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ARTICLE

Structural balance emerges and explains
performance in risky decision-making
Omid Askarisichani 1, Jacqueline Ng Lane2, Francesco Bullo 3,4, Noah E. Friedkin 3,5, Ambuj K. Singh1 &

Brian Uzzi6,7

Polarization affects many forms of social organization. A key issue focuses on which affective

relationships are prone to change and how their change relates to performance. In this study,

we analyze a financial institutional over a two-year period that employed 66 day traders,

focusing on links between changes in affective relations and trading performance. Traders’

affective relations were inferred from their IMs (>2 million messages) and trading perfor-

mance was measured from profit and loss statements (>1 million trades). Here, we find that

triads of relationships, the building blocks of larger social structures, have a propensity

towards affective balance, but one unbalanced configuration resists change. Further, balance

is positively related to performance. Traders with balanced networks have the “hot hand”,

showing streaks of high performance. Research implications focus on how changes in

polarization relate to performance and polarized states can depolarize.
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Recent world events have rekindled interest in social net-
works of positive and negative relations. Examples prevail
across geopolitics, settings where firms compete on new

standards of innovation, national elections, social media, religious
groups, and many other situations where polarization is frequent.
Despite the many real-world settings where interpersonal riffs
among collaborators can arise and potentially undermine per-
formance1–4, research on how positive and negative relationships
among collaborators change and how those changes relate to
performance is relatively nascent5–7. Newly available data on the
electronic communications among networks of individuals enable
an opportunity to measure changes in interpersonal sentiments
and their relationship with changes in performance of the
system8,9.

Structural balance theory (SBT) provides an analytical frame-
work for measuring and predicting how polarized sentiments
among collaborators change and relate to performance. SBT
characterizes every individual relationship as being either positive
or negative in sentiment and is classically defined on directed
networks10–13. Positive sentiments include ally, friend, or sup-
porter relationships and negative sentiments include competitor,
foes, or detractor relationships. On the basis of four rules of
interaction, SBT posits whether relationships will remain polar-
ized (unbalanced) or will reconfigure, i.e., become “balanced”.
The four rules are: a friend of a friend is a friend, a friend of an
enemy is an enemy, an enemy of an enemy is a friend, and an
enemy of a friend is an enemy. These four rules disaggregate a
network of ties into 16 different types of triads of relationships.
Triads can be characterized as balanced or polarized. Two of the
16 feasible triads are considered structurally balanced and
balanced configurations have a propensity for stability. Polarized
configurations are prone to dissolution and reorganization.
Aggregating local triads provides non-intuitive implications for a
group’s macrostructure. A group’s network topology moves
towards either a complete network of all-positive sentiments or a
network partitioned into two subgroups with no negative within-
group sentiments and all negative between-group sentiments.
Implicit in SBT is that stable configurations should support
higher performance than polarized, unstable configurations.
Thus, by examining micro patterns of sentiment changes, SBT
enables understanding of how interpersonal relationships evolve
and how these configurations either enable or hinder
performance.

A sequence of generalizations followed, reviewed in ref. 12,
toward a SBT model in which nine of 16 triad types are per-
missible and the remainder set of seven are forbidden based on
one or more violations of transitivity (if A likes B, and B likes C,
then A likes C) in a triad’s configuration of sentiments. This line
of advancement was associated with empirical investigations of
networks in field-settings as in ref. 14, which evaluated whether
the distribution of observed triads over the 16 feasible types
indicated a bias toward a set of SBT model-specific permitted
triads. The current frontier of work on SBT is focused on mod-
eling advancements of the temporal evolution of sentiment net-
works15–21. These temporal models are motivated by the idea that
field-setting networks are undergoing transformations in which
positive sentiments are being converted to negative sentiments,
and vice versa, toward the attractor state of structural balance.
Investigations of longitudinal data on sentiment networks in
field-settings, relevant to these dynamical models, are rare16,22,23.
Moreover, despite evidence that social networks affect perfor-
mance in task-oriented groups24, there have been limited
opportunities to examine the effects of structural changes on
performance over time. This article reports findings from the
most extensive set of longitudinal data yet assembled to evaluate
the theory’s prediction of an evolution toward structural balance,

and to investigate whether sentiment network states are linked
with changing task performance metrics. Our investigation draws
on a unique dataset from a financial trading firm to test dynamic
predictions and to evaluate whether sentiment network states are
linked with task performances in a competitive risky decision-
making environment.

First, we find a tendency for the sentiment network to steadily
transition into states of greater balance over time, that is, with
toward fewer violations of SBT predictions than expected in a
suitability randomized network. Second, using Markov Chain
analysis, we find that only certain types of triads tend to transition
from states that violate SBT predictions to states with no viola-
tions. Third, we find that an individual trader’s degree of struc-
tural balance is positively associated with the trader’s
performance. There is temporal evidence that structural balance
and performance are mutually reinforcing. Trader performance
increases as the degree of a trader’s embedding in classical
balanced triads increases, after accounting for individual trader
differences and market uncertainty.

Results
Trading firm network. We analyzed the starting, developmental,
and ending states of the sentiment network of a medium-sized
trading firm over a 2-year period. A trading firm employs stock
traders who invest the firm’s money in the stock market with the
expectation of maximizing the firm’s return on invested capital.
Day traders typically open new positions each day, trade those
positions during the day, and then sell off all holdings by the end
of the day. Consequently, a day trader’s performance is measured
on a day-to-day basis. Relationships in the firm are flat and non-
hierarchical. All traders are at the same administrative level/rank
and have relative autonomy in choosing the stocks they trade
within the constraints of making money for the firm. Traders
voluntarily form attachments with other traders to gain infor-
mation relevant to their trading performance25–31. Typically,
because relationships affect a trader’s performance and create
opportunities to celebrate victories and commiserate losses, tra-
ders with ongoing attachments trust and like one another25,32–34.

To measure relationships among traders, we analyzed 128,323
instant messages, including content, as well as 14,259 trades of the
dynamic sentiment network of stock traders in the firm from
October 2007 to March 200935. We extracted all social messages
from the instant messages using content analysis because they are
indicators of individuals’ interpersonal, rather than instrumental
relationships. On average, traders sent 228.82 ± 40.22 IM’s per
quarter to 5.98 ± 0.48 contacts, with a closeness centrality score of
0.15 ± 0.04. The network had an average clustering coefficient of
0.35 ± 0.04.

The complete record of IM exchanges and trades provides
empirical advantages over prior work, including (i) a novel
application of SBT to utilitarian relationships, in contrast to pure
friendships16,22,36, (ii) a minimization of self-report and mono-
method biases37, and (iii) extensive high resolution longitudinal
data. All data are taken directly from the firm’s servers, which
archive all communication and trading data per SEC regulations.
The Institutional Review Board of Northwestern University
approved the study (See Methods for data and measurement
details).

Structural balance triads. Table 1 describes the 16 triad types.
We use the classical SBT model definition of structural balance
and operationalizations of positive and negative edges (see
Methods for details). Its four axioms are: (A1) A friend of a friend
is a friend, (A2) A friend of an enemy is an enemy, (A3) An
enemy of a friend is an enemy, and (A4) An enemy of an enemy
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is a friend. The more general terms “positive” and “negative”
relationships (sentiments) are often substituted for the meta-
phorical terms “friend” and “enemy” in practice. Thus, each triad
entails six positive or negative sentiments. Only positive senti-
ments are displayed. A triad type with at least one violation of
these axioms is a “forbidden” triad. It can be shown that in a
sentiment network with no violations of any of these four axioms,
only two types of triads may exist: 300 and 102. We refer to these
two types as “permitted” triads.

Figure 1 conceptualizes how Markov Chain analysis is used to
compute the state transition probabilities for the 16 triad types in

Table 1. Here we show the steps involved in computing the
transition probability from the unbalanced or polarized triad state
210 to the balanced triad state 300 over time period (t, t+ 1).

Markov transitions. Figure 2 shows the Markov transition
probability matrix for each quarterly period of the likelihood of
transition between any two triadic configurations states. Each row
represents a transition out of a state i and each column represents
a transition into a state j; stability of a state is represented by the
diagonal (see Methods for details). For example, the propensity
for the non-balanced triad number 210 in the last row to tran-
sition to the triad number 300 in the first row of all matrices is
~0.3. The transition probabilities highlight three important
insights and demonstrate support for the tenets of SBT in
dynamically measured settings.

First, the Markov transition probabilities are relatively stable
across transition periods, as indicated by the high degree of
similarity between the triad count ratios, cxt, for each state and
their corresponding stationary distributions. This is supported by
the low L2-Norm distances of stationary probability distribution
from the average distribution and steady stability ratios in the
subsequent periods (Table 2), where the stability ratio denotes the
proportion of transitions in the observed transition matrix that
were statistically significant compared to the randomized
transition matrices for each period. The stability ratios for each
transition period indicate that traders reconfigure attachments in
a consistent manner over time such that the overall system
maintains a stable transition probability distribution and that the
observed transitions are not likely to be explained by chance
(Table 2). See Method for methodological details and measure-
ment robustness checks.

Second, examining the final stationary probability distributions
associated with each triad configuration (Table 3), we find that
the probability associated with being in one of the remaining 13
unbalanced states, excluding the null triad (Table 1), is just 0.03.
This compares to a 0.22 probability of being in one of the two
classical balanced states (and a ~0.97 probability of being in
balanced states allowed based on Davis et al.38). In this study, we
only use Davis’ theoretical deductions from his formal model.
Also, we find the distributions of triads are consistently a close
match to the stationary distribution over periods. Therefore, the
system has very low occurrences of unbalanced states (i.e., near
zero) at each period of analysis and is consistent with SBT’s
predictions by Heider et al. and Davis et al.38,39.

Third, we observe a strong propensity for stability in the
“classic” balanced states, 300 and 102, as well as the null triad
state, 003 (Table 1), indicating that the trader network has a
tendency towards clustering into two or more subgroups38.
Heider predicted this finding in his seminal work39. In
particular, Heider writes “if two negative relations are given,
balance can be obtained either when the triad relationship is
positive or when it is negative, though there appears to be a
preference for the positive alternative”38,39. Davis subsequently
introduced the formal theoretical model, which he called
“clustering”38 that allows for the triad 003. Finally, the
overlooked prediction by Heider and Davis in balance
theory38,39, turns out to have empirical support in a long-
itudinal field setting. Further, it suggests that once a triad enters
the states of 300 or 102, it has a low probability of transitioning
out of its current state. Thus, once traders have reconfigured
their ties to a state of structural balance, they remain in these
balanced configurations. Similarly, the stationarity of the null
triad state suggests that the network of positive attachments
remains relatively sparse over time.

Table 1 SBT’s 16 types of triads

Triads have six positive or negative sentiments (only positive sentiments are displayed) and are
characterized by three numbers: the number of mutual (M), asymmetric (A), and null (N) ties,
and symbols that discriminate triads with identical MAN numbers – transitive (T), up (U), down
(D), and cyclic (C)
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Balance in randomized networks. To test whether the observed
triad states can be explained by chance interactions among the
traders, we compare the likelihood of observing each triad relative
to the corresponding triad in 10,000 suitably randomized net-
works (See Methods), for each of the 6 time periods, shown in
Fig. 3. Informed by the stationary probability distributions
(Table 3) of particular interest is the likelihood of observing the
classical balanced (i.e., 102 and 300) and null (i.e., 003) triads in
the actual network compared to the randomized networks.
Examining Fig. 3, we find that while both balanced triad states are
significantly more likely to occur in the actual network compared
to the randomized network, our actual network has a lower
occurrence of null triads than a randomized network would
suggest. The figure is computed unrelated to transition prob-
abilities, yet shows the high significance of balanced triads.
Accordingly, Fig. 3 confirms that the underlying assembly rules of
balance theory influence the reconfiguration of interpersonal
sentiments in the network towards increased balance, beyond
what a random network would imply.

Further, Fig. 4 compares the observed degree of classic balance
over time bt to the expected b̂t of the randomized network and
validates that the observed, bt is significantly higher than the
expected b̂t derived from the randomized network, for all
observed time periods. Actual networks consistently showed
significantly higher balance than the randomized networks. This
finding shows that the observed triad states are not explained by
chance interactions. That said, we find that the overall ratio of

classically balanced triads decreases over time. This decline
corresponds to the 2008–2009 financial crash and aligns with
prior work suggesting that a communication network tends to
“turtle up” during periods of uncertainty34.

Thus, the relative likelihood of occurrence of the remaining
unbalanced states in our observed network, while small, display
significant differences between the structures in the network and
those of a randomized network. These structural differences reflect
the underlying dynamics of our particular context, as well as the
social norms associated with instant messaging communication.
However, despite these noted discrepancies, the stationary prob-
ability distributions (Table 3) confirm that the unbalanced
configurations occur with very low probabilities and do not detract
from the overall trend towards structural balance in the system.
Notably, although unbalanced triads are moving towards greater
balance, these transitions occur slowly; hence, few forbidden triads
(201 and 021) remain within our observation period (Table 3).

An untested premise of SBT is that balance positively relates to
performance40. Existing research indicates that ceteris paribus
persons choose professional attachments they like and trust
(“lovable fools”) over more skillful attachments (“competent
jerks”) because ongoing attachments create lock-ins that lead
persons to value the good relationships over performance5,32,41.

Balance and performance. We investigated the untested link
between structural balance and trader performance by regressing
an individual’s trading performance on their balance bit. Balance

Triad 210
(not balanced)

a

b

c

Triad 300
(balanced)

t t+1

F
ro

m

To

. .
 . 

. . . 

T210,300

Σ16
i = 1 T210,i

Ti,j :  #transitions from triad i to triad j

Fig. 1 Illustrative figure showing state transition probabilities from unbalanced or polarized triad state (210) to balanced triad 300. a For each period, we
extract a directed graph of social IM’s among traders, and identify interpersonal relations by comparing the observed relations against a statistical null-
model based on Wuchty et al.35. b We compute transition probabilities between periods for each observed triad. In this example, we demonstrate the
configuration of sentiments for three illustrative nodes and compute the corresponding Markov transition probability from triad 210–300. c We repeat for
each triad in each period, resulting in a 16 state (triad) Markov Chain capturing the complete transition probabilities between states and periods (See
Methods)
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of trader i at period t is trader i’s ratio of classically balanced
triads (i.e., configuration 102 or 300 in Table 1) to total triad
configurations in period t. Individual monthly performance,
profitit was assessed by measuring whether trader i does better or
worse than their mean individual-level performance across all
time periods, i.e., whether a trader’s structural balance is related
to getting a “hot hand” in the market42. We use monthly per-
formance because unlike the first set of analyses examining
structural balance, where our focus was the long-term reconfi-
gurations of interpersonal relationships, our focus here is on the
near-term implications of balance on day traders’ performance.
Formally, our outcome variable is whether trader i performs
better (profitit >

1
N

PN
t′¼1 profitit′) or worse than their individual-

level mean profit across all periods, where N is the number of
periods. This variable is coded as pit ¼ 1 or pit ¼ 0, respectively.
In our regression models we control for other factors influencing
trading success, including market volatility (1= high, using the
standard measure of the VIX), trader fixed effects, period fixed
effects, average trade value ($), active trading days, trader’s degree
centrality and IM’s sent. Trader balance is measured as the log of

balance. A LogitðpitÞ ¼ β0 þ β1ðbitÞ regression was used to test
the relationship and further validated with a non-parametric
regression. The non-parametric regression imposes no distribu-
tional assumptions on the data or misspecification errors and
provides a stringent test of the hypothesis by using 10-fold cross
validation and bootstrapped standard errors43,44. To ensure that
the regression results are not due to chance, we compared the
reported coefficients to those expected by chance. The results
indicate the observed regressions coefficient cannot be explained
by chance (Fig. 5).

Balance is significantly and positively associated with a
trader’s performance for both the Logit and non-parametric
regression (p < 0:001) (Fig. 6). The relationship is robust to
controls for market uncertainty, time period fixed effects, and
individual trader effects (average trade value, number of active
trading days, degree centrality), for each period (Fig. 6a). This
result demonstrates that traders typically perform best, i.e.,
benefit from a “hot hand”, when they have relatively high
balanced relationships. In fact, balance presents a superlinear
effect. This strong positive relationship holds for over 75% of
the data. The change from medium to high balance is associated
with an almost 30% increase in profits. For the bottom 25% of
the data, a change in a trader’s level of balance has no
association with their trading performance (Fig. 6b). This
suggests that low levels of balance are unrelated to trading
success but from medium to high levels of balance, any increase
in balance is positively and significantly associated with
increases in performance. Our result is consistent with synergy
theory45 and the classic Morrissette et al. study46; however, to
the best of our knowledge, this is the first time the relationship
has been tested on a longitudinal dataset.

Discussion
Balance theory provides an explanation for why interpersonal
sentiment networks shift towards states of structural balance.

Table 2 Stability of transition probabilities: L2-Norm
distance of the stationary probability distribution from their
average is relatively stable

Transition period L2-Norm
distance

Stability ratio of
randomized networks

1–2 0.07 0.84
2–3 0.08 0.92
3–4 0.06 0.94
4–5 0.05 0.91
5–6 0.20 0.83

Each state is defined as a vector of 16 probabilities. Stability test shows that at least 83% of
transitions in each observed Markov chains are statistically significant compared to the ones
computed from randomized networks

Quarter 1 -> Quarter 2 Quarter 2 -> Quarter 3

Quarter 3 -> Quarter 4

Quarter 4 -> Quarter 5

Quarter 5 -> Quarter 6
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Fig. 2 Stochastic Markov transition matrices of observing a given transition, pijðtÞ over the period ðt; tþ 1Þ for all traders. Row values correspond to
transitions out of a triad, column values correspond to transitions into a triad, and diagonals correspond to triad stability probabilities. Probabilities are
stable across different periods and different threshold-based methodologies. Transitions occur from unbalanced to balanced triads but not vice versa. The
presence of such transitions suggests once traders have reconfigured their ties to a state of structural balance, they remain in these balanced
configurations
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Little quantitative work has tested the theory’s underlying pre-
mise in dynamic networks or the presumed link between balance
and performance. We analyzed a social network of day traders at
a hedge fund using the full corpus of instant message exchanges
to infer positive and negative interpersonal attachments over a 2-
year time period. Our conclusion is that sentiment networks tend
toward attractor states in which violations of the SBT theory’s
four axioms are removed more frequently in the observed net-
work than expected by chance. However, there are novel findings
about the temporal process of balance. We find that already
balanced triads tend to be highly stable. Thus, once a triad
transitions to a balanced state, it tends to remain in balance due
to high probability of self-transition for balanced triads38 (see

Fig. 2). For unstable triads, different triads have different transi-
tion propensities and certain forbidden triads persist in the sys-
tem, i.e., the null triad, which had been predicted by Heider39,
and introduced in a subsequent balance theory model by Davis
et al.38.

The development of structural balance theory has strictly
focused on the structure and evolution of sentiment networks.
This focus is motivated by a beautiful correspondence between its
elementary axiom set and the macro-topology of a sentiment
network. An untested premise of SBT is that it is related to
performance, an implication with important consequences for the
organization and economics of teams, networks, and other col-
lectives. Research on organizations suggests that individuals
choose balance at the expense of talent because individuals favor
liking and trust (“lovable fool”) over talent and skills (“competent
jerk”)41. By contrast, our test found that the hot hand is more
likely to take place when an individual is in structural balance
than out of structural balance. One explanation for the finding is
that high balance and talent are not mutually exclusive. If
balanced relationships result in more trustworthy information
even if not with the best informed or most skillful individual, they
may reduce verification costs. In our context, lower verification
costs can mean trading is more responsive to market opportu-
nities25. Further, balanced ties may offer more social support,
reducing the emotional highs and lows that undermine risky
decision-making or periods of poor trading47,48. In particular,
both the information needs of successful trading decisions,
facilitated through instant e-communication, and the emotive
nature of trading relationships emphasize the need to develop
balanced ties to support collaboration and communication
among traders over individualism or isolation. Conversely, tra-
ders with more strained relationships may need to expend a
greater proportion of their energy managing their non-
cooperative relationships. In our study, we find evidence sug-
gesting that the expulsion of energy towards managing non-
cooperative relationships can detract from people’s abilities to
effectively utilize their balanced relationships. More broadly,
beyond the context of risky decision-making, these findings
suggest that future research should further investigate the
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Fig. 4 Comparison of the observed balance in the system, bt to the
expected b̂t (CI is shown) in each time period indicates that the observed
system is in a greater state of balance than would be expected in a
comparable randomized network
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Fig. 3 The difference in the number of standard deviations of the observed network from 10,000 suitably randomized networks. Warm colors mean more
probable than random, while cold colors mean less probable. The observed networks are statistically and significantly more balanced than randomized
networks

Table 3 Stationary distribution of the average Markov chain overall periods

Triad type 300 102 003 120D 120U 030T 021D 021U 012 021C 111U 111D 030C 201 120C 210

Stationary probability 0.02 0.20 0.75 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00

The stationarity of the null triad state suggests that forbidden triads remain in the network
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mechanisms by which balanced ties might improve or hinder
other performance outcomes such as creativity and innovation,
negotiations, conflict resolution, and pro-social behavior. For
example, balanced ties might weaken the creative tensions that
promote breakthroughs in science, art, and philosophy49.

Building on our findings, future work might begin to investi-
gate exogenous drivers of network dynamics. SBT theory has been
endogenously focused on internal group dynamics. How and
whether external forces are related to balance has been left largely
unaddressed despite evidence that external conditions affect how
people value and interpret their relationships. Our regression
analysis showed that balance was sensitive to the overall volatility
in the market. Experiments could be devised to explore the
mechanisms by which interpersonal attachments change over
time in complex collectives that include social hierarchy, norms
and rules for interaction that force the mixing of friend and
enemy relationships, or where relationships are utilitarian in
nature first.

Methods
Trade data and trader performance. We observed all of the dynamic sentiment
network of day traders at an anonymous trading firm from 1 October 1 2007 to 31
March 31 2009. Day traders keep short-term positions and do not hold inventories
of stocks; they enter and exit positions each day, normally between 9:30 AM and
4:00 PM. We observed these traders trading ~4500 different stocks over various
exchanges, which suggests that they sample a large part of the market. As in most
trading firms, traders do not trade every day of every week for various reasons. We
analyzed all of the >1 million intra-day stock trades of these day traders and their
>2 million instant messages exchanged across their networks. The performance
data were calculated using standard industry metrics.

Instant messaging communication networks. To identify IM’s containing social
information, we used a dictionary-based approach, comprised of terms from the
NASDAQ stock exchange and IG trading glossary to differentiate between IM’s
containing financial and personal information. To classify information exchanges,
we tagged all IM exchanges that contained at least one word from the financial
dictionary. The average IM is ~6 words in length, consequently each one represents

important information about the likely instrumental or social intent of the IM. A
sample of 1000 IM’s were selected at random to validate the classification method.
In the validation method, an IM tagged as having at least one word from the
dictionary were read by a research assistant who agreed or disagreed that the IM
represented an financial rather than a social IM.

After extracting the content of all messages to isolate social communications
from instrumental communications, we used’s35 method of estimating the strength
of a social relationship from digital communication data. The method identifies
positive edges between traders by comparing pairwise communication intensity
levels in the observed social network vs. a statistical null-model of IM
communication, where the observed pairwise level of IM exchange was randomized
10,000 times. For every period, an edge was defined as positive if the total number
of IM’s exchanged between two traders exceeded the random intensity scores at the
p<0:01 level of significance. Following prior research, edges between traders that
are below the threshold are defined as non-positive or negative ties35,50.

Albeit balance theory research has defined non-positive edges as negative, we
conducted a robustness test within our setting. To check the validity of our
measurement to misclassifying ties as negative when they should be positive, we
purposefully converted multiple (10,000 replicas) 5% samples at random in the
observed data from negative to positive edges. The reported results were robust to
these measurement tests suggesting that the definition of an edge’s polarity is

Fixed effects logistic regression
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Fig. 6 Positive classical structural balance and having the “Hot Hand”.
a Shows coefficient estimates from an individual trader and period fixed
effects for Logit regression. b Margins plot of the predicted relationship
between the level of structural balance and having the hot hand based on
the non-parametric regression. Values are means and 95% CI. Balance
presents a superlinear effect. Positive relationship represents 75% of data.
Traders trade best (i.e., have the hot hand) when their balance is relative
high. The increase from medium to high balance has relatively high
association of profits of nearly 30%. x-axis is reported as elog(balance)
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figure shows the results of 10,000 null models randomizing the networks,
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middle of oval represent those of randomized networks and the color shows
their distribution. The coefficients for the observed model are significantly
different from randomized networks with the same in and out-degree
distribution. It depicts the observed balance-hot hand relationship cannot
be explained by chance

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10548-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:2648 | https://doi.org/10.1038/s41467-019-10548-8 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


robust to significant measurement. Changing the polarity of edges at random in the
preceding way up to 20% did not change the statistical significance or pattern of
reported results.

The data setting meets the requirements of mutually acquainted individuals, for
which traders develop positive and negative sentiments towards each other, not
neutral attitudes10,11,13,15. This assumption is consistent with the cognitive science
literature on the automaticity of attitudes51–54 and instantaneous formation of
impressions55, as well as the communication literature examining ease of
relationship formation over electronic communication56,57, for which use of
computer screens is essential to day traders’ work activities. Prior research

examining negative ties as avoidance behaviors has also measured the absence of an
edge as a negative tie58,59; we use this approach to be consistent with the
prior work.

In addition to the volume method, we used a simple threshold cutoff to define
an interpersonal relationship, where the presence of an edge corresponded to a
trader sending at least 1, 5, or 10 messages to another trader, respectively. Our
findings are robust to methods and thresholds (Fig. 1a).

Measure of classic structural balance. To quantify structural balance of the firm
over time, we divided the entire observation period into six quarterly intervals, t,
and defined a measure to capture the degree of balance at each quarter. For each
period, we computed the ratio of balanced triads to the total number of possible
triads with the measure, bt. We used the “classic” model of structural balance, for
which balanced triads were defined as the count of 300 and 102 triad types because
both configurations satisfy all of Balance Theory’s four rules (Table 1). To verify
our selection of quarterly time intervals, we also analyzed the data using monthly,
bi-monthly, biweekly, and weekly time intervals and the results were robust to
period interval (Fig. 7). The distribution of triads, transition matrices, and sta-
tionary distributions were similar in these results except that in biweekly and
weekly periods, there were more 003 triads, and the probability transition to the
003 triad is higher, which is expected given the the smaller time interval (i.e., 5 or
10 business days), during which traders can IM each other. On average, traders
exchange messages with two to three other contacts each week.

To ensure that our observed triadic network configurations could not be
explained by chance, we constructed null models to compare the observed
likelihoods of the balanced triads in the network, b̂t , to randomized networks, bt,
using60, with dyadic and triadic configurations.

State transition probabilities. For each consecutive observation period, ðt; t þ 1Þ,
we compute Tij(t), which is the number of triads of type i that moved to type j from
period t to t þ 1. Thus, row i sums to Ti�ðtÞ, which is the number of triads of type i
at time t, while T�jðt þ 1Þ is the number of triads that have transitioned to type j at
time t þ 1. Using Tijðt þ 1Þ, the transition probabilities, pijðtÞ can be estimated to
obtain the transition probability matrix. These quantities can be arranged in a
matrix and normalized by the sum of every row. Therefore, we have row-stochastic
transition matrix P where each pijðtÞ is conditional on i only, and not on prior
states occupied by the triad. By the Markov property, they are identical for all
triads, and they converge to a stationary distribution. The stationary distribution of
a Markov chain is the probability distribution that a system remains unchanged as
time progresses. Mathematically, it is computed as the normalized left eigenvector
corresponding to the eigenvalue of 1 of the row-stochastic transition matrix61,62.
We compute it for every transition between two subsequent periods (Fig. 1b, c).
The stability ratio examines the likelihood for every transition in the observed
transition matrix to happen by chance. It compares every element of the observed
matrix (16 × 16 elements) to the corresponding element of 10,000 transition
matrices computed on randomized networks60 to determine the ratio of transitions
in the observed matrix that are statistically significant for each transition period
(Table 2).

Furthermore, we derive a triad count ratio, cxt, for each triad configuration, x, in
each period, t, to examine the distance between the current state and the stationary
probability distribution for each triadic configuration and each period. Specifically,
for each of the 16 triadic configurations, x, the triad count ratio is computed as the
number of triads with configuration x over the total number of triads for the given
period. For each transition period, we compute the triad count ratio, cxt for each of
the 16 triad types and compare it to the corresponding triad count ratio in the
stationary probability distribution. A high degree of similarity between the two
ratios indicates that ties are being reconfigured in a consistent manner that moves
the system towards the stationary probability distribution.

Although the sentiment networks are fundamentally dynamic, our state
transition analysis is insensitive to traders’ entrances and exits. To extract
communication networks in each period, we only take into consideration those
traders who have traded in the respected time. Then for every two subsequent
period, we compute transitions of triads for traders who exist in both
communication networks.

Network triads comparing observed to randomized networks. We compare the
structural patterns of interconnections in our observed networks to randomized
networks60. For a stringent comparison, we use randomized networks that had the
same single-node in- and out-degree characteristics as the corresponding node in
the real network, as well as the same dyadic subgraphs as the real network60. This is
attained through repeatedly swapping randomly chosen pairs of connections
(S1 $ T1, S2 $ T2 is replaced by S1 $ T2, S2 $ T1). Swapping is prohibited if
either of the connections S1 $ T2 or S2 $ T1 already exist or these edges share
nodes. The same procedure is applied for mutually connected pairs of nodes.
Unlike the Milo et al.'s work60, in this study10, the network is fully connected, and
we focus specifically on 16 directed and signed triad configurations with exactly
three nodes. Also networks are not static but dynamic and we focus on the tran-
sition of triads over time. Results show that the triad probabilities in the rando-
mized network are significantly different than the observed network (p < 0:01).
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Fig. 7 The aggregated stochastic Markov transition matrix of all periods
together, with a quarterly, b biweekly, and c weekly periods (i.e., the
quarterly matrix shows the average of all matrices given in Fig. 2). Other
designations are as Fig. 2). The transition probabilities are robust regardless
of the choice of the period interval
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Structural balance and performance. We define a trader with a hot hand as a
trader that made better than average profits over the quarterly observation period
where high and low profit was split at the mean profit. To examine the robustness
of the association between balance and individual relative performance (i.e., hot
hand) to other potential influences, we perform the same analysis with controls, as
stated in the text.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data are available from the trading firm, which retains ownership over the data. The
company should be contacted directly for accessing the data for further research
purposes.

Code availability
The source code is publicly available under link https://github.com/omid55/
longitudinal_structural_balance_theory.
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