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A Theoretical Study of Quantum Molecular Reaction Dynamics and

of the Effects of Intense Laser Radiation on a Diatomic Molecule
Peter Sabatino Dardi
Abstract

Within the very broad field of molecular dynamics, we have
concentrated on two simple yet important systems. The systems are
simple enough so that they are adequately described with a single Born -
Oppenheimer potential energy surface énd that the dynamics can be
calculated accurately. They are important because they give insight
into solving more complicated systems.

First we discuss H + HZ reactive scattering. We present an exact
formalism for atom - diatom reactive scattering which avoids the problem
of finding a coordinate system appropriate for both reactants and
products. This is done by usi;g'an over complete basis where expansion
functions are included which are localized in each arrangement
channel. The interaction between different arrangements is described
using an energy independent nonlocal exchange kernel. We present
computational results for collinear H‘+ H2 reactive scattering which
agree very well with previous calculations. We also present a coupled
channel distorted wave Born approximation for atom - diatom reactive
scattering which we show Is a first order approximation to our exact
formalism. We present coupled channel DWBA results for three

dimens{ional H + Hoy reactive scattering. Reaction probabilities and



cross sections agree. very well with previous exact calculations for
energies near the threshold to reaction. |

The second system which we study is an isolated HF moiecule'iﬁ an
intense laser field. Using classical trajectories ;nd quantum dynamics,
we look at energy absorbed and transition probabilities as a function of 0
the laser pulse time and also averaged over the pulse time.
Calculations are performed for both rotating and nonrotating HF. We
examine one and two photon absorption anut the fundamental frequency,
multiphoton absorption, and overtone absorption.' We find that, in
general, classical mechanics does not predic¢t the correct time behavior
or rotational state distributions. For thebtime'averaged properties
claésical mechaniés describés very well the multiphoton absorption but
less well the other cases. We construct Poincaré surfaces of:section to

help understand the classical dynamics for nonrotating HF.
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"However, the man of science has slipped so much that he accepts the
slavery inflicted on him by national states as his inevitable fate. He
even degrades himself to such an extent that he helps obediently in the
perfection of the means for the general destruction of mankind....

M} answer is: while it true that an inherentlykfree and scrupulous
person méy Ee destroyed, such an individual can never be enslaved or
used.as a blind tool.

_If'the:man of science of our day could find the time and courage to
think honestly and critically over his situation and the tasks before
him and if he would act accordingly, the possibilities for a sensible
and satisfactory solution of the preseht dangerous internationai
situation would be considerably improved.”

Albert Einstein, October 1952

“"To me the killing of any human being is murder; it is also murder when
it takes place on a large scale as an instrument of state policy.” g

Albert Einstein, 1929



I. Introduction

The field of theoretical molecular dynamics includes a fairly broad

range of topics. In general, though, it can be roughly divided into two

1 2,3

main catagories, molecular scattering” and unimolecular dynamics.
Molecular scattering theory is the study of the collision of an atom and
a molecule or two molecules in order to learn reaction (nuclear
rearrangement) rates and magnitudes of internal energy transfer.
Unimolecular dynamics theory is the study of molecules with large
amounts of internal energy (which were energetically excited through
collisions or the absorpcidn of light) to understand how the molecule
distributes the energy; and if it reacts, either dissociating or
rearranging, to find the rate of reaction and distribution of energy in
the products.

Molecular dynamics both theoretical and experimental is the study
of elementary processes involving isolated molecular systems. These
processes are the microscopic view (scattering cross sections and
unimolecular reaction rates) of the macroscopic world (thermal rate
constants) of chemistry. The goal is to understand the microscopic
world better in the hope that this will lead to a better understanding
of macroscopic phenomena. For gas phase or atmospheric chemistry, where
everything is basically a series of isolated elementary processes,
molecular dynamics can yield directly measurable rate constants by
accounting for the statistical distibution of the relative energy of
collision partners in a gas (by taking a Boltzmann average).l"5 Even

for condensed phases, liquids and solids, where events are not isolated,



molecular dynamics provides a framework through which to understand the
more complicated phenomena.

The methods of studying molecelarvdynamics are far from
straightforward. The backbone of molecular dynamics is the Born-

Oppenheimer approximation6

which allows for the independent solution of
the electronic and nucleaf motions because of the diffefent timescales
of their motion. In the Born-Oppenheimer apprdximation, the nuclei are
described as meving under forces of the other nuclei and the forces
created by tﬁe electrons averaged over their very rapid motioﬁ;
Therefore, to begin solving any molecular dynamics problem, first the
potential energy corresponding to this force field must ﬁe found. This
alone is extremely diffieule end has only been done completely for the
simplest systems.7 A greet deal of effort has gone into finding good
approximations based on a small section of the entire potential energy

8,9

surface. This is still an open area of research and poses a great

challenge.

Another complication is due to the breakdown of the Borﬁ-

10

Oppenheimer approximation. Because of the coupling between different

elecfronic states, the neclei cannot be assumed to be moving under the
potential of juselone electronic state, They have a probability of
undergoing a transition from one electronic state to another, i.e., an
electronically nonadiabatic transition. For most realistic systems

11

these effects are important. The phenomena resulting from this

breakdown are given the names intersystem crossing or radiationless

12

transitions. Solving the problem exactly including the electronic and

nuclear motion is far too hard. Several approximate methods have been
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13,14,15 which have met with

developed for dealing with this problem,
some success. The systems that we consider below have fairly accurate,
known potentials and have well separatea electronic states implying that
the Born—-Oppenheimer approximation should be valid.

The actual problem of solving the dynamics of the nuclear motion
begins after obtaining an adequate potential energy surface or an
approximation to it. Solving the dynamics rapidly becomes impossibly
difficult for all but the simplest of systems without making
approximations. For molecular scattering the only exact converged
calculation to date was on H + Hy 16 (not counting model systems such as
collinear H + HZ)' Looking at unimolecular dynamics, the understanding

17,18

of something as simple as the photodissociation of formaldehyde
evade complete understanding.

The numerous approximations that can be made to the nuclear motion
will not be discussed here since most of them will not be discussed
further. Two approximations should be mentioned é&nce they will be
discussed below. The first approximation, which is perhaps the most

2,19 4,

important in molecular dynamics, 1is to use classical mechanics
lieu of quantum mechanics. It is hoped that since nuclei are relatively
massive that this 1is a good approximation. This is not strictly true, of
course, and the correspondence principle indicates when classical
mechanics is truely valid. It is not appropriate to give a complete
account here of the validity of classical mechanics for use in molecular
dynamics. Below its validity for one particular application will be

discussed in detail. The second approximation is the distorted wave

Born approximation (DWBA).20 DWBA is a first order perturbation theory



appligd to scattering. The DWBA results approach the exact results as
the maghitude of the perturbation goes to zero. One can seehclearly the
importance of approximations to the nuclear dynamics. since exact |
calculations are essentially impossible for complicated systems. It is
critical then to have some exact calculations so that apprqximateb L
mefhods can be tested against them.

Here we consider two problems which represent perhaps respectively
the simplest problem of mblecular scattering and of unimolecular
dynaﬁics. In both cases reasonably accurate,potentials-are well
known. The first results that will be presehted in chapter II will be
for the standard teét problem, H + ﬁz scattering. The gbal of these
calculations has‘seen to develop techniques for performing_essentially
exact calculations which are easily generalizable to differenc

21 which at low energies

syé;ems. We have.performed DWBA célculations
'h;ve been the first quantitative confirmation of.the 3—dimensional
results on H + Hé.l6 Also, we have performed closely related exact
scattering calculétions22 on the model collinearvH + Hz scattering. The
methods that we have applied should be straightforward to extend to any
collinear or 3-dimensional atom—-diatom system where the potential is
known. It appears very promising that these methods will allow exéct
quanfum calculations in 3-dimensions for reacting systems besides H + Hy
for the first time.

In chapter III results are presented for absorption of very intense W

23 Exact quantum and

infrared radiation by a diatomic molecule.
classical calculations are performed. An isolated diatomic molecule has

essentially trivial dynamics since there is only one vibrational degree
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of freedom. The interesting aspect of this problem is that we examine

24 process itself in detail. 1In order to

the coherent absorption
understand how molecules are prepared in highly excited states by the
absorption of very intense light, the actual absorption process must be
studied since time dependent perturbation theory is not valid for very
high intensities. Even a simple problem of a diatom in a laser field
proved interesting. A diatomic molecule is a convenient system to study
simplé multiphoton and overtone processes which are important even in
the initial excitation of larger systems to high energies. Also, we

were able to gain some insight into thebvalidity of using classical

mechanics to study the infrared absorption of small molecules.



II. Reactive scattering

A. Introduction

4,5,25

Until about 20 years ago Transition State Theory was the only

way to obtain numerical estimates of bimolecular reactive rate

26

constants. . Due to developments in scattering theory and numerical

27, it is now becoming possible to test the statistical

methods
assumptions of transition state theory and directly calculate state to
state transition probabilities and rate constants. Even with all of the
progress in computational teéhnology and a large amount of effort from

many groupsza’29

» 1t is still very difficult to do molecular reactive
scattering calculations. Essentially all reactive scattering
calculations have been for atom - diatom systems.. Even within this

30 have been limited

narrow category, a vast majority of the calculations
to collinear models and then mostly for H + H2 scattering. All of the
reactions considered in this chapter will be assumed to have an
isolated, electronically adiabatic Born - Oppenheimer6 ﬁotehtial energy
surface.

One of the serious complications in reactive scatteriﬁg is that the
natural coordinate system for the reactants in the entrance channel is
different from that for the products in the exit channe131. It is
difficult to define a consistent, well behaved set of coordinates for
the entire reaction. If a different set of coordinates is used for

different parts of the reaction, they must eventually be matched32. The

purpose of our work has been to develop methods which avoid many of



these complications. This is done by using an over complete basis which
includes basis functions localized in each arrangement channel. The
interaction between the different arrangement channels is accounted for
using an exchange kernel. These exchange interactions are analogous to
the treatment of interactions between electrons in Hartree - Fock
theory33. The original idea was first developed by Miller22a based on a
variational method. This method can yield essentially exact results.
Here, we also make use of a distorted wave Born approximation (DWBA), a
first order perturbation theory, version of this formalism which was
first developed by Hubbard, Shi, and Miller-*.

Here we apply this exact scattering method to collinear H + H,
reactive scattering and the DWBA method to three dimensional H + H221.
At lbw energies, i.e., in the threshold region to reaction, one would
expect DWBA results to be very accurate since reaction should only be a
small perturbation on the dynamics. Previous DWBA calculations in

molecular scattering35-64

, many were for three dimensional H + HZ’
yielded results which were in error by as much as several orders of
magnitude. They often yileld surprisingly accurate relative cross
sections, though, which has found use65 in determining vibrational and
rotational final state distributions for many reactions through Franck -
Condon methods66—68. In ail of these previous molecular applications,
the nonreactive distorted wavefunctions are determined from a single
channel elastic scattering calculation with the only difference being
how well the vibrations and rotations are accounted for adiabatically
and therefore what elastic potential is used. For example, in much of

the work of S. H. Suck and coworkers51_57, the asymptotic molecular



wavefunctions are assumed frozen throughout'the collision, and the
elastic potentials are obtained by averaging the full potential over the

frozen wavefunctions (DWBA - FM for frozen molecule). Two somewhat more

accurate treatments have been developed by Tang, Poe, Sun, Choi, and

42-50 59-64

coworkers In the first,

and also by Clary and Connor
vibrational wavefunctions are allowed to distort adiabatically to the
.p:esenpe of ﬁhg incideﬁt at:oml‘z-l's’sg_'.63 (DWBA - VA for Qibratidnally
adiabatic), and in the second tﬁe molecular wavefunction is taken as a
product of separately determined vibrationally and rotationally

" adiabatic wévefunction546_a9’64 (DWBA - RA for rotationaliy

adiabatic). Very recently, Sun_gE;_g}:SO have improved on previous DWBA
regults substantially by allowing the molecﬁlar wavefunctibh to be fully
adiébatic (ATM; adiabatic T matrix theory). Many,‘though not all, of
the.a$ove applications are actually approkimate forms of DWBA since the
wavefunﬁtions in the reactant and product arrangement channels are
calculated at different levels of approxiﬁation.

‘The major difficulty with the previous DWBA methods is that they
failed to calculate the noﬁreactive wavefunction accurately enough. The
nonreactive wavefunction in the interaction region cannot be described
accurately enough using only one diatomic molecular wavefunction even if
there is only one diatomic state energetiéaily allowed asymptotically.
Here we solve for the nonreactive wavefunction using coupled channel
methods which yield essentially exact nonreactive wavefunctions. This
idea of using coupled channel distorted wavefunctions was developed
independently by Emmons andeucksg, who presents the forﬁalism for three

dimensional reactive collisions, and by Hubbard, Shi, and Miller34, who

™



present a formalism for collinear atom - diatom collisions with an
application to collinear H + H, with excellent results.
For collinear H + H, there have been many quantum mechanical

22a variational

studies done before69—79. Our method based on Miller's
method offers the advantage of being straightforward to exgend to other
more complicated systems. There have been three previous
applicat:ionsZZb—d based on Miller's variational formalismzza. The first
by Wolken and Karplu522d for three dimensional H + H, included only the
ground vibrational state in the couple channel expansion for HZ’ so they
did not obtain converged results. The other applic;tions by Garrett and

22b and Adams and Millerzzc, both for collinear H + Hz, differed

Miller
from our approach in two respects. First they used in their expansion
for the nonreactive wave function the ground vibrational state of Hy and

square integrable functions to account for the energetically forbidden,

i.e., closed, asymptotic vibrational channels. In our approach, we

expand the wavefunction in both open and closed vibrational states of

Hye Our approach has the advantage of not requiring modification for
calculations at higher energies with more than one open channel and of
not being dependent on the choice of square integrable functions. The
second difference is that both Garrett and Millerzzb, and Adams and
Miller22¢ expand the exchange kernel operator, Gex(R,R') over a basis
set, We instead show how Gex(R,R') can be written in terms of the
energy independent exchange kernel wex(R,R') which was first defined by
Hubbard, Shi, and Miller34 in their DWBA calculation. This has the

advantage that Wex(R,R') does not have to be recalculated at different

energies. Also, we evaluate wex(R,R') on a grid without contracting it



10

~onto a basis, so that our results are independent of any basis
functions.
Here, we extend the coupled channel distorted wave, DWBA - CC

approach of Hubbard, Shi, and Miller3%

to the three dimensional H + H,
reaction, making detailed eomparisons with accurate quantum results.
Since we account exactly for the nonreactive wavefunction, we should.and
do obtain excellent aggreement with the exact quantum results for
-energies in thevthreshold region Qhere reaction probébilities are not
too large. At energies where the reaction probabilities are less than
aboet 0.1, tbe results converged with respect to the addition of»ﬁore
molecular basis functions. At higher energies we found, as Hubbard,
Shi, and Miller34 found in the collinear case, that the probaﬁilities
became unstable with'reépect to the addition of more basisefunctions.

We also-introduce'a very accurate approximation to DWBA - CC rhrough the
use of the cqupled states approximation, DWBA - CS. This work
represents the first quantitative comparision with the exact quantum

results of Schatz and Kuppermann16

80

for three dimensional H + H, on the
Porter - Karplus potentiél energy surface.

We also present results for "exact”™ calculations for collinear H +
H2 scattering on the Porter - Karplue80 porenrial surface with
eomparisons to other quantum mechanical calculations. We perform our
calculations over a very lerge range of energies from the deepest
tunnelling region to energies with three open asymptotic vibrational
channels. Over this whole range of energies we obtained excellent

agreement with previous calculations. These results are very

encouraging for a method which is apparently straightforward to extend



to other systems.

B. Theory

l. Atom - diatom scattering formalism

Here we develop a scattering formalism based on the variational

22a

method of Miller specific to atom - diatom scattering at energies

below the energy required for three separate atoms. In this section the

discussion will remain very general with no reference to the specific
coordinate system or dimensionality. Below we will describe the
specifics for both collinear and 3 - dimensional H + Hz.
a. Expansion of the wavefunction and definition of the exchange
operator

For A + BC scattering, assuming that the total energy is
insufficient for three separated atoms, there are, in general, three
asymptoticvarrangements possible, A + BC, B + AC, and C + AB, although
some of these may ﬁoc be energeticaliy allowed at low scattering
energies. For collinear atom - diatom scattering there areronly two
possible arrangements, but most of the rest of our development follows

with this in mind with other exceptions noted where necessary. Within

each of these arrangements the diatom asymptotically can be in different

internal states, n, again with the constraint that there be enough
energy. In keeping with the common terminology we will refer to
energetically allowed asymptotic states (including arrangements, diatom
internal states, and orbital angular momentum, if appropriate) as open

channels and energetically forbidden asymptotic states as closed

11
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channels.
We first expand the wavefunction,

(11.1)

v > =z [e>]el > ez ol >z |80 L, .
a n a 1] n 1] a Tt n Tt a
n n n+n n n'+n n''en
M i R

where |¢:> is the direct product of the (vibrational and rotational) v

molecular wavefunction for the isolated diatom for arrangement b and of

the orbital angular momentum state with n representing the combined

. : _ ’ b
index which describes the product uniquely and ‘fn*na> is the

corresponding radial wavefunction assuming initial state n; in
afrahgemgnt-channel a. The eiact form qf'|¢g} will depend on the
dimensionality and on the particular coordinate éystem. Noté that in
the collinear atom - diatom case there are only two arrangeménts
possible. This expansion‘is err complete, but this should cause no
pfoblems for reésonable expansions since asymptbtically the basis
functions are well separated. We will need to account for the
nonorthogonality of tﬁe ¢,> 1in difféfent arrangement channels.
The scattering wavefunction satisfies the equation,'

(W-E) |t >=0,
where H is the Hamiltonian operator. Taking eqn. (II1.2) we multiply

from the left by <Rb'<¢bf| to give,
n -

<Rb|<¢: | v~k |¥ > =0, :
£ ny (11.3) g
where <¢b is defined below eqn. (II.1l) and (Rbl is the translational
n v

f
coordinate corresponding to the internal state <¢:f| which is included

so that the function with which we project covers the entire space. By



doing this we are projecting out the final state and thus examining the
coupling into this state. Now combining eqn. (II.l) with (II.3) gives,
D RP|<e® [u-E|ob>]el >+t RP|<e® |m - |2 ]2 >
n n a . n n ,. 4

n f n+n n f

i Ny (11.4)

z <Rb|<¢: ]ﬁ - E|¢i,,>'f3 > =0

n'' f n"+n?

The b th term of eqn. (II1.4) accounts for coupling within the same
arrangement channel, i.e., the elastic and inelastic effects. The other
two terms account for the rearrangement or reactive part of the

interaction. We define the exchange operator,

“be

b - c
v, =<¢ | H-E |¢n,>,

f f (11.5)
with b # c.
We will first solve a zero order equation to account for all the

elastic and inelastic nonreactive effects exactly,

A

L <R%[<¢] | H - E |02>]°¢ > =0,
n f

n*n (1I1.6)

o_.a
where nend is the "exact” nonreactive wavefunction. We solve this
i

equation by direct numerical integration. We use this zero order
wavefunction as a distorted wavefunction and the exchange operator
accounts for the interactions responsible for rearrangement.

The formal solution for the full wavefunction can be written down
using the set of coupled Lippman - Schwinger type equations,

b o.b o.b “be

£ >=208 %% >+ & %, v, |f >
«? ba nen® At .ptt o n''n at end
Ty 1 ’ i (I1.7)
vz %2 v et 5,
at gtr oo n''n 0t end
’ i

with equivalent expressions for ¢ and d where b # ¢ #d, Gba is the

13
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standard Kroneker delta function and Ong' is the zero order,

nonreactive Greens function which is described in detail in Appendix

I11.A. This set of coupled equations can also be written in matrix form,

‘fl > s ‘ofl S oGI . 0 0 5
n*na al aen nn
i
‘ (11.8) y
|2 > =| 6 |%% > |+ z 0 °%% .. 0
na? | az n+n’ n'n'’ ' an
i i
| > 5.4 %80 0 0 % .,
nn, nen,
~12 ~13 1
0 Vi Vol £ >
n+n,
v i
21 °23 2
'anvnv . 0 vnvvnv lf > ’
n+n
~31 ~32 3
Vn"n' vn"n' 0 'f a>
_ nen,
or using vector notation for the arrangement indices,
o o -
£ > = |°f >+ £ % v, |t >
n*nf ~n+ni a'n''t 0 non n*ni (11.9)
This equation can be solved iteratively for |£ a> to give the
‘n+n
infinite sum,
L a>=|o%ﬂ1>+ L omm'=m'm|o%«1>
nen, | n'n'’ o i - (I1.10)
o) - o -
+’ '3:”' 0 annv \Ln'vnctl an'no ‘Lnonv’ f"ﬂ'*'n_>+... -
n'n''n n v i
which can be formally summed to yield, v
o, o - o -1
E,n‘_n > = 'fm*-ni) + n'n?'n”' an' '(Qmm' m?' !,mmvv gm..m')nnnnv
~ o (11.11)
sn'''n' I ,f\“v*n >’
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where the matrix inverse is taken over the matrix of the combined index
of internal state labels and arrangement index. From this equation we

get the transition matrix,

- o _1 ~

mlln' n"' mml m" mm" ”‘nl'mV n"nll| m'ltn' (II.IZ)
b. Relationship between !nn' and Wan' operators
First we take the Hamiltonian and write it as,
H = + V., + h ,
- K? b b (1I1.13)
hb = kb + Vo

where ﬁb is the translational kineticAenergy operator relative to
arrangement b, Eb is the isolated diatomic kinetic energy dperator, ;b
is the asymptotic diatomic vibrational potential, Gb is the poﬁential
energy opérator with ;b subtracted off plus the orbital angular momentum
kinetic energy operator. It follows that ﬁb is the asymptotic diatomic
Hamiltonian operator so that,

-

I = 2 [,
| | (I1.14)

where eg is the n th diatomic eigenvalue for arrangement b since hy does
not operate on the orbital angular momentum part of |¢3>. Using the

definition of the exchange operator, eqn. (II1.5), along with eqns.

(I1.13) and (II.14), we get,

n.n n+om

“ba o_.a b - a_|o.a
Lv f > = I <¢ H-E |¢>|f >,
£ i { n nf I ' n l n(—ni

T<® |k +v +n -E oD%, >,
n nf a a a - n n"ni

15
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b ” - a_jo.a
=I<o Tk -v -E |é >|°€2 >,
n g & a2 aimi onmy (I1.15)

with Ea = E - Eﬁ. We know that the nonreactive wavefunction satisfies

eqn. (II.6) which combines with eqns. (II.13) and (II.14) to give,

: <Ra|<¢:f| ﬁa + Ga - £, [6>]%€2, > =0,

aj,.a {.a . o.a ay_ .a (5 |.a ]0.2a _
£ R [o>k ~E|%F2 >+ T R¥<o |V |60>|%80 > =0
n f i n f
which can be rearranged to give,

>

>==-TVv “*“i ,

n_n n.n

(£ -E) 0ca a o .a
a a | £ n "f |

(11.16)

a gd _ ,.a |5j,.a .
since <¢nf|¢:> = § and we define Vn'n = <¢n,lva|¢n>. Combining this

e,
with eqn. (II.15) gives,

DV %2 5 -k (<o |6 V3|02, ) + <ol |V [eD]%2, )
n_n n+n n n nn n'<en n aln" n+n
n f i n f n' i £ i
b {5 |.,a|0.a b a o_a
= I<¢ [va|¢n>| 2,0 -2 L <o [e> v %2 >
n f nn' f i
= I [(<¢° |G |63 -z <2 62> v3, ] |°¢2. >
n al'n n n' n'n n+n
n f n' f i
R R i g
n f i n f i (11.17)
where we have defined the energy independent exchange operator wgan,
£ v
:an - <¢: ' a |¢i> - <¢: ¢i'> Vi'n ¢
f n' £ (11.18)

This operator was first defined by Hubbard, Shi, and Miller34 for use in

a collinear multichannel distorted wave calculation. We see in eqn.



-

(11.18) theAeffect of an overcomplete basis. If the sum over n' covérs
a complete set of states we can remove this complete set and see that
wgin identically vanishes. The over completeness of the basis should
not cause any problems for the finite bases that we will be considering.

Next, we consider the exchange operator acting on the zero order

Greens function matrix,

z vibn, OG:'n =1 <4 |u- E‘¢:,> OG:,n ,
n' f i n' f i
a |- - b_ o.b
B 2' <¢n IKb * Vb - Ebl¢n'> Gn'n i
n £
a |’ b _ o.b
- E, <¢n IKb - Eb|¢n'> Gn'n
n f i
+ It vy fon> %ep
n' f i (1I1.19)
Now, we make use of the definitionvof the Greens fﬁnction,
b b o - b _ o.b
Z' <R l<¢nl Kp * Vb = By 192 Gpepy =~ 6nn ’
n i i
<Rb|(Kb - E.) °cgn + I v:n, <Rb|°G2,n =-6 .
i n' i i (11.20)
Combining eqns. (I1.19) and (I1.20) we get,
L Vzbn' Ocz'n =1L <¢: '¢:'>[- 6n'n - I Vg'n OGEn ]
n' f i n' f i n i

* b ob

+1 <2 v |6 %6,
' n b n n'n

n £ i

a b a (> b _o.b
=<t o >+ T <o |v |e> %6,
ntn, n' ne bl 'n n'n,

17
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) <¢a ¢b'> Vb, on
n'n n.!'n n'n any
“ab o.b o b ab
2 vn n' G b =t wn n' Gn'n - Sn n, °’ -
n' f n'ni n' f i fi (I1.21)

where we have used eqn. (II.18) and defined the overlap matrix,

e |8
fi f i (I1.22)

- Substituting eqns. (II.17) and (II.21) into eqn; (11.10) yields,

o .. o
f > = f > + z (s + S
“nen? ' "nen? atntnrv gnn'f ' ~mm !
i i
- z ‘i{nm" O-Gﬁﬁ" ');];|n|.y' sn"'n' o£ a>)
m'’ o , n'+ni (11.23)

wheré the notation implies that the inverse matri#.is taken over the -
combined arrangement and internal state indices then the n'', n''t
7 element is taken of the inverted matrix. In this form we have replaced
the energy dependent exchange operator inn' with an energy independent
operator ¥,,' while gaining an overlap term Spn'c Ypn' Is just
dependent on the potential and the expansion basis functions ¢,>. It
is this form on which we base our furthér development.
c. Determination of the reactance matrix, K, and the scattering
maﬁrix, S

For the purpose of determining the wavefunction, we assume that the
wavefunction is real and, therefore, that asymptotically it fits real v
boundary conditions. Below we show how to relate our solution with real

boundary conditions to the standard scattering boundary conditions and

thereby obtain the S§ matrix. The asymptotic form that we assume for the



-

wavefunction is,

n*n, n n an,
a a a_ ,a
| £ b>~‘sn>+|cn>K -
n+n nn (II.24)
i i
where sin(kaR - (J+3) n/2]
s? = <r|s? = 23 .. 2
n n |v|l/2 ’
a .
a cos[knRa - (J + Ja) n/2]
c b= <R|ca> = ’
n n |v|1/2
(11.25)
with Kka and a 2u(E - ei) 1/2
M L P ke ST
u K

a
for n being an energetically open channel where Knn? is the reactance

matrix, oKin being the zero order, nonreactive, reactance matrix, v is
i

the translational velocity, k_ is the asymptotic translational wave

n

vector for internal state n and arrangement a, and u is the reduced mass

for translation in the appropriate arrangement channel. J is the total

angular momentum quantum number and ia is the rotational angular
momentum quantum number in arrangement a. We have picked a
fepresentation of the angular momentum with J, and ia and their
projections. For collinear scattering both J and j, are set to zero in
this equation. The form for |s > and [c > in the asymptotic closed
channels can be various linear combinations of exponentially growing and
decaying terms depending on convenience. We will specify our choice
below when we give more details of our specific calculations. The exact

asymptotic form of the wavefunction affects the specific form of the

19
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Greens function ,see appendix IIl.A.

In order to calculate the Greéns function we also need the
irregular solution for the nonreactive wavefunction, see appendix
IT.A. We are free to pick for the irregular wavefunction any solution

which is linearly independent of the regular solution although its form

&

will also affect the form of the Greens function. Here we will assume

that the irregular nonreactive wavefunction asymptoticly goes as,

o a

8 nn > ~ |cn>,

i _ (I1.26)
where cn> was defined in eqn. (II.25). As we show in appendix II.A,
with these forms for ;he regular and irregular nonreactive
wavefunctions, the asymptotic form for the Greens function'becomes,

o.a ~.%_|Ca><ofa ‘ '.

Gnn' n+n' . (11.27)

Given the asymptotic forms in eqns. (II.24) and (11.27), the asymptotic

form of the total wavefunction, eqn. (II.23) becomes,

£ >~le>+|eo%  +E le ><°¢ .|
~ e ~n ~n” San, h atnttgtte o0 san
i
o -1 o '

(Qmm' + ,S,mm' —m'z" ‘imm" g,mVImv)n'vnvv! ﬂn"'n'l §“|+ni>n

£ >~ ls >+ IC >IOL("nn * %. z <o£-nn"l(émm'

n+n n'n''n'"" (I1.28)
o -1 o

+ §,mm' -mf:' ‘imm" (;m"m')n"n"' En|v|nv l g,n.ni>,

and it follows that,



m i (11.29)
Basically, most of the calculational effort goes towards calculating
this reactance matrix.
Now, we will outline how the scattering matrix, S, is calculated
from the reactance matrix, K. Asymptotically, the wavefunction only has
finite density in open channels therefore the S matrix is only defined

f >
for these transitions. If the wavefunction ~n+nb and the reactance

i

matrix &nn' are considered matrices in the channel numbers, then we need
to consider only the block of these matrices over the open channels.
So, we begin with,

£°° > ~ s>+ e k20,

~ a ~n “n” =nn

nm i
i

where the o or oo designate that only the open channels, n, are kept in
the vectors or matrices. Now we take the position representation, eqn.
(11.24), and replace the sines and cosines by the equivalent complex

exponentials,

. L . w
Si“[EﬂRa-(J+Ja) 2] cos[l‘gnRa (J+ja) 2]

00 00 00
£ a(R) = <R|£ a> ~ 1/2 + 1/2 I=<'nn.’
n+n n<n |v| |v| i
i i
. n . T
1[&nka—(J+Ja) —2—] —i[l,gnRa—(Jﬁ] 2) 5]
- -1/2 [ e —e
I"l 21
1{k R ~(J+j ) =) ~1(k R =(J+j ) =]
e ~n a Ja 2 + e ~n a Ja 2 00
+ 2 L(snni]

. "
-1/2 —e-il&nka—(J+Ja) 2] 00
I [ 21 . (Gnni_ignn )




, . bid
i[&nRa-(J+ja) EJ

e 00
+e 21 (8., +ig )] (11.30)

' Now rearranging eqn. (II.30) we obtain,

N oo
. -i[&nRa—(J+ja) 54 i[EﬂRa—(J+Ja) EJ
o} oo -1 -e e

z'zigﬂm.(R)(dm. Y SOD) a 172 + 77
. wed | ]
0o oo -1 -
:n (Gnn'+i§nn')(Gnn'_i§nn')n'ni ) (II.BI)

We compare eqn. (I1.31) with the equation for the scattering

81

wavefunction 1n terms of the S matrix

. L . Ll
R ) g1 R4 )

+ ~-e
~ <+ - .
£ a(R) , |1/2 ' l1/2 §n_n. ’ (11.32)
n+n v v i
1
to identify,
+ 00 _1

£ (R =20 % £ (R (8 -iK ) | |
nen? nt O mmo tmmlonng (11.33a)

§'rm =12 (Gnn' +'i§zz') (dmm' - 15§$');}n :
i n' i (11.33b)

We use eqn. (II.33b) to obtain the S matrix from the K matrix obtained
from eqn. (II.29).
d. The DWBA limit

In this section we will discuss how to take the first order
perturbation (DWBA) limit of the scattering formalism developed in
sections a-c. We will show how this is equivalent to a multichannel
version of DWBA developed by Hubbard, Shi, and Miller3“. DWBA is

basically first order order perturbation theory, so we need to keep the

22
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perturbation, in this case reaction, only through first order. Starting

with the T matrix defined in eqn. (II.12), we constuct,

“DWBA _ °

Tnon o (11.34)

which is just the first reactive contribution to the infinite sum in
eqn. (II.10). Based on the DWBA form of the T matrix in eqn. (II.34),

the reactance matrix, K, becomes,

DWBA _ o 2
K = += I <'f n'! v Lo 25
fony T Ban TR G Rt Bl Ry (11.35)

o 'o
where the first term is diagonal in arrangement indices, only a
nonreactive contribution, and the second term is purely off diagonal in
arrangement indices, only a reactive contribution.

When calculating'the S matrix from this DWBA K matrix, Qe need to
include the reactive part of the K matrix only through first order to be
consistant with.the approximation to the T matrix. First we write the

open block of the K matrix separating the reactive and nonreactive

contributions,

where

It should be noted that while we only need the open block of Rg, the sum
over n'' and n' covers both open and closed channels. Then we
substitute this expression for K into the equation for the S matrix eqn.

(I1.33b),

23
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o R _o ' R -1
f‘:;nn =1 (ann' i 5:3' + n:')(dmm' - 10522'- 1 IE('rc:u‘r)l')n'n )
i a 1 (1I1.36)
Next, we expand this equation assuming RK , 1s small
S = T (6 + ioKoo + iRKoo )( 6 - 19¢°° )—1
~an atnt! nn' snn' snn' mm' smm' ‘n'n'"’
0o o0,00,~-1 -1
L6 1z Rgmm 1 I'*slkl)m'm ]n"ni ’
~ I (5 + 1o 00 )(6 _ io 00 ) + Z iRK (s _ iOKOO )—1
iy nn' lgn ! ! 5mm Snn' " ‘mm' Smm ' n'ni(
0 00 00
" n':v'no Cont ¥ 1 Kpn ) oo - 1° ') 1% Rgn"no)
o oo
— 1 N
b "ng (11.37)

where in the last expression we keep terms only through first order in

00
Rﬁnn' . Rearranging eqn. (11.37), we get,

0,00 ,0_00 -1 000
§nn X' (Gnn' lgnn')(6 ' : l*S-mm')n n * .Z.. 0 [(snn' =nn')
i n i n'n''n
+(8 , + %2018, - 1%,
00 o oo
(iRK 0)(6 1 Kkl n n
Sq. "L (8 o+ 10522,)(5mm. - 10500.);}n
i n" mm i (11.38)
s 0_00 R_ oo o 0o -l
+ I 0 ( mm’ -1 Eﬂnm') IV(Zi K ' 0)(6 - Kkl
n''n

The first term of the expression in eqn. (II1.38) contributes only to the

nonreactive part of the S matrix, i.e., the terms is purely diagonal in



arrangement index. In the second term, 0&3;, is purely diagonal in

RKoo -
arrangement index while Kn' "0 is purely off diagonal. As a result,
the second term is purely off diagonal and therefore only contributes to
the reactive part of S. The nonreactive part of S to first order is
just the contribution from the purely nonreactive scattering
calculation. Higher order contributions, though, effect both the
reactive and the nonreactive part of S. We can now explicitly write a

reactive block of the first order S matrix as,

oKbb -1 R_ba 0, aa,~1 (11.39)

- nf:'no 2008 10 = 47RO KT 0(8 ) - Kkl)noni,

DWBASba
nn

where the DWBA reactive K matrix is given in, the second term of eqn.
(11.35), and we only allow the channel numbers to vary over the open
channels.

Now, we want to show how this derivation is exactly equivalent to a
standard DWBA treatment with a multichannel nonreactive distorted
wavefunction. This multichannel DWBA treatment was first developed by
Hubbard, Shi, and Miller34 for application to collinear H + Hy. We

begin with the standard DWBA expression for the S matrix,

S22 = G PR T -k PR,
£ 1 £ i (11.40)
where ﬁ is the total Hamiltonian operator, E is the total energy and Oy
is the distorted wavefunction with the correct incoming or outgoing
boundary conditions. In this case we will pick for the distorted
wavefunction the "exact” multichannel nonreactive wavefunction defined

in eqn. (II.6). We now expand the distorted wavefunction in terms of

the |¢i> defined below eqn. (II.1),

25
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ba _ o1 ob - by _ a _|o.a +
S0 = LK fnfn|<¢n| H-E |¢n,>| fn,ni>,

£4 nn' (11.41)
‘where each expansion only includes one arrangement since there is no

coupling between the arrangements ‘in the distorted wavefunctions as seen

in eqn. (II.6). Using eqn. (II.33a) and a similar expansion for f ,

IE; n> =2z 'gn'n> (Gmm' * igmm' n_n'
f n' f (11.42)

we obtain from eqn. (II.4),

sP - (ii) z (8 = 1%L <O <l - E[63 )
fi nm'n''n'"’ f
o.a o,aa -1
f \] '|'>(6 L} = i K l) Tty ?
not o W mmeonte Ny © (11.43)

~where n'' and n''' only vary over the open channels, but n.and n' vary
over open and closed channels. Substituting from eqn. (II.S5) this

equation becomes,

Sba = (é-i_) L (6 [ loKbbv)—l v|<0fb'l lvba'lo a' l|v>
nen, h an'n' '’ mm mm'“n n n''al"nn’l “n'n

(6 ioKaa )-l .

. mm'* mm' n"'ni : ,
Making use of eqn. (II.17), we obtain,
RSN (6, - 1% )71 <O w2 %3, >
neny A an'n''n' ' mm L n''n! "nn n'n
o,aa -1
(Gmmv -1 mmV)nl'Vn .
i (11.44)

Now, based on the reactive part of eqn. (I1.35), eqn. (II.44) becomes,



DWBA b o _bb -1 R b
Snan = 21 z (Gmm' -1 Kmm')n n'' Kn?vnvtv
f 1 n"n"' f
(8 _ ioKaa )—1
14 L T >
mm mm n ni (II,[‘S)

where based on the definition of S, the channel indices only vary over
the open channels. Comparing eqn. (II.45) with eqn. (II.39), we see
that we have shown how this development of a multichannel DWBA formalism
is, as expected, equivalent to the DWBA limit of the scattering

formalism developed in sections a-c above.

2. Coupled channel DWBA for three dimensional H + H2 reactive
scattering

In section 1ld we developed the general formalism for coupled
channel DWBA. In this section we will give the specific representation
of this formalism appropriate for three dimensional atom - diatom
scattering. We will then show the symmetry decoupling for the symmetfic
H + HZ reaction. We also develop an approximate method based on the
coupled states approximation.
a. Three dimensional representation of coupled channel DWBA using body
fixed coordinates

Six coordinates are needed to describe the atom - diatom system.
To define our six coordinates, for each arrangement we pick Eé, the
vector from atom A to the center of mass of the diatom BC, and Fé, the
vector between atoms B and C. Next, it is convenient to mass weight the

82,32

coordinates, so using the Delves mass scaling, we define,
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(11.46)

where,

c = (uabc/u )1/4.
a be

U is the reduced mass for the motion of atom A relative to the center

abce

of mass of the diatom BC, and Hp. 1s the reduced mass of the relative

motion of atom B to atom C,

u =m (m, +m )/(m_+m_+m),
abc a b c a b c (11.47)

pw o =mm / (m

bc bc b'+ mc)’

where m,, My, and m, are the masses of atoms A, B, and C respectively.

2

The J° and J, operators, where 32 is the square of the total

angular momentum operator and Jz is the operator for the projection of

-the total angular momentum on a space fixed z axis, commute with the

81

Hamiltonian. We perform a standard paftial wave analysis of the

wavefunction where we expand the wavefunction in terms of states with
fixed J and M, the quantum numbers for the total angular momentum and

the z axis projection of the total angular momentum,

<

J .
Y >= I £ c. |¥%,
. nb J=0 M=-]J M ' b

1 (11.48)

M
Kge
n,
i
possible since the operators commute. While it will not be explicitly

M4
is a simultaneods eigenfunction'of Jz, J,» and H which is

shown, the c are determined from the plane wave incoming flux which we

JM
use implicitly in section 2f when we give expressions for the

differential and integral cross sections.

Now we are ready to express our wavefunction in terms of a
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coordinate system. If we define a randomly oriented space fixed
coordinate system (x,y,z) with the origin at the center of mass of the
three atom system, the vectors, ;a and ;a' defined in eqn. (11.46),
represent the six coordinates which are needed to describe the system,
We take tﬁe coordinate representation of our wavefunction in terms of
this'coordinate system,

+ > M _ M+
<r, Ra|‘¥Jb > = va(ra,Ra).
ni ni

(11.49)
Rather than now expanding our wavefunction in terms of complete sets of
eigenfunctions of the orbital and rotational angular momentum operators,
it is more convenient to rotate our coordinate system to a body fixed
coordinate system and to express the wavefunction and the projection of
the angular momentum in terms of this coordinate system following Schatz
and Kuppermann32.

We will rotate the space fixed coordinate system to a body fixed
coordinate system (X,Y,2) again with its origin at the center of mass.
This body fixed coordinaté syétem will have its Z axis oriented along
the ;a vector, It requires two angles ea and L the polgr and
azimuthal angles of the Z axis in the (x,y,z) coordinate system, to
uniquely describe the rotation of the space fixed coordinate system into
the body fixed coordinate system. We are assuming that we do not
reorient the X and Y axes about the Z axis. In the body fixed
coordinate system the vector ga becomes a single component R, which is
the distance of atom A to the center of mass of the diatom BC.

Therefore, the wavefunction in this body fixed coordinate system is only

a function of four variables. Performing this rotation, the



wavefunction from eqn. (I11.49) becomes,

| J -9
M+ 2J+1 (1/2  J , .a,*»
) = —— ] : .
PR ED L ()77 Diyg €0,58,,00 Y 7(r R )y (11,50
n Q == 8 a n
i a i
Ja |
¥ “(r_,R ) J '
where b a’ a’ 1s the body fixed wavefunction, Dy (¢a, Ba, 0) is a
n a

i .
Wigner rotation matrix, the factor [(2J+1)/8’tr2]1/2 normalizes the Wigner

rotation matrix, and Qa is the projection quantum number for the total
angular momentum along the body fixed Z, axis. 1In the rotating
coordinate system the Za component of the orbital angular momentum is
zefo. So, Qa is also the Z, axis érojection quantum number for the
rotationa; angular momentum of the diatom BC.

Next we expand our body fixed wavefunction in terms of é complete
set of states representingvthe vibrationalband rotational motion of»tﬁe

diatom in body fixed coordinates,

JQa > = = ¢v j (ra) JvajaQa

¥ 3 R)= L IooY, o (Y b)) ala £y (), ,

n, v =0 j =|Q |"Ja a R . n (11.51)
i ‘a a a a a i

where v  1s the vibrational quantum number and j, 1s the rotational

quantum number. The sum over ja begins at |Qa| since Qa is the

projection of j_ along Z, so j_ cannot be smaller than this.
, a Ja

Yj Q (Ya;wa) is a spherical harmonic which is the eigenfunction of j2
a“a

> .
and j7. Y, is the angle between the ;a and R, vectors, and wa is the

angle which orients the diatom about the Z axis. The ¢v (ra) are the

ala
vibrational eigenfunctions of the isolated diatom.

Based on this development, the position representation of the

wavefunction defined in section 1, |¢2>|fa b>’ is,
. n+n
: i



+ 3+ a_|.a _ ,2J+11/2 J
< R |67 > = (=) Dy (9,58,,0) Y; o (¥,¥,)
nﬂH 8w a aa

$ (r)) Jv j @
vaja a £ a'a a

(R,
— b a
raRa n, | (1I.52a)
4 (r)
a o ,2J+1,1/2 T vi o a
¢n(¢a)6a’Ya)wa)ra) = ( 2) DMQ (¢a,ea,0)YjQ (Ya,wa) a a »
8w a aa ra
a Jvajaﬂa (I1.52b)
£ R = £ (R/R,
n*-ni n (IT.52¢c)

where we have assumed that the wavefunction represents only one partial

b

wave, Our collective index, n~, of section 1 becomes,

nb > Vs jb’ Qb’ (11.53)
and we will oftén interchange the collective index for the complete set
_of indices throughout this section.
b. The Hamiltonian in body fixed coordinates and the solution for the
nonreactive wavefunction

The derivation of the Hamiltonian in body fixed coordinates is

32 and Pack83. The

given in detail by Schatz and Kuppermann
complications come from the angular momentum terms of the kinetic

energy. The angular momentum contribution to the kinetic energy in mass

weighted, space fixed coordinates is,

N 1 3
a a
K. = + ,
Ang 2 uR? 2ur? (11.54)
a a

where la is the orbital angular momentum operator for arrangement a, and

-

ja is the diatomic rotational angular momentum operator for arrangement
a., First, we need to convert from a representation in terms of 1, and

ja to a representation in terms of ja and J where J is the total angular

momentum operator., The lg operator can be written in terms of the J and
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ja operators,

I
tig T (b3, + ig =9

1,=3-3,]°=1
Next 3 and ja need to be expressed in terms of the body fixed
coordinates. Schatz and Kuppermann32 give a detailed table of angular

momentum operators in both space fixed and body.fixed coordinates. The

result is that the angular momentum contribution to the kinetic energy

becomes,
52
ABF a 1 A2 Az -~ ~ A_ A+ A+ A_
K = — 3" +3- =25 .3, - (. I +35. 3],
Ang 2ur§ 2uR§ a al" 2 a a a a (11.55)

where thé + and - indicate raising and lowering operators in terms of
the body fixed coordinates. The terms with the raising and lowefing
- operators, which coﬁnect adjacent QZ states, are due to centrifugal
coUpling.from oﬁr conversion to a rotating body fixed coordinate system.

The potential energy is only a function of the relative positions
of the three atoms determined by the variables T Ra,'and Yas i.e. the
potential onl& depends on the shape and size of the triangle formed by
the three atoms not on the orientation of the triapgle in space. As a
result, V doesinbt couple diffgrenc Qa. The fact that the only off
diagonal contribution in Qa of the body fixed Hamiltonian is due to the
centrifugal coupling is the basis for the cdupled states approximation
to be discussed below.

Now, we are ready t§ give the body fixed three dimensional
representation for the coupled equations for the nonreactive
wavefunction given in eqan. (I11.6). Starting with eqn. (II.6), we first

express the body fixed position representation,
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T ~
fardardar! AR TIR RS S PO PIRS TR VeI TRl [ PPN
a a a nf a a a a. a a

R > 0 (11.56a)

where the superscript 3 indicates the entire three dimensional space

spanned by the vector, and using eqns. (II1.52) and (II.53),

ay]<d [r2r3 = sr-m) AL Z ) (e L6 L0
a n 2 MQ
f 8w
¢ .., (")
v'j a
Y~v ( '7' a~a ’
JaQ; Ya ¢a) r'
» a
e dr - B3 - a(r, - TR - E'){-ﬁ—<——1-—23 R+ L 2, )
a a aa a a a a 2u°R 2 "a r 2 "a
aR a dr
a a
2 .
Ja 1 - -~ ~ L) A - -~

2 72 . .=t T+ -
* 2 + 2[J +Ja 2JaZJZ (Ja Ja + Ja Ja)]+v(ra’Ra’Ya)’

J+1 J
D, (¢ ,8 ,0) Y. (y_,¥)
i 8“2 MQa a’ a JaQa a’’a

¢ ., (r) Jv j R
Vi, al o ata a(R ).
———— n a

r R i (II.56b)

Substituting eqn. (I1.56b) into eqn. (11.56a), we obtain,

¢, (r)
32 (23*Ly I vijl''a
fdradRa ( 2) MQ'(¢ e 0) YJ va(Y ‘P )_______
8w a a r
a
2 2 j - -~ A
K 1 3 1 39 .
FE: (SR +——r) 4+ (3% + 3% -23
2u "R aRi a ra ari a 2ur2 A

-+ T+ - J
=3, . 0, 3] + V(e R LY - E] DMQa(¢a,63,0)
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¢ . (r) Jv i Q
Yo o (v, Yala ® % 28 %) =0,
Ja*a raRa ala“a (I11.57)

where dRi indicates integration over only the angles ¢a and ea not over

the radial distance Ra‘ Now, we define the centrifugal coupling matrix,

j v -~ ~
a a 2 ,2J+1 J 2 2
QaQ; b B V'IdRa ( 2) DMQ;(¢a’ea’0)[J + ja

a“a’ a a 8w

c -2
(U g = (KR D™ 6

-~ Y Y - - EN J

; : + T+ °-
-23..J,- (] adat i Ja)] D

e (4,,8,.0)

MQ a
a

R-Z

2 .
a j jr,v.v! {GQ Q'[J(J+1) - ZQa M ja(Ja+l)]
a'a’ a a a a

- 69a+19;[J(J+1) - (@ +D]5, G+ - 2 (2 +1)]

(I1.58)

- dna_IQ;[J(J+1)'— Qa(ﬂa—l)][ja(ja+1) -2 (2 -D].

The centrifugal coupling term is the only term in the Hamiltonian which
couples different Qa states, but it does not couplé different diatomic

vibrational, V., Or rotational, j,» states. Next, we define the

potential coupling matrix,

Q ¢ ,.,(r)
(Up)va. gtit = 2% GQ.Q, fdr3 Y,,Q,(Ya,wa) Vala 2
ata*Yala K a a Ja*a r, (1I.59)
¢, 3 (ra)
[V(Ra,ra,Ya) - va(ra)] Yj Q (Ya,wa) a“a ,
a a r
a
where va(ra) = V(Ra >, T, Ya) which is independent of Y,. The last

matrix that we need to define is diagonal and contains the square of the

wavevector for translational motion,

v j 9
2, a'a a 2

a“a a’ a’a a a~a (1I1.60)



where Ev.j is the eigenvalue for the isolated diatomic motion,
a“a

S ¥ (r)] (Y_,9) (t) /
- —_—r + + v (r Y. Y .V $ . (r r
2ura 3:2 a 2ur2 a a JaQa a’‘a’ v j " a a

a a
=€ . Y (Y ,¥)¢ () /T .
Vala JaQa a & Vil @ a (11.61)

Now, we write eqn. (II.57) in matrix form using eqns. (II.58) - (II.60)
where each matrix is square in the combined indices, i.e., (vajaﬂa) by
(véjéﬂé), éccounting for the delta functions as needed,

2 0.J
d f (Ra)

7T -k + US + UP) ofJ(Ra) .
dr (11.62)
a
In section lc above we outlined how to pick the asymptotic boundary

conditions for the open channel part of the wavefunction. Here, we will
specify our specific boundary conditions for the closed channel part of
the wavefunction. There is some freedom in picking the two linearly
independent asymptotic solutions since different linear combinations
will work. While not important in the DWBA limit, the particular linear

combination will affect the form.of the zero order Greens function, see

appendix Il.a. Based on eqn. (I1.24), we specify sﬁ and cﬁ,

. exp(lkilRa
*n 'r—"']?:[iﬂ?—_ ’
a exp(—lk:IRa)
n |v|1/2 ’ (I1.63)

where Iv, was defined under eqn. (II1.25) and n is now a closed channel.
We solve for the nonreactive wavefunction by numerically
integrating the coupled equations, eqn. (I1.62). To do this we first

divide the R space into a grid of points. We start at the small R
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region and integrate the wavefunction outward eQaluating the
wavefunction at each of_the grid points. The wavefunction 1s integrated
between the successive grid points using Gordon's methnga.

Because of numerical problems in the integration, we stabilize the
integration at each point. We begin the integration by setting the
wavefunction and its derivative to the unit matrix. Then, we integrate
the wavefuné;ion outward to the next point. At this point we set the
wavefunccioﬁ back to the identity matrix by dividing out the
wavefunction matrix, rl,‘and we store the T, matrix that we divide
out. We propagate the identity matrix to the next point and repeat the
process until we have reached_ﬁhe final point. These matrices that are
stofed are the ratios of the wévefunction at a point p to the
wavefunction at a point p-1, T, = of;ll ofp. At the last point we apply
the boupdaty conditions to determine bK which only requires the ratio
matrix at the last point. %% 1is used in eqn. (II.24) to generate the
normalized wavefunction ét the last point, ofN. We multiply the
bwavefunction at. this fin;l point by the inverse of the ratio matrix at

that point to generate the normalized wavefunction at the previous point

and so on,

(11.64)

This process of propagating the identity at each point and storing the



ratio matrix is much .stabler for integrating the wavefunction which has
exponential contributions which are inherently unstable to integrate.
c. Explicit form for the DWBA - CC scattering matrix

In section 1d we derived an expression.for the DWBA limit of the S
matrix.v Here we will write the explicit expression for three
dimensional A + BC scattering. 1In the following section the symmetry
decoupling for the H + Hy reaction 1s discussed.

The expression for the DWBA limit S matrix is given in eqn.

(11.45),
DWBASba J - 21 5 (6 '_10Kbb')—l ,'Rkb?, (8 '_ioKaa')-}"
nfni nttgre mm mm nfn n''n mm mm' “n ny

where n énd m now represent the collective index (v,j,Q). We discussed
in the previous section how the zero order K matrices, ngg. and oKﬁ;.,
are calculated from the solution for the zero order wavefgnction. What
remains is to give an explicit expression for the evaluation of the
reactive DWBA K matrix which is defined in eqn. (II.35). Taking the
position representation of the reactive part of eqn. (II1.35) and using

eqn, (II1.18), we obtain,

ba _ 2 b J ba jo.a J
lﬁ(nvvnvvv "-K z' < fnv ml an' n'<-n"'>
nn
2 o,b J biro ¢,a a a o.,a J
K Z'( fn"¢n|<¢n|[va'¢n'> - zo |¢n0> vnon']| fn'+n"'>
nn n
2 3 3 3 3 o b J 2.3
= 5 de drb drR’ dr m}\: <R r IR (R )¢ C(RyTy
a 2. 3,,a o.a J
v (R r v )8, (Rr)) - 1 L0 RET Voo PE L (R

n
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2 3 ~o.b J b, 2 3
S de dra ni' fn"*—n(Rb)[d’n(Rbrb? Va(Ra’ra’Ya)
(I1.65)
2 3 o.aJ
¢ (Ra a) - ): 4’ (Rbr )¢’ O(Ra a) nOn ] fnvmvvv ’
where we have made use of <Rgrg|R3rg> = G(Rgrg - Rgrg). The coordinates
grg and <R 3 are not 1ndebendent since only 6 coordinates are

required to specify the entire space.
If we explicitly write the differential in éqn. (11.65) in terms of
polar coordinates for our body fixed coordinate system, we obtain,
/ Ri dRaj ri dr; [ sin 6,d6_ / dé_ [ sin v, dv, / dw .
- ' (11.66)
The coordinates Ra,'ra,'and Y, specify the ‘size and shape.of the
triangle formed by the three atoms while ea; ¢a,vand wa specify the
orientation of. the triangle. Since the potential v, depends only on the

coordinates Ra, r

a» and v,, the integral over the 8_, ¢_, and v,

coordinates can be done analyticaliy. Let us consider the part of the

integral over the ea, ¢a; and ¢; coordinates,

: 23+1, J
[ sin ©_ do_dé_ dv ( ) Dyq €6.,6,,0) Y. o (¥;,%)
a a a a 8ﬂ2 Mﬂb a Jbﬂb b’ "b
Dyg (6.,8,0) Y. o (v, ) = B o (cosv,) P o (cosy) (25
a Ja a Jb b Ja a 8w
(11.67)

J J
[ sin 6 do_de_ dy DMQb(¢b,6b,wb) DMQa(¢a,ea,wa).

where PjQ(COSY) is the associated Legendre polynomial which is related

7

to the spherical harmonics by,
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Piglcosy) = (2m 1'% exp(-1a9) ¥, (¥, W),

and we have used a relationship for the rotation matrices that follows
from their definition. By converting the rotation matrix in the b
coordinates to one in the a coordinates and using ortogonality'of the

rotation matrices, the intergral in eqn. (II.67) can be done

analytically,
(11.68)
2J+] J J o
8 b a b a
»> +>

where d%bna(A) = D%bga(O,A,O) and Aba is the angle between the Rb and Ra

vectors.
We also will, for convenience, change the integration in terms of

R r_, and Y, to an integration in terms of Ra’ Rb’ and Aba' the

a’® "a

transformation between these coordinates is,
r = ( 2 + cos R2 - 2 cos cos R )1/2/ cos
a Rb %a “a %a Aba Rb a %a’

cos Y = (R cos - R, cos & )/(r sin ),
a a aba b ba a aba (11.69)

where 1/2
. cos G =" {mb ma/[(ma + mc) (mb + mc)]} ,
with Na between ®/2 and w. Using this transformation, we obtain,

(11.70)
ba®

2

2 -3 2 .
dra sin Ya dYa + sin aba fRa dRaRb de sin Aba dA

2
fRa dR_ r,

Using the analytic integration given in eqns. (11.68) and the
transformation given in eqns. (I1.69) and (I1.70), we can now write

K from eqn. (I1.65) as,
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R, ba 1 -3 < L
K vv ver = () sin L f R dR f R, dR_
n''n ! _ %ba nn’ 0 a a0 b b (11.71)
obJ | o.a J
fn"*n(Rb) win'(Rb’Ra) fn'*n"'(Ra) ’

with

J
2. (8pa) Py g (cos ¥y)

J m ,
W (R ,R ) = [ sin da; {4
nn' Rb’ a 0 » Aba ba bl % C(11.72)

o - (rb)/rb[[V(Ra,ra,Ya) = v (£ )] Pyig(cos v)

vbe a a
¢ ,..(r) 2 ¢ g.0(r)
V.3 a  _ h vyj a
a“a ZO X" PjQQQ(COS Ya) a“a Vnon,]}.,
r n® ° aa _ T

where the transformation for ;he b channel variables to Ra, Ry Aba is
analogous to that above in eqn. (I1.69) for fhe a.channel.
d. Symmetry decoupling.

For a collision of an atom‘with a homonuclear diatomic molecule,
there 1s ﬁo céupling in the nonreactive wavefunction.between the even
and odd rotational states. Thus, one can solve the nonreactive coupled
equations separately for the even rotational states and tﬁe odd
rotational states. This uncoupling does not hold for the full
wavefunction though. So, after solving for the even and odd nonreactive
wavefunction, the DWBA calculation is performed with the even - even,
odd - odd, even - odd pairs of wavefunétions. Because of the reduced
dimensionality of the three separate calculations, this represents a
considerable savings in computational effort.

Parity decoupling is another importanc property which results in a
considerable savings in computer effort. The parity operator P inverts

all of the coordinates through the center of mass,



- > > +> >
P w(ra,Ra) = Y(-ra,-Ra) ,
(11.73)

where Y is the wavefunction. For a triatomic system the parity operator
commutes with the Hamiltonian, so we can construct simultaneous
eigenfunctions of H and P. This is somewhat complicated since the
wavefunction in eqn. (I1.50) is not an eigenfunction of the parity.
operator except for J é.O. We will only outline here how the parity
-eigenfunctions are constructed. More details are given by Schatz and
Kuppermann32.
Parity eigenfunctions are constructed by taking a linear
combination of our previous solutions from eqn. (I1I.50),
NI DIEE N i IR C PR C I ) e
such ;hat
. J
P

(f B =+ (-7 ¥5 (F R
MEar e T T (= JM(ra’Ra)'

This is equivalent to taking linear combinations of the Qa and -Qa

radial solutions with the identical expansion functions as in eqns.

(11.50) and (11.51)32. In the coupled equations for these parity

eigenfunctions, the centrifugal coupling matrix, eqn. (I1.58), needs to

be replaced by,
jv _
@2 - Raz 8, 1y yr18g g IQI+D) - 2n§ +5_(3,+D]
a a JadaVaVa a'a . (11.75)

- b, Gna+IQ;[J(J+1) =@+, (G +1) - 2_(2_+1)]

0y
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a

with
1,
ba =72 ,
o,
and
1,
c =72,
a
o,

Then we can proceed as above to
following our description above

(11.75) - (11.77) that there is

42

g -1 IO = 301G - ,@2,-D),

Qad); (11.76)
a= -1

@ >1 or Q <-1;

a a

Qa=1; (11.77)

Q =0.

a

generate nonreactive parity eigenstates
in section 2b. Notice from egns.

no coupling beiween states with Qa »0

and Qa < O,vso these two sets can be solved independently.

- The solution for the parity representation R matrix is equivalent

. J :
to that in eqn. (II.71) except that the dg q (4) in eqn. (11.72) is
- : ' b a

=-J
replaced by dﬂbn (4),
a

Q
J ’ a J
dg g *+ (=) T dg o, 950, 2505
: b a b a
1 J Qa J
75 (dg @ + (1) " dg o), @30, 20 or =0, 25>0;
b a b a
—-J _ J _
dg g = dpgq » %=90,
a b a
: Q
J a ,J
dag -~ (-1 " dg o » 90, 20,
b a b "a
0o, Q_b<0, Qai) or Qa<0, Qi>>0 .

(11.78)



Note that the matrix element for the parity conserving K matrix is zero
if one of the 2's is nonnegative and the other R is positive. Thus the
uncoupling in the nonreactive parity eigenstate wavefunction also
carries over to the calculation of the K matrix unlike the even - odd
uncoupling discussed above. Finally, linear combinations of the parity
conserving S matrix elements are used to constuct body fixed helicity

scattering matrices,

_Jv, ] _Jv. j -9
1 g b b"b +5 pbTb

5 (s - . ), 2.8 >0,
v i Q v j Q
a“a a a“a a
v ] IQ ' _Jv. ] —|Q ‘
%-(S b’bl bt S b"b I'b , Qagb <o,
sba J _ vaJaina' vaJa-IQa‘
TeMy N N
= # = #
75-8 ' R Qa 0, Qb 0 or Qb 0, Qa 0,
v j R
a’a a
v 3.8
3 b'b b , Q = Qb - 0.
v 3,98 a (11.79)

e. Coupled states approximation

The coupled states or i, conserving approximation is based on the
body fixed Hamiltonian being nearly diagonal in {, see eqns. (I1I.57) and
(11.58). Several authors® 87 have sthn that accurate reactive
scattering cross sections can be obtained from the jz conserving
approximation while saving a large amount of computational effort. Its.
success seems to rely more on the dominance of the @ = 0 states than to
the decoupling of different Q states. § =0 states dominate in systems
with collinear minimum energy paths, since only @ = 0 states are nonzero
along the collinear path, which leads to much larger reactive

contributions for Qb = Qa = 0 than other transitions. Our application
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of the coupled stétes approximation uses a basis with only Qb = Qa =0
following Schat287. -This-gives basis sets which grow linearly rather
than quadratically with the value for total J. The transition
probabilities which we obtain with this basis are assumed to equal the
values of the'degenerécy averagéd transition probabilities defined
below. It would probably be more accurate to calculate transition
‘probabilities for other fixed Q's assuming no coupling between different
Q's as some previous calculations have been done8+80  This would giQe
a full set of transition probabilities to degeneracy éverage but would
be much more time consuming.
f. Célculation of differential and integral cross sections

Here wé outline the derivation of the formulas for the differential
and  integral cross sections in terms of the body fixed S matrix
elements. More details can be found in ref. 32. Here we will ignore
the antisymetrization for the identical nuclei of the diatom. We will -
use an axis for projecting the angular momentum that points toward the
incoming or outgoing atom for the reactants and products respectively
rather’than using the initial or final wave vectors as is done in ref.
32.

In order to obtain cross sections, we need to relate our solution
to a space fixed scéttering amplitude, F. The differential cross
section, which is the ratio of the outgoing radial flux per unit solid

angle to the incoming plane wave flux, is given by,

b
v
b n' ba {2
on?n(e) Y IFn'nl ’
(1I1.80)
n

where v is the velocity in the physical, non-mass weighted coordinates,
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(11.81)

where c, and u,, . are defined in eqn. (II.47). Schatz and kuppermann32
go into great detail relating the wavefunctions for a space fixed

helicity formulation to the body fixed wavefunctions.. The resulting
relationship for the scattering amplitude in terms of our.body fixed S

matrix is,

a iQ ¢ ..
ba Va \1/2 e 23 1370yl J ba g (1182
n'n ( b ) —a 1 L (23+1) dQ Q (eb) Tn'n ’
Vo 2kn J=0 ab
where ba J ba J
-T ] - 6 1 S 1] ’
a'n n'n n'n

and 6, is the scattering angle which is measured relative to the body
fixed axis in the reactant channel and n is the combined index, vjqQ.
Using eqns. (I1.80) and (11.82), the formula for the differential cross

section is,

ba —a
on’n(eb) - (Akn

H7H 1 s 6] o o 13 |2
J=0 anb (11.83)

Integral cross sections are found by integrating eqn. (II1.83) over eb

and ¢,. Because of the orthogonality of the aJ functions, the formula

for the integral cross section fs quite simple,

ba _
n'n

(- 4
(/&) 1 aaen) |08 J)?
=0 (11.84)

Q

We also present transition probabilities which are just squares of the S

matrix elements,

ba J ba J2
o= s 7
n'n n'n

(11.85)
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Degeneracy averaged values are defined as sums over final Qj and

averages over initial Qj,

1 T I Pi
Qo
J 3

with |9j‘ < min(j,J) and |Q'| < min(j',J). There are similar
b

= (23+1)° |
) L L L 'Q' Q
v j DVJ j ’vj ’ (11'86)
expressions for degeneracy averaged differential and integral cross

sections.

3. Details of the formalism for the collinear exact studies on H + Hy
a. Coordinate representation for collinear H +.H2 scattering

Two coordingtes are needed to describe a collinear A + BC system.
For each arrangement we pick for our coordinates R, the distance of
atom A to the center of mass of BC, and L the distance of atom B to
atom C. Based on these coordinates, the position representation of our

wavefunction becomes,

1 1 9 (11.87)
b> = I ¢n(r1) f b(Rl) + Z' ¢n,(r2) £ ' b(RZ)
{ n, n nen, n n'en,

¥ L (R,r) = <rR| ¥ 2
a ‘ :
where ¢2 is the asymptotic n th vibrational eigenfunction for
arr#ngement a. Note that each term of the expansion for the
wavefunction has the appropriate coordinates for the particular
arrangement., For co;linear A + BC there are only two asymptotic
arrangements possible, A + BC and AB + C. The two sets of coordinates

(rlRl) and (r2R2) are not independent. They are related by,

m
(o4
rC = Ra‘ - (m.bﬂnc) ra

’
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m mb(ma+m

) R bmc)

R, = ( a + (ma+mb)(mb+mc) Tao

a
Ma ™y (11.88)
where atom a or atom c is the asymptotic free atom for that

arrangement. Therefore, we may pick any pair of the four coordinates to
be the independent variables. Later we will find it convenient to pick

Ry and Ry as the independent variables.

The position representation of the collinear Hamiltonlan is,

. . g2 a2
H(r ,R ) = <R_,r_,[H|R r > =<R_,r |R > -
a’ a a' a a a a' a a a 2 2
abc 9R
a
2 2
] 3
- — + V(R _,r )],
zubc ari a a (11.89)

where Yab and Wy are defined in eqn. (II.47). The position

c

representation of the various parts of the Hamiltonian defined in eqn.
(1I1.13) are,

2
-
2uabc R

[

K(Ra) =

PN

V(R ,r) = V(R_,r ) - v(r ),

i a2

2 bc 9dr

|

h(ra) = + v(ra),

N

(11.90)

where v(r,) = V(R +=,r,) and ¢ﬁ(ra) is an eigenfunction of h(r,) with

a
n*

eigenvalue €
b. Solving for the nonreactive wavefunction
The coordinate representation of the coupled equations for the

nonreactive wavefunction, eqn. (II.6), is,

fdr' drR' dr_ dr_ <R''[<6? [c!R'> <r'R'|ﬁ - E[r_R>
a a.a a a nfaa a a a a
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<r R_|02>[°€2, > = 0. |
aabmtontmy (11.91)

Making use of eqn. (fI.89), eqn. (II.91) becomes,

o 2 2 2 2
-H 3 K 3
Jar I ¢ (r)) [ - + V(R_,r_) - E]
a n Neg @ 2uabc 8R2 2ubc Brz a a
a a
a o.a
¢ (r ) °f (R.) =0,
n a n"ﬂi a (11.92)

or making use of the fact that ¢(ra) is an eigenfuhctioh of h(ra) given

in. eqn. (I1.90) and of the definition of Vi, in eqn. (II.16), we have,

n
['“2 <& £ %% R +Ivd %% (R) =0
2¥,3be dRi nooongmy n fgn nemy @ o (11.93)
with Eﬁ = E - san.' We numerically integrate the-coupled_equatibns in

eqn. (I1.93) to obtain of, by dividing the Ré.axis intb an evenly spaced
grid and integrating the wavefunction from poipt to point. In order to-
calculate the Greens func;ion matrix, we need both the regular and
irregulaf nonreactive wavefunctions. The regular solution goes to zero
at the origin while the irregular solution exponentially grows as it
approaches the origin, Also, because of the way we pick our asymptotic
boundary conditions, the closed chéﬁnel part of the nonreacﬁive regular
wavefunctioﬁ grows exponentially“as it approaches the ésymptocic region
while the irregulaf wavefunction exponentially decays in the asymptotic
region. For stability the regular solution is integrated outward
starting near the origin, and the irregular solution is integrated
inward starting in the asymptotic region.

Our integration method is based on the renomalized Numerov

88,89

algorithm . Before giving the details of this integration

i
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procedure, it is convenient to first write eqn. (II.93) in matrix form

for the vibrational state indices,

2
(1 -5 °tm® = ) °g(wr),
dR ‘ (11.94)
where zuabc a a

Q(R) = (-—:;{") Yy -E),

and [ is the identity matrix. A three term recurrance relation provides

the basis for Numerov.integrationsg,

o o
f~n - (ZL + logn—l) £n--l C] Zn--2

(L - 1)

with o o
gn B £(rn)’

and h2
’];ﬂ = (1_2-) Q(rﬂ)’

where h is the spacing between the grid points and r, is the value of R

at the n th grid point. We define a matrix F,

I S
(I1.96)
Substituting eqn. (II1.96). 1into eqn. (11.95), we obtain,
o o ' o
F %6 - (120 - 10F_ ) %6 +F £ =0. |
=m = on—-] sn-] sn-2 sn-2 (11.97)

If we multiply eqn. (11.97) from the right by °§;ll and rearrange, the

resulting equation is,

R =(l2L - IOF . -F _ R ) E ,
n sn-] n-2 s=n-—-1 n (11.98)

where



50

Eqn. (11.98) is the algorithm we use to propagate the regular
solutien outward from the origin. At each grid point we calculate and
store the ratio matrix, Rpe As in the case for the three dimensional
DWBA calculation described in section 2b, where we also calculate a
ratio matrix using a different algorithm, this integration can be quite
stable if enough grid points are used. With the boundary conditions and
the ratio matrix in the asymptotic region, the O& matrix can be
calculated. We can then calculate the normalized wavefunction from eqn.
(11.24) at this final point, N. By multiplying with the ratio matrix at
‘this point, we get the wavefunction at the previous point and so on

until we have generated the normalized wavefunction at all of the grid

points,
(o] [o]
-1 7 By Anoo :
. (I1.100)
o * o
£, =R L

As we show below, we only need the inverse of the ratio matrices of the
irregular solution to calculate the Greens function matrix rather than

the normalized wavefunction. Rearranging eqn. (11.98), we obtain,

Ry = (20- DE ) - E B DT E L,
(11.101)

where the 1 indicates the irregular solution. The algorithm in eqn.
(I1.101) is used for the integration of the irregular solution inward
from the asymptotic region. The initial ratio matrix g&l is obtained
from the boundary conditions which we discuss below.

To calculate the Greens function matrix we also need the log



derivative matrix at each of the grid points. The log derivative matrix
is defined as,
Wr) = g () £ ),

(11.102)
where g'(rn) is the derivative of f with respect to R evaluated at r..
We calculate the log derivative matrix for the regular and irregular
wavefunctions as we propagate the ratio matrices. Making use of
quantities which are already calculated, the log derivative matrix is

calculated from88,

-1 -1
y(r ) =h (A R -A R _.)F,
‘ n sn+]=n n-lsn-] n (I1.103)

where y(rh) is the log derivative matrix and ,

A~n=L‘O.5 En.

In section lc we derived the asymptotic form for the open channel
part of the norireactive wavefunction which is given in eqns. (I11.24) -

(II1.26). Here, we specify that for the closed channels,

k2R

n a
2 - €

’
n |2v|1/2
a

a —knRa
c , (I1.104)
n |2v|1/2

where eqns. (II.24) and (II.26) still hold and ki and v are defined
under eqn. (11.25). We were free to pick various linear combinations of
these two linearly independent asymptotic wavefunctions, but this

particular choice ylelds a convenient form for the Greens function

51
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matrix as we show in appendix I1.A.
c. Calculation of the S matrix
The form of the S matrix in terms of the reactance matrix, K, is

"given in eqn. (II1.33b),

g = (L+ 1% (1 - i)™

’

where these are ﬁatrices in the combined indipes of the arrangement and
diatomic yibratibnal state; and the oo lable on the K matrix 1ndicates
that the indices only range over the asymptotically open channels. It
remains to explicitly specify how the K matrix is calculated. We begin

by taking the position representation of eqn. (11.29),

o 2 : ' "« o
= + = £
ana, n, Kanaini h dea"dRa0 n'nF'no < fanaf'n"'Ra">
a'avtao
. -1 .
§ + - I ° :
<Ra",( bmb'm' Sbmb'm' %m0 wbmbom0 Cbomob'm')a"n"aon0 RaO>
' o.
'<R'0 W oo o0 £ 4 ’ :
a’l“a“n"a'n a'n'a n, (11.105)

-where a's and b's are arrangement indices and n and m are indices for
vibrational expansion functions. We have discussed in sec. 3b how to

calculate °K. While we will not indicate it with our notation, it

[o}

should be remembered that K, 0f, and %G are diagonal in arrangement

index and W and S are off diagonal in arrangement index. Let us first
consider more explicitly the final term of eqn. (II.105) making use of

the definition of the W kernal 1in eqn. (I1.18),

R <k;0|<¢ii|[63,¢2'> oga’ >

<R'{W_0 0., o
anaini

0 5
a‘n"a'n' fa'n'a n
i
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Iofana n >1

a' a'
= |¢n'> Vn'n
n' i

v a0 -
fdr o dr_o dr_, dra,<Rao|<¢nflRaorag><Raorao|[Va,lRa,ra,>

a' a'. a' o.a'
<Ra,ra,|¢n > - E' ]Ra,ra,><Ra,ra,[¢n,> v, ] fn,ni>

0 -
fdr o 8(R%g = R 0) o (r_0) [V_, (R ..t ) ¢3(r )

f
a' ' o
- Z, ¢n'(ra') Vn'n] fa'na n (Ra')
n ii
-ara0 al a'
= Jar, 5 ¢nflrao<Rao.Ra.)1{va.<Ra.,Rao>¢n [r, (R 0,R, )]

a' a'
-z ¢nv[rac(RaO9Rav)] ann

n' ii (I1.106)

where
arao mb (mao+ mb+ ma,)

8ra' (mao+ mb)(mb+ ma,)

which follows from eqn. (II.88). Now we define a W matrix by,

W

t - a \i ? a' '
ana'n' OR) = ¢ [ (R,RDI[V_(R,R") 6, [r_,(R,R")]

- 3ole  (RRD] V3g ] .
nt o2 nn (11.107)

Next, we consider the position representation of the inverse operator.
We construct a grid for R vs and R, e with indices, 1i'' and i°,
respectively. Then we can consider the position representation as an {,
i' element of a matrix representation in R space. By considering the

summation in eqn. (IL1.10) from which the inverse operator is defined it
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can be shown that,

i o o - i
Ry |(Gbm b'm' * Spmb'm* boio ¥ b 00 Gbomob'm')a"n"aonolka0>
(1I1.108)
=(6 + S - I <Rj W 0 0G 0 'Rj'>)—
bmjb'm"j" bmjb'm'j' o 0 b bmbm bomOb'm' ! Tb aé'g'éi"’
s ' a'n i

where the'matrix inverse of the right hand.side of eqn. (II.108) 1is over
the combined index, bmj, where b is the arrangement index, m 1is the

- vibrational state expansion function, and i is the 1nde¥ for the R

grid. Looking at the overlap_matrixvin the second term of eqn.
(11.108), it_canvbe written more explicitly using its definition in eqn.

(11.22) as,

RIPRIPCHNN S
- <Ri{<¢ml¢m,>lgj,>

Sbmjb'ﬁ'j'
_ : j
= [dr dr_ dR', b1 <R |<¢ |R r ><R T, [R T >
. b' b'
<Rb,rb,|¢m,>]Rj,>
_ b b i
= Jdr, &(rp) ), (r, ) <R, [R}.>
Ty J o j
Sy iprrsr = ¢ [ty (Ry SR .)] ¢ .[r (R ,R )],
bmjb'm’] aRb b (11.109)

where 3rb/3Rb' is given below eqn. (I1.106). Lastly, needing a more
explicit form for the last term in eqn. (I1.108), we obtain,

ar

b i
<®y b' 3K, Whmb 0m 0 (R s Ry, 1)

o i's =
Wyb0n®  Cp0pOprge IRy > = JdR



OG 0.0 (R Rj')
b 1] 1 't b' ’
m°bm’ b (11.110)

following similar steps as those in eqn. (I1.106) where Brb/aRb. is

given below eqn. (I1.106). The Greens function matrix element,
o ! _‘ o 3
Cbomobvmv(va’va) = <va Gbomob'm'le'> ’

will be discussed more below.

The variables, R,. defined in eqn. (II.110) and R defined in eqn.
(I1.106) will also be placed on the same grid as discussed above. The
four intergrals in eqns. (II.105), (II.106), and (I1.110) are all over
variables defined on a grid. We will perform these integrals using the
trapazoidal rule which seems adequate although other quadrature methods

could be used. We can rewrite eqn. (I11.105) in explicit form,

' z
o 2 0 ©
= K +=n'n""'n’ °f (6, . ot S .
ana n, ana n, h a'a''al ana''n''{""' bmjb'm'j" bmjb'm'j"
i'i"io
. 1 (11.111)
- b0£0~0wbmjb0m0j0 Gbomojob'm'j')a"n"i" waonoio fa'n'i'aini°
] : aOnOiO a'n'i'

We have found that the grid to do these integrals need hot be as fine as
the grid for the integration of the nonreactive wavefunction. We
;herefore have two grid sizes with an integer factor relating them.
Also, W is localized in the interaction region, so these integrals need
not extend out to the asymptotic regon. We cut off the integrations at
a point where there appears to be no further contribution to the
integral. We give the details about the grid sizes with the results
below.

All that remains to be specified about the calculation is the

computation of the Greens function matrix. The derivation of the
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equation for the calculation of the Greens function matrix is given in
appendix I1.A. The result from eqn (II.A.20) is that the distorted wave

Greens function matrix can be found from,

(II.112)

o(‘;(rn’rn' - :i§ Bael Basz oo Boo [og,(rn') °f 1(rn')
- Og'(rn.) 0g—l(rn.)] Lor o« T,
and
°g(r ot o) = :if SRS SOl O ST TP B I
- og'(rn..)log—l(rn.)]-1 s ';ﬁ >,

where °g is the irregular nonreactive wavefunction. We have discussed

the calculation of the ratio matrices, R for the regular nonreactive

n®
wavefunction in eqn. (11.98) and the inverse of the ratio métrices,
g%’l, for the frregular nonreactive wavefunction in.eqn. (II.101). The
quantity in square brackets in eqn. (II.112) is ;he difference between
the log derivative matrices for the regular and irregular solutions
_ywhich we show héw to calculate in eqn. (II.103). We could also have
Célculated the distorted wave Greens function ﬁatrix from the normalized
regular and irregular nonreaqtive wavefunctions father than from the
ratio matrices and the log derivative matrices. The formula for

calculating the Greens function matrix in eqn. (II.112) without the

nonmalized wavefunctions is numerically much better behaved.

C. Results and Discussion
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1. Multichannel DWBA for three dimensional H + Hz'
a. Transition Probabilities

In this section we present the degeneracy averaged reactive
transition probabilities for the H + H, (v,j) + H, (v',j') + H reaction

80

on the Porter - Karplus potential energy surface, and below we give

16 are available

the cross section results. Exact quantum calculations
for comparison which makes this a convenient test problem. First we
present the transition probabilities for total angular momentum, J = 0
to show how well the results converge with respect to basis functions at
different energies. Then we present the transition probabilities as a
function of J.

Using coupled channel DWBA, it was found for collinear H + H234
that accurate converged results were obtained when the reaction
probabilities were sufficiently small (£0.1). Our results here are very
reminiscent of the collinear results. Table IT.}! contains our results
with J = 0 for the reactive transition probabilities v=0, j=0 + v'=0,
j'=0; v'=0, j'=1 and v=0, j=1 * v'=0, j'=l. The results for E < 0.6 eV
converge with 18 basis functions (the specific basis used is explained
in the table). For larger energies the results show the same growing>
oscillations as the collinear results. This can be seen in Fig., 1I.1

J=0 is plotted as a function of basis functions for E = 0.65

where P
eV. The DWBA results are expected to break down at higher energies
where reaction probabilities become larger since the perturbation

assumptions are no longer valid. It is not clear, though, that the

growing instability is purely a result of this breakdown in the
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perturbation theofy. The fact that, as we see in the next section, for
collinear H + H, the full, the nonperturbative solution converges at
higher energies suppérts the argument that it is a breakdown of the
perturbation approximation. It also seems possible that.there is some
nonconvergence in the nonreactive wavefunction that is causing the large
oscillations. |

The “exact"” quantum results are also shown in Table II.1 for
comparison. The transition probabilities from v=0, j=0 =+ Q'#) summed
over final rotational levels are shown in Fig. II.2. These transition
probabilities also show good .agreement and similar ;rendé at high
energies. Other transition probabilities, not shown, have about
equivalent égreement. In Fig. 1I1.3 the transition probabilities
multiplied by (2J+1) at 0.5 eV as a function of J along with the exact
quantum and coupled states distorted wave results. The DWBA results are
converged ﬁo within several percent with the givén_ﬁasis. Both the
DWBA-CC and DWBA-CS results agree well with the exact quaptum results.
The DWBA transition probabiiities, though, decay less éuickly.as J
becomes larger. 1In Fig. I11.4, transition probabilities within the
coupled states approximation at E = 0.4 and 0.6 eV are plotted as a
function of J. The DWBA-CS results at these energies also agree well
with.the “"exact” quantum results although they seem to deviate slightly
more near the peak maximum. Again the DWBA results decay slightly more
slley with increasing J.

It is interesting to note that the DWBA transition probabilities as
a function of J agree better with the "exact” results at 0.5 eV than 0.4

or 0.6 eV. We would expect the agreement to be worse at 0.6 eV since



the perturbation assumption could be beginning to break down. It is
more difficult to understand the discrepancy between the DWBA-CS and the
“"exact” quantum results at 0.4 eV except that possibly the "exact™
quantum results are not fully converged. We have actually used a larger
basis at this energy than in the "exact” quantum results. If we use a
smaller basis in our calculation the agreement improves. It is
difficult though to really compare basis sets in the two different
methods.
b. Cross sections

In Fig. 11.5 the differential cross sections are plotted as a
function of scattering angle for a total energy of 0.5 eV. The solid
line indicates the exact quantum results. The DWBA-CC and DWBA-CS
results are plotted using the indicates dots. One can see that tﬁe DWBA
results agree very well with the "exact™ quantum results. In Fig. I1.6,
the differential cross sections are shown as a function of scattering
angle for total'energies 0.4 and 0.6 eV, The solid line indicates the
"exact” quantum results, and the dots are the DWBA-CS results. The DWBA
results at these energies are also in quite good agreement with the
"exact” quantum resuits. At E = 0.6 ev the DWBA-CS differential cross
section seems to die off a little too slowly at small angles and to peak
somewhat too high at 180°. It should be noted that we obtain
quantitative agreement in the differential cross section without any
normalization to the "exact”™ results.

In Table II.2 some integral cross sections are given for total
energies of 0.4, 0.5, and 0.6 eV. The integral cross section results

show good agreement between the "exact” quantum and DWBA results.,
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Almost all of the DWBA integral cross sections are higher than the
corresponding “exact” quantum results which may again indicate some lack
of convergence in the “exact” quantum results with respect to basis
sets.

For comparison, we will give relative computer times for the DWBA
and the exact calculations. Most of the computer time in the DWBA
calculation is involved in performing the integrals in eqns. (II.71) and
(11.72). We have not put much effort into optimizing these integrations
so that we avoid regions where there is little contribution to the
integral. With 16 basis functions, described in Table I1.1, and J = 0,
DWBA-CC required 19 minutes of computer time on a Harris H800 computer .
to evaluate the entire probability matrix. The “exact” qUantuﬁ
calculation with the same basis required 21 minutes , but the exact
quantum program is highly optimized to be as efficient as possible. The
DWBA-CS calculations is identicél for J = 0 with the DWBA~CC

calculation, but for an entire cross section calculation it requires

about 1/5 the time needed for DWBA-CC at 0.5 eV.

2. "Exact” collinear H + H, reactive scattering
Here we present reactive scattéring transition probabilities for

8 potential energy surface.

collinear H + H, with the Porter - Karplus
The asymptotic form for the vibrational potential energy 1is a Morse
function, so we therefore use Morse eigenstates for our expansion of the '
vibrational motion. We perform calculations over a‘large range of

energies from the deepest tunneling region to energies with 3 open

channels. We also present a comparison of our results with previous
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"exact” results on this same system.

We perform calculations with up to 6 vibrational states in our
expansion. Table I1.3 shows convergence with respect to basis set
size. Unlike the DWBA case described in the previous section, the
results here converge with respect to basis size quite well with 6 basis
functions even at higher energies. The convergence at the very lowest
eﬁergies and at 1.6466 eV is not as good as at the other energies. This
is still Being investigated. At no energies, though, do we observe the
oscillations that we found for the DWBA calculations.

We integrate the nonreactive wavefunction from 1.0 Bohr to 10.0
Bohr using about 500 grid points. The convergence of the integration
for the nonreactive wavefunction can be checked from the symmétry of the
nonreactive Greens function matrix. For the integration to obtain the S
matrix in eqn. (II.11l), we find that because of the limited range of
the exchange interaction, only the innermost 40 % of the region
contributes significantly to the integrals, and the rest of the region
can be ignored. Within this region we have used from 40 - 60 grid
points. In table II.4 we present results to show the convergence with
respect to this grid size. We see that for convergence to 1 - 2 % that
about 50 grid points are sufficient.

In table 1I.5 we present a comparison of our results with previous
"exact” quantum calculations. Throughout the entire energy range, our
results show excellent agreement with the previous calculations usually
within a few percent. We see that this method performs well with more

than one open channel, and describes the resonance region correctly.
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D. Conclusions

We have presented a formalism for performing "exact” scattering
calculations énd'coupled channel distorted wave Born approximation
calculations for reactive atom - diatom syétems. Calculations are
presented for “"exact” collinear H + H, reactive scattering and for three
d;mensional H + Hy reactive scattering using‘multicﬁannel DWBA. We have
shown that accurate reactive probabilities and cross sections are
obtained using this multichannel DWBA method for three dimensional H +
Hy. For total energieé up to 0.6 éV, the DWBA transition probabilities,
differential cross sections, and integral cross sections agree
quantitatively witﬁ the exact quantum results. We also infroduce an
approximate method for obtaining the nonreactive wavefunction using the
coupled states approximation which saves considerablé_compqtétional
effort with very good results. Above 0.6 eV, where the reaction

.probabilities become larger than about 0.1, the DWBA results do not
converge with respect to the addition of vibrational basis functions.
The convergence problem here 1is analogoﬁs to the equivalent problem
observedvbyvﬂﬁbbard; Shi, Miller34 using coupled channel DWBA for
collinear H + H,. For our “exact” collinear H + H, calculations we
obtain excellent agreement with previous calculations over a very large
range of energies. Over most of the energy range we obtain convergence
with 6 vibrational expansion functions.

The reactive scattering formalism which we present {is
straightforward to extend to any atom - diatom scattering problem but

numerical limitations need to be investigated further. Based on an over



63

complete basis, this method avoids all of the problems of finding an
appropriate coordinate system for the rearranging atoms. Our accurate
results for éollinear H + Hy, are encouraging. Using a DWBA version of
this formalism, we have obtained for the first time quantitative
agreement with the three dimensional H + Hy, results of Schatz and
Kuppermann;6 at low energies. These methods appear very promising for

obtaining quantitative reactive scattering results for atom - diatom

systems other than H + HZ‘
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Appendix II.A. Nonreactive coupled channel Greens function for

collinear H + H,. scattering

1. Form of the coupled channel Greensvfunction matrix

Here we present a derivation of the nonreactive Greens function
matrix specific for our calculation on collinear H + H2 reaétive
scattering. A more general discussion of coupled chénnel Greens
functions can be found in reference ). The nonreactive coupled channel
Greens funcfion matrix satisfies the following equation,

-_Mz 42 . .
(L (55— + ¥») - E] °G(R,R") = -] &R - R'),
I (II.A.1)

where these are matrices indexed by the asymptotic vibrational expansion
functions and Y(R) is defined under eén. (IT.16). The Greens function ,k
magrix is everywhere finite. ~The nonreactive Greens anCtion, like. the
nonreactive wavefunctioné, are solved for each arrangement separately.
Later, when put in a matrix in the combined index of arrangement and
expansion functions, the nonreactive Greens function mat;ix will be
diagonal in arrangement index.
The nonreactive regular, of, and irregular, og, wavefunctions are
solutions of the following coupled eq#ations,
g2 g2 | P£(R)
(L (55— + LWB - El { =0, |
dR g(R) (II.A.2)

with the asymptotic boundary conditions from eqns. (II.24) and (I1.26),
°£(R) ~ g(R) + ¢(R) °k,

and



%2(R) ~ ¢(R),
(I1.A.3)

where § and ¢ are defined in eqns. (II1.25) and (II.104).
For R' # R, it follows from eqn. (II.A.l) that °G is a solution of

the homogeneous equation,

2 2

- d o , _
(L (=5 ;;E) + V(R) - E] "g(R,R") =0.

For °G to remain everywhere finite, it follows from the boundary

conditions ﬁhat,

°G(R,R') = °£(R) A(R'), R < R' ,

and

°G(R,R") = “g(R) B(R"), R > R' ,

(I1.A.4)
where A(R') and B(R') will be determined by matching the solutions at

R =R'. °G is continuous at R = R' so that,

°£(R') AR') = °g(R") B(R") ,

or o -1 o o
B(R') = °g7 (R") °£(R") °A(R").
(11.A.5)
Next, we integrate eqn. (II.A.l) from an € on either side of R' to
obtain,
R'+€ _hz 42
lim [ 4R [} (55 =) + YR - E] °G(R,R") = - .
€ +0 R"'-¢ dr (11.A.6)

The terms involving g(R) and | go to zero as € goes to zero since OQ and

Y are continuous in R, but since the derivatives of °G are not

continuous at R = R', the term involving the second derivative of °G

does not go to zero. So, eqn. (I1.A.6) becomes,
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R¥E 2 42
lim f —E—'——E Q(R;R') = - L ,
e +0 R-e “Ydr
d°G(R,R") d°G(R,R") 20
Um  [—3 R=R'+€ dR R=R'—€] == 1L-
€ +0 h

Making use of eqns. (II.A.4) and (I1.A.5), this becomes,
(°g"(R") °g (&) °g(r") - °fr(r)] AR = 2,
h

- or 1

ar) = 22 %0ty %gTHRY) CE(RY) - % (R
(IT1.A.7)

where a primed function indicates the derivative with respect to R
evaluated at the indicated value. Combining eqns. (I1.A.4), (IL.A.5),

and (II.A.7), the expression for OQ becomes,

o : (11.A.8a)
°g(r,R") = 22 %e(r) (g (r") - %gr(r) %g (R °E(ROIT, R < RY,
| (I1.A.8b)
°G(R,R") = 22 %gr(r) [%g(r") * °f' (R °fTRY) gD, R > R
h . _
Starting with eqn. (II.A.8a), we define,
UR') = [°£"(R") - °gn(r") g tr") %grmy17h
(II1.A.9)
Differentiating || twice, it can be shown that,
Q"(R') = Q(R') og"(R') og-l(R'), ‘
(I1.A.10)
where we have made use of the fact that, |
trr(r) %£THR) = g (R %R = E (g - w(r)]
- ] g g “2 ~ Y] ’

which follows directly from the coupled equations, (II.A.2). It follows



from eqn. (II.A.10) that,

Q—I(R') [L"(R') = o&"(R') O%-I(Rv) = ___;_; [E - Y"(R')]’
or 2 2
(L (:%; —95) + Y(R') - E] QT(R')'= 0.
dr (II.A.11)

So, uT(R') is a solution of the coupled equations, and therefore it must

be a linear combination of the regular and irregular solutions,
gT(R') = °g(R') gt ®g(R") Sy

(11.A.12)

where ¢, and g are constant matrices. To determine 81 and Go» We

compare the asymptotic forms of eqns. (IT1.A.9) and (II.A.12). Making

use of eqns. (II.A.3), (I1.25), and (II.104), one can show that,

- ' -k
%1 0 and Sy = " L,
so that,
'
g (R") =-y:;°g(R')-
(1I1.A.13)
Combining eqn. (II1.A.13) with eqn. (II.A.Ba), we obtain,
o . -2 0 o t _, .
Q(R,R)='—H £(R) g(R ), R<R' .
(I11.A.14)

Following a similar development for eqn. (II.A.8b), it can be shown
that,
o . -2 0 o .t _, .
G(R,R') = = %g(R) °£ (R") , R>R'.
(I1.A.15)
2. Computational aspects

Eqn. (II.A.14) and (1I.A.15) provide a simple form for calculating
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the nonreactive Greens function matrix from the normalized regular and
irregular nonreactive wavefunctions. Unfortunately, though, the
calculation of the Greens function matrix from the nofmélized
wévefunctions is not numerically very stable. Now, we develop an
alternative formula for calculating the Greens function matrix.

We begin by rearranging eqns. (II.A.8a) and (II.A.8b) to obtain,

°G(R,R") = 22 %e(r) O£ R1%g (R °F NN () g1,
h
R <R', (II.A.l6a)
°g(r,R") = 222 %g(r) % RNDICE (R °F D% () %g TR,

h
R>R', (II.A.16b)

The last factor of both equations above Involves the inverse of the
.difference of the log derivative ma;rices for the regular and irregular
solutions. We have given an algorithm for the calculation of the log
derivative matrices in eqn. (II;103) which uses the ratio of the
wavefuncciop at neighboring points.

Next, we express °f(R) °§-1(R') and og(R) 0g-l(R') in terms of
ratio matrices. As is discussed in sec. 3b, the R coordinate is put on
a grid, and the. ratio matrix 1is calculated at each of the grid points.
To avoid confusion between a point on the grid and the ratio matrices,
points on the grid will be indicated with T rather than R . Using eqn.

(I1.100) we can show that,

o
£(rn) - 5n+1 EN £N ’
and
o, -1 o~1 -1 -1
£ 00 = "5y By Barer

(II.A.17)

where OQN is the normalized wavefunction at the last point, N, on the



grid and R is a ratio matrix at point n defined under eqn. (II.98).
There is an equation equivalent to (I1.A.17) for the irregular

solution. It follows directly for T < ro that,

o} o_—-1
f(r ) £ "(r_,) =R R *** R, .
n n n+] sn+2 N (I1.A.18)

Making use of the equation corresponding to (II.A.17) for the irregular

solution, with r > r . it can be shown that,

n

o o ~1 I -1 _1-1 I -1
g(r ) 'g (r ,) =R RO_,7 *** R, .
n n n n-1 n'+1 (11.A.19)

Combining eqns. (II.A.18) and (II.A.19) with eqn. (II.A.16), the

equations for the Greens function matrix becomes,

og(rn’rn') - :ig ls'n-H §n+2 "t By [og'(rn') ogl—l(rn')
- og'(rn.) og_l(rnf)]-l, r < T,
LSNPS S S e o S NP
- % ) % e 1T >

(I1.A.20)
Since the log derivative matrices can be expressed in terms of the ratio
matrices, the Greens function matrix can be calculated from eqn.
(11.A.20) without using the normalized wavefunction by using instead the
ratio matrices for the regular and irregular nonreactive

wavefunctions. In section 3b we discuss the calculation of ratio
matrices. Egqn. (II1.A.20) is the formula used for the calculation of the

nonreactive Greens function matrix.
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I1I1. Classical and quantum mechanical studies of HF in an intense laser

field.

A. Introduction .

Since the advent of high power lasers there has been great interest

91

in the use of lasers in chemistry. The uses have ranged from

92 to the control of molecular

dynamics.93 Experiments involving multiphoton absorptionga, overtone

sophisticated forms of spectroscopy

absorption95, and radiationless transitions from excited state596 have
allowed the study of new phenomena in molecular dynamics._ Also, laser.

pulses on a picosecond cimescale97

are allowing very fast processes to
be observed. Resultingly, cheqretical-efforts98 have turned toward
undersfanding highly vibrationally excited molécules which exibit
fundamentally different béhavior than the harmonic oscillator (normal
mode) view of ground state or very low vibrationally excited

molecules. High dénsities of states in even small vibrationally excited
molecules present a formidable but very important problem.

Here we examine a diatomic moiecule subjected to a picosecond (ps)
pulse of a very intense laéer radiation. A diatomic molecule has the
advantage of a simple and accurate potential energy function and a small
number of states. This allows essentially exact quantum and classical
calculations to be done. The dynamics of an isolated diatomic molecule
is, of coarse; trivial, but here we dynamically account for the

absorption of the coherent laser radiation. The disadvantage of

studying a diatomic molecule is that the low density of states will have



a fundamentally different behavior than polyatomics at high vibrational
energies. The advantage of being able to_do exact calculations, though,
allows for a good test of the validity of classical mechanics applied to
these problems. Assuming that their validity can be established,
classical trajectory techniques offer a way of possibly avoiding the
problem of the unwieldy densities of states in polyatomic problems.
This should be a rather severe test of classical mechanics since there
are so few quantum states involved. Also, based on what can be learned
from a diatomic molecule, understanding can be gained about the
absorption processes in the lower parts of the vibrational manifold of
small and moderate size molecules where ther are also well separated
states.

Much of the interest in this field, especially towards the
application of classical mechanics, was generated by the work éf Walker

99

and Preston who performed quantum and classical calculations for a

model nonrotating HF molecule. Their results, using laser intensities

2

>lOTW/cm2 (1TW = 10! W) indicated good agreement between classical and

quantum predictions of energy averaged over laser pulse times, except

near multiphoton resonances. Since then there have been many exact

99-104 99,102¢,105-107

classical and quantum mechanical studies of

oscillators in intense laser fields. Quantum mechanical studies have

105,108,109

made use of Floquet analysis to simplify the computation.

Wyatt et. al.loS have recently even made progress in studying

dissociation of an oscillator in a laser using quantum mechanics. Davis

101 d102c’

and Wyatt , Stein and Noi and Gt'aymO have made significant

progress In understanding the classical behavior of nonrotating HF in an
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intense laser field through the use of Poincaré surface of section
plots. There have been éome studies of model polyatomic systemleZd’103
but much remains to be done to get a good undefscanding of these
systems.

Here we pfesent quantum and classical results for HF in an intense
laser field. The quantum and classical equations of motion are solved
by direct numerical integration. For one and two photon absorption near
the fundamental frequenéy we include results for both rotating and, for
comparison, nonrotating HF initially 1nvits ground state at laéer
intensities of 1.0 and 2.5 Tﬁ/cmz. Calculations are also performéd on
overtone (v=0 + v=2) absorption for rotating and nonrotating HF and
multiphoton absorption'for nonrotating HF following a»cléssical study by
Chfistoffel and BowmanlOA for nonrotating HF,Iat the same laser
intensity, 43.68 TW/cmZ. For all the calculations,.eﬁergy absorptionv
and transition probabilities are calculated as a fuﬁétion of lase: pulse
tihe and as an éverage over pulse time. It ié found that classical
, mechaﬁics does not correctly describelthe time behavior of the system in
most cases. Furthermore, classical rotational state distributions are
completely incorrect for all the cases where rotating HF is studied.

For one photon (v=0 *vv=1) absorption classical mechanics does give
the correct magnitude of pulse averaged energy absorption. In addition,
classical mechanics correctly indicates the presence of increased two
photon absorption for frequencies lower than the one photon resonance,

99

although, in agreement with Walker and Preston's nonrotating results,

specific resonances are not resolved and only a small amount of two

photon absorption is seen. For the frequencies near the fundamental,



the effect of the laser phase is studied and found to have only a small
effect on the quantum results and little or no effect on the classical
results,

For the overtone absorption we find an even greater discrepancy
between the classical and quantum results than the discrepancy found
near the fundamental frequency. At overtone frequencies the classical
and quantum maxima of the pulse time averaged energy absorbed as a

1 relative to each

function of laser frequency are shifted‘by 200 cm
other., Very good agreement between the quantum and classical results is
observed for the multiphoton results., To study multiphoton absorption,
we fix the laser frequency at Vv = 3922 em™ ! and vary the initial
vibrational state from 0 - 10, analogous to Christoffel and Bowmanloa.

To get a better understanding of the overtone and multiphoton classical

results for nonrotating HF we construct Poincaré surfaces of section,
B. Methods

l. General information
The calculations are performed for rotating and nonrotating HF.

The molecular Hamiltonian is

pz 1 pz
— + (p5 + )+ v, (1I1.1)
2u 2ur sin™8

jo o}
]

where r, 96, ¢, Pr» Pgs Py are spherical coordinates and their conjugate'
momenta, and W is the reduced mass. For the nonrotating case the term

with the angular momentum is excluded. The Born-Oppenheimer potential
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is given by a Morse function V = D{l—exp[-a(r—re)]}z, with values for
the parameters23 in atomic units of D = 0.22509, a = 1.1741, and r, =
1.7329 a.u.

The laser field is treated classicaliy through a dipole
interaction. This is Yalid in the limiﬁ of high photon den;ity which is
certainly true here. For very low intensities the photon field should
be quant:lzed“O and classically the formalism developed by Millerlll
should be used. The full Hamiltonian with an oscillating electric field
of frequency w, z polarization and phase § is ,

H = Ho - d(r) cos®9 EO sin(wt+d), _
(111.2)
where EO is the field streﬁgfh {in Gaussian units it is related to the
intensity by E = (BNI/C)I/Z, where.c is the épeed of light] and d(r) is-
the molecular diéole funcﬁion._ The cos® factor is omitted for the
nonrotating case. A linear and quadratic form of the dipole funciotn
are used, d(r) = do + dl(r—re), do = 0.716 and d1 =0.310 a.u. (IDY=
0.39343 a.u.) for one and twoAphoton absorption about the fundamental
frequency corresponding to Ref. 105¢c, do = 0.7362 and d1 = 0.29769 a.u.
for overtone and multiphoton abéorpti¢n corresponding to Ref. 104; d(r)
= d, +d;r + dyr? wich!®% 4 = 04010, 4 - 1.04941, dy = =0.21551
a.u. Laser intensities of 1.0, 2.5, and 43.68 TW/cm2 were used which
correspond to field strengths of 0.005338, 0.008440, and 0.03528 a.u.,
respectively (lv/cm = 1.9447 x 10”10 a.u.). The laser field is
instantaneously turned on and turned off.

All numerical integrations were back integrated to reproduce all

the initial variables to, at least, four significant figures to assure
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numerical accuracy. It should be noted that for the quantum
calculations, conservation of probability was not a valid criteria for
good integration. There was, at least, one case where we obtained
qualitatively incorrect results even though probability was conserved to
six significant figures.

There is an approximation in using this potential since the
electric field would perturb it a nontrivial amount. It would be more
correct to use dressed molecular potentialsllz. Since we do not attempt
to make our calculations quantitatively comparable to experiment, we
avoid this extra complication.

To aid with the interpritation of the results, Table III.l gives
the relevant Egj levels for HF, calculated with the rotating Morse
oscillator formulall3.

2. Classical mechanics

The classical solution is found through.the direct integration of

Hamilton's equations of motion for the Hamiltonian given in

Eq.(I1I1.2). In the absence of external fields there are three. conserved

quantities which are the vibrational action Ny»s
1
Ny = = % toow T $ Py dr,

the rotational angular momentum J,

P
[3¢3+h)11/2 < (2 + —2 Y12
sin”6

and the z projection of the angular momentum M = Pge
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With the interaction present, the vibrational action N, and
rotational angular momentum J are no ;onger conserved. However, with
the present choice of polarization, M is still conserved since H has no
¢ dependence. The complete classical solution involves specification of

the appropriate initial conditions and solution of Hamilton's equations:

. _ _ M _ 1 2 2 2 v
Pr= -3 = —3 (pg+ py/sin 8) - 4=
ur
+ 22 cos® E  sin(wt+6)
or o ’
. oH 2 2 3
Pg=~"3p = p¢/ur sin 8 - d(r)sin® Eo sin(wt+§), (111.3)
. o
t=—=- =p/uy
apr r
. aH 2
0 apeepe/ur.

Apéroximate analytic orbits have been obtained113 for a rotating
Morse oscillator with no external field, and these are used to determine
diatomic initial conditions (see Appendix IIl1.A for details). This
approximation is excellent for the vibration - rotation levels of
importance here. The laser phase § is averaged over in most-cases for
one and two photon absorption about the fundamental frequency (i.é. each
trajectory has & chosen randomly betweén 0 and 27w), although it will be
shown to be unimportant, It is set to zero for the overtone and
multiphoton calculations.

For the rotating HF calculations, 1000 trajectories with random
initial conditions (see Appendix II1.A) were run for each frequeﬁcy.

Monte Carlo errors in the quantities of interest were between 10% and



15%. For the nonrotating HF calculations, 50 trajectories were run for
each frequency. 1In this case, it is more efficient to increment the

vibrational angle variable in a stepwise fashion between 0 and 27 than
to pick it randomly. The classical equations of motion were integrated

114

with a standard predictor - corrector algorithm to either N.9 or 1.5

ps. Integration of the classical equations of motion beyond 1.5 ps. is
extremely difficult due to the accumulation of error. The integration
of oscillétory nonlinear differential equations over long time periods
is still a current problem in numerical analysislls.

The energy absorbed as a function of pulse length'is defined by

H_ [pr(0), pg(0),r (0),87(0),6 ,¢] - E,

1
<E(t) = =
CL. N, . (ITI.4)

N M=

i
where N is the number of trajectories and E; is the initial molecular
energy. The final vibrational action N, after a pulse of length t is
also calculated with the rotating Morse oscillator approximationIIA.
Appendix II1.A shows that this is an excellent approximation for the
states of interest here. J is calculated directly from J(J+R) = pg +
pi/sinze. (Note: Py = 0 in the present study since J = 0 initially.)

With A = 1, N, and J are boxed according to the nearest integers v,j

v
such that v-1/2 < N, < v+1/2 and j-1/2 € J < j+1/2, which is the usual

quasiclassical quantization procedure. The transition probability into

a particular v,j state, as a function of pulse length is

Pl (¢) = N, (O,

V,y] (I11.5)

where N, j(t) is the number of trajectories with final actions in the
»

v,j box. Of coarse, a single trajectory integrated out to some large
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pulse length T contributes to all intermediate pulse time results.
Also, pulse averaged energy absorbed and transition probabilities are

defined as
- 1 T .
Eq (@) =73 [y <E(t)> dr,

o (111.6)
P 7.(t) dt.
Vy]
By between 0.9 and 1.5 ps., the pulse averaged energy absorption Eq.
(I11.6) appears to be converging, but has not fully converged. However,

reasonable estimates of the converged E (w) can be obtained, since

CL
<E(t)>cL has either reasonably leveled off or oscillates with a small
amplitude. Thus, either the leveled off value or the average of the

oscillations in <E(t)>cL is taken to be E_(w) . The error in the

CL
averaged quantiities is expected to be less than 10%.
" 3. Quantum Mechanics

105,109 analysis has been used as an efficient and

“Although Floquet
-stable way to obtain iong time quantum solutions for oscillators in a
laser field, the time scale of interest here is short enough (< 20 ps)

that direct integration of the coupled quantum equations is possible.

The total wavefunction is expanded as

\Pm(r:a)¢)t) = I Cv,j,m(t) Xv,j,m(r’e’¢)’

v, (111.7)
with
. (r,8, =R (r) Y. 6,¢)/r.
X, .m(F> 8@ = R () ¥, (8,8
The Yj m are spherical harmonics and R, are Morse eigenfunctionsll6.

Strictly speaking, R, should also depend on j, but in the present



problem, with only small values of j being important, such rotational
corrections should be small. As in classical mechanics, the z component
of the angular momentum (mhA) is conserved. Since the present study
involves j = 0 initially, m is zero throughout. 1In all subsequent
equations m is understood to be zero. If the molecule had j # 0
initially, it would‘be necessary to average over transition
probabilities for all integer values of m such that -j < m < j.
Inserting Eq. (II1.7) into the time dependent Schrddinger equation

results in the coupled equations

ihe, (&) =E) ;e .+ I D... .c. ..E sin(ut+),
»J S N F N4 B RS (IT1.8)

where the E® . are eigenvalues of Ho are matrix elements

v,]
[ (j+1)2 ]1/2 o2 el
- (23+1) (23+3) » =]
Dy uy = " L) R,. d(r) R, dr x { ) b or
[(2j—1i112j+1)]1/2 » 37 = 371
(I11.9)

It will be shown later, as with the classical results, that the laser
phase & does not appreciably affect the results. For efficiency, the
majority of the quantum calculations are made with a fixed § of n/2.

The coefficients C, i of Eq. (II1.8) must be complex. Thus, writing
’

. = .+ .
CV,J Xv,J iYV,J’ one obtains the coupled real equations
“hY . =€E>.X .+ I D... .X . ..E_ sin(ut+$),
V,] Vsl V] s se V] ,V] V] o
vo,]
. o (I1I.10)
/hx Y = . . + Z D Pl . Y - s, E Sin(wt+6)'
Vy] Vel V,] - . V] ,V] V. ,] o

AR

The quantum equations of motion were integrated with the same
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predictor-corrector algorithm used in the classical calculations. For
the one and two photon resonances near the fundamental frequency, an
_adequate basis for HF with the intensities and time scales of interest
consisted of the first five v and first five j states, i.e. a 25 term
expansion. The nonrotating quantum solutions were obtained in an
analogous fashion, using the firsc five vibrational states in the
wavefunction expansion. About the ovértone frequency, basis sets for
rotating HF consisted of either seven vibrational states each with seven
rotatioﬁal‘states or,'furthef from resonance, five vibrational states
each with five rotational states.v For nonrotating HF, ten states were
used in the overtone'calculatiohs, aﬁdvas many as all 24 vibrational
states were used in the multiphoFon calculations at 3 = 3922 cm_l._

The transition probabilities are found: from the coefficients of the

basis functions

2
M
PO (D) = e, (O] .
- ] (I1I.11)
The. energy absorbed is defined as
<E(t)>QM = I PSM.(t) E3 . - E?,
. v,j d Vel (111.12)

where E? is the energy of the initial state. The pulse averaged energy
absorbed and transition probability are given by

= 1 T

EQM(m) =T fo <1z(::)>QM dt,

-QM _1 T QM (111.13)
Pv’j(m) =T fo Pv,j (t) dt.

The quantum solutions were integrated from 1 to 10 ps depending on



frequency range and how near resonance, which is long enough to converge
the time averaged quantities to 10%Z. Note that it was sometimes
necessary to average over small oscillations which had not damped

completely out yet that were apparent in EQM as a function of pulse
length T to obtain the best estimate. Interestingly, because the
quantum equations are linear, it is possible to integrate 50 coupled
quantum equations to times exceeding 20 ps, which is much longer than it
is practicle to integrate only four nonlinear classical equations.
4. Poincaré surfaces of section

At least three, essentially equivalent, formalisms have been used
to define the Poincaré surfaces of section for time dependent oscillator

problems. The methods of Stine and Noid102e and Grayloo

are exactly
equivalent, and the method of Davis and Wyattlol identically reduces to
the other two methods in the limit of strong fields which is certainly
the limit studied here. We will follow the formalism of GraleO.
First, we define a mapping of a phase space point [p(t),x(t)] to a point
[p(t+1/V),x(t+1/V) where v is the laser frequency and 1/v is a period of
the laser. (Note that the notation has been changed from above with
(pr,r) replaced by (p,x) to be consistant with the more ususal one-
dimensional notation.) Beginning at a point in phase space, the surface
of section 1s generated by repeatedly mapping the point until either a
closed curve is generated or a chaotic trajectory is found.

The surface of section plots are constucted for nonrotating HF
using action—-angle variables (n,q) so that the unperturbed Hamiltonian

is only a function of the action. This is convenient since it is easy

to see changes in the molecular energy, and it makes the resolution of
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the structure in the high energy region of phase space equivalent to
that at low energy. Also, the integration in the chaotic region of
phase space seems somewhat stabler. The transformation to action-angle

117

variables is known for a Morse oscillator . The unperturbed

Hamiltonian becomes

,
2w
B = (0 + Do - (a+2) . 22

(ITI.14)
2 1/2 :
where wo = (2da /u) . The equations of motion of the unperturbed

oscillator are n = 0 and & = w(n), where the oscillator frequency is

3.

o ,
oKn) = 52=0 - (o+ %J w_/2D.

(I11.15)

This corresponds to a line in phase space with n = constant and q = wt.

The old variables, expressed in terms of the action-angle variables are

x(n,q) = a;lrln{[D + (DHO)I/2 cosq] /(D - Ho)},

(I11.16)
p(n,q) = uw(n) 2
? aq
v -1 1/2 - 1/2
= ua w(n)°(DHo) sinq/{D + (DHO) cosq].
The total. Hamiltonian in termé of the new variables ié
H(n,q,t) = Ho(n) - ex(n,q)cos(qt).
. (111.17)
The equations of motion are
0= —-¢ cos(Qc)-(DHo)llzsinq/{a[D + (DHO)I/zcosq]}
m2
. _ _ 1y o _E cos(Qt)
q = [wO' (n+2) ZDJ(I a
. 172 T - HO)})'

2{(DH ) + H cosq]
o o



It should be noted that the phase convention for the action-angle

variables, here, follows that of Ref. 100.

C. Results and discussion
l. One and twd photon absorption about.the fundamental frequency
a. Energy absorption spectra

The quantum and classical pulse time averagedbenergy absorption
spectra are plotted in Fig. III.1(a) for nonrotating HF and Fig III.1(b)
for rotating HF, with laser intensity 1.0 Tw/cmz. The plot for
nonrotating HF is similar to plofs of Walker and Preston99 for higher
intensities (> 10 TW/cmz). At 1.0 TW/Emz, though, the quantum structure
is more resolved. The major features are a narrow two photon resonance
at v = 3879 cm ! (the v=0 to v=2 absorption), and a broad one photon
resonance at 3966 cm—l (the v=0 to v=1 absorétion). The classical
spectrum shows just one very broad peak with a maximum at about Vv = 3940
cm_l. While the classical spectrum does not have any of the quantum
structure, examination of the classical state distribution does show the
presence of a small amount of two photon absorption, as the frequency is
lowered. Details of this will be given later.

For rotating HF, the spectra [Fig. III1.1(b)] are qualitatively
similar to the nonrotating case. There are three peaks in the quantum
spectrum: one broad peak near V = 4006 em~ ! fthe (v,j)=(0,0)+(1,1) one

1

photon resonance] with a full width at half maximum (FWHM) of ~ 50 cm -,

and two narrow peaks near v = 3937 em™ ! [the (0,0)+(2,2) two photon

resonance] and 3879 em™ ! [the (0,0)+(2,0) two photon resonance], each
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with a FWHM of < 10 em™l.,  The classical specrum has one very broad peak

which peaks near the (0,0) * (1,0) resonance at Vv = 3966 em 1. overall,
the classical solution for rotating HF éives a general idea of the
absorption. As in the nonrotating case, the classical result predicts
increased two photon absorption for frequencies red shifted from the one
photon resonance, as will be seen below in Sec. C.l.b.

-In.?ig. 111.2, the rotating HF average energy absorptioq for I =
2.5 Tw/cm2 is shown. Qualitatively, the quantum peaks become broader
and overlap more than the l.OvTW/cm2 case. There’appears to be a small
power shifting of the resonance peaks, toward higher frequencies, but it
has not been resélved'(see Ref. 105c¢c for a discussion of power
shifting). Classically, the absorption also broadens relative to 1.0
TW/cm2 and the peak maximum appears to shift.to lower freuencies,
indicating more multiphoton absorption.
b. Transition probabilitiés

- In this section, the approximate time averaged transition
probabilities into various states are examined qualitatively to help
show the relative amounts of one and th pﬁoton absorption. Looking at
the classical results,'it is clear that claésical mechanics does not
give the correct rotational state distribution. Classically, there are
‘large probabilities for ending in the (0,1) and (1,0) states, which
correspond to high order processes in quantum mechanics. These
transitions are not observed to any large extent in the quantum
results. To get a meaningful comparison, bnly the probabilities for
ending in a particular vibrational level will be considered, i.e., a sum

{s taken over rotational states within a vibrational level.
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Table II1.2 shows the quantum and clasical time averaged
probabilities at various frequencies for rotating and nonrotating HF,
with I = 1.0 TW/cmz. Each peak of the quanfum solution can be seen to
be either a one or a two photon absorption, with both processes observed
appreciably only where peaks overlap. At high intensities the peaks
will broaden and overlap more, but each peak will still correspond to a
particular absorption. The classical results do indicate the presence
of some two photon absorption as the frequency is decreased. But
classically, there is a very gradual change, which results in the very
broad single peak in the spectrum (Fig. III.1), rather than the abrupt
changes in the quantum results.

To show some intensity effects, average probabilities for rotating
HF at 2.5 TW/cm2 are given in Table III.3. Forvthis larger intensity,
both classically and quantum mechanicaliy, the excited states become
more populated.

c. Time behavior

The previous two sections were concerned with average quantities,
In this section, the energy absorption and transition probabilities as a
function of time are examined. The quantum mechanical laser phase used
in this section was fixed at w/2. The effect of laser phase is examined
in the next section.

In Fig. I11.3, a comparison of classical and quantum energy
absorption as a function of time is given for nonrotating HF at Vv = 3966
cm™ ! (the one photon v=0 to v=] resonance). The quantum results show
oscillations with a period of about 0.75 ps with no sign of damping out

to 1.5 ps. At this frequency and intensity (1.0 TW/cmz) the solution is
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well approximated by a two 1evél system (i.e., the Rabi mode124). In
contrast, the classical result oscillates with a frequgncy of about 0.4
ps and a smaller amplitude. Also, it appears és though the oséillations
may be damping. |

Fig. II11.4 shows the classical and quantum time dependent energy
adsorption for rotating HF with Y = 4006 cm ! [one photon (0,0) + (1,1)
resonance]. The results are similar to those in Fig. II1.3 for
nonrotating HF.v In this case, though, the classical resuit appears to
" level off even faster. The behavior of the quanﬁum solution is again

well approximation by the two level Rabi model. 24

The quantum solution
has been followed for‘up to 20 ps with.no clear sign of damping.

The quantum result for the two photon resonance. at 3937 cm” ! [(0,0)
+(2,2) reéonance] is considerably different (Fig. I11.5). The
complicated nature of the oscillations may be contrasted with the Rabi
oscillations of Fig IIl.4. Frbm Fig. III.5, it can be seen that the two
photon absorption is a long time process. The corresponding classical
result (Fig. I11.6) also seems to show some aspects of the slower growth
in absorption, although the soluﬁion is reasonably level by 0.9 ps.

In Figs. 111.7, 8, and 9, plots are shown for some transition
probabilities as a function of time, again for I=1.0 TW/cmz. Here, the
classical solution is actually broken up into rotational levels, so that
the discrepancy with quantum mechanics can be seen. The quantum
solutions for Pbl and PlO are not shown since they are very small
(< 10_2). Qualitatively, the probabilities show the same behavior as

the energy absorption as a function of time, i.e., the classical

solutions tend to level off more and the quantum solutions appear
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periodic. Note that in reality there are high frequency, small
amplitude oscillations that are superimposed on the quantum

probabilities. These oscilations have not been resolved on our graphs

and thus give rise to some roughness, particularly near peak maxima.

The classical probabilities for rotating HF at v = 3937 em™ ! are
shown in Fig. II1.8. It can be seen that the v = 2 states gets
significantly populated, but the v = ] state is also significantly
populated. The quantum probabilities near the two photon resonance at V
= 3937 em™! are shown in Fig 111.9. The resonance probability P22(t)
displays a long period which essentially matches the period of <E(t)>QM
in Fig. 1I1.5. Another reasonably significant probability is P which
is not shown. Pll(t) displays a higher frequency oscillation and can
reach_a maximum of ~0.13. The other two photon resonance at Vv = 3879
cm_'l is not plotted here. Qualitatively, the classical resul;s for this
frequency show much less excitation than for 3937 em Y. There is a
small amoﬁnt of v = 1 excitation and no v = 2 excitation. Essentially
no rotational excitation is seen in the classical results for this

1

frequency. The quantum results for 3879 cm ~ show somewhat less

l, and again the

excitation into the (1,1) state than foe 3937 cm
resonant probability Pog displays a long period.
d. Laser phase effect

Based on the classical and quantum equations of motion [Egs.
(II1.3) and (111.8)] without additional approximations, one would expect
the solution to be dependent on the choice of laser phase §. Without

allowing for the details of how the field is turned on, complete study

should involve averaging over the laser phase to obtain the most
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meaningful results!18,

The laser phase dependence, however, disappears from the quantum

24’119, as shown in Appendix

equations in the rotating wave approximation
I1.B for the th state model. However, for sufficiently large field
strengths or de-—tuning of w from resonance, ;ﬁe rotating wave
approximation will bréak downllgb. Thus, for example, Moloney and
_MeathllS-havé shown the laser phase dependence of probabilities as a
function of tiﬁe for a two state model. They found ihCreaéing phase
effects for larger fileld SCrengéhs and at multiphoton resonances.

The situation is not quité as clear in the classical analysis.
However, if only the relative differénce between laser pﬁases is
important, then it onldvbe sufficient to average only over the
vibrational phase, witﬁoﬁt averaging ovef the laser phése, i.e., the .
laser phase would not matter. The conditions for this to be_true
probably include w be close to resonaﬁce.

To assess the effects of laser phase 8 on the present problem,
consider fifst nonrotating HF. For anvintensity of 1.0 TW/cem? and

1, the classical solutions were obtained

frequencies of 3966 and 3879 cm
for fixed § of 0 and /2. SOOAtrajectories were run for each solution
to insure no statistical'erro;. Over the entire 1.5 ps range, <E(t)>CL
for the two.éhases agreed to between two and four significant figures.
The quasiclassical probabilities also were in excellent agreement,
Similarly, the nonrotating quantum results for the same conditions
showed little phase debendence.

We also examined rotating HF at 1.0 TW/cm? for the possibility of

phase effects. Within the Monte Carlo error (g 15%), no clear phase



effect can be distinguished in the classical results. However, slight
discrepancies in the time dependent quantum solutions may be seen, since
no statistical error is present. Table IIl.4 lists some relevant
probabilities and the energy absorption both as a function of time for §
=0 and ®/2, at Vv = 4006 cm_l. Other phases phases between 9 and 7 were
also examined, but the largest differences were found between § = 0 and
8§ = n/2. Despite V being almost exactly on resonance, slight
differences may be noted, particularly in the probabilities. These
diferences become larger near peak maxima and can be as much as 47.
However, such differences are comparable in amplitude to the high
frequency oscillations that are superimposed on the Rabi oscillations,
and do not appreciably affect the overall behavior. Notice that

<E(t)> is not affected much by these differences, indicating that the

QM
differences of the other probabilities, which are smaller and not
listed, tend to compensate. Table I11.5 presents similar results for Vv
= 3937 cm_l. Although this is a two photon resonance, the discrepancies
due to laser phases are comparable to the V = 4006 cm_l results. Thus,

for intensities ~ 1.0 TW/cm2

, and the present frequency range, the
effects of laser phase is sﬁall and can be neglected for most practical
purposes.
2. Multiphoton absorption

Here we examine the absorption of nonrotating HF when the laser
frequency is fixed at v = 3922 em ! (44 em™! lower than the v=0 + v=1
resonance frequency), and the initial vibrational state is varied. This

is an interesting problem from the point of view of a quantum and

classical comparison since, as will be shown in a later section, the
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region of classical phase space examined includes a 1:1 resonance, a 1:2
resonance, and. a region of overlapping higher order resonances with
chaotic c;ajectories.

Figure III1.10 shows a quantum and classicél comparison éf pulse
time averaged energy absorbed for initial states 0 - 10. The agreement
‘throughouc‘this region is extremely good except for v =.9, 10 wherevthe
discrepancy may be partly due to the lack of continuum states in the
wave funcfion expansion, In light of our results im section C.l at 1.0
Tw/cm2 laser intensity which showed moderate agreement for.initial state
v = 0 at this frequency, this agreement is a little_sutprising. The
behavior of the time averaged energy ;bSOrbed (i.e., the sharp dip
followed by the slow fise to zero then cﬁe sharp increase) can be
explained qualitatively. for both the qﬁantum and classical results. The
classical‘results are due to a classical 1:1 resonaﬁce at loﬁer actions
Qnd a region of overlapping_resonAnceé at higher actions. This will bé
discussed in detail in Secfion C.4 where the surface of section is
shown. The dominating features of the quantum results are overlapping
resonances which result in many states becoming populated. The loss of
energy for initial vibrational states 2, 3, and 4 results from.beihg
more in resonance with stimulated emission than absorption. At
intermediate initial states (5, 6, 7, 8), all states are further off
resonance, so there are less transitions out of the initial state. At
high initial states (9, 10) overtone transitions begin to become
significant. This domination of overlapping resonances is in contrast
with the two state resonances of sections C.l and C.3. For comparison,

interesting model calculations have been carried out by Eberly et.



32:120 showing the time evolution of the populations of groups of states

which are off resonance by varying amounts.

Table II1.6 shows the time averaged transition probabilities which
correspond to the averaged energies plotted in Fig. III.10. Again the
agreement between the quantum and classical results is fairly good. For
initial vibrational states O - 4, the agreement is essentially exact.

At intermediate initial states where absorption and desorption are
approximately equal, there are fewer transitions from the initial state
in the quantum results, For initial states 9, 10 there is greater
discrepancy which may be due, as stated above, to the lack of continuum
states in the wave function expansion.

3. Overtone spectra

a. Time averaged energy absorbed

For boﬁh rotating and nonrotating HF the classical and quantum time
averaged energy absorbed are plotted vs laser frequency in Figs. III.1ll
and IILI.12, For nonrotating HF both a linear and quadratic dipole
function are used. In all the cases, the distinguishing characteristics
between the quantum and classical results are (1) a shift of the

' toward higher frequencies, and (2) the

classical peak by 100-200 cm
classical peaks are lower and broader than the corresponding quantum
peaks. The quantum peaks, within the resolution of our graphs, are near
where they are expected from the v=0 + v=2 resonance frequency. There
probably are small, unresolved power shifts109¢ in the peaks which are
not significant for our considerations here. The classical spectra,

with the linear dipole function, peak at nearly twice the v=0 + v=]

absorption frequency. With the nonlinear dipole function the classical
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spectrum peaks closer to the quantum result, but is still shifted by
over iOO cm-l. 1t should be noted that both the quantum and classical
results showlgfeater absorption Qith‘a nonlinear-dipble function. The
quantum peak becomes about twice as b:oad, and the classical.peak
becomes 50% higher and somewhat broader.' The maximum of all the quantum
peaks approximately equals the expected valuevfromfthe two state kabi
:modelza, asrwe'found for the v=0 + v=1 resonance and,ﬁwo photon
absorption in Sec. III;A.

These results are 1ﬁtere$tingvconsidering that we found better
agreement between the quantum énd classical results for véO * v=]
absorptioﬁ (section C.1) and the multiphoton results at v = 3922 cm"l.
(section C.2), One wduld expeﬁc best agreement between quanﬁum and
classical results for averaged quanti;ies since quantum effects tend to
" be averaged bver..-Even'so, it is clear that in at least some
circ@mstances, it would be misleading to look exclusively ét the
" classical results even for an averaged quantity as the time averaged
energy absorbed witﬁout atcounting'for possible discrepancies with the
quantum mechanical results. More discussion of this will follow in the
summary.

b. Time averaged transition pfobabilities

| Table IIT.7 shows the approximate time averaged vibrational
transition probabilities with a linear dipole function (rotating aand
nonrotating HF) and a quadratic dipole function (nonrotating HF). For
rotating HF, the transition probabilities in Table III.7 are summed over
rotational states. One can see quite dramatically that the

quasiclassical results do not describe the transition probabilities of



the v=0 * v=2 overtone absorption correctly. For both rotating and
nonrotating HF the classical calculations with the linear dipole
function show no excitation above the v = ] level. But for all the
quantum results there is basically a coherent two state excitation (Rabi
oscillation)24 between the v = 0 and v = 2 levels. Even with a
nonlinear dipole function for nonrotating HF, while there is some
quasiclassical absorption into the v = 2 state, most of the absorption
is still into the v = ] state,
c. Energy absorbed as a function of time

It is important to consider molecular properties as a function of
pulse time since these should be important for comparison with
experiment. In Figs. 1IIl.13 and III.l4 the time evolution of the
enefgy absorbed is shown for nonrotating HF with a linear dipole
function. Figures III1.15 and III.16 show the time evolution of the
energy absorbed for rotating HF. The quantum results show the
characteristic sine squared shape of a Rabi oscillation. The classical
results have a much smaller oscillation with a larger frequency which
appears to be possibly damping out at longer times, more quickly for
rotating HF. These results are closely analogous to the results in
section C.]l obtained about the fundamental frequency. The results for
nonrotaitng HF with a quadratic dipole function are not shown since they
are qualitatively the same as those with a linear dipole. The only
significant differences are a shorter period of the oscillations of
slightly more tﬁan a factor of 2 for the quantum results and slightly
less than a factor of two for the classical results.

d. Transition probabilities as a function of time
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The time evolution of the transition‘probabilities for rotating HF
are displayed in Figs. I1I.1l7 and III.18. The equivalent graphsvfor
nonrotating HF afe not shown 31n¢e they give essentiaily no new
information. The interest for rotating HF comes from the rotational
excitation of the v=0, j=l;‘v=2, j=0; and v=2, j=2 states in the quantum
results. This is quite surprising considering that these states are far
pff resonance, The classical results which have a few émall
oscillations that appear to damp out are again quite reminiscent of the
fe5u1ts near the fundamental freduency (section C.1). Classically, the
v=1, j=0 state becomes most populated with some excitation into the v=0,
j=1 and v=1, j=I states.

A simplé numerical experiment shows that the apparent quantum
rotational excitation is jusf that. For ekample, if avnumefical
calculation is carriéd out with only the §=6, j=0 and v=0, j=1 states- in
the expansion, there is absorption with the correct frequency and
magnitude that would be expected from ;he high frequency oséillations of
Fig. II1.17. The dynamics displayed in Fig. III.17 can be described as
a high frequency oscillation betweén different rotational states within
a vibrational manifold superimposéd on a low frequénéy near resident
oscillation between the v = Q and v = 2 levels. These can be thoughc'of
independently because of the differences in time scales and the near
equivalence of the matrix elements for vibrational transitions of the
different rotational states. In Fig. II1.19 the quantum tranition
probabilities summed over all roﬁational levels for rotating HF are
plotted as a function of.pulse time. It shows an amaziﬁgly smooth

oscillation.



The oscillation between the different vibrational levels, as shown
in Fig. 111.19, can be described quite well by a Rabi two state
modelza. Assuming the frequency»is on resonance, the Rabi model would
predict a period of 1.85 ps for the v=0,j=0+v=2,j=1 transition and
v=0,j=1 * v=2,j=0 transition, and 2.07 ps for the v=0,j=1 + v=2,j=2
transition. The transition probability into the v = 2 level never
reaches unity which can be due to a breakdown of the two state model, or
a dreakdown of the Rabi model which assumes the rotating wave

24’119. The same is not true of the rotational

approximation
transitions. For the v=0,j=0 + v=0,j=1 transition, the Rabi model
predicts a maximﬁm absorption of about half of the observed value and an
oscillation frequency of about a factor of 7 too large. This is not
surprising since one of the assumptions in the rotating wave
approximation is that the transition is near the resonance. Since the
rotational transitions are nowhere near resonance, the rotating wave
approximation, and therefore the Rabi model, should not be valid.
4. Poincaré surfaces of section

In this section we use surfaces of section to understand the nature
of the classical solution for nonrotating HF with a linear dipole
function. First we examine the surfaces of section for the overtone
absorption of se;tion C.3, followed by the multiphoton results of
section C.1. Many excellent reviews of nonlinear classical mechanics

98a,121,122 4, nych of the background is omitted for brevity.

exist,
a. Overtone absorption

In Fig. I11.20 we show two surfaces of section for overtone

absorption, the first at the quantum resonance frequency vV = 7757.8 em™!
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and the second at the frequency of maximum classical energy absorption V
= 7980 em l. At both frequencies the solutions are all regular in the
region of phase space examined up to a time 6f 100 periods of the lasef
field, about 0.43 ps. It should be restated that the surfgce of section
is generated by the mapping discussed in section B.4 and is not an
actual trajectory. For illustration, there is one actual. trajectory for
two periods of the laser field, in Fig. I1I1.20(a) sthn as a dashed
line.- With more oscillations of the field the trajectory will touch all
of the points on the ellipse. Both surfaces of section display a large,
isolated lfz-classical resdnance. The fixed points of the mapping are.
clearly marked, and the separatrix comnects the unstable fixed points.
The stable fixed points result from a strictly periodic trajectory where
the molecule'oécillates one périod_pervtwo éscillations of the field.

It is easy to infer the magnitude of the time averaged energy
absorbed from these plots. following the usual quasiclassical
procedure, initial conditions are chosen using avfixed action and a
range of angles between 0 and 27. One can see from-Fig, I11.20(a) that
if a trajectory is started Qith zero initial action and any angle, the
trajectory avéraged over time will gain or lose little energy since
after every laser period, the action remains near zero. 1In Fig. III.21,
the time averaged energy absorbed is plotted as a function of initial
actions for V = 7757.8 cm 1. This shows that starting near the bottom
of the resonance stucture, energy is gained on the average; but staring
"near the top of the resonance structure, energy is lost. At V = 7980
cm_1 the resonance structure is pushed to lower actions than at v =

7757 .8 cm—l. This explains why there is classical absorption at v =



7980 cm_l. The narrowneés of the resonance explains why there is no
quasiclaséical absorption into the v = 2 states., (The top of the
resonance has an action of less than 1.2.) The semiclassical nature of
the classically forbidden overtone transition in this case may be
interpreted in a fashion analogous to that which leads to certain local

123 as discused by Graylza.

mode energy splittings
b. Multiphoton absorption

The surface of section for Vv = 3922 em ! in Fig. 111.22 displays a
more interesting behavior. At low actions there is a dominating,
isolated 1:1 resonance. From the plot one can see that there is strong
absorption from the N, = 0 initial state, and that the absorption
populates states as high as N, = 4. The classical dynamics at other low
of intermediate levels can be comparably understood. The more
interesting region of the phase space occurs at actions greater than
N, = 8. The first intgresting feature of this region is a 2:3 secondary
resonance., Clearly visible about this resonance is a chain of tertiary
islands. These islands can be understood from the viewpoint of
classical secular perturbation theory as described in Ref.llzz. An even
finer structure of higher order islands is on a scale too fine to see.
The size of these higher order resonances depends on the magnitude of
the perturbation (in this case the field strength). A manifestation of
this complicated structure, even if the higher order resonances cannot
be directly observed, is the growth of a stochastic layer around the
separatrix of the secondary resonance which is separated from the

122

regular regions by KAM structures . The random points near the

hyperbolic fixed points of the 2:3 resonance were generated by a
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trajectory which began approximately on the separatrix. This is
evidence for a stochastic layer around the separatrix.

At actions above the 2:3'fesonance, the secondary resonance
structures beéome large enough that they begin to overlép. Overlapping
resonances can be related to the growth of globai chaos!?l. Noid and
Stinem?'a have speculated on the role of overlapping resonances in the
dissociation of a diatomic molecule wiﬁh two lasers. This growth of
global chaos can be seen surrounding regions where there are parts of
resonance structures corresponding ;o 5:7 and 3:5 secondafy
resonances. Immersed in this chaotic region, parts of the primary 1?2
resonance are clearly visible. In the chaotic region the pointsvof the
surface of section are generated by two disSociating'trajectqries and
orie nondissociating trajectory. The.su:face‘of section of the
trajectories in the chaotic region seem to follow the vague tori of

Shirts and Reinhardt125

. The points generated by a chaotic trajectory
appears to be constrained to a particular resonance structure for
several intersections of the mapping. Then the mapping carries the
trajectory near the intersection of two resonances where it can move to
the other resonance. The dissociating trajectories became associated
with the 1:2 primary resonance where they were carried to large
actions. It appears that there could be another unresolved resonance
structure which is affecting the motion of the nondissociating
trajectory.

We also performed a few calculations with the exponential form of

101

the dipole used by Davis and Wyatt , and obtained similar interesting

behavior and dissociation at higher actions.



D. Summary and Conclusions

We have performed quantum and classical calculations for one and
two photon absorption about the fundamental (v=0 + v=1) frequency on
rotating and nonrotating HF, for overtone (v=0 * v=2) absorption on
rotating and nonrotating HF , and for multiphoton absorption at a fixed
frequency near the (v=) + v=1) fundamental with different initial states
on nonrotaing HF. For the one and two photon calculations, it is found
that classical mechanics does not pridict the correct rotational state
" distributions. Also; the time behavior of the classical solution is
qualitatively different from the quantum one. Classical mechanics does
give the correct magnitude of pulse time averaged quantities, but does
not give the detailed resonance peaks for two photon absorption,
Classical mechanics doés correctly indicate more two photon absorption
as the frequency is red shifted from the one photon resonance, but it
predicts far too little such absorption. The quantum results as a
function of pulse time have oscillations characteristic of two state
resonances. The classical results as a function of pulse time have
small, high frequency oscillations which appear to possibly damp out.
For these transitions the laser phase has been shown to be essentially
unimportant for the intensities examined, although it could conceivably
be important for much higher intensities.

At the overtone frequencies we have found‘a shift of about 200 em”t
between quantum and classical absorption maxima for both rotating and
nonrotating HF. Also, the maxima and widths of the peaks are

qualitatively different. 1Inclusion of a quadratic term in the dipole
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function increases both quantum and classical overtone absorption
significantly indicating that a reasonable fit to the dipole will be
needed to get quantitatively accurate results. All of the quanﬁum
overtone results can be analyzed in terms of two state resonanées. The
-quasiclassical vibrational transition probabilities do not show
significant absorption into the v = 2 level as the quantum results do.
- Classically, absorption is into the v = 1 state; As for the one and two
photon absorption near the fundameACal'fréqhency,'we found that the
rotational state distribution for the classical results we;e>

" ‘qualitatively different from that for the quantum results.
Interestingly, thdugh, we find thatpure rotational excitation was:
signifiacnt.for the quantum résults even though rotationgl absorptions
are far from resonance. The time debendeﬁt behavior at overtone
frequencies is qu;ntitatively the same. as thét near the fundamental
frequency.

In contrast to the ggnerally poor quantum and classical agreement
near the overtone frequency, there was very good agreement for the_
mdltiphoton absorption of nonfotating HF at a frequency Vv = 3922 cm—1
~with different initial states for the time averaged transition
probabilities. The quantum and classical agreement is best for low
initial states and becomes somewhat worse for higher initial states.
The quantum results in the case are characterized by overlapping
resonanées with the corresponaing population of many states.

To better understand ﬁhe classical results, we constructed surfaces
of section corresponding to the overtone and multiphoton results. At

the overtone frequency, the surfaces of section are dominated by an
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isolated 1:2 resonances. We show how this resonance shifts at a

different frequency, and how this explains the observed results. The

1 a1s0 explains that set of results.

surface of section at Vv = 3922 cm”
In this case the phase space 1s characterized by an isolated 1:1
resonance, a 2:3 secondary resonance with a chaotic layer around its
separatrix, a region of chaos, and within this region of chaos, 5:7 and
3:5 secondary resonances and a 1:2 primary resonance which the secondary
resonances surround. As expected, dissociating trajectories are found .
to be associated with the region of overl#pping resonances.

From our results, one can see that erroneous conclusions can be
reached if purely classical calculations are done. Our multiphoton
results, though, show that there is still hope that classical
calculations may be of some use in studying these problems. Not too
~surprisingly, the classical and quantum results differ most when there
are essentially two state quantum resonances. It would be very useful
if some relationship could be found between the nature of the classical
phase space and the agreement with quantum mechanics. We have found one
example where a chaotic region of classical phase space corresponds to
bverlapping quantum resonances, and reasonably good agreement between
the classical and duantum mechanical results. Gray124 has also
performed some interesting semiclassical calculations on nonrotating HF
- and additional semiclassical calculations would give more insight into
this problemn.

It is difficult to extend these conclusions to polyatomic
systemslz6 altough hopefully a good framework has been established for

working on these systems. 1t is possible that future work will clearify
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"the general nature of the agreement between classical mechanics and
quantum mechanics not only for molecules in a laser field but for any

excited molecular system.



Appendix IIT.A: Initial and final conditions for a diatomic molecule in

the rotating Morse oscillator approximation

To classically determine probabilities, it is necessary to average
over initial conditions. For an isolated diatomic molecule, one can
change variables to action-angle variables!!3 (Nv’Qv)’ (J,QJ), and
(M,QM) such that ﬁv =J=M=0 , with N, being the vibrational action,
J the rotational action or angular momentum, and M being the projection
of the angular momentum onto the z axis. These variables allow a
connection with quantum mechanics to be easily made. The probability P
of some event may be obtained by averaging over the initial angle
vabiables Q,, QJ, Qy for fixed N,, J, and M,

P = 2n7 féﬂ dq, fg“ dq; fgn A Xy gu(Qr Qs Qs
v (A.1)
where x = 1 if the event occurs and 0 if it does not occur for the given

initial conditions. Usually, the angular momentum is randomly oriented

in space, so an average may be taken over M,

= aup/f au =2—JI-IJ dM P.
-J -J -J (A.2)

To do the Monte Carlo inCegration127’ the variables of integration

are changed to §, with 0 < §; < 1, such that

218, = Q,
2ng = Q.,

3 J (A.3)
2mE, = Qe
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Equation (A.2) then becomes

- lN

N+w N f XNVJM( (A.4)
"That is, one averages X over N random evaluations of £ (each component
of £ is taken to be a pseudorandom number for a giQen evaluatioﬁ).
Approximate relations between the action—-angle variables and
ordinary molecular coordinates ﬁave beeﬁ given by Porter, Raff, and

Miller!l3 for a rotating Morse oscillator. The orbits giQen by them

for 8 and ¢ are not strictly correct. The corrected orbits are

r(t) = re'--% 1n{(-2a)[b + /vZ = 4ac sin(th + QN)]},
6(t) = arccos[VI — A% cos(QJt + QJ + sign(pr) JAJ)],
A cotfe(c)]
#(t) = Q, + sign(p,) arccos (—————=1),
M- o /T = 32 (A.5)

where the formulas for a, b, c, mN, w_, and A_ may be fqund in Ref. 113

J J
and are not repeated here. The errors:in the angular orbits arose from
omission of a sign(p,) and sign(pg) facpor in the generators W. and Wy,
respectively [Eqs. (8a) and (8b).of gef.‘jl3]. Another slight error is
in Eﬁs. (30b) and (30c) of Ref. 113. Here, the féctor r2 should be

replaced by the expansion for r2

given in their Eq. III.3.

Thus, to generate the initial conditions for a diatomic we first
pick A, Qys Qys and Qy randomly according to Egs. (A.3). Then, since
the calculations are to be made in spherical coordinates, r, 8, and ¢
are calculated from Eqs. (A.5). p,, and pg may be obtained by either
conservation of energy and angular momentum, or by differentiation of

Eqs. (30) of Ref. 113. This procedure is completely equivalent to the

more standard approach of randomly orienting the molecule and its



angular momentum vector, and picking only r and Pr from the action—-angle
variable formulas. Thus, the present approach offers no technical
advantage over the ordinary approach for most applications, including
the present one, except when the rotational variables play an important
role, as in soﬁe semiclassical applications.

The vibrational action N, is calculated at a time t from the

approximate formula of Ref. 113,

N =—%+—',?-( b _ _/3)
M 2 /= (A.6)

and only depends on the molecular energy and angular momentum state

J(J+R) = (p% + pi/sinze). N, was calculated numerically

1
(g ==yt o o0)

as a check on Eq. (A.6) and, for all N, and J with JK10, N, from Eq.
(A.6) is accurate to three significant figures. Thus, essentially no

error is introduced by the use of Eq. (A.6) for N, in the present study.
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Appendix III.B: Effect of laser phase on the two state model

For a two state model with states labeled A and B Eqs. (III.8)

become (h = 1)

iC. = C.EC + C_D E_sin(uwt+8) + C,D

A AfA 8PAB Eosin(mt+6),

AA

[o]
iCB}-.CBEB + C,D Eosin(wt+6) + CBDBBEosin(mt+6).

AB
(B.1)
If one now replaces CA and Cp by S, and Sp such that
o
CA = SA exp(—iEAt),
o
CB = SB exp( iEBt),
(B.2)
' = 0 _ O
one obtains (EAB 2 E, EB)
. 1 . ‘ _ .
SA =3 {SBDABEo{exp[ i(EAB+w)t] exp(-i§)
- exp[—i(EAB—m)t] exp(iG)}
(B-3)
- - +
+ SAEODAA {exp[ i(wt+8)] expl[i(wt 6)]},

§B = %—{SADABEO {exp[i(EAB—w)t] exp(-i$)

- exp[i(EAB + w)t] exp(iG)}

+ SBEODBB {exp[—i(wt+6)] - exp[i(mt+6)]}.

The rotating wave approximation involves omitting the highly

oscillatory terms involving exp[ii(EA + w)t] and exp(*iw). Thus,

B



. 1
Sy = =5 SpDapE, expl-1(E,; - w)t] exp(i9), (B.4)

¢ 1
SB =3 SADABEo exp[i(EAB - w)t] exp(-14).

Within this approximation, it can easily be shown that the effect
of the laser phase 8§ is not important. To see this, the substitution

»

Sq = SB exp(i6) is made, so that Eq. (B.4) becomes

B
° 1 .
SA = > SBDABEo exp| i(EAB w)t],
(B.5)
. l

SB E'SADABE0 exp[i(EAB - wt],

i.e., S, and S, may be obtained by solving Eq. (B.5) and the

A B

probabilities P, = 'SA'Z and Pg = ISBI2 = ISé'z have no phase
dependance. Alternatively, Eq. (B.4) can be éxpressed as a second order
equation in which the radiation phase does not appear.

One should note carefully that the rotating wave approximatioﬁ is
valid only 1£!19% (1) w = E,p and (41) @ >> DpzE,, DssEq, DpgEoe The
second condit}on is often not stated, but is necessary if the
oscillatory terms are to be unimportant. Consider, e.g., HF in a

1 with a state

1.0 TW/cm? laser near the one photon resonance at 4006 cm
A=(0,0) and B = (1,1). Condition (i) is satisfied and, with E_ =
0.00534 a.u., Dyp *0.022 a.u., Dy, ~ Dpg ~ 0, condition {11] is 0.0182

>> 0.0001, which is reasonably satisfied.
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Table I11.l. Transition probabilities for J = 0.

_ Number of states (DWBA)a

Total energy (eV)b 16 18 22 EC
0.30 P9 0200 1.66(~14)¢ | 1.50(~14)
Pyo+o1 3.07(=15) 3.07(-15) 2.76(-15)
0.35 Pyo+00 5.82(-10) 5.22(-10)
Pgo+0) 5.46(-10) 5.46(-10) . 4.87(-~10)
Py1+01 5.15(-10) 5.15(-10) 4.55(-10)
0 .40 | P yo+00 2.74(- 7) 2.63(~ 7)
Poo+o1 3.39(- 7) 3.39(-7) , 3.31(- 7)
Py1+0] 3.33(- 7)) 3.24(-7) 4,17(- 7)
01401 3.83(- 5) 3.83(- 5) '3.68(- 5)
0.50  Pooeoo Lu1(- 4) 4.54(~ 4)
| Po1+01 1.05(- 3) 1.05(- 3) 1.06(- 4)
0.55 Poos00 ' 4.99(- 3) 4.83(- 3)
0101 1+36(= 2) 1.36(- 2) 1.30(- 2)
0.60 ' Po+00 2.96(- 2) 3.01(- 2) 2.49(- 2)
00+01  5+30(= 2) 5.26(- 2) 4.19(- 2)
| Poy+01 9.29(—»2) 9.28(- 2) 7.13(- 2)
' Poo+01 1.45(~ 1) 1.40(- 1) 1.02(- 1) 8.02(- 2)
Pais01 2.62(~ 1) 2.59(- 1) 1.83(- 1) 1.50(- 1)

4The particular basis sets used were 16 states: 4,4,4,4; 18 states;
5,5,4,4; 22 states: 5,5,4,4,4 where each number is the number of
rotational states within a paritcular vibrational level. Each
successive number represents the next vibrational level. For example,
5,5,4,4 means four vibrational levels; v = 0,1 have five rotational
states, v = 2,3 have four rotational states, The even - odd decoupling
of rotational states 1is used, so if four rotational levels are
specified, the states are all of either even or odd symmetry as
described in section B.2.d. This notation is used throughout the paper.
The zero of energy 1s the bottom of the reactant diatom potential well.
From Ref. 16.

The probabilities given represent examples of each of the combinations
of even - odd symmetry decoupled results.
€The number in parenthesis is the power of ten that the preceding number
should be multiplied by.
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Table 11.2. Integral cross sections at several energies.?
E=0.4 eV E =0.5 eV E=0.6 eV
DWBA - CS EQ® DWBA - CC DWBA - CS EQP DWBA - CS EQP

Qgo+01 0.878(-6) 0.667(-6) 0.139(-2) 0.137(-2) 0.124(-2) 0.958(-1) 0.780(-1)
Qpo+02 0.160(-6) 0.114(-6) 0.644(-3) 0.532(-3) 0.473(-3) 0.496(-1) 0.437(-1)
Qpo+03 0.108(-8) 0.137(-8) 0.899(-4) 0.484(-4) 0.553(~4) 0.962(-2) 0.983(-2)
Qg0 0.352(-5) 0.252(-5) 0.594(-2) 0.570(-2) 0.501(-2) 0.420 0.352

Qg 0.162(-5) 0.120(-5) 0.350(-2) 0.312(-2) 0.306(-2) 0.255 0.228
Qg 0.239(-6) 0.186(-6) 0.113(-2) 0.844(-3) 0.806(-3) 0.872(-1) 0.843(-1)
Qg3 0.246(-8) 0.333(-8) 0.149(-3) 0.717(-4) 0.908(-4) 0.140(-1) 0.,166(-1)

8Cross sections are summed over final angular momentum projection quantum numbers and averaged over initial

angular momentum projection quantum numbers.,

preceding number should be multiplied by.

b

The exact quantum results are from Ref. 16.

The number in parenthesis is the power of ten that the
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Table III.3.

Convergence of collinear exact H + H2 reactive scattering

transition probabilities, v=0 + v'=0, with respect to basis size.?

Total
.Energy Number of channels
(ev) 1 2 3 4 5 6
0.3128  4.10(-9)  8.30(-9)  9.65(-9)  9.84(-9)  1.32(-8)  1.45(-8)
0.3628  1.46(~5)  3.31(=5)  3.86(=5) 4.01(-5) 4.81(-5) 4.67(-5)
0.4028  7.23(-4)  1.91(=3)  2.26(=3)  2.36(-3)  2.62(-3) 2.61(~3)
0.4334  6.55(=3)  2.02(-2) 2.43(=2)  2.52(-2)  2.73(-2)  2.69(-2)
0.4546° 2.26(-2)  7.73(-2)  9.28(-2) 9.0 (-2) 1.02(-1) 1.01(-1)
0.4826 8.56(-2) 3.02(-1) 3.50(=1) 3.68(-=1) 3.70(-1) 3.70(-1)
0.5000  1.64(-1)  5.22(-1) 5.78(-1) 5.97(-1) 6.01(-1) 6.01(-1)
0.6000 8.34(-1)  9.97(-1)  9.97(-1)-  1.00 1.00 1.00
0.7000  9.91(-1)  9.93(-1)  9.92(-1)  9.91(-1) " 9.91(-1)  9.90(-1)
0.8000° 9.96(~1)  9.68(-1)  9.47(=1)  9.50(-1) = 9.51(-1)  9.49(-1)
0.8706 9.78(-1)  8.56(-1) 2.72(-1) 1.78(-1)  1.92(-1)  1.66(-1)
0.8976  9.72(=1)  4.95(-1) 6.28(=1)  6.78(~1) 6.56(=1) 6.70(-1)
1.2026  8.27(-1)  3.52(-1) 2.08(-1) 2.33(-1) 2.07(-1)  2.28(-1)
1.3966 7.07(-=1)  1.73(-1)  1.42(-1)  1.36(-1) d 1.32(-1)
1.6466  S.44(-1) 3.37(-2)  8.08(-2)  7.86(-2) d 7.39(-2)

4The number in parenthesis is the power of ten that the preceding number

should be multiplied by.

bThe second channel has become open.

“The third channel has become open,

dThere were some numerical problems with these calculations which are

still being investigated.



Table II.4. Convergence of collinear exact H + H, reactive scattering
transition probabilities, v=0 + v'=Q, with respect to the number of grid

points for the integration to obtain the S matrix.?

Total
Energy Number of Grid Points

(ev) 41 45 51 56 61
0.4546 1.09(-1) 1.02(-1) 1.01(-1) 1.01(-1)
0.6000 9.99(-1) 9.99(-1) 9.99(-1) 1.00
0.8706 1.61(-1) 1.62(-1) 1.64(-1) 1.66(-1) 1.67(-1)
1.3966 1.34(-1) 1.33(-1) 1.32(-1) 1.32(-1)

8A11 these calculations have 6 channels in the basis. The number in
parenthesis is the power of ten that the preceding number should be

multiplied by.
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Table II.5. Comparison of our exact quantum scattering reaction

probabilities, v=0 =+ v'=) with previous calculations.?

Total | Our

. Previous
Energy Calculationb Calculations
(ev) |
0.3128" 1.45(-8) 1.07(-8)
0.3628 " 4.67(=5) 4.37(-5)€
0.4028 2.61(-3) 2.46(-3)€
04334 2.69(-2) 2.65(-)f 2.7 (-2)8
0.4546 1.01(-1) 1.01(-Df o
0.4826  3.70(-1)  3.67¢-D" 3.72¢-DY  3.e6¢-1F  3.71¢-Df
0 .5000 6.01(-1) 6.01(-1K’
0.6000 1.00 9.99(-1)*
0 .7000 9.90(~1) 9.91(-1)k
0.8000°  9.49(-1)  9.50(-D¥
0.8706 1.66(-1)  1.83(-D"  1.60(-DT  1.89(-1)3
0.8976 6.70(-1)  6.62(-1D®  6.68(-1DF  6.69(-1)7  6.66(-1)1
1.2026 2.28(-1) 2.29¢-DF  2.3-DY  2.00¢-1F 2.28(-1)!
1.3966¢ 1.32¢-1) 131¢-0"  rag-nd
1.6466 7.39(-2) 8.0 (-2)M  6.94(-2)1

3The number in parenthesis is the power of ten that the preceding number

should be multiplied by.

b

in the grid size.

CThe second channel becomes open.

dThe third channel becomes open.

All calculations have 6 states in the basis and are converged to 1 - 2%

®4ubbard, Shi, Miller3” list these results (which agree within 1 — 2% of

their DWBA results) but do not reference them.

fReference

iReference

lReference

79.
7.
74.

BReference 72.

jReference 69.

h
k

Reference 73.

Reference 71.



Table III.l.

Relevant energy levels for HF, according to

the rotating Morse oscillator approximation.

Eo.

vj
v i a.u. em” !
0 0 0.0093309 2048
0 1 0.0095187 2089
0 2 0.009894 1 2171
1 0 0.027400 1 60 14
1 1 0.0275819 6054
1 2 0.0279454 6133
2 0 0.0446793 9806
2 1 0.0448551 9845
) 2 0.0452065 9922
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Table III.Z2.

Approximate time averaged probabilities for vibrational

transitions of HF in a 1.0 TW/cm2 laser.

Nonrotating Rotating
Wen™ by P, P, P, P, P, P,
3850 0.88(QM) 0.08 0.04 0.99 0.01 0.00
‘ 1.00(CL) © 0.00 0.00
3879 0.47 0.08 0.45 0.53  0.03 0.44
0.88 0.12 0.00 0.99 0.01 0.00
3900 0.83 0.11 0.06 0.96 0.03 0.01
0.73 0.19 0.08 0.94 0.04 0.02
3937 0.69 0.28 0.03 0.47 0.07 0.46
0.69 0.24 0.06 0.67 0.27 0.06
3966 0.51 0.47 0.02 0.87 0.12 0.01
0.63 0.36 0.01 0.58 0.40 0.02
4006 0.69 0.3 0.01 0.50 0.49 0.01
0.68 0.32 0.00 0.66 0.34 0.00
4085 0.93 0.07 0.00 0.95 0.05 0.00
0.9 0.10 10.00 0.88 0.12 0.00
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Table III.3. Approximate time averaged vibrational
transition probabilities for rotating HF in a 2.5

TW/cm2 laser.?

o o=l
Wem ) Po P1 P2
3879 0.51(QM) 0.07 0.42
0.88(CL) 0.07 0.05
3900 0.9 0.05 0.05
0.67 0.17 0.16
3937 0.48 0.10 0.42
0.50 0.31 0.19
3966 0.77 0.18 0.05
0.52 0.39 0.09
4006 0.52 0.45 0.03
0.61 0.37 0.02
4085 0.89 0.11 0 .00
0.78 0.20 0.00

8The classical results shown for V = 3879 and 3937
cm™ ! were actually run at 3870 and 3927 ca 1,
respectively. The probabilities will not vary much
since the classical peak is broad. It was displayed
in the table this way to avoid confusion since the

overall trends are still clear.



Table IIl.4.

Quantum mechanical transition probabilities and energy

absorbed as a function of pulse time for laser phases of 0 and n/2 at

Y = 4006 cm~! and I = 1.0 TW/cmZ.

Poo <E(t)QM(a.u.)
t(ps) § = §=m/2 § = §=n/2 § =0 §=m/2
0.0 1.00 1.00 0.00 0.00 0.0000 0.0000
0.4 0.30 0.32 0.63  0.66 0.0125 0.0126
0.8 0.13 0.14 0.81 0.83 0.0156 0.0158
1.2 0.94 0.95. 0.05 0.05 0.00 10 0.0009
1.6 0.51 0.53 0.44 0.45 0.0084 0.0086
2.0 0.03 0.03 0.92 0.92 0.0177 0.0179
2.4 0.81 0.81 0.17 0.17 0.0034 0.0033
2.8 0.73 0.73 0.24 0.24 0.0047 0.0048
3.2 0.01 0.01 0.95 0.94 0.0180 0.0182
3.6 0.62 0.62 0.36 0.36 0.0068 0 .0069

4.0 0.88 0.90 0.09 0.09 0.0018 0.0017
4.4 0.08 0.09 0.87 0.88 0.0167 0.0169

124



Table III.5. Quantum mechanical transition probabilities and energy
absorbed as a function of pulse times for laser phases of 0 and ®/2 at

V=13937 ecm ! and T = 1.0 TW/cmZ.'

Pgo Pysy <E(t)>y(a.u.)
t(ps) § =0 §=n/2 § =0 §=n/2 § =0 §=n/2
0.0 1.00 1.00 0.00 0.00 0.0000 0.0000
0.4 0.93 0.93 0.05 0.05 0.0021 0.0019
0.8 0.78 0.80 0.19 0.19 0.0072 0.0071
1.2 0.57 0.58 0.37 0.38 0.0142 0.0 144
1.6 0.36 0.37 0.57 0.57 0.0218 0.0219
2.0 0.18 0.18 0.71 0.74 0.0282 0.0284
2.4 0.05 0.05 0.83 0.81 0.0320 0.0324
2.8 0.00 0.00 0.83 0.86 0.0333 0.0338
3.2 . 0.03 0.03 0.80 0.80 0.0322 0.0324
3.6 0.14 0.13 0.69 0.71 0.0283 0.0287
4.0 0.27 0.29 0.56 0.57 0.0231 0.0233
4.4 0.47 0.47 0 .40 0 .40 0.0169 0.0170
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Table

111.6.

Classical and q
probabilities at Vv = 3922 cm

Tantum time averaged vibrational

(in percent).

N, Initial 0 1 2 3 4 5 6 7 8 10
Final 0 42(CcL) 21 16 16 5
39(QM) 22 19 16 3
1 22 36 24 12 8
21 39 21 14 4
2 16 25 31 16 11
18 21 31 19 10 2
3 17 12 16 28 17 13
17 14 17 24 22 7 1
4 4 6 12 17 31 21 9
3 4 11 21 34 22 4
5 2 11 21 37 22 6
2 7 22 44 20 3
6 8 23 4 24 5
4 22 52 18 3
7 6 24 39 23 6
"3 19 55 16 3 2
8 5 22 39 26 6
- 2 18 60 14 3
9 8 28 33 19
3° 16 59 7
10 6 17 23
1 2 11 30
11 4 10
- 1 5 8
12 2 5
2 10
13 1 4
1 6
14 4
2 21
15 2
1 3
16 1
2
17 1
7
Dissociate(CL) 7 24
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Table III.7. Classical and quantum time averaged
vibrational transition probabilities in the overtone

frequency range (in percent).

3(cm—1) P, P1 P2
Nonrotating HF
linear dipole
QM) 7200 81 0 19
7757.8 50 0 50
7800 82 0 18
(cL) - 7900 90 10
7990 76 - 24 0
8080 91 9 0
nonlinear dipole
Q) 7680 82 0 18
7757.8 51 0 49
7860 80 0 20
(cL) 7750 90 8 2
7900 66 25 : 9
8100 78 22 0
Rotating HF
linear dipole
(QM) 7780 73 0 27
| 7800 52 0 48
7820 81 0 19
(CL) 7950 85 15
7987.5 69 31 0

8050 88 12 0
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Fig. I1.1. Transition probability from v =0, j = 0 tov' =0, j'-=
as a function of vibration-rotation basis set at E = 0.65 eV, J = 0.
The symbols on the plot indicate the number of vibrational states; (o)
four vibrational states, (©) five, (A) six, (A) seven, and (0) eight.
This clearly shows the convergence problem at higher energies as the

number of vibrational states is increased.



109,65 Poo—o

Fig. II.2. Transition probabilities ve=0, j=0~+ v' = 0 summed over
final rotational states with J =0 as a function of total energye. The
gsolid line indicates the exact quantum results, and the dots are the
DWBA results. The DWBA results are calculated using 18 vibraional -

rotational states, 5,5,4,4. See Table 1I.1 for more explanation of basis

sets.
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Fig. II.3. The transition probabilities multiplied by (2J+1) as a

function of J for total energy E = 0.5 eV. The solid line indicates the

exact quantum results. The DWBA-CC and DWBA-CS results are plotted
using the indicated dots. For these results a basis of 4,4,3,3 (this

notaiton is explained under Table II.1) is used with all of the allowed

projection quantum number Q states. Accounting for even and odd

decoupling, a maximum of 1]4 states was used.
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Fig. I1.4. The transition probabilities multiplied by (2J+1) as a

function of J for total energies E = 0.4 eV and E = 0.6 eV. The solid

lines indicate the exact quantum results, and the DWBA-CS results are

shown as dots. As indicated, the E = 0.4 eV results are multiplied by

1OQ

4,4,3,3 are used.

before being plotted. For the DWBA results 14 basis functions,

See Table 1I.1 for an explanation of basis sets.
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Fig. 11.5. Different
The solid line is the

180 - 6 at total energy E = 0.5 ev.
The DWBA-CC and DWBA-CS results are plotted
I1.3 for a description of the basis.

angle BR =
exact quantum results.

using the indicated dots. See Fige.
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Fig. 11.6. Differential cross sections as a function of scattering
angle 8 = 180 - 6 for total energies 0.4 and 0.6 eV. The solid lines
indicate the exact quantum results, and the dots are the DWBA-CS
results. As indlcated, the E = 0.4 results are multiplied by 5 x 104
before being plotted. See Fig. 4 for a description of the basis.

133



0.020 _—
ﬁ ' (a)
- /1 o Classical
| Q.OIS P|| o Quantum
— [T
5 K3
S 0.010f i |
o~
i ; ‘\ d \c\q
0.005 ) \
e
0 i N ) B L
3800 3900 4000 4100
7 (cm™1)

Fig. II1.1(a). Classical and quantum mechanical time averaged energy

absorption for nonrotating HF in a 1.0 TW/cmz_lasér.
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Fig. III.1(b).
absorption for rotating HF in a 1.0 TW/cm2 laser,

Classical and quantum mechanical time averaged energy
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Fig. 111.2. Classcial and quantum mechanical time averaged energy

" absorption for rotating HF in a 2.5 TW/cm2 laser.
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Fig. I11.3. Time dependent energy absorption for nonrotating HF with

YV = 3966cm ! and I = 1.0 TW/cmz.
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Fig. I11.4. Time dependent energy absorption
V= 4006cm™! and 1 = 1.0 TW/cm?.

for rotating HF with
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Fig. III.5. Quantum mechanical time dependent energy absorption for
rotating HF with v = 3937 em ! and I = 1.0 TW/cmz. Note that the

jaggedness here and in Figs. III.7 and III.9 are due to poor resolution

of the high frequency oscillations.
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Fig. II1.6. Classical time dependent energy absorption for rotating HF

with V= 3937 cm™! and I =

1.0 TW/cmz.
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Fig. II1I.9. Quantum mechanical probabilities POO and P22 for HF with
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Fig. III.10. Quantum and classical time averaged energy absorbed as a

function of initial vibrational state for nonrotating HF at .
V= 3922 cm” L.
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Fig. II1.11(a). Quéntum and classical time averaged energy absorbed as

a function of frequency for nonrotating HF in the overtone frequency

range with a linear dipole.
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Fig. III.11(b). Quantum and classical time averaged energy absorbed as
a function of frequency for nonrotating HF in the overtone frequency

range with a quadratic dipole (note the different frequency scale from
Fig. (a)).
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Fig. I11.12. Quantum and classical time averaged energy absorbed as a

function of frequency for rotating HF in the overtone frequency range.
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Fig. I11.13. Quantum energy absorbed as a function of pulse time for

nonrotating HF at v = 7757.8 em L. -
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Fig. III.l4. Classical energy absorbed as a function of pulse time for

nonrotating HF at vV = 7990 em 1.
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Fig. I11.15. Quantum energy absorbed as a function of pulse time for

rotating HF at Vv = 7800 em™ 1.
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Fig. I11.16. Classical energy absorbed as a function of pulse time for

rotating HF at Vv = 7987.5 em 1.
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Fig. III.17. Quantum transition probabilities as a function of pulse
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Fig. III.18. Classical transition probabilities as a function of pulse

time for rotating HF at Vv = 7987.5 em™ L,



Fig.

I11.19.

Quantum tansition probabilities summed over rotational

states as a function of pulse time for rotating HF at v = 7800 cm_l.
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- Fig. I111.20(a). Poincaré surface of section at v =
(o) denote elliptic fixed points and (°) denote

nonrotating HF,

hyperbolic fixed points;

1
™ o
Q .

= 7757.8 em~! for

the dashed line is an actual trajectory.
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Fig. II11.20(b). Poincaré surface of section at V

= 798) cm~ ! for

nonrotating HF, (©) denote elliptic fixed points and (°*) denote

hyperbolic fixed'points.
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Fig. I11.21. Classical time averaged energy absorbed as a function of

the initial action for nonrotating HF at V = 7757.8 cm-l.
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Fig. II11.22. Poincaré surface of Section'for nonrotating HF at v = 3922
cm_l; (0) denote eliptic fixed points and (©) denote hyperbolic fixed

points. The dashed lines indicate separatrices.
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