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Transposition and Generalization on an Artificial Dimension

J.E.M. Locke

M.B. Suret

I.P.L. McLaren (iplm2@cus.cam.ac.uk)
Department of Experimental Psychology; Downing Street

Cambridge, CB2 3EB UK

Abstract
In two experiments we demonstrate that a
model based on generalization gives a good
fit to data obtained when subjects have t o
transfer learning based on one discrimina-
tion to another on the same dimension.
Experiment 1 demonstrates an effect o f
transposition-based transfer from pre-
training to the subsequently trained target
discriminations.  Experiment 2 shows that
this effect is unlikely to be an artifact
caused by subjects’ sensitivity to changes
in stimulus-response assignments.

Introduction
McLaren and Suret (2000) were the first to report an ef-

fect of transfer along a continuum (Lawrence, 1952) with
an artificial dimension constructed by morphing in equal
intervals between two similar faces. In a later paper Suret
and McLaren (2002) demonstrated that the transfer effects
they found with this dimension could be explained in
terms of the generalization gradients set up by discrimina-
tion training. They developed a connectionist model of
discrimination learning which is a modification of the
McLaren and Mackintosh (2000, 2002) model and was
able to give a satisfactory fit to the data by exploiting the
similarity relationships between faces on the dimension to
produce a generalization gradient of the required type. This
was achieved by using Gaussian patterns of activation over
an ordered set of units representing the dimension to code
for a given stimulus on that dimension. Training a dis-
crimination involved associating the units activated by a
stimulus with its outcome via the delta rule, and this in
turn produced a gradient of generalization to a particular
outcome across the dimension. The experiments reported
in this paper were designed to further test this model of
discrimination learning, and, in particular, to assess the
validity of this generalization gradient approach to transfer
between discriminations on a dimension. In order to do
this, we moved from experiments based on transfer along a
continuum to those based on the phenomenon of transpo-
sition.

Kohler (1918) was one of the first people to demon-
strate transposition in animals.  In this test, chickens were
trained on a two stimulus discrimination task between a
dark card (S-) and a light card (S+).  In the test phase they
had to choose between the original stimulus (S+) and a
new stimulus, an even lighter card (S'), and it was found
that they showed a preference for responding to the new,
lighter stimulus (S').  

The standard associative account of this phenomenon
appeals to the notion of generalization, making it a prom-
ising preparation for our purposes.  Spence’s (1936) the-
ory of discrimination learning in animals assumes that if a
response to a particular stimulus is followed by reward,
the excitatory value of that stimulus is strengthened.
Equally, if a response to a stimulus is not followed by
reward, the inhibitory value of that stimulus is increased.
The two add in algebraic fashion, to result in a final net
value of the stimulus, which governs the animal’s re-
sponse.  Spence (1937) later argued that when animals are
presented with a discrimination between two stimuli from
the same dimension there will be some generalization be-
tween them.  Therefore, the excitatory tendency to respond
to S+ will also be elicited by S- but to a smaller degree,
and likewise the inhibition associated with S- will also be
associated with S+ but to a smaller degree.  The level of
responding to a given stimulus is then determined by the
difference between the excitation and inhibition at that
point along the dimension.

Figure 1: Excitatory and inhibitory gradients developed
during training on S+ vs. S-.

This is well illustrated by Figure 1, which shows the gra-
dients of excitation and inhibition developed around S+
and S- respectively.  At the position of the novel stimu-
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lus, S', the difference between the two generalization gra-
dients is greater than for S+ therefore predicting greater
responding to this novel stimulus and hence transposition.

A more modern, elemental explanation of transposition
is illustrated in Figure 2.  On this approach, a stimulus is
represented by a set of activated elements or units, a dis-
tributed representation.  Variation along a stimulus dimen-
sion such as brightness will, for the most part, be repre-
sented by different elements corresponding to different val-
ues on the dimension, rather than the activation level of a
single element being the primary indicator of value on the
dimension.  Each element has a ‘tuning curve’ such that it
responds most strongly to a certain value on that dimen-
sion and this response drops off fairly rapidly with distance
from this value.  Many elements will be active when any
stimulus with value on that dimension is present, the cod-
ing is via a pattern of activation.  Learning will proceed
via association between the elements activated by a stimu-
lus and other units representing reward.

The stimuli in the hard discrimination (S+ vs. S-) origi-
nally trained are close on the dimension such that there is
a large degree of overlap between the patterns of activation
that represent them, resulting in considerable generaliza-
tion between them.  The elements that are most active,
and so dominate learning, are not those that best discrimi-
nate between the stimuli.  If a new stimulus (S') is added
on the dimension above S+, the most active units when
this stimulus is presented are those that best discriminate
between S+ and S-.  Therefore, in a choice between S+
and S' the units representing S' give rise to a stronger net
association with reinforcement, than the units representing
S+, meaning that S' will be chosen over S+.

Figure 2: Stimulus representation on a dimension.

Experiment 1

Our first experiment tests the prediction made by both
Spence and elemental theories that generalization on a
dimension should lead to transposition. We investigated
learning and performance on an artificial, morphed face
dimension, by pre-training an initial discrimination, and
then transferring to training on another discrimination in a
manner either consistent or inconsistent with the effects of
transposition outlined above. Addressing the issue of gen-
eralization in this way had the added advantage of allowing
us to pit the generalization explanation of discrimination

learning and transfer against an alternative position that
stresses the importance of associating particular stimuli to
particular responses. Generalization is then seen as a later
computation based on these learned associations, and is
thus a secondary consequence rather than the primary result
of discrimination learning.

Stimuli and Apparatus
 The stimuli used in all phases of the experiment were
pictures of faces constructed from two similar black and
white passport photographs.  These images were morphed
into one another and the experimental stimuli were taken
from this dimension. Two original photographs are used
as poles of the dimension, and then ten equal intervals are
set to create the nine intermediate stimuli used for the ex-
periments.  The dimensional nature of the stimuli allows
an investigation of how generalization and discrimination
between the stimuli occurs under a variety of manipula-
tions.  An example of one of the dimensions is shown in
Figure 3, but the experiment involved learning about four
different face pair dimensions concurrently, with the as-
signment of the face dimensions to the conditions of the
experiment counterbalanced appropriately. In this, and
subsequent experiments the faces at positions 3 and 9 on a
dimension constitute an easy discrimination whilst those
at 5 and 7 a hard discrimination.  These stimuli were pre-
sented on an Apple Macintosh computer running Real
Basic.  They were 3.5 cm by 4.5 cm and subjects sat ap-
proximately 50 cm from the screen.  

Subjects and Design
Subjects were 32 undergraduates and graduates from the

University of Cambridge with an age range of 18 – 30.
All subjects received two blocks of pre-training on the
hard discrimination between stimulus 5 and stimulus 7,
denoted 5+, 7-. The + and – simply show different re-
sponse assignment, which in this case were either the left
or right response keys. Responses were counterbalanced so
that a given picture on a given dimension had an equal

Figure 3: One of the four morphed face dimensions
used in these experiments.
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chance of being assigned to the left or right key. Pre-
training ran concurrently on all four dimensions for a fixed
number of trials (forty trials per block, five for each of the
eight faces).  They then received another training phase
(another forty trials in total, five for each face) in which
there were four conditions.  There were two transposition
conditions, one closer along the dimension to one pole
(7+, 9-) and one closer to the opposite pole (3+, 5-), and
then the equivalent reverse transposition conditions where
the key assignments were the opposite way round.  This
within subjects design meant that subjects experienced
every condition, one on a given dimension.  The dimen-
sion used for each condition varied between subjects.  This
was followed by a final test phase in which performance
following training in each condition was assessed without
giving the feedback used in pre-training and training.  In
this phase each of the eleven faces from the four dimen-
sions is shown 5 times.  The data of interest are the re-
sponses to the stimuli in this final test phase, in particular
the differences in responses between 3 and 5, and 7 and 9
following training in either the transposition or reverse
transposition conditions.  A significant difference between
responses following training on these two conditions
would provide evidence for the generalization mechanisms
underlying this type of learning. Note that the design
means that in the Transposition condition subjects will
experience a change in response for the stimuli pre-trained,
whereas in the Reverse Transposition condition these
stimulus-response assignments are unchanged. Thus a
theory that emphasizes acquisition of individual stimulus-
response associations will predict that learning will be
stronger in the Reverse Transposition condition, in direct
opposition to generalization theory which predicts that it
is the generalization gradient that matters, and that this
will favor the Transposition condition as the gradient from
pre-training to training is unchanged.

Procedure
In both the pre-training and training phases of the ex-

periment, subjects were told that once they pressed the ‘G’
key, a constant stream of stimuli in the form of faces
would appear on the screen.  They were told that their task
was to sort these stimuli into two categories from the
outset. They were to do this by pressing one of two keys
(‘x” on the left or ‘.’ on the right, the correct key was
counterbalanced between subjects) and would receive im-
mediate feedback as to the correctness of the response.  If
they did not respond within 4 seconds they would be timed
out.  The subjects were told that the faces were randomly
and equally allocated to either left or right key and that
their task was to simply find out and remember which
ones were ‘right’ and which ‘left’.  Stimuli were presented
singly in a continuous stream.  Each trial started with a
‘+’ fixation point for 1.5 sec, which was then replaced by
the face stimuli for a maximum of 4 sec and disappeared

once a response or time-out was made.  Feedback was then
given for 1.5 sec, either ‘correct’ displayed in the center of
the screen or ‘wrong’ and a beep if an invalid key was
pressed.  After completing the pre-training and training
phases, subjects progressed to the test phase of the ex-
periment.  Subjects were told to categorize the stimuli
into two categories based on the judgements they had made
in the last training phase, but this time no feedback was
given.  Feedback was replaced by a 1.5 sec pause between
the subject’s response and the succeeding stimulus.

Results
The results of Experiment 1 are shown in Figure 4.

One key, e.g. the left key, is designated the negative cate-
gory (a press scores –0.5 for that stimulus) and the other,
right key, the positive category (scores +0.5) during test.
Key assignments were counterbalanced across subjects so
that the positive category has equal numbers of left and
right responses.  The mean key score indicates the average
of the key presses across subjects, ranging from –0.5 to
+0.5, and would be zero if subjects were indifferent to
which stimulus went with a given key.

A three-way ANOVA was carried out on the results of
the test phase with three within subjects factors.  These
were Discrimination (transposition or reverse transposi-
tion), Direction (up or down the dimension) and Stimulus
(number on the dimension).  This gave an F(10,310) =
1.924, p<0.05 for the main effect of Stimulus, but no
other significant effects, in particular it gave a non-
significant effect of Discrimination, F(1,31) = 1.084,
p>0.05.  The first effect refers to the fact that the stimulus
number influences the mean key score, but the lack of
significant main effect of Discrimination suggests that
there is no significant difference in mean key score be-
tween transposition and reverse transposition conditions.
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Figure 4: The results of Experiment 1 expressed as mean
key score at each point on the dimension.

As a further analysis, regression lines were fitted to the
mean performance scores for each stimulus in the two
conditions.  In each the mean key score was the dependent
variable and the stimulus number the independent variable.
Single sample t-tests comparing the regression line gradi-
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ents to zero yielded a significant result, slope=.013, t(10)
= 3.25, p<0.01, in the Transposition condition, and a non-
significant result, slope=.002 t(10) = 2, p>0.05 in the
Reverse Transposition condition. An independent t-test
between the two regression line gradients also yielded a
significant result, t(20) = 2.668, p<0.02.  From this we
can infer that there was a difference in generalization gradi-
ents across the dimension in the two conditions. Thus,
despite an initial lack of evidence for any difference be-
tween the two conditions it does appear that the training
discrimination phase has had an effect, resulting in a sig-
nificant generalization gradient in the Transposition condi-
tion but not in the Reverse Transposition condition.

 The difference scores for the individual discriminations
3 vs. 5 and 7 vs. 9 trained in the last training phase were
calculated by subtracting the mean key score for stimulus
3 from the mean key score for stimulus 5 (5-3), and simi-
larly, the mean key score for stimulus 7 from that of
stimulus 9 (9-7).  When these difference scores were com-
bined and subjected to analysis it was found that the over-
all difference scores were not significantly different from
zero in either the Transposition or Reverse Transposition
condition (Fs<1), suggesting that the discriminations had
not been learned to any great extent, though the overall
trend was for larger (positive) difference scores in the
Transposition condition.

Discussion
The significant difference found between the generaliza-

tion gradients in the transposition and reverse transposi-
tion conditions can be adequately accounted for by
Spence’s (1937) theory as well as our own. In pre-
training, a generalization gradient develops across the di-
mension by virtue of the association of stimulus represen-
tations to their respective keys.  In the case of transfer to
the transposition discrimination, the shift in stimuli is
congruent with the already established generalization gradi-
ent, as the differential key response for the new discrimina-
tion (i.e. which of the stimuli one should have the greatest
tendency to press the left key for) is exactly that already
established by this gradient.  The reverse transposition
condition, on the other hand, goes against the generaliza-
tion gradient formed in pre-training and requires it to be
unlearned.

The observed difference in generalization gradients sug-
gests that there is learning in the transposition condition
whilst nothing (overall) is learned in the reverse transposi-
tion condition.  We would expect, therefore, the individual
discriminations to be learnt in the transposition condition
but not in the reverse transposition condition.  In Experi-
ment 1, however, the discriminations are learnt in neither
condition.  This is possibly due to a lack of power in the
statistical tests used due to the small population size, or
simply to the fact that the within subjects design was suf-

ficiently hard and learning sufficiently slow to yield no
significant acquisition of the discriminations.
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Figure 5: Expected generalization curves following pre-
training and training.

Closer examination of how the generalization curves
across the dimensions might be affected by training under
each condition reveals that traditional accounts of generali-
zation may well be sufficient to explain these results.
Figure 5 shows in idealized form the generalization curves
that should develop following pre-training on the 5 vs. 7
discrimination and then how this is expected to change
following training in the transposition and reverse trans-
position conditions.  In the transposition condition the
shape of the generalization curve is maintained, and actu-
ally altered very little.  In the reverse transposition condi-
tion the associative strengths of stimuli 5 and 7 to the
respective pre-trained keys are increased, whilst those of 3
and 9 are decreased, resulting in a considerably altered gen-
eralization curve.

From Figure 5 we can see how a regression analysis
would suggest that there is a lack of a significant generali-
zation gradient following training in the reverse transposi-
tion condition, whilst a significant generalization gradient
is maintained in the transposition condition.  If we con-
sider the discrimination scores expected on the basis of
Figure 5 we see that in the transposition condition the
difference scores (5 - 3 and 9 - 7) should both be positive,
and so their overall summed score (i.e. (5 – 3) + (9 - 7))
should be positive.  In the reverse transposition condition
both difference scores should be negative and the same
corollary applies. We have already seen that the individual
discriminations were not learnt in this experiment.  This
lack of significance for the trained discriminations is per-
haps not surprising, given that the subjects in this ex-
periment reported that the within subjects design we had
used made learning them a very hard task.  We suspect that
the reason why we are able to pick up an effect of Condi-
tion using the regression analysis is that this allows us to
make use of all the data across the dimension, increasing
power.
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Figure 6 shows the results of a simulation of Experi-
ment 1 using the model reported in Suret and McLaren
(2002). The simulation shows a good fit to the trends in
the data, in that the slope of a regression line is predicted
to be greater for the Transposition condition, as are the
difference scores for the discriminations. Note that the
predicted discrimination differences in the Reverse Trans-
position condition are close to zero.
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Figure 6: Simulation of Experiment 1.

Experiment 2

Experiment 1 produced results that are consistent with a
generalization model of discrimination learning and trans-
fer, albeit the evidence for transposition per se was not as
strong as one might wish. There is, however, another pos-
sible explanation of the results which would jeopardize
this conclusion. It may be that subjects are especially sen-
sitive to a change in the response required to a stimulus as
they move from pre-training to training phases of the ex-
periment. If this were so, then the stronger learning in the
Transposition condition of Experiment 1 would follow as
a consequence of the change in response required to stimuli
5 and 7, rather than because of the congruent generaliza-
tion gradients established in pre-training and training. Ex-
periment 2 addresses this issue by arranging for a change
in response assignments to be accompanied by incongru-
ent generalization gradients between pre-training and train-
ing phases of the experiment.

 In this experiment the stimuli used were the same as in
Experiment 1, and 10 new subjects were taken from the
same population.  They were pre-trained on an easy dis-
crimination (3+, 9-) for all four dimensions for an equal
number of trials, (10 per dimension, 40 in total). After
this pre-training phase they were then trained on a reverse
transposition discrimination (40 trials in total, 5 for each
face) either on one side (7-, 9+) on two dimensions, or on
the other (3-, 5+) for the remaining two dimensions.  The
discriminations assigned varied between subjects so that
no dimension was trained more on one side than the other.  

This was then followed by a test phase as in Experiment
1.  Significant differences in responding between the pairs

trained in the final training phase (3, 5 and 7, 9) would
demonstrate acquisition of the discrimination and based on
the generalization model we would expect this not to occur
here.  This is because the easy pre-training will produce an
opposing gradient, and we might expect more learning of
the initial easy discrimination than the harder training dis-
criminations. If the change from 3+ and 9- to 3- and 9+ is
the important factor then we might expect the discrimina-
tions to be learned.

Results
The results of Experiment 2 are shown in Figure 7.

Once again the difference score for each discrimination was
computed as in Experiment 1. Analysis of the discrimina-
tions across subjects revealed that all discriminations were
non-significant (p>0.1), and showed a trend opposite to
that required to learn the training discriminations, though
consistent with the gradient that we might expect to be
established in pre-training.

There is little doubt, however, that the subjects have
learned something. The results for each stimulus shown in
Figure 7 demonstrate acquisition of a generalization gradi-
ent across the dimension that is the one expected as a re-
sult of pre-training on the easy discrimination,.
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Figure 7: Mean responses by face in Experiment 2.

This impression is confirmed by analysis of the best fit-
ting line to the data points shown in Figure 9. The slope
is -.0246, which is significantly different to zero, t(10) =
2.35, p<.05.

Figure 8 shows simulation results for Experiment 2
which fit well with the trend in the data.
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It would be wrong, however, to assume that the non-
significant results for the trained discriminations implies
that that training had no effect, and that the results are
entirely driven by the pre-training of the easy discrimina-
tion. The greater power available to us in this experiment
allows a split into the two individual discriminations used
in training, i.e. 3- vs. 5+ and 7- vs. 9+. Figure 9 shows
the results for these two discriminations.
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Figure 9: Results for Experiment 2 as a function of
trained discrimination.

A comparison of the two discriminations gives a highly
significant effect, F(1,10)=32.9, p<.01. Once again this
pattern of results is captured to at least some extent by our
simulation of Experiment 2, as shown in Figure 10.
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Figure 10: Simulation results for Experiment 2 as a func-
tion of trained discrimination.

Discussion
The results of this experiment suggest that a generaliza-

tion based account of the data is to be preferred. There is
little evidence of the subjects having acquired the trained
discriminations as the ‘change’ hypothesis would predict,
even though we know that the training had a significant
effect on performance. Instead, the generalization model
can account for both the gradient established across the
dimension and the differential effect of the trained dis-
criminations on this gradient.

General Discussion and Conclusion
The purpose of this paper was to test the generalization

model of discrimination learning developed by Suret and

McLaren (2002).  In general this model gave a good fit to
the data, whereas alternative hypotheses pertaining to the
specific learning of stimulus-response associations and an
enhanced ability to detect changes in stimulus-response
assignments receive little support. If subjects learn indi-
vidual stimulus-response associations (e.g. 5 with left(-))
as a preliminary to some further computation that leads to
responding and generalization, then we might expect the
Reverse Transposition condition of Experiment 1 to fa-
vour this. In this condition the 5- and 7+ mappings are in
force for both pre-training and training. This should favour
their acquisition, which should aid learning of the dis-
criminations.  No evidence in support of this prediction
was found in Experiment 1. Appealing to the change in
stimulus–response mapping from pre-training to training
as another factor that might confound the effect expected in
Experiment 1 was not supported by the data from Experi-
ment 2. We conclude that a model of discrimination learn-
ing that has generalization built in as a primitive compu-
tation is required to explain these data.
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