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ABSTRACT 

 

Exposure and sensitivity of ponderosa pine to climate change in mountainous western North 

American landscapes 

 

by 

 

Ian McCullough 

 

 Climate change has emerged as one of the most potent threats to forests across the 

globe. This study examined the exposure and sensitivity of ponderosa pine (Pinus 

ponderosa) to climate change from landscape to continental scales across its geographic 

range in western North America. We began by developing a framework for assessing climate 

change exposure based on climatic water deficit (CWD), a metric of unmet evaporative 

demand and strong predictor of plant species distributions. The framework combined change 

in average annual CWD and frequency of departure from the local historical range of 

variability in annual CWD. We applied this framework to Tejon Ranch, a mountainous 

landscape in the Tehachapi Mountains of Southern California. We found disproportionate 

climate change exposure at high elevations due to projected losses in snowpack associated 

with warmer winters. Next, we assessed long-term relationships between climate and 

ponderosa pine growth at Tejon Ranch. Interannual variability in tree growth was explained 

by a combination of climatic water deficit over the current and preceding water-year (Oct 1 – 

Sep 30), March precipitation, July maximum and January minimum air temperatures 
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(adjusted R² = 0.55-0.57). In general, growth is expected to decline under future climate 

change in current stands, but heterogeneous topography offered potential favorable growing 

habitat under all climate projections, particularly on north-facing slopes at higher elevations. 

Under warmer and drier projections, overall habitat availability decreased in terms of 

distance to the nearest suitable patch from current stands for both mid- (2040-2069) and end-

of-century (2070-2099) periods. Spatiotemporal climate variability, however, created suitable 

patches within average seed dispersal distance of current stands, potentially offering 

ephemeral windows of opportunity for local range shifts without long-distance dispersal. 

Finally, we examined the sensitivity of ponderosa pine to climate variability across its range 

in western North America by combining the Tejon Ranch tree rings and 159 published 

chronologies from the International Tree Ring Data Bank. We encountered heterogeneous 

climate sensitivities across the species range to a suite of limiting climate variables. Our 

results indicated that position along environmental gradients interacts with genetically based 

local adaptation to determine climate sensitivity of individual ponderosa pine populations. 

Although all ponderosa pine populations will likely be exposed to locally novel climate 

regimes in the 21st Century, the species’ overall wide variability in climate sensitivity will 

likely buffer some populations from negative effects of climate change. Future conservation 

efforts for ponderosa pine and other wide-ranging species should consider the mediating role 

of geographic patterns of genetic structure in within-species climate sensitivities. 
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CHAPTER 1 

HIGH AND DRY: HIGH ELEVATIONS DISPROPORTIONATELY EXPOSED TO 

REGIONAL CLIMATE CHANGE IN MEDITERRANEAN-CLIMATE 

LANDSCAPES 
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8School of Geographical Sciences and Urban Planning, Arizona State University, P.O. Box 
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Abstract 

Predicting climate-driven species’ range shifts depends substantially on species’ 

exposure to climate change. Mountain landscapes contain a wide range of topoclimates and 

soil characteristics that are thought to mediate range shifts and buffer species’ exposure. 

Quantifying fine-scale patterns of exposure across mountainous terrain is a key step in 

understanding vulnerability of species to regional climate change. We demonstrated a 

transferable, flexible approach for mapping climate change exposure in a moisture-limited, 

mountainous California landscape across 4 climate change projections under phase 5 of the 

Coupled Model Intercomparison Project (CMIP5) for mid-(2040–2069) and end-of-century 

(2070–2099). We produced a 149-year dataset (1951–2099) of modeled climatic water deficit 

(CWD), which is strongly associated with plant distributions, at 30-m resolution to map 

climate change exposure in the Tehachapi Mountains, California, USA. We defined climate 

change exposure in terms of departure from the 1951–1980 mean and historical range of 

variability in CWD in individual years and 3-year moving windows. Climate change 

exposure was generally greatest at high elevations across all future projections, though we 

encountered moderate topographic buffering on poleward-facing slopes. Historically dry 

lowlands demonstrated the least exposure to climate change. In moisture-limited, 

Mediterranean-climate landscapes, high elevations may experience the greatest exposure to 

climate change in the 21st Century. High elevation species may thus be especially vulnerable 

to continued climate change as habitats shrink and historically energy-limited locations 

become increasingly moisture-limited in the future. 
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Introduction 

Biogeographers and landscape ecologists are increasingly focusing attention on the 

role of local topoclimates and microclimates (hereafter referred to as “microenvironments”) 

in mediating species’ extinction risks and range shifts in response to climate change (Potter et 

al 2013; Hannah et al 2014). Mountainous topography encompasses a wide variety of 

microenvironments that may buffer species’ exposure to climate change, allowing local 

retention or redistribution of species by reducing climate change velocities and providing 

stepping-stone habitat connectivity (Loarie et al. 2009; Ackerly et al. 2010; Scherrer and 

Korner 2011; De Frenne et al. 2013; Lenoir et al. 2013; Hannah et al. 2014); both of these 

factors may be particularly important for slowly dispersing species (Schloss et al. 2012; Zhu 

et al. 2012; Corlett and Westcott 2013). Methods are being developed to identify and map the 

distribution of microenvironments across landscapes (Ashcroft et al. 2012; Dingman et al. 

2013), with the goal of using this fine-scale information to improve species distribution 

models (SDMs) (Franklin et al. 2013) and conservation planning under climate change 

(Anderson et al. 2014, Keppel et al. 2015).  

The vulnerability of species to climate change is a product of their exposure and 

sensitivity (Williams et al. 2008). Although sensitivity is species-specific, climate exposure 

(hereafter, “exposure”) is largely a function of local climate and can thus be projected into 

the future using downscaled outputs from general circulation models (GCMs). Spatial 

variation in the magnitude and pace of exposure can be attributed to fine-scale variation in 

surface energy balance, hydrology, soil characteristics and vegetation structure, all of which 

are thought to produce microrefugia, which are often defined as regionally unique 

microenvironments that support isolated populations of species outside their main 
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distributions (Rull 2009; Dobrowski 2011). Microrefugia is a term taken from paleoecology, 

where it is primarily used to describe survival of species through glacial cycles (Bennett et al. 

1991; Tzedakis et al. 2002; McLachlan et al. 2005; Stewart et al. 2010; Gavin et al. 2014; 

Patsiou et al. 2014). Whether the concept is useful in the context of species vulnerability to 

modern climate change is a topic of ongoing research and discussion (Hannah et al. 2014). 

For isolated populations to persist through periods of rapid climate change, the 

microenvironments they inhabit must be somewhat climatically decoupled from regional 

climate for those climate factors that limit the species’ distribution (Dobrowski 2011; 

Hylander et al. 2015).  

Conceptually, climate change at a given site constitutes a change in the probability 

distributions of climate variables with associated changes in descriptors of those distributions 

(e.g., the mean and standard deviation of the normal distribution) (Katz and Brown 1992). 

Changes in extremes can be particularly influential in natural systems (Easterling et al. 2000) 

and may be masked by analyses focused on changes in long-term means (Polade et al. 2014). 

Here we present an approach for quantifying the magnitude of exposure at a given site along 

two main axes representing change in mean annual climate and in frequency of climate 

extremes relative to the historical range of variability (HRV, Landres et al. 1999; Maher et al. 

2017) in a historical reference period (Fig. 1). Exposure has been broadly defined as 

encompassing both the rate and magnitude of climate change (Dawson et al. 2011) and 

combined changes in both mean climate and frequency of extreme events have been 

previously used to assess exposure (Williams et al. 2007; Beaumont et al. 2011; Benito-

Garzon et al. 2014). In mountainous regions we would expect sites to vary considerably in 

the rate of change in both means and extremes relative to the regional trend. Ignoring 
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dispersal limitations, microrefugia would arguably be associated with those sites that show 

the least change from historical conditions (i.e., fall as near to the origin of these two axes as 

possible) and are thus least coupled to regional climate trends. Vulnerability of individual 

species will ultimately depend on their sensitivity to changes in mean and/or extreme 

conditions. 

 

  

Fig. 1. Conceptual diagram of potential microrefugia in terms of climate change exposure, which is a function 

of both changes in mean climate and frequency of extremes relative to historical climate. The exposure of a 

given site is determined by its position along these two main axes.  

 

We applied our approach and concept of exposure to a biologically diverse 

mountainous study region in Southern California. Because we were especially interested in 

plant distributions, we modeled and analyzed fine-scale changes in climatic water deficit 

(CWD), a bioclimatic variable that exerts strong, topographically-driven controls on plant 
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distributions in Mediterranean-climate landscapes of California and elsewhere (Stephenson 

1998; Lutz et al. 2010). We focused solely on CWD because it integrates interactions among 

temperature, precipitation and soil properties, all of which play a strong role in determining 

species distributions. Our research questions were: 1) How is CWD projected to change 

across a rugged landscape under mid-century and end-of-century climate projections in 

comparison to historical conditions? 2) How will rates of climate change exposure vary 

across the landscape as a function of local microenvironments? 

 

Methods 

Study area 

 Our study area was located in the western Tehachapi Mountains, California, USA 

(34°58´N, 118°35´W). This area, which is the site of ongoing research to measure and model 

microclimates and plant establishment (Davis and Sweet 2012), is characterized by rugged 

topography and steep climate gradients, providing a suitable case study of local variation in 

climate and projected climate change exposure. The area is mostly private land owned and 

managed by the Tejon Ranch Company for cattle ranching, hunting, agriculture and rare 

species conservation. Our climate grids and study area covered a rectangular subregion of 

Tejon Ranch and some adjacent areas to the northeast, spanning approximately 33,000 ha 

and steep elevational gradients (370-2,364 m) (Fig. 2). The climate is Mediterranean, with 

hot, dry summers and cool, wet winters. Mean annual precipitation for the period 1896-2010 

varied from around 250 mm in the driest, low elevation portions of the area to over 500 mm 

at the highest elevations. At elevations above roughly 1500-1600 m, precipitation regimes are 

historically snow-dominated (Western Regional Climate Center 2015). Our focal climate 
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indicator (CWD) varies widely across the landscape, mainly as a result of topographically 

controlled variation in solar radiation, temperature and precipitation but also due to 

differences in soil water holding capacity (Fig. 3). At low elevations, soils are granite-

derived, coarse-loamy thermic typic Haploxerolls with maximum depths of approximately 

61-122 cm (USDA 2015). High elevation sites include coarse-sandy loams derived from 

schist and classified as mesic Pachic Haploxerolls, as well as granite-derived medium- and 

coarse-sandy loams classified as mesic Haploxerolls. Maximum soil depths at high elevations 

are approximately 127-229 cm (USDA 2015). The topographically varied landscape supports 

diverse vegetation cover ranging from arid grasslands and shrublands to deciduous and 

evergreen oak woodlands and montane conifer forests. 
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Fig. 2. Study site. Tejon Ranch is located in the Tehachapi Mountains, California, USA, near the southern edge 

of the San Joaquin Valley and the Sierra Nevada. Our model domain (inset box) covers 33,000 ha and an 

elevational gradient of 370-2364 m. 
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Fig. 3. Frequency distribution of accumulated water-year climatic water deficit (CWD) for Tejon Ranch 

expressed as cell means for 1951-1980. 

 

Table 1. CMIP5 models used for analysis and projected climate change between baseline (1951-1980) and end-

of-century (2070-2099) at Tejon Ranch.  

GCM RCP 

July 

tmax 

(°C) 

Jan tmin 

(°C) 

WY precip 

(mm) 

WY cwd 

(mm) 

Max Planck Institute Earth 

System Model (MPI) 4.5 1.94 1.98 24.38 92.58 

 

Model for Interdisciplinary 

Research on Climate 

(MIROC) 4.5 2.6 1.94 -67.64 156.54 

 

Community Climate System 

Model (CCSM4) 8.5 4.07 4.02 14.87 148.82 

 

Model for Interdisciplinary 

Research on Climate 8.5 4.63 4.61 -111.2 244.79 

WY = water-year (Oct 1-Sep 30), cwd = climatic water deficit. 
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Mapping historical and projected future climates 

 To represent historical climate conditions, PRISM (Parameter-elevation 

Relationships on Independent Slopes Model) (Daly et al 2008) temperature and precipitation 

data were spatially downscaled from 800 to 30 m using Gradient-Inverse-Distance-Squared 

(GIDS) downscaling (Flint and Flint 2012). This method basically drapes the downscaled 

climate data over the landscape and has been shown either to match the coarser resolution 

gridded climate or improve the match to measured station data for both precipitation and air 

temperature by incorporating local topography, adiabatic lapse rates and climatic gradients 

(Flint and Flint 2012).  A validation exercise was performed to provide evidence of the local 

skill in the downscaling for our site by comparing downscaled climate to weather station data 

collected at our study sites for 2012-2013 that were not used in downscaling. Correlation (r) 

of observed with modeled monthly averages of daily maximum air temperatures in 2013 was 

0.99 (Mean Absolute Error (MAE) = 1.73 °C) for foothill stations and 0.95 (MAE = 1.66°C 

for montane stations. Correlation for minimum air temperatures was 0.97 (MAE = 1.51 °C) 

and 0.97 (MAE = 1.97 °C) for foothill and montane stations (3 of each), respectively, in 

2013. Very similar results were obtained for 2012. Interpolated precipitation values were not 

as reliable. At foothill stations, correlation with monthly precipitation was 0.85 (MAE = 16 

mm) in 2012 and 0.77 (MAE = 14.4 mm) in 2013. At montane stations, correlation was 0.94 

(MAE = 6 mm) in 2012 and 0.84 (MAE = 6 mm) in 2013. 

 We analyzed 4 future projections that bracketed a reasonable range of climate 

futures for the Tehachapi landscape (Table 1). Due to computational constraints, we 

downscaled a strategic subset of Coupled Model Intercomparison Project Phase 5 (CMIP5) 

climate projections as part of our larger study (Davis and Sweet 2012). We chose projections 
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using a clustering analysis that plotted future projections along two axes and directions of 

climate change (temperature and precipitation), placing projections in one of four quadrants 

(hot-dry, cool-dry, hot-wet and cool-wet) for our study area (Weiss et al. in review). We then 

reduced this set to nine projections that bracketed the range of climate projections across the 

four quadrants, which included three RCP 8.5, one RCP 6.0, two RCP 4.5 and three RCP 2.6 

projections. For our study, we only considered RCP 8.5 (business-as-usual emissions for the 

21st Century) and 4.5 (stabilizing emissions by mid-21st Century) because 1) RCP 6.0 futures 

are bracketed by RCP 8.5 and 4.5 projections and 2) RCP 2.6 projections are overly 

optimistic relative to current emissions trajectories in their requirement for declining rather 

than stabilizing radiative forcing by 2100 (Van Vuuren et al 2007).  The RCP 4.5 subset 

included the Model for Interdisciplinary Research on Climate (MIROC) and the Max Planck 

Institute Earth System Model (MPI). We reduced the three RCP 8.5 model subset to the 

Community Climate System Model v4 (CCSM4) and MIROC, excluding the intermediate 

model, the Flexible Global Ocean-Atmosphere-Land System Model (FGOALS), in order to 

use an equal number of RCP 8.5 and 4.5 projections in this study. We did not consider 

projections of negative temperature change due to their unrealistic nature, so we instead 

selected projections that were relatively cooler than the RCP 8.5 projections. We calculated 

the average changes projected for our study area using each model (Table 1) to verify that 

local projections for Tejon Ranch covered our four target climate scenarios (hot-dry, cool-

dry, hot-wet and cool-wet).   

 Future projections were downscaled using the method of constructed analogues with 

bias correction and GIDS interpolation (Flint and Flint 2012). In our study area, downscaled 

CCSM4 and MPI models project relatively small increases in precipitation when comparing 
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1951-1980 to end-of-21st-Century (2070-2099) levels, whereas MIROC predicts considerable 

decreases over the same time frame (Flint and Flint 2014). Air temperatures are projected to 

increase ~1.9 to 4.6°C across the four models (Table 1). We acknowledge, however, that 

these 30-year mean climate descriptions potentially mask changes in temporal frequency of 

weather events, particularly prolonged droughts and large storms (Polade et al. 2014, Berg 

and Hall 2015).    

 

Modeling CWD 

 Mapping exposure requires accurate representation of microenvironments at 

biologically appropriate scales (Franklin et al. 2013; Potter et al. 2013). We produced a 149-

year (1951-2099), 30-m spatial resolution dataset of annual water-year (Oct 1-Sep 30) 

accumulated climatic water deficit (CWD) using the Basin Characterization Model (BCM). 

The BCM is a distributed-parameter, deterministic water balance model used to estimate 

potential recharge on a monthly time step (Flint et al. 2004, 2013). The model accounted for 

variation in climatic and edaphic conditions, integrating spatial data on precipitation amount, 

timing and storage, minimum and maximum air temperature, relative humidity, radiation (net 

short and longwave), soil-water holding capacity and vegetative cover. The BCM was 

calibrated and validated with 68 and 91 California watersheds, respectively, to ensure the 

model was regionally robust (Flint et al. 2013). Soil information was obtained from 

SSURGO soil databases (NRCS 2006). These climate grids were spatially downscaled using 

GIDS methodology applied to local elevational gradients in a multi-step process from 12 to 4 

km to 30 m (Flint and Flint 2012). Potential and actual evapotranspiration were calculated 

using the Priestley and Taylor (1972) equation and the National Weather Service Snow-17 
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model (Anderson 1976). Amounts of available water below field capacity were considered as 

actual evapotranspiration (Flint et al. 2013). CWD was calculated as the difference between 

potential and actual evapotranspiration. CWD integrates precipitation, energy loading, soil 

water storage, and evapotranspiration and corresponds to water that would be used by plants 

if it were available, and relates well to the distribution of dominant plant species (Stephenson 

1998). Because CWD relies heavily on temperature-induced increases in PET, CWD 

increases in nearly all future climate projections (Fig. A1).  

 

Analyzing projected changes in CWD and mapping climate change exposure 

 To characterize the historical reference climate, we calculated mean annual 

accumulated water-year CWD (CWDWY) for the period 1951-1980 for each 30-m grid cell 

(Fig. 3).  We use the period of 1951-1980 as our historical baseline due to relatively 

stationary temperatures prior to rapid global warming in the 1980s (Fig.1 in Hansen et al. 

2006). CWDWY showed no significant directional trend in our study area during this period. 

Prior to 1951 we lacked sufficient station data for reliable modeling of CWD across the 

region.  

We analyze departure from historical mean conditions (ΔCWDWY) and frequency of 

extreme years (ΔHRV) for each 30-m cell (368,520 cells) at mid-(2040-2069) and end-of-

century (2070-2099) for each CMIP5 projection. Mean CWDWY increased everywhere in the 

landscape over the course of the 21st Century, so departure from baseline mean CWDWY 

measures the relative shift towards drier conditions of each cell. Our approach to identifying 

changes in extreme years was somewhat similar to that of Klausmeyer et al. (2011), who 

analyzed HRV in climate variables to define a "coping range" vs. stressful climate conditions 
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for landscapes in California.  We used the frequency distribution of annual CWD values 

within the historical reference period to define climatic extremes for each grid cell in the 

landscape.  We expressed the departure as a percentage rather than absolute change given the 

more than 3-fold range in average CWDWY across the region. We defined departure from the 

historical range of variability (HRV) in drought years as the number of years in each 30-year 

period in which CWDWY exceeded approximately the 93rd percentile of the HRV  (i.e., drier 

than all but the 2 driest years in the reference period) for each cell. We did not consider 

variation in extremely wet years relative to historical conditions. Because the 93% threshold 

is somewhat arbitrary, we tested the sensitivity of results to cutoffs at approximately the 90th 

and 87th percentiles. To evaluate changes in the likelihood of multi-year droughts, which may 

be especially stressful to long-lived plants (Bigler et al. 2007; Vicente-Serrano et al. 2013), 

we also analyzed historical departure in three-year moving windows (ΔHRV3) for the same 

set of GCMs, time periods and HRV thresholds. Analyses were performed using the R 

package “raster” (Hijmans 2015). 

Arguably, sites with minimal divergence from historical climate in terms of changes 

in mean climate and frequency of extreme years (years outside the HRV) offer the greatest 

potential as microrefugia (Fig. 1). As shown in Fig. 1, the distance of a site from the origin in 

this two-dimensional space represents climate exposure, which we labeled an exposure score. 

To facilitate comparison to percent change from mean historical climate, we re-scaled the 

frequency of extreme years from 0-30 to 0-100. Although previous studies used 

combinations of both mean climate change and frequency of extreme events to assess climate 

change exposure, methods varied somewhat in terms of temporal scaling and relative 

contributions of means vs. extremes. As such, we calculated climate change exposure as 
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(ΔCWDWY
2 + ΔHRV2)0.5, providing equal weight to changes in mean vs. extreme climate. 

We mapped exposure scores across the landscape for each future projection, focusing on end-

of-century projections to emphasize the requisite long-term climatic decoupling of 

microrefugia.  

 

Results 

Climatic water deficit 

 Spatial patterns of ΔHRV were similar across climate projections and time periods, 

but varied in magnitude (Figs. 4 and 5, Table 2). Projected ΔCWDWY changes in both means 

(Figs. A2-A3) and ΔHRV increased with elevation and were highest on equator-facing 

slopes. Under the warmest and driest projection (MIROC RCP 8.5), ΔHRV ranged from 11 

to 30 out of 30 years (Fig. 4) and ΔCWDWY increased 13-67% by end-of-century (Fig. A2). 

Mitigated emissions projections (RCP 4.5) showed less divergence from the HRV and 

historical mean climate, particularly under the wetter MPI model (Fig. A3). Lowering the 

HRV thresholds slightly increased ΔHRV, particularly maximum values in RCP 4.5 

projections (Table 2). Cells with the lowest ΔHRV departure rates were less sensitive to 

changes in thresholds across all projections (Table 2). 

Values of ΔHRV3 were generally similar to ΔHRV, but with lower maxima (Table 

3). Spatial patterns across the landscape were also similar, with the greatest departure rates at 

high elevations and lower rates on poleward (north)-facing slopes than equator-facing slopes 

at the same elevations. Contrary to the single-year analysis, however, rates of three-year 

departures from historical climate were insensitive to more restrictive definition of the HRV 

(Table 3).  
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Table 2. Number of years (out of 30) with accumulated water-year climatic water deficit (CWD) outside the 

historical range of variability (presented as landscape minimum and maximum values) 

  93%   90%   87%   

GCM Mid End Mid End Mid End 

CCSM4 RCP 8.5 2, 24 5, 29 2, 28 5, 30 2, 28 8, 30 

 

MIROC RCP 8.5 2, 27 11, 30 2, 30 11, 30 2, 30 16, 30 

 

MIROC RCP 4.5 2, 22 6, 27 2, 29 6, 30 2, 29 7, 30 

 

MPI RCP 4.5 1, 19 2, 20 2, 27 2, 24 4, 28 4, 25 

 
 

 

Table 3. Number of years (out of 30) with accumulated water-year climatic water deficit (CWD) outside the 

historical range of variability (presented as landscape minimum and maximum values) using moving 3-year 

averages 

  93%   90%   87%   

GCM Mid End Mid End Mid End 

CCSM4 RCP 8.5 1, 23 5, 27 1, 23 5, 27 1, 23 5, 27 

 

MIROC RCP 8.5 2, 28 9, 28 2, 28 9, 28 2, 28 9, 28 

 

MIROC RCP 4.5 2, 22 6, 26 2, 22 6, 26 2, 22 6, 26 

 

MPI RCP 4.5 2, 20 2, 20 2, 20 2, 20 2, 20 2, 20 
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Fig. 4. Number of years of departure from the historical range of variability in terms of accumulated water-year 

climatic water deficit (mm/yr) during mid- (2040-2069) and end-of-century (2070-2099) periods for two 

general circulation models (GCMs) at representative concentration pathways of 8.5: the Community Climate 

System Model v4 (CCSM4) and the Model for Interdisciplinary Research on Climate (MIROC).  
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Fig. 5. Number of years of departure from the historical range of variability in terms of accumulated water-year 

climatic water deficit (mm/yr) during mid- (2040-2069) and end-of-century (2070-2099) periods across two 

general circulation models (GCMs) at representative concentration pathways of 4.5: the Model for 

Interdisciplinary Research on Climate (MIROC) and the Max Planck Institute Earth System Model (MPI).  

 

Mapping climate change exposure 

Across all projections, exposure scores generally increased with elevation (Fig. 6, 

A4). However, exposure scores varied widely across the landscape and across projections, 

ranging from 17 for some locations under MPI to a maximum of 119 under MIROC RCP 8.5. 

Scatterplots of ΔCWDWY versus ΔHRV (cf. Fig 1) for each projection at end-of-century 

indicated that high exposure scores mainly result from high ΔHRV (Fig. 6). Topographic 

buffering of climate exposure occurs on poleward-facing slopes, but these areas still received 

relatively high exposure scores compared to flat lowlands, particularly those below 500 m 
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(Fig. 6). Because complex topography somewhat obscures the buffering effects of poleward-

facing slopes, we performed a post hoc regression tree analysis (RTA) using the R package 

“tree” (Ripley 2015) to explore relationships among exposure, elevation and northness 

(calculated as sin(slope) * cos(aspect)). The RTA revealed that although elevation was the 

primary control on exposure, northness reduced exposure at moderate and low elevations 

(Fig. A5). 

 

Fig. 6. Relative climate change exposure across all four climate change projections at end-of-century (2070–

2099). Exposure scores were calculated for each future projection as the product of the percent change in mean 

climate and the rate of extreme years (departures from the HRV). Presented here are mean exposure scores 

across all four projections. 

 

Discussion 

Spatial patterns of climate change exposure 
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  Large variation in CWD-based climate exposure scores suggests considerable 

decoupling of local sites from regional climate trends in mountain landscapes. Whether this 

decoupling is adequate to support microrefugia ultimately depends on widely varying 

species’ sensitivity to changes in either or both ΔCWDWY and ΔHRV. The lowest exposure 

scores in our landscape occurred at low elevations in sites that currently experience high 

CWDWY and will continue to do so throughout the 21st Century. Plant species currently 

occupying these sites (mainly annual grasses and forbs) tolerate dry conditions, though this is 

not to say these species are not vulnerable to other dimensions of climate change. For 

example, grasslands are sensitive to the timing as well as the amount of soil moisture (Hobbs 

et al 2007).  

 We might expect microrefugia to occur in the highest (cooler and moister) portions of 

mountain landscapes. Our analysis suggests the opposite could be true. Those sites with 

historically low CWDWY levels have the potential for relatively larger increases in ΔCWDWY  

associated with warming that can affect actual evapotranspiration (AET) (Stephenson 1998). 

This will be especially true for historically snow-dominated sites that will receive an 

increasing fraction of precipitation as rain as well as shorter snowpack duration with 

associated increases in runoff, AET and soil evaporation (Rangwala and Miller 2012; 

Rangwala et al. 2013). Depending on water availability, AET will increase initially in 

response to warming temperatures, but will eventually level off and decline when available 

water is exhausted (Rosenberg et al. 1983). Exhaustion of water supplies can lead to plant 

mortality and vegetation type conversions (Breshears et al. 2005). Consequently, plant 

communities currently found at the highest elevations in moisture-limited landscapes may 
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face shrinking habitat and limited opportunities for long-term survival under accelerated 

climate exposure (Gottfried et al. 2012).  

Changes in water availability coincident with increasing temperatures at high 

elevations are consistent with projections for our study area. In our study region, departure 

from historical CWD regimes was particularly dramatic at elevations above approximately 

1700 m (Figs 4-5). This elevation currently marked a shift from snow-dominated to rain-

dominated precipitation. By end-of-century, winter temperatures are projected to raise the 

rain-snow transition zone above approximately 1700 m in the RCP 4.5 scenarios and above 

2000 m in CCSM4 RCP 8.5, and convert the entire landscape to rain-dominated under 

MIROC RCP 8.5. At lower elevations, snow was historically less important or absent 

entirely, so changes in moisture availability in these locations are projected to be a function 

of changes in total precipitation. Therefore, we suspect that sites historically within the rain-

snow transition zone in moisture-limited landscapes may be most exposed to climate change.  

Although absent from our landscape, locations that are strongly temperature-limited and that 

are currently far from the rain-snow transition zone (e.g., alpine or subalpine habitats) are 

unlikely to experience departures from historical climate as dramatic as those projected at 

Tejon Ranch. More generally, we would expect that both changes in overall precipitation and 

the position of the rain-snow transition zone will combine to influence the exposure of any 

given site (Tague and Peng 2013, Thorne et al. 2015).  

 Although high elevation areas within the changing rain-snow transition zone are 

likely to become increasingly “high and dry”, we observed some buffering of these effects on 

poleward-facing slopes, which may be less exposed to climate change than other aspects and 

ridgetops. Systematically lower solar irradiance, lower potential evapotranspiration and 
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longer snowpack duration compared to the rest of the landscape combined to reduce the local 

rate of departure from historical climate. Buffering of losses in snowpack on poleward-facing 

slopes may be particularly important for snow-dependent species (Curtis et al. 2014). The 

RTA revealed that exposure was primarily controlled by elevation in our study landscape, but 

with secondary, interactive effects of northness (Fig. A5). On the highest poleward-facing 

slopes (Fig. 6), exposure was particularly great due to warming-induced loss of historically 

important snow. Snow reduction accelerated increases in CWD and negated topographic 

buffering of northerly aspects. At lower elevations, where snow was historically uncommon 

or absent, poleward-facing slopes exhibited some buffering of exposure. Conversely, 

vegetation density and local land management history may combine to increase AET in some 

cases and negate the additional moisture availability on poleward-facing slopes (Guarin and 

Taylor 2005). Finally, absent from our discussion have been riparian areas, which were not 

directly defined by the BCM because, although this model calculated recharge, it did not 

incorporate lateral flow. Riparian areas may also reduce climate change exposure due to 

accumulation of moisture, cool air and shade-providing vegetation. These topographically 

derived distinctions in climatic conditions represent a form of decoupling from regional 

climate and may produce potential microrefugia.  

On the transferability of our approach 

The approach we described here using departure from historical climate as a method 

of examining climate change exposure across landscapes is widely transferrable to other 

landscapes, useful for conservation planning and not subject to arbitrary decisions on the 

spatial extent of analysis. Although transferability will be ultimately limited by spatial (and 

possibly temporal) resolution of climate grids, fine spatial resolution is essential for 
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identifying microenvironments and potential microrefugia. Increasingly fine spatial 

resolution has been shown to reduce rates of range shifts owing to better detection of 

microenvironments (Serra-Diaz et al. 2014). We recognize that downscaling from coarse 

GCM grids to local topoclimates introduces additional uncertainty into climate projections 

that remains poorly quantified (Hall 2014), but nevertheless downscaled climate projections 

are useful for the purpose of ecological vulnerability assessment (Franklin et al. 2013). Use 

of varying time windows (e.g., ΔHRV vs. ΔHRV3) provides additional flexibility in terms of 

temporal scaling of the interactions among climate change and species’ tolerance limits.  

Definitions of the HRV may also be manipulated depending on the nature of the distribution 

of focal climate variables across years. Because our method is not tied to specific biological 

targets, it allows local managers to decide how local changes in climate variables interact 

with biological sensitivity and translate into changes in species distributions. Managers could 

group cells of similar rates of historical departure (e.g., 0-5 of 30 years) to analyze patch 

structure and configuration, if desired. In these more specific contexts, it may make sense to 

view landscapes through the lens of individual species (e.g., commercially valuable or 

keystone species); however, we believe that the generic nature of our approach boosts its 

transferability.  

 

Conclusions 

 Considering that a common, stated objective in conservation is to protect species in 

the places they currently inhabit, in regions undergoing rapid climate change, microrefugia 

should be sites that protect the same species both now and in the future. In this vein, the 

allure of microrefugia is understandable. If we could only identify parts of landscapes 



  

 

24 

 

somehow immune or resistant to climate change, we could protect and/or actively manage 

these sites to prevent extinctions (Keppel et al. 2012). Our analyses, however, suggest that 

such sites may be limited to rare localities in future landscapes. Nonetheless, we illustrate 

how the magnitude of climate change exposure can vary widely over short distances in 

heterogeneous topography and provide a means for locating areas that could experience less 

climate change and lower change velocities relative to regional trends. These areas may be 

especially valuable conservation and management targets and may play important roles in 

mediating range shifts and/or local persistence of species (Hannah et al. 2014, Serra-Diaz et 

al. 2015).  
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Appendix 

 

Fig. A1. Landscape distribution of accumulated water-year climatic water deficit (CWD) for Tejon Ranch 

expressed as cell means for mid- (2040-2069) and end-century periods (2070-2099) for CMIP5 projections. 

CCSM4 = Community Climate System Model version 4. MIROC = Model for Interdisciplinary Research on 

Climate. MPI = Max Planck Institute Earth System Model. 
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Fig. A2. Percent change in accumulated water-year climatic water deficit (mm/yr) from historical climate 

(1951-1980 cell means) during mid- (2040-2069) and End-of-century (2070-2099) periods across two GCMs at 

representative concentration pathways of 8.5. CCSM4 = Community Climate System Model version 4. MIROC 

= Model for Interdisciplinary Research on Climate. 
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Fig. A3. Percent change in accumulated water-year climatic water deficit (mm/yr) from historical climate 

(1951-1980 cell means) during mid- (2040-2069) and end-of-century (2070-2099) periods across two GCMs at 

representative concentration pathways of 4.5. MIROC = Model for Interdisciplinary Research on Climate. MPI 

= Max Planck Institute Earth System Model. 
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Fig. A4. Exposure scores for end-of-century (2070-2099). Exposure scores were calculated for each future 

scenario as the product of the percent change in mean climate and the rate of extreme events (departures from 

the HRV). Presented here are exposure scores across all four scenarios. Change was based on differences from 

the historical baseline period (1951-1980). Color gradients were calculated separately for each scenario. 
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Fig. A5. Regression tree analysis (RTA) for relationships among exposure scores, elevation (m) and northness 

(radians). RTA is a statistical technique for exploring non-linear and non-additive relationships among variables 

(summarized for terrain analysis by Michaelsen et al 1994). Northness alone is weakly correlated with exposure 

(r=0.32) based on a 5% random sampling of the landscape, but Fig. 6 suggests a possible non-linear relationship 

as a function of elevation. The tree attributes 61% of deviance in exposure to elevation, but shows clear 

differences in exposure attributable to northness as a function of elevation. Northness was calculated as 

sin(slope) * cos(aspect). RTA was performed in the R package “tree” (Ripley 2015). 
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Abstract 

Climate change is expected to induce range shifts in tree species, but dispersal 

capacities may limit the ability of trees to keep pace with the velocity of modern climate 

change. We used tree rings and spatially downscaled climate grids to assess long-term 

climate-growth relationships for ponderosa pine (Pinus ponderosa) and the potential for local 

redistribution based on climate-growth relationships in a mountainous Southern California 

landscape (Tejon Ranch). We fit climate response functions for ponderosa pine and applied 

them across the landscape for a range of climate change projections (Coupled Model 

Intercomparison Project; CMIP5) to identify favorable growing habitat. Interannual 

variability in tree growth was explained by a combination of climatic water deficit over the 

current and preceding water-year (Oct 1 – Sep 30), March precipitation, July maximum and 

January minimum air temperatures (adjusted R² = 0.55-0.57). In general, growth is expected 

to decline under future climate change in current stands, but heterogeneous topography 

offered potential habitat under all climate projections, particularly on north-facing slopes at 

higher elevations. Under warmer and drier projections, habitat availability decreased in terms 

of increasing distance to the nearest suitable patch and decreasing suitable habitat within 

average dispersal distance buffers (30 m) of current stands for both mid- (2040-2069) and 

end-of-century (2070-2099) periods. Spatiotemporal climate variability, however, created 

suitable patches within 30 m of current stands, potentially offering ephemeral windows of 

opportunity for local range shifts without long-distance dispersal. Successful establishment in 

new areas will be mediated by a combination of spatiotemporal variability in climate, seed 

supply and dispersal, competition and disturbances. In summary, this case study 

demonstrates a novel approach for projecting potential tree range shifts in response to climate 
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changes and highlights the importance of spatiotemporal climate variability in patch 

dynamics. 

 

Introduction 

A threat to forests associated with climate change is the incompatibility of typical 

dispersal rates with the rapid 21st Century climate change (Zhu et al. 2012, Kroiss and 

HilleRisLambers 2015). Mountainous terrain, however, offers potential local redistribution 

over relatively short distances that may reduce local extinctions and facilitate gradual range 

shifts (Hannah et al. 2014). Range shift projections are commonly made using relatively 

coarse climate grids (i.e., resolution in kilometers) that do not account for topographically 

controlled variability in climate across landscapes, particularly in mountainous terrain. As 

such, projected range contractions generally diminish as climate data resolution increases 

(Franklin et al. 2013). Reductions in species’ exposure to climate change (“bioclimatic 

velocity”; Serra-Diaz et al. 2014) have been commonly attributed to “microrefugia”, which 

are purported, relatively stable microenvironments that allow species to persist outside their 

main distributions and that are difficult to map using conventional gridded climate datasets 

(Rull 2009, Dobrowski 2011). These sites can have disproportionate influences on range 

shifts and/or local persistence for tree species (Serra-Diaz et al. 2015). 

Although climate change exposure may be highly spatially variable across 

mountainous landscapes (McCullough et al. 2016), temporal variability in climatic conditions 

increases the dynamic structure of landscapes. For example, relatively wet years in 

Mediterranean landscapes create ephemeral “windows of opportunity” for seedling 

establishment despite generally declining or unfavorable climate across landscapes (Davis et 
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al. 2016). In these wet years, total suitable habitat area may triple or more with respect to 

median conditions (Davis et al. 2016). It is therefore likely that habitat connectivity increases 

or decreases through time as a function of spatiotemporal climate variability and that 

successful dispersal of seeds from parent trees to other suitable sites is mediated by this 

variability. In addition, spatiotemporal climate variability interacts with disturbance events 

and legacies to produce dynamic, non-equilibrium landscape structure (Hessburg et al. 2007). 

 In this study, we offer a novel, multi-method approach for assessing potential effects 

of climate change on tree species distributions at a landscape scale. We employed tree rings 

to examine long-term relationships between climate and growth of ponderosa pine (Pinus 

ponderosa) in a mountainous Southern California landscape (Tejon Ranch, CA). Although 

tree rings are typically compared to weather station data (Fritts 1976), we instead used fine 

(30 m) downscaled climate grids to enable mapping of potential growing habitat across the 

broader landscape. Use of spatial climate data therefore allowed us to analyze future suitable 

patch structure based on the distribution of potential growing habitat under a range of climate 

change projections. This analysis enabled us to estimate necessary dispersal distances for 

ponderosa pine to track favorable growing habitat in the future with respect to mean dispersal 

distances. We asked the following questions: 

1. What is the historical relationship between ponderosa pine growth and climate at 

Tejon Ranch? 

2. How will future climate change and mountainous terrain influence the potential 

distribution of favorable growing habitat? 

3. What is the accessibility of future habitat with respect to known dispersal 

capacity? 
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Methods 

Study area 

Tejon Ranch is located in the western Tehachapi Mountains, CA (34°58’N, 118° 

35’W). The site is characterized by rugged topography and steep climate gradients, providing 

a valuable case study of local variation in climate and projected climate change exposure. 

The area is mostly private land owned and managed by the Tejon Ranch Company for cattle 

ranching, hunting, agriculture and rare species conservation. Our downscaled climate grids 

covered a rectangular subsection of Tejon Ranch and some adjacent areas to the northeast 

(Cummings Peak), spanning approximately 33000 ha and steep elevational gradients (370-

2364 m). The climate is Mediterranean, with hot, dry summers and cool, wet winters. Mean 

annual precipitation for the period 1896-2010 varied from approximately 250 mm in the 

driest, low elevation portions of the area to over 500 mm at the highest elevations. At 

elevations above roughly 1500-1600 m, a significant portion of precipitation falls as snow. 

See Davis et al. (2016) for additional details on vegetation and soils across the landscape.  

Although ponderosa pine is one of the most widespread tree species in western North 

America, the species is largely restricted to high elevations and/or north-facing slopes in the 

southern parts of its range (Little 1971). Ponderosa pine occurs in two main stands on Tejon 

Ranch, both on north-facing slopes at approximately 1453 and 1676 m elevation. We refer to 

these stands as the lower and upper stands, respectively (Fig. 1). At the time of sampling, the 

upper and lower ponderosa pine stands were dominated by ponderosa pine, but contained 

intermixed Quercus spp., including predominantly California black oak (Q. kelloggii), and a 

few canyon live oak (Q. chrysolepis) and interior live oak (Q. wizlizeni) (Table 1). Over 90% 

of adult trees died during a recent warm drought (2012-2016), likely due to a combination of 
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drought exposure and pine beetle (Dendroctonus spp.) infestation. Several saplings survived 

in the upper stand, but none was observed in the lower stand. We observed evidence of 

beetles and associated blue stain fungus (Grosmannia clavigera), a phloem disrupter, in both 

the upper and lower stands. This mortality event was consistent with broader scale tree 

mortality across California (Moore and Heath 2015, Young et al. 2017). 

 

Fig. 1. Overview of Tejon Ranch study area, covering 33000 ha (approximately 20 km east-west and 17 km 

north-south) and an elevational gradient of 370-2364 m. The upper (left) and lower (right) ponderosa pine 

stands are shown in yellow. 

 

Table 1. Ponderosa pine stand characteristics at Tejon Ranch 

Stand 

Area  

(ha) 

Elevation  

(m) 

Pinus BA  

(m²/ha) 

Quercus* BA  

(m²/ha) 

Upper 19 1676 18.2 7.2 

Lower 62 1453 24.3 20.2 

*Q. kelloggii, Q. chrysolepis, Q. wizlizeni. BA = basal area 
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Tree ring sampling and preparation 

We sampled tree rings from the upper stand in August 2013 and from the lower stand 

in August and September 2014. We sampled two cores per tree from mature trees at 

approximately breast height (1.3 m). To ensure we used only mature trees, which are more 

reliable integrators of climate (Fritts 1976, Carnwath et al. 2012), we discarded samples with 

no rings prior to 1925. We also discarded samples with noticeable growth releases (i.e., 

growth increases inconsistent with a standard growth trajectory) that may have been caused 

by release from competition due to mortality of neighboring trees. We only sampled live 

trees in the upper stand (at the time of sampling, adult mortality was minimal), but 

approximately two-thirds of sampled trees in the lower stand had recently died. We found no 

evidence of fire (fire scars on rings or visual signs on standing trees).  

 Tree cores were handled using standard procedures in dendrochronology (Speer 

2010). We used COFECHA version 6.06P (Holmes 1983, Grissino-Mayer 2001) to validate 

cross-dating of samples. Reliable ring series were obtained from 28 trees from the lower 

stand and 22 trees from the upper stand. To remove size-related growth trends and maximize 

climatic signal, we standardized ring widths into a unitless ring width index (RWI; where 1 = 

average growth across sampled years) using a negative exponential function (R v. 3.3.3, 

package dplR; Bunn et al. 2008, 2016). Further details on processing and measurement of 

tree rings were included in the appendix (A1). 

 

Downscaled climate grids 

 To represent historical climate conditions, parameter-elevation relationships on 

Independent Slopes Model (PRISM) (Daly et al. 2008) average monthly air temperature and 
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precipitation data were spatially downscaled from 800 to 30 m using Gradient-Inverse-

Distance-Squared (GIDS) downscaling (Flint and Flint 2012). This method has been shown 

either to match the coarser resolution gridded climate or improve the match to measured 

station data for both precipitation and air temperature by incorporating local topography, 

adiabatic lapse rates and climatic gradients (Flint and Flint 2012). A validation performed 

using independent weather station data for 2012-2013 showed correlations between 

observed and modeled maximum and minimum air temperature were 0.95-0.99. Interpolated 

precipitation values were less reliable; correlations between observed and modeled 

precipitation were 0.77-0.94 (McCullough et al. 2016). 

 In addition to precipitation and air temperature, we included climatic water deficit 

(CWD) from the Basin Characterization Model (BCM). The BCM is a distributed-

parameter, deterministic water balance model used to estimate potential recharge on a 

monthly time step (Flint et al. 2004, 2013). The model accounted for variation in climatic 

and edaphic conditions, integrating spatial data on precipitation amount, timing and storage, 

minimum and maximum air temperature, relative humidity, radiation (net short and 

longwave), soil-water holding capacity and vegetative cover. The BCM was calibrated and 

validated with 68 and 91 California watersheds, respectively, to ensure the model was 

regionally robust (Flint et al. 2013). Soil information was obtained from SSURGO soil 

databases (NRCS 2006). These climate grids were spatially downscaled using GIDS 

methodology applied to local elevational gradients in a multi-step process from 12 to 4 km 

to 30 m (Flint and Flint 2012). Potential and actual evapotranspiration were calculated using 

the Priestley and Taylor (1972) equation and the National Weather Service Snow-17 model 

(Anderson 1976). CWD was calculated as the difference between potential and actual 
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evapotranspiration. CWD is a predictor of Douglas-fir (Pseudotsuga menziesii) growth 

across western North America (Restiano et al. 2016), but to our knowledge has not been 

compared to ponderosa pine. 

 

Climate response functions and mapping potential habitat 

A climate response function is a statistical relationship between tree ring widths and 

climate variables (Fritts 1976). Although response functions are usually fitted using weather 

station data, we used downscaled climate grids to map potential growth across the broader 

landscape based on the climate response functions. We used the period 1950-2013 due to 

improved confidence in downscaled climate grids after 1950 and our desire to focus on 

mature trees. We used an ecologically informed forward stepwise approach for developing 

response functions. We initially assessed univariate relationships between RWI and climate 

variables to identify the variables most correlated with RWI. We found that CWD (mm) over 

the “current” (year of ring) and preceding water-year (wy2CWD) was the strongest RWI 

predictor, so we began with that variable. We iteratively added March precipitation (mm; 

marppt), July maximum air temperature (°C; jultmx) and January minimum air temperature 

(°C; jantmn). Regression model assumptions were validated using the Shapiro-Wilk test for 

normal residuals and the Breusch-Pagan test for heteroscedasticity. Variance inflation factors 

did not exceed 1.26, indicating minimal multicollinearity.  

 We averaged coefficients from the upper and lower stands and applied them to four 

climate change projections that bracketed a range of potential futures (i.e., hot-dry, hot-wet, 

warm-dry, warm-wet) (Ackerly et al. 2015, McCullough et al. 2016). We used two 

representative concentration pathway (RCP) emission scenarios (RCP 8.5: business-as-usual 
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trajectory and RCP 4.5: emissions peak and stabilize around 2050) under the Coupled Model 

Intercomparison Project (CMIP5). The RCP 4.5 models included the Model for 

Interdisciplinary Research on Climate (MIROC) and the Max Planck Institute Earth System 

Model (MPI). The RCP 8.5 models included the Community Climate System Model v4 

(CCSM4) and MIROC.  

 

Future patch dynamics 

We mapped potential future ponderosa pine patches based on mapped future RWI. 

Patches were defined based on projected RWI. We assumed projected RWI ≥ 1, which 

constituted average or greater growth, represented favorable growing habitat, but we tested 

RWI values of 0.7-1.2 in increments of 0.1 to test the influence of this threshold on patch 

availability. We used two patch isolation metrics (distance to nearest patch and number of 

suitable cells within buffers around current stands; Bender et al. 2003) to examine the 

potential for local redistribution of ponderosa pine under the four future climate projections. 

We defined the minimum patch size as 1 cell (900 m²), which is approximately the 

minimum stand size (1000 m²) reported in other studies (Sánchez Meador et al. 2009, 2010). 

We tested the influence of minimum patch size on patch availability by performing all 

analyses on contiguous groups of 1-4 cells (four-neighbor rule). For the habitat buffers, we 

buffered the current stands in increments of cell widths (i.e., 30-150 m in 30 m increments). 

We based this decision on the known dispersal capacity of ponderosa pine. Like many tree 

species, ponderosa pine seeds follow a typical dispersal kernel by which most seeds fall near 

the parent tree and long-distance dispersal is relatively rare (Clark et al. 1999); mean 

dispersal distance is approximately 15-35 m and rarely exceeds 50 m (Vander Wall 2002). A 
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study from Oregon found just 8% of seeds dispersed 120 m or more from the parent tree 

(Barrett 1979). In our study, we considered 30 m as average dispersal distance due to the 

resolution of the climate grids. Seeds are dispersed by a combination of wind, rodents and 

birds (Vander Wall 2003, 2008) and recruitment often occurs in episodic pulses (White 

1985, Savage et al. 1996, Brown and Wu 2005, League and Veblen 2006). We used the R 

raster package (Hijmans 2016) for all processing of spatial data. 

 

Results 

Climate response functions and mapped ponderosa growth 

The climate response functions explained 55 and 57% of variation (adjusted R²) in 

annual growth (RWI) over 1950-2013 for the upper (Fig. 2a) and lower stands (Fig. 2b), 

respectively (Table 2). wy2CWD (r = -0.58, -0.56) and jultmx (r = -0.34, -0.41) were 

negatively correlated with RWI, whereas jantmn (r = 0.41, 0.43) and marppt (r = 0.52, 0.52) 

were positively correlated with RWI in the upper and lower stands, respectively. Response 

function coefficients were greater (absolute values) in the lower stand for all variables except 

marppt, for which upper and lower stand coefficients were similar (0.003 and 0.002, 

respectively) (Table 2).  

 Projected ponderosa pine RWI was generally greatest on high elevation (particularly 

above 1800 m), north-facing slopes at both mid- and end-of-century periods (Figs. 3-4) 

across all climate change projections. Conversely, locations available for relatively marginal 

growth persisted on lower north-facing slopes, including the current upper and lower stands. 

Average RWI was approximately 0.96 from 1951-1980 in both stands, indicating that 

projected RWI represented a decline from historical conditions. The greatest and smallest 
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projected RWI declines were under the harshest (MIROC RCP 8.5) and mildest (MPI RCP 

4.5) climate projections, respectively. For example, projected average RWI declined for the 

upper stand to 0.69 and 0.58 for mid- and end-of-century periods, whereas RWI declined to 

0.89 and 0.78 under MPI RCP 4.5 for these same periods. Additionally, mapped RWI 

indicated that ponderosa pine does not currently occupy locations most favorable for growth. 

 

 
Fig. 2. Climate response functions for a) upper and b) lower ponderosa pine stands at Tejon Ranch for 1950-

2013. RWI = ring width index. 
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Table 2. Climate response functions for ponderosa pine upper and lower stands at Tejon Ranch for 1950-2013. 

Stand Intercept 

wy2CWD  

(mm) 

jantmn  

(°C) 

jultmx  

(°C) 

marppt  

(mm) 

Upper      

Coefficient 3.014 -6.645E-04 0.037 -0.034 0.003 

SE 0.464 1.608E-04 0.010 0.015 3.588E-04 

p-value < 0.001 < 0.001 < 0.001 0.033 0.003 

Model Adjusted R² = 0.55, p-value < 0.001   

Lower      

Coefficient 4.385 -7.839E-04 0.062 -0.074 0.002 

SE 0.697 2.441E-04 0.015 0.023 5.470E-04 

p-value < 0.001 < 0.001 < 0.001 0.033 0.003 

Model Adjusted R² = 0.57, p-value < 0.001     

SE = standard error, wy2CWD = cumulative climatic water deficit (mm) over current and previous water-years, 

jantmn = January average minimum air temperature (°C), jultmx = July average maximum air temperature (°C), 

marppt = March precipitation (mm). 
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Fig. 3. Projected ponderosa pine growth (unitless ring width index; RWI) for mid- (2040-2069) and end-of-

century (2070-2099) representative concentration pathway (RCP) 8.5 climate projections, overlaid on a 30-m 

digital elevation model. A RWI value of 1 is average. CCSM4 = Community Climate System Model v4 and 

MIROC = the Model for Interdisciplinary Research on Climate. 

 

Fig. 4. Projected ponderosa pine growth (unitless ring width index; RWI) for mid- (2040-2069) and end-of-

century (2070-2099) representative concentration pathway (RCP) 4.5 climate projections, overlaid on a 30-m 

digital elevation model. A RWI value of 1 is average. MIROC = the Model for Interdisciplinary Research on 

Climate and MPI = Max Planck Institute Earth System Model. 
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Future patch dynamics. 

 Distance (m) to nearest patch (minimum of 1 cell with RWI ≥ 1) generally increased 

throughout the 21st Century across all climate projections, but occasionally dropped to near 

or below average ponderosa pine dispersal distance (30 m) through approximately 2075 

under the harshest projection (MIROC RCP 8.5). Distance to nearest patch approached 30 m 

through 2095 in the mildest projection (MPI RCP 4.5) (Fig. 5, A1). Conversely, interannual 

climate variability commonly drove nearest patch distance above 500 m, a distance that 

rarely appeared under historical climate. Nearest patch distance more commonly approached 

average dispersal distance during the historical period compared to all future projections 

(Fig. 4). On average, nearest patch distance was greater for the upper stand than for the lower 

stand and during the end-of-century period across all climate projections (Table 3). Average 

distance was greatest under MIROC RCP 8.5, smallest under MPI 4.5 and intermediate under 

CCSM4 RCP 8.5 and MIROC RCP 4.5. Nearest patch distance was more sensitive to the 

RWI threshold than minimum patch size. For example, distance from the upper stand 

increased from 176 to 197 m at minimum patch sizes of 1 vs. 4 cells under MIROC RCP 8.5 

at mid-century (Table A1). Conversely, nearest patch distance from the upper stand was 712 

m at RWI ≥ 1.2 and 23 m at RWI ≥ 0.7 at mid-century under MIROC RCP 8.5 (Table A2), 

which were both considerably different than nearest patch distance at RWI ≥ 1 (429 m; Table 

3).  

 The number of suitable habitat cells within buffered areas (30 m) around the current 

stands mirrored trends observed from the nearest patch distance analysis. In general, the 

number of suitable cells within the buffers decreased consistently under all future 

projections, with MIROC RCP 8.5 and MPI RCP 4.5 representing the steepest and most 
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gradual declines, respectively (Fig. 6, A2). Historically, the number of suitable cells 

fluctuated between 0 and 300 cells (270000 m²), which is approximately the area of the 

buffered stand. This range of values persisted under MPI RCP 4.5, but numbers increasingly 

approached 0 across all climate change projections through time. Similar to nearest patch 

distance, the number of suitable cells was more sensitive to the RWI threshold than buffer 

width. In general, suitable cells increased as buffer width increased (Table 4). For all 

projections by MPI RCP 4.5, buffers of 60 m or narrower contained no suitable cells at end-

of-century. Conversely, at RWI ≥ 0.7, 68 suitable cells were contained within a 30 m buffer 

of the upper stand under MIROC RCP 8.5 at end-of-century, whereas 0 suitable cells were 

found at RWI ≥ 0.8 (Table S3). 

 Both path metrics indicated that landscape connectivity of favorable growing habitat 

varied widely through space in time and occasionally deviated considerably from 

connectivity under average climate conditions. For example, nearest patch distance was 517 

m from the upper stand under MIROC RCP 8.5 for end-of-century average climate, but 

ranged from 23 to 2242 m in 2073 and 2099, respectively, corresponding to anomalously wet 

and dry years (Fig. 7). As such, dispersal from the upper stand to favorable growing habitat is 

within average dispersal distance during relatively wet years. Over 2017-2099, nearest 

suitable patches were within 30 m of the upper stand in 10 years, but only once (2073) in the 

end-of-century period (2070-2099). Conversely, nearest suitable patches were within 30 m of 

the upper stand in 24 years, including 6 in the end-of-century period.  

 



  

 

51 

 

 

Fig. 5. Time series of distance to nearest suitable patch for the upper ponderosa pine stand for the harshest 

(MIROC RCP 8.5) and mildest (MPI RCP 4.5) climate change projections. Patches were defined as a minimum 

of 1 cell with RWI ≥ 1. Thick lines represent right-aligned 30-year moving averages. Dashed line represents 

average dispersal distance (30 m). 

 

Table 3. Average distance (m) to nearest suitable patch for the lower and upper ponderosa pine stands for mid- 

(2040-2069; first number) and end-of-century (2070-2099; second number) average climate across CMIP5 

projections. Patches were defined as a minimum of 1 cell with RWI ≥ 1. 

GCM Upper Lower 

CCSM4 RCP 8.5 397, 405 159, 173 

MIROC RCP 8.5 429, 517 176, 277 

MIROC RCP 4.5 254, 449 151, 241 

MPI RCP 4.5 75, 247 76, 127 
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Fig. 6. Time series of the number of suitable cells within a 30 m buffer (average dispersal distance) for the 

upper ponderosa pine stand for the harshest (MIROC RCP 8.5) and mildest (MPI RCP 4.5) climate change 

projections. Suitable cells were defined as RWI ≥ 1. Thick lines represent right-aligned 30-year moving 

averages. 
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Table 4. Number of suitable cells within buffered areas (expressed as increasing buffer widths; m) around the 

upper and lower ponderosa pine stands for mid- (2040-2069; first number) and end-of-century (2070-2099; 

second number) average climate across CMIP5 projections. Suitable cells were defined as RWI ≥ 1.   

GCM 30 m 60 m 90 m 120 m 150 m 

Upper      

CCSM4 RCP 8.5 0, 0 1, 0 7, 6 14, 12 24, 21 

MIROC RCP 8.5 0, 0 1, 0 6, 2 12, 4 21, 10 

MIROC RCP 4.5 0, 0 3, 0 8, 1 14, 3 23, 8 

MPI RCP 4.5 52, 0 66, 5 83, 11 103, 19 131, 35 

Lower      

CCSM4 RCP 8.5 53, 35 58, 36 58, 36 58, 36 58, 36 

MIROC RCP 8.5 40, 7 46, 7 46, 7 46, 7 47, 7 

MIROC RCP 4.5 83, 15 93, 15 96, 15 96, 15 100, 15 

MPI RCP 4.5 292, 108 332, 120 360, 123 387, 124 414, 128 

 

 

Fig. 7. Comparison of suitable growing habitat for ponderosa pine at Tejon Ranch for average 2070-2099 

climate and the driest (2099) and wettest years (2073) of that 30-year period. Suitable growing habitat was 

defined as mapped RWI ≥ 1. Black outlines represent current ponderosa pine stands.  
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Discussion 

Why is ponderosa pine not more common at Tejon Ranch? 

 Ponderosa pine is rare at Tejon Ranch, occupying less than 1% of the study 

landscape. Historically, ponderosa pine was marginally more common at Tejon Ranch 

according to Wieslander Vegetation Type Mapping (VTM) surveys from the 1920s and 

1930s, occupying a few canyons at lower elevations where a few relict trees remain today 

(Kelly et al. 2005, 2008); however, the species still appears to inhabit a small portion of its 

available habitat across the landscape, but conspicuously not the high elevation, north-facing 

slopes where projected RWI is greatest. These areas are mostly occupied by dense stands of 

white fir (Abies concolor) (F. Davis unpublished data), which would prohibit shade-

intolerant ponderosa pine establishment in the absence of gap-creating disturbance (Cooper 

1961, Fulé et al. 1997). As a post hoc analysis, we compared the distributions in climate 

space (AET vs. CWD; sensu Stephenson 1998) of four dominant tree species that occupy 

relatively high elevations of the study landscape (P. jeffreyi, Q. kelloggii, Q. chrysolepis and 

A. concolor) in addition to ponderosa pine (Fig. 7). The climate space occupied by ponderosa 

pine overlaps with each of these other species, suggesting that competition and lack of 

disturbance may contribute to the rarity of ponderosa pine across other high-elevation areas. 

These phenomena reinforce the limitations of single-species distribution modeling that does 

not account for competition among species (Clark et al. 2014). 

Utilization of potential habitat at higher elevations will depend on the remaining 

ponderosa trees, many of which are decades away from peak reproductive years. As such, 

mid-century climate projections may best reflect the conditions under which ponderosa pine 

would be attempting to colonize new areas. Our results show that spatiotemporal climate 



  

 

55 

 

variability may facilitate local range shifts or stepping-stone habitat connectivity within 

average dispersal distance; however, long-distance dispersal would be required for the 

majority of the 21st Century across all climate projections (71-88% of years). Although rare 

long-distance dispersal events have occurred for ponderosa pine as far as 290 km from source 

populations (Johansen and Latta 2003), repeated colonizations are needed to form self-

sustaining populations (Lesser and Jackson 2013). The dramatically reduced adult 

population, however, will likely severely limit the potential for future recruitment in 

climatically more suitable locations at Tejon Ranch. Additionally, similar to other conifers, 

ponderosa pine has high rate of outcrossing (81-96%; Farris and Mitton 1984), which would 

limit establishment of new stands when the parent population is small.  
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Fig. 7. Distribution of dominant high-elevation tree species at Tejon Ranch based on water-year actual 

evapotranspiration (AET; mm) and climatic water deficit (CWD; mm) based on 2014 Landsat 8 image 

classification (F. Davis unpublished data). ABCO = Abies concolor, PIPO = Pinus ponderosa, PIJE = P. 

jeffreyi, QUKE = Quercus kelloggii, QUCH = Q. chrysolepis.   

 

Limitations and broader implications 

Our mapped projections of ponderosa pine growth across the landscape should be 

interpreted qualitatively and with some caution; climate-growth relationships may be non-

stationary through time due to a variety of factors including competition (inter- or intra-
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specific), emergence of novel climates and carbon dioxide-enhanced intrinsic water-use 

efficiency. For example, the loss of most adult ponderosa pines may increase growth rates of 

remaining ponderosa trees (Oliver and Dolph 1992). Although climate-growth relationships 

are commonly assumed to be static in climate reconstructions, it is difficult to make 

quantitative growth estimates based on extrapolation to future climates without accounting 

for disturbance feedbacks and unknown responses to non-analogue climates (Keeling and 

Sala 2012). Not only may fires and insect outbreaks lead to non-linear climate-growth 

relationships, but disturbance influences on patch dynamics and canopy structure are 

important considerations for potential ponderosa pine redistribution at Tejon Ranch and 

require simulation modeling for future predictions (e.g., Serra Diaz et al. 2015). In addition, 

it is not clear how water-use efficiency may change across the range of ponderosa pine. 

Knapp and Soule (2011) observed increasing water-use efficiency during the 20th Century in 

the Northern Rockies, but these patterns were specific to mature trees. Further, genetic 

experiments have shown that populations from drier interior climates tend to be more water-

use efficient than those from wetter Pacific climates (Monson and Grant 1989). Therefore, 

although general climate warming and increasing evaporative demand across western North 

America will likely have widespread negative effects on ponderosa pine and other tree 

species (Williams et al. 2013), ponderosa pine at Tejon Ranch and more broadly face 

somewhat uncertain future growth trajectories. Finally, soil properties (e.g., water holding 

capacity, depth) that influence subsurface redistribution of water and rooting depth mediate 

forest AET (Garcia and Tague 2015) and remain a potential source of uncertainty in 

predicting ponderosa growth and distribution across the landscape.  
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Our designation of suitable patches influenced predictions of future patch structure 

substantially. The decision to use mapped RWI ≥ 1 was somewhat arbitrary, but was 

considered an intermediate selection. Other research shows that conifers do not necessarily 

inhabit optimal locations owing to competition (Rehfeldt et al. 1999, Serra-Diaz et al. 2013), 

suggesting that ponderosa pine may ultimately inhabit locations with relatively low projected 

RWI at Tejon Ranch. Nonetheless, our approach was not intended as a definitive prediction 

of future ponderosa pine growth and distribution, but rather as a demonstration of the 

importance of spatiotemporal climate variability for determining future patch structure 

through the lens of a potentially dispersal-limited tree species. This unique coupling of tree 

rings with fine-resolution climate grids enables novel envisioning of future tree distributions 

as a function of topographically controlled and interannual climate variability and may be 

used to inform reforestation or assisted colonization efforts. Long-term average (e.g., 30-

years) climates mask recruitment opportunities for tree species (Serra-Diaz et al. 2016) by 

overlooking interannual climate variability, but our study illustrates the spatial component of 

this temporal variability played out through shifting patch dynamics. 

 

References 

Ackerly DD, Cornwell WK, Weiss SB, Flint LE, Flint AL (2015) A geographic mosaic of 

climate change impacts on terrestrial vegetation: Which areas are most at risk? PloS one, 10, 

e0130629. 

 

Anderson EA (1976) A point energy and mass balance model of a snow cover. Technical 

report NWS 19. U.S National Oceanographic and Atmospheric Administration (NOAA). 

Silver Spring, MD 

 

Barrett JW (1979) Silviculture of ponderosa pine in the Pacific Northwest: the state of our 

knowledge. USDA Forest Service, General Technical Report PNW-97. Pacific Northwest 

Forest and Range Experiment Station, Portland, OR. 106 p. 



  

 

59 

 

 

Bender DJ, Tischendorf L, Fahrig L (2003) Using patch isolation metrics to predict animal 

movement in binary landscapes. Landscape Ecology, 18, 17-39. 

 

Brown PM, Wu R (2005) Climate and disturbance forcing of episodic tree recruitment in a 

southwestern ponderosa pine landscape. Ecology, 86, 3030-3038. 

 

Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia, 

26(2), 115-124. 

 

Bunn AG, Korpela M, Biondi F et al. (2016) dplR: Dendrochonology Program Library in R. 

R package version 1.6.4. https://CRAN.R-project.org/package=dplR. 

 

Carnwath GC, Peterson DW, Nelson CR (2012) Effect of crown class and habitat type on 

climate–growth relationships of ponderosa pine and Douglas-fir. Forest Ecology and 

Management, 285, 44-52. 

 

Clark JS, Silman M, Kern R, Macklin E, HilleRisLambers J (1999) Seed dispersal near and 

far: patterns across temperate and tropical forests. Ecology, 80, 1475-1494. 

 

Clark JS, Gelfand AE, Woodall CW, Zhu K (2014) More than the sum of the parts: forest 

climate response from joint species distribution models. Ecological Applications, 24, 990-

999. 

 

Cooper, CF (1961) Pattern in ponderosa pine forests. Ecology, 42, 493-499. 

 

Daly C, Halbleib M, Smith JI et al. (2008) Physiographically sensitive mapping of 

climatological temperature and precipitation across the conterminous United States. 

International Journal of Climatology, 28, 2031-2064. 

 

Davis FW, Sweet LC, Serra‐Diaz JM et al. (2016) Shrinking windows of opportunity for oak 

seedling establishment in southern California mountains. Ecosphere, 7, e01573. 

 

Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. 

Global Change Biology, 17, 1022-1035. 

 

Farris MA, Mitton JB (1984) Population density, outcrossing rate, and heterozygote 

superiority in ponderosa pine. Evolution, 38, 1151-1154. 

 

Flint AL, Flint LE, Hevesi JA, Blainey JB (2004) Fundamental Concepts of Recharge in the 

Desert Southwest: A Regional Modeling Perspective, in Groundwater Recharge in a Desert 

Environment: The Southwestern United States (eds J. F. Hogan, F. M. Phillips and B. R. 

Scanlon), American Geophysical Union, Washington, D. C.. doi: 10.1029/009WSA10.  

 



  

 

60 

 

Flint LE, Flint AL (2012) Downscaling future climate scenarios to fine scales for hydrologic 

and ecological modeling and analysis. Ecological Processes, 2, 1-15. 

 

Flint LE, Flint AL, Thorne JH, Boynton R (2013) Fine-scale hydrologic modeling for 

regional landscape applications: the California Basin Characterization Model development 

and performance. Ecological Processes, 2, 1-21. 

 

Franklin J, Davis FW, Ikegami M et al. (2013) Modeling plant species distributions under 

future climates: how fine scale do climate projections need to be?. Global Change Biology, 

19, 473-483. 

 

Fritts HC (1976) Tree rings and climate, 567 pp. Academic, San Diego, Calif. 

 

Fulé PZ, Covington WW, Moore MM (1997) Determining reference conditions for 

ecosystem management of southwestern ponderosa pine forests. Ecological Applications, 7, 

895-908. 

 

Garcia ES, Tague CL (2015) Subsurface storage capacity influences climate-

evapotranspiration interactions in three western United States catchments. Hydrology and 

Earth System Sciences, 19, 4845. 

 

Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the 

computer program COFECHA. Tree-Ring Research, 57, 205-221. 

 

Hessburg PF, Salter RB, James KM (2007) Re-examining fire severity relations in pre-

management era mixed conifer forests: inferences from landscape patterns of forest structure. 

Landscape Ecology, 22, 5-24. 

 

Hijmans RJ (2016) raster: Geographic Data Analysis and Modeling. R package version 2.5-8. 

https://CRAN.R-project.org/package=raster 

 

Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. 

Tree-ring Bulletin, 43, 69-78. 

 

Johansen AD, Latta RG (2003) Mitochondrial haplotype distribution, seed dispersal and 

patterns of postglacial expansion of ponderosa pine. Molecular Ecology, 12, 293-298. 

 

Keeling EG, Sala A (2012) Changing growth response to wildfire in old‐growth ponderosa 

pine trees in montane forests of north central Idaho. Global Change Biology, 18, 1117-1126. 

 

Kroiss SJ, HilleRisLambers J (2015) Recruitment limitation of long‐lived conifers: 

implications for climate change responses. Ecology, 96, 1286-1297. 

 

Lesser MR, Jackson ST (2013) Contributions of long‐distance dispersal to population growth 

in colonising Pinus ponderosa populations. Ecology Letters, 16, 380-389. 



  

 

61 

 

 

Little EL (1971) Atlas of United States trees. Vol. 1. Conifers and important hardwoods. 

Misc. pub. 1146. US Department of Agriculture, Forest Service, Washington, DC.  

 

Kelly M, Allen-Diaz B, Kobzina N (2005) Digitization of a historic dataset: the Wieslander 

California vegetation type mapping project. Madroño, 52, 191-201. 

 

Kelly M, Ueda KI, Allen-Diaz B (2008) Considerations for ecological reconstruction of 

historic vegetation: Analysis of the spatial uncertainties in the California Vegetation Type 

Map dataset. Plant Ecology, 194, 37-49. 

 

Knapp PA, Soule PT (2011) Increasing water‐use efficiency and age‐specific growth 

responses of old‐growth ponderosa pine trees in the Northern Rockies. Global Change 

Biology, 17, 631-641. 

 

League K, Veblen T (2006) Climatic variability and episodic Pinus ponderosa establishment 

along the forest-grassland ecotones of Colorado. Forest Ecology and Management, 228, 98-

107. 

 

McCullough IM, Davis FW, Dingman, JR et al. (2016) High and dry: high elevations 

disproportionately exposed to regional climate change in Mediterranean-climate landscapes. 

Landscape Ecology, 31, 1063-1075. 

 

Monson RK, Grant MC (1989) Experimental studies of ponderosa pine. III. Differences in 

photosynthesis, stomatal conductance, and water-use efficiency between two genetic lines. 

American Journal of Botany, 76, 1041-1047. 

 

Moore JW, Heath ZR (2015) Forest health protection survey: Aerial detection survey—April 

15th–17th, USDA Forest Service, Davis, Calif. Available at 

http://www.fs.usda.gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_046696. 

 

Oliver WW, Dolph KL (1992) Mixed-conifer seedling growth varies in response to overstory 

release. Forest Ecology and Management, 48, 179-183. 

 

Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation 

using large-scale parameters. Monthly Weather Review, 100, 81–92. 

 

Rehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA (1999) Genetic responses to climate 

in Pinus contorta: niche breadth, climate change, and reforestation. Ecological Monographs, 

69, 375-407. 

 

Rull V (2009) Microrefugia. Journal of Biogeography, 36, 481-484. 

 



  

 

62 

 

Sánchez Meador AJ, Moore MM, Bakker JD, Parysow PF (2009) 108 years of change in 

spatial pattern following selective harvest of a Pinus ponderosa stand in northern Arizona, 

USA. Journal of Vegetation Science, 20, 79-90. 

 

Sánchez Meador AJ, Parysow PF, Moore MM (2010) Historical Stem‐Mapped Permanent 

Plots Increase Precision of Reconstructed Reference Data in Ponderosa Pine Forests of 

Northern Arizona. Restoration Ecology, 18, 224-234. 

 

Savage M, Brown PM, Feddema J (1996) The role of climate in a pine forest regeneration 

pulse in the southwestern United States. Ecoscience, 3, 310-318. 

 

Serra‐Diaz JM, Keenan TF, Ninyerola M, Sabaté S, Gracia C, Lloret F (2013) Geographical 

patterns of congruence and incongruence between correlative species distribution models and 

a process‐based ecophysiological growth model. Journal of Biogeography, 40, 1928-1938. 

 

Serra‐Diaz JM, Franklin J, Ninyerola M et al. (2014) Bioclimatic velocity: the pace of 

species exposure to climate change. Diversity and Distributions, 20, 169-180. 

 

Serra-Diaz JM, Scheller RM, Syphard AD, Franklin J (2015) Disturbance and climate 

microrefugia mediate tree range shifts during climate change. Landscape Ecology, 30, 1039-

1053. 

 

Serra-Diaz JM, Franklin J, Sweet LC et al. (2016) Averaged 30 year climate change 

projections mask opportunities for species establishment. Ecography, 39, 844-845. 

 

Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press. 

 

Stephenson N (1998) Actual evapotranspiration and deficit: biologically meaningful 

correlates of vegetation distribution across spatial scales. Journal of Biogeography, 25, 855-

870. 

 

Vander Wall SB (2002) Masting in animal‐dispersed pines facilitates seed dispersal. 

Ecology, 83, 3508-3516. 

 

Vander Wall SB (2003) Effects of seed size of wind‐dispersed pines (Pinus) on secondary 

seed dispersal and the caching behavior of rodents. Oikos, 100, 25-34. 

 

Vander Wall SB (2008) On the relative contributions of wind vs. animals to seed dispersal of 

four Sierra Nevada pines. Ecology, 89, 1837-1849. 

 

White AS (1985) Presettlement regeneration patterns in a southwestern ponderosa pine stand. 

Ecology, 66, 589-594. 

 

Williams AP, Allen CD, Macalady, AK (2013) Temperature as a potent driver of regional 

forest drought stress and tree mortality. Nature Climate Change, 3, 292-297. 



  

 

63 

 

 

Young DJ, Stevens JT, Earles JM et al. (2017) Long‐term climate and competition explain 

forest mortality patterns under extreme drought. Ecology Letters, 20, 78-86. 

  



  

 

64 

 

Appendix 

A1. Tree ring sampling and preparation 

 Tree cores were handled using standard procedures in dendrochronology (Speer 

2010). Cores were stored in paper straws or ventilated plastic straws for transport from Tejon 

Ranch to the laboratory. We allowed samples to air dry for approximately one week before 

gluing to wooden mounts, after which we sanded cores with progressively finer sandpaper 

(220, 400 and 600 grit) to make annual rings visible. Several overly twisted or irreparably 

broken cores were discarded, but somewhat twisted cores were salvaged using boiled water 

and manual realignment. We used the open-source software Tellervo ® and a Velmex ® 

sliding platform connected to a microscope to measure annual ring widths to the nearest 

micrometer. Ring widths from the same tree were averaged. Rings were manually cross-

dated using paper skeleton plots. We used COFECHA version 6.06P (Holmes 1983, 

Grissino-Mayer 2001) to validate cross-dating by analyzing correlations among trees in each 

stand, between both stands and between our the average of both stands and a neighboring, 

published tree-ring chronology (Crystal Cave, Sequoia National Park, CA (36°57’ N, 

118°78’ W)), downloaded from the International Tree Ring Data Bank (ITRDB). ITRDB 

chronologies are rigorously verified and can be employed with high confidence of accuracy. 

We selected Crystal Cave because it provided a close comparison to Tejon Ranch in terms of 

geographic proximity and elevation (1640 m). Inter-series correlations for the upper and 

lower stands were 0.55 and 0.58, respectively, whereas correlation between the upper and 

lower stands was 0.58. The correlation between averaged lower and upper stand ring width 

and the Crystal Cave chronology was 0.62. All possible problems identified by COFECHA 

were manually investigated. Although COFECHA identified only one dating error, we 
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eliminated additional cores from several trees due to twisting and mechanical damage (rotten 

or irreparably broken wood) that caused anomalous ring measurements. In the end, we used 

28 and 22 trees from the lower and upper stands, respectively, in our analyses. Fritts (1976) 

recommends samples of at least 20 trees for climate response analyses. To remove size-

related growth trends and maximize climatic signal, we standardized ring widths into a 

unitless ring width index (RWI; where 1 = average growth across sampled years) using a 

negative exponential function in the R package dplR (Bunn et al. 2008, 2016). 

 

Fig. A1. Time series of distance to nearest suitable patch for the lower ponderosa pine stand for the harshest 

(MIROC RCP 8.5) and mildest (MPI RCP 4.5) climate change projections. Patches were defined as a minimum 

of 1 cell with RWI ≥ 1. Thick lines represent right-aligned 30-year moving averages. Dashed line represents 

average dispersal distance (30 m). 
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Fig. A2. Time series of the number of suitable cells within a 30 m buffer (average dispersal distance) for the 

lower ponderosa pine stand for the harshest (MIROC RCP 8.5) and mildest (MPI RCP 4.5) climate change 

projections. Suitable cells were defined as RWI ≥ 1. Thick lines represent right-aligned 30-year moving 

averages. 



  

 

 

 

Table A1. Nearest patch distance (m) from lower and upper ponderosa pine stands at Tejon Ranch for mid- (2040-2069; first number) and end-of-century 

(2070-2099; second number) average climate as a function of varying patch size (four-neighbor rule) and ring width index (RWI) thresholds of favorable 

growing habitat. 

 

 

  RWI ≥ 1.2   RWI ≥ 1.1   RWI ≥ 1   RWI ≥ 0.9   RWI ≥ 0.8   

GCM Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper 

patch ≥ 1 cell           

CCSM4 RCP 8.5 758, 947 630, 679 275, 275 507, 575 159, 173 397, 405 93, 115 148, 166 52, 58 45, 70 

MIROC RCP 8.5 758, 973 712, 1131 293, 758 524, 676 176, 277 429, 517 108, 163 154, 278 57, 94 86, 153 

MIROC RCP 4.5 758, 956 676, 1019 275, 743 507, 620 151, 241 254, 449 88, 124 112, 252 50, 77 39, 95 

MPI RCP 4.5 256, 298 409, 600 124, 256 245, 437 76, 127 75, 247 21, 77 22, 79 6, 25 8, 25 

           

patch ≥ 2 cells           

CCSM4 RCP 8.5 847, 947 632, 679 275, 275 573, 575 164, 211 397, 405 105, 115 148, 229 52, 58 46, 70 

MIROC RCP 8.5 839, 973 712, 1131 293, 839 602, 676 182, 277 429, 590 108, 165 154, 426 57, 105 86, 153 

MIROC RCP 4.5 839, 956 676, 1019 275, 743 507, 620 151, 241 254, 449 88, 124 127, 252 50, 77 39, 95 

MPI RCP 4.5 256, 329 409, 600 135, 256 245, 437 76, 137 76, 247 23, 77 23, 79 6, 25 8, 26 

           

patch ≥ 3 cells           

CCSM4 RCP 8.5 895, 947 679, 679 275, 275 573, 575 185, 219 397, 405 107, 118 148, 229 52, 58 52, 87 

MIROC RCP 8.5 884, 2100 731, 1131 733, 883 602, 285 192, 277 429, 590 110, 173 154, 426 57, 105 86, 153 

MIROC RCP 4.5 883, 971 676, 1107 275, 743 572, 620 164, 267 391, 503 102, 135 127, 252 50, 77 44, 95 

MPI RCP 4.5 256, 883 473, 600 138, 256 275, 489 76, 147 93, 377 23, 77 23, 97 2, 27 8, 26 

           

patch ≥ 4 cells           

CCSM4 RCP 8.5 895, 947 679, 679 275, 303 573, 575 185, 219 397, 405 107, 125 148, 229 52, 58 52, 87 

MIROC RCP 8.5 884, 3390 1019, 1133 733, 883 602, 717 197, 277 429, 590 110, 182 154, 426 57, 107 86, 153 

MIROC RCP 4.5 883, 971 676, 1107 275, 833 572, 620 174, 267 391, 503 103, 142 127, 380 50, 77 44, 95 

MPI RCP 4.5 256, 883 473, 600 145, 256 375, 489 76, 152 93, 377 23, 77 23, 97 6, 38 8, 26 
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Table A2. Number of suitable cells within varying buffers around upper and lower ponderosa pine stands at Tejon Ranch for mid- (2040-2069; first number) 

and end-of-century (2070-2099; second number) average climate as a function of ring width index (RWI) thresholds of favorable growing habitat. 

      Upper stand         Lower stand   

GCM 30 m* 60 m 90 m 120 m 150 m 30 m 60 m 90 m 120 m 150 m 

RWI ≥ 1.2           

CCSM4 RCP 8.5 0, 0 0, 0 0, 0 0, 0 2,2 0,0 0,0 0,0 0,0 0,0 

MIROC RCP 8.5 0, 0 0, 0 0, 0 0, 0 1, 0 0,0 0,0 0,0 0,0 0,0 

MIROC RCP 4.5 0, 0 0, 0 0, 0 0, 0 2, 0 0,0 0,0 0,0 0,0 0,0 

MPI RCP 4.5 0, 0 0, 0 5, 0 11, 1 20, 3 17,3 18,3 18,3 18,3 18,3 

           

RWI ≥ 1.1           

CCSM4 RCP 8.5 0, 0 0, 0 0, 0 1, 1 6,6 9,8 9,8 9,8 9,8 9,8 

MIROC RCP 8.5 0, 0 0, 0 0, 0 0, 0 2,2 4,0 4,0 4,0 4,0 4,0 

MIROC RCP 4.5 0, 0 0, 0 0, 0 1,0 5,2 9,1 9,1 9,1 9,1 9,1 

MPI RCP 4.5 0, 0 6,0 12,2 20,4 36,11 116,17 129,18 133,18 135,18 139,18 

           

RWI ≥ 1           

CCSM4 RCP 8.5 0, 0 1,0 7,6 14,12 24,21 53, 35 58, 36 58, 36 58, 36 58, 36 

MIROC RCP 8.5 0, 0 1,0 6,2 12,4 21,10 40, 7 46, 7 46, 7 46, 7 47, 7 

MIROC RCP 4.5 0, 0 3,0 8,1 14,3 23,8 83, 15 93, 15 96, 15 96, 15 100, 15 

MPI RCP 4.5 52,0 66,5 83,11 103,19 131,35 292, 108 332, 120 360, 123 387, 124 414, 128 

           

RWI ≥ 0.9           

CCSM4 RCP 8.5 12,2 24,10 34,19 46,27 66,43 210, 169 237, 190 254, 200 268, 210 282, 219 

MIROC RCP 8.5 11,0 19,2 29,4 38,6 51,12 187, 57 211, 65 225, 65 235, 65 249, 67 
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      Upper stand         Lower stand   

GCM 30 m* 60 m 90 m 120 m 150 m 30 m 60 m 90 m 120 m 150 m 

MIROC RCP 4.5 25,1 37,1 49,11 61,19 81,30 232, 129 263, 144 284, 148 302, 156 321, 162 

MPI RCP 4.5 144,44 184,58 223,73 269,89 317,114 476, 279 538, 315 590, 342 641, 368 690, 394 

          

RWI ≥ 0.8           

CCSM4 RCP 8.5 83, 62 101,77 122,92 145,113 179,141 359, 317 406, 358 443, 389 480, 422 517, 453 

MIROC RCP 8.5 65,12 78,21 92,31 111,42 136,56 329, 207 368, 231 400, 246 432, 262 465, 277 

MIROC RCP 4.5 103,47 122,60 140,73 166,87 200,111 380, 279 432, 314 471, 340 509, 365 550, 390 

MPI RCP 4.5 224,135 297,172 369,209 452,255 549,303 678, 460 762, 522 844, 568 917, 619 986, 666 

           

RWI ≥ 0.7           

CCSM4 RCP 8.5 179,144 226,182 273,219 328,265 385,312 537, 489 606, 552 671, 604 732, 658 791, 709 

MIROC RCP 8.5 144,68 177,81 203,95 233,114 270,139 478, 337 540, 379 590, 412 641, 447 696, 481 

MIROC RCP 4.5 187,128 239,157 285,180 335,210 389,247 564, 434 636, 491 703, 534 770, 582 831, 629 

MPI RCP 4.5 278,219 369,287 463,357 569,436 686,529 786, 665 894, 746 997, 825 1089, 898 1174, 967 

     *average dispersal distance (Vander Wall 2002) 
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Abstract 

Climate change has emerged as a major threat to biodiversity, but we lack 

understanding of how sensitivity to climate variability differs across species’ ranges. We 

examined the sensitivity of ponderosa pine (Pinus ponderosa), a common, commercially 

important tree species found throughout the western United States, to climate variability 

across the western United States using tree rings mostly from the International Tree Ring 

Data Bank (161 chronologies) and multiple climate products for 1930-1979. We compared 

interannual tree ring variation to water-year precipitation (wyppt), May-July vapor pressure 

deficit (MJJ VPD), April-July precipitation (AMJJ ppt) and average winter (Dec-Feb) 

minimum temperature (winter tmn). We mapped growth-climate correlations for each 

variable and applied hierarchical agglomerative cluster analysis to identify five main groups 

of climate sensitivities, one of which contained mostly climate-insensitive populations. 

Ponderosa pine growth was sensitive to wyppt, AMJJ ppt and MJJ VPD throughout its range, 

but sensitivities were greater in the Southern Rockies and Northern Great Plains than in 

Pacific and Southwestern populations. Sensitivities to winter tmn were weaker than 

responses to other climate variables, but Pacific and interior populations mostly demonstrated 

positive and negative tmn responses, respectively. In summary, our analyses revealed the 

general pattern that interior populations of ponderosa pine were more climate-sensitive than 

Pacific populations, but there is considerable heterogeneity in sensitivity throughout the 

species’ range. Sensitivities to climate variables were related to position along corresponding 

climate gradients for all variables except MJJ VPD, but the unevenness of these relationships 

suggests a role of local adaptation. Our results illustrate the variation in climate response for 
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a uniquely wide-ranging species and suggest that “leading” and “trailing” range edge 

concepts can oversimplify patterns of species exposure to climate change.  

 

Introduction 

Assessments of species’ vulnerability to climate change are commonly performed 

using climate envelope models, which generally project population and range shifts based on 

climate change exposure (Dawson et al. 2011). Exposure-based vulnerability assessments 

generally rely on correlative occupancy-environment relationships (Pacifici et al. 2015) and 

do not take into account local or population-level variation in sensitivity to climate across 

species’ ranges that can be crucial for predicting overall vulnerability to climate change 

(Williams et al. 2008, Rehfeldt et al. 1999, Davis and Shaw 2001, Sork et al. 2010).  

Tree rings offer a means to assess range-wide variation in climate sensitivity in tree 

species. Using published chronologies from the International Tree Ring Data Bank (ITRDB), 

Chen et al. (2010) found distinct responses of Douglas-fir (Pseudotsuga menziesii) between 

interior and coastal varieties in western North America, conforming to seasonal climate 

variability. Restiano et al. (2016) found that Douglas-fir populations throughout the species’ 

range were sensitive to vapor pressure deficit (VPD) and climatic water deficit, but that 

populations near the southern range limit were most sensitive. Conversely, Cavin and Jump 

(2016) found that range-core populations of European beech (Fagus sylvatica) were the most 

sensitive to drought, which they attributed to local adaptation of southern populations to 

seasonal, warm droughts. Similarly, Hacket-Pain et al. (2016) found widespread drought 

limitation in European beech across southern range limit and range-core populations. The 
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ultimate significance and determinants of geographic differentiation in tree species’ growth 

responses to climate remains an open question.  

 Determining the importance of local adaptation is best approached by combining 

genetic and climate response data across entire ranges (Franks et al. 2014). Lacking genetic 

data for the study trees, there is still value in examining a species whose range spans wide 

climate gradients and has well-documented phylogeography and genetic history to support 

interpretation of climate responses. We selected ponderosa pine (Pinus ponderosa), an 

ecologically and commercially important tree species, as a case study for analyzing intra-

specific variation in growth response to climate. Ponderosa pine generally inhabits dry, 

mountainous areas throughout western North America from British Columbia to the 

American Southwest (Little 1971). This extensive range provides an opportunity to examine 

intra-specific variation in climate sensitivity across widely varying climate regimes, 

including Mediterranean, monsoonal and continental climates.  

 

Ponderosa pine phylogeography 

Ponderosa pine has traditionally been divided into two varieties: Pacific (P. 

ponderosa var. ponderosa) and interior (P. ponderosa var. scopulorum), separated by the 

Continental Divide (Little 1979). Conkle and Critchfield (1988) and Callaham (2013a, b) 

suggested additional subdivision into several races and subspecies, but Potter et al. (2015) 

found little genetic basis for these distinctions. Although there is some (primarily west-east) 

gene flow between the two varieties in Montana (Latta and Mitton 1999), the varieties may 

have been separated well before the last glacial maximum (18,000 years ago) (Potter et al. 

2015). Lascoux et al. (2004) estimated a much longer separation of 250,000 years. After 
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glacial retreat, both varieties expanded their ranges from likely multiple refugia of unknown 

location, which coupled with complex mountain terrain has resulted in a geographically 

heterogeneous genetic structure and numerous disjunct and genetically isolated populations 

(Latta and Mitton 1999, Johansen and Latta 2003, Potter et al. 2013, 2015). A few long-

distance dispersal events contributed to overall range expansion (Johansen and Latta 2003, 

Lesser and Jackson 2013, Shinneman et al. 2016). Potter et al. (2015) demonstrated 

considerable gene flow within but not between varieties and evidence for as many as 9 

distinct genetic clusters (5 interior, 4 Pacific). Shinneman et al. (2016) found 10 discrete 

haplotypes that while generally conforming to interior and Pacific varietal bounds, also 

inhabited distinct climatic niches. Overall, these various genetic studies revealed a complex 

phylogeography and heterogeneous genetic structure of ponderosa pine that may mediate 

current and future climate sensitivities. 

 

Genetic basis for climate adaptation in P. ponderosa 

Provenance trials of ponderosa pine revealed abrupt genetic variation along local 

elevational gradients, variation which manifested in tradeoffs between growth potential and 

cold hardiness (Rehfeldt 1986a, 1986b, 1990, 1991). These findings suggest climate 

sensitivities may be relatively localized as the result of the combined influence of regional 

climate, local topoclimatic variation and genetically based local adaptation. Studies of other 

conifers at regional scales have shown variable climate sensitivities over relatively short 

geographic distances according to local climate gradients (e.g., Griesbauer and Green 2010, 

Ashiq and Anand 2016). Previous local and regional research has demonstrated that 

ponderosa pine growth is primarily sensitive to precipitation and secondarily to temperature 
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(with seasonal variations) (Fritts et al. 1965, 1976, Veblen et al. 2000, Yeh and Wensel 2000, 

Kusnierczyk and Ettl 2002, Watson and Luckman 2002, Knutson and Pyke 2008, Williams et 

al. 2010a, Carnwath et al. 2012, Adams et al. 2014, Dannenberg and Wise 2016). 

The aforementioned studies were conducted over different time periods using a 

variety of climate metrics and sampling methods. Our analysis considered ponderosa climate 

sensitivity across its entire range using consistent climate and tree-ring data. We also 

examined the relationships between climate sensitivity and rangewide climate gradients. We 

expected that precipitation variables would be positively correlated with ponderosa pine 

growth throughout its range and that these correlations would generally decrease in wetter 

locations. Additionally, we expected interior populations, which experience more extreme 

temperature fluctuations, to be relatively more sensitive to cold temperatures in winter and 

heat-driven in summer than populations closer to the Pacific coast.  

 

Methods 

Tree-ring chronologies 

 We obtained 159 ponderosa pine tree-ring chronologies from the ITRDB and 

developed two additional chronologies from Tejon Ranch, CA, bringing the total to 161 

chronologies (Fig. 1, A1-2). All chronologies were downloaded as raw ring widths and 

converted to a unitless ring width index (RWI) using a negative exponential function in the 

dplR package in R (Bunn 2008, Bunn et al. 2016) to ensure all chronologies were 

standardized with a common approach. This relatively conservative method removes the age-

related ring-width trend in tree-ring chronologies attributed to tree geometry and potentially 

rapid growth of young trees (Cook 1985). Although the negative exponential function has 
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received some criticism and several alternatives have been offered (e.g., Biondi and Qaedan 

2008), this method was developed for the kind of chronologies we used (i.e., shade-intolerant 

pines in open canopy stands) (Cook 1985). We limited our analyses to the time period 1930-

1979, balancing the benefit of long growth records across a large number of sites, our desire 

to analyze a common set of years across all chronologies and the reliability of corresponding 

downscaled climate grids (see downscaled climate data methods below).  
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Fig. 1. Locations of ponderosa pine tree-ring chronologies (n = 161) laid atop a range map (Little 1971) and 

symbolized by variety (Little 1979). All but two chronologies were taken from the International Tree Ring Data 

Bank (ITRDB). We sampled two chronologies from Tejon Ranch, the southernmost sites in California. Dots 

were jittered for display only. 
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Downscaled climate data and variable selection 

Climate data included the 1/24 ClimGrid (Vose et al. 2014) and PRISM (Daly et al. 

2008) grids. We used monthly precipitation, minimum and maximum air temperature and 

saturation vapor pressure from ClimGrid and actual vapor pressure from PRISM (used to 

compute vapor pressure deficit; VPD). Although these grids are relatively coarse with respect 

to climatic heterogeneity in mountain landscapes, the relatively imprecise location records of 

tree-ring chronologies (often tenths of degrees latitude and longitude) limited the usefulness 

of finer resolution grids. Furthermore, we were primarily interested in inter-annual climate 

variability, for which high spatial resolution is not necessary given the relatively sparse 

distribution of weather stations used to generate the climate grids. For assessment of growth 

response to climate, we explored numerous potential derived climate indices, but 

intercorrelations among these variables made statistical results difficult to interpret (Fritts et 

al. 1971, Cropper 1984). We ultimately selected a subset of variables that were not highly 

correlated and based on current understanding of the species’ ecology and physiology (Fritts 

1976, Zang and Biondi 2013).  

We used exploratory correlation matrices and principal component analysis (PCA) to 

narrow the set of potential climate variables from 128 to four: water-year (previous Oct 1 – 

current Sep 30) and Apr-Jul precipitation (wyppt and AMJJ ppt, respectively), MJJ VPD and 

winter (Dec-Feb) minimum temperatures (winter tmn). Although previous research has 

shown that seasonal precipitation controls vary across the range of ponderosa pine, wyppt 

was highly correlated (r = 0.95) with Oct-Mar precipitation across our study sites so we 

included AMJJ as the only seasonal precipitation variable (r = -0.02 with wyppt). We 

included MJJ VPD rather than maximum temperature because VPD integrates humidity and 
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air temperature to describe atmospheric aridity conditions that may induce stomatal closure 

and reduced growth (McDowell et al. 2008, Adams et al. 2009, Williams et al. 2013). We 

included winter tmn based on Bigelow et al. (2014), who found positive correlations between 

warming winters and growth in the northern Sierra Nevada, CA, and the notion that 

adaptations for cold tolerance are associated with tradeoffs in growth potential (Rehfeldt 

1986a, 1986b, 1990, 1991).  

 

Climate sensitivity mapping and cluster analysis 

We mapped Pearson correlation coefficients (r) between RWI and the four climate 

variables at each of the 161 sites to visualize geographic patterns of climate sensitivity. We 

used hierarchical agglomerative cluster analysis of the correlation values to group sites based 

on multivariate climate sensitivities. We used a Euclidean distance matrix and Ward’s 

method to minimize within-cluster sum of squares. Here we show the results based on five 

clusters. We inspected a sum of squares scree plot to identify a range of potential numbers of 

clusters. We iteratively experimented with 2-7 clusters, visually inspecting differences 

among clusters after each successive split. We ultimately settled on 5 clusters given that 

minimal additional information was revealed beyond this number. We performed pairwise 

comparisons of cluster means for each climate variable. We also performed pairwise 

comparisons on 1930-1979 averages for the four climate variables across the five clusters to 

assess whether differences in climate sensitivities corresponded to differences in mean 

climatology.  
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Results 

Climate sensitivity mapping   

Water-year precipitation (wyppt) was significantly correlated (p < 0.05) with RWI at 

120 of 161 (74.5%) sites (Table 1). In general, wyppt was positively correlated with RWI 

throughout ponderosa pine’s range, but correlations were overall weaker and more variable 

in the Pacific Northwest (Fig. 2a). MJJ VPD was significantly correlated with RWI at 112 

sites (69.6%) (Table 1). Correlation with MJJ VPD were almost entirely negative, and more 

negative at interior sites (Fig. 2b). AMJJ ppt was significantly correlated with RWI at 96 

sites (59.6%) (Table 1) and the relationship was mostly positive, except for a few Pacific 

sites where relationships were weakly negative (Fig. 2c). Particularly in California, where 

Mediterranean climates dominate, weak relationships with AMJJ ppt (i.e., absolute r < 0.30) 

coincided with low AMJJ ppt. Winter tmn was significantly correlated with growth at the 

fewest sites (20; 12.4%) and the median correlation was close to zero (Table 1). There was a 

clear geographic pattern to the winter tmn correlations, which ranged from weakly negative 

in the Rocky Mountains to weakly positive in the Sierra Nevada, Cascade and southwestern 

US Sky Island mountains (Fig. 2d).  

 

 

Table 1. Significant climate-growth correlations (r) across 161 sites (1930-1979) 

Variable 

p =  

0.05 

p =  

0.1 

Median  

r 

5%  

r 

95%  

r 

wyppt 120 128 0.40 0.02 0.60 

MJJ VPD 112 124 -0.39 -0.58 -0.04 

AMJJ ppt 96 109 0.31 -0.02 0.57 

winter tmn 20 29 0.04 -0.21 0.36 

wyppt = water-year (Oct 1-Sep 30) precipitation (mm), MJJ VPD = May-Jul vapor pressure deficit (kPa), AMJJ 

ppt = Apr-Jul precipitation (mm) and winter tmn = Dec-Feb minimum temperature (°C). 
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Fig. 2. Pearson correlation coefficients (r) between ponderosa pine standardized ring width index (RWI) and 

individual climate variables (1930-1979). Sites were jittered for display only. a) wyppt = water-year (Oct 1-Sep 

30) precipitation (mm), b) MJJ VPD = May-Jul vapor pressure deficit (kPa), c) AMJJ ppt = Apr-Jul 

precipitation (mm) and d) winter tmn = Dec-Feb minimum temperature (°C). 
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Cluster analysis  

The cluster analysis revealed geographically heterogeneous patterns of climate 

sensitivities. Cluster 1 (n = 21) mostly represented low-latitude sites in New Mexico and 

Arizona (Fig. 3). On average, cluster 1 was positively correlated with wyppt, AMJJ ppt and 

winter tmn and negatively correlated with MJJ VPD (Table 2). Cluster 1 was also the most 

sensitive to wyppt compared to other clusters (Fig. 4a). Cluster 2 (n = 47) represented mostly 

interior sites, particularly in Colorado, northern New Mexico and South Dakota (Fig. 3). On 

average, cluster 2 was less sensitive to wyppt than cluster 1, but was more strongly positively 

and negatively correlated with AMJJ ppt and MJJ VPD, respectively. Cluster 2 was the only 

cluster negatively correlated with winter tmn (Table 2, Fig. 4). Cluster 3 (n = 16) was the 

least representative of the populations sampled, containing sites in the Sierra Nevada and 

southern Arizona and New Mexico. Cluster 3 was the least sensitive to AMJJ ppt and the 

most positively correlated with winter tmn (Table 2). Cluster 4 (n=53) was the most 

widespread cluster, containing groups of sites in Arizona, Colorado and Oregon (Fig. 3). 

Overall, the sign relationships were similar to clusters 1-3, but sensitivity to winter tmn was 

closest to zero among all clusters (Table 2, Fig. 4). Cluster 5 (n = 24) contained mostly 

northern Pacific sites (Fig. 3) and was the least climate sensitive (average absolute r ≤ 0.13) 

among clusters (Table 2, Fig. 4).  

Differences in climate sensitivities across clusters generally corresponded to 

differences in climate, except for MJJ VPD (Figs. 4-5). Clusters with greater wyppt were 

decreasingly sensitive to wyppt whereas clusters with greater AMJJ ppt were more sensitive 

to AMJJ ppt Clusters with warmer winter tmn were more positively correlated with winter 

tmn. Conversely, sensitivity to MJJ VPD was not strongest at sites with high mean MJJ VPD. 
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For example, although cluster 2 populations displayed the most negative response to MJJ 

VPD, mean MJJ VPD levels among cluster 2 populations were considerably lower than those 

of clusters 1 and 3. Similarly, the analysis of climate sensitivities along climate gradients 

revealed similar patterns. We found linear relationships (absolute r ≥ 0.40) between wyppt, 

AMJJ ppt and winter tmn sensitivities and each corresponding climate gradient, but not for 

MJJ VPD (r = 0.14) (Fig. 6). In other words, sensitivities to wyppt, AMJJ ppt and winter tmn 

were generally predictable across the range of ponderosa pine based on position along 

corresponding gradients, but sensitivities to MJJ VPD were consistently negative regardless 

of range position, potentially contributing to the finding of Williams et al. (2013) that a 

regionally averaged southwestern US tree-ring records (including ponderosa pine) correlates 

more strongly with warm-season VPD than with cold-season precipitation. Results of 

pairwise comparisons for climate sensitivities and climate across clusters were included in 

supporting information (Table A3).  
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Table 2. Mean climate sensitivities and climate across clusters (1930-1979) 

Cluster 

wyppt  

(mm) 

AMJJ ppt  

(mm) 

MJJ  

VPD (kPa) 

winter tmn  

(°C) n 

Mean climate sensitivities (r)    

1 0.54 0.38 -0.39 0.16 21 

2 0.46 0.44 -0.50 -0.13 47 

3 0.38 0.17 -0.27 0.38 16 

4 0.32 0.29 -0.37 0.03 53 

5 0.08 0.11 -0.13 0.11 24 

Mean climate     

1 210.77 163.56 15.49 -6.99  

2 219.23 203.42 11.35 -10.39  

3 364.58 138.69 14.54 -3.63  

4 262.43 163.28 13.16 -6.78  

5 362.09 145.30 12.00 -5.54   

wyppt = water-year (Oct 1-Sep 30) precipitation (mm), MJJ VPD = May-Jul vapor pressure deficit (kPa), AMJJ 

ppt = Apr-Jul precipitation (mm) and winter tmn = Dec-Feb minimum temperature (°C). 
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Fig. 3. Clusters from the hierarchical agglomerative cluster analysis based on ponderosa pine climate 

sensitivities (relationships between standardized ring width index (RWI) and climate variables over 1930-1979). 

Sites were jittered for display only. 
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Fig. 4. Pearson correlation coefficients (r) between ponderosa pine standardized ring width index (RWI) and 

individual climate variables (1930-1979) by cluster. Number of sites in clusters: 1) 21, 2) 47, 3) 16, 4) 53, 5) 24. 

a) wyppt = water-year (Oct 1-Sep 30) precipitation (mm), b) MJJ VPD = May-Jul vapor pressure deficit (kPa), 

c) AMJJ ppt = Apr-Jul precipitation (mm) and d) winter tmn = Dec-Feb minimum temperature (°C). Bold lines 

represent medians, upper and lower box limits represent interquartile ranges (IQR), whiskers represent IQR +/- 

1.5 * IQR and dots represent outliers. 
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Fig. 5. Mean climate distributions (1930-1979 means) by cluster. Number of sites in clusters: 1) 21, 2) 47, 3) 

16, 4) 53, 5) 24.  a) wyppt = water-year (Oct 1-Sep 30) precipitation (mm), b) MJJ VPD = May-Jul vapor 

pressure deficit (kPa), c) AMJJ ppt = Apr-Jul precipitation (mm) and d) winter tmn = Dec-Feb minimum 

temperature (°C). Bold lines represent medians, upper and lower box limits represent interquartile ranges (IQR), 

whiskers represent IQR +/- 1.5 * IQR and dots represent outliers. 
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Fig 6. Relationship (Pearson correlation coefficient) between climate sensitivity (r) and the mean conditions for 

the corresponding climate variable during 1930-1979. a) wyppt = water-year (Oct 1-Sep 30) precipitation (mm), 

b) MJJ VPD = May-Jul vapor pressure deficit (kPa), c) AMJJ ppt = Apr-Jul precipitation (mm) and d) winter 

tmn = Dec-Feb minimum temperature (°C). Log scales are base 10.  
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Discussion 

Range position and local adaptation 

 Linear relationships between climate sensitivities and mean climate for the 

corresponding climate variables suggest general relationships that apply across ponderosa 

pine populations; e.g., drier sites are generally more sensitive to wyppt. At the same time, 

divergent climate sensitivities at similar positions along climate gradients suggest that local 

adaptation contributes to climate sensitivities. For example, we encountered a few relatively 

dry sites in Arizona and New Mexico with weak sensitivity to wyppt (absolute r < 0.2), 

whereas correlations at similar wyppt levels were commonly two to three times greater in 

other regions. These findings support the notion that southern range edge populations of tree 

species are not necessarily the most sensitive to climate; we found precipitation limitation 

throughout the range of ponderosa pine and correlations were generally strongest in the range 

center. Cavin and Jump’s (2016) European beech study offered that local adaptation buffered 

southern range edge populations and our study suggests the same may be true for ponderosa 

pine. Populations from drier climates are more water-use efficient, which is evidence for 

greater adaptation to drought for southern interior populations (Monson and Grant 1989). 

Potter et al. (2015) identified the Southwest as an area of particularly high genetic diversity, 

consistent with genetic patterns observed in tree species (Hampe and Petit 2005). Other areas 

of relatively high genetic diversity generally corresponded to areas where we found 

heterogeneous climate sensitivities (northeastern Oregon, northern California and 

southwestern Oregon) (Potter et al. 2015). Therefore, geographic patterns of genetic structure 

likely contribute to geographic patterns of climate sensitivities by promoting local adaptation 

and increasing heterogeneity in climate responses. 
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Although we found evidence of local adaptation, there are potentially confounding 

effects of non-linear growth-climate relationships and/or noise in downscaled climate data. 

Precipitation timing and form mediate available water; monthly precipitation totals cannot 

account for moisture lost as runoff during large storms. Furthermore, monthly precipitation 

and VPD do not account for uncertainties in rooting depth and soil water holding capacity 

that combine to influence moisture availability for trees. Therefore, unknown differences 

among sites may have contributed to observed differences in climate sensitivities; however, 

relatively large differences in sensitivities to similar climate (i.e., r ~ 0.6 for MJJ VPD) 

nonetheless suggest a role of adaptation.  

 

On the use of ITRDB chronologies 

Although ITRDB chronologies were often sampled for climate reconstruction (e.g., 

Graumlich 1987) or hydrological reconstruction (e.g., Malevich et al. 2013) and require that 

our results be interpreted with some caution, a recent study demonstrated that this “classic” 

sampling design has only minor influences on climate-growth correlations compared to other 

sampling methods at multi-decadal time scales (Nehrbass-Ahles et al. 2014). Furthermore, 

ITRDB chronologies represent the most spatially extensive set of inherently long-term data 

available for ponderosa pine and their use ensures some consistency in our data in terms of 

potentially confounding effects of vegetation structure (i.e., competition) or soils, given that 

exposed sites probably contained relatively well-drained soils. There is not likely to be a 

systematic geographical bias in selection for exposed sites in ITRDB chronologies (Chen et 

al. 2010), so we did not expect differences in site exposure in our study.  
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Climate change vulnerability 

 Climate envelope models project range shifts for both ponderosa pine varieties 

(Rehfeldt et al. 2014b). Interior populations, which generally inhabit higher elevations than 

Pacific populations, are more threatened due to the reduced potential for local shifts to higher 

elevations. Without a considerable redistribution of genotypes, most populations currently 

inhabit locations that will be unsuitable in the 2060s, except for some Pacific populations, 

and historical rates of gene dispersal are incompatible with the pace of modern climate 

change (Rehfeldt et al. 2014c). Recruitment lags have already been observed in tree species 

(Zhu et al. 2012). Areas of greater genetic diversity, however, may contain greater adaptive 

capacity and should be prioritized in conservation plans for ponderosa pine (Potter et al. 

2015).  

The overwhelmingly negative responses to MJJ VPD reflect the isohydric 

ecophysiology of ponderosa pine. Isohydric plants tightly regulate stomata to maintain 

relatively stable water potentials under drought conditions, but at the cost of reduced carbon 

assimilation (McDowell et al. 2008). The lack of a linear relationship between MJJ VPD 

sensitivity and mean MJJ VPD is consistent with an isohydric strategy. Ponderosa pine is 

adapted to withstand seasonal droughts and can shift biomass allocation from leaves to 

sapwood under warmer and drier conditions (Callaway et al. 1994, Delucia et al. 2000). 

Long-term exposure to droughts, however, may increase mortality vulnerability due to 

carbon starvation and bark beetle attacks and ultimately kill trees (McDowell et al. 2011, 

Tague et al. 2013). Carbon starvation was implicated in dieback of pinyon pine (P. edulis), 

an isohydric conifer, in the Southwest under warm drought (Adams et al. 2009, 2013), but 

synergies between bark beetles and carbon metabolism are unclear (Meddens et al. 2015). 
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Resin production is energetically expensive and drought-induced declines in carbon 

assimilation reduce the ability of trees to produce and transport resin for bark beetle defense 

(McDowell et al. 2011). In ponderosa pine, increased carbon allocation to resin production 

reduces risk of mortality from bark beetles (Kane and Kolb 2010). Seedling experiments 

have shown declines in carbon assimilation in response to soil moisture depletion, warming 

temperatures and VPD increases (Panek and Goldstein 2001). Therefore, future climate 

warming-induced increases in VPD are mechanistically associated with declines in forest 

vigor, including productivity and beetle defense capability (Williams et al. 2013). 

Although future precipitation projections are variable and uncertain, warming 

temperatures will increase evaporative demand significantly and may deplete soil moisture 

earlier during growing seasons regardless of total precipitation and thus expose trees to 

greater moisture stress in dry years (Williams et al. 2013, Allen et al. 2015). Whereas 

increasing atmospheric carbon dioxide (CO2) concentrations are expected to enhance plant 

water-use efficiency, which may enhance drought resilience and reduce aridity-driven soil 

moisture losses to some degree (e.g., Keenan et al. 2013, Roderick et al. 2015, Milly and 

Dunne 2016), model representation of physiological response to drought and enhanced CO2 

is known to be overly simple (Mankin et al. in review) and the effects of enhanced CO2 thus 

far appear complex (e.g., Holmes et al. 2014, Chen et al. 2016, Levesque et al. 2017), 

geographically variable (De Kauwe et al. 2013, Zhu et al. 2016), and dependent on factors 

such as nutrient availability that are not well represented in models (Lee et al. 2013, Mankin 

et al. in review). Furthermore, warming temperatures increase the fraction of total 

precipitation that falls as rain versus snow, which increases runoff and evaporation and 

reduces water storage in snowpack. The shift in the relationship between winter tmn 
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sensitivity and winter tmn from positive to negative among the warmest sites in our study 

(Fig. 6d) may be evidence of these phenomena; at the warmest sites, the proportion of winter 

precipitation that falls as snow is smallest. As winter temperatures warm, tree growth 

generally increases, except near the freezing threshold at which point more precipitation falls 

as rain instead of snow. Therefore, locations on the cusp of transitioning from snow- to rain-

dominated precipitation regimes may be particularly exposed to future climate change 

(McCullough et al. 2016). 

In conclusion, although ponderosa pine populations with tightly coupled historical 

growth-climate relationships may be particularly sensitive to growth declines under climate 

change, the species’ wide range of climate sensitivities suggests that the species as a whole 

may be able to withstand greater changes in mean climate than other species more uniformly 

sensitive to a single variable. Even as all populations will likely become exposed to locally 

novel climate conditions during the 21st Century, including more frequent and severe global 

change-type droughts (Adams et al. 2009, Overpeck and Udall 2010, Allen et al. 2015), local 

adaptation may buffer some populations from growth declines. Future work on ponderosa 

pine and other tree species should target relationships between climate responses and 

geographic patterns of genetic variability. Our results suggest these relationships exist, but 

we were unable to couple climate responses and genetic structure directly. More broadly, our 

study uses long-term data to demonstrate how climate sensitivity may vary among 

populations of wide-ranging species and how this variability is determined by a combination 

of position along environmental gradients and local adaptation. 
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Appendix 

Table A1. Ponderosa pine tree-ring chronologies from the International Tree Ring Data Bank (ITRDB) (except 

Tejon Ranch, CA) 

Name State 

Lat  

(°N) 

Long  

(°W) 

Elevation  

(m) 

n  

trees 

Basin Area, Grand Canyon NP AZ 36.13 -111.88 2800 14 

Beaver Creek AZ 33.70 -109.23 2392 32 

Beaver Creek Watershed AZ 34.88 -111.57 2050 19 

Girl's Ranch AZ 34.38 -110.42 1969 28 

Grasshopper Recollection AZ 34.07 -110.62 1798 26 

Green Mountain AZ 32.38 -110.68 2194 29 

Gus Pearson AZ 35.27 -111.75 2255 65 

Helen's Dome AZ 32.22 -110.55 2535 15 

Mount Hopkin's AZ 31.70 -110.87 2133 20 

Muletank AZ 34.32 -110.77 2362 12 

Noon Creek AZ 32.65 -109.82 2346 20 

North Slope AZ 32.22 -110.55 2441 14 

Ord Mountain AZ 33.90 -111.40 2133 18 

Rhyolite Canyon AZ 32.00 -109.33 1828 16 

Robinson Mountain Recollection AZ 35.38 -111.53 2225 26 

Rocky Gulch AZ 34.72 -111.50 1965 20 

Rose Peak Recollection AZ 33.42 -109.37 2316 22 

Sit. Gravel Pit AZ 34.25 -109.93 2072 24 

Slate Mountain Recollection AZ 35.50 -111.83 2194 35 

Tucson Side AZ 32.20 -110.55 2362 28 

Walnut Canyon AZ 35.17 -111.52 2057 21 

Antelope Lake Recollection CA 40.15 -120.60 1480 51 

Antelope Lake Update CA 40.10 -120.63 1385 69 

Black Cone CA 41.18 -120.12 2195 18 

Crystal Cave Sequoia NP CA 36.57 -118.78 1640 38 

Dalton Reservoir CA 41.62 -120.70 1531 38 

Dalton Reservoir Update CA 41.67 -120.98 1513 55 

Damon's Butte CA 41.50 -121.17 1448 26 

Greenville Saddle CA 40.22 -120.92 1768 34 

Grizzly Peak CA 41.17 -122.03 1463 38 

Hodgdon Yosemite NP CA 37.80 -119.87 1722 35 
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Name State 

Lat 

(°N) 

Long 

(°W) 

Elevation 

(m) 

n 

trees 

Oak Flat Road Yosemite NP CA 37.75 -119.77 1803 35 

Panorama Point Sequoia NP CA 36.55 -118.82 1570 28 

Plumas County CA 40.00 -121.00 1254 30 

Ranger Station Peak Sequoia NP CA 36.55 -118.82 1772 39 

Santa Lucia Mountains CA 36.07 -121.57 625 26 

Snow White Ridge CA 38.13 -120.05 1731 26 

St. John Mountain CA 39.43 -122.68 1555 45 

Tejon Ranch Lower CA 35.00 -118.57 1453 28 

Tejon Ranch Upper CA 34.97 -118.59 1676 22 

Alto Picnic Ground CO 40.05 -105.43 2560 23 

Bennett Creek CO 40.67 -105.52 2301 30 

Big Elk Meadows CO 40.22 -105.42 2438 57 

Black Forest East CO 39.50 -104.22 1800 33 

Boulder Ridge Road CO 40.98 -105.67 2650 35 

Cochetopa Dome CO 38.25 -106.67 2835 49 

Crags Hotel CO 39.93 -105.30 2002 25 

Deer Mountain CO 40.37 -105.58 2605 21 

Deer Mountain Recollection CO 40.37 -105.58 2605 23 

Devil's Gulch CO 40.42 -105.47 2400 22 

Eagle Rock CO 39.38 -105.17 2103 32 

Eldora CO 39.95 -105.55 2650 21 

Eldorado Canyon CO 39.93 -105.27 1889 32 

Elevenmile Reservoir CO 38.87 -105.43 2743 19 

Great Sand Dunes Lower CO 37.78 -105.50 2530 61 

Happy Meadows CO 39.02 -105.37 2440 24 

Horsetooth Reservoir A CO 40.53 -105.13 1706 20 

Indian Creek CO 39.37 -105.13 2400 48 

Jamestown CO 40.13 -105.42 2469 21 

Jefferson County CO 39.68 -105.20 1965 24 

Jefferson County Recollection CO 39.68 -105.20 1965 20 

Kassler Recollect CO 39.45 -105.13 1828 20 

Kim CO 37.23 -103.25 1650 18 

Lykins Gulch CO 40.17 -105.28 1798 22 

Mesa de Maya CO 37.10 -103.62 2060 12 

Meyer Ranch CO 39.55 -105.27 2530 24 

Monarch Lake CO 40.10 -105.73 2621 19 
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Name State 

Lat 

(°N) 

Long 

(°W) 

Elevation 

(m) 

n 

trees 

Oak Creek CO 38.30 -105.28 2408 12 

Ophir Creek CO 38.07 -105.13 2438 31 

Ormes Peak CO 38.95 -104.95 2895 23 

Platt Bradbury CO 37.47 -106.30 2835 20 

Pool Table Pines CO 37.78 -106.82 2877 23 

Ridge Road CO 39.38 -104.20 1850 13 

Roadsite CO 38.10 -106.37 2621 28 

Rustic CO 40.72 -105.58 2499 33 

Sapinero Mesa CO 38.32 -107.20 2700 18 

Sheep Pen Canyon CO 37.07 -103.27 1580 30 

Soap Creek CO 38.53 -107.32 2417 41 

South Fork CO 37.67 -106.65 2591 35 

Terrace Lake Pines CO 37.38 -106.28 2658 21 

Turkey Creek Bluff CO 38.60 -104.87 1938 21 

Van Bibber Creek CO 40.37 -105.25 1920 26 

Van Bibber Update CO 39.80 -105.25 1920 19 

Wheelman CO 40.00 -105.37 1950 19 

Wilson Ranch CO 37.63 -106.68 2560 23 

East Side Trail ID 43.75 -116.10 1825 34 

Wellner Cliffs RNA ID 48.37 -116.79 903 41 

Paine Gulch MT 46.08 -110.82 1650 36 

Rock Creek West MT 46.95 -114.33 1555 47 

Burning Coal Vein ND 46.60 -103.47 792 51 

Ash Canyon NE 42.63 -103.25 1280 45 

Canyon Road NE 41.52 -103.93 1530 15 

Long Pine Creek NE 42.67 -99.72 670 31 

Niobara Valley Preserve NE 42.82 -100.00 720 47 

Snake River NE 42.70 -100.87 810 37 

Abouselman Spring NM 35.80 -106.62 2438 32 

Baca NM 35.82 -106.57 2515 32 

Black Mountain NM 33.38 -108.23 2651 23 

Burned Mountain NM 36.67 -106.20 2755 24 

Cabresto Canyon NM 36.73 -105.47 2835 33 

Canyon del Potrero, Mesa Alta NM 36.28 -106.65 2525 70 

Capulin Volcano NM 36.77 -103.95 2380 10 

Cat Mesa NM 35.78 -106.62 2515 15 
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Name State 

Lat 

(°N) 

Long 

(°W) 

Elevation 

(m) 

n 

trees 

Cornay Ranch NM 36.80 -103.98 2020 24 

Elephant Rock NM 36.70 -105.43 2743 35 

Elk Canyon NM 33.05 -106.53 2499 30 

Fenton Lake NM 35.88 -106.67 2560 16 

Garcia Park NM 36.33 -105.37 2743 20 

Gila Cliff Dwellings NM 33.22 -108.27 1767 12 

Hoosier Canyon NM 32.70 -106.35 1204 22 

McKenna Park NM 33.25 -108.50 2500 10 

Mill Canyon NM 36.07 -104.35 1710 19 

Mouth of La Junta NM 36.12 -105.52 2713 17 

Narbona Pass, Chuska Mountains NM 36.09 -108.87 2650 21 

Osha Mountain NM 36.30 -105.42 2896 37 

Rio Pueblo NM 36.15 -105.60 2469 29 

Spring Canyon NM 32.72 -106.37 1054 20 

Tres Piedras NM 36.62 -105.98 2500 36 

West Side Roa NM 32.80 -105.90 2250 19 

Bally Mountain OR 45.28 -118.57 1453 18 

Big Sink OR 45.78 -117.92 1206 42 

Blue Jay Spring OR 42.92 -121.53 1490 26 

Calimus Butte OR 42.63 -121.53 2020 20 

Crater Lake OR 42.78 -122.07 1370 21 

Cross Canyon Oregon OR 45.97 -117.68 1317 28 

Deschutes OR 43.47 -121.40 1420 21 

Diamond Lake OR 43.08 -121.95 1510 20 

Drumhill Ridge OR 45.47 -118.20 885 10 

Emigrant Springs OR 45.55 -118.48 1169 19 

Experimental Forest OR 43.72 -121.60 1530 24 

Fish Lake OR 45.00 -117.07 1600 43 

Grizzly Bear OR 45.97 -117.72 1231 33 

Indian Crossing OR 45.12 -117.02 1448 27 

Junction of HWYS 51 and 97 OR 43.32 -121.75 1420 25 

Lakeview Update OR 42.03 -120.57 1645 36 

Lava Cast Forest OR 43.68 -121.25 1500 34 

Little Aspen Butte OR 42.27 -122.08 1650 24 

Lookout Mountain OR 45.83 -117.80 1372 18 

Lookout Mountain Lower OR 43.75 -121.65 1320 19 
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Name State 

Lat 

(°N) 

Long 

(°W) 

Elevation 

(m) 

n 

trees 

Lugar Springs OR 45.77 -117.97 1200 20 

Mill Creek RNA OR 45.50 -121.42 1002 43 

Pringle Falls Prescribed Fire OR 43.73 -121.65 1320 18 

Pringle Falls RNA OR 43.70 -121.62 1460 29 

Skookum Butte OR 43.23 -121.65 1670 19 

Summit Springs OR 45.68 -117.47 1354 24 

Surveyor Flow OR 43.62 -121.30 1550 10 

Telephone Draw OR 42.93 -121.62 1550 20 

Telephone Draw South OR 42.75 -121.52 1550 14 

Wenaha 1 and 2 OR 45.82 -117.67 738 8 

Buckhorn Mountain SD 43.78 -103.60 1768 33 

Cedar Butte SD 43.60 -101.12 785 16 

Eagle Nest Canyon SD 45.35 -103.13 1090 38 

Grace Coolidge SD 43.75 -103.35 1234 25 

Pilger Mountain SD 43.50 -103.88 1392 12 

Reno Gulch SD 43.90 -103.60 1658 32 

Upper Sand Creek RNA UT 37.98 -111.60 2690 36 

Blewett Pass WA 47.35 -120.55 1240 39 

North Fork Campground WA 48.00 -120.60 915 40 

Rimrock  Slope  White Pass WA 46.33 -121.17 820 5 

Devils Tower NM WY 44.58 -104.70 1319 5 

Vedauwoo WY 41.15 -105.37 2500 26 
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A2. Tree-ring sampling at Tejon Ranch, CA 

Study area 

Of the 161 total tree-ring chronologies used in this study, 159 originated from the 

International Tree Ring Data Bank (ITRDB). We sampled the remaining two chronologies 

from Tejon Ranch, CA in 2013 and 2014. A full list of all chronologies used in this study is 

included in Table A1. 

 Tejon Ranch is located in the western Tehachapi Mountains, California, USA 

(34°58´N, 118°35´W). The site is private land owned and managed by the Tejon Ranch 

Company and is used for ranching, resource extraction, agriculture, residential and 

commercial development and biodiversity conservation. The topographically varied 

landscape spans an elevational gradient of 370-2,364 m and supports numerous vegetation 

communities including grasslands, desert, chaparral, deciduous and evergreen oak woodlands 

and montane conifer forests. The climate is Mediterranean, with hot, dry summers and cool, 

wet winters. Between 1896 and 2010, average annual maximum and minimum temperatures 

were 19.61°C (SD = 0.65) and 7.31°C (SD = 0.64), respectively. Average annual 

precipitation over the same period was 388.12 mm (SD = 134.26) (Flint and Flint 2012). In 

portions of the landscape roughly above 1500-1600 m, precipitation regimes are historically 

snow-dominated (Western Regional Climate Center 2015). At low elevations, soils are 

granite-derived, coarse-loamy thermic typic Haploxerolls with maximum depths of 

approximately 61-122 cm (USDA 2015). High elevation sites include coarse-sandy loams 

derived from schist and classified as mesic Pachic Haploxerolls, as well as granite-derived 

medium- and coarse-sandy loams classified as mesic Haploxerolls. Maximum soil depths at 

high elevations are approximately 127-229 cm (USDA 2015). 
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 Ponderosa pine is locally uncommon at Tejon Ranch and occurs in two main stands 

on north-facing slopes at approximately 1450 and 1650 m, hereinafter referred to as “lower” 

and “upper” stands, respectively. A few scattered trees exist at higher elevations in white fir 

(Abies concolor)-dominated stands, as well as within deep canyons at lower elevations and 

near the margins of the main stands. Survey data from the 1930s Wieslander Vegetation 

Type Mapping (VTM) project suggest that ponderosa pine was historically more common at 

Tejon Ranch, having more extensively inhabited riparian areas at lower elevations and some 

of the same canyons where only relict trees remain today (Kelly et al. 2005, 2008). This 

evidence suggests a gradual, upward range contraction of the species. We found no visual 

fire evidence in either pine stand, nor scars in any of our cores. Signs of pine beetles 

(Dendroctonus spp.) were encountered in both stands, particularly in the lower stand. The 

recent multi-year drought likely crippled the ability of adult trees to repel insect attacks, 

contributing to dieback of > 90% of adult trees in the lower stand during 2013-2016. Dieback 

began more modestly in the upper stand in late 2013, but increased substantially in the 

following years. As of late 2016, approximately 75% of adult trees were dead in the upper 

stand. We inferred dieback timing from field observation and interpretation of recent aerial 

photographs (National Agriculture Imagery Program; NAIP). 

 

Tree-ring sampling and preparation 

 We collected increment cores from the upper stand in August 2013 and from the 

lower stand in August and September 2014. We sampled 22 and 28 trees in each respective 

stand, with each tree sampled twice (once on the uphill side of the tree and once on the cross-

slope 90° from the first core). We generally selected adult, overstory trees to represent 
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general stand characteristics and exclude light competition effects. Trees in unusual 

microsites were avoided. We did not intentionally target tree piths. Samples were transported 

in paper or ventilated plastic straws. After approximately a week of air drying, cores were 

glued to wooden mounts and sanded successively with 220, 400 and 600 grit sandpaper. A 

few twisted cores were salvaged using boiled water and manual realignment. We used the 

open-source software Tellervo ® and a Velmex ® sliding platform connected to a 

microscope to measure ring widths to the nearest micrometer. Ring widths from the same 

tree were averaged. Rings were manually cross-dated using paper skeleton plots. We used 

COFECHA version 6.06P (Holmes 1983, Grissino-Mayer 2001) to validate cross-dating by 

analyzing correlations among trees within our study site and between our study site and a 

neighboring, published tree-ring chronology (Crystal Cave, Sequoia National Park, CA 

(36°57’ N, 118°78’ W), downloaded from ITRDB). We selected Crystal Cave because it 

provided a close comparison to Tejon Ranch in terms of geographic proximity and elevation 

(1640 m). 
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Table A3. Significant differences between cluster pairs based on pairwise comparisons (p = 0.05) 

 
wyppt = water-year (Oct 1-Sep 30) precipitation (mm), MJJ VPD = May-Jul vapor pressure deficit (kPa), AMJJ 

ppt = Apr-Jul precipitation (mm), winter tmn = Dec-Feb minimum temperature (°C) 
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