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Abstract

Power and sample size analysis comprises a critical component of clinical trial
study design. There is an extensive collection of methods addressing this prob-
lem from diverse perspectives. The Bayesian paradigm, in particular, has attracted
noticeable attention and includes different perspectives for sample size determina-
tion. Building upon a cost-effectiveness analysis undertaken by O’Hagan and Stevens
(2001) with different priors in the design and analysis stage, we develop a general
Bayesian framework for simulation-based sample size determination that can be eas-
ily implemented on modest computing architectures. We further qualify the need
for different priors for the design and analysis stage. We work primarily in the con-
text of conjugate Bayesian linear regression models, where we consider the situation
with known and unknown variances. Throughout, we draw parallels with frequentist
solutions, which arise as special cases, and alternate Bayesian approaches with an
emphasis on how the numerical results from existing methods arise as special cases
in our framework.

Keywords: Bayesian and classical inference; Bayesian assurance; clinical trials; power;
sample size.
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1 Introduction

A crucial problem in experimental design is that of determining the sample size for a

proposed study. There is, by now, a substantial literature in classical and Bayesian settings.

Classical sample size calculations have been treated in depth in texts such as Kraemer and

Thiemann (1987), Cohen (1988), and Desu and Raghavarao (1990), while extensions to

linear and generalized linear models have been addressed in Self and Mauritsen (1988), Self

et al. (1992), Muller et al. (1992) and Liu and Liang (1997). The Bayesian setting has

also allocated a decent amount of attention towards sample size determination. A widely

referenced issue of The Statistician (vol. 46, issue 2, 1997) includes a number of articles

from different perspectives (see, e.g., the articles by Lindley, 1997; Pham-Gia, 1997; Adcock,

1997; Joseph et al., 1997). Within the Bayesian setting itself, there have been efforts to

distinguish between a formal utility approach (Raiffa and Schlaifer, 1961; Berger, 1985;

Lindley, 1997; Müller and Parmigiani, 1995) and approaches that attempt to determine

sample size based upon some criterion of analysis or model performance (Rahme et al.,

2000; Gelfand and Wang, 2002; O’Hagan and Stevens, 2001). Other proposed solutions

adopt a more tailored approach. For example, Ibrahim et al. (2012) specifically target

Bayesian meta-experimental design using survival regression models; Reyes and Ghosh

(2013) propose a framework based on Bayesian average errors capable of simulatenously

controlling for Type I and Type II errors, while Joseph et al. (1997) rely on lengths of

posterior credible intervals to gauge their sample size estimates.

The aforementioned literature presents the problem in a variety of applications includ-

ing, but not limited to, clinical trials. Bayesian treatments specific to clinical trials can be

found in Spiegelhalter et al. (1993), Parmigiani (2002), Berry (2006), Berry et al. (2010),

Lee and Zelen (2000), and Lee and Chu (2012). Regardless of the specific approach, all

of the cited articles above address the sample size problem based on some well-defined

objective that is desired in the analysis stage. The design of the study, therefore, should

consider that the analysis objective is met with a certain probability. The framework we

develop here is built upon this simple idea. A clear analysis objective and proper sampling

execution are all that is needed to provide us with the necessary sample size.
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1.1 Classical Power and Sample Size

The classical power and sample size analysis problem in the frequentist setting is widely

applied in diverse settings. For example, we can formulate a hypothesis concerning the

population mean. A one-sided hypothesis test for the null H0 : θ = θ0 against the alter-

native Ha : θ > θ0, where θ is the population mean, is decided on the location of θ0 with

respect to the distribition of the sample mean ȳ. Assuming a known value for the pop-

ulation variance σ2 and that the sample mean’s distribition is (approximately) Gaussian,

we reject H0 if ȳ > θ0 + σ√
n
Z1−α, where α is the specified Type-I error and Z1−α is the

corresponding quantile of the Gaussian distribution. The statistical “power” of the test is

1 − β, where β = P (Rej H0 |Ha) is the Type-II error. Straightforward algebra yields the

ubiquitous sample size formula, n = (Zα + Zβ)2
( σ

∆

)2

, derived from the power:

1− β = P

(
ȳ > θ0 +

σ√
n
Z1−α | θ = θ1

)
= Φ

(√
n

∆

σ
+ Zα

)
, (1)

where ∆ = θ1− θ0 is the critical difference. Given any fixed value of ∆/σ, the power curve

is a function of sample size and can be plotted as in Figure 1. The sample size required to

achieve a specified power can then be read from the power curve.

Figure 1: Power curve example. Dotted lines indicate how a sample size of 34 is required
to achieve a power of 0.75.

More generally, power curves, such as the one shown in Figure 1, may not be available

in closed form but can be simulated for different sample sizes. They quantify our degree

of assurance regarding our ability to meet our analysis objective (rejecting the null) for
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different sample sizes. Formulating sample size determination as a decision problem so

that power is an increasing function of sample size, offers the investigator a visual aid in

helping deduce the minimum sample size needed to achieve a desired power.

1.2 Bayesian Assurance

From a Bayesian standpoint, there is no need to condition on a fixed alternative. Instead,

we determine the tenability of a hypothesis given the data we observe. A joint probability

model is constructed for the parameters and the data using a prior distribition for the

parameters and the likelihood function of the data conditional on the parameters. Inference

proceeds from the posterior distribition of the parameters given the data.

In the design stage we have not observed the data. Therefore, we will need to formulate

a data generating mechanism and, subsequently, consider the posterior distribution given

the realized data to evaluate the tenability of a hypothesis regarding our parameter. We

then use the probability law associated with the data generating mechanism to assign a

degree of assurance of our analysis objective. As a sufficiently simple example, consider a

situation where we seek to evaluate the tenability of H : θ > θ0 given data from a Gaussian

population with mean θ and a known variance σ2. Assuming the prior θ ∼ N
(
θ1,

σ2

n0

)
,

where n0 reflects the precision of the prior relative to the data, and the likelihood of the

sample mean ȳ ∼ N

(
θ,
σ2

n

)
, the posterior distribution of θ can then be obtained by

multiplying the prior and the likelihood as

N

(
θ

∣∣∣∣θ1,
σ2

n0

)
×N

(
ȳ

∣∣∣∣θ, σ2

n

)
∝ N

(
θ

∣∣∣∣ n0

n+ n0

θ1 +
n

n+ n0

ȳ,
σ2

n+ n0

)
. (2)

Our analysis objective is to ascertain whether P (θ > θ0 | ȳ) > 1 − α, where α is a fixed

number. The posterior distribution in (2) gives us P (θ > θ0 | ȳ) and we define

δ = Pȳ {ȳ : P (θ > θ0 | ȳ) > 1− α} (3)

as a Bayesian counterpart of statistical power, which we refer to as Bayesian assurance.

The inner probability defines our analysis objective, while the outer probability defines our

chances of meeting the analysis objective under the given data generating mechanism.
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1.3 Manuscript Overview

Our current manuscript intends to explore Bayesian assurance and subsequent sample size

calculations as described through (2) and (3) in the general context of conjugate Bayesian

linear regression. Of particular emphasis will be the data generating mechanism and pro-

viding motivation behind quantifying separate prior beliefs at the design and analysis stage

of clinical trials (O’Hagan and Stevens, 2001). The balance of this manuscript proceeds

as follows. Section 2 presents the Bayesian sample size determination problem embedded

within a conjugate Bayesian linear model. This offers us analytic tractability through which

we motivate the need for different prior distributions for designing and analyzing a study.

Section 2.3 considers the cases of known and unknown variances and offers correspond-

ing algorithms. Section 3 casts the cost-effectiveness problem explored by O’Hagan and

Stevens (2001) in our framework, which we revisit using known and unknown variances,

and we also compare with other Bayesian alternatives for sample size calculations including

for inference using proportions. We close the paper in Section 4 with additional points of

discussion and future aims.

2 Bayesian Assurance and Sample Size Determination

2.1 Conjugate Bayesian Linear Regression

Consider a proposed study where a certain number, say n, of observations, which we denote

by yn = (y1, y2 . . . , yn)>, are to be collected in the presence of p controlled explanatory

variables, say x1, x2, . . . , xp, that will be known to the investigator for any unit i at the

design stage. Consider the usual normal linear regression setting such that yn = Xnβ + εn,

where Xn is n × p with i-th row corresponding to x>i and εn ∼ N(0, σ2Vn), where Vn is

a known n × n correlation matrix. Both Xn and Vn are assumed known for each sample

size n through design and modeling considerations. A conjugate Bayesian linear regression

model specifies the joint distribution of the parameters {β, σ2} and the data as

IG(σ2 | aσ, bσ)× (β |µβ, σ2Vβ)×N(yn |Xnβ, σ
2Vn) (4)
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Inference proceeds from the posterior distribution derived from (4),

p(β, σ2 | yn) = IG(σ2 | a∗σ, b∗σ)︸ ︷︷ ︸
p(σ2 | yn)

×N(β |Mnmn, σ
2Mn)︸ ︷︷ ︸

p(β |σ2,yn)

, (5)

where a∗σ = aσ + n/2, b∗σ = bσ + (1/2)
{
µ>β V

−1
β µβ + y>n V

−1
n yn −m>nMnmn

}
, M−1

n = V −1
β +

X>n V
−1
n Xn and mn = V −1

β µβ + X>n V
−1
n yn. Sampling from the joint posterior distribu-

tion of {β, σ2} is achieved by first sampling σ2 ∼ IG(a∗σ, b
∗
σ) and then sampling β ∼

N(Mnmn, σ
2Mn) for each sampled σ2. This yields marginal posterior samples from p(β | yn),

which is a non-central multivariate t distribution, though we do not need to work with its

complicated density function. See Gelman et al. (2013) for further details on the conjugate

Bayesian linear regression model and sampling from its posterior.

We wish to decide whether our realized data will favor H : u>β > 0, where u is a p× 1

vector of fixed contrasts. In practice, a decision on the tenability of H is often based on

the 100(1− α)% posterior credible interval,

(
u>Mnmn − Z1−α/2σ

√
u>Mnu, u

>Mnmn + Z1−α/2σ
√
u>Mnu

)
, (6)

obtained from the conditional posterior predictive distribution p(β |σ, yn). The data would

favor H if yn belongs to the following set

Sα(n; yn, σ, µβ, Vβ, Vn) =
{
yn : u>Mmmn > Z1−α/2σ

√
u>Mnu

}
.

This is equivalent to 0 being below the two-sided 100(1 − α)% credible interval for u>β.

Practical Bayesian designs will seek to assure the investigator that the above criterion will

be achieved with a sufficiently high probability through the Bayesian assurance,

δ(n;σ, u, µβ, Vβ, Vn) = Pyn(Sα(n; yn, σ, µβ, Vβ, Vn))

= Pyn

{
yn : u>Mmmn > Z1−α/2σ

√
u>Mnu

}
, (7)

which generalizes the definition in (3). Given the assumptions on the model, the fixed values

of the parameters {µβ, Vβ, σ, Vn} and the fixed vector u that determines the hypothesis
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being tested, the Bayesian assurance function evaluates the probability of rejecting the null

hypothesis under the marginal probability distribution of the realized data corresponding

to any given sample size n. Choice of sample size will be determined by the smallest value

of n that will ensure δ(n;σ, u, µβ, Vβ, Vn) > γ, where γ is a specified number.

2.2 Limitations for a single prior

Let us consider the special case when Xn = 1n so that β is a scalar with prior distribution

β ∼ N(β1, σ
2/n0), where n0 > 0 is a fixed precision parameter (sometimes referred to as

“prior sample size”), Vn = In and H : β > β0. We decide in favor of H if the data lies in

Sα(n; y, σ, β0, β1, n0) =

{
ȳ : ȳ > β0 −

n0

n
(β1 − β0)−

√(
1 +

n0

n

) σ√
n
Zα

}
,

where the expression on the right reveals a convenient condition in terms of the sample

mean. As n0 → 0, i.e., the prior becomes vague, Sα(n; y, σ, β0, β1, n0) collapses to the

critical region in classical inference for testing H0 : β = β0 against Ha : β = β1. The

Bayesian assurance function is

δ(n;σ,∆, n0) = Φ

(
√
n0

[√
1 +

n0

n

(
∆

σ

)
+ Zα

√
1

n

])
, (8)

where ∆ = β1 − β0. Given n0, we will compute the sample size needed to detect a critical

difference of ∆ with probability 1 − β as n = arg min{n : δ(∆, n) ≥ 1 − β}. However,

the limiting properties of the function in (8) are not without problems. When the prior is

vague, i.e., n0 → 0, then

lim
n0→0

δ(∆, n) = Φ (0) = 0.5 ,

while in the case when the prior is precise, i.e., n0 →∞ we obtain

lim
n0→∞

δ(∆, n) =

 1 if ∆ > 0

0 if ∆ ≤ 0
. (9)

This is undesirable. Vague priors are customary in Bayesian analysis, but they propagate

enough uncertainty that the marginal distribution of the data under the given model will
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force the assurance to be lower than 0.5. In other words, regardless of how large a sample

size we have, we cannot assure the investigator with probability greater than 50% that the

null hypothesis will be rejected. At the other extreme, where the prior is fully precise, it

fully dominates the data (or the likelihood) and there is no information from the data that

is used in the decision. Therefore, the assurance is a function of the prior only and we will

always or never reject the null hypothesis depending upon whether ∆ > 0 or ∆ < 0.

In order to resolve this issue, we work with two different sets of priors, one at the design

stage and another at the analysis stage. Building upon O’Hagan and Stevens (2001),

we elucidate with the Bayesian linear regression model in the next section and offer a

simulation-based framework for computing the Bayesian assurance curves.

2.3 Bayesian Assurance Using Design and Analysis Priors

We consider two scenarios that are driven by the amount of information given in a study. We

develop the corresponding algorithms based on these assumptions. The first case assumes

that the population variance σ2 is known and the second case assumes σ2 is unknown,

prompting us to consider additional prior distributrions for σ2 in the design and analysis

stage. Our context remains testing the tenability of H : u>β > C given realized data from

a study, where C is a known constant.

2.3.1 Known Variance σ2

If σ2 is known and fixed, then the posterior distribution of β is p(β |σ2, yn) = N(β|Mnmn, σ
2Mn)

as shown in Equation 5. Hence, standardization leads to

u>β − u>Mnmn

σ
√
u>Mnu

∣∣∣∣σ2, yn ∼ N(0, 1) . (10)

To evaluate the credibility of H : u>β > C, where u denotes a known p× 1 vector and C

is a known constant, we decide in favor of H if the observed data belongs in the region:

Aα(u, β, C) =
{
yn : P

(
u>β ≤ C|yn

)
< α

}
=

{
yn : Φ

(
C − u>Mnmn

σ
√
u>Mnu

)
< α

}
.
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Given the data yn and the fixed parameters in the analysis priors, we can evaluate Mn and

mn and hence, for any given σ, C and α, ascertain if we have credibility for H or not.

In the design objective we need to ask ourselves “What sample size is needed to assure

us that the analysis objective is met 100γ% of the time?” Therefore, we seek n so that

δ(n) = Pyn(Aα(u, β, C)) = Pyn

{
yn : Φ

(
C − u>Mnmn

σ
√
u>Mnu

)
< α

}
≥ γ , (11)

where δ(n) is the Bayesian assurance. In order to evaluate (11), we will need the marginal

distribution of yn. In light of the paradox in (9), our belief about the population from which

our sample will be taken is quantified using the design priors. Therefore, the “marginal”

distribution of yn under the design prior will be derived from

yn = Xnβ + en; en ∼ N(0, σ2Vn) ; β = µ
(d)
β + ω; ω ∼ N(0, σ2V

(d)
β ) , (12)

where β ∼ N(µ
(d)
β , σ2V

(d)
β ) is the design prior on β. Substituting the equation for β into the

equation for yn in (12) gives yn = Xµ
(d)
β + (Xω + en) and, hence, yn ∼ N

(
Xµ

(d)
β , σ2V ∗n

)
,

where V ∗n =
(
XV

(d)
β X> + Vn

)
. We now have a simulation strategy to estimate our Bayesian

assurance. We fix sample size n and generate a sequence of J data sets y
(1)
n , y

(2)
n , . . . , y

(J)
n ,

each of size n from N
(
Xµ

(d)
β , σ2V ∗n

)
. Then, a Monte Carlo estimate of the Bayesian

assurance is

δ̂(n) =
1

J

J∑
j=1

I

y(j)
n : Φ

C − u>M (j)
n m

(j)
n

σ

√
u>M

(j)
n u

 < α


 , (13)

where I(·) is the indicator function of the event in its argument, M
(j)
n and m

(j)
n are the

values of Mn and mn computed from y
(j)
n . We repeat the steps needed to compute (13) for

different values of n and obtain a plot of δ(n) against n. Our desired sample size is the

smallest n for which δ̂(n) ≥ γ, where we seek assurance of a 100γ% chance of deciding in

favor of H.

A special case of the model can be considered where Xn = 1n is an n×1 vector of ones,

β is a scalar, Vn = In and we wish to evaluate the credibility of H : β > β0. We assume

β ∼ N(β1, σ
2/na) in the analysis stage and β ∼ N(β1, σ

2/nd) in the design stage, where
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β1 > β0. The data will favor H if the sample mean lies in Aα(β0, β1), where

Aα(β0, β1) =

{
ȳ : ȳ > β0 −

na
n

(β1 − β0)−
√(

1 +
na
n

) σ√
n
Zα

}
.

Using the design prior, we obtain the marginal distribution ȳ ∼ N

(
β1,

(
1

n
+

1

nd

)
σ2

)
.

We use this distribution to calculate δ(n) = Pȳ{ȳ : P (θ < θ0 | ȳ) < α}, which produces a

closed-form expression for Bayesian assurance:

δ(∆, n, na, nd) = Φ

(√
nnd
n+ nd

[
n+ na
n

∆

σ
+ Zα

√
n+ na
n

])
, (14)

where ∆ = β1 − β0. As nd →∞ and na → 0, we obtain that

lim
na→0,nd→∞

= Φ

(√
n

∆

σ
+ Zα

)
,

which is precisely the frequentist power curve. Therefore, the frequentist sample size

emerges as a special case of the Bayesian sample size when the design prior becomes per-

fectly precise and the analysis prior becomes perfectly uninformative. Algorithm 1 presents

a pseudocode to compute Bayesian assurance.

2.3.2 Unknown Variance σ2

When σ2 is unknown, the posterior distribution of interest is p(β, σ2 | yn) as opposed to

the original p(β |σ2, yn) delineated in the known variance case. Since σ2 is no longer

fixed, it becomes challenging to define a closed form condition that is capable of evaluating

the credibility of H : u>β > C. Hence, we do not obtain a condition similar to (10).

However, our region of interest corresponding to our analysis objective still remains as

Aα(u, β, C) =
{
yn : P

(
u>β ≤ C | yn

)
< α

}
when deciding whether or not we are in favor

of H. To implement this in a simulation setting, we rely on iterative sampling for both β

and σ2 to estimate the assurance. We specify analysis priors β |σ2 ∼ N(µ
(a)
β , σ2V

(a)
β ) and

σ2 ∼ IG(a(a), b(a)), where the superscripts (a) signify analysis priors.

We had previously derived the posterior distribution of β in Section 2.3.1 expressed

as p(β | yn, σ2) = N(β |Mnmn, σ
2Mn), where Mn = (V

−1(a)
β + X>V −1

n X)−1 and mn =

10



Algorithm 1 Bayesian assurance algorithm for known variance

1: procedure bayes sim(n, u, C, X, Vn, V
(d)
β , V

−1(a)
β , µ

(d)
β , µ

(a)
β , σ2, α)

2: count = 0 . keeps track of iterations satisfying the analysis objective
3:

4: for i in range 1 : max number of iterations do
5: Design Stage Starts
6: y ← Vector of n values each generated from N(Xµ

(d)
β , σ2(XV

(d)
β X> + Vn))

7: Design Stage Ends
8:

9: Analysis Stage Starts . Computes parameters of the β posterior:
10: M ← (V

−1(a)
β +X>V −1

n X)−1

11: m← V
−1(a)
β µ

(a)
β +X>V −1

n y

12: if C−u>Mm

σ
√
u>Mu

< Zα then
13: Zi ← 1
14: else
15: if C−u>Mm

σ
√
u>Mu

≥ Zα then
16: Zi ← 0
17: end if
18: end if
19:

20: count ← count + Zi
21: Analysis Stage Ends
22: end for
23:

24: assurance ← count / max number of iterations
25: return assurance
26:

27: end procedure
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V
−1(a)
β µ

(a)
β + X>V −1

n yn. The posterior distribution of σ2 is obtained by integrating out β

from the joint posterior distribution of {β, σ2}, which yields

p(σ2 | yn) ∝ IG(σ2 | a(a), b(a))×
∫
N(β |µβ, σ2Vβ)×N(yn |Xβ, σ2Vn)dβ

∝
(

1

σ2

)a(a)+n
2

+1

exp

{
− 1

σ2

(
b(a) +

c∗

2

)}
.

(15)

Therefore, p(σ2 | yn) = IG (σ2 | a∗, b∗), where a∗ = a(a) + n
2

and b∗ = b(a) + c∗

2
= b(a) +

1
2

{
µ
>(a)
β V

−1(a)
β µ

(a)
β + y>n V

−1
n yn −m>nMnmn

}
.

Recall the design stage objective aims to identify sample size n that is needed to attain

the assurance level specified by the investigator. Similar to Section 2.3.1 we will need

the marginal distribution of yn with priors placed on both β and σ2. We denote these

design priors as β(d) and σ2(d), respectively, to signify that we are working within the

design stage. Derivation steps are almost identical to those outlined in Equation (12)

for the known σ2 case. With σ2(d) now treated as an unknown parameter, the marginal

distribution of yn, given σ2(d), under the design prior is derived from yn = Xnβ
(d) + en,

en ∼ N(0, σ2(d)Vn), β(d) = µ
(d)
β + ω; ω ∼ N(0, σ2(d)V

(d)
β ), where β(d) ∼ N(µ

(d)
β , σ2(d)V

(d)
β )

and σ2(d) ∼ IG(a(d), b(d)). Substituting β(d) into yn gives us yn = Xnµ
(d)
β + (Xnω+ en) such

that Xnω + en ∼ N(0, σ2(d)(Vn +XnV
(d)
β X>n )). The marginal distribution of p(yn |σ2(d)) is

yn |σ2(d) ∼ N(Xnµ
(d)
β , σ2(d)V ∗n ); V ∗n = XnV

(d)
β X>n + Vn. (16)

Equation (16) specifies our data generation model for ascertaining sample size.

The pseudocode in Algorithm 2 evaluates Bayesian assurance. Each iteration comprises

the design stage, where the data is generated, and an analysis stage where the data is

analyzed to ascertain whether a decision favorable to the hypothesis has been made. In

the design stage, we draw σ2(d) from IG(a
(d)
σ , b

(d)
σ ) and generate the data from our sampling

distribution from (16), yn ∼ N(Xµ
(d)
β , σ2(d)(XV

(d)
β X> + Vn)). For each such data set,

{yn, Xn}, we perform Bayesian inference for β and σ2. Here, we draw J samples of β

and σ2 from their respective posterior distributions and compute the proportion of these

J samples that satisfy u>βj > C. If the proportion exceeds a certain threshold 1 − α,
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then the analysis objective is met for that dataset. The above steps for the design and

analysis stage are repeated for R datasets and the proportion of the R datasets that meet

the analysis objective, i.e., deciding in favor of H, correspond to the Bayesian assurance.

3 Two-Stage Paradigm Applications

The following sections explore three existing sample size determination approaches. We

show how these approaches emerge as special cases of our framework with an appropriate

formulation of analysis and design stage objectives. Assurance curves are produced via

simulation and pseudocodes of the algorithms are included.

3.1 Sample Size Determination in Cost-Effectiveness Setting

The first application selects a sample size based on the cost-effectiveness of new treatments

undergoing Phase 3 clinical trials (O’Hagan and Stevens, 2001). As delineated in Section 2,

we construct the two-stage paradigm under the context of a conjugate linear model and

generalize it to the case where the population variance σ2 is unknown. We cast the example

in O’Hagan and Stevens (2001) within our framework to assess overall performance and

our ability to emulate the analysis in O’Hagan and Stevens (2001).

Consider designing a randomized clinical trial where n1 patients are administered Treat-

ment 1 and n2 patients are administered Treatment 2 under some suitable model and study

objectives. Let cij and eij denote the observed cost and efficacy values, respectively, corre-

sponding to patient j = 1, 2, . . . , ni receiving treatment i for i = 1, 2 treatments, where ni is

the number of patients in the i-th treatment group. Furthermore, the expected population

mean cost efficacy under treatment i are set to be E(cij) = γj and E(cij) = µi, respectively.

The variances are taken to be V ar(cij) = τ 2
i and V ar(eij) = σ2

i . For simplicity, we assume

equal sample sizes within the treatment groups so that n = n1 = n2. We also assume equal

sample variances for the costs and efficacies such that τ 2 = τ 2
1 = τ 2

2 and σ2 = σ2
1 = σ2

2.

O’Hagan and Stevens (2001) utilize the net monetary benefit measure,

ξ = K(µ2 − µ1)− (γ2 − γ1), (17)

13



Algorithm 2 Bayesian assurance algorithm for unknown variance

1: procedure bayes2(n, u, C, R, X, Vn, V
(d)
β , V

−1(a)
β , µ

(d)
β , µ

(a)
β , a(d), a(a), b(a), b(d), α)

2: count1 = 0 . counts iterations that meet analysis objective
3:

4: for i in range 1 : R do . R denotes number of generated datasets
5: Begin Design Stage
6: γ2 ← IG(a(d), b(d))
7: count2 = 0 . tracks meeting analysis objective for generated data
8: y ← n× 1 vector sampled from MVN(Xµ

(d)
β , γ2(XV

(d)
β X> + Vn))

9: End Design Stage
10:

11: Begin Analysis Stage
12: Compute the components that make up the posterior distributions of β and σ2:
13: M ← (V

−1(a)
β +X>V −1

n X)−1

14: m← V
−1(a)
β µ

(a)
β +X>V −1

n y

15: a∗ = a(a) + n
2

16: b∗ = b(a) + 1
2
{µ>(a)

β V
−1(a)
β µ

(a)
β + y>V −1

n y −m>Mm}
17:

18: for j in range 1:J do . J denotes number of posterior samples
19: σ2 ← IG(a∗, b∗)
20: β ← p× 1 vector sampled from MVN(Mm,σ2M)
21: if u>β ≤ C then
22: count2 ← count2 + 1
23: else
24: if u>β > C then
25: count2 ← count2
26: end if
27: end if
28: end for
29:

30: if count2 / J ≤ α then
31: count1 = count1 + 1
32: else
33: if count2 / J > α then
34: count1 = count1
35: end if
36: end if
37: End Analysis Stage
38:

39: end for
40: assurance ← count1 / R
41: return assurance
42:

43: end procedure

14



where γ2 − γ1 and µ2 − µ1 denote the true differences in costs and efficacies, respectively,

between Treatment 1 and Treatment 2, and K represents the maximum price that a health

care provider is willing to pay in order to obtain a unit increase in efficacy, also known as

the threshold unit cost. The quantity ξ acts as a measure of cost-effectiveness.

Since the net monetary benefit formula expressed in Equation (17) involves assessing

the cost and efficacy components conveyed within each of the two treatment groups, we set

β = (µ1, γ1, µ2, γ2)>, where µi and γi denote the efficacy and cost for treatments i = 1, 2.

Next, we specify yn as a 4n × 1 vector consisting of 2 × 1 vectors yij = (cij, eij)
>, i = 1, 2

and j = 1, 2, . . . , n. Each individual observation is allotted one row in the linear model.

The design matrix Xn is a 4n × 4 block diagonal with the n × 1 vector of ones, 1n, as

the blocks. With n = n1 = n2, σ2 = σ2
1 = σ2

2 and τ 2 = τ 2
1 = τ 2

2 , our variance matrix is

σ2 Vn
4n×4n

= σ2


In O O O

O τ2

σ2 In O O

O O In O

O O O τ2

σ2 In

 , where σ2 is factored out to comply with our conjugate

linear model formulation expressed in Equation (4).

In the analysis stage, we use the posterior distribution for β if σ2 is fixed or for {β, σ2}

if σ2 needs to be estimated; recall Sections 2.3.1 and 2.3.2. The posterior distribution is

needed only for the analysis stage, hence it is computed using the analysis priors. Since

there is no data in the design stage, there is no posterior distribution. We use the design

priors as specifications for the population from which the data is generated. That is, the

design priors yield the sampling distribution yn |σ2(d). O’Hagan and Stevens (2001) define

µ
(d)
β = (5, 6000, 6.5, 7200)> and V

(d)
β =


4 0 3 0

0 107 0 0

3 0 4 0

0 0 0 107.

. We factor out σ2 from V
(d)
β

to be consistent with the conjugate Bayesian formulation in Section 2.3.1 so σ2V
(d)
β =

σ2


4/σ2 0 3 0

0 107/σ2 0 0

3 0 4/σ2 0

0 0 0 107/σ2

. Lastly, we set the posterior probability of deciding in
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Outputs from Bayesian Assurance Algorithm

maxiter
K =5000
n = 1048

K = 7000
n = 541

K = 10000
n = 382

K = 20000
n = 285

250 0.708 0.676 0.688 0.716
500 0.701 0.714 0.676 0.698
1000 0.700 0.694 0.697 0.719

Table 1: Simulation results from our Bayesian assurance algorithm with varying number
of iterations in each of the four cost-effectiveness cases.

favor of H to at least 0.975, which is equivalent to a Type-I error of α = 0.025 in frequentist

two-sided hypothesis tests.

3.2 Design for Cost-Effectiveness Analysis

Consider designing a trial to evaluate the cost effectiveness of a new treatment with an

original treatment. We seek the tenability of H : ξ > 0, where ξ is the net monetary

benefit defined in Equation (17). Using the inputs specified in Section 3.1 we execute

simulations in the known and unknown σ2 cases to emulate O’Hagan and Stevens (2001)

as a special case.

3.2.1 Simulation Results in the Known σ2 Case

Table 1 presents Bayesian assurance values corresponding to different values of K and

sample size n. The “maxiter” variable, as described in Algorithm 1, is the number of data

sets being simulated. All of the resulting assurance values in Table 1 for all combinations

of K and n are close to 0.70. Looking by columns, we see that the assurance values exhibit

minor deviations in both directions for all cases as we increase the number of iterations

being implemented in each run. No obvious trends of precision are showcased in any of the

four cases. Looking across rows we observe that larger sample sizes tend to yield assurance

values that are consistently closer to the 0.70 mark, which is to be expected. The first

column, corresponding to the case with the largest sample size of n = 1048, consistently

produced results that meet the assurance criteria of 0.70. These results show that sampling

from the posterior provides results very similar to those reported in O’Hagan and Stevens

(2001).
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Figure 2: Assurance curves for each of the four different unit cost threshold cases K.
Dotted vertical lines indicating when a presumed 0.70 assurance level is achieved according
to O’Hagan and Stevens (from left to right): n = 285, n = 382, n = 541, and n = 1048.

As a supplement to Table 1, it is also helpful to feature a visual representation of

the relationship between sample size and assurance. The second part of our assessment

compares the assurance curves obtained from multiple runs of our Bayesian simulation

function with varying sample sizes n. This was done for each of the four unit threshold

cost assignments. A combined plot incorporating all four assurance curves is shown in

Figure 2 and a sample of the exact assurance values computed can be found in Table 2. A

smoothing feature from the ggplot2 package in R is implemented, which fits the observed

assurance points to a log(x) function. We explicitly mark the four assurance points that

our algorithm returned with sample sizes n and cost threshold values K that correspond

to reported assurance levels of 0.70 (horizontal line) in O’Hagan and Stevens (2001).

We also provide a separate graphical display showcasing how the assurance behaves in

separate runs to assess consistency in results. Figure 3 provides a side by side comparison

of the assurance curves for the case, where the unit threshold cost is K = 7000. The

dotted red lines correspond to the 0.7 threshold and the effects of simulation errors can

be seen through the slight differences in results between the two implementations. More

specifically, the left image indicates that we achieve our 0.70 assurance level slightly before

O’Hagan and Stevens (2001) reported a sample size of n = 541, whereas the right image

shows that the assurance is achieved slightly after n = 541. Such minor fluctuations are to

be expected due to Monte Carlo errors in simulation.
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Figure 3: Resulting Bayesian assurance curves obtained from two separate simulation runs
for the case with weak analysis priors and cost threshold value K = 7000.

Table 2: Selected subset of assurance values computed by algorithm for fixed variance
case (note that many points were omitted here simply to make table more concise). Pairs
highlighted in red correspond to the 4 points that were explicitly plotted in Figure 2.

K = 20000 K = 10000 K = 7000 K = 5000

n Assurance n Assurance n Assurance n Assurance

1 0.473 1 0.463 1 0.463 1 0.470
185 0.655 282 0.673 440 0.687 500 0.667
205 0.669 332 0.693 490 0.694 750 0.689
235 0.687 382 0.695 541 0.698 875 0.699
285 0.697 482 0.716 640 0.712 1000 0.695
335 0.716 750 0.743 750 0.719 1048 0.700
1200 0.782 1200 0.758 1200 0.735 1200 0.710

3.2.2 Simulation Results in Unknown σ2 Case

We now consider the setting where σ2 is unknown. This extends the analysis in O’Hagan

and Stevens (2001) who treated the cost-effectiveness problem with fixed variances. Table 3

does not align as closely as the assurance results we had obtained from implementing the

fixed σ2 simulation in Section 3.2.1.

Referring to Table 3, we let R be the number of outer loop iterations. The primary pur-

pose of the outer loop is to randomly draw design stage variances σ2(d) from the IG(a(d), b(d))

distribution. Recall from Section 2.3.2 that σ2(d) is used for computing the variance of the

marginal distribution from which we are drawing our sampled observations, y |σ2(d). The

inner-loop iterations sample data using the marginal distribution of σ2 from Equation (15).
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Outputs from Bayesian Assurance Algorithm

R
K =5000
n = 1048

K = 7000
n = 541

K = 10000
n = 382

K = 20000
n = 285

100 0.698 0.718 0.72 0.601
150 0.702 0.713 0.72 0.579

Table 3: Simulation results from the nonfixed Bayesian assurance algorithm with varying
number of iterations in each of the four cost-effectiveness cases.

The number of iterations in the inner-loop is set to 750 for all cases. We notice that a

majority of our trials report assurance values close to the 0.70 mark, particularly for the

case in which we set the sample size to n = 1048. The trial that exhibited the greatest

deviation was for threshold cost K = 20000 with corresponding sample size n = 285, which

returned an assurance of 0.58. This is most likely attributed to using a smaller sample size

to gauge the effect size.

A visual depiction for this case can be seen in Figure 4. The dashed line on the left

Figure 4: Assurance curve based on results of algorithm corresponding to unknown vari-
ance.

showcases the expected minimum sample size needed to achieve a 0.70 assurance whereas

the dashed line on the right marks the point at which our algorithm actually achieves this

desired threshold. The reality of the situation is that the problem setup gets changed quite

a bit once we remove the assumption that σ2 is known and fixed. If we look at the individual

points marked on the plot, assurance values of 0.61 and 0.71 don’t appear too different. If

we were to solely account for the fact that these Monte Carlo estimates are subject to error
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given that the estimates are based on means and variances that were compositely sampled

rather than being taken in as fixed assignments, our algorithm performs remarkably well,

but there are still points to be wary about.

The x-axis of the plot indicates that an assurance of 0.70 (red dotted line) can only be

ensured once we recruit a sample size of at least n = 485 per treatment group. This is

substantially larger compared to the known σ2 case, suggesting a need to recruit nearly twice

as many participants as what was needed in Table 1. These results evince the pronounced

impact of uncertainty in the design on the sample size needed to achieve a fixed level of

Bayesian assurance.

3.3 Sample Size Determination with Precision-Based Conditions

We now consider a few alternate Bayesian approaches for sample size determination and

demonstrate how these methods can be embedded within the two-stage Bayesian frame-

work. We also identify special cases that overlap with the frequentist setting.

Adcock (1997) constructs rules based on a fixed precision level d. In the frequentist

setting, if Xi ∼ N(θ, σ2) for i = 1, ..., n observations and variance σ2 is known, the precision

can be calculated using d = z1−α/2
σ√
n
, where z1−α/2 is the critical value for the 100(1 −

α/2)% quartile of the standard normal distribution. Simple rearranging leads to following

expression for sample size,

n = z2
1−α/2

σ2

d2
. (18)

Given a random sample with mean x̄, suppose the goal is to estimate population mean θ.

The analysis objective entails deciding whether or not the absolute difference between x̄

and θ falls within a margin of error no greater than d. Given data x̄ and a pre-specified

confidence level α, the assurance can be formally expressed as

δ = Px̄{x̄ : P (|x̄− θ| ≤ d) ≥ 1− α} . (19)

To formulate the problem in the Bayesian setting, suppose x1, · · · , xn is a random

sample from N(θ, σ2) and the sample mean is distributed as x̄|θ, σ2 ∼ N(θ, σ2/n).

We assign θ ∼ N(θ
(a)
0 , σ2/na) as the analysis prior, where na quantifies the amount of
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prior information we have for θ. Adhering to the notation in previous sections, subscript (a)

denotes we are working within the analysis stage. Referring to Equation (19), the analysis

stage objective is to observe if the condition, |x̄− θ| ≤ d, is met. Recall that if the analysis

objective holds to a specified probability level, then the corresponding sample size of the

data being passed through the condition is sufficient in fulfilling the desired precision level

for the study.

Additional steps can be taken to further expand out Equation (19). The posterior of θ

can be obtained by taking the product of the prior and likelihood, giving us

N

(
x̄

∣∣∣∣θ, σ2

n

)
×N

(
θ

∣∣∣∣θ(a)
0 ,

σ2

na

)
= N

(
θ

∣∣∣∣λ, σ2

na + n

)
, (20)

where λ =
nx̄+naθ

(a)
0

na+n
. From here we can further evaluate the condition using parameters

from the posterior of θ to obtain a more explicit version of the analysis stage objective.

Starting from P (|x̄− θ| ≤ d) = P (x̄− d ≤ θ ≤ x̄+ d), we can standardize all components

of the inequality using the posterior parameter values of θ, leading us to

P (|x̄− θ| ≤ d) = P

(
x̄− d− λ
σ/
√
na + n

≤ θ − λ
σ/
√
na + n

≤ x̄+ d− λ
σ/
√
na + n

)
= P

(
x̄− d− λ
σ/
√
na + n

≤ Z ≤ x̄+ d− λ
σ/
√
na + n

)
.

Simplifying the result gives us

δ =

{
x̄ : Φ

[√
na + n

σ
(x̄+ d− λ)

]
− Φ

[√
na + n

σ
(x̄− d− λ)

]
≥ 1− α

}
. (21)

Moving on to the design stage, we need to construct a protocol for sampling data

that will be used to evaluate the analysis objective. This is achieved by first setting a

separate design stage prior on θ such that θ ∼ N(θ
(d)
0 , σ2/nd), where nd quantifies our

degree of belief towards the population from which the sample will be drawn. Given that

x̄|θ, σ2 ∼ N(θ, σ2/n), the marginal distribution of x̄ can be computed using straightforward

substitution based on x̄ = θ + ε; ε ∼ N(0, σ2/n) and θ = θ
(d)
0 + ω; ω ∼ N(0, σ2/nd).

Substitution θ into the expression for x̄ gives us x̄ = θ
(d)
0 +(ω+ε); (ω+ε) ∼ N

(
0, σ

2(nd+n)
ndn

)
=
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N(0, σ2/p), where 1/p = 1/nd + 1/n. The marginal of x̄ is therefore N(x̄|θ(d)
0 , σ2/p), where

we will be iteratively drawing our samples from to check if the sample means satisfy the

condition derived in Equation (21). Algorithm 3 provides a skeleton of the code that was

used to implement our simulations.

3.3.1 Convergence to the Frequentist Setting

Unlike the cost-effectiveness application, the precision-based setting in Adcock (1997) is

not situated in a hypothesis testing framework. Hence, we cannot compute a set of cor-

responding power values that are directly comparable to our simulated assurance values.

Nevertheless, an appropriate formulation of the analysis and design stage precision param-

eters, na and nd, can emulate this setting.

Referring to the derived expression for assurance in Equation (21), note that we are

ultimately assessing whether the expression on the left hand side exceeds 1−α. Using the

frequentist sample size formula given in Equation (18), we can work backwards from the

sample size formula such that 1−α is isolated on the right hand side of the inequality. We

can then compare the expressions to compare the behaviors in relation to the probability

of meeting the pre-specified condition. Starting from Equation (18), simple rearrangement

reveals

n ≥ z2
1−α/2

σ2

d2
=⇒

√
n

σ
d ≥ z1−α/2 =⇒ Φ

[√
n

σ
d

]
≥ 1− α/2 =⇒ 2Φ

[√
n

σ
d

]
− 1 ≥ 1− α.

If we refer back to Equation (21), it becomes clear that setting na = 0 will simplify the

expression down to the same expression we had previously obtained for the above frequentist

scenario. Hence,

δ =

{
x̄ : Φ

[√
na + n

σ
(x̄+ d− λ)

]
− Φ

[√
na + n

σ
(x̄− d− λ)

]
≥ 1− α

}
na=0
===⇒

{
x̄ : Φ

[√
n

σ
d

]
− Φ

[
−
√
n

σ
d

]
≥ 1− α

}
=

{
x̄ : 2Φ

[√
n

σ
d

]
− 1 ≥ 1− α

}
.

In other words, if we let θ take on a weak analysis prior, we revert back to the frequentist

setting in the analysis stage.
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Algorithm 3 Bayesian assurance algorithm using Adcock’s condition for known variance
in the univariate case

1: procedure bayes adcock(n, d, θ
(a)
0 , θ

(d)
0 , na, nd, σ

2, α)
2: count = 0 . keeps track of the iterations that satisfy the analysis obj
3:

4: maxiter = 1000 . arbitrary number of iterations to loop thru
5: for i in range 1 : maxiter do
6: Design Stage Starts
7: σ2

d ← σ2 nd+n
nnd

8: x̄← single value generated from N(θ
(d)
0 , σ2

d)
9: Design Stage Ends

10:

11: Analysis Stage Starts . Computes components of the posterior distribution
of parameter θ:

12: λ← naθ
(a)
0 +nx̄

na+n

13: σ2
a ← σ2

na+n

14: θ ← single value generated from N(λ, σ2
a)

15:

16: φ1 ←
√
na+n
σ

(θ + d− λ)

17: φ2 ←
√
na+n
σ

(θ − d− λ)
18:

19: if Φ(φ1)− Φ(φ2) ≥ 1− α then
20: Zi ← 1
21: else
22: if Φ(φ1)− Φ(φ2) < 1− α then
23: Zi ← 0
24: end if
25: end if
26:

27: count ← count + Zi
28: Analysis Stage Ends
29: end for
30:

31: assurance ← count / maxiter
32: return assurance
33:

34: end procedure
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3.3.2 Simulation Results under Precision-Based Conditions

We test our algorithm using different fixed precision parameters d with varying sample

sizes n. The remaining fixed parameters including σ2, θ
(a)
0 , and θ

(d)
0 are randomly drawn

from the uniform distribution Unif(0, 1) for simplicity sake. Figure 5 displays the results

of the Bayesian-simulated points (marked in blue) in the case where weak analysis stage

priors were assigned overlayed on top of the frequentist results (marked in red). Note that

the Bayesian-simulated points denote the probability of observing that the posterior of θ

differing from the sample mean x̄ within a range of x̄ ± d exceeds 1 − α. From a general

Figure 5: Overlay of simulated results and frequentist results given a weak analysis prior
such that na → 0.

standpoint, these probabilities are obtained by iterating through multiple samples of size n

and observing the proportion of those samples that meet the analysis stage objective from

Equation (21). As we have shown in the previous section, this becomes trivial in the case

where weak analysis priors are assigned as we are left with a condition that is independent

of x̄. Hence, we are able to obtain the exact same probability values as those obtained from

the frequentist formula. As shown in the plot, this can be seen across all sample sizes n for

all precision parameters d.
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3.4 Sample Size Determination in a Beta-Binomial Setting

We revisit the hypothesis testing framework with proportions. Pham-Gia (1997) outlines

steps for determining exact sample sizes needed in estimating differences of two propor-

tions in a Bayesian context. Let pi, i = 1, 2 denote two independent proportions. In the

frequentist setting, suppose the hypothesis test to undergo evaluation is H0 : p1 − p2 = 0

vs. Ha : p1−p2 6= 0. As described in Pham-Gia (1997), one method of approach is to check

whether or not 0 is contained within the confidence interval bounds of the true difference

in proportions given by (p̂1− p̂2)± z1−α/2(SE(p̂1)2 +SE(p̂2)2)1/2, where z1−α/2 denotes the

critical region, and SE(p̂i) denotes the standard error of pi obtained by SE(p̂i) =
√

p̂i(1−p̂i)
ni

.

An interval without 0 contained within the bounds suggests there exists a significant dif-

ference between the two proportions.

The Beta distribution is often used to represent outcomes tied to a family of probabili-

ties. The Bayesian setting uses posterior credible intervals as an analog to the frequentist

confidence interval approach. As outlined in Pham-Gia (1997), two individual priors are

assigned to p1 and p2 such that pi ∼ Beta(αi, βi) for i = 1, 2. In the case of binomial

sampling, X is treated as a random variable taking on values x = 0, 1, ..., n to denote the

number of favorable outcomes out of n trials. The proportion of favorable outcomes is

therefore p = x/n. Suppose a Beta prior is assigned to p such that p ∼ Beta(α, β). The

prior mean and variance are respectively µprior = α
α+β

and σ2
prior = αβ

(α+β)2(α+β+1)
. Con-

veniently, given that p is assigned a Beta prior, the posterior of p also takes on a Beta

distribution with mean and variance

µposterior =
α + x

α + β + n

σ2
posterior =

(α + x)(β + n− x)

(α + β + n)2(α + β + n+ 1)
.

(22)

Within the analysis stage, we assign two beta priors for p1 and p2 such that pi ∼

Beta(αi, βi), i = 1, 2. If we let pd = p1 − p2 and ppost and var(p)post respectively de-

note the posterior mean and variance of pd, it is straightforward to deduce that ppost =

α1+x1
α1+β1+n1

− α2+x2
α2+β2+n2

and var(p)post = (α1+x1)(β1+n1−x1)
(α1+β1+n1)2(α1+β1+n1+1)

+ (α2+x2)(β2+n2−x2)
(α2+β2+n2)2(α2+β2+n2+1)

from

Equation (22). Hence the resulting 100(1 − α)% credible interval equates to ppost ±
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z1−α/2
√

var(p)post, which, similar to the frequentist setting, would be used to check whether

0 is contained within the credible interval bands as part of our inference procedure. This

translates to become our analysis objective, where we are interested in assessing if each

iterated sample outputs a credible interval that does not contain 0. We can denote this

region of interest as R(p) such that

R(p) =

{
p : 0 6∈

(
ppost − z1−α/2

√
var(p)post, ppost + z1−α/2

√
var(p)post

)}
. (23)

It follows that the corresponding assurance for assessing a significant difference in propor-

tions can be computed as

δ = P

{
pd : 0 6∈

(
ppost − z1−α/2

√
var(p)post, ppost + z1−α/2

√
var(p)post

)
≥ 1− α

}
.

Moving on to the design stage, note that the simulated data in Beta-Binomial setting

pertains to the frequency of positive outcomes, x1 and x2, observed among the two sam-

ples. These frequency counts are observed from samples of size n1 and n2 based on given

probabilities, p1 and p2, that are passed in the analysis stage. Once p1 and p2 are assigned,

x1 and x2 values are randomly generated from their corresponding binomial distributions,

where xi ∼ Bin(ni, pi), i = 1, 2. The posterior credible intervals are subsequently com-

puted to undergo assessment in the analysis stage. These steps are repeated iteratively

starting from the generation of x1 and x2 values. The proportion of iterations with results

that fall within the region of interest expressed in Equation (23) equates to the assurance.

Algorithm 4 provides a skeleton of the code used to implement our simulations.

3.4.1 Relation to Frequentist Setting

It is worth pointing out that there are no precision parameters to quantify the amount of

information we have on the priors being assigned. Directly showcasing parallel behaviors

between Bayesian and frequentist settings involve knowing the probabilities beforehand

and passing them in as arguments into the simulation. Specifically, if p1 and p2 are known

beforehand, we can express these “exact” priors as Uniform distributions such that pi ∼
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Algorithm 4 Bayesian assurance algorithm for difference in two independent proportions
under Pham-Gia’s credible interval condition

1: procedure bayes pham-gia(n1, n2, p1 = NULL, p2 = NULL, α1, α2, β1, β2, α)
2: if ψ = 1 then
3: p1 ← single value generated from Unif[p1, p1]
4: p2 ← single value generated from Unif[p2, p2]
5: else if ψ = 0 then
6: p1 ← Beta(α1, β1)
7: p2 ← Beta(α2, β2)
8: end if
9:

10: count = 0 . keeps track of the iterations that satisfy the analysis obj
11: maxiter = 1000 . arbitrary number of iterations to loop thru
12:

13: for i in range 1 : maxiter do
14: Design Stage Starts
15: x1 ← single value generated from Bin(n1, p1)
16: x2 ← single value generated from Bin(n2, p2)
17: Design Stage Ends
18:

19: Analysis Stage Starts
20: ppost = α1+x1

α1+β1+n1
− α2+x2

α2+β2+n2
. Computes posterior parameters of p = p1 − p2

21: var(p)post = (α1+x1)(β1+n1−x1)
(α1+β1+n1)2(α1+β1+n1+1)

+ (α2+x2)(β2+n2−x2)
(α2+β2+n2)2(α2+β2+n2+1)

22:

23: lb = ppost − z1−α/2
√
var(p)post . Computes upper and lower bounds

24: ub = ppost + z1−α/2
√
var(p)post

25:

26: if 0 < lb or 0 > ub then
27: count ← count + 1
28: end if
29: Analysis Stage Ends
30: end for
31:

32: assurance ← count / maxiter
33: return assurance
34:

35: end procedure
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U[pi, pi]. We can then express the overall analysis stage prior as a probability mass function:

pi = ψUnif[pi, pi] + (1− ψ)Beta(αi, βi), i = 1, 2,

where ψ denotes the binary indicator variable for knowing exact values of pi beforehand. If

ψ = 1, we are drawing from the uniform distribution under the assumption of exact priors.

Otherwise, ψ = 0 and we draw from the beta distribution to evaluate the analysis stage

objective.

There is also an additional route we can use to showcase overlapping behaviors be-

tween the Bayesian and frequentist paradigms. Recall the sample size formula for assessing

differences in proportions in the frequentist setting,

n =
(z1−α/2 + zβ)2(p1(1− p1) + p2(1− p2))

(p1 − p2)2
,

where n = n1 = n2. Simple rearragements and noting that −(z1−α/2 + zβ) = z1−β − z1−α/2

lead us to obtain

√
n(p1 − p2)√

p1(1− p1) + p2(1− p2)
+ z1−α/2 = z1−β =⇒ Power = 1− β =

Φ

( √
n(p1 − p2)√

p1(1− p1) + p2(1− p2)
+ z1−α/2

)
.

In an ideal situation, we could determine suitable parameters for αi, βi, i = 1, 2 to use as our

Beta priors that would enable demonstration of convergence towards the frequentist setting.

However, a key relationship to recognize is that the Beta distribution is a conjugate prior

of the Binomial distribution. There is a subtle advantage offered given that the Bayesian

credible interval bands are based upon posterior parameters of the Beta distribution and the

frequentist confidence interval bounds are based upon the Binomial distribution. Because of

the conjugate relationship held by the Beta and Binomial distributions, we are essentially

assigning priors to parameters in the Bayesian setting that the Binomial density in the

frequentist setting is conditioned upon. Using the fact that the normal distribution can

be used to approximate binomial distributions for large sample sizes given that the Beta
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Figure 6: Overlay of simulated assurance results using posterior credible intervals and
frequentist power results based on regular confidence intervals.

distribution is approximately normal when its parameters α and β are set to be equal and

large. We manually choose such values and apply them to our simulation study.

3.4.2 Simulation Results

Figure 6 displays the assurance curves overlayed on top of the frequentist power curves. As

mentioned in the previous section, we manually set the parameters of the beta priors to

be equal as doing so results in approximately normal behavior. The horizontal line at the

top of the graph corresponds to flat priors for the beta distribution known as Haldane’s

priors, in which the α and β parameters are all set to 0.5. Although the points do not align

perfectly with the frequentist curves as we rely on an approximate relationship rather than

identifying prior assignments that allow direct ties to the frequentist case, our model still

performs fairly well as the points and curves are still relatively close to one another.
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4 Discussion

This paper has attempted to present a simulation-based Bayesian design framework for

sample size calculations using assurance for deciding in favor of a hypothesis (analysis ob-

jective). It is convenient to describe this framework in two stages: (i) the design stage gen-

erates data from a population modeled using design priors; and (ii) the analysis stage per-

forms customary Bayesian inference using analysis priors. The frequentist setting emerges

as a a special case of the Bayesian framework with highly informative design priors and

completely uninformative analysis priors.

Our framework can be adapted and applied to a variety of clinical trial settings. Future

directions of research and development can entail incorporating more complex analysis

objectives into our framework. For example, the investigation of design and analysis priors

in the use of Go/No Go settings (Pulkstenis et al., 2017), which refers to the point in

time at which enough evidence is present to justify advancement to Phase 3 trials, will be

relevant. Whether the method of choice involves looking at lengths of posterior credible

intervals (Joseph et al., 1997) or determining cutoffs that minimize the weighted sum of

Bayesian average errors (Reyes and Ghosh, 2013), such conditions are all capable of being

integrated as part of our analysis stage objective within our two-stage paradigm.
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