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Abstract

To more accurately predict hourly running stabilized link volumes for emissions modeling, a new method
was recently developed that disaggregates the period-based model link volumes into hourly volumes using
observed traffic count data and multivariate multiple regression (MMR). This paper extends the MMR
methodology with clustering and classification analyses to account for spatial variability and to accom-
modate model links that do not have matching observed traffic count data. The methodology was applied
to data collected in the South Air Basin. The spatial analysis resulted in identifying five clusters (or 24-h
profiles) for San Diego and two clusters for Los Angeles. The MMR models were then estimated with and
without clustering. For San Diego, the disaggregated model volumes with clustering were much closer to
the observed volumes than those without clustering, with the exception of the a.m. period. For most hours
in Los Angeles, the predicted volumes with clustering were only slightly closer to the observed volumes than
those predicted without clustering, suggesting that spatial effects are minimal in Los Angeles (i.e., that 24-h
volume profiles are fairly similar throughout the region) and clustering is not necessary. Finally, two
classification models, one for San Diego and one for Los Angeles were developed and tested for network
link data that does not have matching observed count data. The results indicate the procedure is relatively
good at predicting a cluster assignment for the unmatched location for Los Angeles but less accurate for
San Diego. © 2001 Published by Elsevier Science Ltd.

1. Introduction

Travel demand forecast models estimate network link traffic volumes by modeling period
(e.g., a.m.-peak or p.m.-peak), where periods can include any number of hours. Alternatively,
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photochemical air quality models, such as EPA’s urban airshed model (UAM), require estimated
hourly volumes as input for computing emissions. Traditionally, these hourly emissions are es-
timated within a post-processor, such as the direct travel impact model (DTIM) developed by the
California department of transportation (Caltrans). Here we specifically focus on the running
stabilized emissions, where in DTIM, or most currently DTIM3, the disaggregation of period to
hourly volumes is typically performed using trip end proportions by hour estimated from travel
surveys (California Department of Transportation, 1998).

More recent air quality modeling ! is taking advantage of a new method to disaggregate the
period-based demand model link volumes into hourly volumes (Lin and Niemeier, 1998). This
method uses observed traffic count data to stochastically estimate hourly allocation factors rep-
resenting the expected value of traffic occurring during each hour within a modeling period. These
allocation factors can be used to disaggregate the period-based model link volumes into hourly
profiles, which can then be directly input into models such as DTIM.

In an early exploratory application of the method comparing emissions totals estimated using
the traditional methodology (based on travel survey data) and the stochastic methodology (based
on observed count data) in the Sacramento region, it was shown that the traditional methodology
could be highly inaccurate in some cases (Niemeier et al., 1999a). For example, the traditional
methodology produced an hourly estimate of carbon monoxide emissions 15% higher than esti-
mated by the new methodology. This can obviously have profound implications for transporta-
tion conformity analysis.

While the new methodology significantly improves the estimation of hourly running stabilized
volumes, to date, its application has been limited in two respects. First, it does not take spatial
patterns into account. That is, the estimated allocation factors are assumed to be constant across
space. The second limitation is that the method can only be applied to model links with matching
count data. Since the vast majority of travel demand network links do not have matching count
data (e.g., a permanent automated counter), an extension to the method is needed to account for
these locations in the stochastic modeling. This paper outlines a theoretical modeling framework,
with an exploratory application, addressing both of these limitations.

We begin the paper with a brief review of the theoretical model. We then describe extensions to
the method that allow spatial variability to be incorporated and provide a means for accounting
for unmatched network locations. The result of an empirical application to the South Coast Air
Quality Basin is discussed in Section 4. Finally, we conclude with a review of the study and
discussion of future research efforts.

2. The multivariate multiple regression theoretical model

The new method is based on a multivariate multiple regression (MMR) model that assumes
correlation across the observed hourly counts within each modeling period (the reader should see
Lin and Niemeier, 1998 and Niemeier et al., 1999a for details). Assume that there are J modeling

! For instance, the method is currently being used to develop the new South Coast Basin mobile emissions inventory
and data are being collected for use of the method in the Central California Ozone Study.
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periods, and 7} is the number of hours within modeling period j. Let i represent any hour within a
24-h period; so i =1,...,24, and ¢; represent the subset of hours i in modeling period j. For
example, j=1 might be the a.m.-peak, which might include hours i=7,8, and 9; so
ty ={7,8,9}, and T} = 3. Inherently, ij':l T; will equal 24. If there are M model links, then the
model form for determining the allocation factors would be

y,‘_’m:BiX{n—i—Sim, l'el(j, jzl,...,J7 (1)

where y, ,, is the observed volume at link m for hour i contained in the subset of ¢, x,, the estimated
travel demand volume for link m during period j, f; the proportion of the demand volume oc-
curring during hour 7, and ¢, ,, represents the model error term. There is no intercept (f3,) included
in the equation since the hourly volumes proportions by definition sum to one.

The error terms are distributed with a mean of zero and a variance of 62, ¢;,, ~ (0,6?%); that is,
the variance in error terms occurs across hours but not across links. Also, the error terms are
independent and identically distributed (i.i.d.). If inferences about the value of § were necessary,
then an assumption of normality would also be required.

The f’s are unknown parameters and represent the expected value of the proportion of traffic
occurring in each hour within a modeling period. The parameters are estimated using an ordinary
least squares estimator (OLS) defined by

P ZZ: XmYim
== (2)
Zm:l xm

3. Extending the MMR methodology

As noted in the introduction, two extensions to the theoretical framework are necessary: first to
account for spatial variability and second to handle missing data. In the first extension, we use
clustering analysis to account for spatial variability in the estimated hourly profiles. In the second
extension, we draw upon classification analysis as a mechanism for estimating the hourly profiles
for locations that do not have matching observed counts.

3.1. Clustering analysis

There are two reasons to add a clustering analysis to the MMR modeling methodology. First,
the hourly traffic patterns on any given network link can substantially vary by time of day across
the region. Fig. 1 shows two count locations within the San Diego region with distinct 1997
average weekday, hourly profiles.

From Fig. 1, we see that if the a.m.-period model volume for location ID 1 was disaggregated
into three hourly volumes (7, 8, and 9 a.m.), then the largest factor would be assigned to 8 a.m.,
with the next largest to 9 a.m., and then 7 a.m. That is to say that the highest proportion of traffic
during the 3-h period occurred during the second hour, followed by the third, then the first. This
allocation would be different for location ID 2; where the highest factor would be assigned to 9, 8,
and then 7 a.m. As these proportions vary across the hours within a modeling period, it would be
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Fig. 1. Temporal traffic patterns of sample counter locations.

more accurate to estimate separate allocation factors for locations of markedly differing temporal
patterns. One means for accounting for this spatial variability is by grouping, or clustering, lo-
cations based on hourly profiles, with one set of allocation factors estimated for each cluster.
The second advantage of introducing clustering into the MMR procedure is that it provides a
basis for assigning allocation factors to unmatched model links. Since unmatched links do not
have observed counts available, estimated model period-based volumes for these links cannot be
disaggregated into hourly profiles. However, after clusters have been determined for all matched
links, the estimated model volumes for the unmatched links can be used to classify the unmatched
links into one of the predetermined clusters, and the estimated allocation factors for that cluster
can be used to estimate the hourly profiles for the unmatched links.
For the MMR extension, we use the average linkage agglomerative hierarchical clustering
method, which can be summarized in three steps:
1. Each of N count locations are assigned to a unique cluster so that each of the N clusters con-
tains a single entity.
2. The statistical (Euclidean) distance between each pair of clusters is calculated.
3. The pair of clusters having the minimum distance between them is merged. There are then
N — 1 clusters remaining after merging.
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Steps 2 and 3 are repeated until an appropriate number of clusters are determined based on a
suitable criterion. One method that can be used for determining the termination point is the
comparison of the pseudo F-ratio values, the ratio of the mean square error between clusters to
the mean square error within clusters, where a large F-ratio is preferred. When there is more than
one location within a cluster the Euclidean distance is calculated for each pair of locations, where
one member of the pair comes from one cluster and the other member of the pair comes from the
other cluster. The average distance between clusters is then used to determine which clusters
should be merged (Johnson and Wichern, 1992). In this analysis, observations within clusters are
assumed to be uncorrelated. This assumption is likely to be violated on an individual link-by-link
analysis, however, if the clusters are sufficiently large, the procedure is robust.

Before clustering locations, the daily temporal traffic pattern at each location is mathematically
described in order to calculate the Euclidean distance between each location, or cluster. The
24-hourly traffic counts could be used directly to describe each count location, however, the
analysis is simplified by describing the hourly variables in terms of fewer (less than 24) uncor-
related linear combinations or principal components (Mardia et al., 1979). Once the principal
components are established, the Euclidean distance between the jth and kth location for an
analysis containing P principal components is defined as

12
d0.) = [z (1 - Y>] , 5

P

where Y, denotes the pth principal component for the jth location. The two clusters (initially
consisting of one location each) with the minimum Euclidean distance between them are grouped
together to form a new cluster and new principal components are calculated for all clusters (or
locations). The distances between all remaining N — 1 clusters are then compared, after which two
more clusters are merged. The closest clusters are continually merged until an appropriate number
of clusters is determined. The MMR procedure can then be applied to the matched links.

3.2. Modified MMR procedure

Before the MMR model can be estimated, the general form, presented in Eq. (1), must be
modified slightly to accommodate the clustering. From Eq. (1), recall that there are J modeling
periods, 7; is the number of hours within modeling period j, and i represents any hour within a
24-h period; so i = 1,...,24. Also recall that ¢, represents the subset of hours i in modeling period
j.Letc=1,2,...,C denote the cluster ID’s and k. = 1,2,..., K. the index for locations in cluster
¢, with K, representing the total number of locations in cluster ¢. The counter volume observed on
the kth location in cluster ¢ at hour i is formulated as

J/z:,k(. - ﬁ:x;{l + 6l'.,k[»7 i€ tja J = 17 R 7J‘ (4)

For example, suppose we wanted to disaggregate the a.m.-peak period from 6 to 9 a.m.
(i =17,8,9) into hourly volumes. The 5’s must be estimated separately for each cluster. For cluster
¢, the equations would be
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ik = P+ ek
Yok = Pexi™ + esi (5)

C _.a.m. N
Mg = Boxp™ + o,

The resulting estimated allocation factors (for the a.m.-peak case f57, fig, fi;) are then used to
disaggregate the a.m. period travel demand model volume into three separate hours within the
period. For example, with estimated factors of (0.3, 0.2, 0.5), 30%, 20%, and 50% of the a.m.
period model volume would be allocated to 7, 8, and 9, respectively. Factors are estimated for
remaining a.m.-peak clusters and for all clusters within any remaining modeling periods (e.g.
p.m.-peak, off-peak).

3.3. Classification analysis

The final step in the procedure requires consideration of the remaining unmatched links, those
travel demand model links having no matching observed counts. This is a common problem since
automatic counts and/or manual counts are likely to be far fewer in scope than the roadway
system represented by the travel demand network. Without observed counts, the next best method
for handling these locations would ideally be to classify the links into one of the predetermined
clusters. Once a cluster is identified, the allocation factors for that cluster can then be used to
disaggregate the estimated period-based model volumes into hourly volumes.

The procedure for classifying an unmatched link into a cluster is relatively simple. Suppose the
period-based model volumes for the unmatched link and the period-based average model volumes
for each cluster were plotted on a three-dimensional graph (assuming there are three modeling
periods). For instance, if there are five clusters, then six points would be plotted on the graph, one
for the unmatched link and one for each of the five clusters. The statistical distance from the
unmatched link point to each of the five cluster points is computed, and the unmatched link is
classified into minimum distance cluster.

The squared statistical distance from the unmatched link point to the point for cluster i, which
is standardized to account for differences in variation among modeling periods, is calculated as
follows:

D?(X()) = (XO - xi)tS;ololed(XO - )_Ci)v (6)

where x, represents the vector of model volumes for the unmatched link, x; the vector of average
model volumes for cluster 7, S, ., the inverse of the pooled covariance matrix of the cluster model
volumes, and (xy — )_c,«)t is the transpose of the column vector (xo — ¥;), the difference between the
new model volumes and the average model volumes for links in cluster 7.

This statistical distance, based on Fisher’s discriminant function, assumes that the volumes
within each modeling period and cluster are normally distributed with equal covariance among
clusters; hence the use of a pooled covariance matrix. The covariance matrix represents the linear
association between each of the variables, or in this case the modeling periods (Johnson and
Wichern, 1992). The squared distance represents the actual distance from the model volumes of

the new link to the average model volumes for each of the other links (represented by (xy — X;))
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standardized to account for differences in variation among modeling periods (represented by
(XO - )_Cl) pooled)

After determining the distance between the new link and each predetermined cluster, the new
link is classified into the cluster that is closest (i.e., the cluster at a minimum distance away). After
all of the model links, both matched and unmatched, are assigned to a cluster, the allocation
factors already determined from the MMR procedure are used to disaggregate the estimated
period-based model volumes into hourly volumes. For example, if the allocation factors for
cluster 1 during the a.m. period (7, 8, and 9 h) were 0.2, 0.5, and 0.3, respectively, then the es-
timated hourly model volumes for link k in cluster 1 would be

Vg = 0-2x2{m'v
)78’,(1 = O.SxZim‘, (7)

Yoy, = 0'3x2-m-7

where 3, is the estimated hourly volume for hour i that occurs during the a.m. modeling period
and x;™ is the a.m. period model volume. This simple multiplication is applied to all links falling
into cluster 1 for all 24 hours.

4. Empirical application

The extended MMR methodology was recently applied to data collected as part of a 1997
Southern California Ozone Study (SCOS97) sponsored by the california air resources board
(CARB). The purpose of the study was to improve understanding of the formation and movement
of ozone within the region. The long-term intent of the study is to help identify future control
measures leading to ozone reduction in the South Coast region. Past efforts to reduce ozone levels
have been relatively successful, reducing exposure by 80% between 1981 and 1995, but levels are
still considered too high. In fact, the South Coast region currently experiences some of the highest
levels of ozone in the country (California Environmental Protection Agency, 1997).

The SCOS97 study began on 15 June 1997, culminated on 15 October 1997 and included a
55,000 square-mile region, with boundaries of San Luis Obispo to the north, Mexico to the south,
the Pacific Ocean to the west, and the Nevada/Arizona border to the east. The data included
ozone readings collected from air monitoring stations, ozone concentrations, and movement in-
formation gathered from a lidar system, wind information using radar wind profilers, and weather
data gathered by weather balloons and airplanes.

Also as part of this effort, the University of California, Davis was charged with collecting
observed traffic data with the intent of implementing the MMR model to improve hourly reso-
lution of running stabilized emissions (Niemeier et al., 1999b). Realtime traffic counts were col-
lected from 15 June to 15 October for 1609 automatic count locations on the MODCOMP system
in Los Angeles, Ventura, and Orange counties. Data for San Diego and Imperial counties were
collected from 162 automatic count locations beginning on 25 June and ending 15 October.

The Southern California Association of Governments (SCAG) provided travel demand model
information for the Los Angeles region and the 1994 model volumes for four modeling periods
across 2775 freeway model links. The four modeling periods included the a.m.-peak (6-9 a.m.),
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midday (9 a.m.-3 p.m.), p.m.-peak (3—7 p.m.), and night time (7 p.m.—6 a.m.). In addition, they
provided a list of state-plane coordinates for each of the 1836 freeway model nodes that defined
the links. The San Diego Association of Governments (SANDAG) provided similar data for the
1995 San Diego travel demand model. Specifically, model volumes were provided for three
modeling periods: a.m.-peak (6-9 a.m.), p.m.-peak (3-6 p.m.), and off-peak (9 a.m.-3 p.m. and 6
p.m.—6 a.m.) for 1196 freeway model links.

Arcview was used to create maps displaying all of the count locations and model nodes, as well
as to store pertinent information related to each location, such as an identification number, the
nearest cross street, or a freeway name and post-mile description. The map also allowed the
matching of the real-time count locations to modeling links. In Los Angeles, there were 2775
freeway travel demand model links, with 1244 matching realtime active count locations. For San
Diego, only 140 active count locations could be matched to 1196 freeway model links. In many
cases, unmatched links abutted or were very near matched links, which clearly gave rise to the
need for a method to assign unmatched links to clusters.

4.1. Clustering results

To begin the analysis each set of 24-hourly volumes, or variables, were reduced using principal
components. For both the San Diego and Los Angeles data, the variables reduced to two prin-
cipal components. The two San Diego components described 91% of the total variance, while the
Los Angeles components explained 57% of the total variance (Table 1). For San Diego, each of
the remaining PC’s contributed less than 4% each towards the total temporal variability. For Los
Angeles, additional PC’s helped explain a little more of the variability, but it was difficult to
interpret these additional PC’s in terms of temporal traffic patterns. So for both regions, two PC’s
replaced the original 24-hourly variables.

The coefficients (eigenvectors) of the two principal components for both regions are given in
Table 2. For San Diego, the first two PC’s are given by

Y1 =-0.036 X; —0.017 X5 + - -- — 0.061 Xp4,

8

Y, =—0.012 X; —0.009 X; 4+ --- — 0.026 X, ®)

where X1, X5, ..., X4 represent the 24-hourly variables. The new variables Y; and Y, are uncor-
related. Similarly, the PC’s for Los Angeles were formulated as

Y; = —0.068 X; —0.032 X; + -+ — 0.137 X4, 9)

Looking at the coefficients of the first PC for San Diego, large positive coefficients were found
between hours 5 and 9 a.m. (f—f3,), large negative coefficients were found between 3 and 6 p.m.
(B16—Pis), and small magnitudes were found for the remaining coefficients. This PC reflects a
strong morning, weak evening peaking characteristic. The second San Diego PC had large positive
coefficients between 5 and 7 a.m. (f—f};) and between 3 and 6 p.m. (f5,—f5;s) and large negative
coefficients between 9 a.m. and 1 p.m. (f,—f3)-
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Table 1
Total variance explained by principal components
San Diego region Los Angeles region
PC Variance explained PC Variance explained
1 0.84 1 0.36
2 0.91 2 0.57
3 0.95 3 0.68
24 1.00 24 1.00

For Los Angeles, relatively large positive coefficients were computed between 5 and 9 a.m.
(Ps—Ps) and suggest that the first PC has a strong a.m.-peak component. The large positive co-
efficients between 3 and 7 p.m. (f,,—f,9) suggest that the second PC has a strong p.m.-peak
component.

Table 2
Eigenvectors (coefficients)
Coefficient San Diego Los Angeles

PCl PC2 PCl PC2
b -0.012 -0.103
B, —0.009 -0.076
B3 0.003 -0.062
By 0.014 -0.082
Bs 0.059 -0.189
Be 0.286 -0.309
By 0.420 0.043
Bs 0.107 0.228
Bo -0.133 0.120
Bro =0.275 -0.083
B —0.274 -0.172
512 “0.259 —01 16
b3 —0227 -0.059
Bra —0.181 -0.056
Pis —0.041
Bis 0.216
/317 0.392
Pig 0.399
Bio —-0.053
Bro -0.125
P -0.107
B —0.097 -0.212
B -0.078 -0.194
I -0.026 -0.142
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Table 3
Pseudo F-ratio values by total number of clusters
Region Total number of clusters

1 2 3 4 5 6 7 8 9 10
San Diego — 274 228 280 264 242 227 204 259
Los Angeles - 64 56 51 46 39 35 168 213

Clustering analysis was then performed using the set of principle components. The appropriate
number of clusters was determined using the pseudo F-ratio; the pseudo F-ratio is the ratio of the
mean square error between clusters to the mean square error within clusters, where a large F-ratio
is preferred. Table 3 shows the pseudo F-ratios for a variety of total cluster numbers for San
Diego and Los Angeles.

For San Diego, the ratio peaks at five clusters (F = 298); for Los Angeles count locations were
divided into nine clusters. While the pseudo F-ratio is higher for 10 and 11 clusters (not shown),
the sample sizes within these additional clusters were extremely small. Of the nine clusters, seven
clusters had very small sample sizes and were later merged into the nearest cluster. This resulted in
two clusters for Los Angeles.

The average pattern for each of the five San Diego clusters is shown in Fig. 2. The first cluster
(16 locations) exhibits a sharp a.m.-peak, while cluster 5 (10 locations) exhibits a high p.m.-peak.
Clusters 2 (62 locations) and 3 (36 locations) had moderate a.m. and p.m.-peaks; however, cluster
2 was higher in the a.m. and cluster 3 was higher in the p.m. Cluster 4 (15 locations) exhibited a
mild a.m.-peak with a moderate p.m.-peak.

Of the two clusters formed for the 1238 Los Angeles count locations, 683 counters fell into
cluster 1 and 555 into cluster 2. Average 24-hourly traffic patterns for both clusters are shown in
Fig. 3. The first cluster exhibits a slightly larger a.m.-peak than p.m.-peak, while the second cluster
exhibits a large p.m.-peak and a small a.m.-peak.

4.2. Allocation factor estimation

After clustering the matching count locations, allocation factors were estimated for each cluster
and each modeling period. For San Diego, there were a total of five regression models fit for each
of the three modeling periods. For Los Angeles, there were two regression models fit for each of
the four modeling periods. Table 4 shows the estimated allocation factors for all hours of all
modeling periods. Note that for each cluster, the sum of factors within a modeling period must
equal one. So for San Diego cluster 1, the factors from 6 to 9 a.m. (f,—f,), during the a.m.-peak,
sum to one (0.35140.368+0.281=1). In Table 4, the modeling periods for both regions are shaded
differently.

Examination of the San Diego coefficients revealed that f, estimates for clusters 1 and 2 were
larger than the estimates for clusters 3, 4, and 5. Conversely, the f3, estimates were smaller for
clusters 1 and 2. However, the differences between clusters during the p.m.-peak period were not
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Fig. 2. Average temporal traffic pattern for SD clusters.

so evident. Nor were differences between the three hours detected. The most obvious difference
was that cluster 5 had a smaller proportion of traffic from 3 to 4 p.m. (f5;,) compared to the other
clusters. For the 18-h off-peak period, the highest proportion of volume was given to hours from 9
a.m. to 3 p.m. and from 6 to 8 p.m., regardless of the cluster. In addition, cluster 1 had a high
proportion for f; (5-6 a.m.) leading into the a.m.-peak.

For the Los Angeles a.m.-peak, the allocation factors were higher for cluster 1 during the first
two hours (6-8 a.m.) and higher for cluster 2 during the third hour (8-9 a.m.). In addition, the
maximum allocation for cluster 1 was from 7 to 8 a.m. (fig) at 36%. The maximum allocation for
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Fig. 3. Average temporal traffic pattern for LA clusters.

cluster 2 was from 8 to 9 a.m. (f,) at 39%. For the mid-day period, the coefficients were stable
over time for cluster 1 with slight increases during the first and last hours (9-10 a.m. and 2-3 p.m.)
and increasing over time for cluster 2.

The coefficients for the p.m.-peak period were nearly the same for both Los Angeles clusters
and all hours; about 25%. There was, however, a slight decrease in magnitude of the last allo-
cation factor (6—7 p.m.) as the p.m.-peak commuting decreases. Finally, for the night-time period
in Los Angeles, the coefficients were highest leading into the a.m.-peak period and out of the p.m.-
peak period for both clusters. Otherwise, the factors remained low during all other hours of the
night.

Fig. 4 plots predicted hourly volumes with and without clustering and the observed count
volumes for location 2 in San Diego. In other words, in the without-clustering case, only one set of
hourly allocation factors was estimated for all links. In the with-clustering scenario, different sets
were estimated for each cluster. From the figure, it can be seen that the disaggregated model
volumes with clustering were much closer to the observed volumes than those without clustering
for most of the day, excluding the a.m. period. Similar figures can be drawn for all 138 other
locations.

A similar plot for location 21570 in Los Angeles reveals that the clustering does not seem to
substantially improve the accuracy of the allocation factor estimates. Fig. 5 shows that the pre-
dicted disaggregated hourly traffic volumes at a randomly selected location were very similar for
both with and without clustering, while both were slightly different from the observed volumes.
But for most hours, the predicted volumes with clustering were slightly closer to the observed
volumes. This could also imply that the clustering was not necessary for the Los Angeles area; that
is, hourly profiles do not seem to vary much across the region.

4.3. Classifying unmatched links
Recall that there were large number of unmatched links in both San Diego and Los Angeles. To

complete the analysis, these unmatched links were assigned to clusters. To assign the unmatched
links to a cluster, the average model volumes for each cluster, the inverted covariance matrices of
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model volumes, and the unmatched links’ model volumes were required to compute Eq. (6) and
are shown in Tables 5-8.

With the values given in the above tables, Eq. (6) was formulated for each cluster in each re-
gion. For San Diego, there were five equations, each one calculating the distance from an un-
matched link to a San Diego cluster. These equations were

/

xam 16370
DX(xo) = | | 0™ | — [ 14312
xS 35879
224E—07 4.68E—08  —9.45E—087 [ /xim 16370
x | 468E—08 235E—07 —LI3E—07] || 0™ | — | 14312 ||,
—945E—08 —1.13E—07  8.40E — 08 xS 35879

18011\ 1’
— | 17850
o 44163

f
224E - 07 4.68E —08 —9.45E - 08 xgm- 18011
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Fig. 4. Comparison of predicted hourly volumes for SD (location 2).
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Fig. 5. Comparison of predicted hourly volumes for LA (location 21570).
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Table 5
San Diego average model volumes for each cluster
Modeling period Cluster ID
1 2 3 4 5
A.M.-peak 16370 18011 13932 14570 8785
P.M.-peak 14312 17850 20794 24594 18870
Off-peak 35879 44163 43742 50901 34608
Table 6
Los Angeles average model volumes for each cluster
Modeling period Cluster ID
1 2
A.M.-peak 19263 16170
Mid-day 26466 27387
P.M.-peak 24916 31028
Night-time 7664 8629
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Table 7
Inverted covariance matrix for San Diego
AM. P.M. Off
AM. 2.243E—07 4.679E—-08 —9.453E—-08
P.M. 4.679E—-08 2.350E—-07 —1.126E-07
Off —9.453E—-08 —1.126E—07 8.404E—08
Table 8
Inverted covariance matrix for Los Angeles
AM. Mid-day P.M. Nite
AM. 1.184E—07 —1.164E—-07 5.390E—-08 1.190E—08
Mid-day —1.164E—-07 1.586E—07 —8.620E—08 —2.540E—-08
P.M. 5.390E—08 —8.620E—08 7.050E—08 4.900E—09
Nite 1.190E—08 —2.540E—08 4.900E—-09 5.880E—-08

For Los Angles, only two equations were formulated, one for each cluster. They were

!
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(11)
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Before classifying the unmatched links, the equations were tested in two ways using the mat-
ched links” model volumes. First, every matched link was classified into a cluster using Egs. (10)
and (11), and the results were compared to the link’s cluster determined from the observed counts.
A misclassification rate was calculated based on the percent of links not properly classified.
Second, modified versions of the above equations were formulated using only 75% of the matched
link data. The remaining 25% of the links were then classified, and the results were compared to
the clustering results determined from the observed counts. Again, misclassification rates were
calculated. Using the first testing procedure, the San Diego model had a misclassification rate of
0.449 (Table 9). For Los Angeles, the misclassification rate was 0.263 (Table 10).

For San Diego, the model generally misclassified a link into a cluster with the next similar
pattern. For example, the misclassifications for links in cluster 3 were mostly into clusters 4 and 5.
Fig. 4 indicates that clusters 4 and 5 were more like cluster 3 than were clusters 1 and 2. While
these links were misclassified, using the wrong allocation factors in these cases would not be as
inaccurate as using the factors from clusters 1 or 2.

Comparison of the properly classified and misclassified links in San Diego showed that certain
directions were proportionally misclassified more often. The percent of northbound links mis-
classified was 58%; for westbound, eastbound and southbound, the percentages were 31%, 37%,

Table 9
Classification table for San Diego (test procedure 1)
Correct cluster Model predicted cluster Total
1 2 3 4 5
1 2 0 0 16
12.5% 0.0% 0.0% 100%
2 B 1 0 61
54.1% 1.6% 0.0% 100%
3 3 9 7 36
8.3% 25.0% 19.4% 100%
4 0 7 5 15
0.0% 46.7% 33.3% 100%
5 0 0 8 10
0.0% 0.0% 80.0% 100%
Table 10
Classification table for Los Angeles (test procedure 1)
Correct cluster Model predicted cluster Total
1 2
1 450
100%
2 388

26.0%

100%
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and 49%, respectively. So northbound links were more likely to be misclassified and westbound
links were least likely in proportion to the number of count locations in each direction. Examining
differences by freeway revealed that interstate (I) 15 was proportionally misclassified the most
(excluding state route (SR) 78 with only one count location) with a rate of 74%. On the other
hand, SR-94 had the smallest misclassification rate at 22%. I-5 had the next smallest rate of 31%.
Table 11 summarizes the rates for all freeways in the region as well as average total model volumes
(sum of three modeling periods).

Fig. 6 shows the relationship between total model volume and misclassification rate. The fitted
line demonstrates that as the misclassification rate increases, the total model volume decreases.
We observe this same relationship when comparing the average total model volumes for the
properly classified and misclassified links. The average total model volume for misclassified links
was 73,262 vehicles, with a standard deviation of 24,074. The mean for properly classified links
was 82,808 with a standard deviation of 22,889. Clearly the San Diego links with smaller daily
volumes had a much higher chance of being misclassified.

Inspection of the Los Angeles classifications showed few differences between the properly and
improperly classified links. Comparing flow direction revealed that 17% of the westbound links
were misclassified. Eastbound links, on the other hand, had a misclassification rate of 24%. North
and southbound links had similar rates of misclassification (~30%). Many differences were de-
tected in the misclassification rates by freeway. Table 12 displays all of the rates for each freeway.
Ignoring the extremes, which are influenced by very small samples sizes, the highest misclassifi-
cation rates (>35) were found for interstate I-5, SR-118, SR-133, SR-134, SR-170, and 1-605.

Table 11
Misclassification rates for SD freeways
Freeway Misclassification Total no. count Average total Standard deviation of
rate (%) locations model volume total model volumes
I-5 31 29 88949 11599
I-8 42 26 73306 35384
I-15 74 31 87740 23482
SR-78 100 1 49728 -
SR-94 22 27 66661 11064
SR-125 67 3 34426 18316
SR-163 63 8 64435 12077
I-805 38 13 89380 9991
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Fig. 6. Misclassification rate by total model volume for San Diego.
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Table 12
Misclassification rates for LA freeways
Freeway Misclassification Total no. count Average total Standard deviation of
rate (%) locations model volume total model volumes
I-5 41 126 84612 26385
I-10 18 111 92186 17408
SR-55 32 19 80290 12575
SR-57 28 32 78436 8743
SR-60 4 46 77557 6468
SR-71 0 1 25909 -
SR-91 22 69 78874 10287
US-101 26 89 89621 23209
I-105 30 30 55135 14350
I-110 32 41 86377 22707
SR-118 45 31 43670 12574
SR-133 50 2 9398 1309
SR-134 36 25 74401 6323
SR-170 40 5 67662 4271
I-210 9 43 68376 13116
1-405 14 93 90217 16 649
1-605 40 45 78143 14517
I-710 33 30 76 446 12638
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Fig. 7. Misclassification rate by total model volume for Los Angeles.

Inspection of Fig. 2 reveals that these freeways are distributed fairly evenly over the network.
Interestingly, I-5 had the second smallest misclassification rate in the San Diego region and one of
the highest in the Los Angeles region.

Fig. 7 demonstrates the relationship between the total model volumes and the misclassification
rates. Like San Diego, a negative correlation is suggested between total model volume and mis-
classification rate; however, of a lesser magnitude. The average total model volume for all mis-
classified links was 78,178 with a standard deviation of 23,378. The mean and standard deviation
for all properly classified links were 81,956, and 20,438, respectively.
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For the second test procedure, Eqgs. (10) and (11) were reformulated using 75% of the data,
randomly chosen. The modified equations for San Diego were
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For Los Angeles the two modified equations were
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(13)

Using the second testing procedure, the misclassification rates for San Diego and Los Angeles
were 0.448 and 0.268. These values are almost identical to those determined using the first testing
method. Tables 13 and 14 summarize the results for test procedure 2. For observed (correct)
clusters 3 and 4, the same numbers of links were classified into clusters 3 and 4. However, both
data sets were very small.

Upon completion of the matched link analysis, Eqgs. (10) and (11) were used to classify the
unmatched links. We also determined the probability that any given unmatched link was properly
classified. The probability P that the unmatched link with model volumes x, was properly clas-
sified into cluster i was calculated as

exp (0.5D?(xo))
> exp (0.5D7(xo))

Plilxo) = (14)

where D7 (x) is the standardized squared distance from the new link to cluster k. For San
Diego, 30% of the unmatched links were classified into cluster 1, 21% to cluster 2 and 25%, 7%,
and 17% to clusters 3, 4, and 5, respectively. The actual number of links in each cluster is shown
in Table 15. For Los Angeles, 1261 (68%) links were classified into cluster 1 and 599 (32%) into
cluster 2.
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Table 13
Classification table for San Diego (test procedure 2)
Correct cluster Model predicted cluster Total
1 2 3 4 5
1 6
100%
2 12
100%
3 7
100%
4 2
100%
5 2
100%
Table 14
Classification table for Los Angeles (test procedure 2)
Correct cluster Model predicted cluster Total
1 2
1 36 122
29.5% 100%
2 59 76
77.6% 100%
Table 15
Unmatched links classified into each San Diego cluster
Cluster classification Total
1 2 3 4 5
Number 303 214 260 76 174 1027
Percent 29.5% 20.8% 25.3% 7.4% 16.9% 100.0%
Avg. prob. 0.544 0.528 0.428 0.550 0.490

Summaries of the values are shown in Table 16. Also shown in Tables 15 and 16 are the average
probabilities for each cluster. Recall that these values represent the estimated probability that the
link was properly classified. For San Diego, these values ranged from 0.42 for cluster 3 to 0.55 for
cluster 5. The average probabilities for Los Angeles were 0.78 for cluster 1 and 0.71 for cluster 2.
The larger Los Angeles probabilities and smaller San Diego probabilities reiterate the original
findings that Los Angeles had a smaller misclassification rate (26%) and San Diego had a larger
rate (45%). Intuitively, this is reasonable; with only two clusters in Los Angeles, there is already a
50% chance of classifying the link properly.
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Table 16
Unmatched links classified into Los Angeles clusters
Cluster classification Total
1 2
Number 1261 599 1860
Percent 67.8% 32.2% 100.0%
Avg. prob. 0.776 0.714

5. Conclusions

This study extends the MMR methodology to disaggregate travel demand model period-based
volumes into hourly volumes for all network links, matched or unmatched. The benefit of such a
procedure is increased resolution for estimation of gridded running stabilized mobile emissions.
The procedure extends prior theoretical work in estimating allocation factors, by incorporating
spatial variation and devising and testing a new technique for incorporating unmatched network
locations.

Fig. 8 summarizes the procedure developed to disaggregate both matched and unmatched
model link volumes into hourly profiles. First, the necessary data is collected, including freeway
DM link volumes and observed volumes. For each model location, a determination must then be
made as to which links match an observed count location and which remain unmatched. Second,
all matched links are spatially grouped, or clustered, based on the observed daily temporal traffic
patterns on the link. Third, one set of allocation factors, say f8. for hour i is estimated for all links
within cluster ¢. In other words, instead of estimating one set of allocation factors for all links,
separate factors are estimated for clusters of locations with similar daily traffic distributions.

The methodology was applied to the SCOS97 data set and resulted in two classification models,
one for San Diego and one for Los Angeles. Testing of the new methodology indicated that the
San Diego model had a predicted correct classification rate of 55%. Misclassifications can,
however, be partially acceptable if the link was incorrectly clustered into an adjacent cluster ex-
hibiting a similar pattern to the appropriate cluster. For Los Angeles, the predicted misclassifi-
cation rate was estimated as 26%. In both cases, we found that links exhibiting lower volumes
were slightly more likely to be misclassified. Although this analysis used LA and San Diego, the
full methodology can be easily implemented, and appears well suited for application to other
regions as a means for improving the resolution of the gridded running stabilized mobile emis-
sions.

Further extensions to the method should include development of a statistically-based frame-
work for disaggregating non-highway travel demand volumes to hourly profiles. The current
method can generally be applied only to those facilities with automatic counters, typically
highway level facilities. Although counts may be taken on arterial level network links, these will
usually be of limited duration (i.e., a day or week versus an extended period). Additional research
would also be useful in identifying the minimum number of day counts that are necessary to
ensure that the mean volumes are both diurnally and spatially representative. This would help
metropolitan planning agencies and local governments to budget count days for off-highway
travel demand model links.
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Fig. 8. Extended methodology for improving hourly profiles.
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