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Abstract

The supersymmetric flavor, CP and Polonyi problems are hints that the fundamental scale of
the soft supersymmetry breaking parameters may be above a TeV, in apparent conflict with
naturalness. We consider the possibility that multi-TeV scalar masses are generated by Planck- or
unification-scale physics, and find the conditions under which the masses of scalars with large
Yukawa couplings are driven, radiatively and asymptotically, to the weak scale through renormal-
ization group evolution. Light third generation scalars then satisfy naturalness, while first and
second generation scalars remain heavy to satisfy experimental constraints. We find that this
mechanism is beautifully realized in the context of grand unified theories. In particular, the
existence of right-handed neutrinos plays an important role in allowing remarkably simple

Ž .scenarios. For example, for SO 10 boundary conditions with the squared masses of Higgs scalars
double those of sleptons and squarks, we find that the entire scalar mass scale may be increased to
4 TeV at the unification scale without sacrificing naturalness. q 1999 Elsevier Science B.V. All
rights reserved.

PACS: 12.60.Jv; 12.10.Dm; 11.10.Hi; 14.80.Ly
Keywords: Supersymmetric grand unification; Supersymmetric flavor problem; Naturalness; Renormalization
group equations; Polonyi problem

1. Introduction

The Achilles heel of supersymmetry lies, arguably, in the difficulty of satisfying
naturalness while simultaneously decoupling supersymmetric effects from low-energy
experimental observables. Naturalness is typically taken to require supersymmetric

(particle masses below 4pra M ;1 TeV, a few times the weak scale. In contrast,Ž . W

without an understanding of small scalar mass splittings, mixing angles, and CP-violat-
ing phases, a variety of experimental measurements suggest that supersymmetric scalar
masses must lie well above a TeV.

0550-3213r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S0550-3213 99 00577-5
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The experimental constraints have varying degrees of significance and model depen-
dence. Examples include the following:

1. The kaon system. Constraints from the K system depend on the flavor and chirality
structure of the scalar quarks. Roughly speaking, however, for moderate degenera-
cies, the constraint from e is most severe; it requires squark masses of order 100K

TeV. Likewise, the KyK mass splitting needs squark masses of order 10 TeV.
ŽRecent quantitative discussions of constraints from the K system are contained in

w x .Refs. 1–4 .
2. Electric dipole moments. The electric dipole moments of the neutron and electron

typically require multi-TeV squark and slepton masses if the relevant phases are not
w xsuppressed 5–7 . EDMs are flavor-conserving and so cannot be suppressed by scalar

Ž .degeneracy; for example, they imply severe constraints on scalar masses or phases
w xeven in models with gauge-mediated supersymmetry breaking 8 .

3. The proton lifetime. Lower bounds on the proton lifetime place strong constraints on
Ž . w xsupersymmetric grand unified theories GUTs , especially for large tanb 9–14 . The
Ž .predicted decay rates depend on the super heavy and the light supersymmetric

particle spectra; they are greatly suppressed for multi-TeV scalar masses.
4. The Polonyi problem. Many supersymmetric theories contain late decaying scalar

w xfields that ruin the successful predictions of Big Bang nucleosynthesis 15 . This
problem is independent of scalar degeneracies or phases, but may be solved if the

w xscale of supersymmetry breaking is of order 10 TeV 16–18 .

In addition, many models predict scalar masses hierarchically larger than gaugino
Ž w xmasses for recent proposals, see, for example, Refs. 19,20 ; a similar situation also

w x.arises in certain string frameworks, see Ref. 21 . Given the current bounds on gaugino
masses, scalar masses must then be well above a TeV.

The conflict between naturalness and experimental constraints may be resolved by
observing that, roughly speaking, naturalness restricts the masses of scalars with large
Yukawa couplings, while experiment constrains the masses of scalars with small

w xYukawas 22–28 . Naturalness affects particles that are strongly coupled to the Higgs
sector, while experimental constraints are strongest in sectors with light fermions that
are plentifully produced. This suggests that naturalness and experimental constraints
may be simultaneously satisfied by an ‘‘inverted hierarchy’’ approach, in which light
fermions have heavy superpartners, and vice versa. In particular, third generation scalars
with masses m Q1 TeV satisfy naturalness constraints, while first and secondlight

generation scalars at some much higher scale m avoid many experimental difficul-heavy

ties. A number of possibilities have been proposed to dynamically generate scalar
w xmasses at two hierarchically separated scales 29–36 .

In this paper, we shall investigate a new mechanism for generating an inverted
hierarchy. We will assume that all scalar masses are of order m when produced atheavy

some scale, say the GUT or Planck scale. We will then use renormalization group
evolution to create an inverted hierarchy at the weak scale. This mechanism works
because the renormalization group equations automatically suppress the masses of
scalars associated with fermions which have large Yukawa couplings. The masses of

Ž .these scalars and only these scalars are driven to m . This mechanism waslight



( )J. Bagger et al.rNuclear Physics B 563 1999 3–20 5

Žinvestigated recently in models with large top and bottom Yukawa couplings and all
. w xothers small 37 . It was shown that, for particular high scale boundary conditions, all

scalars with large Yukawas may be driven asymptotically to m in the infrared. Stops,light

sbottoms, and Higgs scalars are then naturally light at the weak scale, while the masses
of all other scalars remain heavy. In this way a very large hierarchy can be created
dynamically.

In what follows we will consider the well-motivated supersymmetric GUTs, with
Ž .special emphasis on SO 10 unified theories. As is well known, such theories, among

other merits, successfully predict gauge coupling unification and naturally accommodate
massive neutrinos. In the present context, however, they have even more virtues. First,
they naturally provide the universal and large third generation Yukawa couplings
required to implement the inverted hierarchy. Second, as we will see, the existence of a
right-handed neutrino plays an important part in creating a plausible fixed point
structure. These virtues make grand unified theories the natural setting for the radiatively
generated inverted hierarchy mechanism.

We will begin in Section 2 with a discussion of the fixed point structure of the scalar
Ž .mass renormalization group equations RGEs . In Section 3 we will analyze the inverted

hierarchy in grand unified models with right-handed neutrinos. Finally, in Section 4 we
will consider inverted hierarchies generated in supersymmetric GUTs with evolution
between the Planck and GUT scales. In each case we illustrate the size of the hierarchies
that may be achieved using the scalar mass fixed-point framework. We shall see that the
scalar masses may be pushed as high as ;4 TeV. Such a large hierarchy significantly
ameliorates most experimental difficulties. More detailed conclusions, as well as a
discussion of implications for low energy experiments and high energy colliders, are
contained in Section 5.

In Appendix A we collect the RGEs used in this analysis. For models above the GUT
scale, these RGEs include, for the first time, the two-loop pure Yukawa terms. They also
correct some one-loop results previously given in the literature.

2. Scalar mass fixed points

Supersymmetric theories are natural if the conditions for electroweak symmetry
breaking,

m2 ym2 tan2bH Hd u1 2 2m s ym ,Z2 2tan by1

2m2 s m2 qm2 q2m2 sin2b , 1Ž .Ž .3 H Hu d

are free of large cancellations.1 These conditions apply to the RGE-improved effective
Ž .potential, so the supersymmetric parameters of Eq. 1 must be evaluated at the weak

1 The parameters m and m are the soft supersymmetry breaking Higgs boson masses, m2 is the softH H 3u d
² 0: ² 0:bilinear scalar coupling of the two Higgs doublets, m is the Higgsino mass parameter, and tanb s H r Hu d

is the usual ratio of Higgs vacuum expectation values.
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Ž .scale. A priori, naturalness bounds only the parameters entering Eq. 1 , and, for
example, even the requirement on m is relaxed for large tanb. Nevertheless,Hd

naturalness affects all other supersymmetric parameters to the extent that they renormal-
ize these relations.

For all the reasons given in the previous section, we are motivated to consider
theories in which the scalar masses are of order m at some high scale M , which weheavy 0

take to be the GUT or Planck scale. For arbitrary initial conditions, it is clear that the
scalar masses, including m and m , are of order m at all scales, and the theoryH H heavyu d

Ž .must be fine-tuned. However, if the RGEs have approximate infrared fixed points
where these scalar masses vanish, appropriate boundary conditions will lead to weak-scale
masses that are small and insensitive to m , thereby preserving naturalness.heavy

We must therefore identify the infrared fixed points of the scalar mass renormaliza-
Žtion group equations. The RGEs for supersymmetric theories are well known up to

. w xtwo-loops , but complicated 38–40 . However, in the scenarios we are considering, we
can make several simplifications and easily extract the essential features of the RGEs.

In a general supersymmetric theory, the one-loop RGEs for scalar squared masses m2

are schematically of the form

m2 ;yYm2 qaM 2 yYA2 , 2Ž .˙ ˜ 1r2

where M and A represent gaugino masses and trilinear scalar couplings, respectively.21r2

Here, and in the rest of the paper, we use the following notation and conventions: t'
d2 2 2 2 2 2˙Ž .ln M rQ , ' , a'g r16p sar4p , and Y'h r16p , where g and h are˜Ž .0 dt

Ž .gauge and Yukawa couplings, respectively. For each term in Eq. 2 , overall signs are
Ž .determined as shown, but positive numerical coefficients are suppressed.

Ž .From Eq. 2 we see that large M and A parameters typically destabilize light1r2

scalar masses. Therefore we require3 M , A;m at the scale M . Note that the1r2 light 0

hierarchy M , A<m at M is natural and may be generated in a number of ways, for1r2 0

example, by an approximate R-symmetry, or through mechanisms that differentiate
dimension-one and dimension-two soft supersymmetry breaking parameters. Examples

w xare given in Refs. 37,41 .
Let us also assume that all large Yukawa couplings are unified at M . Then, if we0

ignore differences in the Yukawa evolution, we find that the RGEs for the scalar masses
take the simple form

m2 syYN m2 , 3Ž .˙ i i j j

where the subscripts run over all scalar fields in the theory, and N is a matrix of
Ž .positive constants determined by color and SU 2 factors. This set of equations is easily

solved by decomposing arbitrary initial conditions into components parallel to the

2 We have omitted a hypercharge trace term which vanishes for supersymmetric GUTs.
3 dGaugino masses satisfy M ra s0 at one-loop; they cannot be driven from m at M to m˜Ž .1r2 heavy 0 lightdt

in the infrared. For A-parameters, the story is more complicated. We will simply assume A; M ; m at1r2 light

all scales.
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eigenvectors of N, each of which then evolve independently. Indeed, if N has
eigenvectors e with eigenvalues l , the initial conditionsi i

m2 ts0 s c e 4Ž . Ž .Ý i i

evolve to

t f2m ts t s c e exp yl Ydt . 5Ž .Ž . Ý Hf i i i
0

We see that eigenvectors with large positive eigenvalues are asymptotically and rapidly
crunched to zero. For initial conditions dominated by such eigenvectors, the final masses
are greatly suppressed relative to their initial values.

Of course, the size of the scalar mass hierarchy depends not only on the initial
conditions, but also on the evolution interval t and the initial value of the Yukawaf

coupling. We expect a large hierarchy for large t and Yukawa couplings near theirf
w xquasi-fixed points 42 . In the following sections, we determine numerically the suppres-

sion factors, or crunch factors, that are possible in supersymmetric GUTs both below
and above the unification scale.

3. MSSM with right-handed neutrino

In this section, we consider a model with the particle content of the minimal
Ž .supersymmetric standard model MSSM with a right-handed neutrino N. We assume

that soft supersymmetry breaking masses are generated at the unification scale, as may
be the case, for example, in strongly coupled string theories where the GUT scale is also
the string and, hence, the supergravity scale.

The superpotential is given by

Wsh H QUqh H QDqh H LEqh H LN , 6Ž .t u b d t d n u

where the matter fields Q, U, D, L, E, and N are those of the third generation and all
other Yukawa couplings may be neglected for our analysis. We also neglect off-diagonal
scalar masses for the moment; their effects and constraints will be discussed in Section
5.

For this model, omitting gaugino masses and A terms as discussed in Section 2, the
RGEs for scalar masses are

3Y qY 3Y 3Y 0 0 Y 0 Yt n t t n n

2Y 2Y 2Y 0 0 0 0 0t t t

Y Y Y qY Y Y 0 0 0t t t b b b

0 0 2Y 2Y 2Y 0 0 0b b b2 2m sy m ,˙
0 0 3Y 3Y 3Y qY Y Y 0b b b t t t

Y 0 0 0 Y Y qY Y Yn t t n t n

0 0 0 0 2Y 2Y 2Y 0t t t

2Y 0 0 0 0 2Y 0 2Yn n n

7Ž .
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2 Ž 2 2 2 2 2 2 2 2 .Twhere m s m ,m ,m ,m ,m ,m ,m ,m . At the GUT scale M , the YukawaH U Q D H L E N Gu d

couplings are unified with YsY sY sY sY . If we assume, for the moment, thatt b t n

they remain approximately degenerate at lower scales, the evolution equations simplify
to

m2 syYN m2 , 8Ž .˙

where

4 3 3 0 0 1 0 1
2 2 2 0 0 0 0 0
1 1 2 1 1 0 0 0
0 0 2 2 2 0 0 0Ns . 9Ž .
0 0 3 3 4 1 1 0
1 0 0 0 1 2 1 1
0 0 0 0 2 2 2 0
2 0 0 0 0 2 0 2

The eigenvectors of N, and their associated eigenvalues l , arei

e : 8, 2,1,1,1,2,1,1,1 , e : 6, 2,1,0,y1,y2,0,y1,1 ,Ž . Ž .1 2

e : 4, 0,1,1,1,0,y3,y3,y3 , e : 2, 0,y1,0,1,0,0,y3,3 , 10Ž . Ž . Ž .3 4

along with four eigenvectors with zero eigenvalue. Components of the initial conditions
along e , and to a lesser extent e , e , and e , are rapidly suppressed during1 2 3 4

w xrenormalization group evolution by factors of exp yl HYdt .i

Note that the boundary condition given by e ,1

1 12 2 2 2 2 2 2 2m sm sm sm sm sm s m s m , 11Ž .U Q D L E N H H2 2u d

Ž .is remarkably simple, and is consistent with minimal SO 10 unification, in which all
matter fields arise from a single 16 multiplet, both Higgs fields are contained in a single

Ž . Ž . Ž . Ž .10 multiplet, and the GUT breaking SO 10 ™SU 3 =SU 2 =U 1 takes place in one
step.4 This simplicity is not automatic. For example, equivalent analyses without a
right-handed neutrino yield eigenvectors that are far from simple, and moreover, are not
compatible with GUT unification. The right-handed neutrino plays a critical role in
leading us to a plausibly simple boundary condition.

In reaching the above conclusions, we have made a number of approximations that
must be examined. First, we have neglected the fact that the Yukawa couplings evolve
independently, and, in particular, the fact that the leptonic and hadronic Yukawas differ
significantly at lower energy scales. Second, we have not taken into account the
decoupling of the right-handed neutrino N at some scale. Both of these effects imply
that the above eigenvectors do not remain eigenvectors during the full renormalization
group evolution. Finally, as we will see below, there may also be corrections from
numerically significant two-loop terms.

4 Of course, such a minimal unification scenario is not consistent with the observed light fermion spectrum
and CKM mixing. However, these issues may be resolved, for example, by non-renormalizable couplings,

Ž .which are irrelevant to our analysis of the large OO 1 Yukawa couplings. The minimal model may therefore be
used to illustrate our results.
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To determine the importance of these effects, we now solve the RGEs numerically. It
is, of course, possible to include all terms up to two-loops in the numerical analysis.
However, doing so requires specifying many additional parameters, and the analysis
becomes highly model-dependent. Fortunately, many terms have only a small effect on
the overall fixed point behavior and therefore may be neglected. In what follows, we
will systematically omit all terms of order m2 in the m2 RGEs; this removes alllight

dependence on the unknown gaugino mass and A parameters. For consistency, we also
omit all other terms of similar size, and keep only the one-loop and leading two-loop
terms. The resulting RGEs are schematically of the form

2 2 ˙ 2 3 2 2 2 2ȧsba qa Y , YsyY qa YqY , m syYm qY m , 12Ž .˜ ˜ ˜ ˜ ˙

where b is the one-loop b-function coefficient.5 The complete RGEs up to this order are
presented in Appendix A.

The approximation used is formally equivalent to keeping the leading and next-to-
'Ž .leading order terms in an expansion in OO a ,Y . This expansion is motivated by the˜

fact that, at the unification scale, Yukawa couplings may be very large near their
quasi-fixed points. For example, for h;2, we have Y;1r40, while af1r300. The˜

Ž .dominant two-loop terms are therefore those of Eq. 12 . We will see that these terms
may be significant. On the other hand, while possibly significant, they should not be too
large: large two-loop effects signal a breakdown of perturbativity, and our analysis is
unreliable in these regions. We will comment on such parameter regions below.

With these approximations, the theory is completely specified by two parameters, h ,G

the universal third generation Yukawa coupling at the GUT scale, and m , theN

right-handed neutrino mass. In Fig. 1, we show the renormalization group evolution of
the scalar mass parameters from the GUT scale M ,2=1016 GeV to the weak scale,G

for h s2 and m s1013 GeV. We find that large scalar mass suppressions areG N

possible. Indeed, even m ;4 TeV can give rise to third generation scalars withheavy

masses m Q1 TeV. Note also that the hierarchy is created rapidly, in the first fewlight

decades of evolution. This is the region in which the gauge interactions, and hence, the
Yukawa couplings, remain roughly universal. Below this scale, the Yukawa couplings
split substantially, but by then, the hierarchy is already created and cannot be destroyed.
The assumption of universal Yukawa couplings throughout the evolution interval is
therefore a convenient fiction.

In our analysis, we have neglected effects of order m , which clearly have littlelight

impact on the overall suppression of the scalar mass scale. They do, however, modify
the RGEs at the weak scale when the scalar masses are of order m . By omitting suchlight

effects, we forfeit the possibility of investigating a number of topics, including the
details of electroweak symmetry breaking, as well as quantitative determinations of
finite corrections to fermion masses and the residual fine-tuning required to keep the Z
mass light. Here, we note only that our scenario shares the problem of proper
electroweak symmetry breaking generic to all supersymmetric scenarios with large tanb

w x43–45 . Several possible solutions have been discussed in the literature. For example, if

5 Note that a 2 m2 terms have been omitted in the m2 RGE. However, given the hierarchies we are able˜ heavy
Ž . 2to achieve see below , these terms are still only of order m .light
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Ž . Ž .Fig. 1. The renormalization group evolution of the Higgs dashed and third generation squark solid and
Ž .slepton dotted squared masses in the MSSM with a right-handed neutrino for the boundary conditions of Eq.

Ž . 13 Ž .11 with h s2 and m s10 GeV. First and second generation scalar masses not shown are approxi-G N

mately renormalization group invariant. At the weak scale, m s1270 GeV, m s830 GeV, m s710 GeV,L E Hu

m s690 GeV, m s570 GeV, m s420 GeV, and m s50 GeV. Note, however, that neglected effects ofD Q U Hd
2 Ž .order m modify solutions in the shaded region. The suppression factor for this case is Ss20 see text .light

Ž . Ž .the GUT group is broken not in one step, but in a chain beginning with SO 10 ™SU 5
Ž . Ž .=U 1 , the resulting U 1 D-terms may help induce proper electroweak symmetry

w x 2breaking 46–48 . These terms are parametrically of order m , but are suppressed byheavy
Ž . Ž 2 . Žthe large U 1 charge of the singlet. More generally, another source for OO m butX light

Ž 2 ..not OO m perturbations could be assumed.heavy

The large radiatively generated hierarchy evident in Fig. 1 exists for a wide range of
parameters m and h . To quantify the hierarchy, we characterize the scale of a givenN G

scalar spectrum at renormalization scale Q by the quantity

2 2m Q 'Av m Q , 13Ž . Ž . Ž .

where the average is taken over all scalar fields in the theory, properly weighted by
2Ž . Ž Ž .color and SU 2 factors. This definition of m Q is invariant under possible shifts

.from D-terms. We then define the suppression, or crunching, factor

2m MŽ .0
S' , 14Ž .2m mŽ .W

Ž .where the weak scale m is taken to be 1 TeV. In Fig. 2 we plot S in the m ,hW N G

plane. For a broad range of h near its quasi-fixed point, we see that S;20 is possible.t

For smaller values of h , the scalar masses do not approach their fixed point as quickly,t

and for larger values, two-loop effects become important. Indeed, the two-loop terms
˙give positive contributions to Y, and therefore increase the Yukawa suppression of scalar

Žmasses. However, they also give positive contributions directly to these masses. See
Ž . .12 . The latter effects dominate, so the two-loop terms degrade the hierarchy. For ht

larger than shown in Fig. 2, the two-loop effects become so large that perturbation
theory cannot be trusted.
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Fig. 2. The suppression factor S defined in the text for the MSSM with a right-handed neutrino N with initial
Ž .boundary conditions given by Eq. 11 . The parameter m is the scale at which the right-handed neutrinoN

decouples, and h is the value of the universal Yukawa coupling at the GUT scale M ,2=1016.G G

The definition of S is, of course, somewhat arbitrary, but its size gives an indication
of the reductions in the scalar masses that are possible from radiative effects. In
particular, S provides a rough measure of the reduction of the scalar contribution to

'fine-tuning and S is a measure of m rm . From Fig. 2 we see that, if values ofheavy light

m of order 1 TeV are considered natural, values of m up to ;4 TeV arelight heavy

acceptable. This is then the scale of the matter fields of the first and second generation,
which, given their small Yukawa couplings, do not renormalize significantly.

A scale of 4 TeV does not completely solve the most stringent flavor and CP
problems related to the K system, but it does reduce them significantly with respect to
the typical case with squark masses of 1 TeV. In addition, several of the other
experimental difficulties mentioned in Section 1 are also resolved. Detecting scalars with
such heavy masses will pose a serious challenge to future colliders.

Finally, we note that the values of S are largely independent of m . For m Q1013
N N

GeV, the hierarchy is already created by the time the neutrino decouples, and so is
insensitive to the decoupling scale. However, even for m approaching M , a largeN G

hierarchy is possible. This may be understood as follows. When N decouples, the new
evolution matrix N X is the upper 7=7 block of N with Y s0. The matrix N X has 3n

positive and 4 zero eigenvalues. In terms of cos3us17r64, the 2 largest eigenvalues
X X4 'Ž .are cosu" 3 sinuq16 f7.5,5.6; their corresponding eigenvectors e and e are1 23

also quickly damped. If we decompose the seven-dimensional truncation of e into1
tr Ž . 7 X Xthese new eigenvectors, e s 2,1,1,1,2,1,1 'Ý c e , we find that the decomposition1 is1 i i

X X < 7 X X < < tr <is dominated by e and e components: for the remaining components, Ý c e r e1 2 is3 i i 1

s0.20. Thus, the decoupling of N perturbs the fixed point structure only slightly —
when N decouples, the scalar mass spectrum projects mainly on to the new eigenvectors
with largest eigenvalues, and the rapid exponential damping continues. Note that the

Ž .special case m sM is equivalent to the case of an SU 5 GUT with universalN G
Ž .Yukawa couplings and minimal SU 5 particle content. The exact eigenvectors for the

Ž . trSU 5 fixed point system are complicated. However, the above analysis shows that e is1

nearly a linear combination of eigenvectors with large eigenvalues, so large hierarchies
Ž .can be generated from simple boundary conditions in the SU 5 case as well.
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4. GUTs above the unification scale

An inverse hierarchy may also be generated in supergravity theories through renor-
malization group evolution above the unification scale. In this section we consider
models in which scalar masses are generated at the supergravity scale, which we take to
be the reduced Planck scale M s2.4=1018 GeV, and then evolved to the GUT scale

)

M ,2=1016 GeV. Even though the evolution interval is only two decades, we againG

find that substantial hierarchies may be created for simple initial scalar spectra. We will
consider two generic cases for illustration.

( )4.1. SO 10

Ž .We begin by considering SO 10 models, that is, the class of models with superpoten-
tial

Wsh ccHH q . . . , 15Ž .t 2

Ž .where the matter fields are contained in c 16 and both up-type and down-type Higgs
Ž . Ž .fields are contained in a single multiplet: HH 10 < HH ,HH , where HH , HH are 52 u d u d

Ž .and 5 representations of the SU 5 subgroup, respectively. We allow arbitrary additional
field content, subject only to the constraint that additional superpotential couplings are
small relative to h . Note that two Higgs models, with superpotential Wsh ccHH qt t 2

h ccHH q . . . are, for the purposes of our analysis, equivalent to a one Higgs model inb 1
Ž .the limit h sh see Appendix A . To the extent that the couplings are unified in thist b

more general class of models, this analysis also applies.
The RGEs for this class of models are given in Appendix A. Note that additional

Ž .interactions and an extended Higgs sector are required to break SO 10 and generate
flavor structure. In general, this leads to a set of RGEs that are highly model-dependent.
Fortunately, though, in the limit we consider, the RGEs simplify considerably. First, as
noted already in footnote 4, non-renormalizable operators that may be used to generate
the correct flavor structure do not influence the RGEs. Second, we assume that all
additional Yukawa couplings are small, as they necessarily are for the first and second
generations, so their impact on the RGEs may be neglected. Third, although the presence
of additional fields with standard model quantum numbers modifies all RGE terms with
two or more powers of a , as argued in Section 3, the two-loop terms of this form are˜

Žhighly suppressed. We have checked that they are insignificant for reasonable field
.content. Finally, extra fields with standard model quantum numbers also change the

one-loop b-function coefficient b . To good approximation, this is the only important10

effect, so the RGEs of these models may be studied simply by taking b as an arbitrary10
Ž .free parameter. We will consider the range y3(b (20, for which 1r26Qa M Q10 )

1r8.
We now proceed as in Section 3. The one-loop scalar mass evolution is given by

m2 syY N m2, where˙ t

4 8Ns , 16Ž .
5 10

2 Ž 2 2 .T Ž .and m s m ,m . The matrix N has eigenvector e s 4,5 with eigenvalue 14,HH c 12

and another eigenvector with eigenvalue zero.
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Ž . 18 16Fig. 3. The suppression factor S for SO 10 models evolving from M s2.4=10 GeV to M ,2=10
) G

Ž .GeV with boundary conditions given by Eq. 17 . The parameter b is the one-loop b-function coefficient10

parametrizing this class of models, and h is the value of the universal Yukawa coupling at the scale M .
) )

We therefore consider what hierarchies are possible, starting with initial boundary
conditions

42 2m s m . 17Ž .HH c52

The suppression factor S is plotted in Fig. 3. Several features are worthy of note. First, S
is rather insensitive to b , but is slightly improved for large particle content. In10

addition, even though the scalar masses are never pushed negative, S is degraded for
Ž .very large h sh M . As above, this is caused by two-loop effects. Nevertheless,

) t ) 'even for initial Yukawa couplings h ;2, we see that S ;2 is possible. Scalars at 2
)

TeV again ameliorate a number of problems, and also stretch the discovery limits of
planned future colliders.

( )4.2. SU 5

Ž . Ž .Finally, we consider the minimal SU 5 model and extensions. The minimal SU 5
model has superpotential

1 'Ws h TTHH q 2 h TFHH q . . . , 18Ž .t u b d4

Ž . Ž . Ž .where the quark and lepton fields are T 10 and F 5 and the Higgs fields are HH 5u
Ž .and HH 5 .d

We assume that h and h are equal and large, and that all other couplings are smallt b

relative to these. Since we take h and h to be near their quasi-fixed points, the lattert b

restriction is not too severe.6 Note that we must take h and h to be large in order tot b

suppress m and m . This was an automatic and attractive feature of the minimalH Hu d

Ž .SO 10 models.

6 Ž .Typically, the superpotential includes a term lHH SHH , where S is the adjoint of SU 5 . Theu d

requirement that colored Higgses be sufficiently heavy to prevent proton decay then implies l; g. However,
in our scenarios, the first and second generation squarks are very massive, and so such constraints are relaxed

Ž .4by either a factor of m rm and an additional mixing angle or by a product of two additional mixinglight heavy

angles.
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Ž . Ž .Fig. 4. The suppression factor S, as in Fig. 3, but for SU 5 theories with the boundary conditions of Eq. 20 .

The RGEs are given in Appendix A. In the minimal model, the b-function coefficient
is b sy3; it is larger in extensions of the minimal model, and so, as before, we take it5

to be a free parameter.
The evolution matrix is

3 6 0 0
3 8 2 2Ns 19Ž .
0 4 4 4
0 4 4 4

2 Ž 2 2 2 2 .Tin the basis m s m ,m ,m ,m , where YsY sY . The leading eigenvector isHH T F HH t bu d

Ž .e s 3,5,4,4 , with eigenvalue 13. Suppression factors, with initial conditions1

3 52 2 2 2m s m sm sm , 20Ž .HH T F HH4 4u d

Ž .are plotted in Fig. 4. We find results similar to the SO 10 case. First and second
generation scalar masses as large as 2 TeV are allowed. As before, they significantly
reduce the stringency of the experimental constraints on scalar degeneracy and CP-
violating phases.

5. Conclusions

In this study we have examined the possibility that soft supersymmetry breaking
scalar masses are of order m at some high scale. The third generation scalar massesheavy

are driven to m Q TeV in the infrared by their large Yukawa couplings, while firstlight

and second generation scalar masses remain at m . This inverse hierarchy mecha-heavy

nism offers an appealing and natural way to satisfy the strong experimental constraints
on first and second generation scalars in supersymmetric theories.

The third generation scalar masses are determined by infrared fixed points, so their
Žprecise values are insensitive to the initial conditions at, say, M or to the exact valueG

.of M , for that matter . We have shown that with suitable assumptions and approxima-G

tions, the scalar fixed points may be extracted from the RGEs analytically. We justified
the validity of these approximations by more precise numerical calculations.
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For evolution below the GUT scale, we find that hierarchies of m rm ;4 mayheavy light
Ž .be created. The necessary boundary conditions are those of Eq. 11 , with the Higgs

squared masses double those of the squarks and sleptons. The simplicity of this
boundary condition is in some sense a measure of the plausibility of the scenario. It is
remarkable that such a simple boundary condition, perhaps the simplest imaginable next
to complete scalar universality, allows one to move the entire scalar mass scale up to 4
TeV without sacrificing naturalness. Note that for simplicity we have focused on only
the eigenvectors with largest eigenvalue. However, other eigenvectors with non-zero
eigenvalue are also crunched, and so initial conditions in these directions may also be
acceptable. It would be interesting to find theories that naturally generate such boundary
conditions and to investigate the fixed point structure of other models.

The scale m ;4 TeV eliminates many dangerous supersymmetric effects. Forheavy

example, supersymmetric contributions to the electron and neutron EDMs, which in
these scenarios scale like m2 rm4 , are now typically well below the experimentallight heavy

Ž .bounds even for OO 1 phases. In addition, contributions to proton decay are significantly
suppressed.

These hierarchies, however, do not completely eliminate all low energy signals, and a
variety of bounds place constraints on these models. Throughout this analysis, we have
neglected off-diagonal scalar masses. These masses do not take part in the fixed point
behavior and are, in fact, essentially RG invariant. For the squark and slepton sectors to
be tachyon-free, off-diagonal squared masses must be Qm m . In the B system,light heavy

this constraint implies that flavor violating effects are within their current bounds,
Ž w x.although some interesting B signals may be observable in the future see Ref. 49 .

However, even more stringent bounds follow from the kaon system: for example, even
2 2 2for m ;4 TeV, the KyK mass difference requires m rm Q0.1, where mheavy 12 heavy 12

is the off-diagonal entry of the squark mass matrix mixing the first and second
generations. Constraints from e may be even more stringent, depending on the size ofK

the CP-violating phase. Finally, constraints in the leptonic sector, for example, from
w xm™eg and mye conversion, are also known to be important 50–59 . Such transitions

may take place through light staus, and for CKM-like 13 and 23 mixing angles, these
constraints require stau masses of at least 300 GeV. Thus, while the severity of many of
these constraints is significantly weaker than in typical scenarios with weak-scale scalar
masses, moderate suppressions of off-diagonal masses are nevertheless required.

For evolution above the GUT scale, the brief evolution interval makes it impossible
to generate such large hierarchies. However, m rm ;2 is possible. Constraintsheavy light

on scalar degeneracy and CP-violating phases are still significantly weakened relative to
the standard scenario in which all scalars are below 1 TeV.

Finally, we draw some implications for high energy colliders. In these scenarios, as in
all scenarios with inverted scalar hierarchies, scalars with mass m are beyond theheavy

reach of proposed colliders, such as the LHC and NLC, and can only be detected
w xthrough their non-decoupling from super-oblique corrections 60–67 . A goal of super-

symmetric collider studies is to precisely measure superparticle properties, and thereby
determine the supersymmetric parameters at the weak scale. It is then hoped that hints
about physics at even smaller distances can be found by evolving these parameters to
very high energies. The fixed point analysis shows that in certain directions of parameter
space, corresponding to eigenvectors of the scalar mass evolution matrix with large
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eigenvalues, even large masses at the high scale are exponentially suppressed when they
are evolved to the weak scale. Accurate determination of high scale boundary conditions
in these directions therefore requires extremely precise measurements.
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Appendix A

Ž .In this appendix, we present the renormalization group equations for SU 5 and
Ž .SO 10 GUTs above and below the GUT scale. As explained in Section 3, gaugino

masses and A terms are negligible in the scenarios we are considering. The relevant
parameters are then the gauge couplings g, Yukawa couplings h, and scalar squared
masses m2. The RGEs are conveniently expressed in terms of the variables

g 2 a h2
2 2 2t' ln M rQ , a' s , Y' , X'm , A.1Ž .˜Ž .0 X2 24p16p 16p

Ž .where, as indicated in Eq. A.1 , for notational simplicity we denote a scalar field’s
squared mass by the field itself.

Schematically, the two-loop RGEs then have the form

2 2 3 2 2˙ȧsba qa Yqa , YsY yYqaqY ya Yya ,˜ ˜ ˜ ˜ ˜ ˜ ˜

2 2ẊsX yYqY ya Yya , A.2Ž .˜ ˜
d˙Ž .where ' . The constant b is the one-loop b-function coefficient; the signs of alldt

other terms are determined as indicated. Most of the two-loop terms are insignificant, as
described in Section 3. Below, we present all one-loop terms and the dominant two-loop
terms underlined above.

A.1. MSSM with right-handed neutrino

The superpotential for the MSSM with a right-handed neutrino supermultiplet N is

Wsh H QUqh H QDqh H LEqh H LN . A.3Ž .t u b d t d n u

Ž .The RGEs for the three GUT normalized gauge couplings are

˙ 2 2 ˙ 2 2a s3a qa 4Y q4Y , a sya qa 6Y q6Y q2Y q2Y ,Ž . Ž .˜ ˜ ˜ ˜ ˜ ˜3 3 3 t b 2 2 2 t b t n

33 26 14 18 62 2ȧ sy a qa Y q Y q Y q Y . A.4Ž .˜ ˜ ˜ Ž .1 1 1 t b t n5 5 5 5 5
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The Yukawa coupling RGEs are

16 13 2 2Ẏ sY y6Y yY yY q a q3a q a q22Y q5Y Y q3Y Y q5Y˜ ˜ ˜t t t b n 3 2 1 t t b t n b3 15

2qY Y qY Y q3Y ,b t t n n

16 7 2 2Ẏ sY yY y6Y yY q a q3a q a q5Y q5Y Y qY Y q22Y˜ ˜ ˜b b t b t 3 2 1 t t b t n b3 15

2q3Y Y q3Y qY Y ,b t t t n

9 2 2Ẏ sY y3Y y4Y yY q3a q a q3Y Y q3Y Y q9Y q9Y Y q10Y˜ ˜t t b t n 2 1 t b t n b b t t5

2q3Y Y q3Y ,t n n

3 2 2Ẏ sY y3Y yY y4Y q3a q a q9Y q3Y Y q9Y Y q3Y Y q3Y˜ ˜n n t t n 2 1 t t b t n b t t5

2q3Y Y q10Y . A.5Ž .t n n

w X 2 xFinally, assuming that the hypercharge trace tr Y m vanishes, the scalar squared
masses evolve as

˙ 2 2QsyY s yY s q10Y s q10Y s qY Y s qs qY Y s qs ,Ž . Ž .t 1 b 2 t 1 b 2 t n 1 4 b t 2 3

˙ 2Usy2Y s q16Y s q2Y Y s qs q2Y Y s qs ,Ž . Ž .t 1 t 1 t b 1 2 t n 1 4

˙ 2Dsy2Y s q16Y s q2Y Y s qs q2Y Y s qs ,Ž . Ž .b 2 b 2 t b 1 2 b t 2 3

˙ 2 2LsyY s yY s q6Y s q6Y s q3Y Y s qs q3Y Y s qs ,Ž . Ž .t 3 n 4 t 3 n 4 t n 1 4 b t 2 3

˙ 2Esy2Y s q8Y s q2Y Y s qs q6Y Y s qs ,Ž . Ž .t 3 t 3 t n 3 4 b t 2 3

˙ 2Nsy2Y s q8Y s q2Y Y s qs q6Y Y s qs ,Ž . Ž .n 4 n 4 t n 3 4 t n 1 4

˙ 2 2H sy3Y s yY s q18Y s q3Y Y s qs q6Y s qY Y s qs ,Ž . Ž .u t 1 n 4 t 1 t b 1 2 n 4 t n 3 4

˙ 2 2H sy3Y s yY s q18Y s q3Y Y s qs q6Y s qY Y s qs ,Ž . Ž .d b 2 t 3 b 2 t b 1 2 t 3 t n 3 4

A.6Ž .

where

s 'H qQqU , s 'H qQqD ,1 u 2 d

s 'H qLqE , s 'H qLqN . A.7Ž .3 d 4 u

These RGEs are valid above the right-handed neutrino mass scale m . The RGEs forN

the MSSM with minimal field content may be obtained, of course, by setting Y s0.n

( )A.2. SO 10 aboÕe the GUT scale

Ž .In the text, we consider a class of minimal SO 10 models with only one large
Yukawa coupling. Here, for completeness, we present RGEs for the more general class
of models specified by the superpotential

Wsh ccHH qh ccHH q . . . , A.8Ž .t 2 b 1



( )J. Bagger et al.rNuclear Physics B 563 1999 3–2018

Ž . Ž . Ž .where the quark and lepton fields are contained in c 16 , and HH 10 and HH 102 1

are Higgs fields. In addition to the usual scalar mass terms, we also include the
2 Ž † † .off-diagonal mass m HH HH qHH HH , which is allowed by all symmetries and isHH 1 2 2 112

generated even if it is initially set to zero. The RGEs presented here correct certain
w xone-loop terms given in Refs. 52,53 , where the effects of this term were omitted.

We consider models with arbitrary additional field content, but with interactions such
that the dominant Yukawa couplings are h and h . The RGEs are thent b

˙ 2 2asyb a qa 28Y q28Y , A.9Ž . Ž .˜ ˜ ˜10 t b

63 2 2Ẏ sY y14Y y14Y q aq130Y q260Y Y q130Y ,˜t t t b t t b b2

63 2 2Ẏ sY y14Y y14Y q aq130Y q260Y Y q130Y , A.10Ž .˜b b t b t t b b2

and

˙ 2 2csy5Y u y5Y u y10Y HH q90Y u q90Y Y u qu q90Y uŽ .t 1 b 2 t b 12 t 1 t b 1 2 b 2

q180 Y qY Y HH ,Ž .t b tb 12

˙ 2HH sy4Y u y4Y HH q80Y u q40Y Y u qu q120Y Y HHŽ .2 t 1 t b 12 t 1 t b 1 2 t t b 12

q40Y Y HH ,b tb 12

˙ 2HH sy4Y u y4Y HH q80Y u q40Y Y u qu q120Y Y HHŽ .1 b 2 t b 12 b 2 t b 1 2 b tb 12

q40Y Y HH ,t t b 12

ḢH sy2Y u qu y2 Y qY HH q20Y Y 3u quŽ . Ž . Ž .12 t b 1 2 t b 12 t t b 1 2

q20Y Y 3u qu q 20Y 2 q120Y Y q20Y 2 HH , A.11Ž . Ž .Ž .b tb 2 1 t t b b 12

where

u '2cqHH , u '2cqHH , HH 'm2 , Y 2 'Y Y , A.12Ž .1 2 2 1 12 HH t b t b12

and

b sy16qS R . A.13Ž . Ž .10

Ž . Ž . Ž . Ž .Common representations of SO 10 and their Dynkin indices are 10 1 , 16 2 , 45 8 ,
Ž . Ž . Ž .54 12 , 120 28 , and 126 35 .

Ž .In minimal SO 10 models, both up-type and down-type Higgs multiplets are
Ž . Ž . Ž .contained in one SO 10 multiplet: HH 10 < HH ,HH , where HH and HH are 5 and 52 u d u d

Ž .representations of the SU 5 subgroup, respectively. The RGEs for these models are
obtained by setting h sHH sHH s0 in the equations above. The RGEs above,b 1 12

however, are also applicable to models in which the Higgs fields are contained in two
Ž . Ž . Ž . Ž . Ž .separate SO 10 representations, with HH 10 < HH ,HH and HH 10 < HH ,HH .2 u u 1 d d

'A useful consistency check follows from noting that, for h sh shr 2 andt b

HH sHH sHH sHHr2, the two Higgs model reduces to a minimal model with Higgs1 2 12 'Ž .field HH qHH r 2 , and indeed, the resulting RGEs are identical to those for minimal2 1

models.
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( )A.3. SU 5 aboÕe the GUT scale

Ž .We consider also the minimal SU 5 model and possible extensions. The minimal
Ž .SU 5 model has superpotential

X1 12 3'Ws h TTHH q 2 h TFHH qm HH HH qlHH SHH qm trS q l trS ,t u b d H u d u d S4 6

A.14Ž .
Ž . Ž . Ž .where the quark and lepton fields are T 10 and F 5 and the Higgs fields are HH 5 ,u

Ž . Ž .HH 5 , and S 24 .d

The Yukawa couplings h and h are large and near their fixed point. We assumet b

that all other couplings, such as l, l
X, m , and m , are small relative to these. TheH S

RGEs are then

˙ 2 2asyb a qa 12Y q14Y , A.15Ž . Ž .˜ ˜ ˜5 t b

96 2 2Ẏ sY y9Y y4Y q aq54Y q24Y Y q32Y ,˜t t t b t t b b5

84 2 2Ẏ sY y3Y y10Y q aq18Y q30Y Y q64Y , A.16Ž .˜b b t b t t b b5

and

˙ 2 2Tsy3Y t y2Y t q36Y t q6Y Y t q t q32Y t ,Ž .t 1 b 2 t 1 t b 1 2 b 2

˙ 2 ˙Fsy4Y t q12Y Y t q t q48Y t HHŽ .b 2 t b 1 2 b 2 u

sy3Y t q36Y 2 t q12Y Y t q t ,Ž .t 1 t 1 t b 1 2

˙ 2HH sy4Y t q12Y Y t q t q48Y t , A.17Ž . Ž .d b 2 t b 1 2 b 2

where

t '2TqHH , t 'TqFqHH . A.18Ž .1 u 2 d

Ž .In the minimal model, b sy3 in Eq. A.15 . For extensions of the minimal model,5
Ž .the above equations apply again, assuming no large Yukawas , with the modification

b sy3qS R , A.19Ž . Ž .5

Ž .where S R is the sum of the Dynkin indices of the additional fields. For convenience, a
1 3Ž . Ž . Ž .few typical SU 5 representations and their Dynkin indices are listed here: 5 , 10 ,2 2

7 35Ž . Ž . Ž . Ž . Ž .15 , 24 5 , 45 12 , 50 , and 75 25 .2 2
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