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The Boltzmann transport equation �BTE� is applied to the problem of thermoelectric transport in
p-type semiconductors whose valence band-structure is describable in terms of two bands
degenerate at the � point. The Seebeck coefficient and mobility are calculated from the solution to
two coupled BTEs, one for each band, with interband scattering and scattering by inelastic
mechanisms treated exactly by the application of an algorithm developed by the authors in an earlier
work. Most treatments of this problem decouple the two bands by neglecting certain terms in the
BTE, greatly simplifying the mathematics: the error in the Seebeck coefficient and mobility
introduced by this approximation is quantified by comparing with the exact solution. Degenerate
statistics has been assumed throughout, and the resulting formalism is therefore valid at high hole
concentrations. Material parameters are used that have been deduced from optical, strain and other
experiments often not directly related to hole transport. The formulations in this work thus do not
use adjustable or fitting parameters. The transport coefficients of heavily doped gallium antimonide,
a typical high-efficiency p-type thermoelectric material, are calculated and agreement to
experimentally determined values is found to be satisfactory. © 2011 American Institute of Physics.
�doi:10.1063/1.3537826�

I. INTRODUCTION

The theory of thermoelectric transport in n-type III–V
compound semiconductors is well understood, including the
effects of inelastic scattering,1–3 primarily due to the simplic-
ity afforded by the fact that the conduction band-structure in
these materials is often described to a very good approxima-
tion by the single spherical nonparabolic model.4 However
the treatment of transport in p-type materials is complicated
mainly by following two factors: �a� the warping of constant-
energy surfaces of the valence bands, especially the heavy-
hole band, and �b� the interaction of the heavy-hole and
light-hole bands �especially interactions mediated by optical-
mode phonons�, with the energy distribution of carriers in
one influenced by that in the other. In particular, there is little
information on the effect of optical-mode phonon scattering
on the Seebeck coefficient, especially regarding the magni-
tudes of terms which cannot be treated under the relaxation
time approximation.

In some cases, approximations have been made that con-
siderably simplify the problem, while lending insight into the
key physical processes. These include the assumption of a
single relaxation time for both light and heavy holes, making
it possible to decouple the bands.5 However any accurate
modeling of hole transport must include detailed descriptions
of scattering due to each of several contributing scattering
mechanisms.

Kranzer in his review article6 has treated the problem of
hole mobility of various III–V and II–VI compound semi-

conductors, solving the Boltzmann transport equation �BTE�
exactly in two k-space coordinates. Kranzer assumes a
spherical parabolic model for both bands; while this model is
strictly not correct, the effect of band-warping is taken into
account by postulating two effective masses for each band,
one of which describes the density-of-states, thus entering
the expressions for scattering rates, while the other describes
the group velocity, thus entering expressions for the current.
One of the limitations of Ref. 6 as applied to the problem
under study is the nondegenerate approximation to the BTE:
however this is not a serious limitation and it is only slightly
more cumbersome to treat the full BTE. Reference 7 presents
hole mobility calculations with intraband optical-mode pho-
non scattering treated exactly using a variational approach;
however interband scattering is still treated under the relax-
ation time approximation.

In this work, we generalize the difference equation
method described by Kranzer to the solution of the BTE in
the presence of spatial fluctuations, such as necessary for the
calculation of the Seebeck coefficient. A spherical parabolic
model is assumed for both bands with band-warping partially
accounted for through the use of two different but related
effective masses for each band.6,8 All intraband and interband
scattering terms are taken into account, including those due
to optical-mode phonons.

In Sec. II we state mathematically the form of the BTE
in the coupled valence band model, and simplify the colli-
sion term to a more tractable form, from which mobility can
be immediately derived. Section III describes the algorithm
used to calculate the Seebeck coefficient from this formula-a�Electronic mail: ashok.ramu@gmail.com.
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tion. Next we describe the band-structure model used �Sec.
IV�, and calculate numerically the density-of-states effective
mass and conductivity effective masses from the
Luttinger–Kohn9 model for the valence band-structure. In or-
der to minimize the computational burden, Sec. V derives
closed form expressions for scattering integrals �defined in
Sec. II� due to all scattering mechanisms considered in this
study. Section VI compares the results of the calculation to
experimental Seebeck coefficient and mobility data on
p-GaSb, a high efficiency thermoelectric material. Section
VII summarizes our results.

II. THE TWO COUPLED BTES

The BTE is an integral-differential equation for the non-
equilibrium distribution function in three k-space and three
real-space coordinates. Throughout, bold font will be used
for vectors, and normal font for their magnitudes and all
other scalars. Also the subscripts i , j will refer to the heavy-
hole and light-hole bands unless otherwise stated. The BTE
for band i �heavy-hole band� is given by

vi�ki� · �rf i +
qF

�
· �ki

f i

= �
ki�

Sii�ki�,ki�f i�ki�,r��1 − f i�ki,r�� − �
ki�

Sii�ki,ki��f i�ki,r�

��1 − f i�ki�,r�� + �
kj�

Sji�kj�,ki�f j�kj�,r��1 − f i�ki,r��

− �
kj�

Sij�ki,kj��f i�ki,r��1 − f j�kj�,r�� . �1�

An analogous BTE can be written for the light-hole band by
interchanging i and j in Eq. �1�. The quantities fn�kn ,r� ,n
= i , j are the nonequilibrium distribution functions for the
heavy-hole and the light-hole band, respectively. From these
distribution functions, all bulk transport properties like the
particle concentration, particle current, energy current, etc.,
in each band can be derived as a function of spatial coordi-
nate r, by taking the appropriate moment and integrating
over all kn. Here the quantities Smn�km ,kn� represent the sum
of transition probabilities per unit time due to all mecha-
nisms, from a state with wave-vector km in the band “m,” to
a state of wave-vector kn in band “n,” where “m” and “n”
can each take either of two values, i or j. Also vn�kn� is the
group velocity in the band “n” and F�r� is the electric field at
any point r. The first two summations on the RHS of Eq. �1�
represent intraband scattering, and the next two, interband
scattering.

We assume that �a� variations in potential and tempera-
ture are along only one spatial direction, the z-direction, �b�
the dispersion relation is spherically symmetric, �c� scatter-
ing rates depend only on the magnitudes of, and the angle
between, the initial and final wave-vectors, and not on their
absolute orientations, and �d� the two distribution functions
fn ,n= i , j possess azimuthal symmetry about the z-axis. Thus
they can be expanded in a basis of spherical harmonics, and
for low fields the expansion can be truncated to a single term
�Ref. 2, p. 1015� as follows:

fn�kn,�n,z� = f0n�kn,z� + �
l=1

�

gln�kn,z�Pl�cos �n�

� f0n�kn,z� + gn�kn,z�cos �n, n = i, j . �2�

Here �n is the angle made with the z-axis by vector kn of
magnitude kn. The symmetric part of the distribution func-
tion f0n�kn ,z�, is given by Fermi–Dirac statistics, assumed
unchanged by the applied electrothermal fields, f0n�kn ,z�
=1 / �exp�−En�kn�−Ev�z�+EF�z�� /kBT�z�+1�, where En�kn� is
the dispersion relation for the hole band “n,” Ev�z� is the
valence band profile, EF�z� is the chemical potential profile
and T�z� is the applied temperature profile. The profiles
Ev�z�, EF�z�, and T�z� are inputs to the BTE solver, with their
correct values determined by starting with an initial guess
and iterating until charge neutrality and current continuity
are simultaneously satisfied. An algorithm for the determina-
tion of these profiles is the subject of Sec. III. gn�kn ,z� is the
unknown, antisymmetric part of the distribution function that
gives rise to a net particle flux; the rest of this section deals
with its determination. Henceforth, the term “distribution
function” without any qualifier will refer to the antisymmet-
ric part gn�kn ,z�.

Let vn be the magnitude of the group velocity in band
“n.” Due to assumption �b� above, it depends only on the
magnitude kn. F�z�=dEV�z� /dz is the electric field profile.
For convenience, we classify scattering mechanisms as elas-
tic and inelastic. Sm,n

elas�km ,kn� is defined as the sum of transi-
tion probabilities per unit time due to elastic mechanisms
from state km in band “m,” into state kn in band “n.” For
inelastic mechanisms, Sm,n

inelas�km ,kn� is defined similarly. In
general for inelastic mechanisms, Sm,n

inelas�km ,kn�
�Sn,m

inelas�kn ,km�. For example, for optical-mode phonon scat-
tering, if one of the two quantities corresponds to phonon
absorption, the other will correspond to phonon emission
�Ref. 10, pp. 76–79�.

Upon inserting Eq. �2� into Eq. �1�, multiplying through-
out by sin �i cos �id�i and integrating with respect to �i the
hole-band BTE reduces, in a straightforward extension of the
derivation in the Appendix, Ref. 3, to

gi�ki,z�� 1

�i−eff�ki,z�	 = − �vi�ki�
 � f0i

�z
� +

qF�z�
�


 � f0i

�ki
�	

+ �
ki�=0

� gi�ki�,z�
�ii

inelas�ki�,ki,z�
dki�

+ �
kj�=0

� gj�kj�,z�
� ji�kj�,ki,z�

dkj�, �3a�

1

�i−eff�ki,z�
= 
 1

�ii
inelas�ki,z�

+
1

�ii−mom
elas �ki�

� +
1

�ij�ki,z�
. �3b�

The various terms in the Eqs. �3a� and �3b� are defined as
follows:
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1

�ii
inelas�ki,z�

=
1

�2��3� � �
ki�,�i�,	i�

Sii
inelas�ki,ki���1 − f0i�ki�,z�� + Sii

inelas�ki�,ki�f0i�ki�,z��d
i�ki�
2dki�, �4�

1

�ii
inelas�ki�,ki,z�

= 
3

2
� 1

�2��3�
�i=0

� � �
�i�,	i�

�Sii
inelas�ki�,ki��1 − f0i�ki,z�� + Sii

inelas�ki,ki��f0i�ki,z��cos �i� cos �i sin �id�iki�
2d
i�. �5�

Equations �4� and �5� represent intraband scattering rates due to inelastic mechanisms, and roughly correspond to scattering out
of, and scattering into, the state ki respectively �Ref. 3, Eqs. A6 and A9�,


 1

�ii−mom
elas �ki�

� =
1

�2��3� � �
ki�,�i,�i

Sii
elas�ki,ki�,�i��1 − cos �i�sin �id�id�iki�

2dki�. �6�

Equation �6� shows that for elastic intraband scattering, the in- and out-scattering rates can be combined into a single
“momentum” scattering rate �Ref. 5, Eq. 6.2.23�. In order to bring it to a standard form �Ref. 10, Eq. 2.4�, the integral over all
final states is shown about ki as the polar axis �instead of the z-axis�, the polar angles being �i , �i. The integral over ki� in Eq.
�6� is dummy, since Sii

elas�ki ,ki� ,�i� for elastic mechanisms contains a factor �Ei�ki�−Ei�ki���.

1

�ij�ki,z�
=

1

�2��3� � �
kj�,�j�,	j�

Sij�ki,kj���1 − f0j�kj�,z�� + Sji�kj�,ki�f0j�kj�,z��d
 j�kj�
2dkj�, �7�

1

� ji�kj�,ki,z�
= 
3

2
� 1

�2��3�
�i=0

� � �
�j�,	j�

�Sji�kj�,ki��1 − f0i�ki,z�� + Sij�ki,kj��f0i�ki,z��cos � j� cos �i sin �id�ikj�
2d
 j�. �8�

Equations �7� and �8� are interband scattering rates due to all
mechanisms. For interband scattering, we make no notational
distinction between elastic and inelastic mechanisms since
there is no significant mathematical advantage such as that
seen in Eq. �6�. An equation similar to Eq. �3� can be written
down for the light-hole band simply by interchanging i and j
in Eq. �3� and in the definitions following it, Eqs. �4�–�8�. In
later sections, we derive expressions for the above terms for
scattering due to each mechanism of interest.

Equation �3� illustrates the nature of the difficulty posed
by the terms containing 1 /�ii

inelas and 1 /� ji. As mentioned in
the introduction, they cause the population of carriers at a
given energy in a given band to depend on the population at
a different energy in the same band, as well as on the distri-
bution of carriers in the other band. The mobility calculation
of Ref. 5, Chap. 8 ignores both these terms, that of Ref. 7
treats terms 1 /�ii

inelas but not 1 /� ji, and that of Ref. 6 treats
both but uses the nondegenerate form of the BTE.

We use numerical iteration2 to solve the two equations,
namely, Eq. �3� and the analogous one for the light-hole
band. The Mth iterates for the heavy-hole band and the light-
hole band distribution functions, gi

�M��ki ,z� and gj
�M��kj ,z� are

given by the following recursion relations:

gi
�M��ki,z� = − �i−eff�ki,z��vi�ki�
 � f0i

�z
� +

qF�z�
�


 � f0i

�ki
�	

+ �i−eff�ki,z��
ki�=0

� gi
�M−1��ki�,z�

�ii
inelas�ki�,ki,z�

dki�

+ �i−eff�ki,z��
kj�=0

� gj
�M−1��kj�,z�

� ji�kj�,ki,z�
dkj�, �9a�

gj
�M��kj,z� = − � j−eff�kj,z��v j�kj�
 � f0j

�z
� +

qF�z�
�


 � f0j

�kj
�	

+ � j−eff�kj,z��
kj�=0

� gj
�M−1��kj�,z�

� j j
inelas�kj�,kj,z�

dkj�

+ � j−eff�kj,z��
ki�=0

� gi
�M−1��ki�,z�

�ij�ki�,kj,z�
dki�. �9b�

The iteration is begun at M =1 by setting gi
�0��ki ,z�

=gj
�0��kj ,z�=0 on the right-hand side.

Once the two distribution functions are known, the cur-
rent density at any point z is calculated using

J�z� = 
 q

3�2���
ki=0

�

ki
2vi�ki�gi

�M��ki,z�dki

+ �
kj=0

�

kj
2v j�kj�gj

�M��kj,z�dkj	 . �10�

This sum of the current contributions from the two bands
is the output of the BTE solver. For the special case of spa-
tially uniform electric fields, suppressing the spatial depen-
dence in Eqs. �9� and �10� gives immediately the conductiv-
ity of each band. Starting iteration at M =1, with gi

�0��ki�
=gj

�0��kj�=0,

033704-3 Ramu et al. J. Appl. Phys. 109, 033704 �2011�



gi
�M��ki� = − �i−eff�ki�

qF

�

 � f0i

�ki
�

+ �i−eff�ki��
ki�=0

� gi
�M−1��ki��

�ii
inelas�ki�,ki�

dki�

+ �i−eff�ki��
kj�=0

� gj
�M−1��kj��

� ji�kj�,ki�
dkj�, �11a�

gj
�M��kj� = − � j−eff�kj�

qF

�

 � f0j

�kj
�

+ � j−eff�kj��
kj�=0

� gj
�M−1��kj��

� j j
inelas�kj�,kj�

dkj�

+ � j−eff�kj��
ki�=0

� gi
�M−1��ki��

�ij�ki�,kj�
dki�, �11b�

�n = 
 q

3�2F
��

kn=0

�

kn
2vn�kn�gn

�M��kn�dkn, n = i, j . �12�

A few remarks are in order here about the iterative calcula-
tion of the distribution functions, Eqs. �9� and �11�. First, it is
seen that five iterations �up to M =5� are sufficient for con-
vergence within 0.1% for mobility calculation. For example,
in 4.5�1019 cm−3 p-GaSb at 600 K, the first few iterates of
the mobility are 106.332, 123.342, 126.240, 126.742,
126.830, and 126.846 cm2 /V s. Second, if only elastic scat-
tering mechanisms are considered, the pair of Eqs. �9a� and
�9b� can be solved exactly without numerical iteration by
change of coordinates to energy instead of k since we get a
pair of simultaneous equations at each value of energy.11

However since we treat inelastic mechanisms as well in this
work, there is no advantage in switching to energy coordi-
nates. Third, using a noniterative approximation to the distri-
bution functions, i.e., setting M =1 in Eqs. �9a� and �9b� re-
sults in a very simple expression for the Seebeck coefficient,
and this is stated in Sec. VI, Eqs. �31a�–�31c� following a
discussion of the accuracy of this approximation.

III. ALGORITHM FOR EXTRACTION OF THE SEEBECK
COEFFICIENT

In order to determine the Seebeck coefficient from Eqs.
�9a�, �9b�, and �10�, one end of a sample of length L is
assumed kept at the temperature T �Kelvin� at which the
Seebeck coefficient is sought, the other at �T+�� K. Al-
though the following procedure for calculating thermoelec-
tric voltages is valid for any arbitrary temperature difference
�, the Seebeck coefficient is defined in the limit as � ap-
proaches 0. Thus we choose ��5 for the calculations in this
work. The temperature variation is assumed to be linear and
chosen to lie along the z-axis. Close to equilibrium, space
charge neutrality holds in the bulk of the device. Knowing
T�z� and the hole concentration as a function of T, the dif-
ference between the valence band edge profile and the
chemical potential profile �Ev�z�−EF�z�� is determined using
the relation

p�T�z�� = 
 1

�2� �
n=i,j

�
kn=0

�

�
kn

2dkn

1 + exp� ��2kn
2/2mn

DOS� − Ev�z� + EF�z�
kBT�z� 	 .

�13�

Above, mn
DOS is the density-of-states effective mass �see Sec.

IV� of band “n.” The hole concentration p is practically in-
dependent of T over the small range T to �T+��.

Assuming a spatial grid of N points, the current profile
can be discretized into a vector �J1 ,J2J3 , . . . ,JN�, and the
chemical potential profile into a vector
�EF1 ,EF2 ,EF3 , . . . ,EFN�. The problem of imposing current
continuity is equivalent to finding the roots of an
N-dimensional equation f��EF1 ,EF2 , . . . ,EFN��= �J1−JT ,J2

−JT , . . . ,JN−JT�= �0�. For Seebeck coefficient calculation the
target current JT=0. In this work, root-finding is done nu-
merically using the MATLAB

® nonlinear optimization routine
“fmincon,” which iteratively solves general constrained opti-
mization problems. “fmincon” generates successive guesses
for the chemical potential profile EF�z� and eventually the
correct profile that satisfies f��EF1 ,EF2 , . . . ,EFN��= �0�. In
practice, for doping concentrations of the order 1019 cm−3,
the numerical solver achieves a final current density of
�10−4 A /m2. Finally, the Seebeck coefficient is the differ-
ence between the chemical potentials at the two ends divided
by �, the temperature difference. Figure 1 shows a schematic
of this algoithm, modified from Fig. 3 of Ref. 3.

IV. BAND-STRUCTURE MODEL: DENSITY-OF-STATES
AND CONDUCTIVITY EFFECTIVE MASSES

The warping of the constant energy surfaces of the va-
lence bands of III–Vs, especially the heavy-hole band, intro-
duces a large scatter in values of effective masses measured
by various techniques. For example, values of the density-of-
states effective mass of GaSb quoted in the literature range

FIG. 1. Schematic of algorithm �Ref. 3� for calculation of the Seebeck
coefficient.
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from 0.36m0 �Ref. 6� to as large as 0.82m0.12 Our approach
in this work is to extract both the density-of-states and con-
ductivity effective masses from the three Luttinger param-
eters of the material, and then use the recommendations of
Vurgaftman et al., Ref. 13, for the values of these parameters
for a specific material.

For an arbitrary dispersion relation, the number of states
Nn�EMax� per unit volume bounded by the surface of constant
energy EMax�0 below the valence band-edge is given by a
change of variables from the set �kn ,�n ,	n� to �En ,�n ,	n�.
The Jacobian of the transformation14 is ��kn /�En�, giving

Nn�EMax� = �1/4�3�� � �
En=0, �n=0, 	n=0

En=EMax, �n=�, 	n=2�

��kn/�En�

��kn�En,�n,	n��2dEnd
n n = i, j , �14�

where d
n is the infinitesimal solid angle.
We use the dispersion relation of Luttinger and Kohn,9

referred to hereafter as the LK model. Except very close to
k=0 where k-linear terms in the Hamiltonian are significant,
we have for the hole spectrum,

E�k� = − Ak2 � �B2k4 + C2�kx
2ky

2 + ky
2kz

2 + kz
2kx

2� . �15�

The upper sign is for the heavy-hole band, and the lower is
for the light-hole band. Constants A, B, and C of the LK
model can be related15 to the standard Luttinger parameter
set. The integrations in Eq. �14� were evaluated numerically
using the MATLAB

® routine trapz.
In a parabolic model, the number of states per unit vol-

ume up to energy EMax equals

Nn�EMax� = 
 1

4�3�
4�

3
�
2mn

DOS�EMax�
�2 �3/2

, �16�

where mn
DOS is the density-of-states effective mass of band

“n.” Equating Eqs. �14� and �16� one can extract mn
DOS as a

function of EMax. The DOS effective masses of the heavy-
hole and light-hole bands of GaSb obtained from this calcu-
lation are 0.459m0 and 0.041m0, m0 being the rest mass of a
free electron. These values show negligible dependence on
EMax. These values are consistent with the power-series ex-
pansion, Eq. 8.1.23 of Ref. 5, which gives 0.452m0 and
0.041m0 for the heavy-hole and light-hole bands respectively
of GaSb.

We use the following procedure for numerical calcula-
tion of the conductivity effective mass. Only under the relax-
ation time approximation, equivalent to M =1 in Eqs. �11�
and �12�, there is an exact expression for conductivity �see
Eq. 8.3.10, Ref. 5� that takes into account the full LK band-
structure, and this expression is rewritten below

�n = 
 − q2

4��2�� � �
kn,�n,	n

�n−eff�kn�

�
 �En

�knz
�2
 � f0

�En
�kn

2dkn sin �nd�nd	n, n = i, j . �17�

Here f0 is the Fermi–Dirac function and knz is the
z-component of the vector kn at which the dispersion En is
evaluated. The conductivity is now recalculated using M =1
in Eqs. �11� and �12�. mn

Cond enters through the defining rela-
tion vn�kn�=�kn /mn

Cond. Now mn
Cond is adjusted until the two

formulations �17�, �11�, and �12� give the same conductivity.
Although the conductivities calculated using both Eqs. �17�,
�11�, and �12� depend on the carrier concentration through
the Fermi–Dirac function f0, the effective mass extracted by
equating them should not, in order for the whole procedure
�of simplification of the LK model into two effective masses
per band� to be valid. This is in fact the case for GaSb with
the values mi

Cond=0.34m0 and mj
Cond=0.041m0 giving an

agreement to 0.1% between the two conductivity expres-
sions, over the range of hole concentrations 4�1016 to 5
�1019 cm−3. These values are also consistent with the
fourth-order power series expansion, Eq. �15� of Ref. 8
which gives mi

Cond=0.324m0 and mj
Cond=0.041m0.

V. EXPLICIT EXPRESSIONS FOR THE SCATTERING
RATES

In this section, we state closed form expressions for all
scattering terms defined by Eqs. �4�–�8� due to four scatter-
ing mechanisms: polar optical-mode phonon �POP� scatter-
ing, nonpolar optical-mode phonon �NPOP� scattering,
screened ionized impurity �SII� scattering and acoustic-mode
phonon deformation potential scattering. Throughout this
section, masses mi and mj refer to the density-of-states effec-
tive masses of the two bands. Rates relevant to the heavy-
hole band BTE only will be shown; interchanging labels i
and j gives the corresponding rate expressions for the light-
hole bands. Overlap integrals are included, which to a good
approximation16 depend only on the angle between the initial
and final wave-vectors.

In what follows, �r0 and �r� are the static and high-
frequency dielectric constants respectively and ��OP is the
optical phonon energy. NOP is the optical phonon occupation
number, given by

NOP =
1

exp
��OP

kBT
� − 1

, �18�

POP scattering is inelastic. Substituting in Eqs. �4� and �5�
the interstate transition probability rate of Eq. �22�, Ref. 6,
and performing the required integration over all final states,
we find,

1

�ii
POP�ki,z�

= 
q2�POPmi

16��2ki
�
 1

�r�

−
1

�r0
���B+�NOP�1 − f0i�ki

+,z�� + �NOP + 1�f0i�ki
+,z�� + �B−��NOP + 1��1 − f0i�ki

−,z��

+ �NOP�f0i�ki
−,z��� , �19a�

033704-5 Ramu et al. J. Appl. Phys. 109, 033704 �2011�



B� = 
 �1 + 3ci
�2

�
2

log� 1 + ci
�

1 − ci
�� − 3ci

��, ci
� =

ki
2 + ki

�2

2kiki
� , �19b�

�
ki�=0

� gi�ki�,z�
�ii

POP�ki�,ki,z�
dki� = 
q2�OPmi

16��2ki
�
 1

�r�

−
1

�r0
��gi�ki

+,z��C+��NOP + 1��1 − f0i�ki,z�� + NOPf0i�ki,z�� + gi�ki
−,z��C−�

�NOP�1 − f0i�ki,z�� + �NOP + 1�f0i�ki,z��� , �20a�

C� = ��ci
� + 3ci

�3
�

2
log� 1 + ci

�

1 − ci
�� − �2 + 3�ci

��2��, ci
� =

ki
2 + ki

�2

2kiki
� . �20b�

In Eqs. �19� and �20�, ki
� is the solution to the equation Ei�ki

��=Ei�ki����OP for each sign + or – respectively. POP interband
scattering terms are calculated in the same way from Eqs. �7� and �8� as follows:

1

�ij
POP�ki,z�

= 
3q2�OPmj

16��2ki
�
 1

�r�

−
1

�r0
���D+�NOP�1 − f0j�kij

+,z�� + �NOP + 1�f0j�kij
+,z�� + �D−��NOP + 1��1 − f0j�kij

−,z��

+ �NOP�f0j�kij
−,z��� , �21a�

D� = 
 �1 + − cij
�2

�
2

log� 1 + cij
�

1 − cij
�� + cij

��, cij
� =

ki
2 + kij

�2

2kikij
� , �21b�

�
kj�=0

� gj�kj�,z�
� ji

POP�kj�,ki,z�
dkj� = 
3q2�OPmj

16��2ki
�
 1

�r�

−
1

�r0
��gj�kij

+,z��E+��NOP + 1��1 − f0i�ki,z�� + NOPf0i�ki,z�� + gj�kij
−,z��E−�

�NOP�1 − f0i�ki,z�� + �NOP + 1�f0i�ki,z��� , �22a�

E� = 
 �cij
� − cij

�3�
2

log� 1 + cij
�

1 − cij
�� +

�3�cij
��2 − 2�
3

�, cij
� =

ki
2 + kij

�2

2kikij
� . �22b�

In Eqs. �21� and �22� kij
� is the solution to the equation

Ej�kij
��=Ei�ki����OP.
The interstate transition probability rate for NPOP in-

elastic scattering is given by Eqs. 17�a�-�20� of Ref. 6 in
terms of the constants ENPOP and c̄ defined therein. It is to be
noted that the transition probability rate is independent of the
angle between the initial and final states even after account-
ing for the p-like character of the valence bands17 with the
result that any scattering rate weighed by cos �n��n= i , j� is 0
as follows:

1

�ii
NPOP�ki�,ki,z�

=
1

� ji
NPOP�kj�,ki,z�

= 0. �23�

The other relevant scattering rates are given by

1

�ii
NPOP�ki,z�

=
ENPOP

2 �OPmiki
+

2��2c̄
NOP�1 − f0i�ki

+,z��

+ �NOP + 1�f0i�ki
+,z��

+
ENPOP

2 �OPmiki
−

2��2c̄
�NOP + 1��1 − f0i�ki

−,z��

+ �NOP�f0i�ki
−,z�� , �24�

1

�ij
NPOP�ki,z�

=
ENPOP

2 �OPmjkij
+

2��2c̄
�NOP�1 − f0j�kij

+,z��

+ �NOP + 1�f0j�kij
+,z��

+
ENPOP

2 �OPmjkij
−

2��2c̄
��NOP + 1��1 − f0j�kij

−,z��

+ �NOP�f0j�kij
−,z�� . �25�

As with intraband POP scattering, ki
� in Eq. �24� is the so-

lution to the equation Ei�ki
��=Ei�ki����OP and kij

� in Eq.
�25� is the solution to the equation Ej�kij

��=Ei�ki����OP.
Scattering by SIIs is elastic. Let Nimp be the number of

ionized impurities and �s be the inverse screening length.
�2=�si

2 +�sj
2 ; where �sn

2 for each individual band “n” is cal-
culated using Eq. �3� of Ref. 18. The momentum scattering
rate �see Eq. �6�� for intraband transitions is given by

1

�ii−mom
SII �ki�

=
q4Nimpmi

32��r0
2 �3ki

3��3A − 1�2log�A + 1

A − 1
�

− 2
9A − 6 +
4

A + 1
�� , �26a�
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A =
1

2

2 +

�s
2

ki
2 � . �26b�

Interband scattering rates for SIIs under the Born approxima-
tion are given by

1

�ij
SII�ki,z�

=
3q4Nimp

�mimj

32��r0
2 �3ki

3 �2F log�F + 1

F − 1
� − 4� , �27�

�
kj�=0

� gj�kj�,z�
� ji

SII�kj�,ki,z�
dkj�

=
3q4Nimp

�mimj

32��r0
2 �3ki

3 ��3F2 − 1�log�F + 1

F − 1
� − 6F�gj�kij,z� ,

�28a�

F =
1

2

�mi

mj
+�mj

mi
� + 
 �s

2

2ki
2��mi

mj
, �28b�

kij in Eqs. �28� solves Ej�kij�=Ei�ki�. The expressions
�26�–�28� are identical to Eq. 49, Ref. 11, except for a factor
of �mi /mj in their third equation.

Acoustic-mode phonon deformational potential scatter-
ing is very nearly elastic, and contributes about 15% to the
net scattering rate. An often used approximation due to
Lawaetz17 is to treat acoustic-mode phonon deformational
potential scattering as momentum randomizing.

1

�ii−mom
ADP �ki�

= 
 kBT�2

2��3cl
�miki, �29a�

1

�ij
ADP�ki�

= 
 kBT�2

2��3cl
�mjkij , �29b�

1

� ji
ADP�kij,ki,z�

= 0. �29c�

Again kij in Eqs. �29� solves Ej�kij�=Ei�ki�. Equation �29c�
follows from the momentum-randomizing assumption. The
constants in Eqs. �29� are defined below, following Eq. 5.2
and 5.3 of Ref. 17 as follows:

�2 =
1

2
�a2 + 
 cl

ct
�
b2 +

d2

2
�	 , �30a�

cl =
1

5
�3c11 + 2c12 + 4c44� , �30b�

ct =
1

5
�c11 − c12 + 3c44� . �30c�

The quantities c11, c12, and c44 are the usual elastic stiffness
coefficients19 for a cubic crystal and �a ,b ,d� are the valence
band deformation potentials.20

VI. COMPARISON TO EXPERIMENT

The above calculations are performed on p-type GaSb.
GaSb, InGaSb, and their erbium-based nanocomposites are
promising materials for p-type thermoelectrics owing to their

combination of higher hole mobilities and lower thermal
conductivities compared to corresponding arsenides and ni-
trides. The various material parameters involved in the cal-
culation for GaSb, and their sources are given below. m0 is
the free electron mass, �0 is the permittivity of free space.

1. General parameters:21 lattice constant a0=6.096
�10−10 m, density �=5.61�103 kg /m3.

2. Parameters pertaining to NPOP scattering:21 optical pho-
non energy ��OP=29.7 meV, static dielectric constant
�r0=15.7�0.

3. Parameters pertaining to POP scattering:21 static dielec-
tric constant �r0=15.7�0, high-frequency dielectric con-
stant �r�=14.4�0.

4. Band structure parameters: band-gap21 Eg=0.726 eV,
Luttinger parameters13 �1=13.4, �2=4.7, and �3=6.0.

5. Parameters pertaining to ADP scattering: Elastic
constants21 C11=0.883�1011 N /m2, C12=0.402
�1011 N /m2, and C14=0.432�1011 N /m2. Valence
band deformation potentials13 a=−0.8 eV, b=−2 eV,
and d=−4.7 eV.

6. Derived parameters �this work�: ENPOP=7.462 eV and
c̄=0.584�1011 N /m2 �appear in expressions for NPOP
scattering�. Density of states effective masses: 0.459m0

for heavy-hole band and 0.041m0 for light-hole band.
Conductivity effective masses: 0.340m0 for heavy-hole
band and 0.041m0 for light-hole band.

The series of GaSb films used for this study was grown
by molecular beam epitaxy on semi-insulating GaAs �100�
substrates using solid source materials. Unintentionally
doped �UID� GaSb has a high hole concentration, �4
�1016 cm−3, making it unsuitable as a substrate for thin-film
electrical property measurements. Hence semi-insulating
GaAs was chosen as the growth substrate. After the native
oxide was desorbed from the GaAs surface, a 200 nm un-
doped GaAs buffer layer was grown. Following the arsenide
to antimonide interface adjustment, a 50 nm UID GaSb
buffer layer was grown to relieve the �7.8% lattice mis-
match between the GaSb and the GaAs. This was followed
by growth of the actual film, 1 �m GaSb. The growth tem-
perature was 530 °C for GaSb and the growth rate was
1 �m /h. Dopants such as beryllium and carbon were used
to dope the GaSb films p-type, with hole concentrations
ranging from 1.4�1017 to 4.5�1019 cm−3. Figure 2 shows a
summary of Hall effect measurements on this series of films.

Two independently controlled Peltier modules provide
temperature differences for Seebeck coefficient measure-
ments. A bar-shaped sample with Indium contacts straddles
the two Peltier elements, with Wakefield® thermal compound
used for good thermal contact between the elements and the
sample. Temperature is measured using two type-K thermo-
couples in intimate contact with the semiconductor surface.

Hall Effect measurements were made on a standard
square Van der Pauw geometry, with Ohmic contacts made to
the GaSb thin film by electron-beam evaporation-deposition
of the following metal stack: Ti/Au, 40/400 nm.22 I-V sweeps
showed that Ohmic contacts were established. To prevent the
film from becoming shorted accidentally, the GaSb thin film
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is etched away around the edges of the sample by Cl2 /Ar2

based reactive ion etching �Ref. 23� leaving behind bare in-
sulating substrate in those regions.

Figure 2 shows the room temperature mobility as ex-
tracted from Hall effect data, as a function of hole concen-
tration. The mobility values extracted from Eqs. �11� and
�12� with M =5 iterations are also plotted, as well as the
result of the noniterative calculation �M =1�. The improve-
ment of accuracy afforded by the iterative calculation is evi-
dent in the doping range below 1018 cm−3, although the
comparison is complicated by the Hall factor. The hole mo-
bility is overestimated at high doping levels, consistent with
the findings of Ref. 11 on the accuracy of the Born approxi-
mation. Nevertheless, our calculations agree with the experi-
mental mobility to within 20% over three decades in hole
concentration. Additionally, for pure p-GaAs at 300 K, the
iterative calculation for the hole �drift� mobility of
371 cm2 /V s agrees well with the experimental value
400 cm2 /V s �Ref. 24� from Hall effect measurements.

Figure 3 compares the calculated mobility versus tem-
perature of 4.5�1019 cm−3 Be-doped GaSb to experiment.
The accuracy of the calculation improves with increasing
temperature up to 450 K. This is possibly due to the fact that
the Born approximation for ionized impurity scattering is
more accurate at higher hole energies. Note the onset of sub-
strate conduction beyond 450 K, as evidenced by the abrupt
drop in mobility and eventual reversal in polarity of the Hall
voltage around 550 K. Hence we do not have information on
GaSb in that temperature regime.

Figure 4 shows the room-temperature Seebeck coeffi-

cient as a function of the hole concentration. Agreement to
within 10% is observed between 1�1017 and 3
�1019 cm−3. In all cases, the Seebeck coefficient computed
using five iterations for the BTE solution �M =5 in Eq. �9��
differs from the result of the noniterative computation by not
more than 1%. For example, for p=2.2�1019 cm−3 at 700
K, the first few iterates for the Seebeck coefficient are
242.85, 241.41, 240.99, 240.88, and 240.85 �V /K. These
differences cannot be resolved experimentally; thus setting
M =1 in Eqs. �9a� and �9b�, substituting in Eq. �10� for the
current profile and equating to zero yields immediately the
common procedure for determining the Seebeck coefficient
of a two-band system;

S =
�iSi + � jSj

�i + � j
, �31a�

�n = 
 q2

3�2�
��

kn=0

� 
−
� f0n

�kn
��n−eff�kn�vn�kn�kn

2dkn

= �
kn=0

�

�n�kn�dkn, �31b�

Sn = −
1

qT��kn=0
� �n�kn��− E�kn� + EF − EV�dkn

�kn=0
� �n�kn�dkn

� , �31c�

where �n and Sn, n= i , j are the conductivities and Seebeck
coefficients of the individual bands.

For the UID sample with hole concentration 4
�1016 cm−3, the discrepancy between the calculated and
measured values of the Seebeck coefficient �Fig. 4� is in part
due to scattering by compensating donors, since for this
sample, low temperature Hall effect data was fit very well by
assuming a compensation ratio ND

+ /NA�1. However com-
pensation is ignored in all Seebeck coefficient and mobility
calculations presented in this work since it necessitates the
introduction of a fitting parameter, the compensation ratio.
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VII. CONCLUSIONS

A formalism was developed for the semiclassical treat-
ment of thermoelectric transport in p-type semiconductors
whose valence band-structure can be described by two inter-
acting bands. A procedure was described for extracting the
Seebeck coefficient and mobility from this formalism. Con-
venient closed form expressions were written for intraband
and interband scattering rates due to the four key scattering
mechanisms. It was proved, using the typical III–V GaSb as
an example that the usual artifice of combining the Seebeck
coefficients as the weighted average of the individual band
values, weighed by their respective conductivities, causes
negligible error. For mobility calculation, it is seen that the
iterative procedure of Eq. �11� with M =5 generally results in
better agreement with experiment than the noniterative cal-
culation; where it does not, it illustrates the limitations of the
transition probability models.
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