	 have	 recently	 demonstrated	
that	 systemically	 administered	 drugs,	 such	 as	 citalo-
pram,	 diphenhydramine,	 and	 the	 N-	acetyl	 metabolite	 of	
sulfamethoxazole,	can	be	detected	 in	skin	swab	samples	
of	 the	 hands,	 forearm,	 forehead,	 and	 axilla.11	 Utilizing	

of	drug	observance	on	the	epidermis.	Our	model	predicted	that	certain	catego-
ries	of	drugs,	such	as	those	affecting	the	nervous	system,	are	more	likely	to	be	
observed.
HOW	 MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR 
TRANSLATIONAL SCIENCE?
Our	machine-	learning	model	demonstrated	several	physicochemical	properties	
of	drugs	that	predict	detection	on	noninvasively	obtained	skin	swabs.	Using	skin	
swabs	may	be	a	paradigm	shift	in	how	we	monitor	drugs,	measure	drug	adher-
ence,	and	monitor	health	and	disease	noninvasively.
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untargeted	metabolomics	and	analysis	of	these	data	using	
the	Global	Natural	Products	Social	Molecular	Networking	
(GNPS)12	 infrastructure,	 we	 achieved	 the	 detection	 of	
these	compounds	on	the	epidermis	of	patients	that	were	
prescribed	these	drugs,	thus	concluding	that	systemically	
administered	drugs	can	be	detected	on	 the	 skin	 surface.	
Additionally,	our	recent	study	in	healthy	humans	demon-
strated	 a	 delayed	 time	 course	 between	 plasma	 and	 skin	
concentrations	 of	 diphenhydramine	 and	 its	 metabolites	
ranging	from	1.5	to	10 h	(https://biorx	iv.org/cgi/conte	nt/
short/	2021.11.22.469638v1).

The	 full	 mechanism	 and	 pathways	 of	 chemicals	 and	
drugs	moving	from	the	systemic	circulation	to	the	epider-
mis	 are	 unknown.	 Additionally,	 not	 all	 xenobiotics	 can	
be	detected	on	the	skin.	A	notable	example	is	the	immu-
nosuppressive	 drug	 tacrolimus,	 which	 was	 not	 detected	
in	our	skin	swab	samples.11	We	sought	to	understand	the	
physicochemical	 and	 pharmacokinetic	 properties	 that	
allow	some	systemically	administered	drugs	to	be	detected	
on	the	epidermis	and	not	others.	Using	existing	skin	swab	
data,	we	 trained	a	 random	forest	classifier	 that	 is	able	 to	
accurately	predict	whether	a	compound	will	be	observed	
on	the	epidermis.

METHODS

Data origin

No	human	subjects	were	recruited	for	 this	study	and	all	
data	were	assessed	retrospectively.	All	data	were	anony-
mous	 and	 obtained	 from	 open	 mass	 spectrometry	 data	
contained	in	GNPS	and	ReDU.	GNPS	is	a	public	data	re-
pository	and	analysis	infrastructure	for	untargeted	metab-
olomics	data.12	Analysis	tools	available	on	GNPS	include	
spectral	library	searching,	molecular	networking	to	com-
pute	spectral	similarities	between	tandem	mass	spectrom-
etry	 (MS/MS)	 spectra	 and	 detect	 related	 compounds,13	
and	 MASST	 to	 query	 MS/MS	 spectra	 against	 all	 public	
metabolomics	data	and	associated	sample	information	to	
investigate	their	context.14	ReDU	is	an	associated	system	
to	 capture	 metadata	 of	 public	 data	 in	 GNPS	 using	 vali-
dated	controlled	vocabularies	(redu.ucsd.edu).15

To	 collect	 drugs	 that	 are	 observable	 on	 the	 epidermis,	
MS	data	and	associated	metadata	were	selected	using	ReDU	
(March	24,	2019)	by	filtering	for	files	that	were	annotated	as	
pertaining	to	human	skin	samples	using	the	Uberon	ontol-
ogy	of	anatomy	terms16	(Table S1).	This	resulted	in	a	list	of	
5629	 files	 from	 a	 heterogeneous	 set	 of	 20	 previously	 per-
formed	studies	with	data	deposited	to	GNPS	(Table S2).

Additionally,	prescription	records	available	in	conjunc-
tion	with	data	from	a	previous	kidney	transplant	study11	
were	 used	 to	 define	 drugs	 which	 were	 prescribed	 to	

individuals	but	were	not	observed	in	skin	samples	in	that	
study	(GNPS/MassIVE	dataset	identifier	MSV000081548).	
Skin	 samples	 were	 obtained	 from	 15	 individuals	 at	 two	
different	 clinic	 visits—	without	 regard	 to	 timing	 with	
their	 medications—	on	 10	 locations	 on	 the	 body	 (bilat-
eral	 collection	 of	 the	 forehead,	 nasolabial	 area,	 axillary,	
backhand,	and	palm).	The	subjects	of	that	study	were	pre-
scribed	many	(>5)	medications	simultaneously.	Of	the	58	
different	medications	in	that	study,	50	drugs	were	previ-
ously	not	detected	in	skin	samples11	and	offer	“negative”	
examples	for	which	we	have	experimental	data.	Negative	
examples	 will	 include	 both	 the	 lack	 of	 transport	 to	 the	
epidermis,	 but	 also	 the	 lack	 of	 detection	 due	 to	 sample	
preparation	(e.g.,	some	drugs	might	not	be	detected	due	to	
the	chosen	extraction	conditions).	The	eight	drugs	or	drug	
metabolites	that	were	detected	in	skin	swabs	in	that	study	
are	part	of	presumed	“positive”	compounds	that	are	ob-
served	on	the	epidermis.	Further,	these	particular	exam-
ples	are	supported	with	experimental	data	and	matching	
prescription	records	(i.e.,	 the	drugs	were	detected	in	the	
subjects	to	whom	they	were	prescribed).11

Data processing

All	 peak	 files	 filtered	 through	 ReDU	 were	 analyzed	 using	
MS/MS	 library	 searching	 on	 GNPS	 against	 all	 available	
public	spectral	libraries	(version	2.0;	GNPS	task	ID:	https://
gnps.ucsd.edu/Prote	oSAFe/	status.jsp?task=53e26	5f8f6	994f0	
196bf	9bccd	8d1b513).	 MS/MS	 library	 searching	 resulted	 in	
175	drugs	that	were	identified	in	the	human	skin	files	(level	
2	 annotation	 according	 to	 the	 Metabolomics	 Standards	
Initiative17),	 filtered	using	a	 list	of	 curated	drugs	and	drug	
metabolites	as	 they	are	 recorded	 in	 the	GNPS	MS/MS	ref-
erence	 libraries.	 Duplicate	 annotations	 were	 removed	 and	
drugs	available	in	topical	formulations	were	excluded,	result-
ing	in	a	final	list	of	95	compounds.	Based	on	the	empirical	
measurement	of	these	drugs	or	drug	metabolites	in	publicly	
available	MS	data	we	presume	that	these	95	compounds	are	
“positive”	examples	of	drugs	that	appear	on	the	epidermis.

Combined,	 145	 unique	 compounds	 were	 retained	 for	
the	machine	learning,	95	positive	examples	and	50	nega-
tive	examples.	The	full	list	of	compounds	and	information	
on	whether	they	were	observed	on	the	epidermis	or	not	is	
available	in	Table S3.

Machine learning epidermis prediction

Feature	generation	and	preprocessing

A	 random	 forest	 classifier	 was	 used	 to	 predict	 whether	
drugs	are	expected	to	be	observed	on	the	epidermis.	First,	

https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=53e265f8f6994f0196bf9bccd8d1b513
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=53e265f8f6994f0196bf9bccd8d1b513
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=53e265f8f6994f0196bf9bccd8d1b513
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Mordred,18	a	cheminformatics	software	tool	 to	efficiently	
compute	a	large	variety	of	molecular	descriptors,	was	used	
to	generate	molecular	descriptors	for	all	145	compounds,	
such	as	calculated	measures	of	volume,	electronegativity,	
bond	 energy,	 and	 electrotopology	 (see	 Table  S4	 for	 rele-
vant	descriptor	examples).	Molecular	descriptors	that	were	
missing	for	one	or	more	drugs	were	omitted,	resulting	in	a	
feature	table	consisting	of	929	unique	descriptors	per	com-
pound.	Next,	a	classification	pipeline	was	built	to	predict	
the	probability	of	observing	a	drug	on	the	epidermis.	The	
classification	 pipeline	 consisted	 of	 preprocessing	 steps	 to	
remove	irrelevant	features	and	a	random	forest	classifier.	
Preprocessing	steps	included	removing	all	features	whose	
variance	was	below	0.05	and	removing	one	of	the	features	
for	which	their	pairwise	Pearson	correlation	exceeded	0.95.

Random	forest	classifier	training	and	evaluation

A	random	forest	classifier19	using	1000	trees	was	trained	
to	predict	 the	epidermis	probability.	Evaluation	and	hy-
perparameter	 tuning	 of	 the	 classification	 pipeline	 were	
done	 using	 nested	 cross-	validation.	 Two	 levels	 of	 strati-
fied	shuffle	splitting	consisting	of	100	iterations	of	random	
splitting	in	80%	training	data	and	20%	test	data	were	per-
formed.	 In	 the	 inner	 cross-	validation	 loop,	 10	 iterations	
of	 randomized	 searching	 were	 used	 for	 hyperparameter	
optimization	of	 the	random	forest.	The	following	differ-
ent	hyperparameters	were	evaluated:	tree	depth	(i.e.,	the	
longest	path	from	the	root	node	to	the	leaf	nodes)	between	
5	and	9	(inclusive),	minimum	number	of	samples	per	leaf	
node	 between	 1	 and	 9	 (inclusive),	 and	 minimum	 num-
ber	 of	 samples	 to	 split	 an	 internal	 node	 between	 2	 and	
9	 (inclusive).	 The	 random	 forest	 classifier	 with	 optimal	
hyperparameters	was	subsequently	evaluated	in	the	outer	
cross-	validation	 loop.	 The	 number	 of	 features	 retained	
in	 the	 final	 classification	 pipeline	 after	 removing	 unin-
formative	 features	 was	 287,	 and	 trees	 with	 depth	 eight,	
minimum	two	samples	per	leaf	node,	and	minimum	two	
samples	to	split	a	node	were	most	frequently	found	to	be	
optimal.	For	each	split,	the	balanced	accuracy,	true	posi-
tive	rate,	false	positive	rate,	and	precision	were	computed	
for	 both	 the	 training	 data	 and	 test	 data.	 Model	 perfor-
mance	was	assessed	based	on	the	receiver	operating	char-
acteristic	(ROC)	curve	and	precision–	recall	curve.

SHapley	Additive	exPlanations	model	
interpretability

Important	 features	 for	 epidermis	 prediction	 were	 deter-
mined	using	SHapley	Additive	exPlanations	(SHAP),20	a	
model	 interpretability	 method	 founded	 in	 game	 theory.	

Briefly,	 SHAP	 explains	 machine-	learning	 predictions	 by	
using	 interpretable	 local	 models	 to	 approximate	 a	 com-
plex	black	box	model.	Kernel	SHAP	was	used	to	explore	
the	 trained	classification	pipeline.	To	determine	 the	 im-
portant	 features,	 50	 training	 samples	 determined	 by	
	K-	means	 clustering,	 with	 the	 cluster	 centroids	 weighted	
by	 the	 number	 of	 samples	 assigned	 to	 them,	 were	 used	
as	the	background	dataset.	To	investigate	the	features	of	
importance	of	individual	compounds,	if	they	were	part	of	
the	training	dataset,	the	random	forest	classifier	with	opti-
mal	hyperparameters	was	retrained	using	a	leave-	one-	out	
strategy	prior	to	SHAP	analysis.

FDA- approved drugs and 
biotransformations

Drug	 names,	 SMILES	 representations,	 and	 Anatomic	
Therapeutic	 Chemical	 (ATC)	 codes	 for	 2561	 FDA-	
approved	 drugs	 were	 retrieved	 from	 DrugBank	 (version	
5.1.7)21	 on	 December	 23,	 2020.	 Mordred	 was	 used	 to	
generate	 the	 same	 features	 for	 these	 drugs	 as	 used	 dur-
ing	model	training,	and	the	probability	of	observing	these	
drugs	on	the	epidermis	was	determined	using	the	trained	
classification	 pipeline.	 Additionally,	 potential	 biotrans-
formation	 products	 of	 the	 drugs	 were	 generated	 using	
the	BioTransformer	tool.22	The	human	super	transformer	
mode,	 which	 combines	 an	 Enzyme	 Commission-	based	
transformer,	 a	 CYP450	 (phase	 I)	 transformer,	 a	 phase	
II	 transformer,	 and	 a	 human	 gut	 microbial	 transformer	
were	used	to	predict	potential	biotransformation	products	
after	a	single	transformation	step.	This	resulted	in	23,693	
putative	biotransformation	metabolites	derived	 from	the	
FDA-	approved	drugs,	for	which	similarly	the	probability	
of	observing	them	on	the	epidermis	was	predicted	using	
the	trained	classification	pipeline.

Code availability

All	 analyses	 were	 performed	 in	 Python	 3.8.	 RDKit	 (ver-
sion	2020.09.3)23	and	Mordred	(version	1.2.0)18	were	used	
to	generate	molecular	descriptors.	A	GPU-	accelerated	ver-
sion	of	the	random	forest	algorithm,	available	as	part	of	the	
cuML	 library	 (version	 0.18.0)24	 was	 used	 in	 combination	
with	Scikit-	Learn	(version	0.24.1)25	for	data	preprocessing	
and	model	evaluation.	SHAP	(version	0.39.0)20	was	used	to	
compute	the	features	of	importance.	BioTransformer	(ver-
sion	2.0.1)22	was	used	to	generate	biotransformation	prod-
ucts.	Additionally,	NumPy	(version	1.20.1),26	SciPy	(version	
1.6.0),27	and	Pandas	(version	1.1.5)28	were	used	for	scientific	
computing,	 and	 matplotlib	 (version	 3.3.4)29	 and	 Seaborn	
(version	0.11.1)30	were	used	for	visualization	purposes.
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All	 code	 is	 available	 at	 https://github.com/bittr	emieu	
x/drugs_epide	rmis	 as	 open	 source	 under	 the	 permissive	
BSD	license.

RESULTS

Occurrence of drugs on the epidermis

Based	 on	 the	 rich	 metadata	 associated	 with	 the	 MS/MS	
data,	we	were	able	 to	select	5629	MS/MS	peak	 files	 that	
contain	samples	collected	from	human	body	sites	from	20	
publicly	available	datasets	(Table S2).	These	data	originate	
from	a	variety	of	studies,	including,	for	example,	a	3D	mo-
lecular	 cartography	 of	 the	 human	 skin	 study	 in	 which	
paired	MS	and	sequencing	data	was	collected	to	 investi-
gate	the	spatial	relationships	of	human	skin	with	hygiene,	
the	microbiota,	and	the	environment	(MSV000078556)31;	
a	study	in	which	skin	samples	were	obtained	from	healthy	
human	volunteers	that	were	given	single	doses	of	caffeine,	
omeprazole,	midazolam,	and	dextromethorphan	on	2	sep-
arate	days	(8 days	apart)	and	a	7-	day	course	of	cefprozil	
(MSV000082493)32;	 and	 the	 kidney	 transplant	 study	 de-
scribed	in	more	detail	above	(MSV000081548).11

For	 our	 secondary	 analysis,	 we	 extracted	 145	 cu-
rated	drugs	from	these	data	to	build	a	machine-	learning	
model	 to	predict	whether	drugs	occur	on	 the	epidermis.	
Additionally,	 based	 on	 the	 Uberon	 anatomy	 ontology,16	
these	drugs	were	mapped	to	the	body	site	on	which	they	
were	detected	(Figure 1).	The	different	rates	of	drug	occur-
rence	throughout	the	body	suggest	that	there	will	be	dis-
tinct	detection	of	chemicals	and	xenobiotics	in	skin.	As	an	
example,	our	previous	study	showed	that	the	N-	acetyl	me-
tabolite	of	sulfamethoxazole	was	detected	in	armpit	skin	
samples	but	not	in	other	skin	sites	sampled,	such	as	fore-
head,	palms,	and	forearm.11	More	polar	compounds	may	
be	more	likely	detected	in	more	aqueous	areas	of	the	skin	
where	sweat	is	more	concentrated,	such	as	the	armpit.

Machine learning to predict whether drugs 
occur on the epidermis

Using	a	 random	forest	classifier,	we	were	able	 to	predict	
whether	drugs	will	be	observed	on	the	epidermis	with	an	
area	under	the	ROC	curve	(AUC)	obtained	during	cross-	
validation	of	0.71	±	0.10	(Figure 2)	and	an	area	under	the	
precision–	recall	curve	of	0.82	±	0.07	(Figure	S1).	As	an	ex-
ample,	two	drugs	that	were	present	in	our	data	and	which	
were	previously	reported	to	be	present	on	the	skin,	the	an-
timycotics	 fluconazole,9	 and	 ketoconazole,33	 are	 strongly	
predicted	 to	 be	 observed	 on	 the	 skin.	 This	 performance	
indicates	that	machine	learning	can	be	used	to	successfully	

approximate	 the	 complex	 underlying	 biochemical	 pro-
cesses	leading	to	drugs	being	observed	on	the	epidermis.	As	
we	were	constrained	by	the	limited	availability	of	ground	
truth	data	in	this	study,	we	hypothesize	that	as	more	train-
ing	data	becomes	available	 it	will	be	possible	 to	produce	
even	more	accurate	machine	learning	models	(Figure	S2).

We	 tried	 to	gain	 insight	 into	 the	molecules’	physical	
properties	that	result	in	drugs	being	present	on	the	epider-
mis.	The	SHAP	model	interpretation	technique	was	used	
to	 determine	 the	 most	 relevant	 features,	 consisting	 of	
molecular	descriptors	generated	by	Mordred,	for	the	clas-
sifier	 performance	 (Figure  3,	Table  S4).	The	 top-	ranked	
features	 are	 computed	 measures	 of	 volume	 (ATSC7v),	
electronegativity	 (PEOE_VSA1,	 PEOE_VSA9),	 bond	 en-
ergy	 (ATSC6d),	 and	 electrotopology	 (EState_VSA1).	 By	
investigating	the	SHAP	values	for	individual	features,	we	
can	derive	 that	 in	general	 smaller	compounds	 (Van	der	
Waals	 volume)	 with	 a	 smaller	 bonding	 potential	 (elec-
tronegativity)	are	more	likely	to	be	observed	on	the	epi-
dermis.	We	can	hypothesize	that	through	heterogeneous	
biochemical	processes	such	molecules	diffuse	faster	and	
thus	will	be	secreted	to	the	epidermis.

Additionally,	SHAP	can	be	used	to	interpret	predictions	
for	individual	drugs.	The	antihistamine	drug	diphenhydr-
amine	was	experimentally	observed	on	the	epidermis	in	
a	 previous	 healthy	 human	 clinical	 study	 (https://biorx	

F I G U R E  1  Body	sites	of	the	drugs	found	through	spectral	
library	searching.	Body	sites	for	the	identified	drugs	were	retrieved	
from	the	Uberon	annotations	specified	in	ReDU,	and	drug	counts	
per	body	site	were	normalized	by	the	total	number	of	ReDU	entries	
for	each	body	site

https://github.com/bittremieux/drugs_epidermis
https://github.com/bittremieux/drugs_epidermis
https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
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iv.org/cgi/conte	nt/short/	2021.11.22.469638v1).	 Using	
a	 leave-	one-	out	 training	 strategy	 to	 not	 bias	 the	 classi-
fier,	 it	 was	 also	 strongly	 predicted	 to	 be	 present	 on	 the	
epidermis	 (Figure  4a).	 The	 most	 relevant	 features	 con-
tributing	to	this	prediction	are	its	lack	of	accessible	Van	

der	 Waals	 surface	 area	 with	 a	 low	 electrotopological	
state	(EState_VSA1),	a	high	atomic	mass	autocorrelation	
(ATSC4m),	a	small	Van	der	Waals	surface	area	with	low	
partial	charge	(PEOE_VSA1),	and	a	low	autocorrelation	
weighted	by	sigma	electrons	(ATSC6d,	ATSC7d).	In	con-
trast,	although	the	related	compound	diphenhydramine	
N-	hexose	is	structurally	similar,	it	is	predicted	to	not	ap-
pear	on	the	epidermis	(Figure 4b),	in	part	because	of	its	
increased	 accessible	Van	 der	Waals	 surface	 area	 with	 a	
low	 electrotopological	 state	 (EState_VSA1),	 as	 well	 as	
its	 higher	 autocorrelation	 weighted	 by	 Van	 der	 Waals	
volume	 (ATSC7v),	 its	 high	 autocorrelation	 weighted	
by	 ionization	 potential	 (ATSC7i),	 and	 its	 high	 topolog-
ical	 radius	 (Radius).	 This	 is	 consistent	 with	 our	 exper-
imental	 results	 (https://biorx	iv.org/cgi/conte	nt/short/	
2021.11.22.469638v1).	 In	 a	 previous	 study,11	 citalopram	
was	detected	 in	 the	skin	samples	of	 the	only	subject	 to	
which	 it	 was	 prescribed.	 This	 empirical	 observation	 is	
confirmed	 by	 the	 machine-	learning	 model	 (Figure  4c),	
as	citalopram	is	very	strongly	predicted	to	be	observed	on	
the	epidermis	due	to	its	lack	of	accessible	Van	der	Waals	
surface	area	with	a	low	electrotopological	state	(EState_
VSA1),	its	low	topological	charge	(GGI10),	and	its	low	au-
tocorrelation	weighted	by	valence	electrons	(ATSC7dv).	
Conversely,	 tacrolimus	 is	very	strongly	predicted	 to	not	
appear	 on	 the	 epidermis	 (Figure  4d),	 primarily	 due	 to	
its	 high	 number	 of	 double	 bonds	 (nBondsD),	 its	 high	
number	 of	 Kier–	Hall	 dssC	 atom	 types	 (motif	 “C(=[*])
([*])[*]”),34	and	its	high	autocorrelation	weighted	by	ion-
ization	 potential	 (ATSC5i,	 ATSC7i,	 and	 ATSC8i).	 This	
prediction	matches	its	absence	in	the	skin	samples	of	14	
subjects	 who	 were	 prescribed	 tacrolimus.11	 This	 analy-
sis	demonstrates	how	machine-	learning	techniques	can	
be	used	to	obtain	insights	into	the	complex	internal	bio-
chemical	 mechanisms	 that	 lead	 systemically	 adminis-
tered	drugs	to	be	observed	on	the	epidermis.

F I G U R E  2  ROC	curve	indicating	
the	performance	of	the	random	forest	
classifier	to	predict	whether	drugs	can	be	
observed	on	the	epidermis.	The	curve	is	
the	mean	ROC	curve	over	100	random	
stratified	training	(80%	of	the	data)	and	
test	(20%	of	the	data)	splits.	The	standard	
deviation	over	the	splits	is	indicated	by	the	
shaded	area.	The	mean	AUC	is	0.707,	with	
a	standard	deviation	of	0.095.	AUC,	area	
under	the	curve;	ROC,	receiver	operating	
characteristic

F I G U R E  3  SHAP	features	of	importance	for	the	top	20	most	
important	Mordred	features	from	the	random	forest	classifier	for	
the	145	training	compounds.	A	positive	SHAP	feature	importance	
contributes	to	drugs	predicted	to	appear	on	the	epidermis,	whereas	
a	negative	SHAP	feature	importance	contributes	to	drugs	predicted	
to	not	appear	on	the	epidermis.	The	top-	ranked	features	capture	
information	about	the	volume,	electronegativity,	bond	energy,	and	
electrotopology	of	the	molecules.	See	Table S4	for	a	full	description	
of	the	Mordred	features.	SHAP,	SHapley	Additive	exPlanations

https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
https://biorxiv.org/cgi/content/short/2021.11.22.469638v1
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Exploring presence of drugs and related 
biotransformations on the epidermis

To	 expand	 our	 knowledge	 of	 the	 variety	 of	 drugs	 that	
are	 likely	 to	 be	 observed	 on	 the	 epidermis	 beyond	 the	
training	 data	 consisting	 of	 145	 drugs,	 we	 retrieved	 2561	
FDA-	approved	drugs	from	DrugBank.21	Furthermore,	we	
utilized	 BioTransformer22	 to	 predict	 potential	 biotrans-
formation	products	of	the	FDA-	approved	drugs,	resulting	
in	 23,693	 putative	 biotransformation	 metabolites.	 These	
biotransformations	include	phase	I	metabolism	products	
(e.g.,	Cytochrome	P450),	enzyme	commission-	based	me-
tabolism	 products,	 phase	 II	 metabolism	 products	 (e.g.,	
Uridine	 5′-	diphospho-	glucuronosyltransferase),	 and	 gut	
microbial	transformation	products,	and	they	cover	a	num-
ber	of	different	reaction	types,	 including	hydrolysis,	oxi-
dation	and	reduction,	and	conjugation.

The	probability	of	observing	the	FDA-	approved	drugs	
and	 their	 potential	 biotransformation	 products	 was	 pre-
dicted	 using	 the	 trained	 random	 forest	 model.	To	 inves-
tigate	 whether	 specific	 types	 of	 drugs	 were	 more	 likely	
to	occur	on	the	epidermis,	we	grouped	the	drugs	and	the	
corresponding	biotransformation	products	using	the	ATC	
Classification	System	(Figure 5).	This	indicates,	for	exam-
ple,	 that	hormonal	preparations,	 such	as	corticosteroids,	
are	least	likely	to	be	observed	on	the	epidermis,	whereas	
nervous	system	drugs,	 such	as	analgesics,	antiepileptics,	
antidepressants,	and	antipsychotics	are	more	likely	to	be	
detected	on	skin.

DISCUSSION

So	 far,	 little	 is	known	about	which	chemicals	and	drugs	
move	 from	 the	 systemic	 circulation	 to	 the	 epidermis.	
Here,	 we	 have	 demonstrated	 that	 machine	 learning	 can	
be	used	to	gain	insights	into	these	complex	processes	for	
the	first	time.	Using	publicly	available	MS	data,	we	have	
trained	a	random	forest	model	 to	predict	whether	drugs	
will	 occur	 on	 the	 epidermis.	 Notably,	 the	 classifier	 cor-
rectly	predicted	 the	presence	on	 the	 skin	of	 the	antimy-
cotics	fluconazole9	and	ketoconazole,33	matching	previous	
experimental	results.

To	obtain	insights	into	the	complex	processes	that	un-
derlie	 reverse	penetration	of	drugs	 to	 the	epidermis,	 the	
SHAP	 model	 interpretability	 method	 was	 used	 to	 inves-
tigate	which	molecular	descriptors	are	most	 relevant	 for	
prediction	using	the	random	forest.	In	general,	we	observe	
that	smaller	compounds	with	a	smaller	bonding	potential	
are	more	likely	to	be	observed	on	the	epidermis.	Although	
further	studies	are	needed	to	fully	understand	the	under-
lying	biochemical	processes,	we	hypothesize	that	through	
heterogeneous	mechanisms	such	molecules	diffuse	faster	

and	thus	will	be	secreted	 to	 the	epidermis.	Additionally,	
we	used	SHAP	to	investigate	predictions	for	drugs	with	a	
known	experimentally	derived	ground	truth.	This	demon-
strates	how	detailed	and	 individualized	 insights	 for	 spe-
cific	drugs	can	be	obtained	 to	explore	whether	 they	will	
appear	on	the	epidermis	or	not.

Applying	our	random	forest	model	 to	over	2500	FDA-	
approved	drugs	and	their	biotransformations	gives	insight	
into	 additional	 drugs	 and	 their	 metabolites	 that	 may	 be	
detected	 on	 the	 skin	 surface.	 For	 those	 drugs	 with	 a	 low	
probability	 of	 skin	 detection,	 we	 hypothesize	 that	 either	
these	 drugs	 are	 fully	 processed	 within	 the	 body,	 rather	
than	 secreted	 to	 the	 epidermis,	 or	 their	 physicochemical	
properties	prevent	access	to	the	skin	surface.	For	example,	
a	high	degree	of	 lipophilicity	might	prevent	access	 to	 the	
skin	surface,	as	the	hydrophilic	viable	epidermis	is	a	barrier	
to	 lipophilic	 substances.	 Alternatively,	 highly	 hydrophilic	
compounds	are	unlikely	to	be	detected	on	the	skin	either,	
as	the	hydrophobic	stratum	corneum	is	a	barrier	for	hydro-
philic	substances.	The	variety	of	important	physicochemi-
cal	properties	underlying	the	prediction	of	drug	detection	
on	the	skin	indicates	that	there	is	no	single	process	for	mov-
ing	compounds	from	the	systemic	circulation	to	the	epider-
mis,	but	rather	that	there	are	unique	interplays	between	the	
specific	drugs	and	their	relevant	transport	pathways.

Notably,	 median	 epidermis	 prediction	 values	 for	 the	
FDA	 approved	 drugs	 and	 their	 biotransformations	 in	
different	 ATC	 drug	 classes	 range	 from	 ~35%	 to	 ~60%	 of	
drugs	 in	 each	 category.	There	 is	 substantial	 variation	 in	
predicted	 probability;	 we	 speculate	 that	 this	 observation	
reflects	 that	 specific	 physicochemical	 properties	 of	 the	
drugs	are	the	driver	of	this	phenomenon	rather	than	the	
ATC	 class.	 Nevertheless,	 broad	 generalizations	 can	 be	
made;	 for	 example,	 steroid	 hormones	 were	 predicted	 to	
not	be	detected	on	the	epidermis,	which	is	consistent	with	
our	 experimental	 data	 for	 budesonide,	 fludrocortisone,	
prednisone,	 and	 prednisolone;	 whereas	 amitriptyline,	
citalopram,	 cyclobenzaprine,	 escitalopram,	 gabapentin,	
ketamine,	nortriptyline,	and	venlafaxine	were	detected	in	
our	data,	consistent	with	our	model	prediction	for	nervous	
system	drugs	(Table S4).

An	 important	 caveat	 of	 the	 current	 work	 is	 that	
there	 was	 only	 a	 limited	 amount	 of	 heterogeneous	 data	
available	 for	 secondary	 analysis.	 Because	 the	 data	 were	
derived	 from	 various	 publicly	 available	 untargeted	 me-
tabolomics	 studies	 for	 secondary	analysis,	no	consistent	
experimental	protocol	was	used.	Additionally,	prescribed	
drugs	 might	 not	 be	 detected	 on	 the	 skin	 due	 to	 lack	 of	
transport	from	the	systemic	circulation	to	the	epidermis,	
but	also	due	to	incompatibilities	with	sample	preparation.	
Although	 we	 achieved	 encouraging	 predictive	 perfor-
mance,	 the	 machine-	learning	 performance	 can	 be	 fur-
ther	improved	upon	by	obtaining	and	incorporating	more	
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relevant	experimental	data,	as	 indicated	by	 the	 learning	
curve.	Ideally,	this	should	include	a	controlled	measure-
ment	of	both	positive	and	negative	examples	of	drugs	and	
other	xenobiotics	that	are	commonly	consumed	and	their	
status	of	being	observed	on	the	epidermis.

Our	 machine-	learning	 model	 is	 the	 first	 attempt	 to	
predict	xenobiotic	 skin	detection	using	physicochemical	
properties.	 There	 will	 likely	 be	 future	 iterations	 of	 this	
model	as	we	advance	our	understanding	of	the	complex	
processes	 governing	 molecular	 transport	 from	 the	 sys-
temic	 circulation	 to	 the	 surface	 of	 the	 skin.	 The	 use	 of	
noninvasive	 skin	 swabs	 in	 clinical	 medicine	 could	 be	 a	
paradigm	shift	in	how	health	and	disease	are	monitored.	
Contemporary	methods	of	blood	draws	and	 tissue	biop-
sies	 are	 invasive	 and	 inconvenient	 for	 patients.	 In	 the	

future,	we	envision	the	use	of	noninvasive	skin	sampling	
to	 determine	 adherence	 of	 drugs,	 for	 therapeutic	 drug	
monitoring,	the	extent	of	metabolism,	and	to	assess	organ	
and	health	status.
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