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Abbreviations:  LOX,  lipoxygenase;  15-LOX-1,  human reticulocyte  15-lipoxygenase-1;  sLO-1,

soybean  lipoxygenase-1;  5-LOX,  leukocyte  5-lipoxygenase;  12-LOX,  human  platelet  12-

lipoxygenase;  GP,  glutathione  peroxidase;  AA,  arachidonic  acid;  HETE,  hydoxy-

eicosatetraenoic  acid;  HpETE,  hydroperoxy-eicosatetraenoic  acid;  diHETEs,  dihydroxy-

eicosatetraenoic acids; 5-HETE, 5-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic acid; 5-HpETE, 5-

hydroperoxy-6E,8Z,11Z,14Z-eicosatetraenoic acid; 12-HpETE, 12-hydroperoxy-5Z,8Z,11E,14Z-

eicosatetraenoic acid; 15-HpETE, 15-hydroperoxy-5Z,8Z,11Z,13E-eicosatetraenoic acid; 5,15-

HETE,  5S,15S-dihydroxy-6E,8Z,11Z,13E-eicosatetraenoic  acid;  5,15-diHpETE,  5,15-

dihydroperoxy-6E,8Z,11Z,13E-eicosatetraenoic  acid;  5,6-diHETE,  5S,6R-dihydroxy-

7E,9E,11Z,14Z-eicosatetraenoic acid; LTA4, 5S-trans-5,6-oxido-7E,9E,11Z,14Z-eicosatetraenoic

acid;  LTB4,  5S,12R-dihydroxy-6Z,8E,10E,14Z-eicosatetraenoic  acid;  LipoxinA4 (LXA4),  5S,6R,

15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid; LipoxinB4  (LXB4), 5S,14R,15S-trihydroxy-

6E,8Z,10E,12E-eicosatetraenoic acid.
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Abstract

The reaction of 5,15-diHpETE with human 5-lipoxygenase (LOX), human platelet 
12-LOX and human reticulocyte 15-LOX-1 was investigated to determine the reactivity 
and relative rates of producing lipoxins (LXs). 5-LOX does not react with 5,15-diHpETE,
although it can produce LXA4 when 15-HpETE is the substrate. In contrast, both 12-
LOX and 15-LOX-1 react with 5,15-diHpETE, forming specifically LXB4. For 12-LOX and 
5,15-diHpETE, the kinetic parameters are kcat = 0.17 s-1 and kcat/KM = 0.011 μM-1s-1 
(106-fold and 1600-fold lower than for 12-LOX oxygenation of AA, respectively). On the
other hand, for 15-LOX-1 the equivalent parameters are kcat = 4.6 s-1 and kcat/KM = 0.21
μM-1s-1 (3-fold higher and similar to that for 12-HpETE formation by 15-LOX-1 from 
AA, respectively). This contrasts with the complete lack of reaction of 15-LOX-2 with 
5,15-diHpETE (Biochemistry 55, 2832-2840, 2016). Our data indicate that 12-LOX is 
markedly inferior to 15-LOX-1 in catalyzing the production of LXB4 from 5,15-diHpETE. 
Platelet aggregation was inhibited by the addition of 5,15-diHpETE, with an IC50 of 1.3
μM, however, LXB4 did not significantly inhibit collagen-mediated platelet activation up
to 10 μM. In summary, LXB4 is the primary product of 12-LOX and 15-LOX-1 catalysis if
5,15-diHpETE is the substrate, with 15-LOX-1 being 20-fold more efficient than 12-LOX.
LXA4 is the primary product with 5-LOX, but only if 15-HpETE is the substrate. 
Approximately equal proportions of LXA4 and LXB4 are produced by 12-LOX, but only if 
LTA4 is the substrate, as described previously (Biochimica et Biophysica Acta 1133, 
223-234, 1992).
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Introduction: 

Lipoxins (LXs) were discovered in 19841,  2 and are a class of  specialized pro-

resolving mediators (SPMs) derived from arachidonic acid (AA), which are involved in

inflammation  resolution.  The  first  two  LXs  discovered  were  lipoxinA4 (LXA4)  and

lipoxinB4 (LXB4), with the epi-lipoxins, 15-epi-LXA4 and 15-epi-LXB4, being discovered

later.3 The  initial  step  of  acute  inflammation  is  to  recruit  macrophages  with  the

generation  of  leukotrienes  (LTs)  and  hydroxyeicosatetraenoic  acids  (HETEs).

Eventually, SPMs, such as LXs, are generated via transcellular pathways to reverse the

inflammatory response and initiate cellular repair.4 Researchers have investigated the

biosynthetic  pathway  for  the  production  of  LXs  and  the  generally  accepted

biosynthesis of LXs requires two distinct enzymatic reactions with AA. The first step is

the oxygenation of AA to form a hydroperoxide, which is then converted to an epoxide.

This  can  be  accomplished  by  either  5-LOX  or  15-LOX,  generating  either  the  5,6-

epoxide or the 14,15-epoxide,  respectively.  The second step is oxygenation at the

other end of the molecule from the epoxide, adding a hydroperoxide moiety. There is

then  a  subsequent  hydrolysis  of  the  epoxide  and reduction  of  the  hydroperoxide,

creating  either  the  5,6,15-trihydroxy-  or  the  5,14,15-trihydroxy-eicosatetraenoate,

depending on the initiating LOX isozyme (Figure 1).5, 6 The specific pathway depends

on  the  cell  type  involved,  either  with  one  cell  type  that  has  both  LOXs,  or  a

transcellular  biosynthetic  pathway,  which  involves  the  transfer  of  an  intermediate

between  two  cell  types.  Another  biosynthetic  pathway  for  LXs  involves  5-LOX  in

neutrophils and 12-LOX in platelets. The hypothesis is that 5-LOX generates LTA4 in

the neutrophil, which is then transferred to the platelet, where 12-LOX subsequently

abstracts a hydrogen atom from C13 of LTA4, with oxygen attacking C15. The epoxide

ring is subsequently opened by a hydrolase, generating a delocalized cation, which is
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attacked by water, generating either LXA4 with a C6 attack or LXB4 with a C14 attack

(Figure 1).7, 8

Another pathway to making LXs, involves 5,15-diHpETE as an intermediate. A

hydrogen  atom is  abstracted  from C10  of  5,15-diHpETE,  generating  a  delocalized

radical, which can convert either the C5 hydroperoxide or the C15 hydroperoxide to an

epoxide (5,6- or 14,15-epoxide). Subsequent hydrolysis of the expoxide and reduction

of the hydroperoxide generates either the 5,6,15-trihydroxy- or the 5,14,15-trihydroxy-

eicosatetraenoates. Like the cation intermediate discussed above, both LXA4 and LXB4

can be generated in  this  manner  since  the  resulting  radical  is  delocalized  over  9

carbons due to the full conjugation of the tetraene system (Figure 1).9 The reactivity of

this  chemical  step  is  enhanced  by  the  fact  that  5,15-diHpETE  is  an  “activated”

 

Figure 1: Biosynthetic pathways for LX production. The carbon whose hydrogen atom is abstracted is 
listed next to the LOX isozyme, such as C7, C10 or C13. For the conversion of 5,15-DiHpETE to the two lipoxins, 
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intermediate.  The energy required  to  abstract  the  C10 hydrogen atom from 5,15-

diHpETE  is  markedly  lower  than  the  hydrogen  atom  from  AA  or  5-

hydroperoxyeicosatetraenoic  acid  (5-HpETE),  due  to  the  greater  conjugation  of  its

intermediate,  9-carbons  for  5,15-diHpETE  versus  5-carbons  for  AA.9 Therefore,  the

ease  of  hydrogen  atom abstraction  from 5,15-diHpETE  could  enhance  the  rate  of

either LXA4 or LXB4 biosynthesis.

This last biosynthetic pathway is supported by fact that the LX intermediate,

5,15-diHpETE,  is  observed  in  a  variety  of  biological  samples.  One  of  the  earliest

observations of 5,15-diHpETE was in activated porcine leukocytes, when either AA or

15-HpETE were added as precursors.10 5,15-diHpETE was also observed with isolated

porcine 5-LOX, which reacted with 15-HpETE, at a 30% rate of that with AA.11 5,15-

diHpETE could then be further modified to LXB4 with purified rabbit reticulocyte 15-

LOX-1 (r15-LOX-1), presumably due to an epoxide intermediate.12 r15-LOX-1 could also

convert 15-HETE to LXB4, which was due to double oxygenation at C5 and C15, as

evidenced by labeled O2 being found on both carbons.12, 13 Porcine leukocyte 12-LOX

also converts 5,15-diHpETE to LXB4,  which was deduced by the observation of four

isomers of LXB4, due to the non-enzymatic hydrolysis of 5-OH,14,15-LTA4.14 LXB4 was

also  produced  by incubation  of  15-HpETE with  human leukocytes,  with  labeled O2

incorporating  into  only  C5,  and  not  C14,  indicating  the  presence  of  a  hydrolyzed

14,15-epoxide.15 5,15-diHpETE can also be generated by the addition of AA to human

eosinophils, where both 15-LOX-1 and 5-LOX are present.16

Previously, we have shown that human epithelial 15-LOX-2 does not react with

5,15-diHpETE and thus it is not implicated in producing LXs though this intermediate.9

In the present study, we expand this investigation into the biosynthetic pathway of LXs

generation from 5,15-diHpETE by comparing the relative activities of human 5-LOX,
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human  platelet  12-LOX  and  human  reticulocyte  15-LOX-1.  These  results  will  help

establish a better understanding of the relative roles of these three LOX isozyme in

the biosynthesis of LXs from 5,15-diHpETE. 

Methods

Chemicals. The lipid mass spectrometry standards, 5S,15S-dihydroxy-6E,8Z,11Z,13E-

eicosatetraenoic  acid  (5,15-diHETE),  5S,6R,15S-trihydroxy-7E,9E,11Z,13E-

eicosatetraenoic  acid  (LipoxinA4 (LXA4)),  and  5S,14R,15S-trihydroxy-6E,8Z,10E,12E-

eicosatetraenoic  acid  (LipoxinB4 (LXB4)),  were  purchased  from  Cayman  Chemical.

Arachidonic acid (AA) was purchased from Nu Chek Prep, Inc. and used to synthesize

5S-hydroxy-6E,8Z,11Z,14Z-eicosatetraenoic  acid  (5-HETE),  13S-hydrperoxy-9Z,11E-

octadecadienoic  acid  (13-HPODE),  5S,15S-hydroxy-6E,8Z,11Z,13E-eicosatetraenoic

acid  (5,15-diHETE),  5S-hydro-15S-peroxy-6E,8Z,11Z,13E-eicosatetraenoic  acid

(5OH,15-HpETE),  and  5S,15S-dihydroperoxy-6E,8Z,11Z,13E-eicosatetraenoic  acid

(5,15-diHpETE). Synthesis of 5-HETE, 13HPODE, and 5,15-diHpETE were performed as

previously  described  with  5-LOX  and  AA,  15-LOX-1  and  LA,  15-HPETE  and  5-LOX,

respectively.9,  17
,
18 The  synthesis  of  5,15-diHETE  was  performed  as  done  for  5,15-

diHpETE, with the exception that trimethylphosphite was added in 2:1 molar excess as

a reductant prior  to the HPLC purification.  5OH,15-HpETE was synthesized from 5-

HETE as follows. 60μM of 5-HETE was reacted in 1 L of 100mM NaBorate, pH 9.2 and 4

mg of lipoxygenase from soybean (Sigma). This reaction was monitored at 254 nm to

completion, quenched with 1% (v/v) glacial acetic acid, extracted with 1 L of DCM, and

evaporated to  dryness.  The 5OH,15-HpETE  was  then purified  isocratically  via  high

performance liquid chromatography (HPLC) on a Higgins Haisil Semi-preparative (5μm,

250mm x 10mm) C18 column with 45:55 of 99.9% acetonitrile, 0.1% acetic acid and
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99.9% water, 0.1% acetic acid. Purity was assessed via liquid chromatography-mass

spectrometry to be greater than 90%.  

Expression and Purification of 15-LOX-1, 12-LOX, and 5-LOX.  Overexpression

and  purification  of  wild-type  human  reticulocyte  15-lipoxygenase-1  (15-LOX-1),

platelet  12-lipoxygenase  (12-LOX),  and  5-lipoxygenase  (5-LOX)  were  performed  as

previously described.17, 19, 20 The purity of 15-LOX-1 and 12-LOX were assessed by SDS

gel  to  be  greater  than  85%,  and  metal  content  was  assessed  on  a  Finnigan

inductively-coupled  plasma-mass  spectrometer  (ICP-MS),  via  comparison  with  iron

standard solution. Cobalt-EDTA was used as an internal standard. 5-LOX was isolated

as an impure ammonium sulfate precipitant from E. coli expression due to its dramatic

loss of activity upon isolation.

Product  Analysis  of  LOX  isozyme  reactions  with  5,15-diHpETE,  5-OH,15-

HpETE, and 5,15-diHETE. 15-LOX-1 (120 nM), 12-LOX (250 nM), or 5-LOX (25mg of

ammonium sulfate precipitated protein) was reacted in 12 mL of 25 mM HEPES, pH

7.5, at ambient temperature, with 10 μM of oxylipin (5,15-diHpETE, 5OH,15-HpETE, or

5,15-diHETE) for one hour and quenched with 0.5% glacial acetic acid and 5 μM of 7-

hydroxy-docosahexaenoic  acid  as  an  extraction  standard.  3  μM of  13-HPODE  was

added  to  the  reactions  with  5,15-diHETE  to  activate  iron  as  described  in.21 Each

quenched reactions was extracted with 12 mL of DCM, resuspended in 1 mL methanol

and split 2:1, with the 30% portion being reduced with trimethylphosphite, while the

other 60% was left unreduced. The samples were then evaporated under a stream of

N2 to dryness, reconstituted in 50  μL of methanol, and further diluted with 50  μL of

0.1% formic  acid in  water  prior  to UPLC-MS/MS analysis.  Control  reactions  without

enzymes were also conducted and used for background subtraction, ensuring oxylipin

degradation products were removed from analysis. Chromatographic separation was
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performed on a Dionex UltiMate 3000 UHPLC with a C18 column (Phenomenex Kinetex,

1.7 m, 150mm x 2.1mm). The autosampler was held at 4o C and injection volume was

90 uL. Mobile phase A consisted of water with 0.1% (v/v) formic acid and mobile phase

B was acetonitrile  with  0.1% formic  acid.  Flow rate was 0.400 mL/min.  The initial

condition (30% B) was maintained for 2.3 minutes. Mobile phase B was then ramped

to 65% over 28.7 minutes, held at 65% for 1 minute, ramped to 100% over 0.1 min,

held at 100% for 7 minutes, and finally returned to 30% to equilibrate for 7 minutes.

The chromatography system was coupled to a Dionex Ultimate-3000 DAD and Velos

Pro linear ion trap (Thermo Scientific) for UV and mass spectrum analysis. Analytes

were ionized via heated electrospray ionization with -4.0 kV spray voltage, 60, 10, and

0 arbitrary units for sheath, auxiliary and sweep gas, respectively. The RF amplitude of

the S-Lens was 49%, and the probe and capillary temperatures were 50o C and 380o C,

respectively.  All  analyses  were  performed  in  negative  ionization  mode  at  Normal

resolution  setting.  MS2 was  performed  at  35%  normalized  collision  energy  in  a

targeted manner with a mass list containing the following m/z ratios  + 0.1:  319.2,

335.2, 343.2, 351.2, 367.2, 383.2, and 399.2. Products were identified by matching

retention times, UV spectra and fragmentation patterns to known standards. Or in the

cases  where  MS  standards  were  not  available,  structures  were  deduced  from

comparison to known and theoretical fragments.

Steady State Kinetics of 5-LOX, 12-LOX and 15-LOX-1 with 5,15-diHpETE, 12-

LOX with 5,15-diHETE. 15-LOX-1 and 5-LOX reactions were performed, at ambient

temperature, in a 1 cm2 quartz cuvette containing 2 mL of 25 mM HEPES, pH 7.5 with

substrate (AA, 15HpETE, or 5,15-diHpETE). 12-LOX reactions were also performed in a

1 cm2  quartz  cuvette  containing 2  mL of  25 mM HEPES with  substrate  (AA,  5,15-

diHpETE,  or 5,15-diHETE),  and the pH was 8.0.  Additionally,  12-LOX reactions with
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5,15-diHETE contained 3 μM 13-HPODE and 5-LOX reactions contained 200 M ATP. AA

concentrations were varied from 0-29 μM, 15-HpETE concentrations were varied from

0-80  M, 5,15-diHpETE concentrations  were varied from 0-45  μM, and 5,15-diHETE

concentrations were varied from 0-130 μM. 5-LOX reactions were compared using 10

M substrate for AA, 15-HpETE, and 5,15-diHpETE with product formation per time

analyzed  on  UV-Vis  as  well  as  LC/MS.  Concentration  of  AA  was  determined  by

measuring the amount of 15-HpETE produced from complete reaction with soybean

lipoxygenase-1  (sLO-1).  Concentrations  of  5,15-diHpETE  and  5,15-diHETE  were

determined by absorbance at 247 nm. Reactions were initiated by the addition 15-

LOX-1  (120  nM)  or  12-LOX  (250  nM)  or  5-LOX  (approx.  200  nM  of  crude  AS

preparation)  and  were  monitored  on  a  Perkin-Elmer  Lambda  45  UV/VIS

spectrophotometer. Product formation was determined by the change in absorbance

at 234 nm for  15-HpETE/5HpETE (ε234nm = 25,000 M-1 cm-1),  5,15-diHpETE (ε254nm =

21,90000 M-1 cm-1),9 and 302 nm for lipoxins (ε234nm = 50,000 M-1 cm-1). KaleidaGraph

(Synergy)  was used to fit  initial  rates (at less than 20% turnover),  as well  as the

second order derivatives (kcat/KM) to the Michaelis-Menten equation for the calculation

of kinetic parameters.

5,15-diHpETE  and  LXB4 titration  into  human  platelets.  The  University  of

Michigan Institutional Review Board approved all research involving human volunteers.

Washed human platelets (250 µL at 3.0 x108 platelets/mL) were dispensed into glass

cuvettes and incubated with 0-10 µM of either LXB4 or 5,15-diHpETE for 10 minutes at

37°C.  Oxylipin-treated platelets  were  then stimulated with  0.25  µg/mL of  collagen

(Chrono-log),  stirring  at  1100  rpm  and  37°C,  in  a  Chrono-log  Model  700D  lumi-

aggregometer and platelet aggregation was recorded for six minutes.
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In  order  to  determine  the  biosynthetic  products  of  5,15-diHpETE  ex  vivo,

platelets were isolated from human whole blood via serial centrifugation and adjusted

to 3.0 x 108 platelets/mL in Tyrode’s buffer (10 mM HEPES, 12 mM NaHCO3, 127 mM

NaCl, 5 mM KCl, 0.5 mM NaH2PO4,  1 mM MgCl2,  and 5 mM glucose), as previously

published.22 One ml of platelets was incubated with varying concentrations of 5,15-

diHpETE (0-20 µM) or vehicle (DMSO) for 10 minutes at 37 C, and then the platelets

were  pelleted  by  centrifugation  at  1000  x  g  for  1  minute.  The  supernatant  was

transferred to a fresh tube and snap frozen. Oxylipins were extracted and analyzed via

UPLC-MS/MS  as  described  previously,9 with  the  following  exceptions.  The  m/z

transitions  for  5,15-diHETE,  LTB4-d4,  RvD2-d5,  and  LipoxinB4 were  335.2115,

339.2197, 380.5141, and 351.2221, respectively. 

Results and Discussion

Lipoxin synthesis  from 5,15-diHpETE, 5-OH,15-HpETE, and 5,15-diHETE.  To

study  the  conversion  of  5,15-diHpETE  to  LX  through  product  identification,  5,15-

diHpETE was reacted with human 5-LOX, 12-LOX, and 15-LOX-1. For the reaction of 5-

LOX  with  5,15-diHpETE,  no  activity  was  detected  at  302  nm  (the  absorbance  of

conjugated lipoxins) and LXA4 and LXB4 were both undetected via LC-MS.  This data

indicates  that  5,15-diHpETE  is  a  poor  substrate  for  5-LOX  in  vitro.  In  order  to

determine the relative turnover of 5,15-diHpETE with 5-LOX, the rate of AA, 15-HpETE

and  5,15-diHpETE  were  compared  under  the  same  reaction  conditions.  5-LOX

converted AA to 5-HpETE at 5 ng/sec and 15-HpETE to 5,15-diHpETE at 0.5 ng/sec, but

there was no conversion of 5,15-diHpETE to LXA4 observed (the detection limit of the

experiment is 0.0003 ng/sec). This data indicates that the oxidation reaction of 5-LOX

with 5,15-diHpETE is more than 1700-fold slower than that with 15-HpETE. This was

unexpected  because  5-LOX  abstracts  the  C10  hydrogen  atom  from  5-HpETE  to
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generate leukotriene A4, (LTA4) which is the same hydrogen atom presented by 5,15-

diHpETE. In addition, the hydrogen atom on C10 for 5,15-diHpETE is more reactive

than that of 15-HpETE, due to conjugation,9 making this lack of reactivity even more

noteworthy. However, 5-LOX is able to convert 15-HpETE into  LXA4 at a rate of 0.5

ng/sec. This difference in reactivity of 5,15-diHpETE versus 15-HpETE is most likely

due to a difference in the rate of substrate capture, as defined by Northrop et al.23, 24

Previously, we have shown that the kcat for generating LTA4 is the same when starting

with arachidonic acid (AA) or 5-HpETE. However, the  kcat/KM is 10-fold slower for 5-

HpETE  than  AA,  due  to  a  slow  binding  step.17 We  propose  that  5-LOX’s  lack  of

reactivity with 5,15-diHpETE is due to an even slower binding step for 5,15-diHpETE

relative to 5-HpETE, limiting reactivity completely. We therefore propose that 5-LOX

produces LXA4 from 15-HpETE by generating 5,15-diHpETE in situ and subsequently

generates  LXA4 without  releasing  the  5,15-diHpETE  intermediate,  similar  to  the

mechanism for LTA4 synthesis.

In contrast, both 12-LOX and 15-LOX-1 reacted with 5,15-diHpETE, manifesting

observable  rates  at  302  nm,  which  is  consistent  with  LXs  being  formed.   LC-MS

analysis of the reduced products confirmed that both 12-LOX and 15-LOX-1 made LXB4

(RT = 8.8 min), but not LXA4 (Figure 2, dashed traces). We also observe LXB4 isoforms,
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with the all-trans-LXB4 (RT = 8.1 min), 14S-LXB4-epimer (RT = 8.9 min), and the 14S-

all-trans-LXB4-epimer (RT = 8.2 min). These products are synthesized by the opening

of the epoxide via dehydration, as previously observed with purified rabbit 15-LOX-1

and 15-HpETE as  the substrate.12 However,  some of  these products  could  also  be

formed by the competing reaction, oxygenation. In order to differentiate these two

reaction mechanisms, the reaction products were analyzed without reductant added

during  product  extraction  (Figure  2,  solid  traces).  Both  dehydration  (i.e.  epoxide

formation) and oxygenation require abstraction at C10, with migration of the radical to

C14. Dehydration occurs upon reaction of the radical with the hydroperoxide in an

anti-periplanar orientation, while oxygenation occurs with antarafacial attack of the

radical  by  molecular  oxygen.  Both  reactions  require  the  active  site  ferrous-water

species  to  reduce  the  radical  intermediate  and form the final  product.  Comparing

reduced and un-reduced products  can contribute to differentiating the two sets of

products,  hydroperoxides and alcohols,  produced by oxygenation  and dehydration,

respectively.  Analysis  of  the  data  clearly  demonstrates  that  hydroperoxides  are

present, due to the fact that many of the peaks migrated to shorter retention times

upon reduction. Specifically, the tri-hydroperoxy species (5,14,15-triHpETE, RT = 13.6

min, Figure 2) is  observed, which could only be formed via oxygenation at C14. It

should be noted that while we observe the parent mass of 5,14,15-triHpETE (399 m/z,

hydrogen loss in the negative mode), we also observe the neutral loss of water from

5,14,15-triHpETE (Supplemental  S2),  resulting  in  the most  intense ion  for  5,14,15-

triHpETE at 381 m/z. Additionally,  because there are three hydroperoxide moieties,

multiple  peaks  that  correspond  to  the  loss  of  up  to  three  waters  upon  ionization

(Supplemental S1 & S2) are observed. The additional hydroperoxide peaks correspond

to both oxygenation products, which have lost an oxygen, most likely due to reduction
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during the long reaction time in buffer. These products include: 5-OOH,14-OOH,15-

OOH-triHpETE (RT = 13.7 min), 5-OOH,14-OH,15-OOH-triHETE, 5-OH,14-OOH,15-OOH-

triHETE,  5-OH,14-OH,15-OOH-triHETE,  5-OOH,14-OOH,15-OH-triHETE,  and  5-OH,14-

OOH,15-OH-triHETE.  These  products  exhibit  multiple  peaks,  which  most  likely

correspond not only to the hydroperoxide position in these molecules, but also to the

all-trans,  S-epimers,  and  other  isomers  resulting  from  the  non-enzymatic  epoxide

opening at C14 and C15. The non-enzymatic epoxide opening is also supported by

comparing the ratio of the sum of all-trans-LXB4, 14S-LXB4 and 14S-all-trans-LXB4 to

LXB4 in the reduced samples of 5,15-diHpETE (LxB4 isomers and epimers/LxB4 = 0.91

+ 0.2) and 5,15-diHETE (LxB4 isomers and epimers = 0.19 + 0.02) as substrates with

12-LOX. The dehydration and oxygenation peaks have been quantified, demonstrating

no  preference  for  dehydration  over  oxygenation,  with  12-LOX  having  a

dehydration/oxygenation ratio of 1.3 + 0.2 and 15-LOX-1 having a ratio of 1.2 + 0.2

(Figure 2,  supplemental  S2). Since only LXB4 is  produced by 12-LOX and 15-LOX-1

from 5,15-diHpETE, with it being generated either through oxygenation or dehydration

(i.e. via the epoxide), the data indicates similar LX reactivities for both LOX isozymes.

It should be noted that due to the reactive nature of these di- and tri-hydroperoxides,

the data was scanned for Hock rearrangement decomposition, however, no evidence

was observed for these products.25 

To eliminate the possibility of epoxide generation, 12-LOX and 15-LOX-1 were

reacted with 5,15-diHETE, the reduced form of 5,15-diHpETE, which is incapable of

forming epoxides. 12-LOX reacted with 5,15-diHETE producing LxB4 and its isoforms,

but  13-HPODE  was  required.  13-HPODE  is  a  known  oxidant  of  lipoxygenase  that

reduces lag times and expands the substrate range of lipoxygenases by activating the

LOX  isozyme  when  the  endogenous  hydroperoxide  product  cannot  oxidize  the
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intermediate ferrous ion.18, 26 For this particular reaction, the conversion of 5,15-diHETE

to LXB4 implies that 12-LOX oxygenates at C14 because the 14,15-epoxide cannot be

formed from the alcohol. The requirement of 13-HpODE is because the ferrous-water

intermediate  cannot  efficiently  reduce  the  hydroperoxide  radical  at  C14,  thus

releasing the radical intermediate and generating the inactive ferrous-water species.

The ferrous-water intermediate is subsequently oxidized by 13-HpODE, generating the

active form of 12-LOX. This conclusion is supported by the comparison of the reduced

and un-reduced products (Figure 3). The un-reduced reaction manifests a large peak

(RT = 9.8 min),  which elutes after LxB4 (RT = 8.8  min).  This  peak has an MS/MS

fragmentation  pattern  of  a  C14  hydroperoxy  moiety  (supplemental  S3),  which

becomes LxB4  upon reduction, as seen by its change in retention time and its MS/MS

fragmentation  (supplemental  S3)  and confirms an oxygenation  reaction  on C14.  It

should be noted that we observe a large reduction in the number of isoforms of LxB4,

as compared to the reaction with 5,15-diHpETE as the substrate. This is appropriate

given that this is a region- and stereo-specific oxygenation reaction and no epoxide

was  formed  that  could  undergo  non-enzymatic  hydrolysis  to  generate  the  LxB4

isoforms.

Interestingly,  15-LOX-1  cannot  perform  an  oxygenation  reaction  with  5,15-

diHETE, even with 13-HPODE present, indicating that 15-LOX-1 cannot oxygenate at

C14  with  5,15-diHETE  as  the  substrate.  This  is  unexpected  since  15-LOX-1  can

oxygenate 5,15-diHpETE. Therefore, the hydroxides at C5 and C15 appear to change

substrate binding so that either the hydrogen atom abstraction at C10 is prohibited or

 



16

the  oxidation  of  the  active  site  ferrous-water  intermediate  to  the  active  ferric-

hydroxide  moiety  by  the  hydroperoxyl  radical  is  prohibited.  This  hypothesis  is

supported by the fact that hydroperoxyl moieties in these eicosanoids behave more

hydrophobically than hydroxyl moieties, as evident by their longer retention on a C18

column (Supplemental S1). In addition, 15-LOX-1 will not oxygenate 15-HETE either,

but it will oxygenate 15-HpETE, indicating a difference in reactivity with the reduced

oxylipin. 

It should be reiterated that 15-LOX-1 and 12-LOX do not make LXA4 from 5,15-

diHpETE, however, they do make LXB4. This is an interesting observation considering

that the radical intermediate of 5,15-diHpETE can potentially form either the 5,6- or

14,15-epoxide. However, the active sites of both 12-LOX and 15-LOX-1 preferentially

generate only the 14,15-epoxide. This restricted reactivity could be related to the fact

that the oxygen tunnel for both 15-LOX-1 and 12-LOX is located near C14, as observed

by the C14 oxygenation products.27, 28 Therefore, the opening to the oxygen tunnel in

the active site could provide a dual function. Primarily to oxygenate 5,15-diHpETE but

also to provide the space for the 14,15-epoxide to form, thus giving the oxygen tunnel

an added functionality. 

Steady-state kinetics of 15-LOX-1 and 12-LOX with 5,15-diHpETE and

12-LOX with 5,15-diHETE. Considering that hydrogen atom abstraction is typically

rate-limiting in lipoxygenase reactions,29-31 the steady-state kinetics of 15-LOX-1 and

12-LOX with 5,15-diHpETE revealed an interesting difference between their relative

rates. When reacted with AA, 12-LOX abstracts the hydrogen atom at C10, generating

more than 95% 12-HpETE.19 On the other hand, 15-LOX-1 abstracts the hydrogen atom

at C10 only ≈10% of the time, with C13 being the major target.32-34 We confirmed this

result  by  observing  approximately  10% of  12-HpETE  and  90% of  15-HpETE  being
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generated from AA reacted with 15-LOX-1. Therefore, 12-LOX has a 78-fold larger kcat/

KM than 15-LOX-1 for abstracting the hydrogen atom from C10 of AA and generating

12-HpETE, 18  μM-1s-1  and 0.23  μM-1s-1, respectively (Table 1). It should be noted that

these 15-LOX-1 kinetic values for C10 abstraction are estimated from the total rate

observed for 15-LOX-1 and its product percentages. This indicates that 12-LOX is more

efficient in both product release (kcat) and substrate capture (kcat/KM) than 15-LOX-1 in

abstracting a hydrogen atom from C10 on AA (13-fold for kcat and 78-fold for kcat/KM).

However, despite the preference of 12-LOX for abstracting at C10 on AA, 15-LOX-1 has

both a better product release rate (kcat) and substrate capture rate (kcat/KM) than 12-

LOX, for abstracting the C10 hydrogen atom from 5,15-diHpETE (Table 1). For kcat, the

12-LOX rate for C10 abstraction from 5,15-diHpETE is 106-fold less than that of AA (kcat

= 0.17 s-1), while the 15-LOX-1 rate is 3.3-fold greater than that of C10 abstraction

from AA (kcat = 4.6 s-1). For  kcat/KM,  the 12-LOX rate for C10 abstraction from 5,15-

diHpETE is 1600-fold less than that of AA (kcat/KM = 0.011 μM-1s-1), while the kcat/KM for

15-LOX-1 is  the  same as  that  of  C10 abstraction  from AA (kcat/KM =  0.21  μM-1s-1).

Effectively, there is no loss of activity for 15-LOX-1 abstracting the hydrogen atom

from C10 of 5,15-diHpETE relative to AA, but 12-LOX has a large loss of activity with

5,15-diHpETE relative to AA, as seen by a significant decrease in kcat and kcat/KM (Table

1). This data indicates that the hydroperoxy moieties on C5 and C15 of 5,15-diHpETE,

disrupt its positioning in the 12-LOX active site for C10 abstraction significantly, while

not affecting 15-LOX-1 appreciably. It should be noted that for both 12-LOX and 15-

LOX-1, only 10% of the total 5,15-diHpETE in the reaction is converted to LXB4 and

addition of 12-LOX, 15-LOX-1 or 5,15-diHpETE at 10% conversion did not improve the

turnover percentage. This implies that there is some form of suicide product inhibition,



18

which is a common observation in LOX reactions, due to the reactive nature of the

radical intermediates, and has previously been observed with 12-LOX and LTA4.35, 36

As noted above, LX formation from the reduced intermediate, 5,15-diHETE, is

only observed with 12-LOX in the presence of 13-HPODE, and no rate was observed for

15-LOX-1.  However,  the  rate  of  12-LOX  with  5,15-diHETE  is  extremely  slow,

manifesting a  kcat/KM that is  10-fold less than that seen for 5,15-diHpETE (kcat/KM =

0.0015 μM-1s-1). Since the kcat of 12-LOX with 5,15-diHETE is essentially the same as its

kcat for 5,15-diHpETE, this lower rate of substrate capture (kcat/KM) is manifested in a

10-fold increase in  KM, (113  + 19  μM). As discussed above, 12-LOX only oxygenates

5,15-diHETE but it oxygenates and dehydrates 5,15-diHpETE. Since the  kcat for both

Figure 4: 5,15-diHpETE, but not LXB4, inhibits collagen-mediated platelet aggregation. Isolated human 
platelets were treated with increasing concentrations of either LXB4 or 5,15-diHpETE for ten minutes and then 
stimulated with collagen (0.25 µg/mL). A) Representative tracings of 5,15-diHpETE or LXB4 treated platelets 
stimulated with collagen. B) Data represents mean ± S.E.M. Statistical analysis was performed comparing oxylipin
concentration to vehicle control using one-way ANOVA with Dunnett’s multiple comparison test. *P<0.05, 
**P<0.01, ***P<0.001.
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5,15-diHETE and 5,15-diHpETE are similar, it indicates that the rate of product release

for both oxygenation and dehydration are also similar. This implies that the reaction

steps after the irreversible hydrogen abstraction step, such as the reduction of the

radical intermediate for oxygenation or dehydration by the ferrous-water moiety, are

either not rate-limiting or comparable in rate for the two reactions. It is also observed

that the rate of substrate capture (kcat/KM)23 for 12-LOX is decreased by a factor of 10

for 5,15-HETE relative to 5,15-HpETE, indicating that there is a rate difference in a

reaction  step  prior  to  the  irreversible  hydrogen  atom  abstraction  step,  such  as

substrate binding. As mentioned above, this could be due to its smaller size or the

more polar  hydroxyl  moiety relative to the hydroperoxide,  as seen by its  RP-HPLC

retention time.

5,15-diHpETE and LXB4 titration into human platelets. To determine whether or

not 5,15-diHpETE inhibits platelet activation, platelets from 11 separate donors were

treated with varying concentrations of  5,15-diHpETE (0.5-20 μM) or vehicle control

(DMSO)  prior  to  stimulation  with  collagen,  a  GPVI  and  α2β1 agonist.  Compared  to

vehicle control,  5,15-diHpETE inhibited platelet aggregation in response to collagen

(0.25 µg/mL) stimulation with an IC50 of 1.3 μM (Figure 4).  Furthermore, over 90%

Figure 5: Platelets produce LxB4 from 5,15-diHPETE. The amount of LxB4 produced by platelets treated
with 5, 10 or 20 M of 5,15-diHPETE are plotted in this histogram. The standard deviation of each value is 
represented by error bars.
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reduction in collagen-mediated platelet aggregation was observed in platelets treated

with a concentration greater than 10 μM of 5,15-diHpETE. The antiplatelet effects of

LXB4 were  also  investigated;  however,  in  contrast  to  5,15-diHpETE,  LXB4 did  not

significantly inhibit collagen-mediated platelet activation at the concentrations tested. 

With respect to the biosynthetic pathway, human platelets were treated with

5,15-diHpETE and shown to produce LXB4 (Figure 5), but they did not produce LXA4.

This is consistent with the in vitro results, where purified 12-LOX only makes LXB4.

However, the amount of LXB4  that we observe from 5,15-diHpETE treated platelets is

very small compared to the unreacted 5,15-diHpETE (less than 1.2 %), indicating that

this is not an efficient pathway for the generation of LXB4. In addition, since LXB4 does

not have a strong antiplatelet effect, it is reasonable to conclude that 5,15-diHpETE,

and  not  its  downstream product,  LXA4,  is  the  active  oxylipin  species  that  affects

platelet biology in our experiments.
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In  summary,  the  reaction  of  5,15-diHpETE  with  various  human lipoxygenase

isozymes  was  investigated  to  determine  the  relative  rates  of  producing  LXs.

Previously,  it  was  established  that  15-LOX-2  did  not  react  with  5,15-diHpETE,

consistent with its enhanced substrate selectivity relative to the other LOX isozymes.9

15-LOX-2 abstracts a hydrogen atom from C13 of AA, but does not abstract from C10,

the  only  available  methylene  carbon  of  5,15-diHpETE.  In  the  current  work,  it  was

determined that 5-LOX does not react with 5,15-diHpETE either. However, 5-LOX can

produce LXA4 if 15-HpETE is the substrate (Figure 6), indicating that substrate binding

is  impaired  when  the  hydroperoxide  is  on  both  C5  and  C15,  consistent  with  our
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previous work with 5-LOX where oxygenation of the oxylipin affects substrate binding

significantly.17 In contrast, both 12-LOX and 15-LOX-1 react with 5,15-diHpETE (Figure

6), albeit at slow rates relative to AA. Surprisingly, 15-LOX-1 has a 27-fold greater kcat

and a 20-fold greater  kcat/KM than 12-LOX. This result is unusual because C10 is the

preferred location for hydrogen abstraction for 12-LOX, so it appears that the active

site of 12-LOX is less tolerant of oxygenated fatty acids than 15-LOX-1, which lowers

its catalytic rates, as already seen for 5-LOX.17 The low in vitro catalytic rate for 12-

LOX with 5,15-diHpETE is corroborated by the fact that when 5,15-diHpETE is added to

platelets, LXB4 production is extremely low (1.2 + 0.2 % total conversion), consistent

with  the  poor  in  vitro LXB4 production  rate.  This  result  is  in  contrast  to  the

conventional  wisdom  that  assumes  12-LOX  is  the  biosynthetic  enzyme  for  LXs

production from 5,15-diHpETE, due to its preference for abstracting a hydrogen atom

from C10.8 Nevertheless, LXs are highly active molecules so low production levels in

platelets could still have large effects on the cellular response, resulting in 12-LOX still

being  a  potentially  biosynthetically  relevant  LOX  isozyme  for  making  LXs.  For

comparison, Serhan and coworkers determined that human 12-LOX reacted with LTA4,

producing both LXA4 and LXB4, with a Vmax of 24.5 nmol/min/mg (or a kcat of 0.031 sec-1)

and a  Vmax/Km of 3.1 nmol/min/mg/uM (or a  kcat/KM of 0.004 sec-1uM-1).35 These values

are markedly slower than the current observed rates of 15-LOX-1 with 5,15-diHpETE

(150-fold slower for kcat and 50-fold slower for kcat/KM), suggesting that 15-LOX-1 may

be a more predominant source of LXs than 12-LOX, depending on the cells involved.

Another interesting difference between 5,15-diHpETE and LTA4 as LOX substrates is

that with LTA4, both LXA4 and LXB4 are made, but with 5,15-diHpETE as the substrate,

only LXB4 is made. Clearly, the mechanisms of LX production are distinct, which could

help in the future identification of the source of LX biosynthesis. For example, if 5,15-
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diHpETE  is  the  substrate,  LXB4 is  the  primary  product  of  12-LOX  and  15-LOX-1

catalysis,  whereas LXA4 is the primary product with 5-LOX. However, if  LTA4 is  the

substrate, then 12-LOX generates both LXA4 and LXB4. Therefore, it appears that cells

have multiple pathways for making LXs, depending on the available LOX isozyme and

the  available  substrate,  5,15-diHpETE  or  LTA4.  We  are  currently  investigating  the

molecular  mechanism of  these reactions with active site  mutants  in  order to gain

better insights into the differences between these distinct LX biosynthetic pathways.

Supplemental information.  The supplemental  figures that are referenced in this

article (S1, S2, S3 and S4) along with their corresponding legends are available online.

These materials are supplied free of charge at http://pubs.acs.org. 
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