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Abstract
Aortic dissection, a critical cardiovascular condition with life-threatening implications, is distinguished by the development 
of a tear and its propagation within the aortic wall. A thorough understanding of the initiation and progression of these tears, 
or cracks, is essential for accurate diagnosis and effective treatment. This paper undertakes a fracture mechanics approach 
to delve into the mechanics of tear propagation in aortic dissection. Our objective is to elucidate the impact of geometric 
and material parameters, providing valuable insights into the determinants of this pivotal cardiovascular event. Through our 
investigation, we have gained an understanding of how various parameters influence the energy release rate for tear propaga-
tion in both longitudinal and circumferential directions, aligning our findings with clinical data.

Keywords Aortic dissection · Tear propagation · Fracture mechanics · Energy release rate

Introduction
Aortic dissection often begins with a tear or disruption in 

the aortic wall’s intima, the innermost layer. This tear allows 
blood to enter and flow between the layers of the aortic wall, 
forming a separate channel called the false lumen that runs 
alongside the normal aortic channel but is separated by the 
layers of the aortic wall called the intimal flap (Nienaber 
et al. 2016; Brunet et al. 2021; Rajagopal et al. 2007). The 
false lumen’s extent is contingent upon variables such as 
tear location, size, and hemodynamic factors. The intricate 
biomechanical complexities underlying the initiation and 
progression of aortic dissection demand a comprehensive 
understanding of the mechanical properties of the aorta, 
stress distributions, and the associated principles of frac-
ture mechanics.

Mechanical modeling is indispensable in elucidating 
the nuanced biomechanical processes involved in aortic 

dissection. Diverse studies (Brunet et al. 2021; Rajago-
pal et al. 2007; Elger et al. 1996; Chuong and Fung 1986; 
Wang et al. 2023; Soleimani et al. 2023) are dedicated to 
unraveling these mechanics, enhancing the scope for pre-
ventive interventions. Finite element analysis (FEA) mod-
els (Raghavan and Vorp 2000; Gasser et al. 2005; Gasser 
and Holzapfel 2006; Volokh 2011; Di Achille et al. 2011; 
Ahamed et al. 2016; Azar et al. 2018), using isotropic hyper-
elastic solids or multilayer anisotropic hyperelastic solids, 
have been explored to analyze the stress distribution in aortic 
wall stresses and rupture propensities. Geometry is one of 
the predominant inputs for biomechanical simulations of the 
aortic system (Xu et al. 2020), and patient-specific models 
(Raut et al. 2013; Alimohammadi et al. 2014; Erhart et al. 
2015; Shang et al. 2015; Subramaniam et al. 2020; Doyle 
et al. 2010), accounting for geometric variations, contribute 
significantly to discerning rupture locations and patterns of 
progression. While these models have provided valuable 
insights into assessing the risk of rupture, they primarily 
rely on stress analysis, which may not adequately predict the 
conditions necessary for crack propagation, a critical process 
of aortic dissection.

To comprehend the driving force behind tear propagation 
and improve the estimation of aortic dissection risk, fracture 
mechanics modeling is essential. In recent investigations, 
Wang et al. (2015) leveraged an energy-based approach to 
analyze the crack propagation in planar rectangular soft 
tissues, relating the energy release rate with crack length 
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and applied stress. Building upon this research, Wang et al. 
(2016, 2017) further investigated aortic crack propagation in 
radial and circumferential directions, varying the widths and 
depths of the tear using XFEM in ABAQUS. Their findings 
indicated that shallow and elongated cracks tend to buckle, 
with potential for crack arrest, whereas deeper cracks are 
more inclined to propagate radially. In reality, the media is 
comprised of many elastic lamellar units, and radial crack 
propagation across the entire lamellae is not energetically 
favored (Gültekin et al. 2019).

In this study, we adopt fracture mechanics theory to quan-
tify the conditions for crack propagation along longitudi-
nal and circumferential directions in aortic dissection. We 
compare the driving force for crack propagation, represented 
by the energy release rate (G), with the resistance, charac-
terized by the fracture energy of the aorta ( Γ ). As long as 
the calculated driving force is lower than the resistance ( Γ ), 
crack propagation would be inhibited (Griffith 1921; Irwin 
and Wells 1965). Formulating a comprehensive model that 
incorporates all material properties alongside real-life geo-
metrical considerations presents a significant challenge. Our 
approach, therefore, takes a simplified yet insightful route. 
We embark on a journey through the fundamental principles 
of fracture mechanics, specifically applied to type B aortic 
dissection (Stanford classification), where the false lumen 
runs parallel to the true lumen in the descending aorta. Our 
investigation specifically explores how geometrical param-
eters and material properties influence crack propagation, 
calculating G semi-analytically along both the longitudinal 
and circumferential directions. Our model’s results align 
favorably with clinical observations, indicating that a lower 
wall thickness-to-radius ratio and thinner false lumen result 
in a heightened energy release rate for tear propagation. Fur-
thermore, our findings suggest that G in the longitudinal 
direction initially decreases and later increases as the tear 
widens, while it monotonically increases for circumferential 
spread of the tear. Based on these results, we generated a 
safety plot to predict the risk of aortic dissection with tear 
geometry at different blood pressure levels.

1  Fracture mechanics model

Assuming a plane strain deformation in the aorta, the frac-
ture analysis simplifies to a 2D model as shown in Fig. 1. 
Consider a section of the aorta devoid of any crack; the 
aorta is modeled as an annular ring with a true lumen wall 
thickness TLWT) ‘ H2 ,’ which is subjected to a physiologi-
cal blood pressure ‘P’ on the inner wall of the true lumen. R 
is the mean radius of the annular ring where the inner wall 
surface has a radius of R – H2/2, and the outer wall radius 
is R + H2/2. For the dissected section of the aorta, the crack 
region is described by an angle of 2 �lim and a false lumen 

wall thickness (FLWT) of H1 . Here, �lim is defined as the 
crack angle of the tear.

1.1  Energy release rate

The energy release rate is defined as the reduction of total 
potential energy per unit increase in crack area. The defor-
mation is two-dimensional in our model with the assumption 
of plane strain. Thus, we calculate the energy release rate 
(G) as the ratio of change in the total potential energy per 
unit length (U) to the increase in crack length from the initial 
state to the final state (Anderson 2017; Kumar 2009; Gross 
and Seelig 2017; Taylor 2018. The total potential energy per 
unit length (U) is calculated as:

here, WSE = ∫
A
W dA , integrating over the cross-section area 

of the aortic wall, and ΔAin corresponds to the cross-section 
area change of the lumen (area enclosed by the inner aortic 
wall) before and after deformation. When a tear propagates, 
we calculate the aortic section’s potential energy before and 
after the steady tear propagation, as shown in Eq. (1).

1.1.1  Energy release rate for longitudinal tear propagation

When tear propagation is in the longitudinal direction, the 
initial state UI corresponds to the total potential energy of 
the normal section of the aorta per unit length, while UII cor-
responds to the dissected section of the aorta with a crack 
angle of �lim . In the stress-free state, the distance from the 
radial center to the crack surface is computed as the radius 
of the outer wall of the aorta—false lumen wall thickness 
( H1 ), which is (R + H2∕2 − H1) . During the crack propaga-
tion, the total potential energy is reduced by converting the 
normal aorta to dissected one of the same lengths in the axial 
direction (dL) (Fig. 1a). The total crack length is taken as the 
arc length of the crack, i.e., (R + H2∕2 − H1) ∗ 2�lim , which 
is also the increase in crack length for longitudinal crack 
propagation. It is noted that the crack length is defined in 
the undeformed or stress-free state of the aorta. Therefore, 
the energy release rate for longitudinal tear propagation is 
expressed as follows:

1.1.2  Energy release rate for circumferential tear 
propagation

For circumferential tear propagation, an upwind scheme is 
employed to calculate the energy release rate. As the tear grows 
slightly in the circumferential direction, increasing the crack 

(1)U = WSE − PΔAin

(2)G =
UI − UII

(R + H2∕2 − H1) ∗ 2�lim
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angle from �lim to �lim + Δ� (Fig. 1c), the total potential energy 
per unit length decreases from UII(�lim) → UII(�lim + Δ�) , and 
the crack length increases by (R + H2∕2 − H1) ∗ 2Δ� . The G 
in the circumferential direction is computed as follows:

We set Δ� to 4◦ in our calculations.

(3)G =
UII(�lim) − UII(�lim + Δ�)

(R + H2∕2 − H1) ∗ 2Δ�

1.2  Material model

In this work, we assume the aorta to be an isotropic incom-
pressible hyperelastic material in plane strain deformation, 
i.e., �3 = �z = 1 . We first use the Neo-Hookean hyperelastic 
material model that assumes a perfect elasticity, whose strain 
energy density (Ogden 1984) is given by:

(4)W =
�

2

(
�2
1
+ �2

2
− 2

)

Fig. 1  Aortic dissection depiction. a Crack propagation in the longi-
tudinal direction b Stress-free (undeformed) state of normal section 
and dissected section of the aorta for two tears of different sizes. 
R, H1 , and H2 correspond to the radius, false lumen thickness, and 
true lumen thickness of the aortic wall, respectively, and �lim and 

�lim + Δ� are the crack angles of the two tears. c Deformed state of 
normal section and dissected section of the aorta. During longitudinal 
tear propagation, section A–A changes from a normal section to a dis-
sected section, as shown. When the tear propagates circumferentially, 
increasing the crack length, section B–B changes as depicted
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The results obtained from the analytical model are compared 
with the FEA results to validate our approach. Blood vessels 
are not infinitely extensible, and the aortic wall is found to be 
stiffer with high blood pressure and at larger strains (Avolio 
2013). To understand this, we also use the Gent hyperelastic 
model, which considers the strain stiffening owing to the 
chain inextensibility in the material, and the strain energy 
density (Gent 1996) is given by:

The parameter Jm corresponds to the strain limitation. When 
Jm is infinite, the Gent material model approaches the Neo-
Hookean model.

Realistically, the aorta is not isotropic and is made of 
collagen fibers embedded in the elastin matrix, leading to 
the aortic wall’s anisotropy. The Holzapfel–Ogden–Gas-
ser (HGO) model is proposed by Holzapfel et al. (2000) to 
describe arterial tissue properties better. The strain energy 
density is given as a summation of the isotropic strain energy 
density of the elastin, and the anisotropic part comes from 
the energy density of collagen fibers, which follow an expo-
nential function of fiber stretch. Here, we use the following 
strain energy density function based on the standard HGO 
model given as (Karlsson et al. 2023):

Here, K1 is a stress-like parameter related to the collagen 
fiber stiffness, and K2 is a dimensionless parameter related 
to strain stiffening of collagen fibers. In our model, the 
stretches in the aortic wall are taken as �1 = �� , �2 = �r , 
and �3 = �z = 1 . I is given as �2

�
cos2(�) + �2

z
sin

2(�) , where 
� is the angle between the circumferential direction and the 
principal (mean) fiber direction in the unloaded configura-
tion, which is ≈ 40 − 45◦ (Astrand et al. 2011; Karlsson et al. 
2023). Since we have �z = 1 and assuming � = 45◦ , I simpli-
fies as �2

�
∕2 + 1∕2

1.3  Analytical model and its validation

For the normal aortic section without any crack due to 
axisymmetry, the problem simplifies to a 1D analysis along 
the radial direction, whose exact deformation and stress 
fields can be obtained (refer to Appendix A.1). In the pres-
ence of a crack, the section of the dissected aorta loses its 
axisymmetry. As pressurized blood flows through the tear 
and enters the false lumen, we assume that the inner wall of 
the false lumen experiences the same pressure as the true 
lumen. The contribution of the intimal flap between the true 

(5)W = −
�Jm

2
ln

(
1 −

�2
1
+ �2

2
− 2

Jm

)

(6)
W =Wiso +Waniso

=
�

2

(
�2
1
+ �2

2
+ �2

3
− 3

)
+

K1

K2

(
eK2(I−1)

2

− 1

)

and false lumen to the total potential energy is neglected 
since it is subjected to uniform pressure ‘P’ on both sides. 
Disregarding the intimal flap, the region with a crack is 
modeled as an annulus sector (see Fig. 2b) with an angle 
of 2 �lim and a thickness of H1 . Here, �lim is defined as the 
crack angle, and H1 represents the false lumen wall thickness 
(FLWT). Treating this dissected aorta as a thin-wall mem-
brane, we solve the planar equilibrium equations to obtain 
the deformation and stress field (refer to Appendix A.2).

To verify the appropriateness of our assumptions and the 
correctness of the coding, we initially validated our model 
by comparing the total potential energy of the normal and 
dissected aorta with the finite element analysis (FEA) results 
obtained from ABAQUS simulations, utilizing the Neo-
Hookean material model. We utilized the CPE4RH element 
from the standard element library, which is a quad-shaped 
element belonging to the plane strain family with linear geo-
metric order, hybrid formulation, reduced integration, and 
default settings for element controls. For discretizing the 
aorta part, we employed a fine mesh with an element size of 
approximately 0.01R, utilizing the free meshing technique 
and the medial axis algorithm, as depicted in Fig. 2b. A con-
stant pressure P∕� was applied on the inner surface of the 
part. We selected a static general step considering nonlinear 
geometry effects with all default solver settings.

The deformed shapes of the normal and dissected section 
of the aorta are shown in Fig. 2c and d for P∕� = 0.1 . Fig-
ure 2e shows the total potential energy vs. pressure plot for 
normal aorta and dissected aorta. We observe a decrease in 
total potential energy with an increase in pressure for both 
the normal section and the dissected section of the aorta. 
As a result, the reduction in total potential energy increases 
with pressure. When the pressure increases, both the total 
strain energy and the potential energy of the blood pres-
sure increase, with the latter being increasingly dominant at 
greater pressures. The results from our model and ABAQUS 
simulations have a minimal discrepancy. The small error in 
the predicted UII may be attributed to the membrane assump-
tion in our analytical model. However, given that our model 
aligns well with the FEA results, we proceed to investigate 
the energy release rate for tear propagation along longitu-
dinal and circumferential directions, along with the various 
parameters influencing it.

2  Results

In this section, we first show the results of the variation of 
energy release rate for the tear propagation in the longitudi-
nal and circumferential directions, treating the aorta as an 
isotropic material. Later, we discuss how the anisotropy in 
the aorta affects the energy release rate in both directions.
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2.1  Longitudinal tear propagation

Using a Neo-Hookean material model, we first examine the 
impact of aorta thickness and tear depth on energy release 
rate (G). Figures 3a and 3b illustrate how G along longitudi-
nal direction changes with pressure when varying TLWT and 
FLWT, respectively. From Fig. 3, it is evident that the energy 
release rate (G) increases with pressure for tear propagation 
in the longitudinal direction, and the slope of this curve also 

increases with pressure. In Fig. 2e, we saw that the reduc-
tion in the total potential energy from normal to dissected 
aorta increases with pressure, thus increasing the longitu-
dinal energy release rate with pressure, as the crack length 
remains constant. Figure 3a reveals that G declines as the 
aorta’s TLWT-to-radius ratio rises. Greater wall thickness 
reduces the stretching needed for the aortic wall to balance 
blood pressure. So, greater TLWT diminishes the magnitude 
of the total potential energy for both the normal section and 

Fig. 2  FEA Model a Unde-
formed section of the Normal 
aorta. b Meshed undeformed 
Part of the Dissected section of 
the aorta. c Deformed section of 
the Normal aorta. d Deformed 
section of the Dissected aorta. 
e Comparison of Total potential 
energy predicted by the analyti-
cal model with FEA results for 
Normal aortic section with 
H2 /R = 0.2 and Dissected aortic 
section with Crack angle ( �lim ) 
of 30◦ , H2 /R = 0.2 and H1/H2 
= 0.5

Fig. 3  Longitudinal tear propagation: Neo-Hookean material: a Energy release rate versus Pressure with varying thickness ( H2∕R ) at crack angle 
( �lim ) = 30◦ and tear depth ( H1/H2 ) = 0.5. b Energy release rate versus Pressure with varying tear depth(H1∕H2 ) at �lim = 30◦ and H2 /R = 0.2
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the dissected section of the aorta, with the decrease being 
more pronounced in the latter. As TLWT increases, G con-
sequently decreases, and this observation holds significance 
to the aging process. Studies (Jadidi et al. 2020) indicate that 
the aortic wall’s thickness-to-radius ratio decreases as indi-
viduals age, elevating the susceptibility to aortic dissections, 
which heightened G reflects with the reduction in H2∕R . 
Figure 3b elucidates the effect of FLWT on G. Deeper cracks 
yield an effectively thinner wall in the false lumen, reducing 
H1∕H2 . As previously discussed, the reduction in thickness 
increases the stretching of aortic walls to maintain pres-
sure equilibrium. Deeper cracks indicate that the thickness 
reduces only in the false lumen, resulting in a more signifi-
cant stretch for equilibrium. Consequently, the total poten-
tial energy of the normal aorta remains unchanged, while 
the total potential energy of the dissected aorta decreases 
significantly. This intensifies the reduction in total potential 
energy difference, leading to increased G.

Considering the strain stiffening in soft tissues, we 
see how various factors affect G when using two param-
eters–Gent’s material model in Fig. 4. Figure 4a shows how 
the strain-stiffening parameter Jm affects the G along the 
longitudinal direction. With a decrease in the maximum 
allowed strain Jm , G decreases in magnitude. G predicted 
from a Neo-Hookean material model is significantly higher 
than the one indicated with Gent’s model, which has a strain-
stiffening effect. As we increase the Jm to a very high num-
ber, the G indicated by the Gent model reaches the value 
predicted by the Neo-Hookean material model. The mate-
rial has significant strain energy at relatively lower stretch 
values with a higher strain-stiffening effect (i.e., lower Jm 
). Consider a specific pressure value; the stretch needed to 
achieve equilibrium at this pressure will be lower when Jm is 
lower. This leads to a reduced deformed area, decreasing the 
potential energy of pressure, but the strain energy will not 
decrease by the same extent. This reduces the magnitude of 

Fig. 4  Longitudinal tear propagation with strain stiffening: Gent 
hyperelastic material: a Energy release rate versus Pressure with var-
ying J

m
 at �lim = 30◦ , H2 /R = 0.2, and H1/H2 = 0.5. b Energy release 

rate versus Pressure with varying thickness ( H2∕R ) at J
m
= 1 , �lim 

= 30◦ , and H1/H2 = 0.5. c Energy release rate versus Pressure with 
varying tear depth(H1∕H2 ) at J

m
= 1 , �lim = 30◦ , and H2 /R = 0.2. d 

Energy release rate versus Crack angle ( �lim ) with varying pressure at 
J
m
= 1 , H2 /R = 0.2, and H1/H2 = 0.5
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total potential energy, reducing G for a lower Jm . Figures 4b 
and 4c correspond to the plots of G versus pressure by var-
ying the TLWT and FLWT, respectively, with Jm = 1. In 
Gent’s model, when Jm = 1, the variation of G with TLWT-
to-radius ratio is relatively minor, which has notably affected 
the Neo-Hookean model. This impact is due to strain stiff-
ening, which causes the membrane to experience reduced 
stretching in both normal and dissected aorta. As a result, 
the difference between UI and UII diminishes, which does not 
vary significantly with H2∕R . While we still notice a trend 
akin to the Neo-Hookean material scenario, the influence of 
the TLWT-to-radius ratio has been substantially attenuated. 
The reduction in G value given by the Neo-Hookean model 
to Gent’s model is more pronounced when the TLWT-to-
radius ratio is lower. Conversely, the effect of tear depth 
remains significant, albeit with reduced magnitude, com-
pared to the Neo-Hookean case. Referring to our discussion 
for Fig. 3b, when the H1∕H2 is lower, the total potential 
energy for dissected aorta is significantly lower than that of 
the normal aorta, resulting in a higher G. Due to the mate-
rial’s strain-stiffening characteristic, the stretch reduction is 
more prominent, thus reducing the change of the total poten-
tial energy in the presence of a crack as H1∕H2 decreases. 
Although the trend still demonstrates a notably higher G 
for thinner false lumen, this impact is not as pronounced as 
in the Neo-Hookean material case. Figure 4d describes the 
variation of G the crack angle ( �lim ) at different pressure 
levels. Initially, when the crack angle is minimal, G is at 
its highest. As �lim increases, G gradually decreases until 
it reaches a nearly constant value. Subsequently, when the 
crack angle further increases, G rises again. At a given pres-
sure, the variation in G with crack angle primarily depends 
on the total potential energy of the dissected aortic section 
and the crack length because the total potential energy of the 
normal aortic section remains constant. As the crack angle 
increases, both the total strain energy and the deformed area 
increase, leading to a decrease in the total potential energy 
of the dissected aortic section. With the widening of the 
crack at increased angles, there is a notable increase in the 
disparity between the total potential energy of the dissected 
and normal aortic sections. Because both the difference in 
total potential energy and crack length increase, albeit at 
different rates, the plot of G versus crack angle exhibits a 
non-monotonic pattern.

2.2  Circumferential tear propagation

Figure 5 shows the impact of various parameters on the G 
along the circumferential direction considering the strain-
stiffening effect (the results of G in the circumferential 
direction for Neo-Hookean material are given in Fig. 9). In 
Fig. 5a, we observe the effect of strain-stiffening parameter 
Jm on G along the circumferential direction. Figures 5b and 

5c correspond to the plots of G versus pressure by varying 
the TLWT and FLWT, respectively, with Jm = 1. Figures 5a, 
5b, and 5c are plotted for crack angle = 30◦ (initial state). 
Similar to the results in longitudinal tear propagation, G 
for circumferential tear propagation increases with Jm and 
decreases with increasing H2∕R and H1∕H2 . In Figure 5a, we 
see that for very high Jm , i.e., approaching the Neo-Hookean 
model (Fig. 9), the G predicted for the circumferential direc-
tion is higher than for the longitudinal direction counterpart. 
However, G is slightly lesser for stiffer material with low Jm 
in the circumferential direction than along the longitudinal 
direction. Figures 5b and 5c look very similar to their coun-
terparts from longitudinal crack propagation (Figs. 4b and 
4c), with the only difference being slightly lower in magni-
tude. With increasing H2∕R , the difference in total potential 
energy due to circumferential tear propagation decreases 
due to reduced stretching, although this change is minimal. 
When the H1∕H2 is lower, it leads to greater stretching in the 
false lumen wall as the crack grows circumferentially, having 
a greater difference between UI and UII . As the H1∕H2 ratio 
increases, the total potential energy difference decreases, 
thus reducing the G. Figure 5d shows the G versus crack 
angle plot at different pressures. The energy release rate 
monotonically increases with the crack angle ( �lim ) and has 
a steeper slope at higher pressures. As discussed earlier, with 
the increase in crack angle, the magnitude of total poten-
tial energy increases, and so does its difference for adjacent 
crack angles, but the increase in crack length is fixed, result-
ing in the monotonic rise of G as the crack widens along the 
circumferential direction.

2.3  Effect of anisotropy

Using the HGO material model, we investigated the effect 
of anisotropy and fiber stiffness by varying K1 and K2 
parameters, and their corresponding energy release rate 
vs. pressure plots are shown in Fig. 6. Figure 6a and b 
corresponds to the variation of energy release rate with 
independently changing K1∕� and K2 , respectively, for the 
longitudinal propagation of tear. Figure 6c and d shows the 
G versus pressure plots with the variation of K1∕� and K2 
when the tear grows circumferentially. Through numeri-
cal simulations and experimental data, Huh et al. (2019) 
reported significant variations in the values of � , K1 , and 
K2 across different age groups. In our study, we opted for 
a representative value of K2 that is the same order of mag-
nitude as the reported values when varying K1∕� and vice 
versa. We observe that when the exponential coefficient 
value of K2 is low, the energy release rate predicted by the 
HGO model approaches that of the Neo-Hookean model, 
both in longitudinal and circumferential directions, for a 
lower initial fiber modulus ( K1 ) value. We observe that as 
K1∕� increases, G decreases, and this reduction with an 
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increase in initial fiber modulus is greater for the longitu-
dinal tear propagation than the circumferential tear propa-
gation. Looking at the effect of the exponential coefficient 
K2 , we see that the energy release rate decreases with the 
increase in the K2 value for a considerable value of K1∕� . 
As the K2 increases, the stiffness of the fibers increases 
drastically at higher pressures, reducing the deforma-
tion and strain energy, resulting in lower total potential 
energy, thereby decreasing the energy release rate. This 
effect is similar to that of strain-stiffening parameter Jm in 
the Gent model. Both these parameters increase the stiff-
ness at higher material stretch and limit the strains. The 
effect of tear depth and true lumen thickness is akin to that 
described by Gent’s model, wherein reducing thickness or 
increasing tear depth amplifies the energy release rate at 
chosen K1∕� and K2 values. However, the impact of the 
former is considerably less pronounced than the latter’s. 
The results of these trends are shown in Fig. 10

3  Discussion

The primary challenge in modeling aortic dissection frac-
tures lies in individuals’ variability of material properties, 
geometry, and crack types. Statistical inferences by Paru-
churi et al. (2015) and Keisler and Carter (2015) support the 
notion that the risk of abdominal aortic dissection increases 
when the aorta’s diameter exceeds 4.5–5 cm, with a signifi-
cant risk reduction observed for diameters below 3.5 cm. 
Although there exists a correlation between aortic dissec-
tion risk and aortic diameter, it is important to note that 
this relationship is not entirely independent due to variations 
in the aortic diameter threshold across different age groups 
(Grimshaw and Thompson 1997; Boudoulas et al. 2018; 
Tadic et al. 2022). Additionally, the risk of aortic dissection 
inversely correlates with false lumen wall thickness (Shi-
ran et al. 2012; Van Puyvelde et al. 2015). While the mean 
diameter and thickness of the aorta generally increase with 

Fig. 5  Circumferential tear propagation with strain stiffening: Gent 
hyperelastic material: a Energy release rate versus Pressure with var-
ying J

m
 at �lim = 30◦ , H2 /R = 0.2, and H1/H2 = 0.5. b Energy release 

rate versus Pressure with varying thickness(H2∕R ) at J
m
= 1 , �lim 

= 30◦ , and H1/H2 = 0.5. c Energy release rate versus Pressure with 
varying tear depth(H1∕H2 ) at J

m
= 1 , �lim = 30◦ , and H2 /R = 0.2. d 

Energy release rate versus crack angle ( �lim ) with varying pressure at 
J
m
= 1 , H2 /R = 0.2, and H1/H2 = 0.5
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age, the aorta stiffens with aging (Liu et al. 2015; Komutrat-
tananont et al. 2019), necessitating consideration of all these 
changes in predicting aortic dissection.

In our study, we employed a semi-analytical approach 
to investigate how various factors influence the spread of 
aortic dissection. Our findings indicate that when we model 
the aorta as an isotropic and anisotropic solid, the energy 
release rate (G) increases with blood pressure, tear depth, 
and a decrease in the thickness of the lumen wall relative to 
the aorta radius. We observed that, under similar geometri-
cal conditions, the predicted G from our model decreases 
as the aorta becomes stiffer. This finding is consistent with 
clinical observations of Grimshaw and Thompson (1997), 
suggesting a higher risk of aortic dissection for a specific 
diameter in a 60-year-old age group compared to a 75-year-
old age group due to increased aortic stiffness. Furthermore, 
when modeling the aorta as a Gent hyperelastic material, as 
the crack angle increases, the energy release rate decreases 

along the longitudinal direction but increases along the cir-
cumferential direction.

To have a quantitative insight, we establish a correla-
tion between clinical data on the fracture energy ( Γ ) of the 
abdominal aorta and the energy release rate (G) predicted 
by using Gent hyperelastic model, with Jm = 1 (Horny et al. 
2009). Sommer et al. (2008) reported the dissection energy 
value to be 76 J∕m2 in longitudinal and 51 J∕m2 in cir-
cumferential directions for an effective specimen radius of 
20 mm. For the abdominal aorta, the effective shear modulus 
is approximately 157 kPa (Petterson et al. 2021). Using these 
material parameters, the computed Γ∕�R is about 0.024 and 
0.016 in the longitudinal and circumferential directions, 
respectively. Based on the results shown in Figs. 4c and 5c, 
we constructed a safety plot using energy release rate con-
tours by varying tear depth and blood pressure, as depicted 
in Fig. 7. The analytical model suggests that G exceeds Γ , 
indicating favorable conditions for tear propagation in both 

Fig. 6  Energy release rate versus Pressure plots using anisotropic 
HGO model at �lim = 30◦ , H2 /R = 0.2, and H1/H2 = 0.5 for longitu-
dinal crack propagation: a Varying K1∕� when K2 = 1. b Varying K2 
when K1∕� = 5e – 2. Energy release rate versus Pressure plots at �lim 

= 30◦ , H2 /R = 0.2, and H1/H2 = 0.5 for circumferential crack propa-
gation. c Varying K1∕� when K2 = 1. d Varying K2 when K1∕� = 
5e – 2
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the longitudinal and circumferential directions under spe-
cific geometric configurations (region shaded in gray). When 
blood pressure is high ( P∕� ≥ 0.12), G surpasses Γ even 
with small tear depths; however, at lower pressures, the tear 
depth must be sufficiently large for G to exceed Γ . Similarly, 
varying the stiffness parameter ( Jm ) and other geometrical 
parameters can identify favorable conditions for tear propa-
gation, although the minimal variation of energy release 
rate with those parameters precludes a detailed discussion 
of those results. Introducing an anisotropic HGO model 
could result in slightly different safety profiles than those 
obtained from an Isotropic Gent material model. However, 
obtaining representative fit values for � , K1 , and K2 presents 
a challenge due to their inconsistency in the literature. None-
theless, we believe this variability would not significantly 
impact the overall trends observed.

However, the current model has limitations. We simpli-
fied the geometry of the aorta, assumed plane strain defor-
mation while neglecting axial stretch, and did not account 
for the effects of hemodynamics. Our model does not con-
sider the influence of residual stresses. Despite these limita-
tions, our model provides valuable insights into the general 
patterns of fracture propagation in aortic dissection.

4  Conclusion

In this paper, we have developed a fracture mechanics model 
to investigate the energy release rate of aortic dissection 
tear propagation in both the longitudinal and circumferen-
tial directions. The model incorporates various geometrical 
and material parameters, accounting for individual differ-
ences. Although we have made a membrane assumption 

for the dissected aortic wall, the results from the model 
closely align with FEA simulations that do not rely on such 
assumptions. Furthermore, our findings are in good agree-
ment with clinical observations. We have demonstrated that 
the energy release rate increases with tear depth and reduc-
tion in aortic wall thickness, while it diminishes with aortic 
stiffening. The impact of the crack length is non-monotonic 
and is contingent upon the crack propagation direction. Our 
findings provide valuable insights indicating that individuals 
with hypertension, i.e., when blood pressure is high, face an 
increased risk of aortic dissection. Furthermore, even when 
blood pressure is within the normal range, aortic dissec-
tion remains a potential occurrence, contingent upon spe-
cific combinations of geometrical and material properties. 
While our current model is simplistic and entails several 
assumptions, we can enhance its realism in future works by 
accounting for the effects of axial stretch.

Appendix A Equilibrium

A.1 Normal aortic section

In the absence of any crack, the section of the normal aorta 
is axisymmetric, with pressure acting along the inner wall 
in the radial direction. So, we only have the deformation 
variation along the thickness. The stretches in the aortic wall 
are given as:

We know that �� = r∕R , where r is the deformed mate-
rial position, and R is the initial material position. We 

�1 = �� = �, �2 = �r = 1∕� and �3 = �z = 1

Fig. 7  Safety plot for aortic dissection, with the gray shaded region 
indicating favorability for tear propagation. a Contour plot of energy 
release rates by varying pressure and tear depth for longitudinal tear 

propagation, when �lim = 30◦ , H2 /R = 0.2, and J
m
 = 1. b Contour plot 

of energy release rates by varying pressure and tear depth for circum-
ferential tear propagation, when �lim = 30◦ , H2 /R = 0.2, and J

m
 = 1
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can relate r and R using the incompressibility condition 
�(r2 − r2

in
) = �(R2 − R2

in
) , where Rin and rin are the radii of 

the inner aortic wall in the undeformed state and after defor-
mation. This helps us define the radial deformation r of any 
material point in terms of a single variable rin and initial 
radius R. For an incompressible material, the stresses and 
strain energy density function are related as

In the axisymmetric case, we have the mechanical equilib-
rium equation in cylindrical coordinates in the radial direc-
tion, given as:

Integrating over the thickness, we get:

Using (A1) in (A3) and the corresponding strain energy den-
sity function from 2.2, we get an integral equation relating 
blood pressure ’P’ and rin , which can be solved to get the 
deformation field along the thickness. A simple algorithm 
for finding the deformation and potential energy of normal 
aorta is given in Algorithm 1
Algorithm 1  Calculate Potential energy U for normal aorta

(A1)�rr − ��� = �r
�W

��r
− ��

�W

���

(A2)
��rr

�r
+

�rr − ���

r
= 0.

(A3)P = −∫
Rout

Rin

R
�rr − ���

r2
dR

A.2 Dissected aortic section

For the dissected section of the aorta, because of the pres-
ence of a crack, the section of the aorta is not axisymmetric 
but has symmetry along the y-axis. For simplicity, we model 
the aortic wall with crack as a thin single-layer membrane 
undergoing homogeneous deformation along the thickness 
of the aortic wall.

Consider a small element of length R d� at an angle ‘ � ’ 
as shown in Fig. 8a. After deformation, its length increases 
to dL, and the stretch of the element is given as:

The deformed position of the element can be related to its 
stretch as follows:

(A4)� =
dL

Rd�

Fig. 8  Depiction of aortic 
membrane used to model the 
dissected section of aorta: a 
Stress-free (undeformed) state. 
b Deformed state
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Fig. 9  Circumferential tear propagation: Neo-Hookean material: (a) Energy release rate vs. Pressure with varying thickness(H2 ) at �lim = 30◦ and 
H1/H2 = 0.5. (b) Energy release rate vs. Pressure with varying tear depth(H1/H2 ) at �lim = 30◦ and H2 /R = 0.2

Fig. 10  Energy release rate vs. Pressure plots using anisotropic HGO 
model at �lim = 30◦ , K1∕� = 5e-2, and K2 = 10 for longitudinal crack 
propagation: (a) Varying thickness ( H2/R) and H1/H2 = 0.5. (b) Vary-
ing tear depth ( H1/H2 ) and H2 /R = 0.2. Energy release rate vs. Pres-

sure plots using anisotropic HGO model at �lim = 30◦ , K1∕� = 5e-2, 
and K2 = 10 for circumferential crack propagation: (a) Varying thick-
ness ( H2/R) and H1/H2 = 0.5. (b) Varying tear depth(H1/H2 ) and H2 /R 
= 0.2
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The stretches in the element is given as �1 = � , �2 = 1∕� , 
and �3 = �z = 1 , and the membrane stress (S) is given by:

For the small element after deformation (Fig. 8b), balancing 
force along the x-axis gives:

Balancing force along the z-axis gives us:

Solving (A7) and (A8) gives:

The model has symmetry along the y-axis, thus we use the 
following boundary conditions:

For a smooth transition of membrane thickness from TLWT 
( H2 ) to FLWT ( H1 ) in the false lumen, we assume the thick-
ness function to be as follows:

here, C = 
(
�−(�lim+

1

2

◦

)
)2

(1◦)2
 . By solving the system of ODEs given 

in A5, A9, and A10 for � , � , x, and y, we get the stretch and 
deformation field of the membrane. Algorithm 2 describes 
how to solve the ODEs and calculate U for the dissected 
aorta.
Algorithm 2  Calculate potential energy U for dissected aorta

(A5)

dx

d�
= −R� sin �

dy

d�
= R� cos �

(A6)S =
�W

��

(A7)P�R cos � −
d

d�
(SH sin �) = 0

(A8)P�R sin � +
d

d�
(SH cos �) = 0

(A9)
d�

d�
=

P�R

SH

(A10)
d�

d�
=

−S
�H

��

H
�S

��

� = −90◦ @� = −90◦

� = 90◦ @� = 90◦

x = 0 @� = 90◦, 90◦

H(𝛼) =

⎧⎪⎨⎪⎩

H2 − 90◦ < 𝛼 < 𝛼lim −
1

2

◦

H1 + (H2 − H1)C 𝛼lim −
1

2

◦ ≤ 𝛼 ≤ 𝛼lim +
1

2

◦

H1 𝛼lim +
1

2

◦

< 𝛼 < 90◦
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